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ABSTRACT 

The computer code HYDRAS TAR was developed as a tool for groundwater flow and 

transport simulations in the SKB 91 safety analysis project. Its conceptual ideas can be 

traced back to a report by Shlomo Neuman in 1988, see the reference section. 

The main idea of the code is the treatment of the rock as a stochastic continuum which 

separates it from the deterministic methods previously employed by SKB and also from 

the discrete fracture models. The current report is a comprehensive description of 

HYDRASTAR including such topics as regularization or upscaling of a hydraulic 

conductivity field, unconditional and conditional simulation of stochastic processes, 

numerical solvers for the hydrology and streamline equations and finally some proposals 

for future developments. 

Der Vogel kampft sich aus dem Ei. Das Ei ist die Welt. Wer geboren werden 

will, muj] eine Welt zerstoren. Der Vogeljliegt zu Gott. Der Gott heifJt 

Abrams. 

Hermann Hesse, Demian. 
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1 INTRODUCTION 

The purpose of this report is to describe the code HYDRASTAR, developed at Starprog 

AB under contract from the Swedish Nuclear Fuel and Waste Management Company, 

SKB AB. The name HYDRASTAR is spelled out as HYDRAulic STochastic Analysis 

of a Repository. 

HYDRASTAR is based on the following main assumptions: 

from a hydraulic point of view it is possible to treat the fractured rock as a 

continuum described by a hydraulic conductivity field, if the averaging scale is 

sufficiently large, 

the values of this continuum can be pointwise measured, with a reasonable 

degree of accuracy, using stationary packer tests and Moye's formula, see 

chapter 2. 

These assumptions do not constitute something new and are in fact the assumptions 

classically used by SKB when mcx:lelling subsurface hydrology. None of these 

assumptions are undisputed, in particular one may argue that a fractured rock cannot be 

modelled as a continuum using averaged quantities. One of the reasons for such 

objections is the pattern of measured inflow into tunnels. This pattern shows indeed that 

the flow is concentrated at rather few points1. In order to clarify the picture a short 

discussion of the continuum approach is inserted. 

The continuum description arises through the process of spatial averaging. That is 

quantities that only exist in the fractures of the rock such as hydrcx:lynamic head and 

waterparticle velocity are averaged over spatial volumes thus defining a value of any 

hydrcx:lynamic quantity at any point in space. It is clear that the averaged quantities are 

well defined. However, there should be no restriction on the averaging volumes such as 

requiring that they should be representative elementary volumes as described for instance 

by [Bear, 1972]. This means that any constitutional equation depends on the chosen 

averaging volumes. One might imagine these volumes to vary in space and being 

different for different quantities. Thus, the first assumption does not assume anything 

about the existence of the continuum fields, it is clear that these exist, but the assumption 

is solely that the constitutive equation known as Darcys law holds i e that there exists a 

1 The standard counter-argument to any discussion based on observations on tunnel walls arc that these 

observations may to a very large extent be affected by for example degassing effects close to the tunnel 

wall. 
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hydraulic conductivity field. There are theoretical derivations of this constitutional 

equation that start with the constitutive equations for waterflow in the fractures and then 

perform the spatial averaging, see for instance [Whitaker, 1985] or [Gray and O'Neill, 

1976]. 

The second assumption above can also be criticized, and perhaps with more reason. First 

it is clear that the approximations in the analysis leading to a value of a block conductivity 

value from a packer test are rather crude, see appendix B. Computer simulations 

performed in [Geier et al, 1992] suggest that the correlation between the arithmetic 

average of five two meter packer tests2 and a measure of the conductivity of a 

surrounding cube with a side of 40m might be weak. 

One can also argue, regarding the second assumption, that the low and high measurement 

values belong to different distributions since a low measured value can be the result of a 

local variation of conductivity whereas a high measured value cannot since there has to be 

a high conductivity path connecting the packer interval with a sink, see for example 

[Joumel and Alabert, 1989). 

The main ideas with HYDRASTAR are: 

to treat the hydraulic conductivity as a spatial stochastic function and condition it 

on the measurements, 

to introduce the averaging scale explicitly in the analysis using a novel technique 

for regularizing the conductivity measurements. 

The technique necessary in order to implement the first point above is described by many 

authors as for instance [Delhomme, 1979] and its use in the SKB 91 project was inspired 

by [Neuman, 1988]. The second point was introduced partly to meet criticizm on the use 

of continuum methods by increasing the scale and more generally to study the influence 

of different scales. There were also ideas on performing simulations on different scales 

and then perform deregularization or deconvolution3 towards smaller scales. In the end, 

however, the primary reason for introducing the second point above was the following: 

The size of the elements in a mesh used for solving the hydrology equations numerically 

must be small in comparison to the correlation scale of the hydraulic conductivity. Thus it 

is necessary to have large correlation scales if large regions are mcxlelled. Since the range 

of the conductivity as a stochastic process increases as the averaging scale increases this 

2That is the approximate equivalent of a ten meter packer test, see chapter 2. 

3In such a process it would be advantageous to have results from several scales to start with. 
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large correlation scale and thus the ability to model large domains can be achieved by 

regularization. 

The report contains fourteen chapters. The first discusses the regularization of 

conductivity in detail and also shows how a conductivity field is affected by 

regularizations. The four following chapters discuss random functions. Chapter 3 

introduces some concepts and notations of stochastic functions. In chapter 4 the different 

types of random functions which HYDRASTAR can use are described. Chapter 5 

describes how HYDRASTAR simulates the unconditional realizations of a conductivity 

field using the turning bands method and chapter 6 how these realizations can be 

conditioned on the regularized measurements. 

Chapter 7 discusses the finite difference solver of the hydrology equation, chapter 8 the 

problem of giving the computational domain reasonable boundary conditions and chapter 

9 describes the stream line equation solver. 

Chapter 10 describes some special features in HYDRASTAR that are incorporated to 

improve transport modelling using one dimensional stream tube transport models. A 

further discussion of the use of these features in SKB 91 and in future developments is 

given in appendix A. 

Chapter 11 contains some proposals for the future development of HYDRASTAR . 

Two more appendices are also included, first a derivation of Moye's formula [Moye, 

1967] and second a general but noncomprehensive discussion of intrinsic random 

functions in appendix C. A comprehensive, but mathematically very advanced text, on 

the subject is [Matheron, 1973]. 
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2 SCALE AND REGULARIZATION 

2.1 Regularization 

The precise form of the fundamental assumption used in the stochastic analysis 

performed by HYDRAST AR is that : 

A stationary packer test can be evaluated by Moye' s formula to give the 

conductivity at an averaging scale that is related to the length of the packed off 

section and at a point in space identical to the midpoint of the measurement 

section. 

Thus, employing the assumption, what is needed in order to vary the scale is a 

methodology to add stationary conductivity measurements together to achieve new sets of 

measurements on packer intervals larger than those originally used. The primary 

advantage with the increase of averaging scale is that the correlation scale of the studied 

parameter, in this case the conductivity, increases and thus makes it possible to study a 

larger domain. Hence if one wants to study regional flow fields, regularization is 

imperative. Of course it is to be noted that the cost of increasing the averaging scale is the 

loss of resolution. 

Moreover there are other interesting questions. In general the set of measurements 

performed at a site consists of measurements on different scales, that is different packer 

interval lengths. For instance, at the Finnsjon site the measurements are predominantly 

performed for two and three meter sections. The question arises whether these 

measurements can be considered as being from the same population, or if there is a 

systematic difference due to the difference in scale. Secondly, we may ask how 

dependent our results are on the scale which we are using, that is, in the case of packer 

measurements, what packer interval lengths are used. 

Let us first describe a mathematical model for a packer test. A similar model with 

subsequent numerical calculations has been developed by [Braester and Thunvik, 1982]. 

Figure 2.1 shows a rock block with a drilled hole in which a packer test is performed and 

a cylindrical coordinate system (p, <p, z) in which the equations will be expressed. The z-

axis of the cylindrical coordinate system coincides with the borehole. The natural head 

field after the drilling is denoted by ho(x) and is assumed to satisfy the steady-state 

hydrology equation 

V(K (x)V hu(x)) = 0 

along with the boundary conditions 
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for x at the groundwater surface. Here x3 denotes the vertical coordinate of x in a 

Cartesian coordinate system. 

z 

X 

Figure 2.1 A borehole and the corresponding cylindrical coordinate system. 

0 1 
h1 0 1 h2 0 1 2 h1+h2 

d 

L2 

Z2=Z1 +L 1 

Figure 2.2 Showing the summing of two packer test responses. 
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Moreover it seems safe to assume4 that along the oorehole the hydraulic head equals a 

given constant, namely the groundwater level in the oorehole. 

As the next step insert the packers, without disturbing the natural field and pressurize the 
section between the packers to an overpressure ~Pl· This overpressure corresponds to a 
head difference ~h1 = ~p1/8g, where 8 denotes the density of water and g the constant 
of gravity. Let us now write the head field during the steady state part of the packer test 
as ho(x) + ~h1·h1(x) where ~h1 is a dimensionless scaling factor, h1(x) satisfies 

and 

h1(x)j = 1 
p=pw 

ahl(x) 

ap 
p=p,. 

hJx) = 0 

=0 

{ 
z1 +LI::; z ::; z1 + LI+ d 

zI - d ::; z ::; zI 

{ 
z > z1 +LI+ d 

z1 - d > z 

elsewhere on the boundary 

where we introduced z1 as the position of the lowest point of interval between the 

packers, d as the length of the packers, L 1 as the length of the interval between the 
packers and Pw as the radius of the drill hole. The phrase "elsewhere on the boundary" is 

used to denote the boundary of the domain in question minus the borehole wall. For this 

analysis it should be interpreted as the groundwater surface. The third equality in the 

boundary conditions above expresses a basic approximation in this analysis, namely that 

the leakage back into the borehole induced by the test is negligible. The fourth equation 

implicitly states the assumption that the groundwater surface is assumed to be unchanged 

and the second equation states the flow perpendicularly to the packers is zero. Note that 
we supress the angle <p from the notation but that the analysis does not assume that any of 

the involved fields are independent of <p. 

Next we will make the reasonable assumption that the natural head gradients are small in 
comparison to the applied head difference ~h 1 in the vicinity of the packed off section i.e. 

1 dh0(x) 

.Mzl dp 
p=p., 2.1 

4Since the hole can be considered a<; very conductive a head difference along the hole cannot exist in 

stationary state. 
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so that we may write the boundary conditions of h1(x) as 

elsewhere on the boundary 

Similar assumptions are made by [Braester and Thunvik, 1982]. However, they do not 

perform the above division in ho and ht but assume that the natural conditions are given 

by a constant potential i.e. ho=const and treat the actual head field divided into two cases: 

No flow through the borehole wall at the packers. A constant potential along the 

rest of the borehole wall. 

No flow through the borehole wall i.e. the borehole is sealed. 

Thus the equations resulting from our analysis above is much like the second case of 

[Braester and Thunvik, 1982] but the somewhat unrealistic assumtion that ho=const is 

avoided. We note also that the assumptions made in 2.1 are slightly stronger than 

necessary for our immediate purposes. However we will make use of the remaining part 

of the assumption later on. Another test performed at the location z2 is treated 

analogously i.e. it results in a field ho(x) + ~h2·h2(x) where ~h2 is a dimensionless 

scaling factor, 

v' ( K ( x) V h/ x)) = 0 

and 

r h2(x)j ,.,. = 1 

l dhz(x) 
dp =0 

p=p,., 

h/x) = 0 elsewhere on the boundary 

Now the idea is to show that the function ho(x) + h 1 (x) + h2(x) is an approximation to 

the field h 1+2Cx) arising as a result of both packer tests being performed at the same time 

both with an applied unit head difference. Since the aim is to predict the result of a 

packer test of length L1 + L2 the case of the measurement sections being adjacent, i.e. 
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z1 + L1 = z2 is treated below. This case is also depicted in figure 2.2. The case of non

adjacent sections will be treated in section 2.1.1. 5 

To this end we first note that 

0 ~ h1(x)I ~ 1 
p=p., 

for 

and similarly for h2(x) . This is true since h1 (x) is equal to one on one part of the 

boundary and equal to zero on another so if there was a point on the remaining part of the 

boundary i.e along the borehole outside the packer interval not satisfying the above 

inequality then there would exist a extremal value of h1 (x) somewhere along the borehole 

outside the injection interval6• This point would then act like a source or a sink, 

contradicting the no-flow conditions. 

Thus h1(x) + h2(x) satisfies 

and 

elsewhere on the boundary 

whereas for the solution h1+2Cx) of the problem posed by a packer test perfonned over 

the section length LI + L2 we would require that 

5In this connection we might ponder over the overall aim of the analysis. As the reader realizes this is to 

use the assumption in the beginning of the current chapter, the result of the current analysis together with 

Moyes fonnula to obtain an estimate of the effective conductivity on a large averaging scale at the center 

of the measurement section. With this ultimate goal in mind there does not seem to be much sense in 

requiring that the measurement sections should be adjacent. That is only needed to simulate a packer test 

perfonned with a larger packer interval length not to obtain the effective conductivity. Thus what one 

should wish for is a formula that connected a set of packer measurements with the effective conductivity 

of a rockblock containing them. 

6Since it is clear that any function h(x) that satisfies V(K(x)Vh(x))=O cannot have a local maximum in 

the interior of the domain of interest i.e it has to attain its extremal values on the boundary. 
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elsewhere on the boundary 

Thus it is clear that 

and that this double inequality implies that7 

z I +LI +L 2 zl +L l+L 2 

f K (x) tp h,+iCx)pw dz $;; f K (x) t ( h,(x) + hix)) Pw dz $;; 
zl zt 

z1+L1+L2 

2 f K (x) t h,+iCx)pwdz 
ZI 

As the notation suggests these integrals are taken over the part of the surface of the 
borehole between the packers. Expanding the middle term, again using the assumption 
that the leakage flow is negligible, and turning the inequality inside out we have 

where 

z+L 
I I 

qi= I K (x) t h,(x)pw dz 
z 

I 

2.2 

7This is a consequence of the statement: If the function h(x) satisfies v'[ K (x) v' h(x)] = 0 and 

h(x)I ~ 0 
p =p.., 

Jh~) I = 0 

p =P., 

h(x) = 0 

z<z<z+L+l I - - I I 2 

elsewhere on the boundary 

then the flow from the section [z1,z1+L1+L2] is nonnegative.i.e 



z +L 
2 2 

q2 = J K (x) Jp hz(x)pw dz 
z 

2 
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are known quantities proportional to the measured flows per applied head difference unit 

and 

z +L +L 
I I 2 

Q1+2 = J K (x) t h1+/x)pw dz 
z 

I 

is the flow per head difference unit that would be measured if the test was performed on 

the section L 1 + L2. It is to be stressed here that this is the crucial point where we made 

strong use of the no-leakage assumption since we used that 

'2+L2 

f K (x) t h/x)pw dz = 
'2 

., +LI 

f K (x) t hz(x)pw dz =0 
z 

1 

It is moreover clear that an analysis such as this must make this kind of assumption since 

the leakage flows are not generally measured. 

The fact that the expressions for the q:s above are proportional to the flow per head 

difference from a pressurized section, follows from the assumption 2. 1 since the flow 

from a pressurized section, the section [z1, z1+L1] say, can be written 

z +L 
I I oh/x) 
J K (x) op p.., dz 
z, 2.3 

Now Moye's formula B.2, see appendix B or alternatively [Moye, 1967], can be written 

in terms of q = Q/2m1h where Q is the measured flow as 

and thus 
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Introducing 

we thus have the result that 

2.4 

and hence 

3 
Kl+2"" 4Kr,g 

is a reasonable estimate but HYDRASTAR uses the more conservative K1+2 = Kreg.8 

These results are easily generalized ton adjacent sections with the value of Kreg replaced 

by 

but due to the presence of n added interval the estimate 2.4 instead becomes 

~Kr,g ~ Kl 2 ~ Kreg + + ... +11 2.5 

This is, however, a very pessimistic estimate. In analogy with the aoove discussion we 

can define the scaled head response from the j :th packer test participating in the 

regularization by hj(x), the corresponding packer interval length by Lj and the packer 

length by d. It is reasonable to assume that the hj(x):s are almost constant and equal to 

8It may be argued that this is not conservative since choosing a certain value as a representative of a 

interval of possible values leads to an underestimation of the variance which in the end may lead to a 

more homogeneous conductivity field and thus less possibility of "fast flow paths". 
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zero outside the packers due to the high conductivity of the hole itself. Hence if 2d<l.,j the 

analog of 2.4 

1 K reg ~ K1+2+ ... +n ~ K reg 2.6 

would still hold. 

We note that in the common case of constant section length Li= L for all i the 

regularized conductivity value equals 

i.e. a corrected arithmetic mean value of the individual conductivity measurements. This 

behaves very differently from the widely used geometric average. What is most striking 

is that the high measurement values dominate the sum and thus a plot of regularized 

measurements along the borehole tend to be constant in intervals, see the figures in 

section 2.2. This is rather natural if one consider how the conductivity of an averaging 

volume would vary when moved over a highly conductive fracture. We remark also that 

the size of the correction factor is on the order of one. 

2.1.1 Imperfect match in regularization 

We must consider two kinds of mismatch, positive (i.e. z1 + L1 > z2) and negative i.e. 

(z1 + L1 < z2 ), where the notation refers back to the two-measurement situation in the 

previous section. In the case of several sections added together with positive mismatch it 

is clear that 2.5 will always hold regardless of the magnitude of the overlap. On the other 

hand, following the reasoning above i.e. the assumption of constant zero head along the 

borehole outside the packers in each separate packer test, the estimate does not deteriorate 

provided that packed off sections, including the packers, do not overlap more than twice 

in which case 2.6 will still hold. The situation in the case of a negative mismatch is much 

worse since there is no way to estimate the flow that would have resulted from the gap. 

Declining any further theoretical analysis, which could be done in the positive-overlap 

case, we state that HYDRAST AR uses the following definition. 

Let us denote a measurement by the triple (zi, Li, Ki) where, as before, Zi denotes 

borehole coordinate of the lowest point of the packer test, Li denotes the length of the 

packer interval used and Ki denotes the obtained conductivity value according to Moye's 

formula. With a set of measurements { (zi, Li, Ki), i = 1, 2, ... , n} we associate an 

interval along the borehole Ireg and a length Lrcg by 

J,,g = ( min ( z), min ( z ) + S ) 
I,;; ,;,, I I $j ,;,, I 
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and 

Lr,g = max ( z . + L) - min ( z ) 
lSi SIi 1 1 lSiSn 1 

where S is the target regularization scale. The borehole interval Ireg is the packer interval 

of the packer test we are approximating whereas the interval (min(zi), min(zi) + Lreg) is 

the interval of the approximation itself with its positive and negative mismatches. 

Now such a set of measurements is said to constitute a regularized measurement on the 

scale S at the positive tolerance level Ep and the negative tolerance level En precisely if 

+ 

e;,, = J(~~•,•, •L,) -1) < e,s 
2.7 

2.8 

where x1 denotes the characteristic function for the interval I for any interval I i.e. the 

function that is equal to one in the interval and identically zero outside and where ( · )+ 

means max( ·, 0) and ( · )- means -min( ·, 0). The integrals extend over the interval 

(min(zi), min(zi) + Lreg). 

In words this would amount to saying that the set of measurements { (zi, Li, Ki), i = 1, 2, 

... , n} is a regularized measurement on scale S if the sum of all positive mismatches is 

less than EpS and the sum of the negative mismatches is less than EnS. The reason for 

including the term IS - Lreg I in the expression for the negative error is that it always 

represent a section from which the induced flow cannot be estimated in contrast to the 

positive type mismatch. Note that this in particular implies that 

1s - L,,gl < t:,.s . 

The pair En, Ep are tolerances that a user must supply. As is clear from the above 

discussion it is highly recommended to take En << Ep. Finally then the value of the 

regularized measurement is taken to be 

( ( 2Pw )) 1-ln --
- L,,g Y(' L;K; 

K reg - L LJ ( ( 2 /l )) 
r,g ' = i 1 - ln z; 

where Pw is assumed to be a constant. Also in the case the conductivity Ki is below the 

measurement limit the value of the limit is substituted for the true conductivity value. 
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2.1.2 When are two measurements identical ? 

The question in the heading arises because in certain situations it may be possible to patch 

together measurement sections satisfying the constraints of 2. 7 and 2.8 in such a way that 

the resulting sections cover essentially the same part of the borehole. In spite of this the 

values obtained can be quite different. This is to be compared with the hypothetical 

situation that one performs the same measurement several times but obtains different 

answers due to uncontrollable factors i.e. what is usually referred to as measurement 

errors. This line of reasoning could be used to estimate the uncertainty of the regularized 

measurements but we will not pursue this any further in this report. 

The following definition is used in HYDRAST AR: Two regularizations { (zi, Li, Ki), i = 
1, 2, ... , n} and {(zi', L(, K(), i = 1, 2, ... , n'} represent the same measurement if 

lmax(z;+L;)- max(< +L'j)l+l~cz;)- ~(z'JI< e,.S 
1s;;s;,. 1s;; s;,.' 1s,s11 1s,s;n' 

and the value of this measurement is taken to be the arithmetic mean value of the two 

associated regularized conductivities i.e. 

, 
K reg+ K reg 

2 

The extension to several regularizations is straightforward. 

2.2 The effect of regularization 

In this subsection we present some graphs and histograms on original and regularized 

measurement sections from the Finnsjon site. The data has been retrieved from the SKB 

geoscientific database GEOT AB and the interpreted zone intersections shown are taken 

from [Ahlborn and Tiren, 1991]. The graphs clearly show the smoothing effect of the 

regularization procedure and the strong domination of high original measurement values 

on the regularized measurement values on all sections containing the original high 

measurement values. As for the histogram the effect of the regularization is to slightly 

diminish the range of the conductivity values and to even out the shape. Also there is an 

increase in average log conductivity with increasing scale. However, the most striking 

feature of these histograms are that they do not look as if taken from a normal 

distribution, which is a usual assumption in the literature. Thus it would be a worthwhile 

effort to find new Gaussian transforms. In this connection we remark that the 

regularization formula does not preserve log-normality, thus the possible finding of a 

Gaussian transform should be done separately on each scale. 
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Figure 2.4 The measurements in borehole kfi,01 regularized to I 8m. 
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Figure 2.5 The measurements in borehole kfiOJ regularized to 36m. 
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The original measurements in borehole bfiO 1. The value of the 

measurement limit 1.0E-10 has replaced measurement values below 

the measurement limit. 
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Figure 2.8 The measurements in borehole bfiOI regularized to 36m. 
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Histogram of X1: 10Iog conductivity 
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Figure 2.9. Histogram of all (2258) original measurements of log conductivity. 

The value of the measurement limits have replaced measurement 

values below the measurement limit. 
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3 STOCHASTIC FUNCTIONS 

This chapter is inserted to give the reader some information of stochastic processes 

needed to read the report. It also introduces some notations. 

3.1 General 

In this report it will mostly suffice to think of a stochastic function Y as a function of two 

arguments Y(x, ro), the space argument x, and the event space argument ro. For fixed x 

the function is an ordinary stochastic variable and for fixed ro it becomes a spatial 

function, a realization. Let us take the opportunity to introduce some nota!ion below that 

will be used throughout the rest of the report. 

Define 

m/x)= E[Y(x, w)] 

where E[ · ] denotes the expectation value operator. A primed quantity will always 

denote the mean removed form so for instance 

, 
Y (x, CU)= Y (x, CU) - E[Y (x, CU)] 

and Cy(x, s) is the centered covariance function of Y, the definition of which can be 

written as 

where s denotes the vector separating two points of consideration, the so-called lag 

vector. A stochastic function is said to be weakly (or second order) stationary if the 

expectation value function my(x) and the centered covariance function Cy(x, s) is 

independent of x i.e. if 

{
my(x) = mr 

Cy(x, s) = Cy(s). 

Finally, cr(x) is the standard deviation at x i.e. if Y is weakly stationary 

In the above notational definitions Y(x, ro) may be replaced by any other stochastic 

function without altering the meaning of the notation however the index will be dropped 

when it is apparent by the context which stochastic function is referred to. Furthermore, 

the dependence on the event space variable ffi will be suppressed from now on. For a 

more thorough description of random functions see appendix C. 
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3.2 Intrinsic random functions 

A stochastic function Y(x) is said to be intrinsic if the following requirements hold: 

(i) The second order moment of an increment 

3.1 

exists and is independent of x. The function y(x) is known as the 

semivariogram. 

(ii) The first order moment of the increment is zero i.e. 

E[Y (x + ~)- Y (x)] = 0 3.2 

Note that the condition above is a much weaker condition than to require weak second 

order stationarity. In particular an intrinsic random function need not to have a finite 

variance i.e. need not to be of second order. In case the stochastic function has a finite 

variance the semivariogram is closely related to the covariance function since 

[ 
I I 2] 

{E(Y(x+~)-Y(x)) = 

3.3 
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4 MODELS OF STOCHASTIC FUNCTIONS 

A stochastic function in general is a complex object.To describe it completely an 

enormous amount of information, the set of all finite dimensional distributions, is 

required. Restricting assumptions have to be made. This leads to models with few 

parameters that can be estimated. The typical assumption is that some kind of stationarity 

holds. HYDRAST AR allows a reasonable amount of different models and they will be 

described below. The main difference between the models that can be employed in 

HYDRAST AR is whether a trend is explicitly modelled, in which case we will talk of a 

residual type model, or if the trend is modelled implicitly by a local stationarity 

assumption as described in section 6.1.2. This latter case is, somewhat misleading, 

referred to as the intrinsic case. 

4.1 Covariance models 

Many properties of a stochastic function can be explained if one knows the 

semivariogram. However, as shown in Appendix C section C.2, not any function can be 

chosen as a semivariograrn or for that matter a covariance function. Two models that 

guarantee the definiteness properties, C.6 are presented in this section and are the ones 

supported by HYDRAST AR. These models are both what is referred to as transition 

models [Journel and Huijbregts, 1978] which means that they possess a finite variance 

and thus have equivalent formulations in terms of covariance functions. 

The models are basically isotropic. The first one is the so-called spherical model and 

is written in the form of a covariance function as 

and the other is an exponential model 

C ( ~) = V exp( - 1jl;ID 

o s ll;II s a 

11~11> a 4.1 

4.2 

where, in both these expressions, V signifies the variance, ~ is the vector separating two 

measurement points, i.e. the lag vector and a and A are parameters determining the range 

of the stochastic function with the corresponding covariance function. 9 The range, or 

correlation length, of a stochastic function Y(x) is the maximum distance separating two 

9These models could of course have been stated in the semivariogram form. 
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points x1 and x2 over which the the stochastic variables Y(x1) and Y(x2) are correlated. 

We note that as a rule of thumb the practical range of a stochastic function with an 

exponential covariance function is 3(A whereas for a stochastic function with a spherical 

covariance function the range is equal to a. 

A simple way to model stochastically anisotropic fields is to use so-called geometrical 

anisotropy i.e. to write 

where Ciso is an isotropic model and G is the matrix of geometrical anisotropy. This will 

transform the level surfaces of the covariance functions from concentric spheres to 

confocal ellipsoids. The mapping 

will be said to transform the (lag) space into the isotropic (lag) space. 

Figure 4.1 

1,0 

0,8 

0,6 

0,4 

0,2 

Lag distance 

0,0 ------------------------
0 2 3 

Showing the exponential and spherical variogram models. They both 

have finite variance equal to 1.0 and practical range equal to 3 .0. 

Further models of covariance functions can be obtained by adding covariance functions 

of the above classes to obtain what is known as nested models [Journel and Huijbregts, 

1978]. This is a possible future development of HYDRASTAR. 

4.2 Kriging neighbourhoods 

Kriging neighbourhoods are discussed in chapter 6.1. The basic form of these that can be 

used in HYDRA ST AR are inclined slices, for instance the kriging neighbourhood for the 

point x1 is given by 
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D ( X 1) = { X E R 3: - 0 ~ ( X - X P ( X 1)) • it :s; W + 0 } 

where the width w and the overlap o are positive real numbers, fi is the normal of the 

slices and xp(x1) is a point defining a kriging set10 . The kriging set containing the point 

x1 , E(x1) is defined as 

E(x 1) = {x E R 3:0~ (x -xp(x 1)) • f\ < w} 

and thus consists of slices of width w inclined in the same direction as the kriging 

neighbourhoods. 

Figure 4.2 Showing a kriging set and a corresponding kriging neighbourhood. 

• Nodes inside the kriging set i.e. E E(x1). 

@ Nodes outside the kriging set. 

0 Measurements outside the kriging neighbourhood 

0 Measurements inside the kriging neighbourhood. 

This implies that the kriging neighbourhood is unchanged for all points in a kriging set 

lOThis is a nonstnndard notation invented by the author. 
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ifs::;; w is a real number and bis any vector orthogonal to the kriging neighbourhood 

normal fi. The function Xp(x1) is chosen so that the set of all kriging sets covers the 

domain of interest and is mutually disjoint, i.e. there is no point that lies in two kriging 

sets. 

Since, as explained in chapter 6.1, the primary requirement on a kriging neighbourhood 

is the constancy of the expected value function this choice of kriging neighbourhoods is 

motivated by the well known decrease of hydraulic conductivity with increasing depth. 

This decrease will thus be achieved without the use of an explicit trend function. Also 

inclination of the slices can be motivated by an assumption that the level surf aces of the 

hydraulic conductivity is oriented parallel with the subhorizontal zone 2. 

As for the parameter w it should not be too small in comparison to the correlation scale of 

the stochastic function considered. On the other hand it should not be too large in view of 

the constancy requirement. 

To this basic structure of kriging neighbourhoods a possibility is added in HYDRASTAR 

to perform a sul:xiivision of the considered rock block prior to the slicing described 

above. The reason for this is that it is likely that the modeller wants to use models that 

allow different expectation values for the conductivity in more generally shaped regions 

and then overlay the trendlike behaviour obtained by the slicing in some direction. The 

main example of regions with different expectation values being inferred fracture zones. 

Figure 4.3 Showing a possible slicing of a computational domain for the 

Finnsjon rock block where we have used one primary kriging set for 

zone 2 and another for the rest of the domain. The primary kriging 
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set for zone 2 has then been divided into three secondary kriging 

neighbourhoods. 

To be specific the modeller may define a primary kriging set as the union of several basic 

sets constructed as the intersection of halfspaces. This may be useful for instance when 

one considers many fracture zones and only have measurements in some of them. It is 

then possible to assume that the fracture zones have identical properties and to lump them 

together in one primary kriging neighbourhood and then perform the secondary slicing on 

this disconnected set. Also need may arise to use more general nonconvex primary 

kriging sets. For more details on how to specify this input to HYDRASTAR, see 

[HYDRASTAR]. 

If one does not believe that a zero:th order intrinsic model, even using kriging 

neighbourhoods, is sufficient for describing the phenomenon at hand one may want to 

include the expectation value functions explicitly in the analysis. In HYDRASTAR one 

may use any trend function. The user must however, if he cannot use one of or a linear 

combination of the already supplied trend functions, write his own FORTRAN 

subroutine and link it with HYDRASTAR. See [HYDRASTAR] for details. 
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5 UNCONDITIONAL SIMULATIONS 

In the following chapter we shall describe in detail how HYDRASTAR generates 

unconditional Gaussian regionalization with a given covariance or semivariograrn 

function. The method used is the turning bands algorithm as described by [Journel and 

Huijbregts, 1978], [Tompson, Ababou and Gelhar, 1989] and [Matheron, 1973]. The 

main goal of this section is to give a reasonably comprehensive derivation and discussion 

of the formulas 5.21 and 5.22 used in HYDRASTAR for generating random fields and 

also a discussion on the reasons for the way the user may specify the lines distributions 

used in the generation, see section 5.3. 

5.1 The turning bands method 

Regard the problem of simulating a three dimensional random function Y. We assume it 

to be weak second order stationary as defined in chapter 3. Let us further assume that the 

random function Y is Gaussian and that its second order moments my and Cy(s) are 

known. This, in fact, specifies the distribution of the regionalization completely. 

Now the basic idea with the turning bands algorithm is to write 

f (x) = f Y1((x, l),lh/J(I) dS (I) 
s 

1 /2 

where I is a unit vector on the half unit sphere S112, dS(I) is a infinitesimal surface 

element, f(I) is a probability density function on S1;2, ( · , · ) signifies the ordinary 

scalar product and Y 1 ( · , I) is a family of stochastic processes indexed by I and with 

the following properties: 

and 

Y 1 ( · , I 1) is stationary with zero expectation and a covariance function 

C1(·,l1). 

Above we also introduced a general notation exemplified with Y 1 ( · , 11). This simply 

means that this object is a function or process of one variable obtained by fixing the 

variable given as the second argument to the value 11. 

As an approximation for the case of a uniform distribution on the half unit sphere, i.e. 

f = 1/21t identically, we write 
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N 

Y (x) = k ~Y1((X, I ;),Ii) 5.1 

N 
where {I ; } is a set of unit vectors on S112- The first thing to note is that the marginal 

i =I 

distributions of this process obtained by fixing one point in space will tend to a normal 

distributions as the number of lines tends to infinity as follows from the central limit 

theorem [Fisz, 1963, p 196.]. The second thing to notice is that trivially the stationarity 
of Y follows from the stationarity of Y 1 ( · , 1). In particular 

E[Y/ ,I)] =0, v'I ⇒ E[Y] =0. 

However, the main thing about the method is to find the covariances C1 (~, I), where ~ is 

the lag coordinate on the line, which produces the given covariance C(~). To that end we 

express the covariance of Y in the covariances of Y 1 ( · , I) using the properties of the 

family Y1( •, I) as11 

Cy(~) = f C/(~,1),1)/ (l)dS(I) 
s 

I/ 2 

and in the approximate case 

N 

Cy(~) = ~ LC;((~,I J,1;). 
i=l 

Using the spectral theorem [Yaglom, 1962] we write, utilizing 5.2 

5.2 

4 ~2 f// 11,)ei( tJ,) d 1 = / I Si( A1 J)/(s ·" 11)/ (l)d,\dS ( I) 5.3 
R 112 

where Sy(·) and S1( ·, I) are the spectra of the processes Y( ·) and Y1( ·, I) 

respectively. 

The idea is now to rewrite the right hand side into the same form as the left hand side. As 

a first step in doing this divide the right hand side into two parts 

J J Si(A1J)/(s,"11)/ O)d\dS(I) + J J Si(,i1,1)/(s·" 11 )J(l)dA1dS(I) 
s O s -M 

I /2 1/2 

11 To produce a slringcnt derivation of 5.2 necessitates the inlroduction of a whole machinery and is 

therefore excluded. 
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and then perform a change of variables as 

for the first integral and 

for the second. Intrcxiucing the notation 9\~ 12 for the part of 9\3 intersected by rays 

through S112 and 9\ 3
_112 for - 9\: 12 = { - x:x e 9\~ 12} we then rewrite the previous 

expression as 

Finally, the line passing through -I is the same as the one passing through I so f(-

1) = f(I) and S10-1, -1) = S1(-A1, I) for IeS112 .Thus the covariance function of the 

turning bands representation of Y can be written as 

f S1(IAl)JAl)ei(s,'-)J(A/IAl)d ~ 
9! IAI 

and so by the uniqueness of Fourier transforms and 5.3 we have 

5.4 

Now in the particular case that the probability density function, f, is uniform, i.e. equal to 

1/21t, and the family of line processes Y 1 ( · , I) satisfies the additional condition that 

C 1 (~, I) is independent of I we have 
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This result together with 5.4 is also obtained by [Tompson, Ababou and Gelhar, 1989] 

although they use another definition of the spectral density with regard to the factor 21t. 

These expressions are then used to determine the spectral density along each line from the 

given spectral density Sy. 

In the case of isotropic processes and uniform probability density function f one may 

directly relate the covariances of Y and Y 1 ( · , I) by the following computation given in 

[Joumel and Huijbregts, 1978]. Starting from 5.2 and suppressing the direct dependence 

of C1 on I, i.e. the second argument, we have 

where we used the symmetry of C1 and the notation S for the unit sphere. 

Switching to polar coordinates with the direction of the polar axis parallel to s and 9 as 

the angle between the radius vector and the polar axis we rewrite the right hand side as 

Employing the change of variables 

{
lslcos e = s 

- lslsin 0d0 = ds 

and the symmetry of C1 once again we have 

or 

5.5 

In practice one generates a finite number of lines, N, each line is divided in bands of 

width T. If the value of the i:th line process Y 1 ( · , Ii) in the k:th band is taken to be 

constant and equal Yi,k 5.1 is replaced by 

N 

Y(x)= ~LY· L N , ... 
j =1 

5.6 

where k is chosen so that 

( k - l)T :s; ( x, I ,) < kT . 
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In order to make this a useful algorithm one has to find out how to generate the line 

processes Y1( · I) and the lines themselves so that the result is "sufficiently good". We 

will treat this in the following two sections. 

5.2 Line processes 

This section will solely describe methods for simulating one dimensional stochastic 

processes with a given covariance function C1 (;). This will be based on convolution 

techniques and follows essentially [Journel and Huijbregts, 1978]. We stress from the 

beginning that no importance whatsoever will be given to the form of the distribution of 

the generated process but only to its first two moments. 

We start with the observation that a covariance function C1(~) always allows a 

convolution representation as 

C,( ~) = f * f ( ~) = ff ( ~ - u) f (- u) du= 

= 

ff ( ~ + u) f ( u )du , 5.7 

where f is a real valued function and 'f is a nonstandard notation defined by 

f (X) = f ( - X) . 

This result follows easily from Bochners theorem [Yaglom, 1962] if we assume that C1 

corresponds to a spectral density function 12. This is since in that case it is possible to 

write 

= = 
C (~) = - 1-fe;t;:;.dF (A)= - 1 fe;t;:;_ S 0.)d). 

1 2,r 2,r 

with S as the spectral density function and Fas the spectral distribution function. From 

Bochners theorem we know that F(w) is a nondecreasing function and thus dF(w) 2:: 0 

and S(A) 2:: 0. 

Introducing the tilde sign ~ for Fourier transform and superindex * for complex conjugate 

we see that 5.7 gives 

12That is we are assuming for simplicity that the covariance function has an absolutely continuous 

Fourier transform. 
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and thus the choice of the function f only needs to satisfy 

5.8 

which has an infinite number of real valued solutions since SO.) ~ 0. 

Now letting f be a continuous function satisfying 5.8 and taking the definition of a 

function against a stochastic measure for granted we write 

as a candidate for a stochastic process having the required covariance function C1 (~). 

Here dT(r) is a stochastic measure on the real line such that for two intervals I1 and I2 

with lengths I I1 I and ! Ii I we have 

E[T (I,)]= E udT (r)] = 0 

E [T (l,)T (I,)]= EwdT (r)dT (r')]= 11, r, 1,p-,' 5.9 

It is now possible to show, at least formally 13 that the process so defined has the desired 

covariance function. In fact 

ff (s + r)f (r)draT 2 

which is what we wanted apart from the constant factor crT2. 

In practise we will make a discrete approximation of these formulas on a grid with 

spacing b by 

- l .1: +.!..) b 

Y 1 (ib ) = J f ( r) dT ( r - ib) = L, J f ( r )dT ( r - ib ) "" 

k =-~k-;} 

- l .I;+.!.) b - l k -i +;} ~ 
L,f(kb) JdT(r-ib)= L,f(kb) fdT(r)= Lf(kb)tk-i' 5.10 

l=-- (.1:-i)b k=-~ (.1:-i-~} k=--

13It does not pose any serious problems to prove this if we define all involved integrals as Riemann 

integrals. We only approximate with Riemann sums. 
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Here lk by the implicit definition in the equation above are independent stochastic 

variables with moments following directly from 5.9 i.e. 

This approximation is simple and in principle the one used by [Joumel and Huijbregts, 

1978]. The disadvantage is of course that in order for it to be a good approximation the 

grid spacing b has to be small. One could contemplate better integration schemes as for 

instance the trapetzoidal rule. For use in the turning bands method i.e. in formula 5.6 we 

want to have the values of the stochastic process generated in the points with spacing 

equal to the bandwidth T whereas the method described above generates values at points 

with spacing b, the magnitude of which is determined by the need of a sufficiently good 

approximation. Thus we will require that 

T =Nb q 5.11 

where Nq is some integer. 

Another method for generating realizations of one dimensional processes is the FFT 

method which is advocated in [Tompson, Ababou and Gelhar, 1989]. 

5.2.1 Random number generator 

The random number generator currently used in HYDRASTAR to generate random reals 

uniformly distributed on the interval [0, 1] is based on a combined linear congruential 

generator taken from [ Brately, Fox and Schrage, 1987], claimed to originate from 

L'Ecuyer: 

x. 1 = 40014*x. mod 2147483563 
1+ I 

Y; +i = 40692 * Y; mod 2147483399 

z. 1 = (x. 1 + y. 1)mod 2147483563 
l+ i + l + 

yielding a random real 

r; +i = z; +/2147483563 . 5.12 

This has proven to be fast and is claimed to have been extensively checked. In particular 

it has good spectral properties, a very large period and does not suffer from the well 

known weakness of linear congruential generators of having successive overlapping 

sequences of numbers falling on parallel hyperplanes. It should be portable across all 

machines having a word length of at least 32 bits. 
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In order to validate this generator further we have also used the following generator 

employed by the PROPER Monitor, see [McGrath and Irving, 1975], 

_ 15* 47 
X. 1 - 5 X. mod 2 . 

l+ I 
5.13 

that has been thoroughly tested [Porn, 1986), [Coveyou and MacPherson, 1967]. 

Comparisons have been performed between semivariogram functions estimated from 

series of one dimensional realizations using either one of these random number 

generators and the results are almost identical. 

Due to the difficulties in handling the large integers involved in the generator 5.13 it is 

slower than the generator 5.12 and this is the reason for choosing the latter. 

5.2.2 Application to spherical and exponential models 

Two isotropic covariance models C(r) are often used [Journel and Huijbregts, 1978), the 

spherical model 

r > a 

and the exponential 

C ( r) = V exif - Ar) r 2:'. 0 

where V signifies the variance, r the norm of the lag vector, a and 'A are range parameters. 

According to 5.5 we derive the corresponding covariances required for the line processes 

as 

and 

respectively. 

0 '.S: s::;; a 

s > a 

For these two models we propose to use convolution separations of the type 5.7 with the 

convolution function f given by [Joumel and Huijbregts, 1978, p 507 - 508] 

r 1/2 

( 12V) 
f(u) ~ 1 OJ u 

lul::;; ~ 

lul >; 5.14 
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u>O 
u< 0 5.15 

respectively. It is easily verified by direct, although somewhat tedious, computation that 

these functions satisfy the equation 5.7. However it is not clear whether these particular 

choices are the best. 

Now we want to specialize the approximate formula 5.10 to these two cases. In the 

spherical case we write 

a/2 R ( k+½} 
Y(ib)= ff(r)dT(r- ib)= L ft(r)dT(r- ib) 

-a/2 k=-R( k-;} 

R 

z L f( kb) tk-i 

lr.=-R 

with 

(k+¼f 
t" = f dT ( r) 

( k -¼J> 

and thus we require that 

a=(2R+l)b. 

5.16 

5.17 

For the choice of the important parameter R [Journel and Huijbregts, 1978] recommends 

the value R = 20. 

In the exponential case we first approximate 

4/A. 

Y (ib) = ff ( r) dT ( r - ib) = ff ( r) dT ( r - ib) 

0 0 

the error associated with this approximation can be estimated by 

25e-& ""3.3E - 4 
1- 25e- 8 
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Approximating further setting a = 1().., 

4a &R(k+l)b 

Y (ib) = ff ( r) dT ( r - ib ) = L ff ( r) dT ( r - ib ) ~ 
0 k=O kb 

and we require that 

( 8R + l)b = 4a . 

5.18 

5.19 

where the value of the parameter R again is recommended to be chosen equal to 20 by 

[Joumel and Huijbregts, 1978]. 

These formulas differ in details only from those of [Joumel and Huijbregts, 1978]. 

However the formula 5.16 together with 5.17 generates five to ten times more accurate 

values than the corresponding formulas in [Journel and Huijbregts, 1978] due to better 

integral approximation. Unfortunately no such cheap improvements resulted by using the 

formula 5.18 together with 5.19 instead of the counterparts in [Joumel and Huijbregts, 

1978]. As pointed out in the end of paragraph 5.2 one should try to improve the scheme 

for numerical integration in the exponential case. 

5.2.3 Corrections of the approximative formulas 

In order to check and correct the approximations above resulting in the formulas 5.16 and 

5.18 we calculate the covariances from the approximative expressions directly. Starting 

with the spherical case we note the formula 

R R 

E[Y (ib)Y (ib + sb)) = ,L Lf(kb)f (k'b)E[t 1c-/ t-;-J. 
k =-R le =-R 

Since 

{ 

2 
(Y 

E t .t = ' [ k-, k'-i-sl Q 

I 

if k + s = k 
• I 

If k + s-:/:- k 

we have in the case s > 0 (note that s is an integer) 

R 

E[Y ( ib)Y ( ib + sb)J = CY1
2 Lf( kb)f(( k + s)b) = 

k=-R 
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2 212\/ R-s 
<r1 b - 3- L,k(k + s) = 

Q lc=-R 14 

2 212V ( s3 ( 2 1 ) 1 ( 3 2 ) ) o; b d 6 - R + R + 6 s + 3 2R + 3R + R 5.20 

and in particular by putting s = 0 we obtain the variance as 

This should be compared with the required value V. 

The approximative formula 5.16 is then corrected with a multiplicative constant 

in order to give the correct value of the variance. Thus 

3V R 

2( 3 2 ) I. kt k -i a; 2R + 3R + R k =-R 

y (ib) = 
5.21 

which is the formula used in HYDRASTAR for simulating processes with spherical 

covariances. The value of R currently used is 20, the stochastic variables tk are uniformly 

distributed in the interval [-0. 5, 0. 5] and thus O-t = 1/12. 

Turning to the exponential model we perform a similar computation 

BR-s 

E[Y (ib)Y ( ib + sb)] = <r,2 I,. J(( k + -½)b )J(( k + f + s)b) = 
k=O 

BR-s 

4V.-l<r,2e,1J,(s+,) L (1- Ab(k+ i))(1- Ab(k+ s+-i))e- 2 m_ 
k=O 

This series is possible to calculate by for instance neglecting the influence of the tail of 

this power series and using the formula for a geometrical series. Since this involves 

tedious computations we put s = 0 and write instead 

SR 2 

E [y (ib ) 2] = 4V A <r,2 e-;u, I,. ( 1 - Ab ( k + ½)) e- 2 )J, 1c = 4V .w; 2 e -M E 
k =O 

with 

14Tois equality requires some calculations. 
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SR 2 

I= I(1 - lb( k + ½)) e-21.bk. 

k ,c{) 

Recognizing that this should be equal to V we get the correction factor 

and thus the formula used in HYDRASTAR for simulating one dimensional processes 

with a covariance function of exponential type is 

5.22 

where the value of R and the stochastic variables tk are the same as the ones used in the 

generation of the spherical model. 

5.3 Line generation 

Given the possibility to generate the one dimensional processes Y one would then 

proceed to generate three dimensional realizations from the approximative formula 

N 

Y(x)= k~Y;((x,1;),1;)_ 

Recalling formula 5.2 it would be natural to choose the lines Ii in an evenly spread 

fashion over the unit sphere as if evaluating an integral numerically. However it is not 

easy to identify directions that are evenly distributed on the unit sphere for an arbitrary 

number of lines. Therefore this methcxi is usually restricted to taking N = 15 lines joining 

the mid-points of the opposite edges of a regular icosahedron. We will in the following 

refer to such a set of lines as an icosahedron set. For a discussion on how to do this in 

practice see [Journel and Huijbregts, 1978, p. 503]. On the other hand writing formula 

formula 5.2 as 

Cy(~) = f C/(~,l),l)J(l)dS(I) = E [C/(~,1),1)] 
s 

1/2 

it suggests drawing the lines randomly from a uniform distribution on the half unit 

sphere. 

A study of the merits of different schemes for line generation has been made by 

[Tompson, Ababou and Gelhar, 1989] from which the following discussion is inferred. 
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The use of N = 15 evenly spaced lines reproduces the mean and variance statistics rather 
well but the realizations show a number of sets of parallel, linelike patterns. The 
appearance of these is explained by the following reasoning. 

In Fig. 5.1 the process of simulating a random function with the turning bands method is 
depicted in two dimensions and using three lines. It is then clear that when averaging the 
contributions from the three lines the spatial variability along lines of type A becomes 
roughly a if the variability of each line process is a. However the spatial variability on 
lines of type B only becomes roughly 2cr/3 since the contribution from the line 

perpendicular to it, i.e. line 2, is constant in each separate realization. Also the spatial 
average along the line of type A becomes approximately zero whereas the spatial average 
along lines of type B is determined by the contribution from line 2. 

Line 1 

LineB 

Figure 5.1 Explaining the origin of line like patterns. 

It is important to realize that the magnitude of this effect depends on the number of lines 
and not on their orientation. We will make use of this fact later on. 
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The alternative approach of using a larger number of randomly chosen lines, N = 100 

seems to be the recommended value, removes this effect but will of course increase the 

computational burden. Also the variability for the covariance estimates, both between 

different directions of the lag vectors used in the covariance estimation, and between 

successive runs are increased in comparison with the case of evenly spaced lines. 

Thus it seems to be a good idea to use several icosahedron sets all subjected to a random 

rotation characterized by a rotation vector chosen from a uniform distribution Le 

m.=2m.J. 
J J 

J=l,2,3 

where Uj is uniformly distributed over [0, 1] and roj, j = 1, 2, 3 are the components of 

the random rotation vector each giving the rotation angle around the j:th coordinate axis. 

For these reasons the HYDRASTAR can simulate random fields using a combination of 

random lines and random icosahedron sets. The user requests the number of each that is 

going to be used. Comparative results of use of different sets of lines can be found in 

[Norman, 1991). See also (HYDRASTAR]. 
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6 CONDITIONAL SIMULATIONS 

Given is the possibility to simulate realizations from a stationary random field as 

described in section 5. In order to improve the similarities between these realizations and 

the structure of the conductivity field given by geological investigations and the packer 

tests, HYDRA ST AR conditions the realizations on the regularized measurement. To 

clarify, this means that all realizations of the stochastic process simulated with 

HYDRASTAR attains the measured values at the measurement locations. This chapter 

contains a description on how this is achieved starting from the beginning with a 

discussion of kriging. The reader familiar with the theory of kriging can jump directly to 

section 6.2 perhaps with a glance at section 6.1.4 which includes some information on 

how HYDRAST AR solves the kriging systems. 

6.1 Kriging 

Assume that we have a random function Y(x) which is known at a number of points, the 

data support, Xi, i = 1, 2, ... , N. What is the best linear unbiased estimator Y(x)* 

N 

Y (x)• = L,,'.{,;(x)Y (X;) 
i =1 6.1 

ofY(x) given this information, in the sense that the centered variance of the interpolation 
' 

error i.e. 

should be minimal ? Here V[ · ] is the centered variance operator. The multiplicators 

Ai(X) appearing in 6.1 will be referred to as the kriging weights at x. These are functions 

of the point of estimation, x. The reader is urged to make clear the difference between the 

estimator Y(x)*, which is a stochastic variable, and the estimate y*(x) which is a 

realization of Y(x)*. The best estimator of type 6.1 is the so-called kriging estimator and 

the process of employing it for estimating for instance level curves of a stochastic 

function is known as kriging. 

There are a number of different approaches to this simple problem and we shall consider 

them one by one. 

6.1.1 Residual kriging 

Here we assume that the trend, E[Y(x)], is known i.e. in some way estimated. We may 

then work with the residual process Y'(x) = Y(x) - E[Y(x)] only. Since the expectation 
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of both the residual and any linear estimator of it then becomes zero the centered variance 

of interpolation error above is written as 

N N 

L X(x)X(x)C (x. - x ·) -2L,t(x)C (x. - x) + C (0) 
t } ' } t t 

i, j = 1 i =I 

where C( • ) is the covariance function for Y and thus C(O) is the variance of Y. 

By differentiating with respect to Ai(X) we see that the centered variance is rninirnized15 

when 
N 

L\(x)C (x; - x i) = C (x; - x) 
j =! 

i = l, ... N 
6.2 

which are the so-called kriging equations. Inserting this equality into the above 

expression for the interpolation error, we obtain the kriging variance as 

E[(Y 1(x)* - Y1(x)) 2] = C (0) - f ,\(x)C (X; - X) 
i=l 

6.1.2 Kriging in the locally stationary case 

If one does not know the trend, E[Y(x)], or wants to avoid estimating it, one can instead 

make the assumption that the trend is locally stationary . This means that for the task of 

determining the best linear estimator of Y at x, y* (x), one makes the assumption that in a 

neighbourhood of x, the trend E[Y(x)] is unknown but approximately equal to a 

constant. To this neighborhood there corresponds a set D(x) of measurement locations 

defined by the requirement that the points in D(x), i.e. {xi}iED(x), belongs to the 

neighbourhood. The question of finding the best linear unbiased estimator is then 

restricted to using only points in D(x) i.e. Y(x)* is given by 

Y (x)' = L A;(x)Y (X;) 
i ED ( X) 6.3 

The set D(x) is usually called a kriging neighbourhood and can also be used, in general, 

to restrict the size of the kriging equation system by taking only the closest points into 

account. 

15That this stationary point is in fact a minimum follows, since a covariance function is always positive 

definite. 
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With these assumptions we easily see that in order to ensure that the linear estimator 

should be unbiased, that is have the correct expectation value, we have only to require 

that 

L X(x)=l 
J 

jeD(x) 6.4 

Next, with this in mind, we can write the centered variance of the interpolation error as 

V [(Y (x)• - Y (x))] = E[(Y (x)• - Y (x)) 2]= 
E[(. L A/x)Y (x ;) - Y (x))1 = 

,eD (X) 

£[(. LA;(x)(Y (X ;) - mcx ;)) - (Y (x) - m(x)))1 = 
,eD (x) 

I A(x)X(x)C(x. -x -)-2 ~ X(x)C(x. - X) + C(O) 
' J ' J L.J ' ' 

i,jeD(x) ieD(:x) 6.5 

in principle as before, here as always m(x) = E[Y(x)]. Note the use of the assumption of 

local stationarity in the first and third equality above i.e. we used 

m(x)- L A/x)m (X ;) = 0 
jeD(X) 6.6 

which is equivalent with the assumption 6.4 if Y is locally stationary. 

The minimization of this interpolation error 6.5 under the constraint of unbiasedness 6.4 

is obtained by differentiating the Lagrangian function 

L X(x)X (x)C (X . - x . ) - 2 L X (x)C (X. - X) + C (0) + 
' J ' 1 ' ' 

i, j eD (X) j ED ( X) 

2µ (x)[. L l/x) - 1] 
J eD (X) 

which leads to the linear system for determining a stationary point16 

i E D(x) 

6.7 

16Which is also a minimum since if C is positive semi definite it is positive semi definite on any 

subspace as well. 
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where µ(x) is a Lagrange multiplier for the kriging system at x. The interpolation error 

associated with the above approach is given by inserting the kriging system into the 

expression for centered variance of the interpolation error 6.5 as 

E[(Y(x}'- Y(x)) 2]= C(O)- µ(x)- L A;(x)C(x; -x) 
i eD (X) 6.8 

The above approach can be generalized to more general forms of local trend. That is, 

instead of assuming that the trend is locally constant we may assume another, more 

complicated form. The most common form of the local trend is a second order 

polynomial, where we assume that locally the expectation of Y(x) is given by 

£ [ Y ( X)] = mo + ID l • X + ID 2 • X T X 

where mo is a constant scalar, m1 is a constant vector, m2 a constant symmetric matrix 

and • signifies the inner (tensor) product 17• The nonbias equation 6.6 is thus replaced 

by 

or since we want this to hold independent of the choice of mo, m1 and m2 with the ten 

conditions 

1- L,X(x) = O 
' jeD (X) 

x - "X(x)x. = 0 £..J ' ' 
j eD ( X) 

xxT - L,}c;(x)x ;x / =0 
j eD (X) 

and thus the number of Lagrange multipliers is likewise increased to ten. This is known 

as universal kriging. The disadvantage of this approach, independent of the number of 

constants to describe the trend (also in the main case of one constant above), is that one 

17The inner matrix (tensor) product is defined as: Let S1 and Sz be two arbitrary NxM matrices then 

their inner product S is given by 

i =l j =I I , J i ,j 
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must estimate the form of the covariance function of the residuals. First of all this is a 

difficult task and secondly, if one completes the task, one obtains the trend as a part of 

the result. See for instance [de Marsily, 1986, pp 310-312]. 

6.1.3 Kriging in the intrinsic case 

When using intrinsic random functions in relation to kriging, one usually assumes that 

3.2 i.e 

E [Y (x + ~) - Y (x)] = 0 

holds only locally. This equation is equivalent to the corresponding assumption made on 

the expectations in the section above. 

To derive the kriging system in this case one first notes that the condition for 

unbiasedness again becomes 

L A.(x) = 1 
J 

jeD(x) 6.9 

And because of this, one may express the (centered) variance of the kriging error as 

V [(Y (x)· - Y (x))] = E[(Y (x)· - Y (x)) 2]= 

E[(. L A;(x)Y (x;) - Y (x))1 = 
, eD (X) J 

E[(. L AJx)[Y (x;) - Y (x)J)1 = 
, eD (x) J 

L 1Jx)1/x)E [(Y (X;) - Y (x))(Y (X j) - Y (x))] 
; , j ED {X} 

Now what is needed is the following observation 

2 2 2 

(Y (X, )- Y (x)) + (Y (X i) - Y (x)) - (Y (X ,) - Y (X 1 )) 

Making use of this identity we can express the variance of the interpolation error in terms 

of the semivariogram y as 

2 LA-;(x)y(x; - x) - LA (X)A (x)r(x - X ·) 
I ) I J 

iED {x) i j ED {X} 
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and differentiation of the corresponding Lagrangian function, incorporating the side 

condition 6.9, with respect to the kriging weights gives the kriging system 

L ,\ ( X )y ( X i - X j) - µ ( x) = r ( X i - X) i E D(x) 
jeD(x) 

" L A/X) = 1 
ieD{x) 6.10 

where µ(x) again is a Lagrange multiplier for the kriging system at x. 

The interest in this derivation is mainly in the differences as compared to the derivation 

for the locally constant case. The kriging variance is obtained as previously by inserting 

the kriging system into the expression for the variance of the interpolation error to give 

L,.A;(x)y (X; - x) - µ(x) 
i eD (x) 

For an alternative and more elegant derivation of the results of this section see appendix 

C. 

6.1.4 Solution of the kriging equations 

First of all let us stress the fact that any covariance matrix C = { C(xi - Xj)} i, j is 

positive semidefinite, a fact that we have already used extensively. This is easily seen 

since 

This is an important quality to keep when solving the kriging system. Now the kriging 

matrix i.e. the matrix in the solution in the kriging system 6. 7 or its corresponding 

generalization to universal kriging is 

6.11 

or in the case 6.10 18 

6.12 

are both indefinite and thus it is good strategy to write the solution of the kriging system 

1 Sor its generalization to intrinsic random functions of order higher than zero,see Appendix C. 
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-rJ ).(x) ]= [ c(x) ] 
1. µ(x) 1 6.13 

or 

..J 1.(x) ]= [ y(x) ] 
1_ µ(x) 1 6.14 

in terms of the inverse of the covariance matrix, C-1. In the first case 6.11 we note that 

and thus the solution to the kriging system 6.13 can be written 

T -I 
1- X C c(x) 

µ= s 

-1 
A(x) = C c(x) - µw 

where we introduced 

w = c-1x 

s =-XT c- 1x. 

We call the vector w the "Lagrange correction vector" since it arises from the Lagrange 

multiplier formulation of the minimum variance formulation above. 

In the case 6.12, where the matrix f' results from a semivariogram without a sill, a 

pseudo covariance [Journel and Huijbregts, 1978, p 306] Cp(x) is defined by 

and thus 

6.15 

where Co is a constant greater than the maximum element off', 1 is a vector with all 

components equal 1 and superindex T denotes matrix transpose. Note however that it is 

not certain that the resulting matrix is positive definite. 

6.2 Construction of conditional simulations 

The idea used to construct conditional simulations is to simulate the kriging error. Let 

Z(x) be a process independent of, but with the same covariance function as Y(x) and 

regard the process 
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We want to show that this process has the same moments as Y(x). The following 

discussion follows the lines in [Journel and Huijbregts,1978, p 494-498]. 

6.2.1 The residual case 

Dropping the primes and just remembering that we work with residual quantities with 

zero expectation we note that 

E[Y 5 (x)] = E[Y (x)] = O_ 

Secondly since Z(x) and Y(x) are independent and E[Z(x) - Z*(x)] = E[Y(x)] = 0 we 

have 

whereas 

E [Y (x)Y (~)] = E[Y (x)Y (~) *]+ E[(Y (x)- Y (x)')(Y (~) - Y (~) ')]+ 

E[r (x)° (Y (~) - Y (~) *)] + [E (Y (x) - Y (x)°)Y (~) *J. 

So we see that what is needed for equality of the second order moment is that Y(x)* and 

Z(x) - Z(x)* are orthogonal. In the residual case this is easy 

E[r (x)°(Y (~) - Y (~) *)] = 
n n 

LA,/x)C ( x; - ~) - L A-;(x)l/ ~)C (x; - x j) = 
i =1 i ,j =I 

since the A(~):s satisfies the kriging equations.19 

6.2.2 Locally constant case 

It is clear from the non bias condition 6.4 that 

E [Y s(x)] = E [Y (x)] = m(x) 

19we note that this is a direct consequence of Hilbert space theory if one considers the Hilbert space 

L2(.0, ~, P) with Q, ~. P signifying the event space, the a-algebra and the probability measure 

respectively and the scalar product being defined as (Y(x), Y(~)) = E[Y(x), Y(~)], see (Journel ,1977). 
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For the second order moment we can write again since Z(x)and Y(x) are independent 

E[(Y/x)- m(x))(Ys(~) - m(~))] = 

E[(Y (x)• - m(x))(Y (~)• - m(~))]+ 

E[(z (x) - z (x)')(z (~) - z ( ~) *)] 

whereas 

E [(Y (x) - m(x))(Y (~) - m(~))] = 

E[(Y (x)• - m(x))(Y (~) • - m(~))]+ E[(Y (x)- Y (x)*)(Y (~) - Y (~)*)]+ 

E[(Y (x)° - m(x))(Y (~) - Y (~) *)]+ E[(Y (~) • - m(~))(Y (x) - Y (x)*)] 

which does not become identical to the expression for the simulated field since 

E[(Y (x)* - m(x))(r (~) - Y (~) *)]= E[Y 1(x)*(Y 1
(~) - r'(~) ')]= 

L,\(x)C(x;-~)- L A;(x)A/~)C(x;-xj)= 
ieD(x) ieD(x)j eD(!;) 

Note that we have tacitly used 6.6 twice in the first equality above. Similarly by just 

interchanging x with~ in 6.16 

E[(Y (~) • - m(~))(Y (x)- Y (xf)]= 

LA; (~)[C (x; - x) - . L \ (x)C (x; - x j )]= µ(x) LA;(~) 
ieD(!;) JED(X) ieD(I;) 

hence the difference between the covariance function of simulated field Y s(x) and the 

covariance function of the actual field Y(x) is 

µ(x) LA/~) + µ(~) LAJx) = µ(x) + µ( ~) 
ieD(I;) ieD(I;) 

However, let us view the variogram of the simulated fields 

E[(Y s(x) - Y .( ~)) J = 

E[(r (x)· - Y (~)·/]+ E[((z(x)- Z(x)·)- (z(~)- Z(~)*)) 2
] 

whereas 
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E[(y (x)• - Y (~) •/]+ E[((Y (x) - Y (x)°) - (y (~) - Y (~) ') /]+ 
2E[(Y (x)*- Y (~) •)((Y (x) - Y (x)*) - (y (~) - Y (~) *))] 

which is equal to the variogram of the simulated field since we have by 6.16 

E[(y (x)*- Y (~)*)((Y (x)- Y (x)')- (y (~)- Y (~)*))]= 

µ(x) LA;(x)- µ(~) LA;(x)- µ(x) LAi ~) + µ(~) LA;(~)= 0 
ieD (X) ieD (X) j ED(!;) i eD ( !;) 

Hence the variograms for Y and Ys are equal but the covariances are not. Here one may 

think that there is a contradiction since variograms and covariances are coupled through 

the identity 3.3. However the explanation is simple, by 6.8 we know that 

E[(Y (x)* - Y (x)) J = C (0) - µ(x) - LA;(x)C (x; - x) 
i eD (X) 

and in general for locally constant stochastic functions 

E[(r (x/ - m(x)) J = LX(x)A.(x)C(x. - x ·) = LX(x)C (X . - x) - µ(x) 
I j I j I I 

i,jeD(x) ieD(x) 

so that 

Thus the simulated field does not have the same variance as the original field and 

moreover the simulated fields are not stationary but they are intrinsic and have the same 

semivariogram as the original. 
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7 THE HYDROLOGY EQUATION AND ITS NUMERICAL SOLUTION 

The hydrology equation solved by HYDRASTAR is 

7.1 

where Ks is the isotropic hydraulic conductivity at the averaging scale s and ( h} s is the 

averaged hydraulic head i.e. 

where Qf is the void space i.e. the fractures, V 5(x) is the averaging volume and I · I is a 

general notation for volume, or size, of a set. For more details on this see for example 

chapter 3 and 4 in [de Marsily, 1986]. 

The corresponding integral equation is 

s 7.2 

where S is the surface of an arbitrary volume V and dS its directed surface differential. 

The integral equation above is solved numerically by a finite difference approximation 

derived from the specialization of 7.2 to parallelepipeds. These parallelepipeds are 

referred to as the mass balance elements and their boundary surface consists of six 

rectangular faces. This is represented by a staggered prismatic mesh, that is the head 

nodes are situated at the midpoint of the parallelepipeds and are given by 

7.3 

where Sj, j = 1, 2, 3 are the basis vectors of the prismatic mesh and Nk are the number of 

head nodes in the direction k, k = 1, 2, 3. The conductivities are given on the translated 

nodes situated on the faces of the parallelepipeds i.e. at 

r c ~ - ½) s 1 + c i2 _ 1) s 2 + c i3 _ 1) s 3 

1 ( ~ I - 1) S I + ( ~2 - ½) S 2 + ( .i3 - 11) S 3 

( l 1 - 1) S 1 + ( l2 - 1) S 2 + ( l3 - 2) S 3 

k =2,3 

1 s i2 s N 2 - 1, 1 s ik s N k' k = 1, 3 

1 s i3 s N 3 - 1, 1 s ik s N k' k = 1, 2 

7.4 

The values of the conductivities at these nodes are denoted 
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1 s i, s N1 - 1, 1 s ik s N t' k = 2,3 

1 < z· < N 1 1 < . < N k = 1,3 - 2 - 2 - ' - l k - k' 

1 s i3 s N3 - 1, 1 s i k s Nie, k = 1,2 

respectively. See Fig. 7.1 where the computational molecule is depicted. 

h(i 1-1,i2,i3) 

h(i 1,i2-1 ,i3) 

Figure 7.1 

h(i 1,i2,i3+ 1) 

K3(il,i2,i3) 

h(il ,i2+ l ,i3) 

Kl(il-l,i2,i3) 

h(il + 1,i2,i3) 

3-direction 

2-direction 
K3(il ,i2,i3-1) 

I-direction 

h(i 1,i2,i3-l) 

The computational molecule for the hydrology equation 7.1 

employed in HYDRASTAR. 

The advantage with a staggered mesh is threefold, all resulting from the absence of the 

need for interpolation of conductivity values. First a, admittedly minor, speed increase 

results in the solver as a result of the fact that no interpolation takes place. Secondly, 

there is no uncontrolled smoothing of the simulated conductivity field which would result 
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from interpolation. Finally, one avoids a somewhat arbitrary choice of interpolation 

formula. The obvious disadvantage is the increased need for storage since the number of 

conductivity nodes are, in principle, three times the number of head nodes. Another less 

obvious disadvantage is a more complicated situation when designing the streamline 

algorithm, see chapter 8. 

From these meshes the finite difference equation at the node (i1, i2, i3), 2 ~ ij ~ Nj - 1 

resulting from 7 .1 is written 

Ti i1, i2, i3 - l)h ( i1, i2, i3 - 1) + Ti i1, i2, i3) h( ii' i2, i3 + 1) -

D( i1, i2 , i3) h( i1, i2 , i3) = 0 

where 

SS 
T/ i1, i2 , i3 ) = \ 3 K,( i,, i2, i3) 

s s 
Tl i,, i2, i3) = T Kl i,, i2, i3) 

2 

s s 
Tl i,, i2, i3) = T Kl i,, i2, i3) 

3 

Sj = I Sj I for j = 1,2,3 and 

D ( ii, i2, i3) = TI ( ii - 1, i2, i3) + TI ( ii, i2, i3) + 

7.5 

7.6 

Tz( il, i2 - 1, i3) + Ti( ii, i2, i3) + Tl ii, i2, i3 - 1) + Ti il, i2, i3) 7.7 

These equations are then solved employing a conjugate gradient algorithm, see for 

instance [Golub and van Loan, p 353 - 380]. Comparisons with other FD codes as well 

as with FEM codes and analytical solutions are to be found in [Norman, 1991]. 

Finally, after the solution for the hydraulic head has been obtained the Darcy velocities 

may be approximately calculated as 
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. . . . .. h(il + 1, i2, i3)- h(il, i2, i3) 
UI( ll, l2, l3) = - K ( ll, l2, l3) s 

I 

for 1 $ i1 $ N 1 - 1, 1 $ i k $ N k' k = 2, 3 

. . . . . . h ( ~, i2 + 1, i3) - h( i1, i2, i3) 

Ui( ll' l2, 13) =- K ( ll, 12, l3) S 
2 

for 1 $ i2 $ N 2 - 1, 1 $ i k $ N "' k = 1, 3 

. . . . . . h( i1, i2, i3 + 1) - h( i1, i2, i3) 

Ui~,l2,l3)=-K(ll'l2,9 s 
3 

for 1 $ i3 $ N 3 - 1, 1 $ i" $ N", k = l,2 7.8 

i.e calculated by the same difference formula that is used to derive the massbalance 

equations. 
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8 BOUNDARY CONDITIONS 

Given is the method to simulate the hydraulic conductivity field and the method to solve a 

certain hydrology equation as described in sections 5, 6 and 7 respectively. With known 

boundary conditions, the solution would be straight-forward. However, this is not the 

case. Ordinarily one then tries to make some plausible guesses which are mainly based on 

two grounds: 

a groundwater divide is identified which leads to the assumption of no flow 

boundary conditions. A groundwater divide is a valley (discharge area) or a 

ridge (recharge area). 

a fracture zone with "high conductivity" is inferred. This leads to the assumption 

of constant head along the fracture zone and not no flow boundaries unless the 

fracture zone is also considered as a groundwater divide. 

These ways of inferring boundary conditions may of course lead to serious misjudgment 

of the flow situation at depth as discussed in [Nyberg and Voss, 1991]. The problem can 

be summarized by stating that the boundary conditions can be reasonably well described 

by the above considerations close to the ground surf ace. However, at large depths the 

boundary conditions are subjected to a very large uncertainty. Stated in another fashion it 

is to say that the recharge and discharge areas of the repository may be located very much 

outside the domain used for hydrological modelling. This may be due to either large scale 

topographical qualities or large scale hydrological structures. 

The choice of boundary conditions also has a direct influence on the kind of information 

to be obtained from calculating the stream lines. From a safety analysis point of view, 

one of the prime outputs must be the travel time of water particles from the repository to 

the biosphere, that is the surface. If we use head boundary conditions the normal case is 

that the stream lines end at the lateral boundaries and thus the information obtained is that 

"the travel time to the biosphere is larger that T". To choose head boundary conditions is 

natural when using a stochastic approach since the hydraulic head is a stochastic function 

involved in the analysis and can thus be subjected to uncertainty analysis. On the other 

hand choosing no flow boundary conditions leads automatically to a situation where all 

particles reach the surface. This is a fact that may steer the modelers choice of boundary 

conditions toward no flow type even if it is not justified on other grounds. 

The nonflexible mesh in HYDRASTAR prevents any direct application of the tricks 

mentioned above and the restrictions of time prevented the development of the method 

that takes the uncertainty of the boundary condition into account systematically. This is 

why the current solution in HYDRASTAR is to take the boundary conditions from a 
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deterministic hydrology simulation in a block including the computational parallelepiped 

and using plausible boundary conditions in that outer block. There are a number of 

disadvantages 

the uncertainty of the boundary conditions cannot be taken into account 

systematically but only through explicit variations in the modelling of the outer 

block. 

the procedure is not mathematically sound since even if the head values are 

transferred there may well exist discontinuities in the velocity field. 

There also exist some supplementary methods in HYDRASTAR to generate the boundary 

conditions namely to calculate them from a given function or to specify noflow conditions 

at any side of the computational parallelepiped. 
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9 STREAM LINE EQUATION SOLVER 

The support for transport modelling given from HYDRA ST AR is the possibility to 

calculate stream lines and groundwater travel times to the ooundaries. This chapter 

contains a description of the stream line equation solver as implemented in 

HYDRASTAR. 

Introducing r(t) for the location of a water particle20 at time t initially at r(0) and u(x) for 

the pore velocity at the point x the stream line equation is 

dr - = u(r(t)) 
dt 9.1 

Finding the stream lines and thereby the associated ground water travel times thus 

consists of two main parts: 

1) Calculate the pore velocity field u(x) given the head field computed according 

to section 7. In practice, that amounts to first calculate the Darcy velocity U by a 

finite difference approximation in points defined by the mesh according to 7 .8, 

divide by the flow porosity Ef to obtain the pore velocity and then choose an 

interpolation for each of the three pore velocity components. 

2) Use a suitable method for numerical integration of the streamline equation 9.1. 

9.1 Interpolation 

This paragraph solely treats the interpolation of the 1- component of the pore velocity 

field. The 2- and 3- components are treated analogously. 

Take any point r, with components r1, r2 and r3, in space such that 

r ½sl ~ rl < ( Nl - ¾)sl 

1s2 ::; r2 < (N 2 - 2)s 2 

s3 ::; ,; < ( N3 - 2)s 3 9.2 

where Nk, k = 1,2,3, as before are the number of head nodes in the k:th coordinate 

direction and Sk, k = 1,2,3 is the distance between two consecutive head nodes in the k:th 

coordinate direction. 

Obviously the point r belongs to a set of the type 

20For an elaboration on this concept see, for instance, [Bear, p 16-18]. 
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i Ci2 - l)s2 ~ '2 < i2s2 

l ( i3 - 1 )s 3 ~ r3 < i/, 3 
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for some values of the integers ii, i2, i3 such that 

r1 ~ ~ ~ NI - 2 
i2~i2~N2-2 

l 2 ~ i3 ~ N3 - 2 . 

In fact it is easy to see that 

9.3 

9.4 

give these values. Here the lower alternatives in each formula are given for completeness. 

A set such as 9.3 is named a computational cell for the 1 - velocity see figure 9.1. 

Denoting, in the obvious fashion, the 1-velocities in the eight corners of this cell by Vij,k 

where i,j,k takes the values O or 1 we write the interpolation polynomial employed, v, as 
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9.5 

Here we also introduced the local coordinates x1, x2 and x3. These are defined by 

shifting the origin to the 1-velocity node with the smallest indices of all the I-velocity 

nodes constituting the computational cell i.e the node with indices given by 9.4. Using 

this formula we may express the local coordinates as 

if 3. l>o s1 + 2 -

'i 1 
if-+-< 0 

S1 2 
r 

iff+l~O 
2 

r2 
ifs+ 1 < 0 

2 

r3 
if s + 1 ~ 0 

3 

r3 
ifs+ 1 < 0 

3 

Clearly this polynomial is an interpolating polynomial and moreover using this formulae 

in each computational cell we obtain a continuous I-velocity field in the domain given by 

9.2. Outside this domain no particle tracking takes place. The reason for not using the 

whole domain i.e. 

f ½s1 s;; r1 s (N1 -¾)s1 

1 0 s r2 s ( N 2 - 1) s 2 

0 s;; r3 s ( N3 - 1) s3 

is that on the boundary the velocities are not subjected to the requirement of mass balance 

as expressed by 7.2 and 7.5 but results directly from the given head boundary conditions 

and the simulated conductivities on the boundary. 



□ 

□ II 

Figure 9.1 
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□ 111 

□ 111 

□ 

□ 

□ 

II 

□ 

II 

□ 

Ill 

□ 
Showing the staggered mesh. The symbols □, II and lliill signifies a 

head, I-velocity and 2-velocity node respectively, all placed in the 

lower left corner of the symbol. The rectangles with marking c::J, 
F : I rmd I ?: } I mark a mass balance element and computational 

cells for the 1- and 2- velocities respectively. 

We point out that the choice of this particular interpolating polynomial has the following 

qualities: 

The velocity field is continuous. 

In general the interpolated velocity field u does not satisfy Vu = 0. 

Finally, in this section, we insert a short discussion of other interpolation schemes not 

implemented in HYDRASTAR but possible alternatives in the future: 

Linear interpolation in every mass balance element using the two boundary 

velocities for each velocity direction. The advantages of this method are at least 

threefold. First, since the stream line equation in each mass balance cell becomes 

dxi 
s.-d = u.(O)(s. - x.) + U(S-)X i = l,2,3 
• t • ' ' ' ' ' 

it can be solved analytically for each cell from which a higher computational 

efficiency derives. This would be particularly important in case one were to 

analyze the transport with random walk methods. Secondly, as opposed to the 

trilinear method used, the velocity fields obtained with this method is not 

continuous which might be more accurate in presence of rapid conductivity 

changes i.e this interpolation scheme favours channeling. Finally, the 

interpolated velocity field satisfy Vu = 0 since 
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and where the final equality is seen by factoring out (Efs1 s2s3)-1 using Ef for the 

flow porosity. 

Using kriging as interpolator. The obvious disadvantage of this alternative is 

that one needs to have the covariance function of the velocity. This can in 

practice only be obtained from a previous simulation series. The matrix to be 

inverted could be made identical at almost all points, presuming that the velocity 

is second order stationary, due to the fixed mesh so the method should be 

computationally feasible. 

Simulating the velocities conditioned on the mesh values. This is similar to the 

previous method but leads to complications since the points at which simulated 

values are needed are determined by the solution algorithm for the stream line 

equation. So if we imagine the simulation being performed using the turning 

bands method the one dimensional simulations need to be saved during the 

streamline calculations so that a simulated value of the velocity at a given point 

can be obtained. This discussion is continued in paragraph 9.3.1. 

Further interpolators such as the so called grad scheme, [Goode, 1990]. 

9.2 Integration 

Given the interpolation v above of the pore velocity field u we are in a position to solve 

the streamline equation in a domain 

r s I ~ 'i ~ ( NI - 2) sl 

i s2 ~ '2 ~ (Ni - 2) s2 

l s 3 ~ r3 ~ ( N 3 - 2) s 3 

that is, the intersection of the domains of definition for the interpolators of the pore 

velocities in the 1- 2- and 3- direction, as defined in the previous paragraph. 

Previous experience leads us toward numerical integration methods of high order, hence 

we choose the 4:th order Runge-Kutta [Dahlquist and Bjorck, p 346] 

where 
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and r0 is the radius vector of the tracer after the completion of the n:th time step and 8t is 

the length of the time step. 

The time steps in the integration are controlled in two ways. If the weighted square of the 

step length is "too large" i.e. if 

3 ( r~+1 - r~ )2 I , , > £2 
s . • i =1 9.6 

the time step is shortened by a experimental factor 0.3. If, on the other hand more than 

five steps are taken inside a cell without the tracer exiting the time step is doubled. There 

is no theoretical ground for the choice of the numerical values of these factors, nor for the 

value of the tolerance E. There is also a parameter that maximizes the number of steps 

inside a single cell and another that maximizes the number of changes of computational 

cell. Those maximizing parameters are primarily intended to prevent infinite loops from 

occurring in the case of the solution to the hydrology equation 7 .1 having too poor mass 

balance but may also be a proper criterion for termination in case of extended domain, see 

paragraph 9.3 below. 

For simplicity the successive evaluations of kj, j = 1,2,3,4 in each Runge-Kutta step uses 

the interpolation formula derived from the computational cell that contains r11. This may 

lead to inaccuracies if the streamline is allowed to proceed too far out from the initial 

computational cell in one step. Therefore, as an option the code moves the tracer 

backwards along the straight line connecting r0 and r0+ 1 until the boundary of the 

computational cell is reached. To avoid the case that the tracer starts the next step 

precisely on the boundary between the two computational cells a small length is 

subtracted from the backward movement. The elapsed time for the current timestep is 

scaled by the factor obtained by dividing the length of the backward movement with the 

length of the original line segment. 

When tracing in the extended domain, see subsection 9.3 below, this kind of backward 

interpolation is always used. The reason is that the large contrasts between the elements 

of the interior and exterior domains togther with the stepsize control criterion 9.2 could 

lead to very large steps into the interior domain from the exterior. 
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It would be interesting to improve upon the methods used. In particular since the velocity 

field is highly variable, a method designed for stiff problems might be better. This is 

particularly true since the stepsize control described above has no theoretical foundation. 

For instance the MOLCOL (Modified One-Leg COLiocation) algorithm, see [Eriksson] 

that is employed in the NEAR21 nearfield model, see [Norman and Kjellbert, 1991] 

could be tried. 

9.3 Extended Domain 

9.3.1 Reason for performing particle tracking in an extended mesh. 

A standard problem in subsurface hydrology is the need for a finite computational domain 

and specified boundary conditions. This need arises as a result of the strategy of analysis 

namely: 

1. collecting information in a site. The information is of type inferred fracture 

zones with interpreted hydraulic conductivity values, packer test, interference 

test, measurements or estimation of water table elevation etc. 

2. derivation of an appropriate mathematical model. In our case, denoting the 

computational domain n and its boundary an this might be written symbolically 

as 

9.7 

for the Darcy velocity U and 

K I ,h I ~ tn 
n an 9.8 

for the travel time to the boundary of n, tn. 

It is characteristic for the situation that the data is accumulated around the imagined 

repository and that it is successively depleted further away from the site. Looking at 9.7 

the question on how to choose the domain may be posed. The smaller it is chosen the 

better is the quality of the information. It would thus be natural to choose as small a 

domain as possible with the allowance for the tricks dicussed in chapter 8 for finding 

reasonable head boundary conditions. The problem is that for small domains none of the 

streamlines will reach the surface unless noflow boundary conditions are used21 . The 

alternative, which was used in the SKB 91-study, is to extend the validity of the 

statistical information of the conductivity field to a much larger domain than the sample 

21 A related method is to reflect the tracers at the boundary. 
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domain allowing for interprete.d fracture zones and then perform the particle tracking. 

This method has the disadvantage that the large computational domain nessecitates large 

regularization scales or large meshes or both. Thus the resolution becomes bad. 

Now the idea with extended domain tracking is simply to replace the extrapolation of the 

conductivity field with the extrapolation of the velocity field. That is to recognize that the 

role of the computational domain in this problem is to translate the knowledge 

(uncertainty) about conductivity into knowledge (uncertainty) about Eulerian or 

Lagrangian Darcy velocity and that strictly speaking when this task is completed there is 

no further need for the computational domain. 

Hence one should try to find an optimal domain with respect to the factors mentioned 

above. Then, secondly. design a model for the velocity field from repeated simulations in 

the smaller block and finally extrapolate this model and use it for global simulations. Note 

that it is essential for such an approach to be able to guarantee that the simulated fields 

satisfy the constraints of mass balance, i.e that have no sources or sinks. 

The advantages are that one can use smaller scales in the calculations and that one 

eliminates the problem of tracers not reaching the surface level since we can continue to 

simulate indefinitely. Moreover the simulations can, in principle, be conditioned on 

measured values of the velocity. The most notable disadvantage is that one looses the 

coupling to reality obtained from inserting interpreted fracture zones away from the actual 

data support. 

A variation of the idea would be to extrapolate the head field or extrapolate a travel time 

function 1(x,z) defined by the time needed for a particle at x to reach the level z. The 

advantages as compared with simulating the velocity field is that we avoid the problems 

with simulating a velocity field without sources and sink, the function at hand is a scalar 

and tracers leaving the computational domain prematurely may be treated as censored 

statistics. The disadvantage is that the stochastic function is defined on a four dimensional 

space instead of a three dimensional. 

In the current version of HYDRASTAR this is not completely implemented. But the basis 

is the idea described above. 

9.3.2 Algorithm for external particle tracking 

As explained in previous paragraph the basic idea for external particle tracking is the same 

as in regression or statistical inference and simulation. Since time has not allowed us to 

develop a particle tracking algorithm in a stochastic velocity field we have settled for 

something more modest, still keeping the main line of thought however. 
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As said, we cannot simulate the velocity field outside the computational domain hence we 

try at least to predict it. For reason of the discussion, in which we only treat the 1 

-component of the pore velocity u1 the other components treated analogously, take a point 

x outside the domain. Then the best linear unbiased predictor of u1, neglecting any 

influence from the crosssvariogram between u1 and u2, u1 and u3, is written in analogy 

with paragraph 6.1 as 

z~(x)* = L \ (x)u1(x i) 9.9 
j eD 1(x) 

where D1 (x) is a selected kriging neighbourhood of x consisting of (the indices of) the 

used mesh points and where Ai(x) satisfies the kriging equations i.e. 

L Aj(x)Culx; - X J) + µ(x)= cu,(X; - X) i E D(x) 
j ED /X) 

I xcx) = 1 
J 

9.10 

The idea is now to extend the mesh and use the predictions of type 9.9 for the pore 

velocities in the extended mesh. The impact on the travel times of such an approach is 

difficult to judge since the consequence is to smooth the velocity field. This intuitively 

results in a underestimation of the tortuosity of the flow paths and also a removal of the 

fastest flow paths. 

Since it is desired to avoid the estimation of the covariance functions of the (pore) 

velocities the algorithm was further simplified by the following reasoning. 

If the row sums of the covariance matrix are approximately constant and x is chosen so 

that its distance from the nearest meshpoint is larger than the correlation scale of u 1 then 

the solution to the system 9.10 is approximately given by 

9.11 

where ID1 (x)I, as usual, denotes the number of points in D1 (x). Thus in the absence of 

any covariance function for the velocity field we appoint 9.9 together with 9.11 to our 

estimator of the velocity at x. However, even with this approximation there is still need 

for an estimate of the correlation scale of u 1. 

In this connection we remark that 9 .11 holds in two particular cases. When ID 1 (x)I equals 

four, the involved covariance function is isotropic and certain, easily calculated, 

conditions hold between x and the mesh geometry, D1 (x) refers to the indices of four 
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points at the surface of the computational cube. In that case the row sum is constant and 

equal to 

Cu1 CO) + Cu1(S1) + Cu1(s2) + Cu,( Js1
2 + s/) 

where as before s1 and s2 are the lengths of the mesh basis vectors s1 and s2. 

A similar dicussion applies to the case when 1D1 (x)I equals nine. 

Let us now extend our mesh for u 1 in the following way 

s[~)e 1 + si(ii)e 2 + s/L;Je 3 -1$ i1 $N1 +LO$ i"$N"+ Lk =2,3 
' 

see Fig. 9.2, where Ck, k = 1,2,3 are the standard basis vectors and the stepvectors 

s1(i1), s2(i2) and s3(i3) are given by 

and 

sk - t1c.1 - u= 

S k - t k ,1 

s"(i") = ( i" - l)s k 

(N"-2)s"+tk1 

(N" - 2)sk + tk.i + u~ 

i =- 1 I 

i = 0 1 

1::;; ii$ Nl - 1, 

ii= NI 

ii= NI+ 1 

i = 0 k 

jk = 1 

2 $ ik $ Nk - L 
ii,;= Nk 

ik = Nk + 1 

fork= 2,3. If we choose the variables t1 k to be on the order of the correlation scale of u1 , 

and the number of closest neighbours is chosen so that the assumptions used to derive the 

approximative solution to the kriging equation can be justified, it is possible to predict the 

value of the pore velocity u 1 in all the mesh points 

for which 
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Figure 9.2 Showing the extended mesh in the ]-direction for the ]-velocity. 

The mesh points distanced u00 from the others are inserted in order to continue the 

tracking "far away". Obviously, in the absence of simulation there is no need for 

additional node layers beyond the correlation scale. For simplicity the predictions at these 

infinity nodes are taken to be identical to the corresponding nodes at the correlation scale 

even though it is not certain that the ID1 (x)I nearest neighbours are the same.22 

Finally, it should be noted that the algorithm described needs to find the ID1(x)I closest 

points of x. As a general problem this is not a trivial one and the obvious algorithms 

becomes much too laborious. Hence this is made significantly more efficient by the 

following observation, similar to the one that should be used in a kriging-based 

interpolaton, mentioned in the end of paragraph 9 .1. If x belongs to the first layer of the 

extended mesh, to be specific say that i 1 = 0, and the set of (indices of) neighbours used 

D1 (x) is such that a translation, that is D1 (x) + (0,h,b), still is a valid set of indices then 

the kriging equation 9 .10 used is unchanged and thus the estimate at x 1 = x + jie2s2 + 

be3s3 becomes 

½(x + i2e 12 + J e 3s3) • = L \(x)ui(x 1 + i2e 25 2 + }3e 25J 
j ED 1(X) 

22Note that the predictions can vary beyond the realms of the correlation scale if we allow the kriging 

neighbourhood to vary. For instance if we choose the kriging neighbourhood to consist of the ID(x)I 

nearest mesh points it may vary beond the correlation scale. In fact it will vary until it contains nodes on 

the "surface" only. 



71 

10 USING HYDRASTAR IN TRANSPORT MODELLING 

To solve the problem of radionuclide transport in SKB 91 a number of methods were 

originally considered: 

A direct solution of the advection-dispersion equation. 

Random walk methods. 

Stream tube models. 

The two first were deemed to be computationally too costly for use in Monte Carlo 

simulations which left only the stream tube model. The primary approximation in a 

stream tube model as compared to the other two methods, is neglection of radionuclide 

transport between different streamtubes i.e neglection of transversal dispersion and 

transversal diffusion. 

When modelling a repository with many canisters as potential sources of radionuclide 

contamination the ideal strategy, once a stream tube model has been chosen, is to use one 

stream tube per source. Due to the large number of canisters and to the relative 

complexity necessary for modelling these processes, such as corrosion, backfill 

transport, precipitation etc, in the vicinity of the canister this might also be 

computationally too costly. Therefore the question arises how to cluster stream tubes, or 

stream lines, into larger stream tubes in the best possible way. 

The first idea envisaged is to spatially divide the repository into initial surfaces for the 

stream tubes and associate a stream tube to each initial surf ace. The travel time and flow 

in such a stream tube can then be taken from one release point on the initial surface. 

However, it is apparent that if one uses a crude spatial division of the repository for 

reasons of computer costs the resulting approximation will perhaps not be satisfactory 

due to the fact that the points used may not be representative. A possible improvement, 

which is not implemented in HYDRASTAR, is to use spatial clustering. This involves the 

use of more particles for each stream tube and present some integrated measures 

representing the streamtube. This would do nicely for the streamtube flow but a large 

spatial cluster will not in general transform its initial surface to a boundary surface. That 

is some particles on the initial surface of the stream tube may reach the boundary of the 

computational domain long before the majority of the particles used to represent the 

stream tube do. If the majority of the particles are much slower than the fast ones they 

will dominate integrated data such as for instance the travel time of the centroid. The 

improvement implemented in HYDRAST AR is instead a temporal clustering that is to 

collect stream lines with approximately the same travel time to the biosphere into stream 
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tubes. Note that there is no reason to require that a streamtube should have a connected 

cross section in view of the neglect of transversal dispersion. 

For a more detailed discussion of these topics and some suggested improvements see 

appendix A. 

10.1 Clustering algorithms 

The division of stream tubes according to the groundwater travel times leads to so called 

clustering problems. That is, given a set of points, in general in a n-dimensional space, a 

number C and a measure of the size of a set, how do we find the division of the original 

point set into subsets, clusters, so that the sizes of the clusters become as small as 

possible. This kind of problems are the origin of a whole branch of mathematics. In 

HYDRAST AR a simple variant has been used obtained by minimizing the sum of the 

diameters23 of the clusters. In the one dimensional space of travel times this problem is 

simply solved by sorting the travel times and dividing the set by removing the C - 1 

longest distances between the travel times. 

Figure JO.I 

Particle 
travel time 

Showing the division of twelve travel times into four clusters that is 

into four streamtubes using the algorithm in the text. 

23Toe diameter of a set Dis in general defined as sup(lx-yl, x,yE D). 
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11 PROPOSALS FOR FUTURE HYDRASTAR DEVELOPMENT 

Here follows a list of possible developments of HYDRAST AR. The description of the 

items in the list are short and no distinction is made between items that will require large 

amounts of work and those leading to minor changes: 

Include the possibility to simulate the head boundary conditions coupled with 

the hydraulic conductivity. This is to remedy some of the problems discussed in 

chapter 8 and would diminish if not unnessecitate the need for an outer 

hydrological model. 

This would lead to the generalization of the stochastic function generators to 

coregionalizations, or perhaps a better word vectorvalued stochastic functions. 

In particular the conditional simulations would need the introduction of 

cokriging. These developments are also needed in the case one wants to develop 

HYDRASTAR into more advanced models of the conductivity field such as 

anisotropic conductivity and linking discrete fracture models with stochastic 

continuum models in the way proposed in [Norman and Geier, 1991]. For some 

ideas in the field of coregionalizations and cokriging see [Myers, 1982], 

[Myers, 1983] and [Myers, 1984]. 

For reasons discussed in chapter 9 one could rewrite the streamline equation 

solver to allow for 

different interpolation schemes 

different equation solvers 

and include random walk as an optional transport modelling. 

Improve the integral approximations for the one dimensional processes in the 

turning bands approximation, see section 5.2. 

Include the simulation of intrinsic random functions with higher order. 

Include the possibility of a more general mesh. In particular this would be 

desirable when modelling disturbed zones around the tunnels of a repository. 

Since the resistance to flow in certain radial flow pattern is centered near the 

tunnels the mesh resolution in this area should be fine. 
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12 LIST OF NOTATION 

In general vectors and matrices are printed in boldface.The chapter references on the 

notation do not give all the chapters where the notation occurs but do hopefully contain all 

chapter references where the same notation has different meaning. This list of notation 

does not include the appendices. 

T 

• 
* 

* 
( , , 

( )+ 

( ) -

I . I 

11 · II 

{x:(·)} 

f 11 

1 

N 

a 

b 

b 

) 

Matrix transpose, chapter 6. 

Fourier transform, chapter 5. 

Signals that this is an estimate or signals this is a unit vector. 

A mean removed form. Chapter 3. 

Functional operator defined by negating the argument of the argument 

function, chapter 5. 

Inner tensor product, chapter 6 . 

Kriging estimate chapter 6, complex conjugate chapter 5. 

Convolution operator, chapter 5. 

The scalar product, chapter 5. 

The operand if it is positive and zero otherwise. Chapter 2. 

The negated operand if it is negative and zero otherwise. Chapter 2. 

Size of a set or absolute value of a real, chapter 5, 7. 

Norm of a vector, chapter 4. 

The set of all x such that(·). 

The function f restricted to the set I, chapter 9. 

A vector with all components equal to 1. 

A CJ-algebra, chapter 6. 

Range parameter in the spherical covariance model, chapter 4, 5. 

Grid spacing in the integral approximations in the turning bands methcxi, 

chapter 5. 

Arbitrary vector orthogonal to the kriging neighbourhood normal, chapter 

4. 
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Characteristic function for the interval (or set) I. That is a function equal to 

one at points in the set I and to zero at points outside the set I, chapter 2. 

C(~), Cy(~) Covariance function sometimes subscripted by the stochastic function to 

which it refers. Chapter 3, 5. 

CisoC~) Isotropic covariance model, chapter 4. 

C 1 (•,I) Covariance for a one dimensional process on the line I, chapter 5. 

Cp(x) Pseudo covariance, chapter 6. 

Cp Pseudo covariance matrix, chapter 6. 

Co Constant used in defining the pseudo covariance, chapter 6. 

C(O) The variance, by definition, chapter 3,6. 

C Generic notation for a covariance matrix with components C(xi-Xj), 

chapter 6. 

c, c(x) Generic notation for the covariance vector with components C(xi-X), 

chapter 6. 

o Density of water, chapter 2. 

D Kriging matrix, chapter 6. 

D(i I, i2, i3) The (i 1, i2, i3):th diagonal element of the numerical hydrology equation, 

chapter 7. 

d 

D(x) 

dS(I) 

dS(l) 

ot 

dF 

dT 

Packer length, chapter 2. 

Kriging neighbourhood, chapter 4, 6. 

Kriging neighbourhood for the pore velocity in the I-direction, chapter 9. 

Scalar surface measure, chapter 5. 

Directed surf ace measure, chapter 7. 

Time step used in the Runge-Kutta solver of the stream line equation, 

chapter 9. 

Spectral measure, chapter 5. 

Stochastic measure, chapter 5. 

Difference head, from packer test i, chapter 2. 
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Packer test overpressure. 

Sum of the positive regularization overlap, chapter 2. 

Sum of the negative regularization overlap, chapter 2. 

Tolerance for the step length in the stream line equation solver, chapter 9. 

Flow porosity, Chapter 9. 

Positive regularization tolerance. 

Negative regularization tolerance. 

The standard basis vectors, chapter 9. 

Kriging set, chapter 4. 

Expectation value operator, chapter 3. 

Probability density function on the half unit sphere, chapter 5. 

Generic functions, chapter 5. 

Angle coordinate in a spherical system, chapter 5. 

Constant of gravity, Chapter 2. 

The matrix of geometrical anisotropy. Chapter 3. 

Semivariogram matrix, chapter 6. 

Generic notation for the covariance vector with components C(xi-X), 

chapter 6. 

Angle coordinate in a cylindrical coordinate system, chapter 2, and in 

spherical system chapter 5. 

The semivariogram. Chapter 3. 

Coordinate vector in the isotropic (lag)space. Chapter 4. 

The hydraulic potential 

The hydraulic potential under natural conditions. Chapter 2. 

Intrinsic average24 hydraulic head on the averaging scale s, chapter 7. 

24That is the volume used for the average is the volume of the pores inside the averaging volume. 
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hj(X), ~hj(x) The scaled disturbance of the natural head field, head difference due to 

the induced overpressure between two packers. Chapter 2. 

1 

. . . 
11, 12, 13 

J 

Ij 

Ireg 

Lreg 

K(x), K5(x) 

The difference field arising from the simultaneous application of unit 

overpressure in both packer interval 1 and packer interval 2, chapter 2. 

Generic integer, chapter 5, 6. 

Mesh points coordinates, chapter 7. 

Generic integer, chapter 6. 

Generic interval, chapter 5. 

Interval along a drill hole covered by a regularized measurement, chapter 

2. 

Length of a regularized measurement, chapter 2. 

The hydraulic conductivity for a certain averaging scale, s, viewed as a 

stochastic process, chapter 2,7. 

Kreg Regularized measurement value of the conductivity. Chapter 2. 

Ki The conductivity value obtained from packer test i and Moyes formula. 

Kj(i1, i2, i3) The conductivity at the (i1, ii, i3):th node of the mesh of the j:th 

direction, chapter 7. 

k Generic integer, chapter 5. 

k 1, k 2, k 3, k4 Auxillary vector variables in the stream line equation solver, chapter 9. 

A, 11.(x) 

A 

Wave vector i.e the coordinate in the Fourier space, chapter 5. 

Vector of k:riging weigths chapter 6. 

One dimensional wave vector i.e the coordinate in the one dimensional 

Fourier space, chapter 5. 

A Range parameter in the exponential covariance model, chapter 4, 5. 

Ai Kriging weights, chapter 6. 

I, Ii A line in the turning bands method, also a point on the half unit sphere, 

chapter 5. 

Li Packer interval, chapter 2. 

my(x), m(x) Expectation value function, chapter 3, 6. 
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mo, m 1, m2 Trend parameters, chapter 6. 

µ(x) Lagrangian multiplier, chapter 6. 

N The number of lines in the turning bands method, chapter 5. Number of 

measurements, chapter 6. 

N· J 

n 

n 

n 

ni,j,k 

0, W 

p 

p, ti.p 

Q,Q 

R 

r 

rj 

r(t) 

The quotient between bandwitdth and grid spacing in the turning bands 

method, chapter 5. 

The number of head nodes in the j:th direction, j = 1,2,3, chapter 7. 

Normal of the kriging neighbourhoods and sets, chapter 4. 

The number of measurements used in a regularization, chapter 2. 

Interpolation polynomial for the pore velocity, chapter 9. 

Coefficients of the interpolation polynomial, i,j,k E [0,1], chapter 9. 

Number of measurements in the kn:th kriging neighborhood. 

Overlap and width in the definition of kriging neighbourhoods and sets. 

Chapter 4. 

Probability measure, chapter 6. 

Pressure, overpressure in a packed off section. Chapter 2 

Induced packer test flow, from section i. Chapter 2. 

Induced packer flow per unit applied difference head, from section i. 

Chapter 2 

Parameter that determines the number of values used in the integral 

approximations in the turning bands method, chapter 5. 

Three dimensional real space. Chapter 4. 

Three dimensional halfspace, chapter 5. 

Norm of the lag vector, chapter 5. 

Random real from the random number generator, chapter 5. 

Coordinates of the radius vector, chapter 9. 

Radius vector of a water particle at rime t given the original position r(O), 

chapter 9. 
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The radius vector after completing n time steps in the Runge-Kutta 

algorithm, chapter 9. 

The coordinates of rn above, chapter 9. 

Radial coordinate in a cylindrical coordinate system. Chapter 2. 

Borehole radius, chapter 2. 

Characteristic length of an averaging scale, chapter 7. 

Generic real. Chapter 4,5. 

Auxillary variable for expressing the solution of the kriging equations, 

chapter 6. 

Basis vectors for the prismatic mesh of HYDRAS TAR, chapter 7. 

Length of the basis vectors for the prismatic mesh ofHYDRASTAR, 

chapter 7. 

s1(i1), s2(i1), s3(i1) Variable length of the basis vectors for the prismatic mesh of 

HYDRASTAR used in the external tracing, chapter 9. 

s 

L 

S112 

S, Sy 

cr,ay 

O"t 

T 

ti,j 

Target regularization scale, chapter 2. 

Auxillary variable, chapter 5. 

Half the unit sphere, chapter 5. 

Spectrum, spectrum of the stochastic function Y, chapter 5. 

Spectrum of a stochastic function Y 1 on a line I in the turning bands 

method, chapter 5. 

Standard deviation, chapter 3. 

Standard deviation of the stochastic measure T, chapter 5. 

Standard deviation of the integrated stochastic measure tk, chapter 5. 

Width of the bands in the turning bands algorithm, chapter 5. 

The transmissivity of the surface represented by the (i1, i2, i3):th ncxie of 

the mesh of the j :th direction, chapter 7. 

Time, chapter 9. 

Distance from the mesh boundary in the j:th direction used in predicting 

the i:th pore velocity component outside the domain. 
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tQ Travel time to the boundary, chapter 9. 

tk Integrated stochastic measure, chapter 5. 

-c(x,z) Travel time function, chapter 9. 

Uj(i 1, i2, i3) The j:h component of the Darcy velocity at the (ii, i2, i3):th node in the 

j:th -directional mesh, chapter 7. 

u· J 

U(x) 

u(x) 

Random reals used to generate random rotation vector, chapter 5 .. 

The Darcy velocity, or Darcy flux, for a certain averaging scale viewed as 

a stochastic process. 

Pore velocity, chapter 9. 

u1 (x), u1(x), u1(x) Components of the pore velocity, chapter 9. 

u 

Uoo 

V 

V [ . ] 

w 

Q 

(J) 

ffij 

X 

Xi, Yi, Zi 

Xi, X 

Xp 

Generic real. Chapter 5. 

Distance between the last and second last node layers used in the external 

tracking, chapter 9. 

Variance, chapter 5. Arbitrary volume chapter 7. 

Centered variance operator, chapter 6. 

The averaging volume of characteristic length s, chapter 7. 

Auxillary variable, "Lagrangian correction vector", chapter 6. 

Event space, chapter 6 computational domain chapter 9. 

The void space inside the fractured rock, chapter 7. 

A point in the event space. It is almost always supressed. Chapter 3. 

Coordinates of a random rotation vector, chapter 5. 

Trend matrix, chapter 6. 

Intermediate integers in the random number generator, chapter 5. 

Local coordinates in a computational cell, chapter 9. 

General notation for a point in space. The coordinates of this points is 

given by x 1, x2, x3 in Cartesian coordinates. Chapter 2. 

Point defining a kriging neighbourhood. 
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Generic notation for a lag vector, chapter 3. Auxillary vector variable 

chapter 7. 

Generic notation for a lag distance, chaper 5. 

The stochastic vector obtained by restricting the function Y( · ) to a set 

of spatial points. 

Y(x,ro), Y(x) The stochastic process defined by Y(x) = log(K(x)). Also used as a 

generic notation for a stochastic process or a representation of an intrinsic 

random function. The argument ro is the event space vector and is almost 

y(x) 

Y1(~) 

Ys(x) 

z 

Zi 

Z(x) 

always supressed. Chapter 3. 

A realization of the stochastic process Y(x), chapter 6. 

One dimensional stochastic function, chapter 5. 

A process that can be used to simulate Y(x). 

Coordinate in a cylindrical coordinate system with its z-axis along a 

certain drill hole. Chapter 2. Coordinate corresponding to i . 

The lowest point along the drill hole axis of a packed off interval . 

A stochastic function, chapter 6. 
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APPENDIX A - TRANSPORT MODELLING WITH HYDRASTAR 

The approach used in the SKB 91 study [SKB91, p 114-119] is to take a rather large 

computational domain and a number of initial positions which signify the starting points 

of a set of stream tubes covering the repository and perform Monte Carlo simulations that 

in each iteration use: 

HYDRA ST AR to generate a corresponding set of travel times to the boundary of 

the computational domain for F ARF31 and the Darcy velocities at the initial 

position for use in NEAR21(TIJLL22, 

NEAR2 l(TIJLL22 is used to give the radionuclide inflow rate to the stream 

tube, for information about NEAR21 see [Norman and Kjellbert, 1991] and for 

TULL22 see [Kjellbert, 1991], 

F ARF31 is used to give the radionuclide outflow rate which is then added up to 

give the total outflux from the computational domain. For information about 

FARF31 see [Norman and Kjellbert, 1990]. 

NEAR2l{ITJLL22 basically handles only one canister and calculates the convective 

nuclide flow from the redox front. The input to F ARF31 is the input flux at the start of 

the tube. To each streamtube start surface one must then assign a number of canisters in a 

rather arbitrary fashion and NEAR2 l{I1JLL22 is considered to deliver the total flow from 

all these canisters through the start surf ace by the following rules: 

If the set of canisters assigned to the streamtube contains one ore more initially 

damaged canisters the undamaged canisters are neglected, the damaged canisters 

are treated identically and the resulting influx to the streamtube is calculated as 

the product of the number of damaged canisters times the inflow from one 

damaged canister. 

If the set of canisters assigned to the streamtube contains no initially damaged 

canisters all canisters are treated identically and the resulting influx to the 

streamtube is calculated as the product of the number of canisters assigned to the 

streamtube times the inflow from one canister. 

Hence, the temporal streamtube clustering method, as described in chapter 10, was not 

used in SKB 91. If temporal clustering is used, TULL22 is capable of handling canisters 

exposed to different water fluxes within each streamtube. The canisters seeing the least 

water flux can also be screened off, cf section A.5. 

The travel time for the particle representing the streamtube is taken to be the travel time to 

the boundary of the computational domain and this is shown to be a reasonable 
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approximation, [SKB91, p 131] thanks to the well chosen computational domain that 

returns over 50% of the particles released. 

The general method outlined above contain some weak points such as: 

The interface between the nearfield and farfield models are rather crude. 

When using the F ARF31 stream tube approximation one work consistently with 

cross section flow averages. Thus for instance if we use cross sections large in 

comparison to the velocity correlation scale or large in comparison to the travel 

time correlation scale it is inconsistent to use single particle tracking. Instead the 

stream tube should be viewed as the movement of an ensemble of particles. 

One only obtains the outflow from the computational domain. This can be 

directed through any surface and not at all through the top surface which would 

be necessary for giving a correct measure of the release to the biosphere. 

To remedy the situation some features were added to HYDRAST AR one of which was 

the external tracking viewed as a shortcut to obtain some of the advantages of a more 

general idea as described in paragraph 9.3.1. These features were never used in [SKB 

91] but are discussed here for completeness. 

A.1 Transport modelling with FARF31 

Let us start by reviewing the important assumptions employed in the stream tube model. 

There are three classes: 

1 . Continum assumptions. That the transport from the outset can be described with 

a dispersion - advection model. 

2. Stream tube cross section averaging. In particular radionuclide transport is only 

modeled along the stream lines. 

3. Stream tube longitudinal averaging of some parameters. 

Below we shall only concern ourselves with assumptions of class 2 . In this connection 

we state formally that with the term stream tube we will mean a collection of stream lines 

each stream line associated with a initial surface. We especially point out that the inital 

surfaces of a stream tube taken together need not constitute a connected surf ace. 

It might appear that using stream tubes with disconnected cross sections would enhance 

the defect resulting from assuming that one can neglect transversal dispersion. This is 

however not the case since the neglect of transversal dispersion is equally serious when 

applied inside a stream tube. Hence we conclude that there is no disadvantage involved 

using stream tubes with disconnected cross sections. Also we note that if we exclude the 
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computational efficiency point of view the the best approach is to have one stream tube 

per canister. Thus the only reason for collecting stream lines into stream tubes is to 

enhance the computational speed. The problem is to do this in a manner that minimizes 

the incurred errors. 

A.2 Interface between NEAR21/TULL22 and FARF31 

In a F ARF31 stream tube the representative quantity c; ,tube ( () is defined as 

where 

~ is the traveltime coordinate along the streamtube. 

A(~) is the cross section of the stream tube, 

C; ( ~) is the intrinsic average concentration of nuclide i , 

Qtube total water flow in the stream tube, 

dq(~) infinitesimal flow through the surface elements dA(~). 

The output from NEAR21/TIJLL22 is written 

Q near ,outc near ,out ,i 
A.1 

where 

C . 
near ,out ,l is the concentration of substance i at the interface between the nearfield and 

the f arfield models and 

Qnear ,out 

Here 

x· J 

R' J 

IU(xj)I 

is the flow through the interf acial surface calculated as 

is the location of canister j 

is the surf ace of the interface between canister j and the stream tube. This is 

calculated differently in NEAR21 and TULL22, see [Kjellbert 1991]. 

is the magnitude of the Darcy velocity at Xj 

is the area of the surface of the interface between canister j and the stream tube 

projected along U (xj). 
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Thus it is natural to assume that the initial surface A(O) of the stream tube is built up of a 

number of Rf s and thus 

Ic~ .out ,i c r )Q:,,,. .out 

i ,tube J ; dq ( ~ ) j 
C1 (0,t)= C/~,t) Q z--1--. ---

A(O) tube Q1 
near ,out 

j 

i e replacing the nuclide flux boundary condition, used in SKB 91 and implemented in 

FARF31, with a nuclide concentration boundary condition. 

For this approach we need to assume that each point on A(O) is intersected at most once 

by every stream line. Or differently put, there is no stream line connecting interfacial 

surfaces from different canisters. This is already assumed implicitly in NEAR21/TIJLL22 

since the inflowing water is assumed to be uncontaminated and is, luckily, a conservative 

assumption. Note again that we do not need to assume that the Rfs taken together makes 

up a connected surf ace. 

A disadvantage with this proposal is that it does not guarantee the conservation of mass in 

the system constituted by the near and farfield models. This is the output from the 

nearfield, i.e what is removed from the nearfield model, is calculated using the nearfield 

mcxlel only from A 1. There is no guarantee that this equals the input to the farfield model 

see [Norman and Kjellbert, 1990] formula (3.9), and this is the reason for for choosing 

the flux boundary condition and thus accepting the concentration mismatch. The only 

way to satisfy both the flux and concentration requrements is to remove the division of 

the transport model into two parts. Then the amount removed from the nearfield could be 

calculated from 

N t 

F;,,lr) = I Jc;,. Cr)c;·j co, r - 1:)d1: 
j =i 0 

and the output from the stream tube as before 

F;a, ,out ( t) = ±. JC) t )C; j (tw, t - 1:) dr 
j = i 0 

"'j ,j 

where ~ t are the response function for nuclide i from a Dirac concentration pulse in 

nuclide j placed above i in the decay chain. These response function is calculated in 

principle by FARF31; only the minor changes below have to be made. 
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Now returning to the discussion of concentration type boundary conditions it may be 

proposed that the reasonable mcxiel for the surficial interfaces is that the Rp are disjoint 

patches. Then one could fill out the gaps with patches having zero concentration thus 

obtaining a new initail value for the stream tube 

j 

j 

where Qgap are the flow through patches covering the gap between the interfaces. This 

looks like a uniqeness problem but is not since by linearity the solution to this modified 

problem is identical to the old one save only the multiplicative factor 

Thus it results in the same outflow from the stream tube since the outflow of the stream 

tube is proportional to the water flow Qtube in the stream tube. See [Norman and 

Kjellbert, 1990], equation 3.12. We conclude that if all other parameters are fixed the 

addition of patches with zero concentration to the initial surface do not alter anything. 

This is most illustrative if we should like to study one canister only. Thus the conclusion 

of this discussion is that the witdth of the tube does not matter if all other parameters are 

fixed. The question however is which parameters are changed as the width of the stream 

tube increases. This is the topic of the next section that treats the parameters Pe and tw. 

A.3 Changes in FARF31 

Changing the ooundary conditions to concentration boundary conditions results in one 

simple change in the solution of the transport equations used in FARF31 as described in 

[Norman and Kjellbert, 1990] Appendix C. 

' 
The solution to the homogeneous C1 -equation is written as 

but A. is now determined as 
' 

i 

A. ( s) = c (s ) 
' m 
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i 

where ':! in (s) is the Laplace transform of the concetration of nuclide i at the initial surface 

of the stream tube. This may be compared with the previously used formula 

A.= ( 
111 r ) 

' Qtub, 1 - p~ f/s) 

i 

where F;,, (s) is the Laplace transform of the input flux into the stream tube of nuclide i. 

The results regarding holomorphy domains of the solution proven in [Norman and 

Kjellbert, 1990] Appendix C remains unchanged. 

A.4 Stream tube division 

First, how do we define travel time for a stream tube that widens. Clearly the concept of 

travel time prevails however "the initial surfaces do not transform into boundary 

surfaces" thus we do not get the whole stream tube i.e all particles comprising it, to exit 

simultaneously instead the calculation of it should stop when one part of the surface 

reaches the boundary. Thus the stream tube end surface can be located to a large extent in 

the interior of the computational domain. Hence the difficulty becomes rather do define 

when the stream tube hits the biosphere since it may hit with a edge only and the 

interesting thing is the flux through that edge and not through the stream tube cross 

section. This outflow may in certain cases be uniteresting. Thus it is natural to collect the 

stream lines into stream tubes with respect to travel times to the biosphere. 

Another question that arises is if the Peclet number varies with the width of the stream 

tube. This is influenced by the replacement of the pore velocity by its stream tube cross 

section average, see [Norman and Kjellbert,1990] Appendix A. Hence if one is to join 

stream lines into stream tubes and minimize the effect of the averaging procedures, one 

should take stream lines with approximately equal velocity together. Which leads to the 

same conclusion as above i e that it is natural to collect the stream lines into stream tubes 

with respect to travel times to the biosphere. 

A.5 Reduction of the number of canisters treated 

A practical problem with the approach outlined above is that we in principle need to 

calculate Cnear,out,i for all canisters. Thus the computational time and storage 

requirements may be prohibitive even considering the documented effectiveness of the 

nearfield model NEAR2 l/TULL22. However we see that due to the weighting with 
j 

Q,,,,ar ,0 .,1 in the calculation of the boundary conditions of the stream tube we could 

content ourselves with taking only the canisters which together takes a large fraction, f 
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j 

,of the flow. Stated formally for each stream tube we order the 2 near ,out 'sin descending 
. (k) 

order 2 ~ar ,out and define the set H(f) recursively as 

r Q~~.out E H(f) 

1Qj(k+l) E H(f) if Qj(k) E 
near ,out ,v.ar ,ouJ 

k+I 

H (f) and LQ~),out < f LQ~,oui 
I =I j 

The resulting boundary condition for the stream tube would then become 

L C ~ar ,ouJ ,i ( f )Q:ar ,out c; ,tub.,(O, t) = -'-j_eH_(-'-f_)_""_ ,.,-. ___ _ 

£..J.d ~ ,ouJ 

j 

In order for this to be efficient, the target parameters under study must be fairly strongly 

dependent on Darcy velocity, which was not the case in SKB 91. 
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APPENDIX B - MOYE'S FORMULA 

This appendix derives Moye's formula [Moye, 1967] and is inserted solely for the 

conveniance of the reader. 

B.1 Derivation of Moye's formula 

We study the packer test by using the mathematical model expressed by the formulas 2.4 

and 2.5. In particular we repeat the approximation that the flow per difference head q1 is 

written using the notation of section 2.1 as 

B.1 

Now the flow resulting from the overpressure is assumed to be purely cylindrical up to a 

radial distance of L/2, see fig B.1. Assuming the conductivity to be a constant K 1 in a 

neighbourhood of the packer test we solve the steady state hydrology equation in a 

cylindrical system of coordinates shown in 2.1 to obtain for the head 

'1(P) = Aln(p) + B 
' 

where A and Bare constants to be determined, and for the radial component Up of the 

Darcy velocity 

Since the total flux Q1 is known we have 

and the head on the boundary of the pressurized section is by the boundary conditions 

2.5 given as 

This gives 



and thus 

Figure B.1 
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I 

►' U2 '◄ 
Illustrating a packer test and the corresponding derivation of Moye 's 

formula. 

Assume that the flux changes abruptly from radial to spherical at p = r = L/2 . For 

spherical flux in a homogeneous medium we have for the head 

A 
h,(r)=,+B 

and for the Darcy velocity 

A 
U,(r) = K-2 

r 

It follows from the boundary conditions 2.5 and the underlying assumption that the 

position of the measurement is far from the the boundary that 

fun ~(r)=O 
r ➔ -

giving B = 0 above. Next transferring the head from the radial case at p = r = L/2 

gives 

and thus if we equate the total flow in the radial and spherical regions we get 



from which we derive Moye's formula 

K= 
1 
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APPENDIX C - INTRINSIC RANDOM FUNCTIONS 

The objective of this appendix is to explore the theory of intrinsic random functions in 

more detail. For that purpose we have to start with some more exact definitions of a 

stochastic function. 

C.1 Mathematical definition of a stochastic function 

First we define what we will mean with a stochastic function. In order to do that we 

first introduce the event space Q which is a so-called measure space. The meaning of that 

notion is that there is defined an a-algebra ~ 25 of subsets ton. The sets in this algebra 

are known in the language of probability theory as events. Finally there also exists a 

positive probability measure P defined on the members of ~ such that P(Q) = 1 and that 

P(\Pi) = LP(O;) 
l 

if the sets Oi are disjoint, that is the events Oi are independent. 

We define the space L(Q, ~, P) as the real (or complex) valued functions X that are 

measurable with respect to ~ 26• In the language of probability theory X is a stochastic 

variable. We also define L2(Q, N, P) as the subset of {XE L(Q, N, P)} whose 

members satisfy 

f X (w/dP (w) < = 
n C.1 

Then X is a stochastic variable with the extra quality of having a finite variance. 

Now define a stochastic function on R3 as a mapping 

3 2 
Y :R ~ L (Q, ~. P) C.2 

25 A collection N of subsets of a set Q is said to be a a-algebra in Q if N has the following properties 

(ii) If OE N then QCE N where QC denotes the complement of O relative to Q. 

(iii) If O = L,O, and if each Oi E N then OE N. 
j ,:c] 

26 A realvalued function F is mea~urable with respect to N if for every open set O in R the inverse image 

p-l(O) belongs to N. 
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this is to say that a stochastic function is a mapping that assigns a stochastic variable to 

each point x E R3. This can of course also be written in the same manner as in chapter 

3 i.e. as Y(x,ro). 

In order to avoid misunderstanding it is appropriate to insert a short discussion of the 

event space Q. The element or "points" co of Q can be taken to consist of mappings 

ro:R3 ➔ Rl 27. The mapping C.2 is then the map Y:x ➔ Y(x)(ro) = ro(x). Thus in 

particular the distribution function of the stochastic variable Y(x) is P(Y(x) $ a) = 

P( { ro : ro(x) $ a}) and the requirement C.1 is reformulated as 

f m(x) 2dP (m) < 00 

n C.3 

for all x E R3. The formulas C.3 and C.1 are usually expressed by the phrase that the 

stochastic function is of second order. Note that this has nothing to do with stationarity. 

After these preliminaries we define the expectation value function or trend of a second 

order stochastic function as 

my(x)= E[Y(x)]=JY(x,m)dP(m)< 00 

n 

and the covariance 

Cy(Xl'X2) = E[(Y (X1)- my(X1))(Y (X2)- my(X2))] = 

J J (Y (X 1, W1)- my(X 1))(Y (X 2, W2)- my(X 2))dP(W1)dP(W2) < 00 

That these integrals exist as finite values is a consequence of the second-order assumption 

and the Cauchy Schwarz inequality. Finally Y(x) is a weakly (second order) 

stationary stochastic function if my(x) is a constant and Cy(x1, x2) depends only on 

the difference x1 - x2. 

C.2 Mathematical definition of intrinsic random functions 

To make the definition of an intrinsic random function precise we follow [Matheron, 

1973] and start by introducing the class A of measures on R3 with finite support i.e. 

measures A such that 

27That is we take n to consist of all possible realizations. This is equivalent to take the sample space 

equal N6 = { 1,2,3,4,5,6} in the standard example case of tossing of a die and N6®N6®··· in the case of 

an infinite, or undetermined, number of tosses.See [Doob, 1990). 
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ff (x)dA(x) = LJ (X ;)A; 
i 

holds for any continuous function f:R3 ➔R. The above sum contains only finitely many 

terms. Next we define a translation operator 't~ on this class of measures by the 

requirement that 

J f ( x) d ('t? )( x) = Lf ( x ; + ~)A; 
i 

should hold for all continuous functions f. 28 

Now define A' as the class of all finitely supported measures 'A which annihilate the 

constant functions, i.e. measures 'A such that 

C.4 

We will say that Z is a generalized second order random function on A' if it is a 

linear map 
, 2 

Z: A ➔ L (Q, ~. P). 

A generalized random function on A' is an intrinsic random function of order 

zero if the stochastic function (of x) Y('txA) is second-order stationary for any choice of 

'A in A'. That this stochastic function is second-order stationary is equivalent to the 

requirement that 

for any choices of measures 'A and 'A' in A'. Expanding this gives 

and thus in particular 

where )'(h) is the semivariogram of Z. This shows that the above definition of an intrinsic 

random order function implies the definition in section 3.2. 

28The choice of the continuous functions is natural since the measures of compact support is the dual 

space of the continuous functions. 
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Conversely let us show that this definition of an intrinsic random function follows from 

the definition of an intrinsic random function as contained in 3.1 and 3.2 in the case of 

zero order. In fact 

E[zCi)z(;.')]= 

E[~,t1..,:;z (X; iz (q] =- 1 E[~,t<;,(( z (X ;) - z c x' ;) ) '] = 

11 11 

- LLA; ,( Y(X i - X j) 
i =1 j =l C.5 

where we used C.4 in the second equality. Clearly this and 3.1 proves our case and it 

also shows in particular by choosing 'A.= 'A,' that the semivariogram is conditionally 

negative semi-definite, i.e. that 

" " - llij ij r(x j - x j) ~o 
i =lj =l C.6 

for any 'A, in A, and that the sernivariogram is the generalized covariance of order zero as 

defined in [Matheron, 1973, p 450] and [de Marsily, 1986, p 314]. 

C.3 Representations of an intrinsic stochastic function 

As seen there is a major difference between stochastic functions as defined in section C.1 

and intrinsic stochastic functions in that the latter are defined on a space of finite 

measures. Now we say that a stochastic function Y(x) is a representation of the 

intrinsic random function Z(A) if 

Z(l) = f Y (x)d,l(x) V ,l E A 
, 

First we consider the question of the existence of a representation. It would be tempting 

to put 'A, = o(x - x ') in the above formula, where 8( ·) is the Dirac measure, but this 

measure does not belong to A' . However this is easily rectified by taking 

A( x) = o ( x - x') - 8 ( x) 

where x' is an arbitrary point and thus deriving as a necessary condition 

Z ( 8 (x - x') - 8 (x)) = Y (x') - Y ( 0). 

We easily see that this condition is also sufficient since taking any measure A in A' then 

integrating the above formula with respect to x' we have 
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f Y (x')d)..(x') = f Z (8 (x - x') - 8 (x))d)..(x') 
C.7 

since obviously 

f Y (O)dl(x') = Y (0) f d)..(x') = 0 

Now since A is a finite measure the right hand side of C.7 is written 

LZ(o(x-x'J- 8(x))Aj 
j 

for some set of points { x 'j} and moreover since, by definition, Z is a linear mapping this 

is equal to 

Finally it is clear that 

and thus 

f Y (x') d;l.( x') = Z (A) 

which was what we wanted to show. 

Now the above reasoning can also be used to obtain all representations of an intrinsic 

function Z. To that end let us assume that Y 1 and Y 2 are two representations of the 

intrinsic random function Z. Thus by definition 

'vAEA 
I 

and in particular choosing A e A' as 

;l.(x)= o(x-x')- 8(x) 

we have 

for all points x, and where X is a stochastic variable given by i.e 
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Note that the integrals written here all refer to functions with values in the Hilbert space 

L2(Q, ~, P). A very nice discussion of such (abstract) integrals is found in [Ladas and 

Lakshmikantham, p 1- 20). 

C.4 Relations to kriging 

As pointed out in [Delfiner, 1976, p. 57] and as shown in section C.3 an intrinsic 

function ( of order zero) is an equivalence class of stochastic functions that differ only by 

an arbitrary trivial random function X(ro)· l. Furthermore the key equation is the special 

case of C.5 with "A,' = A 
II II 

E[Y (l)J =- LLAiAjY (X i -x j) 
i =1j=1 

since this may be interpreted as expressing estimation error solely in terms of the 

variogram. In fact choosing 'A such that 

ff (x')dA(x') = f (x) - L A;(x)f (X ;) 
i ED ( x) 

for any continuous function f(x) where the weights Ai satisfy the nonbias condition, we 

see that the kriging error is expressible as 

E[(y (x) - . L l/x)Y (x ;))
2
] = 

l ED (l:) 

n 11 n n 

2L,L,A;(x)r(x -x i)- L,L,l;(x)\(x)r(x; -x i) 
i=lj=I i=1j=1 

Thus the point, [Deifiner, 1976], if the interest is to predict the values of the intrinsic 

random function, we do not need the covariance of a representation but only the 

variogram (generalized covariance) which is the covariance for the intrinsic random 

function. 
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