Oskarshamn site investigation

Drill hole KSH01A

Triaxial compression test (HUT)

Pekka Eloranta
Helsinki University of Technology, Rock Engineering

June 2004
Oskarshamn site investigation

Drill hole KSH01A

Triaxial compression test (HUT)

Pekka Eloranta
Helsinki University of Technology, Rock Engineering

June 2004

Keywords: Rock mechanics, Triaxial compression test, Poisson's ratio, E-modulus, Strain, Strength, Deformation, Post-peak behaviour.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se
Abstract

The complete stress-strain behaviour of some rock from SKB’s investigation site at Simpevarp was studied with a total of five triaxial compression tests. The 51 mm diameter samples were taken from the borehole KSH01A at depth level between 305-324 m. Moreover, the rock type was Quartz monzodiorite. The specimens were photographed before and after the mechanical test.

The test specimens were prepared at the Swedish National Testing and Research Institute (SP). The tests were carried out at the Laboratory of Rock Engineering, Helsinki University of Technology, Espoo on May 6-11, 2004. The water-saturated density of the specimens was determined before tests and the specimens were tested fully saturated.

The measured density for the water stored specimens were in the range 2791-2818 kg/m3, which yields a mean value of 2802 kg/m3 and the obtained values for the compressive strength were 167.2 and 206.9 MPa (confining stress 2 MPa), 202.8 and 260.1 MPa (confining stress 7 MPa), and 223.9 MPa (confining stress 10 MPa).
Contents

1. **Introduction** ... 7
2. **Objective and scope** 9
3. **Equipment** ... 11
4. **Execution** .. 13
 4.1 **Description of the samples** 13
 4.2 **Testing** .. 13
5. **Results** .. 17
 5.1 **Description and presentation of the specimen** 17
 5.2 **Results for the entire test series** 20
 5.3 **Discussion** .. 20

References ... 21

Appendix 1 Test information sheet for triaxial compression test 23
Appendix 2 Test results of the specimen S01A-115-2 .. 25
Appendix 3 Test results of the specimen S01A-115-5 .. 27
Appendix 4 Test results of the specimen S01A-115-6 .. 29
Appendix 5 Test results of the specimen S01A-115-8 .. 31
Appendix 6 Test results of the specimen S01A-115-10 .. 33
1 Introduction

This document reports the data collected by triaxial compression testing, which is one of the activities performed as part of the site investigation at Simpevarp, see map in Figure 1-1. The work was carried out in accordance with activity plan AP PS 400-03-067 (SKB internal controlling document).

Triaxial compression testing is used to describe the complete stress-strain curve for cylindrical intact rock core samples at different surrounding pressures. Furthermore, it obtains the compression strength and deformation properties of the rock, as well as a description of post-peak behaviour.

The tests were carried out at the Laboratory of Rock Engineering, Helsinki University of Technology in Espoo, Finland. The prepared specimens were received on February 16, 2004. The physical properties of the specimens were determined on April 28, 2004. Before testing the specimens were water-saturated one week and their water-saturated density was determined. The specimens were tested on May 6-11, 2004. The specimens were photographed before and after tests.

Figure 1-1. Location of the borehole KSH01A at the Simpevarp site.
The main objective of this experimental work is to compare the uniaxial compression test results with results of similar tests performed at the main laboratory, the SP in Borås, Sweden.

The results from the tests are going to be used in the site descriptive rock mechanics model, which will be established for the candidate area selected for site investigations at Oskarshamn.
3 Equipment

The testing system was the MTS 815 Rock Mechanics Testing System (MTS 815), a computer controlled, servo hydraulic compression machine (Figure 3-1). It consists of a triaxial pressure vessel, a 2500 kN in-vessel load cell, a confining pressure intensifier, a load frame, hydraulic power supply, test controller, test processor and PC. The MTS 815 has three independent channels: axial pressure, confining pressure and pore pressure, which can be servo controlled by 16 readouts. The most common controls are actuator displacement, axial force, confining pressure, axial strain of a specimen and circumferential displacement of a specimen.

Figure 3-1. MTS 815 Rock Mechanics Testing System.
The axial and radial deformation of the specimen is measured with axial and radial strain extensometers (Figure 3-2).

In the triaxial tests the specimen and the deformation measuring equipment are inside the pressure vessel. The confining pressure is produced by confining oil. To prevent the confining oil from penetrating into the specimen, it is sealed with an EPDM rubber jacket. The deformations are measured on the jacket. The axial deformation is measured with two separately read direct contact axial extensometer from a 50 mm gage length. The radial strain is measured with one circumferential extensometer connected to a roller chain assembly wrapped around the jacketed specimen. All extensometers are held around the specimen by a contact force produced by mounting springs (Figure 3-2). The actuator displacement is also recorded. At the specimen ends non-lubricated steel end caps are used. The axial load is applied through one spherical seat in order ensure uniform load distribution.

The water-saturation equipment included four sample containers with an air-tight lid, a balance, an immersion bath and a purpose-build wire basket suspended from the balance by a fine wire.

Figure 3-2. Triaxial compression test extensometers on a jacketed specimen (Photo by Pekka Eloranta).
4 Execution

The tests were executed according to the method description SKB MD 190.003e version 1.9. The test methodology follows the International Society of Rock Mechanics (ISRM) suggested method /ISRM, 1983; 1999/.

The test specimens were water-saturated according to the method description SKB MD 160.002e version 1.0. The test methodology follows mainly the standard /SFS-EN 13755/.

4.1 Description of the samples

The samples are from the hole KSH01A on the Simpevarp investigation site. The test specimens were labeled at the Swedish National Testing and Research Institute (SP) (Table 4-1).

<table>
<thead>
<tr>
<th>Seclow (m)</th>
<th>Specimen ID</th>
<th>Rock type</th>
<th>Cell pressure (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>305.31</td>
<td>S01A-115-2</td>
<td>Quartz monzodiorite</td>
<td>2</td>
</tr>
<tr>
<td>309.00</td>
<td>S01A-115-4</td>
<td>Quartz monzodiorite</td>
<td>7</td>
</tr>
<tr>
<td>313.01</td>
<td>S01A-115-6</td>
<td>Quartz monzodiorite</td>
<td>2</td>
</tr>
<tr>
<td>321.15</td>
<td>S01A-115-8</td>
<td>Quartz monzodiorite</td>
<td>7</td>
</tr>
<tr>
<td>323.49</td>
<td>S01A-115-10</td>
<td>Quartz monzodiorite</td>
<td>10</td>
</tr>
</tbody>
</table>

4.2 Testing

The specimens were prepared at the Swedish National Testing and Research Institute (SP) and they were received on February 16, 2004 at the Helsinki University of Technology.

The physical properties of the laboratory-air-dry specimens were determined on April 28, 2004. The length of the specimen was determined by taking average of three measurements. The diameter of the specimen was measured by averaging two diameters measured at right angles to each other close to the top, the mid-height and the bottom of the specimen. The length-to-diameter ratio was calculated, the straightness of the specimen, the parallelism, perpendicularity and flatness of the end surfaces were verified to be within the tolerances presented in the ASTM D 4543-01. In addition the laboratory-air-dry mass of the specimen was recorded.

The specimens were photographed prior water-saturation on April 28, 2004 using a digital camera.
Before testing the specimens were water-saturated according to the standard /SFS-EN 13755/ with the following departure from the specified procedure. The specimens were not weighed during saturation. The specimens were saturated for at least one week (7 days).

The specimens were divided into four sample containers one or two specimens each. Water-saturation began on May 4 – May 6, 2004.

After water-saturation the water-saturated density of the specimens was determined in accordance with the ISRM suggested method /ISRM, 1979/. The specimens were transferred in the sample container in an immersion bath. Each specimen was transferred under water from the container to a wire basket and weighed. The specimen was then removed from the immersion bath and surface-dried with a moist cloth removing only surface water. The saturated-surface-dry specimen was weighed. The water-saturated density is calculated from the volume of the sample (Archimedes’ principle) and its water-saturated weight.

The saturated-surface-dry specimens waiting to be tested were stored in a wet sample container with an air-tight lid to keep them water-saturated.

The water-saturation was finished and the specimens were tested on May 12-13, 2004.

The tests were conducted under radial strain rate control corresponding to an elastic axial loading rate of about 0.75 MPa/s (Table 4-2). First the specimen is driven to contact under programmed control. The pressure vessel cannot be filled by computer control. Therefore the programmed test control was set to the hold mode for this period. To settle the jacket and the extensometers on the jacket a confining ramp to the test confining pressure was executed. After the confining ramp, the pressure was again increased to the test pressure. One loading ramp in the elastic region is done to ensure a well-settled specimen before actual loading ramp to failure. In both of these loading steps axial load control is used first to overcome the radial extensometer hysteresis and after that the control is changed to radial strain rate to ensure a controlled test in the post-peak region.

All measured data were recorded at a frequency of 1 Hz.

Tangent Young’s modulus and Poisson’s ratio were determined at axial stress level equal to 50% of the compressive strength of the specimen. The slopes of the stress-strain curves were determined between 40-60% of the peak strength using linear fit.

The specimens were photographed after testing on May 12-14, 2004.

The axial and radial extensometers were calibrated May 6, 1998. Their condition is monitored before each test series using a reference non-jacketed aluminum specimen at confining pressure of 20 MPa. Young’s modulus and Poisson’s ratio were used as monitoring values. Both values were determined as a secant from the range of 0.05% of radial strain to 150 MPa.
Table 4-2. Triaxial compression test procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Drive specimen manually near to contact
| | - No axial force is allowed |
| 2 | Reset readings
| | - Reset readings of axial and radial extensometers, actuator displacement, axial force and confining pressure |
| 3 | Start programmed test control |
| 4 | Drive specimen to force contact
| | - Move actuator up 0.2 mm/min until axial force is 1.0 kN |
| 5 | Hold axial load while filling the pressure vessel with confining oil
| | - Program holds load for 60 seconds, during this period the test control is set manually to the hold state, which holds the axial load
| | - Fill pressure vessel with confining oil
| | - Release the manual hold to resume the programmed control |
| 6 | Confining ramp to settle jacket and extensometers on jacket
| | - Increase confining pressure 0.05 MPa/s to $<$test$>$ MPa
| | - Decrease confining pressure 0.05 MPa/s to 0.5 MPa |
| 7 | Set confining pressure to test value
| | - Increase confining pressure 0.05 MPa/s to $<$test$>$ MPa |
| 8 | Axial load ramp to settle the specimen
| | - Increase axial load so that loading rate is 0.75 MPa/s until radial strain is -0.01% or axial stress is 75 MPa
| | - Decrease axial load so that loading rate is 0.75 MPa/s until axial force is 1 kN |
| 9 | Axial load ramp to failure
| | - Increase axial load so that loading rate is 0.75 MPa/s until radial strain is -0.01% or axial stress is 75 MPa
| | - Change to radial strain rate control
| | - Increase radial strain, the radial strain rate corresponding initially to the elastic loading rate of 0.75 MPa/s, until the end of the radial extensometer range is reached or the test is stopped manually |
| 10 | Unloading
| | - Remove remaining force by programmed control
| | - Decrease confining pressure 0.05 MPa/s to 0.2 MPa |
5 Results

The results of the individual specimens are presented in Section 5.1 and a summary of the results is given in Section 5.2. The original results and data obtained from the testing, were reported to the SICADA database, FN 96.

5.1 Description and presentation of the specimen

The photographs of the specimens before and after testing are presented in the following pages (Figures 5-1 – 5-5). The results are presented in Appendices 2-6.

Figure 5-1. Photographs of the specimen S01A-115-2.

(a) Before testing (2004-04-28) (b) After testing (2004-05-06)
Figure 5-2. Photographs of the specimen S01A-115-4.

(a) Before testing (2004-04-28) (b) After testing (2004-05-07)

Figure 5-3. Photographs of the specimen S01A-115-6.

(a) Before testing (2004-04-28) (b) After testing (2004-05-10)
Figure 5-4. Photographs of the specimen S01A-115-8.

(a) Before testing (2004-04-28) (b) After testing (2004-05-10)

Figure 5-5. Photographs of the specimen S01A-115-10.

(a) Before testing (2004-04-28) (b) After testing (2004-05-11)
5.2 Results for the entire test series

Summary of the results is presented in Table 5-1.

Table 5-1. Summary of the results.

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Confining pressure (MPa)</th>
<th>Length (mm)</th>
<th>Diameter (mm)</th>
<th>Density (kg/m³)</th>
<th>Compressive strength (MPa)</th>
<th>Young's modulus (GPa)</th>
<th>Poisson's ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01A-115-2</td>
<td>2</td>
<td>127.7</td>
<td>50.2</td>
<td>2793</td>
<td>206.9</td>
<td>78.6</td>
<td>0.29</td>
</tr>
<tr>
<td>S01A-115-4</td>
<td>7</td>
<td>127.7</td>
<td>50.2</td>
<td>2795</td>
<td>202.8</td>
<td>68.7</td>
<td>0.28</td>
</tr>
<tr>
<td>S01A-115-6</td>
<td>2</td>
<td>127.7</td>
<td>50.1</td>
<td>2791</td>
<td>167.2</td>
<td>74.7</td>
<td>0.29</td>
</tr>
<tr>
<td>S01A-115-8</td>
<td>7</td>
<td>127.7</td>
<td>50.1</td>
<td>2812</td>
<td>260.1</td>
<td>83.0</td>
<td>0.34</td>
</tr>
<tr>
<td>S01A-115-10</td>
<td>10</td>
<td>127.8</td>
<td>50.1</td>
<td>2818</td>
<td>223.9</td>
<td>83.1</td>
<td>0.31</td>
</tr>
</tbody>
</table>

5.3 Discussion

There were no problems with the equipment.
References

ASTM D 4543-01. Standard practice for preparing rock core specimens and determining dimensional and shape tolerance. ASTM vol. 04.08

ISRM, 1979. Suggested method for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties.

SFS-EN 13755. Natural stone test methods – Determination of water absorption at atmospheric pressure.
Appendix 1

Test information sheet for triaxial compression test

Title: Test information sheet for triaxial compression test of intact rock

Date: 2004-04-28
Author: Pekka Eloranta
Reference: SKB MD 190.003e Appendix 5

1. Reception and arrival at the laboratory
Date: ____________________________
Remarks: ____________________________
By: ____________________________

2. Geological description of the specimen
Date: ____________________________
Remarks: ____________________________
By: ____________________________

(According to the SKB Boremap mapping)

3. Preparation of the specimen
Cutting: ____________________________
Remarks: ____________________________
Date: ____________________________
By: ____________________________
Grinding: ____________________________
Remarks: ____________________________
Date: ____________________________
By: ____________________________

4. Physical properties of the specimen
Date: ____________________________
Remarks: ____________________________
By: ____________________________

(According to the ASTM D 4543)

Height (mm):
1 | 2 | 3
Average height (mm): __________

Diameter (mm):
1 | 2 | 3
Average diameter (mm): __________

Height/Diameter ratio: __________

Mass (g): (laboratory air-dry)
Saturated-submerged mass (g): __________
Saturated-surface-dry mass (g): __________

Straightness of the sides (mm):
Perpendicularity (mm):
Parallellism and flatness of the end surfaces (mm):

5. Photographing the specimen before testing
Date: ____________________________
Remarks: ____________________________
By: ____________________________

Equipment: ____________________________
Filenames: ____________________________

6. Water-saturation of the specimen
Date: ____________________________
Remarks: ____________________________
By: ____________________________

Start (t₀): ____________________________
End: ____________________________

Equipment: [] Mettler PM4000, serial number N95274
[] Mettler PJ3600, serial number M88692
Saturated-submerged mass (g): __________
Saturated-surface-dry mass (g): __________

Remarks: ____________________________
APPENDIX 1. (continues)

Title: Test information sheet for triaxial compression test of intact rock

Date: 2004-04-28
Author: Pekka Eloranta
Reference: SKB MD 190.003e Appendix 5

7. Testing the specimen

Moisture condition of the specimen at time of test:

[] as received [] saturated [] laboratory air-dry [] oven dry

Equipment: MTS 815 Rock Mechanics Test System
Test setup

[] Triaxial

Force transducer (serial number and range)

[] none [] 0124980 (250 kN) [] 0124981 (2500 kN)

Circumferential strain extensometer (serial number)

[] none [] 138
[]

Axial strain extensometer (serial number)

[] none [] 121
[]

Rubber: Diameter on rubber (mm):

Diameter on rubber (mm):

L_i (mm): (Initial chord length between the center of the two end rollers of the circumferential extensometer.)

Run:

Start: time

Confining pressure (MPa):

Stop: time

Peak load (kN):

Remarks:

8. Photographing the specimen after testing

Date:

By:

Equipment:

Filenames:

Remarks:

9. Handling, processing and storage of the measured data

Date:

By:

Remarks:

10. Storing the specimen after testing

Place:

Remarks:
APPENDIX 2. Test results of the specimen S01A-115-2

STRESS - STRAIN CURVES

Test Data
Client: SKB
Order Number: 10340
Load Control: Radial strain rate
Equivalent Loading Rate: 0.75 MPa/s
Test: Triaxial
Confining Pressure: 2 MPa
Equipment: MTS 815

Specimen Data S01A-115-2
Site: Simpevarp
Hole: KSH01A
Depth: 305.31 m
Rock Type: Quartz monzodiorite
Length: 127.7 mm
Diameter: 50.2 mm
Saturated Density: 2793 kg/m³
Degree of Saturation: Fully saturated

Test Results
Compressive Strength: 206.9 MPa
Test Date: 2002-05-06
Young's Modulus: 78.6 GPa
Test Duration: 01:40 (h:min)
Poisson's Ratio: 0.29
Failure Mode: Axial splitting
Remarks: None

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory of Rock Engineering
Vuorimiehentie 2, Espoo
P.O. Box 6200
FI-02015 HUT, Finland
tel: int + 358 9 451 2803
fax: int + 358 9 451 2812
e-mail: rocklab@hut.fi
Appendix 3

Test results of the specimen S01A-115-5

STRESS - STRAIN CURVES

- Axial Stress (MPa)
- Radial Strain
- Axial Strain

Test Data
- **Client:** SKB
- **Load Control:** Radial strain rate
- **Order Number:** 10340
- **Equivalent Loading Rate:** 0.75 MPa/s
- **Test:** Triaxial
- **Confining Pressure:** 7 MPa
- **Equipment:** MTS 815

Specimen Data
- **Site:** Simpevarp
- **Length:** 127.7 mm
- **Hole:** KSH01A
- **Diameter:** 50.2 mm
- **Depth:** 309.00 m
- **Saturated Density:** 2795 kg/m³
- **Rock Type:** Quartz monzodiorite
- **Degree of Saturation:** Fully saturated

Test Results
- **Compressive Strength:** 202.8 MPa
- **Test Date:** 2002-05-07
- **Young's Modulus:** 68.7 GPa
- **Test Duration:** 01:19 (h:min)
- **Poisson's Ratio:** 0.28
- **Failure Mode:** Shear failure
- **Remarks:** Axial strain extensometer 2 exaggerated values omitted after primary failure at 185 MPa

HELSINKI UNIVERSITY OF TECHNOLOGY
Vuorimiehetie 2, Espoo
tel: int +358 9 451 2803
Laboratory of Rock Engineering
P.O. Box 6200
FI-02015 HUT, Finland
e-mail: rocklab@hut.fi

27
Test results of the specimen S01A-115-6

STRESS - STRAIN CURVES

Axial Stress (MPa)

Radial Strain Axial Strain

Test Data
Client: SKB
Order Number: 10340
Test: Triaxial
Equipment: MTS 815

Specimen Data
Site: Simpevarp
Hole: KSH01A
Depth: 313,01 m
Rock Type: Quartz monzodiorite

Test Results
Compressive Strength: 167,2 MPa
Young's Modulus: 74,7 GPa
Poisson's Ratio: 0,29

Failure Mode: Axial splitting

Remarks: None

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory of Rock Engineering
Vuorimiehentie 2, Espoo
P.O. Box 6200
FI-02015 HUT, Finland
tel: int + 358 9 451 2803
departmental phone: int + 358 9 451 2812
e-mail: rocklab@hut.fi
Appendix 5

Test results of the specimen S01A-115-8

STRESS - STRAIN CURVES

<table>
<thead>
<tr>
<th>Axial Stress (MPa)</th>
<th>Radial Strain</th>
<th>Axial Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>-0.6%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>350</td>
<td>-0.4%</td>
<td>-0.4%</td>
</tr>
<tr>
<td>300</td>
<td>-0.2%</td>
<td>-0.2%</td>
</tr>
<tr>
<td>250</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>200</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>150</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>100</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>50</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>0</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Test Data
- **Client:** SKB
- **Order Number:** 10340
- **Test:** Triaxial
- **Equipment:** MTS 815

Specimen Data
- **Site:** Simpevarp
- **Hole:** KSH01A
- **Depth:** 321.15 m
- **Rock Type:** Quartz monzodiorite

Test Results
- **Compressive Strength:** 260.1 MPa
- **Young’s Modulus:** 83.0 GPa
- **Poisson’s Ratio:** 0.34
- **Test Date:** 2002-05-10
- **Test Duration:** 01:53 (h:min)
- **Failure Mode:** Axial splitting

Remarks: None

HELSINKI UNIVERSITY OF TECHNOLOGY
Laboratory of Rock Engineering
Vuorimiehentie 2, Espoo
P.O. Box 6200
FI-02015 HUT, Finland

tel: int + 358 9 451 2803
fax: int + 358 9 451 2812
e-mail: rocklab@hut.fi
Test results of the specimen S01A-115-10

<table>
<thead>
<tr>
<th>Test Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>SKB</td>
</tr>
<tr>
<td>Load Control:</td>
<td>Radial strain rate</td>
</tr>
<tr>
<td>Order Number:</td>
<td>10340</td>
</tr>
<tr>
<td>Equivalent Loading Rate:</td>
<td>0.75 MPa/s</td>
</tr>
<tr>
<td>Test:</td>
<td>Triaxial</td>
</tr>
<tr>
<td>Confining Pressure:</td>
<td>10 MPa</td>
</tr>
<tr>
<td>Equipment:</td>
<td>MTS 815</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specimen Data</th>
<th>S01A-115-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site:</td>
<td>Simpevarp</td>
</tr>
<tr>
<td>Length:</td>
<td>127.8 mm</td>
</tr>
<tr>
<td>Hole:</td>
<td>KSH01A</td>
</tr>
<tr>
<td>Diameter:</td>
<td>50.1 mm</td>
</tr>
<tr>
<td>Depth:</td>
<td>323.49 m</td>
</tr>
<tr>
<td>Saturated Density:</td>
<td>2818 kg/m3</td>
</tr>
<tr>
<td>Rock Type:</td>
<td>Quartz monzodiorite</td>
</tr>
<tr>
<td>Degree of Saturation:</td>
<td>Fully saturated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Strength:</td>
<td>223.9 MPa</td>
</tr>
<tr>
<td>Young's Modulus:</td>
<td>83.1 GPa</td>
</tr>
<tr>
<td>Poisson's Ratio:</td>
<td>0.31</td>
</tr>
<tr>
<td>Test Date:</td>
<td>2002-05-11</td>
</tr>
<tr>
<td>Test Duration:</td>
<td>00:56 (h:min)</td>
</tr>
<tr>
<td>Failure Mode:</td>
<td>Shear failure</td>
</tr>
</tbody>
</table>

Remarks:

- None

HELSINKI UNIVERSITY OF TECHNOLOGY
Vuorimiehentie 2, Espoo
tel: int + 358 9 451 2803
Laboratory of Rock Engineering
P.O. Box 6200
FI-02015 HUT, Finland
e-mail: rocklab@hut.fi

33