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1	 Introduction

The	integrity	of	the	canister/buffer	system	can	be	jeopardised	by	earthquakes	that	occur	in	
the	vicinity	of	the	repository.	To	avoid	mechanical	damage	due	to	earthquakes,	SKB	has	
adopted	the	notion	of	respect	distance	which,	according	to	/Munier	and	Hökmark	2004/,		
is	defined	as	follows:

“The	respect	distance	is	the	perpendicular	distance	from	a	deformation	zone	that	defines	
the	volume	within	which	deposition	of	canisters	is	prohibited,	due	to	anticipitated,	future	
seismic	effects	on	canister	integrity.”	

The	use	of	respect	distance	alone	cannot,	however,	guarantee	the	integrity	of	the	canister.	
There	is	a	relation	between	the	respect	distance	and	the	size	of	fractures	that	can	be	
allowed	to	intersect	the	deposition	holes.	If	a	fracture	is	too	large	it	might,	when	triggered	
by	a	nearby	earthquake,	host	a	slip	exceeding	the	canister	failure	criterion,	10	cm	with	
the	current	canister	design	/Börgesson et	al.	200�/.	Empirical	and	numerical	studies	have	
shown	/Munier	and	Hökmark	2004/	that	a	fracture	must	have	a	radius	exceeding	50	m	to	
be	able	to	host	a	maximum	slip	of	10	cm,	using	a	respect	distance	of	100	m.	The	numerical	
methods	have	since	developed	to	include	fracture	friction	and	recent	studies	/Fälth	and	
Hökmark	2006/	has	concluded	that	the	size	of	acceptable	fracture	sizes	in	deposition	
holes	can	be	increased	to	r	=	75	m	(100	m	respect	distance)	and	r	=	150	m	(200	m	respect	
distance)	respectively.	A	deposition	hole	not	fulfilling	these	criteria	will	be	rejected.	We	
find	it	practical	for	the	purposes	of	this	report,	to	follow	the	terminology	of	/Munier	and	
Hökmark	2004/,	in	which	these	fractures	are	termed	“discriminating	fracture”.

The	problem	is	that	the	size	of	a	fracture	can	rarely,	if	ever,	be	measured.	A	simple	and	
uncontroversial	indicator	for	a	fracture	being	large	is	if	its	intersection	with	a	tunnel	can	be	
traced	around	the	full	perimeter	of	the	tunnel	face	(Figure	1‑1).	Such	fracture	intersections	
are	easy	to	observe	and	require	no	additional	efforts	than	traditional	fracture	mapping.

Figure 1‑1. Example of a full perimeter intersection, Grimsel test site, Switzerland.
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We	here	evaluate	the	efficiency	of	utilising	a	Full	Perimeter	Intersection	(hereafter	denoted	
FPI)	criterion	/e.g.	Hagros et	al.	2005/,	for	identifying	discriminating	fractures	in	deposition	
tunnels	and	deposition	holes.	We	also	evaluate	the	consequences	of	using	FPI,	expressed	in	
terms	of	the	degree	of	utilisation.

This	is	achieved	by	means	of	stochastic	fracture	simulation	consisting	of	two	steps.	The	
first	consists	of	computing	intersection	statistics	between	the	tunnel	and	the	fracture	array.	
The	second	step	consists	of	computing	the	degree	of	utilisation	based	on	the	statistics	
derived	from	the	first	step.

We	base	our	simulations	upon	the	DFN	models	produced	for	the	Laxemar	/Hermanson et	al.	
2005/	and	Forsmark	/La	Pointe et	al.	2005/	study	sites,	versions	1.2.	We	anticipate	that	these	
models	will	mature	further	within	the	framework	of	SKB’s	on‑going	site	investigations	
and	Site	Modelling	(versions	2.2	and	onwards)	and	though	we	here	discuss	the	impact	of	
various	DFN	parameters	on	our	results,	it	is	beyond	the	scope	of	the	work	presented	here	
to	evaluate	the	validity	of	the	published	models.	The	DFN	models	have	been	used	with	no	
modifications	and	accepted	as	they	were	published.	The	uncertainties	presented	here	thus	
mirror	the	uncertainties	of	the	DFN	models.
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2	 Simulation	prerequisites

2.1	 DFN	model
The	site	descriptions	/e.g.	SKB	2005c/	and	references	therein	provide	the	necessary	fracture	
statistics	to	construct	a	DFN	model.	Here	we	make	use	of	the	Laxemar	/Hermanson et	al.	
2005/	and	Forsmark	/La	Pointe et	al.	2005/	DFN	versions	1.2,	summarised	and	simplified	
in	Table	2‑1	and	Table	2‑2.	A	visualisation	of	the	DFN	models	is	displayed	in	Figure	2‑1	as	
traces	on	a	tentative	outcrop	which	highlights	the	differences	in	fracture	intensities	between	
the	sites.

Table	2‑1.	 Laxemar	DFN,	version	1.2.

Mean	orientation	of	fracture	poles Size Intensity
Trend Plunge Kappa kr r0 P32

338.1   4.5 13.06 2.85 0.328 1.310
100.4   0.2 19.62 3.04 0.977 1.026
212.9   0.9 10.46 3.01 0.858 0.975
    3.3 62.1 10.13 41 – 2.320
243.0 24.4 23.52 3.602 0.400 1.400

1  The distribution given by the DFN model is exponential with the parameter λ = 1/mean.
2 As the Laxemar model did not report any parameters for the Euclidian scaling we used the reported fractal 
scaling instead.

Table	2‑2.	 Forsmark	DFN,	version	1.2.

Mean	orientation	of	fracture	poles Size Intensity
Trend Plunge Kappa kr r0 P32

  87.2   1.7 21.66 2.88 0.28 0.602
135.2   2.7 21.54 3.02 0.25 2.069
  40.6   2.2 23.9 2.81 0.14 0.448
190.4   0.7 30.63 2.95 0.15 0.226
342.9 80.3   8.18 2.92 0.25 0.605

Figure 2‑1. DFN simulations of the size interval 1 < r < 250 m, here displayed as traces on a 
50×50 m simulated outcrop. a) = Laxemar 1.2, b) = Forsmark 1.2. Inserts are contoured (Kamb) 
stereonets of poles to simulated fracture planes.

b)a)



8

2.2	 Intersection	criteria
In	this	study,	we	idealise	a	tunnel	as	a	cylinder,	and	a	fracture	as	an	infinitely	thin,	circular	
disc.	The	problem	studied	here,	is	thus	essentially	one	of	finding	the	intersection	between	a	
finite	plane	and	a	finite	cylinder.

There	are	many	possible	intersection	geometries	(Figure	2‑2),	all	of	which	are	discussed	
briefly	below:

Intersection	“b”	is	by	far	the	most	common	and	occurs	when	the	plane	intersects	the	
cylinder	at	an	oblique	angle.	Intersections	“a”	and	“c”	constitute	special	cases	of	“b”	and	
occur	when	the	plane	is	perpendicular	or	parallel	to	the	cylinder	respectively.

Intersection	“d”	requires	the	plane	to	be	oriented	exactly	parallel	to	the	tunnel,	and	located	
exactly	at	its	tangent	which	is	unlikely	both	in	simulations	and	in	a	real	tunnel	system.	
The	FPI	criterion	requires	the	fracture	to	be	detectable	by	the	naked	eye	and	thus	“d”	type	
intersection	will	therefore	not	be	included	in	the	analyses.	Intersections	“f”	and	“g”	are	
special	cases	of	“d”.

Intersection	“e”	occurs	if	the	fracture	intersects	the	end‑cap	of	the	tunnel.

Figure 2‑2. Possible intersection geometries between an infinite plane and a finite cylinder (a–g). 
Possible intersection between a finite plane and a finite cylinder (h).

*

a) b)

h)

c)

d) e) f)

g)
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In	addition	to	the	intersections	above,	we	can	envisage	intersections	as	parts	of	ellipses	
(intersection	“h”),	which	would	occur	if	the	planes	were	not	large	enough	to	cut	through	the	
entire	tunnel	diameter	or	located	such	that	only	the	tip	of	the	plane	intersects.	Such	intersec‑
tions	are	not	relevant	to	our	study.	Thus,	for	the	purpose	of	evaluating	a	FPI	criterion,	only	
intersections	of	type	“a”,	“b”,	“c”	and	“e”	were	considered.

We	define	a	plane	P	(Figure	2‑�)	in	terms	of	its	centre	point,	Pc,	its	unit	vector,		n̂	and	its	
radius	rp.	A	cylinder	is	defined	in	terms	of	its	centre	point	C,	its	axis	orientation,	represented	
by	the	unit	vector	ĉ,	its	radius	rc	and	its	half‑	length	(or	half‑	height)	h.

If	the	plane	is	perpendicular	to	the	cylinder,	then	the	absolute	value	of	the	dot	product	
equals	one,	i.e.:

│ĉ ·  n̂│= 1

and	we	will,	for	an	infinite	plane,	have	an	intersection	if	the	distance	between	P	and	C	is	
less	than	or	equal	to	h,	producing	an	intersection	of	type	“a”	or	“g”	respectively.

Figure 2‑3. a) Criteria for elliptical intersections. b) Criteria for end-cap intersections /redrawn 
from Schneider and Eberly 2003/.
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If	the	plane	is	parallel	to	the	cylinder,	the	dot	product	is	zero,	i.e.:

ĉ ·  n̂	=	0

and	we	will	have	an	intersection	if	the	distance	between	P	and	C	is	less	than	or	equal	to	rc	
producing	type	“c”	or	type	“d”	intersections,	respectively.

If	the	plane	is	neither	parallel	nor	perpendicular	to	the	cylinder	we	have	an	intersection	if	
the	intersection	point,	Ia,	between	the	plane	and	the	cylinder	axis	is	closer	to	C	than	the	half	
length,	h, which	produces	an	intersection	of	type “b”	or	“e” (or “h”).	However,	the	plane	
might	intersect	the	axis	beyond	the	end	caps	and	there	might	be	an	intersection	depending	
on	the	relative	location	and	orientation	of	the	objects.	The	intersection,	if	it	does	occur,	will	
be	of	the	types	“e”	or	“f”.

To	check	for	an	intersections	of	type	“b”	we	compute	the	intersection	between	the	plane,	
the	cylinder	axis	and	the	cylinder	which	produces	an	intersection	point	Ia	and	an	ellipse	
(Figure	2‑�a).	Using	the	major	axis	of	the	ellipse,	û,	we	check	if	the	ellipse,	represented	
by	the	points	e1	and	e2,	lie	entirely	within	the	end	caps	of	the	tunnel.	If	so,	we	have	an	
intersection	of	type	“b”.	If	not,	we	may	have	an	intersection	of	type	“f”	or	“e”.	The	latter,	
end‑cap	intersection,	is	computed	as	follows:

Following	the	reasoning	in	/Schneider	and	Eberly	200�.	Section	11.7.�,	pages	55�–555./,	
for	the	case	Ia	lies	beyond	the	end‑caps	(Figure	2‑�b),	we	define	a	vector	ŵ	such	that:

ŵ = ĉ×( n̂×ĉ),	is	a	vector	perpendicular	to	ĉ	that	lies	in	the	plane,	Pperp,	containing	both		
	n̂	and	ĉ 	(see	Figure	2‑�b).	That	is,	we	can	always	compute	intersections	in	a	coordinate	
system	perpendicular	to	the	fracture	plane	because	of	the	rotational	symmetry	of	the	
cylinder.

The	angle	θ	between		n̂	and	ŵ is:

cos(θ)	=	 n̂ · ŵ.

The	distance	a	is	known:

a = ║Ia – C║–h

and	by	definition	we	know	that:

( )θ = .

Substituting,	we	get:

ˆ ˆ aI C h
n w

c
− −

⋅   =

and	so

.

Since	a2	+	b2	=	c2,	then

If	b2 ≤ rc
2	and	║Pc – Ic║≤ rp	we	have	an	intersection	of	type	“e”	(or	“f”);	otherwise,	no	

intersection	occurs.
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3	 Simulation	procedure

We	have	implemented	all	simulations	as	Matlab	/The	MathWorks	Inc	2006/	m‑scripts,	
available	from	the	author	upon	request.	This	section	describes	briefly	the	applied	simulation	
principles.

3.1	 Generation	of	fracture	populations
The	fractures	in	the	DFN	models	used	are	assumed	to	possess	a	Poissonian	spatial	arrange‑
ment	(i.e.	non‑correlated	positions),	and	a	lack	of	correlation	between	size,	position	and	
orientation	within	each	defined	fracture	set.	Simulation	of	a	fracture	population	therefore	
constitutes	no	further	complication	than	random	sampling	from	the	given	distributions	for	
each	fracture	set	and	joining	all	sets	into	a	fracture	population.

We	made	use	of	the	inversion	method	/Devroye	1986/	to	produce	random	numbers	either	
using	built‑in	routines	in	Matlab	(applies	to	rectangular,	exponential	and	lognormal	distribu‑
tions)	or	by	the	expressions	below.

Hereafter	denoting	a	[0,	1]	sample	from	a	uniform	distribution	as	U,	we	obtain	random	
numbers	from	a	power‑law	distribution,	rPL,	from:

	 		 	 	 	 	 [1]

Similarly,	random	numbers	from	the	univariate	Fisher	distribution	can	be	obtained	by	three	
separate steps. We first sample the angular deviation from the mean poles, θ, using:

	 	 	 	 	 	 [2]

These	values	can	be	regarded	as	the	deviations	from	a	vertical	plunge	(horizontal	plane),	i.e.

2
plunge π θ= −

As	the	trend	for	a	vertical	plunge	is	uniform	in	[0, 2π],	we	obtain	the	trend	from:

trend	=	2πU

The	set	of	vertical	fracture	normals	thus	produced	is	then	rotated	to	the	mean	direction	of	
the	fracture	set	by	first	tilting	the	array	to	the	mean	plunge	(i.e.	rotation	about	a	horizontal	
axis)	and	then	adding	the	mean	trend	(i.e.	rotation	about	a	vertical	axis).

The	number	of	fractures	N	to	be	simulated	is	governed	by	the	fracture	intensity, P32,	
provided	by	the	DFN	model.	The	intensity	is	defined	as	the	fracture	area	per	unit	volume,	
and	expressed	in	the	unit	m2/m�.
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Following	the	reasoning	in	/Hedin	2005/,	the	number	of	fractures	per	unit	volume,	P30,	can	
be	obtained	from	the	relation:

P30	=		n0	f	(r)			 	 	 	 	 	 	 	 	 [�]

where	f(r)	is	the	probability	density	distribution	of	fracture	sizes	for	a	particular	fracture	
set.	Unlike	/Hedin	2005/,	we	use	a	finite	model	volume	which	tends	to	underestimate	P32	
because	some	portion	of	the	simulated	fracture	will	lie	outside	the	finite	model	volume.	
This	effect	becomes	smaller	the	larger	the	model	volume	(see	Section	�.2).	The	factor	n0	is	
obtained	from	P32	through:

	 		 	 	 	 	 	 	 [4]

Since	we	only	simulate	a	portion	of	the	population,	f(r)	in	[�]	must	be	integrated	over	
the	range	(rmin,	rmax).	The	number	of	fractures	to	simulate	for	each	fracture	set	in	a	model	
volume,	V,	is	then	obtained	by	combining	[�]	and	[4]	into:

.	 	 	 	 	 	 [5]

To	ensure	homogeneous	P32	throughout	the	model	volume,	in	particular	in	the	vicinity	of	the	
model	boundaries,	we	implemented	the	fracture	positions	by	sampling	points	randomly	on	
the	fracture	surfaces,	constraining	the	points	to	lie	within	the	model	volume.	The	procedure	
is	described	below.

A	random	point,	Pr,	is	chosen	from	within	the	model	volume	as:

Prx	=	Udx,	 Pry	=	Udy,	 Prz =	Udz

where	dx,	dy	and	dz	are	the	dimensions	of	the	model	volume	in	each	principal	direction	
respectively,	and	U	is,	again,	a	uniform	random	number	in	[0,	1].	The	unit	vectors	parallel	to	
the	strike	and	dip	directions,	ŝ and		d̂,	respectively,	are	known.	We	rotate	ŝ	randomly	about	
Pr	in	the	plane	containing	ŝ and		d̂	using	an	angle:

ω = 2πU.

The	distance	between	Pr	and	Pc, ║Pr–Pc║, is obtained from:

║Pr–Pc║= rU.

By	trigonometry	the	centroid,	Pc,	can	be	obtained	from:

Pc	=	Pr+║Pr–Pc║(ŝ	cos	ω+	d̂ sin	ω).
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3.2	 Choice	of	appropriate	model	volumes
Simulation	of	fractures	honouring	a	specific	intensity,	P32, requires	the	computation	of	
fracture	truncations	against	the	boundaries	of	the	model	volume.	This	produces	fractures	
of	different	shapes,	each	of	which	requires	special	handling,	and	is	computationally	
expensive.	To	speed	up	simulations	our	procedures	use	P30,	the	number	of	fractures	per	
unit	volume,	to	obtain	required	fracture	intensity	according	to	the	input	DFN	model.

We	do	so	by	using	equations	[�]–[4]	to	transform	P32	into	P30.	This	enables	us	to	maintain	
the	circular	shape	of	the	fractures	and	spares	the	routines	from	the	burden	of	boundary	
intersection	computations.	The	equations	are,	however,	only	valid	for	infinite	volumes.	
There	will	always	be	a	part	of	the	fractures	outside	the	finite	model	volume	which	do	not	
contribute	to	P32.

As	the	model	volume	increases,	the	fracture	area	outside	the	model	volume	will	be	increas‑
ingly	smaller	compared	to	the	fracture	area	within	the	model	volume.	For	a	sufficiently	
large	model	volume,	the	difference	can	be	regarded	negligible.	The	size	of	the	required	
volume	is	unknown,	and	is	governed	by	both	the	DFN,	mainly	the	size	of	the	largest	
fracture	to	include,	and	the	shape	of	the	model	volume.	

As	only	fractures	of	radii	up	to	a	certain	value,	rmax, are	of	interest	for	this	study,	the	simple	
and	absolute	upper	bound	on	the	required	model	volume	is	dz	=	dy	=	2(rmax	+	rTunnel)	and	
dx	=	2rmax	+	LTunnel.	The	use	of	such	a	large	model	results	in	very	long	computation	times	
and	shortage	of	computer	memory.	It	is,	however,	possible	to	test	for	an	appropriate	volume	
by	increasing	the	volume	in	steps	until	some	test	statistic,	e.g.	the	number	of	FPI	per	100	m,	
stabilises.	The	result	of	such	a	test	is	displayed	in	(Figure	�‑2).	The	number	of	simulated	
FPI	stabilises	at	model	sides	of	approximately	150	m,	for	both	Forsmark	and	Laxemar.	
Based	on	this	analysis,	we	cautiously	set	the	model	side	to	250	m,	thereby	decreasing	both	
the	model	volume	and	computation	time,	by	roughly	a	factor	6.

Figure 3‑1. Illustration showing the principle of deducing the fracture centroid from a randomly 
chosen point on the fracture surface.
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To	increase	simulation	efficiency	further,	we	made	use	of	nested	volumes,	within	which	the	
resolution	was	made	to	differ	(Figure	�‑�),	thereby	dramatically	decreasing	the	number	of	
generated	fractures	which	is	the	main	factor	governing	computational	speed.	Additionally,	
we	reduced	the	number	of	generated	fractures	by	including	only	fractures	equal	to	or	
exceeding	the	tunnel	radius,	which	is	required	to	produce	an	FPI.	The	fracture	intensity	
has,	naturally,	to	be	rescaled	to	reflect	the	loss	of	small	fractures.	Furthermore,	we	presume	
that	all	fractures	with	radii	exceeding	r = 250	m,	can	be	identified	as	minor	deformation	
zones	during	tunnel	mapping	and	hence	can	be	safely	excluded	from	the	analyses.	The	
tunnel	length	was	set	to	�00	m,	to	reflect	a	realistic	case,	and	its	radius	to	�.09	m,	which	
corresponds	to	a	cross‑sectional	area	of	�0	m2	/SKB	2002/.	The	model	volume	was	set	to:	
dz	=	dy	=	250	m,	dx	=	550	m.	

Figure 3‑2. Effect of model volume on intersection statistics. The computed FPI reaches a plateau 
at box sides of roughly 150 m.
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3.3	 Computation	of	FPI
For	computational	convenience,	we	first	compute	the	intersection	between	an	infinite	
cylinder	(the	tunnel)	and	an	infinite	plane	(the	fracture).	We	then	perform	two	tests	to	
determine	whether:
i)	 The	intersection	(both	points	e1	and	e2	in	Figure	2‑�a)	lies	within	the	end‑caps	of	the	

cylinder	and
ii)	The	distance	between	the	intersection	(both	points	e1	and	e2	in	Figure	2‑�a)	and	the	

plane	centre	is	smaller	than	or	equal	to	the	plane	radius.

For	each	realisation,	we	mark	all	simulated	fractures	that	produce	FPIs,	keeping	all	other	
parameters	such	as	location,	orientation	and	size	intact.	This	enables	us	to	compute	various	
detailed	statistics	on	the	intersecting	fractures.

Figure 3‑3. Schematic figure showing the concept of nested volumes with fractures here 
represented by their centroids. Note that both the inner and outer boxes shown here are for 
illustration purposes only and are not drawn to scale.
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3.4	 Choice	of	the	appropriate	number	of	realisations
We	computed	cumulative	means	and	cumulative	standard	deviations	for	both	the	number	
of	FPIs	and	degree	of	utilisation	(explained	below)	which	were	used	as	measures	to	address	
the	required	number	of	realisations.	An	example	is	shown	in	Figure	�‑4,	using	the	Laxemar	
DFN	and	an	EW	trending	tunnel.	The	mean	and	standard	deviation	of	the	number	of	FPI,	as	
successively	averaged	over	the	realisations,	stabilises	after	approximately	100	realisations.

To	evaluate	the	impact	of	tunnel	orientation	on	the	computations,	we	rotated	the	tunnel	180°	
from	East	to	West	in	steps	of	10°.	However,	rather	than	rotating	the	tunnel	itself,	we	mim‑
icked	tunnel	rotation	by	rotating	the	fracture	array,	as	this	was	found	more	computationally	
efficient.	The	required	number	of	realisations	is	found	to	be	dependent	on	tunnel	orientation	
but	the	difference	is	subordinate	and	500	realisations	were	found	to	be	sufficient	to	ensure	
adequately	small	confidence	intervals	of	the	means.

Figure 3‑4. The mean number of FPI per 100 m tunnel stabilises after about 100 realisations.
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4	 Evaluation	of	Full	Perimeter	Intersections

Using	the	Laxemar	DFN,	the	number	of	FPI	varies	with	tunnel	orientations	between	about	
14	and	17	per	100	m	of	tunnel,	Figure	4‑1.	The	dependence	on	tunnel	orientation	is	slightly	
more	accentuated	when	using	the	Forsmark	DFN,	Figure	4‑2,	though	the	number	of	FPI	per	
100	m	tunnel	is	lower	and	varies	between	approximately	4	and	8.

The	noticeable	difference	between	the	two	sites	can	be	mainly	attributed	to	the	difference	
in	P32	and	r0.	(Table	2‑1	and	Table	2‑2).	Note	that	the	subhorizontal	Laxemar	set	hardly	
contributes	to	simulations,	as	very	few	sufficiently	large	fractures	are	generated	for	the	
exponential	size	distribution.	In	the	studied	radius	range	�.09–250	m,	the	fracture	intensity	
at	Laxemar	is	about	2.4	times	larger	than	at	Forsmark,	despite	the	lack	of	contribution	to	
P32 of	the	subhorizontal	set.	The	Laxemar	and	Forsmark	DFN	have	approximately	the	same	
kr	as	averaged	over	all	fracture	sets	(2.97	and	2.92	respectively)	but	differ	by	a	factor	�	in	
r0	(0.64	and	0.21	respectively).	The	effect	of	a	larger	r0	is	that	relatively	more	of	the	larger	
fractures	are	produced,	everything	else	held	equal.	Since	the	largest	fractures	are	those	
most	likely	to	produce	FPIs,	we	conclude	that	the	difference	in	intersection	statistics	can	be	
attributed	mainly	to	the	differences	in	P32 combined	with,	to	a	lesser	extent,	the	differences	
in	r0.

The	computed	number	of	FPIs	agrees	well	with	approximate	analytical	solutions	which	
were	derived	(Hedin	2006,	personal	communication)	by	following	the	principles	outlined	
for	canister	intersections	in	/Hedin	2005/.	Strict	lower	and	upper	bounds	were	obtained	and	
these	are	shown	in	Figure	4‑1	and	Figure	4‑2.

Figure 4‑1. Number of FPI per 100 m tunnel as a function of tunnel orientation (Laxemar 1.2). 
Dashed lines represent minimum and maximum number of FPI according to the analytical 
solution.
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Figure 4‑2. Number of FPI per 100 m tunnel as a function of tunnel orientation (Forsmark 1.2). 
Dashed lines represent minimum and maximum number of FPI according to the analytical 
solution.
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5	 The	Full	Perimeter	Criterion

5.1	 Definition
As	stated	above,	the	main	objective	of	this	work	is	to	evaluate	the	possibility	of	using	
an	easily	identifiable	characteristic	of	fractures,	the	Full	Perimeter	Intersection	(FPI),	to	
identify	traces	of	large	fractures	in	a	tunnel.	The	ultimate	goal	is,	however,	to	evaluate	
if	FPIs	can	be	used	to	identify	deposition holes	intersected	by	fractures	large	enough	to	
constitute	a	seismic	hazard.	

We	choose	to	do	so	by	introducing	the	full	perimeter	criterion,	FPC.	Applying	the	FPC	
means	that	the	(infinite)	extrapolation	of	the	earlier	defined	FPI	(Figure	5‑1)	is	used	to	
represent	a	fracture	of	unknown	size.	Any	deposition	hole	intersected	by	such	extrapolation	
will	be	considered	for	rejection	regardless	of	the	true	fracture	size.

Figure 5‑1. The FPI mapped in the tunnel is judged to represent the trace of a discriminating 
fracture if its projection intersects the deposition hole.
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5.2	 Need	for	an	expanded	FPC
There	is	a	complication,	though,	in	that	the	FPC	fails	to	detect	all	discriminating	fractures.	
For	instance,	it	is	likely	that	large	fractures	that	do	not	intersect	the	deposition	tunnel	but	
are	sufficiently	close,	have	the	potential	to	intersect	a	relatively	large	number	of	deposition	
holes	(Figure	5‑2),	thereby	further	decreasing	the	degree	of	utilisation	(see	Chapter	6	for	
definition).

By	analogy	with	the	rationale	for	using	the	FPC,	the	size	of	these	fractures	will	be	unknown	
and	we	would	need	a	similar	criterion.

One	criterion	that	could	be	used	is	the	number	of	deposition	holes	across	which	the	frac‑
ture	can	be	traced.	There	will	be	a	balance	between	the	ability	to	trace	the	fracture	across	
multiple	deposition	holes	with	confidence,	and	the	acceptable	degree	of	utilisation.

Figure	5‑�	shows	a	plan	view	of	a	deposition	tunnel,	and	a	subhorizontal	fracture	of	size	“r”	
cutting	through	5	deposition	holes.	The	radius	of	a	fracture	that	encircles	exactly	5	deposi‑
tion	holes	is	denoted	“r' ”.	If	it	is	reasonable	to	assume	that	a	fracture	can	be	confidently	
traced	across,	say,	5	deposition	holes,	the	radius	of	the	discriminating	fracture	is	at	least	
0.5x	(4×6)	=	12	m.	More	generally,	if	we	denote	the	number	of	intersected	position	as	“n' ”,	
and	the	standard	distance	between	canisters	as	“D”	then:

.	 	 	 	 	 	 	 	 [6]

Some	fractures	will	escape	detection	despite	this	criterion.	It	is,	for	instance,	possible	for	an	
r	>	50	m	fracture	to	intersect	fewer	than	five	deposition	holes	if	it	is	located	near	the	edge	of	
the	tunnel	(e.g.	Figure	5‑4).	It	is	also	possible,	though	less	likely,	that	deposition	holes	are	
intersected	close	to	the	fracture	tip.	Both	these	effects	can	be	taken	into	account	by	using	a	
stricter	criterion,	e.g.,	using	two	intersections	or	more	(rather	than	5	or	more)	as	the	crite‑
rion,	at	the	expense	of	the	degree	of	utilisation	(See	Section	6.2	for	details).	The	expanded	
FPC	will	hereafter	be	referred	to	as	“EFPC”	and,	if	not	stated	differently,	will	be	composed	
of	both	FPC	and	the	contribution	of	the	so	expanded	criterion.

Figure 5‑2. A potentially discriminating fracture can remain undetected despite the use of the full 
perimeter criterion in the deposition tunnel.
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Figure 5‑3. Additional rejection criterion.

Figure 5‑4. The figure illustrates two cases for which the expanded FPC (EFPC) fails to detect 
discriminating fractures.
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5.3	 Efficiencies	of	the	criteria
An	important	question	to	address	is	how	efficient	the	proposed	criteria	are	in	detecting	
the	supposedly	discriminating	fractures.	For	this	analysis,	we	restricted	the	number	of	
simulations	to	150	for	each	tunnel	orientation,	i.e.	a	total	of	2,850	realisations	(19	tunnel	
rotations),	to	obtain	a	manageable	computation	time	and	size	of	output.

We	may	regard	each	realisation	as	an	equally	possible,	�00	m	long,	deposition	tunnel	
randomly	chosen	from	a	repository	layout.	The	spacing	of	deposition	holes	is,	in	the	base	
case,	6	m.	Consequence	calculations	should,	according	to	SKB,	be	based	on	6,000	canisters	
(the	actual	number,	for	which	a	license	application	will	be	made,	will	be	determined	at	a	
later	time).	2,850	realisations	would	correspond	to	2�.75	“repositories”	(142,500	canisters).

Table	5‑1	shows	the	number	of	simulated	fractures,	intersecting	deposition	holes,	and	
having	50	m	radius	or	larger	that	were	not	detected	with	either	of	the	criteria	(see	e.g.	
Figure	5‑4	for	geometry),	and	the	number	of	intersected	deposition	holes	used	as	limit	
for	EFPC.	The	total	number	of	deposition	holes	intersected	by	undetected,	discriminating	
fracture	is	9�8	for	all	realisations.	Normalised	to	a	single,	6,000	canister	large	repository,	
the	number	of	deposition	holes	is	reduced	to	40,	or	roughly	0.67%.	That	is,	in	a	typical	
repository,	40	deposition	holes	will	be	intersected	by	discriminating	fractures	which	would	
remain	undetected	by	both	criteria.	The	number	of	undetected	and	discriminating	fractures	
decreases	with	fracture	size	as	shown	in	Table	5‑2.

We	can	express	an	efficiency	of	the	applied	criteria	by	comparing	the	results	of	the	simula‑
tions	presented	here,	to	the	number	of	intersections	with	deposition	holes	calculated	analyti‑
cally	/Hedin	2005/	assuming	no	rejection	criterion,	which	was	used	for	the	preliminary	
safety	evaluations	/SKB	2005ab/.

Table	5‑2	shows	that	the	application	of	FPC	and	EFPC	aid	in	detecting	a	substantial	amount	
of	deposition	holes	intersected	by	discriminating	fractures.	For	the	currently	computed,	
largest	acceptable	fracture	radii	in	deposition	holes,	r	=	75	m	(100	m	respect	distance)	and	
r	=	150	m	(200	m	respect	distance)	/Fälth	and	Hökmark	2006/,	the	use	of	the	criteria	aid	in	
detecting	94%	and	97%	of	the	affected	deposition	holes	respectively.

Similarly,	the	efficiency	of	the	applied	criteria	using	the	Laxemar	DFN	is	shown	in	
Table	5‑�.

We	accentuate,	however,	that	only	intersections	with	the	canisters	are	of	relevance	for	the	
safety	assessments	/e.g.	SKB	2005ab/.	As	the	intersection	probability	is	lower	for	canisters	
than	for	deposition	holes,	due	to	the	canisters	smaller	dimensions	(r	=	0.525	m,	h	=	4.8�	m),	
the	number	of	affected	deposition	holes	will	be	lower	than	expressed	in	Table	5‑2	and	
Table	5‑�.	Additionally,	as	the	outermost	portion	of	each	fracture	is	unable	to	impose	a	
threat	to	the	canister	integrity	/see	Hedin	2005	for	discussion/,	the	number	of	affected	
deposition	holes	is	further	decreased.

Table	5‑1.	 Number	of	canisters	not	detected	by	either	of	the	criteria,	using	r	=	50	m	as	
the	limit	for	a	fracture	to	be	regarded	discriminating.

Intersected	dep.	
holes	per	fracture

Number	of	fractures Dep.	holes

1 413 413

2 103 206

3   49 147

4   43 172

Sum 608 938
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Table	5‑2.	 Comparison	of	the	use	of	criteria	(FPC	+	EFPC)	and	“blind”	deposition.	
Figures	for	blind	deposition	were	computed	according	to	the	method	given	in	/Hedin	
2005/	using	the	dimensions	of	a	deposition	hole	(r	=	0.875	m,	h	=	7.833	m)	and	the	full	
fracture	area.	Forsmark	1.2,	6,000	deposition	hole	layout.

FPC	+	EFPC “Blind”	deposition
Fracture	radius % Number	of	

deposition	holes
% Number	of	

deposition	holes
Efficiency	of	
criteria	(%)

≥ 50 0.66 40 7.56 454 91

≥ 75 0.26 16 4.50 270 94

≥ 100 0.13   8 2.93 176 96

≥ 150 0.04   2 1.33   80 97

Table	5‑3.	 Comparison	of	the	use	of	criteria	and	“blind”	deposition.	Figures	for	blind	
deposition	were	computed	according	to	the	method	given	in	/Hedin	2005/	using	the	
dimensions	of	a	deposition	hole	(r	=	0.875	m,	h	=	7.833	m)	and	the	full	fracture	area.	
Laxemar	1.2,	6,000	deposition	hole	layout.

FPC	+	EFPC “Blind”	deposition
Fracture	radius % Number	of	

deposition	holes
% Number	of	

deposition	holes
Efficiency	of	
criteria	(%)

≥ 50 1.60 96 13.92 835 89

≥ 75 0.33 20   8.17 490 96

≥ 100 0.11   6   5.28 317 98

≥ 150 0.02   1   2.37 142 99

5.3.1	 Varying	criteria	within	the	repository

According	to	/Fälth	and	Hökmark	2006/,	the	size	of	discriminating	fracture	can	be	set	
to	75	m	in	deposition	holes	located	between	100	and	200	m	from	the	deformation	zone	
boundary	and	set	to	150	m	elsewhere	in	the	repository.

Applying	the	findings	of	our	simulations	(Table	5‑2)	to	the	Forsmark	layout,	implies	for	
instance, that if an earthquake of magnitude ≥ 6 would occur in the zone hosting the largest 
number	of	canisters	within	the	100	to	200	m	band	(the	zone	ZFMNE0060	with	56�	such	
positions),	see	Figure	5‑5,	this	would	threaten	less	than	4	(56�×0.26%	+	5,4�7×0.04%)	
canisters	remaining	in	unfavourable	positions	after	application	of	the	EFPC.	

In	Laxemar,	the	zone	ZSMEW007A	(Figure	5‑6)	is	the	one	that	affects	the	largest	number	
of	deposition	holes	(69�).	Applying	the	findings	of	our	simulations	(Table	5‑�)	to	the	
Laxemar	layout,	implies	that	roughly	�	(69�×0.��%	+	5,�07×0.02%)	unfavourable	canister	
positions	will	remain	undetected	using	EFPC.

We	again	accentuate,	however,	that	the	reasoning	here	also	assumes	that	the	discriminating	
fractures	are	completely	anonymous,	displaying	no	geological	information	whatsoever	that	
might	reveal	their	size.
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Figure 5‑5. The figure shows deposition tunnel sections with canister positions within a band 
positioned 100–200 m from deformation zones (Forsmark). 

Figure 5‑6. The figure shows deposition tunnel sections with canister positions within a band 
positioned 100–200 m from deformation zones (Laxemar). 
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5.3.2	 Fracture	size

The	mean	fracture	radius	is,	expectedly,	largest	for	fractures	contributed	by	the	expansion	
of	FPC	to	EFPC	(Figure	5‑7).	For	the	FPC	alone,	approximately	86%	of	the	fractures	indi‑
cated	as	potentially	discriminating	have	radii	smaller	than	50	m,	and	approximately	96%	
have	radii	smaller	than	100	m.	For	the	contribution	of	EFPC,	78%	of	the	fractures	marked	
as	discriminating	have	radii	smaller	than	50	m	and	94%	have	radii	smaller	than	100	m.	The	
size	distributions	for	the	fractures	contributed	by	EFPC	are	shown	in	Figure	5‑8.

5.3.3	 Types	of	intersections

We	computed	the	number	of	intersections	of	different	types	that	were	produced	during	
simulations	of	all	tunnel	orientations.	As	expected,	fractures	producing	the	elliptical	
intersection,	type	“b”,	dominate	(Table	5‑4).	End	cap	intersections	(type	“e”)	are	more	rare,	
constituting	roughly	2.7%	of	all	intersections.

It	is	noticeable	that	very	few	fractures,	approximately	1.2%	of	all	simulated,	contributed	to	
EFPC.

Figure 5‑7. Mean fracture radius for various intersection types at Forsmark.
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Figure 5-8. Histograms of fracture radii for EFPC at Forsmark.

Table 5-4. Summary of intersection types obtained for a simulation of Forsmark DFN, 
using all tunnel orientations and 150 realisations.

Count Cum. Count Percent Cum. Percent

Ellipse intersection (type “b”) 49,771 49,771 96.13312   96.1331

End cap intersection (type “e”)   1,396 51,167   2.69639   98.8295

Two lines intersection (Type “c”)          1 51,168   0.00193   98.8314

Intersection by Expanded criterion      605 51,773   1.16856 100.0000
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6	 Consequences	of	using	FPC

6.1	 Definition	and	model	approach
In	this	section	we	explore	the	consequences	of	applying	the	FPC	and	expanded	FPC	in	
terms	of	the	degree	of	utilisation.	This	entity,	expressed	in	%,	is	defined	as	follows:

Number of accepted positions100  %
Planned number of positions

× 	 		 	 	 	 [7]	

As	the	number	of	canisters	to	emplace	is	fixed,	any	degree	of	utilisation	less	than	100%	
must	be	compensated	for	by	increasing	the	length	of	the	deposition	tunnel.	In	other	words,	
the	degree	of	utilisation	is	a	measure	of	the	required	space	for	the	repository.

For	these	simulations,	we	used	the	output	from	the	simulations	described	in	Chapter	4.	The	
principles	of	the	simulations	are	as	follows:

Starting	from	the	position	of	the	first	deposition	hole,	we	try	all	FPI	fractures	for	potential	
intersection.	If	none	intersects,	the	position	is	accepted	and	a	new	position	is	tested	a	
standard‑distance	D	away.	If,	however,	the	position	is	intersected,	we	move	the	position	
until	the	fracture	no	longer	intersects	(Figure	6‑1).	For	computational	convenience	we	
implement	this	reasoning	in	the	codes	by	moving	a	small	distance	d	and	test	all	fractures	
again.	The	latter	step	is	repeated	until	either	the	position	is	accepted	or	the	end	of	the	
tunnel	is	reached.	Note	that,	for	this	study,	we	used	only	the	axes	of	deposition	holes	for		

Figure 6‑1. Principles for simulating the degree of utilisation.
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the	intersection	tests.	The	use	of	cylinders	with	a	diameter	of	the	deposition	holes	will	
certainly	increase	the	intersection	probability	but	we	do	not	anticipate	any	dramatic	
differences	in	results.

The	standard‑distance,	D,	is	governed	by,	among	other	factors,	the	thermal	properties	of	the	
rock	/SKB	2004/.	We	used	D	=	6	m	as	our	base	case.	The	distance	“d”	should	be	as	small	
as	possible	but	there	will	be	a	trade	off	between	optimisation	and	computation	speed.	We	
found	d = 1	m	appropriate	for	the	purpose	of	the	simulations	presented	here.

In	the	following	sections	we	present	results	for	Forsmark	and	Laxemar	using	500	realisa‑
tions	for	each	tunnel	direction.	The	large	amount	of	realisations	was	judged	necessary	to	
demonstrate	any	potential	difference	between	tunnel	directions	with	statistical	significance.

6.2	 Degree	of	utilisation
6.2.1	 Laxemar

The	degree	of	utilisation	for	Laxemar,	using	FPC	alone,	varies	with	tunnel	orientation	
between	87%	and	89%	when	averaged	over	all	realisations	(Figure	6‑2).	Using	EFPC,	the	
degrees	of	utilisation	are	slightly	lower	and	vary	between	86%	and	88%.	Note,	however,	
that	it	is	almost	impossible	to	differentiate	between	the	two	criteria	for	most	tunnel	
orientations.

Figure 6‑2. Degree of utilisation as a function of tunnel orientation, Laxemar 1.2.

Mean Plot (Spreadsheet i Laxemar.stw 12v*9500c)
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6.2.2	 Forsmark

The	degree	of	utilisation	for	Forsmark,	using	FPC	alone,	is	found	to	be	weakly	dependent	
on	the	tunnel	orientation	and	varies	between	9�%	and	almost	95%	(Figure	6‑�)	averaged	
over	all	realisations.	Using	EFPC,	the	degree	of	utilisation	is	noticeably	lower	and	varies	
between	91%	and	92%.

It	can	be	seen	in	Figure	6‑2	and	Figure	6‑�	that,	for	some	tunnel	orientations,	the	degree	
of	utilisation	is	markedly	lower	than	for	others.	These	anomalies	can	be	explained	by	the	
geometry	of	the	fracture	network.	When	the	tunnel	is	parallel	to	any	of	the	steep	fracture	
sets	for	some	realisations,	a	large	number	of	deposition	holes	are	affected	by	“chance”.	This	
is mainly because of the small dispersion in orientation, manifested as a large κ value, and 
the	relatively	large	r0,	which	tend	to	produce	large	fractures	for	some	sets.

Figure 6‑3. Degree of utilisation as a function of tunnel orientation, Forsmark 1.2.
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6.3 Comparing FPC to EFPC
The contribution of EFPC to the degree of utilisation is illustrated in Figure 6-4. The dia-
gram shows clearly that EFPC does not contribute significantly to the degree of utilisation 
for the vast majority, 7,719 out of a total of 9,500, of the realisations. However, the diagram 
also shows that for some realisations the contribution is significant, making up almost half 
of the loss of positions. As clearly shown in Figure 6-3 the difference in the results obtained 
between using FPC and EFPC, is caused by the relatively few realisations in which some 
large fractures with strikes sub-parallel to the deposition tunnels, have crosscut a large 
number of canister positions.

Figure 6-4. Histograms showing the relative contribution of EFPC to the degree of utilisation.
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7	 Sensitivity	analyses

7.1	 Difference	between	realisations
The	difference	can	be	very	large	between	realisations	due	to	the	stochastic	approach	of	
the	computations,	but	the	results	also	differ	largely	between	the	Forsmark	and	Laxemar	
DFN.	A	lesson	learned	is	that	the	test	statistic	must	be	chosen	with	care,	when	determining	
a	sufficient	amount	of	realisations	for	stability	in	the	simulations.	We	initially	used	the	
number	of	FPI	fractures/100	m	as	the	simplest	test	statistic,	which	stabilised	after	relatively	
few	realisations	(ca	100,	see	Figure	�‑4).	However,	using	the	same	simulated	data,	com‑
putation	of	other	statistics	such	as	the	confidence	interval	of	the	means	required	far	more	
realisations	to	produce	reliable	results.	We	found,	by	trial,	500	realisations	to	be	an	appro‑
priate	amount	for	comparing	FPC	to	EFPC.	When	the	number	of	realisations	increases,	
the	confidence	interval	of	the	means	decreases,	rendering	differences	between	e.g.	tunnel	
orientations	more	statistically	accentuated.	Also	by	trial,	we	found	150	realisations	to	be	
an	adequate	number	of	realisations	to	evaluate	the	efficiency	of	the	criteria.	However,	as	
a	by‑effect,	the	range	of	the	outcome	increases.

To	illustrate	the	concept,	we	display	the	range	of	simulation	outcome	for	the	Laxemar	DFN	
in	Figure	7‑1	and	detailed	in	Figure	7‑2.	The	lowest	utilisation	ratio	of	all	realisations	is	0%,	
which	occurred	at	4	out	of	9,500	realisations	(500	realisations	times	19	tunnel	orientations).	

Figure 7‑1. Variability between realisations grouped by tunnel orientations, Laxemar 1.2. For 
clarity, the boxes are slightly offset on each side of the tunnel directions.
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This	should	be	interpreted	the	following	way:	9,500	realisations	of	�00	m	long	tunnels,	
containing	50	canister	positions	each,	correspond	to	475,000	canister	positions.	This	in	turn	
corresponds	to	roughly	80	complete	repositories	containing	6,000	canisters	each.	Out	of	
these	80	repositories,	we	anticipate	4	tunnels	to	be	discriminated	for	deposition.	In	other	
words,	there	is	a	possibility	that	an	entire	tunnel	will	be	discriminated,	but	the	probability	
for	this	to	occur	is	remote.

The	0%	degree	of	utilisation	occur	when	a	realisation	produces	a	few,	large	and	essentially	
horizontal	fractures.	Many	such	fractures	can	probably	be	detected	in	probing	boreholes,	
and	the	tunnel	position	can	be	moved	an	appropriate	distance.	Hence,	in	a	real	situation,	
this	effect	should	not	have	such	a	dramatic	impact	on	the	degree	of	utilisation.

7.2	 The	effect	of	r’
We	expanded	FPC	to	discriminate	also	fractures	that	intersect	5	canister	positions	or		
more	(see	Section	5.2).	This	limit	was	arbitrarily	chosen	and,	certainly,	the	choice	of		
limit	will	steer	the	relative	impact	of	EFPC	upon	the	degree	of	utilisation.	Using	5	canister	
positions,	the	minimum	fracture	radius	to	test,	r’,	is	12	m	(cf	equation	[6]),	of	which	there	
are	relatively	few.	Besides,	most	fractures	of	this	size	are	anticipated	to	possess	some	
identifiable	characteristic	revealing	their	relative	size,	and	more	so,	the	larger	the	fracture.	
On	the	other	hand,	an	anonymous	fracture	is	probably	very	hard	to	trace	over	such	distances	
in	a	normally	fractured	rock	mass.	This	can	be	overcome	by	using	fewer	intersections	for	
the	criteria	but	that	would	decrease	the	degree	of	utilisation.

Figure 7‑2. Variability between realisations grouped for a tunnel oriented 320 (–40 in 
Figure 7-1), Laxemar 1.2.

D
eg

re
e 

of
 u

til
ia

tio
n

Scatterplot (Spreadsheet i Laxemar.stw 12v*9500c)
Include condition: v12=-40

0 50 100 150 200 250 300 350 400 450 500

Realisation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 FPC

 Expanded FPC



��

In	Figure	7‑�	we	display	the	difference	in	degree	of	utilisation	using	different	limits	of	
EFPC,	using	the	same	batch	of	simulations	as	used	for	Figure	6‑4.	We	increased	the	limit	
in	steps	from	2	canister	intersections	per	fracture	or	more	to	6	intersections	or	more.	
Naturally,	as	the	limit	increases,	the	degree	of	utilisation	for	EFPC	approaches	the	degree		
of	utilisation	for	the	FPC	because	fewer	fractures	will	meet	the	criterion	due	to	the	power‑
law	size	distribution.	

In	Table	7‑1	we	list	the	benefit	of	using	a	more	restrictive	limit	for	the	EFPC.	By	
discriminating	fractures	that	intersect	2	deposition	holes	or	more,	we	increase,	to	the	
cost	of	a	lower	degree	of	utilisation,	the	detection	ratio	from	91%	(using	5	intersections)	
to 97%. Note that the efficiencies listed in Table 7‑1 concern fractures of radii r ≥ 50 m. 
For	larger	fractures,	the	efficiency	is	much	higher.

Table 7‑1. Efficiency of criteria using different limits on EFPC (r ≥ 50 m).

Number	of	
intersection	in	EFPC

Missed	canisters Efficiency

2 15 97%

3 23 95%

4 26 94%

5 39 91%

6 45 90%

Figure 7‑3. Difference in degree of utilisation using different number of deposition hole 
intersections for EFPC.
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8	 Summary	and	conclusions

The	consequence	of	using	the	Full	Perimeter	Criterion	(FPC)	has	been	quantified	in	terms	
of	degree	of	utilisation	which	was	judged	reasonable.	The	degree	of	utilisation	is	higher	in	
Forsmark	as	compared	to	Laxemar	due	to,	mainly;	the	latter’s	higher	intensity	of	the	steep	
fracture	sets	in	the	studied	size	interval.

The	FPC	was	found	insufficient	to	detect	all	potentially	discriminating	fractures.	It	needed	
to	be	complemented	and	we	defined	a	new	criterion,	EFPC,	to	also	address	large	fractures	
in	the	immediate	vicinity	of	the	tunnel,	which	remain	undetected	by	tunnel	mapping.	We	
here	proposed	a	criterion	consisting	in	discriminating	also	all	fractures	that	intersect	5	or	
more	canister	positions.	The	use	of	EFPC	decreased	the	degree	of	utilisation	further,	though	
we	still	judge	it	to	be	reasonable.

A	substantial	reduction	of	unsuitable	canister	positions	is	obtained	with	the	application	of	
the	suggested	criterion.	It	is	also	noted	that	a	substantial	number	of	fractures	are	erroneously	
marked	as	being	discriminating,	thus	implying	a	‘cost’	in	terms	of	degree‑of‑utilisation.	
Using	the	Forsmark	and	Laxemar	repository	layouts	as	example,	we	showed	that	site	
specific	application	of	the	criterion	combined	with	respect	distances	significantly	increased	
the	efficiency	of	the	criterion	to	a	presumably	acceptable	level;	only	�	canister	positions	in	
Laxemar	and	4	positions	in	Forsmark	out	of	6,000	were	erroneously	marked	as	“approved”	
whereas	around	182	and	98	deposition	holes,	for	Laxemar	and	Forsmark	respectively,	are	
erroneously	accepted	if	the	criterion	is	not	applied.	The	‘cost’	in	this	case	is	an	increase	in	
the	required	total	deposition	tunnel	length	of	4.7	km	and	�.2	km	for	Laxemar	and	Forsmark	
respectively	(using	6	m	spacing).	As	the	fractures	are	cautiously	assumed	to	be	completely	
anonymous	features	possessing	no	indications	of	their	size,	we	anticipate	that	the	majority	
of	the	erroneously	approved	positions	will	in	fact	be	detected	if	the	criterion	is	linked	to	an	
adequate,	qualitative	judgement	based	on	site	understanding	and	underground	information.

Despite	the	uncertainties	in	the	DFN	models,	we	found	the	results	of	the	simulations		
sufficiently	encouraging	to	recommend	the	Full	Perimeter	Criterion	and	it’s	expansion,	
EFPC,	as	a	method	to	identify	potentially	discriminating	fractures.
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