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Heterogeneity is in the geology, whereas
uncertainty is in the mind of the analyst.

Freeze er al., 1990



ABSTRACT

The upscaling of model parameters, i.e. scale-dependent parameters,
1s a key issue in many research fields concerned with parameter het-
erogeneity. The upscaling process allows for fewer model blocks and
relaxes the numerical problems caused by high contrasts in the
hydraulic conductivity. The trade-offs are dependent on the object
but the general drawback is an increasing uncertainty about the rep-
resentativeness, i.e. the relation to the real world problem. The
present study deals with numerical calculations of heterogeneity of
groundwater flow and solute transport in hypothetical blocks of
fractured hard rock on a "3m scale” and addresses both conceptual
and practical problems in numerical simulation. Evidence that the
hydraulic conductivity (K) of the rock mass between major fracture
zones is highly heterogeneous on a 3m scale is provided by a large
number of field investigations. The present study uses the documen-
ted heterogeneity and investigates flow and transport in a two-
dimensional stochastic continuum characterized by a variance in
Y = In(K) of oy? = 16, corresponding to about 12 log,, cycles in K.
The study considers anisotropy, channelling, non-Fickian and Fickian
transport, and conditional simulation. The major conclusions are:
(i) heterogeneity gives rise to anisotropy in the upscaling process,
(ii) the choice of support scale is crucial for the modelling of
solute transport. As a consequence of the obtained results, a two-
dimensional stochastic discontinuum model is presented, which
provides a tool for linking stochastic continuum models to discrete

fracture network models.
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NOMENCLATURE AND ABBREVIATIONS

Ay Longitudinal macrodispersivity, (L)

Ay Transverse macrodispersivity, (L)

a; Longitudinal dispersivity, (L)

ax Transverse dispersivity, (L)

C Solute concentration, (ML3)

vC Concentration gradient, (ML4)

C(h) Covariance function, (({n(LT1))?)

D Dispersion tensor, (L27T-1)

Dm Molecular diffusion coefficient, (L?T1)

E Euler’s number, (-)

E{}; <> Expectation operator

E(p Dimensionless error in ¢, (-)

Ex Dimensionless error in K, (-)

Ei Expounential integral

g Acceleration of gravity, (LT2)

h Lag vector, (L)

h Magnitude of h, (L)

Iy Integral scale of Y = In(K), (L)

J Constant hydraulic gradient, (-)

K, Effective (hydraulic) conductivity tensor, (LT!)

K Block conductivity tensor, (LT1)

K Support scale conductivity, (LT!)

K Effective hydraulic conductivity, (LT)

K; Statistical (spatial) geometric mean of the local
conductivities of the infinite medium, (LT™)

K Statistical (spatial) geometric mean of the local

conductivities within a block, (LT™)

K pnax Maximum of K;; and K,,, (LT)
Koin Minimum of K,; and K,,, (LT)

K Block conductivity of a continuum, (LT)
Ky Block conductivity of a discontinuum, (LT1)
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K5 K First diagonal component of Kg, (LT
Ky Ky Second diagonal component of K., (LT
K* Estimated conductivity, (LT1)

k Support scale permeability, (L?)

L Size of flow domain, (L)

L, Effective average path length, (L)

in Natural logarithm (log,)

logy, Logarithm of base 10

MSEq) Mean square error in ¢, (L?)

MVN Multivariate normal distribution

m, Sample mean of arrival times, (T)

my Sample mean of Y, (n(LT))

N Statistical (or spatial) sample size, (-)
N Normal probability density function

N, Number of particles, (-)

n Effective (kinematic) porosity, (-)

OEl Overall error index, (-)

PDF Probability density function

)/ Pressure, (ML1T2)

AQ Discharge, (L?T™)

q Specific discharge, (LT!)

q Magnitude of q, (LT™!)

Qwes 4dns Directional components of q, (LT)

R Range of correlation, (L)

RE, Hydraulic relative error in K, (-)

RE, Statistical relative error in K, (-)
REV Representative elementary volume

r. SR Search radius (range), (L)

S A finite flow domain, (L?)

s Distance along a streamline, (L)

5, Sample standard deviation of arrival times, (7)
Sy Sample standard deviation of Y, (in(LT1))
T Macrotortuosity, (-)

t Time, (T)



GY; Gln(K)

4-00
4-22
4-44
4-41

Mean transit time of fluid, (T)

Variance operator

Fluid velocity (LT!)

Magnitude of v, (LT)

Width of stream tube, (L)

Displacement covariance tensor, (L?)
Longitudinal spatial variance, (L?)

Transverse spatial variance, (L?)

Particle displacement vector, (L)

Cartesian point vector, (L)

Horizontal Cartesian coordinate, (L)
Horizontal length of the support scale block, (L)
Y = In(K), (In(LT))

Vertical Cartesian coordinate, (L)

Elevation head, (L)

Vertical length of the support scale block, (L}
Confidence interval, (-)

Variogram function, ((In(LT1))?)

Piezometric head, (L)

Hydraulic gradient, (-)

Lagrange stream function, (L2T1)

Stream function gradient, (LT1)

Transverse spatial variance, (L?)

Correlation length of ¥ = In(K), (L)
Standardized variable with N(Q, 1)

Fluid dynamic viscosity, (ML1T)

Mean of Y, (In(LT))

Fluid density, (ML-3)

Standard deviation of Y, (In(LT1))
Dimensionless time, (-)

N = 64x64, Oy = 4, and Ay/Ax = Ay/Ay = 0
N = 64x64, oy = 4, and Ay/Ax = Ay/Ay = 2
N = 64x64, oy = 4, and Ay/Ax = Ay/Ay = 4
N = 64x64, oy = 4, and Ay/Ax = 4, Ay/Ay = 1
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1  INTRODUCTION

For Sweden, as for any country with a nuclear power programme, safe
final disposal of radioactive waste is an important issue. The
Swedish programme for waste disposal, as outlined in KBS-3 [1983],
is based on siting a repository in fractured crystalline (hard)
rock, see Figure 1. The present study deals with groundwater flow
and solute transport in fractured hard rock and addresses both
conceptual and practical problems in numerical simulation.

1.1 Objectives
The main objectives of the study are:

(i) to improve the understanding of how a locally heterogeneous
hydraulic conductivity affects the far field flow and transport

(ii) to investigate how the characterization of the hydraulic con-
ductivity in the field can be improved at scales appropriate to
the far field flow and transport models currently in use

These objectives are dealt with by simplifying the real world
problem of three-dimensional flow and transport in a fractured hard
rock to a two-dimensional numerical flow model of a continuum.

More specifically, uniform average flow and advective transport in a
two-dimensional representation of a hypothetical realization of a
rock block of random (disordered) heterogeneity are here simulated
and analysed by means of stochastic contintum concepts and the dual
formulation of groundwater flow. Figures 2 and 3 show schematic
drawings illustrating some questions raised in conjunction with a

figurative repository scenario.



Fig. 1 Tentative outline of a repository for spent fuel according
to the KBS-3 concept [Reproduced from KBS-3, 1983].

2.
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Fig. 2 Schematic view of the studied questions:
(a) Can fractured hard rock be treated as consisting of
major fracture zones with interveming rock mass of random
heterogeneity? (b) Can a continuum model be used for de-
scribing flow and mass transport in the rock mass, and, if
s0, what are the parameter values on various scales?
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Fig. 3 Schematic view of the studied questions (cont.):
(c) What is the appropriate packer test interval in order to
sufficiently characterize the heterogeneity in the field?
(d) How are field data properly transferred to various sup-
port scales of flow models? (e) What discretization 1is re-

quired?



The questions raised in Figures 2 and 3 are as follows:

(@) Can fractured hard rock be treated as consisting of major frac-
ture zones with intervening rock mass of random heterogeneity?

(b) Can a continuum model be used for describing flow and mass
transport in the rock mass, and, if so, what are the parameter
values on various scales?

(c) What is the appropriate packer test interval in order to
sufficiently characterize the heterogeneity in the field?

(d) How are field data properly transferred to various support
scales of flow models?

Because a numerical flow model is used, additional questions arise
related to the flow model. Regardless of the choice of numerical

model, a quite general question of interest is:

(¢) What discretization is required?

1.2 Literature review

Unlike groundwater flow in a porous medium, groundwater flow in
fractured hard rock occurs predominantly in fractures. These consti-
tute constrained flow paths of relatively high permeability and ap-
pear with different magnitudes in their geometric characteristics
(strike, dip, length, aperture, spacing, etc.) on different hierar-
chical scales [see, for example, Price, 1975]. The classification in
hierarchical scales, however, is an approximation to the almost con-
tinuous distribution of fracture scales from large-scale faulting
(major fracture zones) to small-scale fractures and joints [Nelson,
1987]. In the following, different conceptual models used to con-
struct tentative numerical groundwater flow and solute transport
models in fractured hard rock are briefly reviewed.



ROCK MASS

(a) (b)

Fig. 4 Figurative drawings illustrating (a) the double porosity
approach; (b) the discrete fracture network approach; (c)
the stochastic continuum approach [After Warren & Root, 1963
and Geier & Axelsson, 1991].

-6 -



From a conceptual point of view, there are no problems in studying
flow and transport in fractured hard rock by adopting continuum
approximations [see, e.g. Stokes, 1980; Andersson er al, 1983
Shapiro, 1987]. Two extremes may be identified. In the first case,
no fractures are present. In the second case, a large number of
well-connected fractures are present. Obviously, in each case a
single porosity medium of constant conductivity may be assumed. An
intermediate case, i.e. a case where the conductivity of a rock
block is sensitive to the connectivity and other geometric charac-
teristics of the fractures, e.g. the fracture density, requires a
somewhat more elaborated concept. A discussion of connectivity can
be found in, for example, the studies by Robinson [1984] and
de Marsily [1985]. Three main approaches are described in the
literature: the double porosity approach, the discrete fracture
(and/for channel) network approach, and the stochastic continuum
approach. The three approaches are schematically shown in Figure 4.

The double porosity approach {sce, e.g. Barenblatt er al,
1960; Warren & Root, 1963; Boulton & Streltsova, 1977; Duguid & Lee,
1977] is the classical approach. Here, the fractures and the porous
rock matrix are considered to be two overlapping continua, each with
its own flow equation. The exchange between the two continua is
given by a source-sink term in the two equations, whose magnitude is
proportional to the local pressure difference between the two
continua. Sauveplane [1984] analyses different kinds of analytical
pumping test models for "fractured aquifer formations”. He concludes
that models based on the dual porosity approach are in general in-
applicable to practical problems but of interest as research tools.

In the discrete fracture network approach, the efforts are
focused on mapping, with as much detail as possible, the geometry of
individual fractures so as to generate information about the three-
dimensional network they form in a rock block. Accordingly, in order
to delineate the possible flow paths useful for the evaluation of
groundwater flow and solute transport, a number of assumptions are

required concerning (i) the physics of groundwater flow and solute

-7 -



transport in a single fracture, and (ii) the translation of deter-
ministic and/or statistical fracture geometry data so as to match
the observed hydraulic test data. Conceming the physics of ground-
water flow and solute transport in a single fracture, this subject
is often treated as a separate field of research in the literature.
The interest in details stems from the complexity of a possible re-
tardation due to chemical and physical interactions between dis-
solved constituents and the rock matrix [see, for example, Abelin,
1986]. Although this field of research is not treated here, it is
noteworthy that recent studies such as those by Moreno er al. [1988]
and Tsang & Tsang [1989], for example, are related to the present
study in the sense of using stochastic continuum concepts to simu-
late variable aperture and preferential flow paths (channelling).
The numerical model used by Moreno et al. [1988] and Tsang & Tsang
[1989], however, is considered to be a poor model of a continuum
[cf. Goode & Shapiro, 1991a]. Neither the double porosity approach
nor the discrete fracture network approach are dealt with in the
present study. However, some representative examples of the discrete
fracture network approach, which are of interest here while dis-
cussing equivalent block conductivities, include studies by Sagar &
Runchal [1982], Long et al. [1982], Robinson [1984], Cacas er al.
[1990], and Herbert & Splawski [1990].

The aforementioned stochastic continuum approach is adopted in
the present study, because it offers quantitative answers to several
important questions concerning the uncertainty in the input data and
the model predictions. The idea of using the stochastic continuum
theory to study groundwater flow and solute transport in fractured
media was originally proposed by Neuman {1987, 1988]. In the sto-
chastic continuum approach, which is also called the geostaristical
approach [see, for example, Journel & Huijbregts, 1978; de Marsily,
1986], the quantity of interest, e.g. the hydraulic conductivity, is
considered to be a regionalized variable, i.e. spatially disordered
variability (random heterogeneity), as it appears at different loca-
tions in space, is dealt with by using a probabilistic framework

_ 8-



consisting of an ensemble of realizations of equal probability,
where Nature constitutes one possible realization. Substantial re-
search activity is taking place not only to understand the effect of
random heterogeneity on flow and transport in geological media but
also to characterize media properties on scales appropriate to the
development of subsurface flow and transport models. Much of this
work depends on the development of models that statistically
describe the spatial distribution of media properties and permit
their numerical simulation. Neuman [1982], Dagan [1986], Gelhar
[1986], Peck er al. [1988], and Freeze er al. [1990] are examples of
studies that review the state of the art of these matters. Some
representative examples concerning the theoretical developments of
the stochastic continuum theory, which are important for the present
study in terms of verification, include studies by Matheron [1967],
Dagan [1979, 1982, 1984, 1987, 1988], Gelhar & Axness [1983], and
Neuman er al. [1987].

The emphasis in applied hydrogeology has shifted from analyti-
cal analysis towards numerical techniques which are more flexible in
their ability to deal with variable material properties and other
complexities of Nature. The research in physically based distributed
modelling is becoming increasingly concerned with the incorporation
of stochastic elements into numerical models, particularly dealing
with spatial variability and sub-grid scale effects. Some represen-
tative examples of numerical simulation of flow and transport, which
are related to the outline of the present study, include studies by
Warren & Price [1961], Warren & Skiba [1964], Delhomme [1978, 1979],
Schwartz [1977], Smith & Freeze [1979], Smith & Schwartz [1980],
Frind et al. [1987], Gomez-Herndndez & Gorelick [1988], Graham &
McLaughlin [1989], Rubin [1990], Rubin & Gomez-Herndndez [1990],
Goode [1990], Winberg er al. [1990], Desbarats [1990, 1991a, b],
Desbarats & Srivastava [1991], Cacas er al. [1991], and Durlofsky
[1991]. Although a number of operational models have been developed
[see, for example, Javandel et al., 1984; Heijde et al., 1985; and
Mangold & Tsang, 1991], fundamental difficulties still exist both on

-9 .



the conceptual level and in the numerical simulation. For instance,
material properties represented by parameters can probably only be
regarded as representatives of the "true" material characteristics
in terms of being some scale-dependent average quantities of the
latter. Sagar [1978] makes the following statement:

"In numerical solutions, heterogeneities are considered,
although they have to be well defined by forming blocks of
known properties. Every time that the size and/or the shape
of these blocks is changed in a numerical scheme these
properties are to be specified afresh.”

In the present study, the main sources of information on the hetero-
geneity of hydraulic field data of fractured hard rock are:
- the OECD/NEA Stripa Project Technical Report Series
- the SKB Technical Report and "Arbetsrapport” Series (in par-
ticular, the studies about the Finnsjon area, SKB-91)
- the SKB Progress Report Series concerning the Aspd Hard Rock
Laboratory

Together, these report series contain unique information about the
heterogeneity of the conductivity of fractured hard rock on various
scales. A subjective impression, based on a selective reading, is
that the development of new field tests and new interpretation tech-
niques are key issues for future modelling and site characteriza-
tion. For example, the most common formula used for the computation
of the conductivity from single-hole 3m double-packer tests is that
of Moye [1967]. The wvalidity of Moye’s formula, however, is
questioned by, for example, Doe & Remer [1982] and Braester &
Thunvik [1982, 1984]. The latter authors use a numerical model so as
to compare Moye’s formula with an analytical solution derived by
Dagan [1978]. In spite of the quantified deviations, Moye’s formula
is still in wuse, probably because of its simplicity [see, for
example, Holmes, 1989; Nilsson, 1989, 1990; Andersson er al., 1988,

- 10 -



1991]. A general presentation of the pumping test procedures and the
interpretation techniques used in Sweden is found in the work by
Almén et al. [1986]. Pickens et al. [1987] discuss problems associa-
ted with measurements of pressure and temperature effects in deep
boreholes in low-conductivity media.

Hsieh er al. [1985] investigate both the statistical and the
hydraulic anisotropy. Neuman [1988] concludes that the investigated
rock volume in this case (a fractured granite at Oracle, Arizona) is
clearly anisotropic both statistically and hydraulically although it
is considered to be "homogeneously fractured". The analysis of Hsieh
et al. [1985], however, requires cross-hole tests, which limits a
further use of their methodology at other sites where only single-
hole tests are possible. However, cross-hole tests are probably the
most correct and efficient way to study the question of anisotropy,
a conclusion pointed out already by Stokes [1980]. Doe & Geier
[1990] present recent interpretation techniques for  constant-
pressure pumping tests in single holes based on the concept of
fractional dimensions introduced by Barker [1988]. The techniques
provide information about the shape, i.e. the "dimensionality”, of
the pressure drop away from the tested section, which is considered

to be of great interest.

1.3 A few field findings

The present study focuses on the heterogeneity of the conductivity
of fractured hard rock as documented in the previously mentioned re-
port series. Concerning the theoretical assumptions behind the
interpretation of packer tests as well as the subsequent use of the
computed conductivities in different kinds of models, there are
several key issues of interest for the present study, e.g. (i) the
assumption of a homogeneous and isotropic continuum, (i) the as-
sumption of a spherical-radial flow regime [Moye, 1967], or even a
horizontal axis-symmetric flow regime [Jacob & Lohman, 1952], and

11 -



(zii) the assumption of a constant volume support regardless of the
conductivity being measured. None of these assumptions is free from
objections {see, for example, Clark, 1979; Braester & Thunvik, 1982,
1984; Doe & Remer, 1982; Hsich & Neuman, 1985; Hsieh er al., 1985].

The present study is focused on 3m packer tests, ie. a "3m
scale” is here of main interest. A subjective selection of the in-
formation about the heterogeneity of 3m packer tests from the Aspd
Hard Rock Laboratory is shown in Figures 5, 6, and 7. Beginning with
Figure 5a, this figure indicates that the conductivity of fractured
hard rock is log-normally distributed. The log-normal distribution
of conductivity is well documented [cf. Freeze, 1975]. Figure 6 re-
veals the following characteristics of 3m packer tests: (i) the
arithmetic average of the geometric means for seven boreholes is
2-1019 m/s, (if) the average standard deviation is 2.2 in a log,
base, and (iif) the average -correlation range of the fitted auto-
covariance functions is about 12m. If this information is
transferred to conventional units and measures, the average standard
deviation of [n(K) is 5.1, and the average correlation length
(assuming an exponential covariance function) is less than or equal
to 3m. For the Finnsjon study site, Carlsson er al. [1980] report an
average geometric mean of about (0.1-1)-107 m/s for 3m packer tests
in seven boreholes. For the same data, Cvetkovic & Kung [1989]
report that the average value of the standard deviation of [n(K) is
about 2.4, whereas the average correlation length is about 22m.

The boreholes at Finnsjon are either inclined or sub-vertical,
whereas the boreholes at Aspd are essentially sub-vertical or verti-
cal. Furthermore, both Carlsson et al. [1980] and Nilsson [1989,
1990] report that the lower measurement threshold of the packer test
equipment generally exceeds the conductivity of the surrounding rock
for about 20-75% of the 3m test sections (cf. Figure 5a). Moreover,
at Finnsjon, the 3m packer tests show a decreasing trend with the
depth of exploration, whereas a depth dependence at Aspd is not
readily observed, cf. Figure 5b. In Figure 7, the scale dependence
of the standard deviation is readily seen.

- 12 -



Cumulative percent

Illllll[lllllllllllllll]lli’llllIllllllll

0.1
—13 412 —-11 -10 -9 —a -7 -8 -5 —~d

Log K-—jacob [m/a]

(a)
OL_ H ™ i .‘i7
1005 0 00w e :
2 "..".-:'e" :
[ - .r [J
— 200 o “&. O . sy, ~
E L oes, T
£ 300}w_i.’1."4iuﬂ ®
o r b %% ®
@ . (.. Y
0 i - ee " . ¢ %
. -t S o :
400F- B, S ge o o
- Fef% o * % on ]
[ '.i“‘ * .7 : Bl
500 .'o?’c g e
 eave  ° * |
sobi oo
A4t 100 9 8 7 6 .
10 10 10 10 10 10 10 10

K-Moye [m/s]
(b)
Fig. 5 (a) Normal probability plot of 3m packer tests. (b) Plot of
3m packer tests vs. depth. Borehole KASO3, Aspt Hard Rock

Laboratory, Sweden [Reproduced from Nilsson, 1989].
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Borehole Tested Geometric Standard Correlatic..

interval mean deviation range

[m] log(m/s)]  [log(m/s)]  [m]
KAS02 102-801 -10.8 1.70 < 27
KASO3 103-547 -9.1 1.78 <6
KAS04 133-454 -9.1 2.30 <3
KAS05 157-541 -10.4 213 <6
KAS06 105-591 -9.3 2.70 <6
KASO7 106-592 -9.3 2.09 < 18
KAS08 106-577 -9.8 2.78 < 21

Fig. 6 Summarized statistics of the conductivity of 3m packer tests
from seven boreholes at Aspo Hard Rock Laboratory, Sweden
[After Liedholm, 1991a, b].
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Fig. 7 Standard deviation of In(K) vs. test scale, Aspé Hard Rock
Laboratory, Sweden [After Liedholm, 1991c].
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1.4 The support scale

Numerical simulations of flow and transport in fractured hard rock
with deterministic parameters are not relevant seeing that data vary
heavily between different sites as well as within a given site. A
comparison of 3m packer test data from the Finnsjon study site with
data from the Aspd Hard Rock Laboratory suggests that the rock mass
at Finnsjon is less heterogeneous. The present study aims to be of
generic interest and therefore uses an intermediate variance. The

chosen parameters are shown in Figure 8.

Size of a support block, (Ax Ay): (3m)?

Size of the flow domain, N: 64 Ax x 64 Ay (= (192m)?)
Mean of Y = In(K), Uy -16 (= K; = 1.125-107 m/s)
Standard deviation, Gy: 4 (= = 12 log,, cycles in K)
Variogram function, y(h): isotropic and exponential
Correlation length, Ay: 0, 6, 12)m

Measurement threshold: 25%

VARIOGRAM FOR Y = In(K)

Fig. 8 Chosen parameter values for the numerical simulations.
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1.5 OQwutline of contents

The numerical calculations are divided into five experiments in-
vestigating different aspects of groundwater flow and solute trans-
port that are of interest considering the main objectives of the
study. The first experiment deals with unconditional simulation of
flow (anisotropy), the second experiment deals with flow field ana-
lysis (channelling), the third experiment deals with simulation of
flow on different scales of support, the fourth experiment deals
with solute transport (the key issue), and the fifth experiment
deals with a novel approach to numerically simulate flow and trans-
port in a stochastic discontinuam. It is stressed that the three-
dimensional real world problem is here simplifild to a mwo-
dimensional description. The objectives of the different experiments

may be summarized as follows:

Unconditional simulation of flow: The objective is to investigate
the relationship between the statistical (spatial) geometric mean of
local conductivities and the numerically computed equivalent block
conductivity as a function of scale, ie. block size. The underlying
hypothesis is that present statistical upscaling techniques under-
estimate the conductivity of finite blocks, due to their inability

to take the effects of hydraulic anisotropy into account.

Flow field analysis: The objectives are (i) to validate the imple-
mentation of the flow model and its capability to deal with high
conductivity contrasts, and (i) to improve the understanding of the
parameters used to characterize random heterogeneity and the impact

of these parameters on the flux.

Simulation of flow on different scales: The objectives are to
investigate (i) the validity of applying the results obtained from
the unconditional simulations, and (ii) the differences between two

scales of support.
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Simulation of solute transport: The objectives are to investigate
the possibility (i) to reproduce numerically the analytical results
obtained by first-order theory, and (ii) to extend the numerical
simulations to deal with high conductivity contrasts.

A discontinuum model: The objective is to examine briefly the dif-

ferences in flow and transport between continuous and discontinuous

conductivity fields.
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2 REVIEW OF THEORY

The hydraulic conductivity K of an isotropic and homogeneous porous

medium may be expressed as
K=— (1)

where £ is the permeability of the medium, p is the fluid density, g
is the acceleration of gravity, and p is the fluid dynamic viscosi-
ty. In the general case, the medium is both anisotropic and hetero-
geneous, which implies that the conductivity is a tensor quantity
(K) whose components may vary in space. In what follows, two
specific cases are reviewed in conjunction with the wo-dimensional
flow domain shown in Figure 9. The two cases are: (i) the dual
formulation of groundwater flow in an anisotropic and homogeneous
medium, and (if) groundwater flow and solute transport in an iso-

tropic and heterogeneous (stochastic) medium,

Y &

Fig. 9 Two-dimensional flow domain in a vertical x-y plane with
dual boundary conditions. ¢ denotes the piezometric head and
¥ the Lagrange stream function [After Frind et al., 1987].
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Consistent presentations and complete mathematical treatments of the
two cases are found in Bear [1972, 1979] and Frind & Matanga [1985]
concerning the dual formulation of groundwater flow; in Matheron
[1967], Gutjahr et al. [1978], and Dagan [1979, 1986, 1989] concern-
ing flow in a stochastic continuum; and in Dagan [1982, 1984, 1987,
1988, 1990], Gelhar & Axness [1983] and Neuman er al. [1987]
concerning solute transport in a stochastic continuum. Before deal-
ing with the cases mentioned, however, the definitions of the

streamline and the Lagrange stream function are reviewed.

2.1 Sireamlines and the Lagrange stream function

A streamline is a curve that is tangent to the flux vector at every
point upon it at a given instant. In other words, a streamline is an
instantaneous picture of movement at various points, because the
flux vector at a given point indicates the direction of motion of
the fluid particle passing that point, The pathline of a fluid
particle, however, is the trajectory as time passes, ie. the locus
of its movement. Even though the two will coincide in direction at
the location of the particle, elsewhere they may be expected to
diverge, because of the variation of the flux as a function of time
and space. Only if the streamlines themselves do not change in form
and position with time will they represent the paths actually
followed by individual particles, i.e. in steady flow. Because a
streamliine is tangent to the flux vector at every point upon it at a
given instant, the mathematical expression defining a streamline may

be written as
qxds=20 (2)
where q is the flux vector, i.e. the specific discharge, and ds is

an element of arc along a streamline. Eq. (2) may be written more
usefully in terms of displacements in a Cartesian coordinate system
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dx = q, dt dy = q, dt dz = q, dt 3)

which at any instant f, permits the differential equation of the

streamline to be written as

dx dy dz

= = (4)
qx(xs Y. 2, tO) qy(x'.v Y, Z, to) qz(-x: y, Z, t())

Thus, the differential equation of the streamline describes its form
at a given instant. The differential equation of the pathline, how-

ever, involves the passage of time, i.e. r is now a variable and

dx dy dz

= = = dr (5)
X ¥, %0 gy 70 ¢K Yz D)

The final solution to (5) has the form x = x(xy, Yo 2o 1), elC.,
where x =x;, ¥y =Y, and z =12, at r =1 are the initial con-

ditions.

Lagrange (1736-1813) was the first to solve the differential equa-
tion of the streamline for two-dimensional flow. For the flow domain
in Figure 9, the differential equation is

dx dy
4 4

(6)

Lagrange recognized the fact that the corresponding equation of con-
tinuity for an incompressible fluid in a non-deformable medium

8q, 94,
—+—=0 M
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represents the analytic condition under which g dy - g, dx will be
an exact differential, which he denoted d¥. The function ¥ = ¥(x, y)
is called the Lagrange stream function. From the equality

Y
d‘P=-—-—-dx+-§y—dy=qxdy—qydx (8)

Lagrange arrived at the following significant relationships for the

two flux components,

a¥ ¥ 9

qx - ay Qy - ax ( )

Since along any streamline ¥ = 0, constant values of the stream
function evidently correspond to the equations of individual stream-

lines.

A stream tube is by definition bounded by two adjacent streamlines,
say ¥, and ¥, = ¥, + AY. Considering the flux between two points a
and b located on ¥, and ¥, respectively, with w = |b — a| being the
width of the stream tube, integration yields

b
[a¥ =] @ ay-q a0 =20 (10)
a

where AQ is the discharge (rate of flow) passing through the stream
tube. Subsequently, the discharge of a stream tube is equal to the
numerical difference between two bounding streamlines

AQ = ¥, - ¥, = AY¥ (11)

In the present study, a systematic flow pattern is obtained by plot-
ting a series of streamlines differing by a constant increment.
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2.2 The dual formulation of groundwater flow

Besides assuming a non-deformable medium and an incompressible
fluid, the medium in Figure 9 is here assumed to be anisotropic and
homogeneous. Furthermore, the flow system is assumed to be steady in
a vertical x-y plane and the dual boundary conditions are either of
the Dirichlet type or the Neumann type. The Dirichlet boundary
conditions are of the form:

¥ = ¥y (x) xe N; § (12a)
@ =0@x) xe WE (12b)

where W, and ¢, are specified values of the Lagrange stream function
(¥) and piezometric head (@), respectively, and I'y and I, represent
the corresponding segments of the boundary. ¢ = p/pg + y, with p
being the pressure, p is the fluid density, g is the acceleration of
gravity, and y the elevation head. The Neumann boundary conditions
are of the form:

a¥
—_=0 (13a)
ay
30
—=0 (13b)
gy

In Figure 9, the piezometric head and the stream function vary with-
in the flow domain, ie. ¢ = @(x) and ¥ = ¥(x), with x = x(x, y)
being a Cartesian point vector in two dimensions. The Darcy equation
for an anisotropic and homogeneous medium may be written as

q=-KVp (14)

where q is the specific discharge vector, V¢ is the piezometric
gradient, and K is a tensor of four components. The relationships
between g, Vo, and V¥ may be identified from a combination of (9)

and (14), namely
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ap a¥

- g X_°2% 15
dx = x oy (15a)

__g ®__ % (15b)
% = Yy ax

where it is assumed that the coordinate axes of the x-y plane coin-
cide with the principal directions of conductivity, i.e. K is in a
diagonal form. Under steady flow, in absence of recharge, the

continuity equation may be expressed as
V-q=0 (16)
By substitution of (14), the governing equation becomes
VKV =0 (7
An alternative formulation of (17) may be obtained by considering

the fact that under the given conditions stated previously the
piezometric gradient field satisfies

Vx (Vo) =Vx®EIiq=V-(KI'KV¥-0 (18)

When the coordinate axes are parallel with the principal directions
of permeability, equations (17) and (18) can be written as

2 ¢ 3 B(p]
—_ —_— |t = ——| =0 19a
ax[’“ax] By[“’ay (192)
8 ., ¥ 3 (., 8F
.._[yy__JJr__[n_—]:o (19b)
ax ax 3y ay

where K;i and K;,; are the resistivity components of the medium. For
an anisotropic medium, the equipotentials ¢ = const and the stream-
lines ¥ = const are not orthogonal, although (15) is valid. In the
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case of an isotropic and heterogeneous medium, however, the curves

¢ = const and ¥ = const cross one another at right angles.

It follows from (11), and the magnitude of the average velocity
v = |v(x, ¥)| = |a/n|, with n being the effective (kinematic) poros-
ity, that the distance As travelled by a fluid particle along any
streamline s during a time interval At is readily derived as

q AY
As = v At = —At = — At (20)
n nw

Because the width (w) of a stream tube may very well vary in space,
ie. w = w(s), the travel time corresponding to some distance As is

obtained by integration of (12)

n
R p— ds 21
AY A‘: @b

2.3 The stochastic continuum

Field measurements provide a way of characterizing the spatial
variability (heterogeneity) of a medium for any medium propersy of
interest (see, e.g. Beran, 1968). In the classical equations for
groundwater flow and solute transport, the relevant parameters, ¢.g.
the hydraulic conductivity and the dispersivities, are considered to
be constant-valued. The stochastic continuum theory, however, elabo-
ates the parameter heterogeneity in the context of a statistical
(probabilistic) framework. In what follows, a spatially varying
isotropic conductivity K, or more precisely, its natural logarithmic
transformation  (log-conductivity), is regarded as a statistically
stationary random field (random space function, stochastic process)
Y(x) = In(K(x)), with x being a Cartesian point vector in two

dimensions, x = x(x, y).
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The population parameters used to characterize the spatial varia-
bility of Y are generally expressed under the hypothesis of a mulri-
variate normal distribution (MVN). Under this simplification, the
entire  statistical structure of the stationary ¥Y(x) is completely
defined with the aid of Wy and oy = Cy(x;, x;)), where iy denotes
the mean and Cy the two-point covariance. Thus, we may write

Y(x) = In(K(x)) € MUy, Oy, Ay (or Iy)) (22)

with Hy, Oy, and Ay (or /y) being the mean, the standard deviation,
and the correlation length (or the integral scale), respectively,
and N() denotes the normal (Gaussian) distribution.

The assumption of stationarity implies that the moments (mathe-
matical expectations, designated with angle brackets < >) of the
log-conductivity field are invariant under translation. Usually only
the assumption of weak stationarity (second-order stationarity) 1is
made about ¥, and field data are employed to derive the probability
density function (PDF) of Y(x) and its two-point covariance. The
correlation length and the integral scale are both measures of the
distance between two points beyond which Y(x;) and Y(x) cease to be
correlated. In this study, a sratistically isotropic exponential co-
variance function in two dimensions is used

h
Cthy = o (ep(-7-) 23)
Y

with h = x; — x; being the distance vector of separation (lag) be-
tween the two points, and & = |h|. The correlation length A, is
defined as the distance at which the correlation between two points
is reduced by a factor of e. The integral scale Iy is defined as the
area between C(h) and the abscissa. For the exponential covariance
function in (23), the correlation of two points three and four cor-
relation lengths apart is approximately 5% and 0%, respectively.

Furthermore, for (23) I is numerically identical to Ay, i.e.
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(o]

Y
0 0

In some cases the experimental variance of Y increases with the
size of the study area under consideration. To make the statistical
framework operational, a less stringent hypothesis has to be used,
called the inwrinsic hypothesis [see, e.g. de Marsily, 1986]. It is
based on the assumption that (i) the first-order increments of Y,

ie. (Y(x + h) — Y(x)), are of finite variance, and (i) these in-

crements are themselves weakly stationary. Thus,
E{(¥(x + h) - Y(x))} = m(h) (25)
V{(¥(x + h) - Y(x))} = 2y(h) (26)
The variance of the increment defines the variogram (semi-variogram)

y(h), which, in concrete terms, is the mean of the square of the

increment of Y as a function of the lag h:
1
v(h) = -Z-E{(Y(X + h) - Y(x))?} 27)

In the stationary hypothesis, both the covariance and the variogram

exist, i.e.

¥h) = oy2 - Cy(h) (28)
or after substitution of (23)
Yh) = oy [1 - exp(- i)] (29)
Y A-Y

The variogram plays a fundamental part in geostatistical methods
such as ordinary kriging [see, for example, Istok & Flint, 1991].
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In order to replace ensemble statistics by spatial statistics,
ergodicity must be assumed. Ergodicity implies that all states of
the ensemble are available in each realization. Accordingly, the
question which the classical ergodic theory seeks to answer is: When
does the asymptotic behaviour of a space average of a stochastic
process reach the ensemble (probabilistic) average? Whether or not
ergodicity is an appropriate assumption is often discussed in the
literature. Dagan [1989] concludes that it is only in the case when
the size (L) of the flow domain is much larger than the integral
scale of the log-conductivity field, ie. L/ly » 1, that one «can
invoke ergodicity and employ stationarity in order to infer the
statistical parameters of Y from a single realization. Cushman
[1983] makes the following statement concerning ergodicity:

"It is the existence of the averaging volume which replaces
the ergodic hypothesis. That is, when one relates volume
averaging techniques to probabilistic averaging techniques
the question of ergodicity is an inappropriate question.”

The parameters in (22) implicitly refer to a support scale for the
log-conductivity field, where the flow system is treated as a
continuum. Turning to the local (formation) scale, for example, the
governing equation for the flow point variables q(x) and @(x), which
in the case of steady flow satisfy the Darcy and the continuity
equations in (14) and (16), results from an averaging over a volume
which is small in comparison with the regional scale of heterogene-
ity. In this context, the representative elementary volume concept
(REV) [see, e.g. Hubbert, 1956; Bear, 1972, 1979] is often referred
to in the literature, although no quantitative assessment of the
size of the required averaging volume is provided by using the REV
[see, for example, Sagar, 1978; de Marsily, 1986; Dagan, 1986;
Neuman, 1990]. Hence, the spatial variability of a medium presents a
problem for the specification of even the macroscopic properties of

the support scale.
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If a medium on some scale can be regarded as an isotropic continuum
whose properties are continuous functions of the position vector
only but not of the direction, the conditions are concordant with a
major assumption made at present in the stochastic continuum theory.

Dagan [1979] states:

"Physically speaking, these are the properties of a sample
which is large compared to the pore scale but small com-
pared to the formation scale, extracted from the aquifer
at x. The sample permeability is regarded as a scalar;
i.e., pore-scale anisotropy is disregarded, since it has a
negligible influence in comparison with formation aniso-

tropy.”

In other words, the stochastic continuum theory assumes that the
statistical anisotropy on the local scale is more important than the
hydraulic anisotropy for the characterization of flow and transport
on a regional scale. The assumption of local (hydraulic) isotropy is
perhaps relevant for a granular porous medium. However, in order to
validate this assumption in fractured hard rock, the processes of
interest must take place on a scale which is of much larger extent
than the heterogeneity of the support scale. Given the observed
statistics of 3m packer tests, some problems are difficult to solve
gven if this support scale should be found to be locally isotropic
considering the finite volume of the existing rock being modelled
[cf. Long er al., 1982; Sagar & Runchal, 1982].

The main objective of the stochastic continuum theory of groundwater
flow and solute transport in heterogeneous media is to derive the
equations satisfied by macroscopic variables. In this process, the
uncertainties due to the inherent variabilities of the local log-
conductivity field are smoothed out, and the macroscopic equations
for the flow and transport on the regional scale resemble those of
an equivalent homogeneous medium. Formulation of flow problems in
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random media, however, results in stochastic field equations. For
instance, averaging over the continuity equation in (16) yields for
the mathematical expectation of the specific discharge

V.<g> =0 (30)

The solution of (30) is a stochastic function with a probability
density function (PDF) defined over the ensemble of solutions. Sagar
[1978] makes the following statement in this matter:

"It is implied that certain statistical properties of the
solution in the random medium will correspond to proper-
ties of the solution in the real world complex medium,
provided that the random medium adequately describes the

real world."

In what follows, a few theoretical results are reviewed, which are
used here for verification of the numerical experiments. The main
question of interest is the scale problem and two questions are
treated: (i) the problem of spatial averaging of conductivity
(upscaling), and (ii) the scale problem associated with non-Fickian
and (presumably) Fickian flow regimes in solute transport problems.
The review is limited to deal with (i) uniform average flow, and
(ii) transport from non-point sources. The quoted results are given
without any deeper presentation of the underlying theories. Hence,
for a complete presentation and better understanding, the reader is

referred to the aforementioned main references.

Uniform average flow implies that the boundary conditions are such
that for a heterogeneous porous medium the exact solution is a
uniform flow of constant gradient and constant flux (specific dis-
charge). In this study, it is assumed that the boundary conditions
for the finite flow domain in Figure 9 are in accordance with this
condition. Transport from non-point sources implies that the area of
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solute input to groundwater has a transverse dimension much larger
than the conductivity heterogeneity scale (Ay), i.e. the solute body
has transverse dimensions such that ergodicity prevails. Further-
more, it is also necessary that the solute body travels a distance
much larger than the conductivity heterogeneity scale. In order to
meet these conditions, the simulations of solute transport are here
accomplished by an instantaneous injection of "fluid particles”,
representing a conservative inert solute, over the entire upstream
boundary. Moreover, the flow domain is a square, and molecular
diffusion as well as hydrodynamic dispersion within the support
blocks are discarded. Hence, only advective transport is considered

on the local scale.

For the specific case of uniform average flow in an unbounded (infi-
nite) domain, the averaging of the Darcy equation, see (14), yields
a linear equation of the same type as (30), ie. V<¢> and <q> are
constant and given by [cf. Dagan, 1989]

x> =-J-x <qx> = - K; V<o(x)> (31)

where J is a constant gradient in the mean direction of flow and K,
denotes the effective conductivity tensor. K, rtepresents a macro-
scopic property of the medium and is found to be positive definite,
invertible, and symmetric. Hence, it can be reduced to a diagonal
matrix with positive principal values in orthogonal directions.
Furthermore, for an isotropic covariance function, see (23), it can
effectively be reduced to a scalar, i.e. a diagonal matrix where the
principal values are identical. The range of K, in (31) is bounded
between the harmonic and the arithmetic means of the local
conductivities, regardless of the dimensionality of the flow domain,
the distribu-tion of the local conductivities, and the spatial
correlation of the local conductivities. Furthermore, if the PDF of
the local conductivities is Jog-normal and the spatial correlation
is invariant to rotation, that 1is to say statistically isotropic,
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and the flow domain is mwo-dimensional, the effective conductivity
is exactly equal to the statistical (spatial) geometric mean of the
local conductivities. In other words, K, is a scalar entity, with

K = K = exp(ily) (32)

Because K is defined over the ensemble of solutions, the equiva-
lent homogeneous medium given by (31) represents the average flow
pattern, i.e. parallel streamlines, and (32) implies that the equiv-
alent conductivity is completely defined by a single parameter, i.e.
the statistical (spatial) - geometric mean of the infinitely large
realization. Being a macroscopic property of an unbounded domain,
however, both (31) and (32) are devoid of any notion of scale. In a
previous study by Follin [1989, 1990], an attempt was made to define
the size of the infinite case in terms of confidence limits for the
relative error in the point estimator corresponding to (32), namely
K, = exp(my), where my is the sample mean defined by

N
1

with N being the sample size, i.e. the number of local conductivi-
ties. In classical statistics, the confidence interval for an inde-
pendent random varigble provides an estimate of the error in the
point estimator. Due to the exponential function, however, the con-
fidence interval is not symmetric in this case. If the sample size
is large, Taylor’s theorem for exp(x) provides an approximate
(1 = B) symmetric confidence interval for the relative error in K,
fcf. Follin, 1990]. Conversely, the approximate confidence interval
suggests that the minimum sample size needed for the relative error

in K, to be less than a specified amount £ with (1 ~ ) confidence
must satisfy the expression in (34), where Ag, denotes the value of
a standardized normally distributed random variable. Thus,
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[}'sz GYJ2
N> (34)

€

(34) can be used to compute the expected relative error in K, for a
given sample size. For example, if f = 0.05 and a square of 64x64
support blocks is considered with (3m)*block and oy = 4, the
conductivity of the (192m)? square differs from the equivalent homo-
geneous medium value in two dimensions by a minimum of 12.5% with
95% confidence. (34) is valid only for a purely random medium due to
the requirement of statistical independence. The corresponding value
for a correlated field is larger, though.

Cushman [1986] concludes that Kef is a constitutive variable,
which is defined in the context of a specific numerical flow exper-
iment. Following this conclusion, the present study focuses on
uniform average flow in a finite conductivity field, see Figure 9.
The study deals with the question of whether the conductivity on a
fine support scale can be scaled up to a coarser support scale
without losing important features concerning the physics of the
problem. Journel & Huijbregts [1978] and Vanmarke [1983] treat the
scaling up process (regularization), but not within a hydraulic con-
text. The determination of the block conductivity of finite rock
blocks of a heterogeneous fractured rock is important in far field
flow and transport studies because the scaling up process allows for
(i) the use of fewer grid blocks, and (ii) smaller contrasts in the
conductivity field, which relax the computational constraints [see,
for example, Durlofsky, 1991]. In particular, the present study
focuses on a finite flow domain (S) composed of a local conductivi-
ties on a fine scale, called the original support scale. The flow
domain is then gridded on a coarser scale, called the block scale.
The blocks are, one by one, separated from the flow domain and sub-
jected to a flow test experiment with boundary conditions as shown
in Figure 9. That is to say, each block is assigned a block conduc-
tivity, denoted Kg, which is determined from the flow test value
using the original support scale data within the block.
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The present study is so far following a line shared by many re-
search workers. Warren & Price [1961], Smith & Freeze [1979], Rubin
& Goémez-Herndndez [1990], and Desbarats [1991b], for example, stud-
ied the block conductivity concept for statistically stationary
fields. Using numerical simulations, they all conclude, under the
conditions stated previously in conjunction with (32), that the up-
scaled value, i.e. the finite block conductivity, is well approxi-
mated by the spatial geometric mean of the local conductivity values
within it. In addition, Rubin & Goémez-Herndndez [1990] and Desbarats
[1991b] presented upscaling "rules” based on either (i) a "second-
order theory”, i.e. a second-order approximation of a small pertur-
bation of the log-conductivity field [cf. Rubin & Gdémez-Herndndez,
1990}, or (i) a reformulation of the statistical derivatons of
Matheron [1967] where spatial averages rather than ensemble expecta-
tions are used [cf. Desbarats, 1991b]. The study by Desbarats
[1991b] is of special interest here, because it uses the concept of
the Lagrange stream function.

None of the studies mentioned, however, consider extreme con-
ductivity contrasts. The largest value used for the variance of the
log-conductivity field is 6y* = 2 [Rubin & Gémez-Herndndez, 1990].
Secondly, they all use a finite-difference scheme (five-point or
seven-point), which inherently decreases the contrasts [see, for
example, Kinzelbach, 1987a; Cacas et al, 1991]. That is to say, the
mass balance between two adjacent nodes is based on, for example,
the harmonic mean of the corresponding local values. Strictly speak-
ing, using the harmonic mean, or any other mean, instead of using
the local wvalues as such, implies that an additional correlation is
implemented more or less unconsciously. Thirdly, no attempts are
made to study the importance of (hydraulic) anisotropy due to sta-
tistical anisotropy in the upscaling process. Discussions of aniso-
tropy in conjunction with scale are found in, e.g. Long er al
[1982], Sagar & Runchal [1982], White & Horne [1987], Herbert &
Splawski [1990], and Durlofsky [1991]. Fourthly, a comparison of
uncorrelated and correlated conductivity fields is lacking.
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The conclusion that the upscaled value, i.e. the block conductivity,
is well approximated by the spatial geometric mean of the local con-
ductivity values within it [cf. Rubin & GoOmez-Herndndez, 1990;
Desbarats, 1991b] is here questioned. Strictly speaking, the
assumption of a multivariate normal and ergodic distribution for Y
in conjunction with (32) is valid only for the statistically sta-
tionary and isotropic infinite case [cf. Matheron, 1967]. Although
an extrapolation of this assumption to finite fields is not war-
ranted, this is exactly the assumption made in the statistical up-
scaling discussed in the literature, ie. (i) the scaled ficlds are
assumed to be statistically isotropic, and (ii) their multivariate
spatial distributions to be identical. A  Theuristic argument against
statistical and hydraulic isotropy can be formulated as follows:

1. Consider (i) an infinitely large log-conductivity field (¥),
which 1is statistically stationary and isotropic (see (22)), and
(ii) a large number of realizations of finite blocks, all with
boundary conditions according to Figure 9; uniform average flow
is defined. Under these circumstances, the block conductivity
(Kg) and the spatial geometric mean (K,) of each block size (S)
become stochastic variables with characteristic PDF’s defined
over the ensemble of finite blocks of the same size.

2. It is important to note that if the boundary conditions in
Figure 9 are rotated 90°, for example, then a different value of
Ky can be obtained. That is to say, unless the spatial structure
of the local conductivities within a block is invariant to rota-
tion, a hydraulic anisotropy will arise analogous to the deter-
ministic laws of arithmetic and harmonic composition [cf.
de Marsily, 1986]. To simplify the reasoning, the two orthogonal
values of Kg are denoted K, and K,,, respectively.

3. Two extreme cases can be identified. At the upper extreme, where
the block is infinite, the expected values of K,,, K and K|,
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are completely defined by the spatial geometric mean given by
(32), ie. <K;> = <Kp> =<K> = K At the lower extreme,
where a block is identical to the size of the original support
scale, the expected values of K, K, and K, are completely
defined by the log-normal distribution given by (22), ie.
K> = <Kyp> = <K,> = K, = Kg exp(0y?). Hence, as § decreases
from being an infinite block to a finite block composed of a
single conductivity value, the second moments of Ki;, Ky, and K

go from zero to (KjZexp(cy,2)(exp(cy?) — 1)) [cf. Ababou & Wood,
1990f. By the same reasoning, the PDF’s of K,;, Ky and K,
change from being uniform to become log-normal.

The block size (L) required to obtain a statistical isotropy is
dependent on the correlation length (Ay) or the range (R) of
correlation. For an isotropic and exponential variogram, see
(29) and Figure 9, R = 4 Ay. It is noteworthy that for L = R,
all data within the block are more or less correlated under a
maximum of spatial variability, 1.e. uncertainty, as expressed
by the definition of the sill. In other words, statistical
isotropy is not warranted, unless for L =« 0 and L = oo

Due to the nature of the log-normal distribution, the geometric
mean is identical to the median. The latter divides by defini-
tion the PDF into two parts of equal probability. Thus, whereas
K, is equal to the median, Kg, or better, K;; and K,, are scat-
tered around the median. Depending on whether the spatial struc-
ture of the block is invariant by rotation or not, the hydraulic
components will be equal or different. The bounds for K are
given by the relation K, < Ky < K, with X, and K, being the
harmonic and arithmetic means, respectively, of the local
conductivities within the block [see, for example, Dagan, 1979
de Marsily, 1986; Journel er al., 1986). Hence, in order for K,
to be a representative conductivity value for an upscaled block,
even for an anisotropic block, one could argue that K, = exp(my)
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should at least be equal to the hydraulic geometric mean, i.e.

K, =v K, K, (35)

g

However, (35) is equivalent to my = 0.5 In(K,; K,;), which rep-
resents a particular kind of anisotropy only, ie. it is not
certain that K, is the most representative conductivity value.

In the following, the second question of interest is dealt with,
i.e. the scale problem associated with non-Fickian and (presumably)
Fickian transport. The scale dependence is well documented in the
literature, see, for example, Pickens & Grisak [1981], Beims [1983],
and Gelhar [1986]. This means that a Fickian diffusion process
represented by constant dispersivities from the onset of a solute
injection is not an adequate description of the hydrodynamic
dispersion phenomenon on all scales, see Figure 10. Therefore, the
relevance of using the advection-dispersion equation to describe
solute transport in heterogeneous media is questioned.
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Fig. 10 Scale dependence of longitudinal dispersivity [Reproduced
from Kinzelbach, 1987a, who refers to Beims, 1983].
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The classical advection-dispersion equation for modelling the trans-
port of an inert solute in a homogeneous porous medium is based on

laboratory experiments and may be written as

aC N
—+v-VC=V- VO (36)

where the solute concentration C a is function of the Cartesian
space coordinates and the time, ie. C(x, f). The dispersion tensor
D governs the spreading of the solute arcund the centroid of the
moving plume. D can be derived with the aid of dimensional analysis
and of the requirement of tensorial invariance [see, e.g. Bear,
1972}. For uniform flow in a two-dimensional, homogeneous and iso-
tropic medium, v = (v, v,) with v =v, = |q| / n and ¥, = 0. For
the specific case shown in Figure 9, where the x-axis coincides with
the mean direction of flow, D is in a diagonal form. The dispersion
coefficients are often written as linear functions of the velocity
(v) and some characteristic length scales called dispersivities,
which are considered to be constant-valued [Scheidegger, 1961],

Dll = all v + Dm (373.)
Dzz = 022 Vv + Dm (37b)

In (37), a,, and a, denote the longitudinal and transverse disper-
sivities, respectively, and D™ is the molecular diffusion coeffi-
cient. The common approach to modelling solute transport in natural
media is to assume that (36) holds also on a large scale. At large
distances, however, the spreading due to the molecular diffusion and
the pore-scale dispersion are negligible in comparison with the
spreading caused by the heterogeneity in the conductivity field.
Conversely, if the correlation scale of the conductivity field is
small compared to the size of the solute spreading, the velocity
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field will become uncorrelated and a Gaussian plume shape is estab-
lished provided that ergodicity is achieved. By the same reasoning,
constant-valued macrodispersivities, designated A,; and A, Trespec-
tively, may be considered [see, for example, Kinzelbach, 1987a; Bear
& Verruijt, 1987],

Dzz = A22 v (38b)

Dagan [1984] notes that in numerical simulations of solute transport
in finite problems, ergodicity can be achieved only if the area of
the solute input to groundwater has a transverse dimension much
larger than the conductivity heterogeneity scale (Ay).

In recent years, the stochastic continuum theory has been in-
creasingly used to study the scale dependence of D. Because D
governs the solute spreading, ie. the variance, different ap-
proaches may be taken to describe the non-Fickian regime in solute
transport problems. In principle, two alternative Lagrangian ap-
proaches can be taken. The first approach analyses the spatial
moments of particle positions as a function of time [Dagan, 1982,
1984, 1987, 1988], whereas the second approach describes the solute
movement in terms of the remporal moments of particle arrival at a
fixed location [see, e.g. Shapiro & Cvetkovic, 1988]. The theo-
retical developments of the “particle position analysis”, are exten-
sive and taken to an almost operational stage [see, e.g. Figure 2 in
Dagan, 1984]. The “particle arrival time analysis’, however, has re-
ceived less treatment in the Hterature, although it deserves much
attention, because it circumvents a few inherent limitations of the
particle position analysis. For instance, the mapping of the
particle positions at different times, as required by the position
analysis, becomes quite difficult both in reality and in numerical
models. Another difference between the position analysis and the
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arrival time analysis, is that the former inherently defines a
volume-averaged (resident) concentration, whereas the latter defines
a flux-averaged concentration. The distinction between the two con-
centration averages in relation to a diffusion process is discussed
by Kreft & Zuber [1978] and Parker & van Genuchten [1984]. In short,
the choice of analysis method essentially depends on the method of
detection. For instance, for the breakthrough problem over a given
boundary, perpendicular to the mean direction of flow, Shapiro &
Cvetkovic [1988] consider the arrival time analysis and the flux-
averaged concentration to be the most appropriate description.
Hence, the arrival time analysis is not only an alternative but also

a complementary analysis method.

The present study follows the Lagrangian approach as outlined by
Dagan [1984]. The theoretical assumptions made in relation to (31)
and (32) are basically also made in the position analysis. A few
additional assumptions are required. They may be summarized as
follows: (i) a first-order approximation of a small perturbation of
the log-conductivity field, which limits the application of theo-
retical results to oy? < 1, (ii) a large Peclet number, which in
this study is achieved by discarding both the molecular diffusion
and the hydrodynamic dispersion, (i) a constant-valued porosity
field (n), (iv) an isotropic exponential covariance, see (23), and
(v) an instantaneous (pulse) injection.

A Gaussian plume shape implies that the particle displacements
X = X|(#; Xy, Ip) are also normally distributed. Smith & Schwartz
[1980] and Dagan [1984], following Taylor [1921], showed that the
particle displacement covariance tensor X is directly related to the
dispersion coefficients and that the PDF of the solute particle
displacements is defined by <X,> and X. In the derivation of the so-
lutions for X, Dagan [1984] circumvents the difficulties in relating
the particle Lagrangian displacement covariance to the Eulerian
velocity field by approximating the particle’s tortuous path in
space by its mean, i.e. X, is approximated by <X >.
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The analytical solution for two-dimensional isotropic conductivity
fields is given by (39), where X is made dimensionless by division
of Ay2 [cf. Eq. (4.5) and (4.6) in Dagan, 1984; or Eq. (25) and (39)
in Dagan, 1988]

1 1 ~1
X, (1) = o%[zr + 3[.2. ) - E + Eitn) + 0 +2T) U (39a)
T
1 - et
X(1) = o2 [ln('r:) - ;. + E - Ei(-1) + 3{ ¢ i 0 ]] (39}
&
X=Xy = 0 (39¢)

where T is a dimensionless time defined as T = v ¢/ Ay, X, and X,
are the longitudinal and transverse spatial variances of the
ensemble mean particle displacements, respectively, £ is the Euler

number (- 0.57721..), and Ei is the exponential integral. Eq. (39)
demonstrates that the second-central moments of the spatial distri-
bution of the particle displacements are non-linear functions of
time in the vicinity of the solute injection. The non-Fickian
macrodispersivities, for uniform average flow parallel to one of the
coordinate axes in a two-dimensional flow field, are denoted A (t)
and A,,(T), respectively, and are computed as

X,(1) Ay

All(z) = T (408.)
X(1) Ay

Axp(T) - BT {(40b)

Transport may take place over large distances with respect to the
correlation length (Ay). Eventually it becomes dominated by the
asymptotic values of the displacement covariances. Dagan [1984] and
Shapiro & Cvetkovic [1988] conclude that for a second-order statio-
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nary log-conductivity field with an exponential covariance, solute
transport becomes asymptotically analogous to a diffusion process
due to a finite correlation in the advective velocity, i.e. a finite
correlation in the conductivity field. ~The prerequisites for
considering the solute transport to be asymptotically analogous to a
diffusion process are also discussed by, for example, Gelhar &
Axness [1983], Neuman er al. [1987], and Naff [1990]. The latter
author concludes:

"...a classical Fickian description, with constant coeffi-
cients...should generally be reasonable, provided that pre-
diction of the mean concentration is at distances from the
source equivalent to at least 20 length scales A of the
hydraulic conductivity process. Within 20 A of the source,
two deviations from the classical Fickian description will
occur: {1) the second moment of the plume will be over-
estimated significantly and (2) the plume shape will be
platykurtic.”

Naff [1990] suggests that the non-Fickian behaviour can be corrected
by adopting a Fickian description with time-dependent coefficients.
This approach was adopted by Kinzelbach [1987b] who simulated non-
Fickian random-walks by adding a state variable memorizing the
travel distance of each particle. The actual dispersivity can be
calculated by a given formulation of the dispersivity in function of
the travel time. This is an interesting way to deal with the scale
problem, particularly in applied problems.

Gelhar & Axness [1983] and Neuman et al. [1987] computed the
asymptotic values of the macrodispersivities given by (40), although
without analysing the preasymptotic, transient regime, from the
onset of a solute injection. In spite of a few significant differ-
ences, the works of Dagan [1982, 1984, 1987, 1988], Gelhar & Axness
[1983], and Neuman et al. [1987] agree in principle. For uniform
flow in a statistically isotropic two-dimensional field with no
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pore-scale dispersivities and no molecular diffusion, the asymptotic
values of the longitudinal and transverse macrodispersivities become
[cf. Dagan, 1984, 1987, 1988; Neuman ez al., 1987]

Ay = Ay Oy (41a)
Ay =0 (41b)

The conclusion by Naff [1990], that a classical Fickian description
with constant coefficients should generally be reasonable provided
that the prediction of the mean concentration is at distances from
the source equivalent to at least 20 Ay, is here examined by com-
paring the results obtained by the non-Fickian position analysis of
Dagan [1984] with the results obtained by a Fickian arrival time
analysis. Kreft & Zuber [197§] provide different expressions for
computing the longitudinal dispersivity for a one-dimensional form
of (36) in relation to a diffusion process and the two concentration
averages discussed previously. For a flux-weighted pulse injection
and a flux-weighted detection [cf. Shapiro & Cvetkovic, 1988], Kreft
& Zuber [1978] give the following expression for the longitudinal
dispersivity Aj,

a0 =2 (2 @

where x is the displacement distance in the mean direction of flow
and (s, / m) is the coefficient of variation of the residence-time
distribution [cf. Kreft & Zuber, 1978]. (42a) has previously been
used by Desbarats [1990, 1991a] and Desbarats & Srivastava [1991],
although without an accompanying experimental non-Fickian analysis.
Furthermore, the numerical model used by these authors does not
simulate a truly advective solute transport. In fact, there are rea-
sons to question whether their model actually describes a continuum
[cf. Goode & Shapiro, 1991b].
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The displacement covariances derived by the position analysis pro-
vide expressions for determining both A,, and A,,, whereas the ar-
rival time analysis, which is based on the temporal moments of par-
ticle arrival at a fixed location, is difficult to interpret in a
transverse direction to the mean direction of flow. Dagan [1984),
however, concludes that the dispersivity inferred from a common in-
terpretation of a field test, "the breakthrough curve", is approxi-
mately equal to (40a). For the sake of comparison, an estimate of
Ay, i1s here obtained by computing the spatial variance of the
lateral  displacements of particles over a given boundary, per-
pendicular to the mean direction of flow. In this case the dual
formulation of flow provides a means for computing the transverse
dispersivity, because it is only the positions on the boundary that
are of interest and not the arrival times. The computed spatial
variance is designated ¥,, so as to stress the difference in
relation to X,, as well as to indicate that the dual formulation of
flow is used to determine the lateral displacements. However, the
suggested mixing of temporal and spatial variances is not warranted,
and has to be regarded as a working hypothesis. Analogous to (40),
the expression suggested here for A,, becomes

\P22

where x is the displacement distance in the mean direction of flow
and ¥,, is the transverse spatial variance of the ensemble mean
particle displacements over a given boundary as determined by the
dual formulation of flow.

Smith & Schwartz [1980], Frind er al. [1987], Graham & McLaughlin
[1989], and Rubin [1990] are examples of studies where numerical
methods were used to compute the spatial moments of the particle
positions. Smith & Schwartz [1980], in addition, also computed
arrival time distributions. One of the first studies to discuss the
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arrival time analysis, however, was that of Warren & Skiba [1964].
They also demonstrated the strong effect of conductivity variations
on tracer particles moving through hypothetical media. This was also
observed by Schwartz [1977] and Smith & Schwartz [1980]. Davis
{1986] claims that because it is a physical property of the medium,
dispersivity does not vary with scales bigger than the microscopic
level, and that it is possible that investigators have attached too
much importance to dispersivity by assigning it such large values in
their models, while the contribution of advective mass transport to

dispersion has been underestimated.

Following the results of the aforementioned pioneering work of Smith
& Schwartz [1980], several recent studies tend to deviate from the
classical context associated with the advection-dispersion paradigm
and focus their interest on what may be recognized as preferential
flow paths (channels). For example, the presence of channels of
preferred flow within two-dimensional conductivity fields is studied
by Tsang & Tsang [1989]. They argue that understanding the preferred
paths of flow in heterogeneous fields is critical to our understand-
ing of mass transport in the subsurface. Another example is the
study by Silliman & Wright [1988], who analysed the structures in
discretized conductivity fields in three dimensions for paths along
which the conductivity is everywhere greater than the effective con-
ductivity of the medium. Although Silliman & Wright [1988] did not
solve the flow equations, their work implies that paths will exist
within the subsurface along which the resistance to flow is every-
where less than the average as compared to the medium as a unit.
Desbarats & Srivastava [1991] modelled a very large two-dimensional
flow system with high conductivity paths. They showed that these
paths may provide potential extreme flow routes along which contami-
nants may rapidly be transported.

The present study is more or less related to all the studies
mentioned above, in particular to the studies by Smith & Schwartz
[1980] and Frind et al. [1987]. However, there are four significant
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aspects, which distinguish the present study from the ones mentioned

here:

(1)

2)

3

4

None of the studies mentioned consider conductivity contrasts
characteristic to fractured hard rock on a "3m scale”", i.e.
Oy? = 16. The closest value used previously is (perhaps) that of
Smith & Schwartz [1980] who investigated Gy = 2.8.

The present study considers only truly advective transport,
whereas comparable studies, more or less tacitly, include local
dispersivities as well, thus introducing additional numerical
difficulties into the particle tracking schemes as recognized by
the Courant criterion and the Neumann criterion [cf. Kinzelbach,
1987al.

Both non-Fickian and Fickian descriptions are used in this study
to investigate the advective solute transport. Furthermore, the
comparison is undertaken for both uncorrelated and correlated

conductivity fields.

The present study develops an alternative approach to accom-
plish flux-weighted injection for the onset of solute injection
in conjunction with particle tracking schemes. The conventional
approach to accomplish a flux-weighted injection is to select a
large number of uniformly distributed injection points, and then
to inject a flux-weighted number of particles at the selected
points. For instance, it is quite common to take the positions
of the grid nodes in a regular mesh of finite elements or finite
difference cells as injection points. The adopted injection
technique in the present study uses the equidistant contour
level positions of the stream function at the upstream boundary.
Thus, only one particle per streamline needs to be injected to
infer the statistics required by the position analysis.
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3  NUMERICAL CALCULATIONS

The main question of interest in the numerical calculations under-
taken is the scale problem. The upscaling of model parameters, i.e.
scale-dependent parameters, is a key issue in many research fields
concerned with parameter heterogeneity, because the wupscaling
process allows for fewer model blocks and relaxes the numerical
problems caused by high contrasts in the conductivity. In other
words, the wupscaling process implies less heterogeneity, which
benefits the numerical modelling.

Spatial variability calls for graphical presentations so as to
visualize the impact of the heterogeneity on flow and transport. The
graphical presentations in this chapter are numerous. For editorial
reasons, all figures related to a specific experiment are placed at
the end of the corresponding section. The numerical calculations
consist of five experiments with different objectives. They are

summarized as follows:

Unconditional simulation of flow: The objective is to investigate
the relationship between the statistical (spatial) geometric mean of
local conductivities and the numerically computed equivalent block
conductivity as a function of scale, i.e. block size.

Flow field analysis: The objectives are (i) to validate the imple-
mentation of the flow model and its capability to deal with high
conductivity contrasts, and (i) to improve the understanding of the
parameters used to characterize random heterogeneity and the impact

of these parameters on the flux.

Simulation of flow on different scales: The objectives are to
investigate (i) the validity of applying the results obtained from
the unconditional simulations, and (i{) the differences between two

scales of support.
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Simulation of solute transport. The objectives are to investigate
the possibility (i) to rteproduce numerically the analytical results
obtained by first-order theory, and (ii) to extend the numerical
simulations to deal with high conductivity contrasts.

A discontinuum model: The objective is to examine briefly the dif-
ferences in flow and transport between continuous and discontinuous

conductivity fields.

3.1 The flow model

Uniform average flow in a two-dimensional flow field is discussed in
Chapter 2. The corresponding governing equations for the dual
formulation of flow are given by (19) and the Dirichlet and Neumann
boundary conditions for a finite block are shown in Figure 9. In
what follows, the numerical model used for the flow and transport
studies and the procedure used for computing the effective block
conductivity tensor (KS) are described.

A variety of numerical procedures could be used to solve the govern-
ing equations for uniform flow in two dimensions. Because the scale
problem is the key issue in the present study, it is essential that
the numerical method is capable of (i) representing the local con-
ductivities, ie. the support scale conductivities, and (i) pro-
viding a continuous flux between adjacent model blocks of different
conductivities, seeing that the determination of the conductivity
tensor of an upscaled block (f(s) involves integration of the flux. A
common motive for choosing a finite element method rather than a
finite difference method is that the former can resolve complex geo-
metries. For the studied cases, however, such an argument is of no
consequence since the support scale is represented by squares. In
the literature, the five-point finite difference method is often
used for studying the scale problem because it is readily imple-
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mented and permits large models to be investigated and solved [see,
for example, Rubin & GoOmez-Hernandez, 1990; Winberg et al., 1990;
Desbarats & Srivastava, 1991]. In the present study, the motive for
not choosing a finite-difference method is that in such a method the
mass balance between two adjacent nodes is based on some average of
the local conductivities involved, e.g. the harmonic mean [cf.
Kinzelbach, 1987a; Cacas et al., 1991], which means that the
conductivity field used by the flow equations is numerically
smoother and more correlated, ie. less heterogeneous, than the
original conductivity field.

The standard Galerkin finite-element procedure [see, for
example, Istok, 1989], which is used here, is considered to be
superior because it takes full account for the heterogeneity on the
support scale. The bi-linear basis functions of the linear 4-node
rectangle element used here yield a second-order accurate solution
for the piezometric head (@), whereas the flux (the specific
discharge, q) obtained by taking the gradient of the solution of ¢
is only first-order accurate. That is to say, the flux between two
adjacent elements is not continuous. There are several ways to
circumvent or overcome this drawback. For instance, (i) to use mixed
or non-conforming finite elements [cf. Durlofsky, 19911, (i) to
intensify  the discretization, or (iii) to choose interpolation
functions of higher order. Although interpolation functions, which
have continuous derivatives at the element boundaries, provide a
continuous flux field, it is important to note that they may not
necessarily lead to higher accuracy as they often require numerical
integration [cf. Kinzelbach, 1987a]. However, for the linear 4-node
rectangle element, which is used here, the integration can be made
analytically [sece, for example, Frind & Matanga, 1985]. Considering
the wvast variability in the conductivity field, which is about 12
log;, cycles in K on a "3m scale”, it may be concluded that most
methods will have problems in reproducing an accurate and continuous

flux field.
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Figure 12 illustrates a discrete representation of a finite two-
dimensional stochastic continuum. In the flow experiments discussed
below, the y-axis is considered vertical with y being the elevation
head. In Figure 12, the support scale, denoted N, consists of 256
conductivity values, ie. N = 16x16. The 256 conductivity values
were generated by means of a random number generator. The values of
the most significant input parameters to the random number generator
are given in the second heading, ie. Oyx =4 and NAx =
AMAy = 2. These data can be regarded as characteristic of 3m packer
tests in fractured hard rocks [see, e.g. Liedholm, 1991a, b, c¢]. For
Figure 12, the physical dimensions of the stochastic continuum are
(48m)2, ie. Ax = Ay = 3m, and the correlation length of the iso-
tropic and exponential variogram (see (29)) is Ay = 6m. It should be
noted that oy, and A are synonymous with Gy and Ay, respectively.

Two different random number generators are used: (i) a Turning
Bands generator [Mantoglou & Wilson, 1982] is used to generate cor-
related conductivity fields, and (i) an ordinary random number gen-
erator [Schrage, 1969] is used to generate uncorrelated conductivity
fields. Strictly speaking, it is impossible to generate a truly ran-
dom field seeing that all points within a support block are perfect-
ly correlated. In what follows, however, AJAx = AAy = 0 is used to
denote an uncorrelated conductivity field. In Figure 12, the raster
graphics is divided into 8 percentiles representing the variability
of the generated conductivity field. For the case shown, the median,
re. the spatial geometric mean of the local conductivities, is
K, = 5.86-10®* m/s and the minimum and maximum values are 5.04-10-1¢
m/s and 2.67-10* m/s, respectively. Moreover, 50% of the data fall
between 3.49-10%° m/s and 9.78-1097 m/s.

The numerical procedure used here for the determination of Kg
is the same as that described by, for example, Durlofsky [1991]. It
is a simple procedure which solves the governing equations given by
(19) subjected to the Dirichlet and Neumann boundary conditions of
(12) and (13). A graphical representation of the Dirichlet boundary
conditions defining uniform average flow in a finite heterogeneous
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medium is shown in Figure 13. Upon solution, if the side length (L)
of the square is set to unity, the fluxes through the vertical faces
(W/E-flow) and the horizontal faces (N/S-flow) of the block are
calculated and give

Kii = gws (43a)
Ky = gns (43b)

However, the cross terms of KS, ie. K, and K,;, cannot be deter-
mined by wusing this procedure. In spite of this limitation,
Durlofsky [1991] concludes that the approach outlined in Figure 13
continues to be used under the tacit assumption that the diagonal
terms of the Ky computed in this manner are correct, and that the
cross terms are unimportant. It should be noted that K,; and K,, in
the present study are synonymous with K, and K, respectively.

The errors associated with using the linear rectangle element
are here investigated by means of three experiments: (i) the
numerical solution is compared with an analytical solution, namely
the deterministic laws of harmonic and arithmetic composition [cf.
de Marsily, 1986], (i) the solutions for different discretizations
of Figure 12 are compared, i.e. each support block is discretized
into 1, 4, 16, or 64 linear rectangle elements, and (i) the solu-
tions for two different interpolation functions are compared, that
is to say the linear rectangle element using analytical (exact)
integration is compared with a 9-node Lagrangian element with 9
Gauss integration points. The first case is shown in Figure 14,
where it is demonstrated that a high conductivity contrast as such
causes very few problems if the element sides are aligned with
respect to the boundary conditions. The second case is shown in
Figures 15-19. In these figures, the solutions of the piezometric
head (¢) and the Lagrange stream function (W) for four different
discretizations of the (48m)2 block in Figure 12 are shown. The
contour lines in Figures 16-19 are computed by means of fitting
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splines to the original solutions. Visual comparison of the
solutions shows that a finer grid provides a more accurate
definition of the flow field, particularly near high contrasts in
the  conductivity field, {e. high conductivity contrasts act almost
as  discontinuities  [cf.  Goode, 1990}]. In  Figure 20, the
corresponding  differences in K in relation to the spatial geometric
mean of the support block conductivities are shown as functions of
the discretization, Two values of ¢y are examined, namely 1 and 4,
which demonstrate: (i) the effect of discretization for different
contrasts in the conductivity field, and (i) the differences in
anisotropy. In the third experiment, a block of N = 4x4 is examined,
see Figure 21. In this experiment, the solution of ¢ for W/E-flow
using 256 4-node linear rectangle elements is compared with that
using 64 9-node Lagrangian elements with nine Gauss integration
points. Thus, the number of nodes is the same in the two cases,
whereas the linear solution requires four times as many elements.
Figure 21 shows that the shown solutions for ¢ are “identical’,
which makes the 9-node Lagrangian element attractive from a computer
memory point of view. The disadvantage of using a numerical inte-
gration rather than an analytical integration is to some extent

shown in see Figure 11

Case No. of Upstream Downstreain
elements q g q 9
per K-value  [n-10 m/s] [n-10 m/s

4N 1 7.885 7.885

AN 4 7.387 7.387

4N 16 7.118 7.118

aN 16 7.028 8.940

4N 64 6.986 6.986

Fig, 11 Comparison of flux for the problem shown in Figure 21.
{(4N); 4-node linear rectangle element; (9N): 9-node
{agrangian element with 9 Gauss integration points.

.52 -



2-D HYDRAULIC CONDUCTIVITY FIELD
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Fig. 12 Graphical representation of a hypothetical heterogeneous medium
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Fig. 13 Dirichlet boundary conditions for a heterogeneous medium such that
the exact solution is a uniform flow of constant head gradient and

constant specific discharge.
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Fig. 15 Four different finite element discretizations for N = (16x16) .



Fig. 16 Flow nets for N/S and W/E flow respectively. N = { 16x18) . Each
block is discretized by 1 element. Piezometric head {dashed) and

stream function levels (solid) are in 5% increments between 0 and 1 .
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Fig. 17 Flow nets for N/S and W/E flow respectively. N = ( 16x16) . Each
block is discretized by 4 elements. Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between O and 1.
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Fig. 18 Flow nets for N/S and W/E flow respectively. N = (16 x 16) . Each
block is discretized by 16 elements. Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between O and 1 .
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3.2 Unconditional simulation of block conductivity

The objective of unconditional simulation of block conductivity in
this study is to investigate the relationship between the statisti-
cal (spatial) geometric mean (K,) of the local conductivities within
a block and the numerically computed block conductivity tensor (Kg)
as a function of scale, ie. block size. The hypothesis is that
present statistical upscaling techniques underestimate the conduc-
tivity of finite blocks, due to their inability to take the effects
of anisotropy into account. The unconditional simulations are
divided into two parts: (i) a bracketing study and (ii) a Monte
Carlo study. A general description of such studies is provided by,
e.g. Peck et al. [1988] and Freeze et al. [1990].

The aim of the bracketing study used here is to identify the
main differences between statistical and hydraulic averaging over
the range of variability of the log-conductivity field (¥(x)) so as
to optimize the subsequent Monte Carlo study. In Figure 22, the
chart used in the bracketing study is shown. Two performance
measures are used, namely the staristical relative error in Kg and
the hydraulic relative error in K, denoted RE; and RE,, respective-
ly. RE, and RE, are defined as

(Kg - Kg)
RE, = ————— (44a)
Kg
(Ku - KG) .
RE = — i=1,2 (44b)
B K,
G

The behaviour of the spatial geometric point mean as a point estima-
tor for K, ie. K, = exp(my), is discussed in Chapter 2. Figures 23
and 24 graphically demonstrate the behaviour of RE, for different
values of Oy, Ay, and N. The PDFs are clearly skewed for small
values of N which suggest that <K,> 2 K; for finite blocks.
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The bracketing study comprises nine cases of hypothetical realiza-

tions where N = 64x64 and Y(x) € N(-16, Gy, Ay). One subset of the
nine cases differs in the correlation length, ie. Ay /Ax = Ay/Ay =
{0, 2, 4}, whereas a second subset differs in the standard devia-
tion, ie. oy = {0.25, 1, 4}. The three values of o, correspond to
(i) an approximately homogeneous medium, (i) the upper limit of the
first-order approximation of ¥(x) [see, e.g. Gutjahr er al., 1978],
and (iii) the observed spatial variability of In(K) for 3m packer
tests, respectively. Each of the nine cases is investigated by means
of ten realizations. The realizations are subjectively chosen so
that they spread evenly about RE, = 0 for oy = 0.25. The results are
shown in Figures 25 and 26. Beginning with Figure 25, it is
noteworthy that the uncorrelated cases show a constant offset while
keeping the unit slope. This effect is interpreted as an artifact of
the first-order accurate flux solution [cf. Durlofsky, 1991]. The
same observation is made by Cacas er al. [1991] who also make a
similar comparison for a finite difference method. For the correla-
ted cases, however, the limitation of using linear rectangles is
less significant. The explanation is that a correlation in the con-
ductivity field implies less contrasts between adjacent model blocks
thus a better flux solution. For ¢y = 4, the spreading in RE, around
the unit slope increases drastically, i.e. an increasing anisotropy
is observed. At the same time there appears to be a shift in RE, to
the right.

The approach behind Figure 26 is somewhat unusual and cails for
an explanation. Ten realizations of equal probability are generated
but only one of them is of interest in terms of conductivity values,
ie. the data of the considered realization are conditioned upon the
spatial structures of the remaining nine realizations by comparing
the probability density functions (PDF’s). In this way ten equally
probable realizations are obtained that differ in the spatial varia-
bility but not in the conductivities. The results in Figure 26 de-
monstrate that for N = 64x64 ((192m)?) and oy = 4, the spatial
variability is important for the block conductivity.
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In the Monte Carlo study, the relationship between the block con-
ductivity and the statistical (spatial) geometric mean of the local
conductivities within a block 1is investigated thoroughly. Six
quadratic block sizes are studied. These are symmetrically deline-
ated around the centre of a synthetically generated realization of
random (disordered) heterogeneity. The realization consists of
N = 64x64 (4,096) local conductivity values defining the scale of
support. The six block sizes are N = {2x2, 4x4, 8x8, 16x16, 32x32,
64x64). Each block size is studied by a Monte Carlo approach con-
sisting of 800 realizations. All realizations are considered to be
finite replicates of the infinite medium defined by (32).

The mean and standard deviation of the infinite medium are set
to Uy = -16 and oy = 4, respectively. Three different correlation
lengths are studied, i.e. Ay/Ax = Ay/Ay = {0, 2, 4}. An exponential
variogram is assumed for the latter cases (see (29)). These para-
meter values are characteristic of the statistics of 3m packer tests
down to depths of about 500m in Swedish fractured hard rock. For
each realization and each block size, both the spatial geometric
mean of the local conductivity values and the conductivity in two
orthogonal directions are computed. The results from the Monte Carlo
study are shown in Figures 27-36 and are summarized as follows:

The 18 scatter plots shown in Figures 27-29 reveal that the princi-
pal relation between K, and the two orthogonal components of f(s, de-
noted K, and K, (or K; and K,), respectively, is basically
linear although the spreading about the unit slope is highly depend-
ent on both the block size and the correlation length. Hence, K,
K,, and K, are all random variables [cf. Sagar, 1978].

Figure 30 demonstrates that <K >/K; decreases with an increasing
block size, and reinforces the aforementioned impression that the
limits of <K> for finite blocks are governed by the arithmetic and
geometric means, respectively, of the underlying probability density
function of the local conductivity values.
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Figures 31-33 show the expected value of the ratio between the block
conductivity and the corresponding spatial geometric mean for the
three correlations, i.e. Ay/Ax = Ay/Ay = {0, 2, 4}. In spite of the
numerical problems caused by using linear rectangles, it is demon-
strated that the ratio between K. = max(K,,, K,;) and K, is on
average greater than or equal to unity, i.e. <Kna/K> 2 1, and that
the ratio between K ; = min(K,, K,,) and K, is on average less
than or equal to unity, i.e. <Kni/Kp> < 1.

Figures 32 and 33 demonstrate that the maximum ratio of <K/ K>
for Ay/Ax = Ay/Ay = {0, 2, 4}, is obtained for a block size that is
approximately equal to the range of the correlation. For the ex-
ponential variogram used here, R ~ 4 Ay and the maximum values occur
at 24m and 48m, respectively.

The effect of increasing the discretization is shown in Figure 34. A
major improvement is obtained with four linear elements per block,
and further slight improvement is obtained with increasing discre-

tization.

Figure 35 shows the expected value of the ratio between the two or-
thogonal components of the block conductivity for Ay/Ax = Ay/Ay =
{0, 2, 4). It is demonstrated that the ratio K;,/K,, is on average
equal to the ratio K,,/K,, and that these ratios are on average
greater than or equal to unity, ie. <K, /Kp> = <Kp/K;1> 2 1.
Furthermore, the maximum value is obtained for a block size that is
approximately equal to the range of the correlation. It should be
noted that the results in Figure 35 are found to be independent of

the discretization.

Figure 36 shows the expected value of the log-conductivity standard
deviation. For Ay/Ax = A,/Ay = 4, it is found that the decrease in
uncertainty with the block size mimics the reported field findings

shown in Figure 7.
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3.3 Flow field analysis

It is important to have good understanding of the flow field prior
to any numerical simuladon of solute trangport in a heterogeneous
conductivity field. The present study adopts the dual formulation of
flow for steady flow in two dimensions to compute flow patterns for
a few different cases of random heterogeneity, Frind & Matanga
[1985] conclude that the stream function (W) solution can give
superior accuracy in the definition of the wvelocity field required
for transport simulations, The objectives of the experiments
undertaken here are (i) o validate the implementation of the flow
model to allow for high conductivity contrasts, and (%) to improve
the understanding of the Iinteraction between oy and Ay and their
impact on the sparal wvariability of the flux field, ie. the
specific discharge (q).

Because the conductivity is 2 random function, the specific
discharge is a random vector function. It is considered that a
Gaussian plome shape is established when the velocity field is un-
correlated provided that ergodicity is achieved {see, for example,
Dagan, 1984; Shapiro & Cvetkovic, 1988; Naff, 1990]. Therefore, each
flow pattern computed here is accompanied by a brief statistical
analysis of the correlation structure of the flux field It is
stressed  that these analyses are neither intended nor valid for any
inference about the statistics of the ensemble,

Nine differsnt realizations of N = 64x64 and N(~16, Gy, Ay) are
generated and analysed. One subset of the nine realizations differs
in the correlation length, ie. A,/Ax = AJAy = {0, 2, 4}, whereas a
second subset differs in the standard deviation, ie. oy = {0.25,
1, 4}, The three values of o, correspond to () an approximately
homogeneous medium, (i) the upper limit of the first-order approxi-
mation of ¥(x), and (iii) the observed spatial variability of I[n(K)
for 3m packer tests, respectively, On basis of fhe results obtained
previously, each support block of the flow model is discretized with
four linear rectangles, which gives a total of 16,384 elements and
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16,641 nodes, see Figare 38 In addition to the common assumption of
a homogeneous effective (kinematic) porosity = for the computation
of the (transport) velocity w(x), the case of a heterogeneous poros-
ity a(x) is also siudied, althongh under the Hmiting assumption of
a positive linear correlation, that is 10 say In(nx)) < (K(X)).
In other words, upon application of the advection-dispersion equa-
tion (36), it is implicitly assumed that » is uniform. If » is a
non-uniform, Dagan [1989] gives the following equation

al 1 -
«5?+V=V{7E%mv"(ﬂ@vﬁ (45)

7

According to, for example, Gelhar er a/, [1979] and Matheron &
de Marsily [1980] the spatial variability in » may be neglected in
most circumstances for porous media, Smith & Schwartz [1981]
investigated numerically the effects of various correlations between
the effective porosity and the spatial wvariability in the conduc-
tivity. They concluded that the influence of spatial variability in
n on the solute exit location and the breakthrough curve is margi-
nal. Cvetkovic & Shapiro [1985] studied a positively correlated
porosity field in relation to a layered medium. They concluded that
a variability in »n delays the arrival time and increases the peak of
the breakthrough curve in comparison with a uniform effective
porosity. In the opresent study, the relationship given by (46) is
adopted in those experiments where n is a random variable [cf.
Carlsson & Olsson, 1981; Winberg e al.,, 1990]

In(n(x)) = 0.34 In(K(x)) (46)

In the following, a number of flgures are shown. In short,
Figares 39-54 deal with Ay/Ax = Ay/Ay = 2, Figures 55-59 with
Ay/Ax = Ay/iy = 0, and Figures 60-64 with Ay/Ax = Ay/Ay = 4. The
study focuses on Oy = 4, and the corresponding realizations are
denoted 4-22, 4-00, and 4-44, respectively. The statistical analyses
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of the flux fields are carried out predominantly for the (natural)
logarithm of the magnitude of the resultant flux vector, ie.
In(g(x)), where g(x) = |q(x)|. In one case, however, the analysis is
also done for the natural value of the resultant flux vector as well
as for its directional components. It is important to note that
because the finite-element model used is implemented with linear
rectangle elements, i.e. bi-linear interpolation functions, the com-
putations of the longitudinal and transverse components of the flux
correspond to a point that coincides with the centroid of each ele-
ment. The flux components are obtained by computing the gradients of
the piezometric head (@) in two orthogonal directions and using
Darcy’s law, see (14).

Beginning with Figures 39, 55, and 60, the conductivity fields in
these figures correspond to the three realizations 4-22, 4-00, and
4-44, respectively. An explanation of the information in these
figures has previously been given in relation to Figure 12.
Figures 40-45 show the magnitude of the specific discharge field for
Ay/Ax = Ay/Ay = 2 and oy = {0.25, 1, 4} in terms of raster graphics
and equidistant streamlines. Figures 46-48 show the equidistant
streamlines separated from the raster graphics. The discharge be-
tween two adjacent streamlines is given by AQ = AY (see (10) and
(11)). In this case, AQ is chosen to represent 5% of the total
discharge. This value of AQ applies to Figures 56-58 and Figures 61-
63 as well. In Figures 52, 59, and 64, the statistical analyses of
In(g(x)) for 4-22, 4-00, and 4-44, respectively, are shown. In
Figures 49-51, the statistical analysis for realization (case) 4-22
is extended to deal with the natural value of the resultant flux
vector as well as its directional components parallel and per-
pendicular to the mean direction of flow. Finally, Figures 53-54
show the differences between uniform and positively correlated
porosity fields. The following results are obtained in the qualita-
tive analyses of the different flow patterns and the statistical
analyses of the flux fields:
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Figures 39, 44, and 45 demonstrate that the patches of low conduc-
tivity generally correspond to patches of low flow, whereas the
patches of high conductivity do not necessarily correspond to
patches of high flow. Accordingly, the phenomenon of preferential
flow paths (channelling) appears to be related to the correlation
structure of the low conductivity patches.

Figures 48, 58, and 63 show that the number of channels and their
relative strength, i.e. streamline density, differ markedly between
uncorrelated and correlated conductivity fields. It is observed that
an uncorrelated field contains several minor channels of weak inten-
sity, whereas a correlated field contains one or a few major chan-
nels of great intensity depending on the correlation length (Ay).
For instance, it is demonstrated in Figures 48 and 63 that about 50%
of the flux flows through less than 2% of the total width of the
available flow domain at certain passages.

An interesting effect is the back flow phenomenon, i.e. segments of
streamlines where the flow direction is oppositely directed to the
mean direction of flow (see, e.g. Figures 44, 45, and 48). It is
stressed here that a pronounced back flow behaviour is believed to
be a two-dimensional artifact. Figure 37 gives some data of the back
flow phenomenon for cases 4-00, 4-22, and 4-44. Figure 49 shows the
spatial distribution of the observed back flow for N/S-flow in case
4-22.

Case Back flow Back flow
N/S W/E
[%] [%]

4-00 2.8 2.6

4-22 5.0 5.5

4-44 6.5 6.0

Fig. 37 Relative number of elements with a back flow gradient.
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For N/S-flow in case 4-22, it is observed that the probability dens-
ity function (PDF) of the transverse component of the flux is sym-
metric, ie. normal, whereas the PDF of the longitudinal distribu-
ton is skewed, being approximately log-normal provided that the
back flow is discarded (see Figures 49-51). The variograms in the x
and y directions of the transverse component reveal that this compo-
nent is poorly correlated. The comelation is, however, somewhat
better in a direction perpendicular to the mean direction of flow.
The variograms of the longitudinal component show the opposite
situation. This component is well correlated, especially in a
direction parallel to the mean direction of flow. Accordingly, the
PDF and the variograms of the resultant flux vector are dominated by
the statistics of the longitudinal component of the flux. Further-
more, it is found that the sills of the variograms of the resultant
flux vector equal the sums of the corresponding sills of the vario-
grams of its longitudinal and transverse components. This additive
variance relationship suggests a poor cross correlation between the
two orthogonal components of the flux. The observation is further
confirmed by checking their cross variogram (not shown here, how-
ever), which shows a pure nugget effect, ie. a constant-valued
variogram, of Y(h) = 8.5-10* (m/sy for h 2 0.

In order to compare more readily the PDF and the variogram of
In(q(x)) with the corresponding statistics of Y(x) = In(K(x)), the
directional dependence of q(x) is discarded by taking the magnitude
of the resultant flux vector ¢(x) = |q(x)|. Figures 52, 59, and 64
demonstrate that the PDF of the log-flux is basically symmetric.
However, the symmetric shape is distorted at high flux, and the dis-
tortion increases with increasing value of the correlation length.
Hence, the qualitative observation that patches of high conductivity
do not necessarily correspond to patches of high flow is here veri-
fied. Furthermore, the spatial correlation is statistically aniso-
tropic and the range is longer than for the log-conductivity field.
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Figures 53 and 54 show that a positive linear correlation between
the porosity and the conductivity in the log-space counteracts the
previously discussed effects of a spatially varying conductivity
field. That is to say, the PDF of In({v(x)|) is more symmetric and
has a smaller variance, and its variograms are more statistically
isotro-pic than the corresponding statistics of the log-flux.

All realizations discussed so far assume statistically isotropic
conductivity fields. One case of statistical anisotropy in the con-
ductivity field was investigated as well. This case will not be
discussed further here. Figures A1-A7 in the appendix at the end of
this study demonstrate the flow patterns and the statistics for the
statistically anisotropic case studied.
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Fig. 38 Chosen finite element discretization for the flow and trave! time

calculations, i.e. 4 elements/block . N = (84x84) and M = 16,384 .
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Fig. 48 Flow nets for N/S and W/E flow respectively. N = (64 x 64),
Nax = Nay =2 and o, = 4.00. Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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Fig. 57 Flow nets for N/S and W/E flow respectively. N = (64 x 64),

Aax = Aay =0 and 0= 1.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.



Fig. 58 Flow nets for N/S and W/E flow respectively. N = (64 x 64),
Nax = Aoy =0 and 0= 4.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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Fig. 61 Flow nets for N/S and W/E flow respectively. N

4 and 0= 025. Piezometric head (dashed) and
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stream function levels (solid) are in 5% increments between 0 and 1.



Fig. 62 Flow nets for N/S and W/E flow respectively. N = (64 x 64),
Aax = Ay =4 and o,,=1.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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stream function levels (solid) are in 5% increments between 0 and 1.
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3.4 Simulation of flow on different scales

In conditional simulation, measurements are honoured while genera-
ting a realization with a given spatial variability. For the flow
problem, the measurements may represent flux, conductivity or head,
or any combination of these. In this study, individual conditional
realizations are not studied. Instead, the kriged conductivity field
corresponding to the average look of all possible conditional reali-
zations for a given set of data is studied. Under conditions of
uniform average flow, the average hydraulic behaviour of all
possible realizations is expected to correspond to the hydraulic
behaviour of the average conductivity field [cf. Peck er al, 1988].
In this study, the conditioning on conductivity data is addressed.
The use of head data is not considered here because of the diffi-
culties and uncertainties associated with its determination in deep
boreholes in fractured hard rock [see, e.g. Almén et al, 1986).
Flux data, if they exist, are more valuable for model calibration or
as performance measures.

In the real world, conductivity data are obtained from inter-
pretations of pumping tests, e.g. single-hole double-packer tests
and interference tests. The information from interference tests is
not readily included in a conditioning process because of the diffi-
culties in determining the representative scales. Therefore, in the
experiments presented below, only single-hole packer tests data are
discussed. However, it is important to note that although the ex-
pression ’‘packer test data’ is used below, the corresponding values
are derived numerically. For instance, the block conductivity value
used on a, for example, 24m scale, does not come from ’a true’
packer test using a 24m straddle interval. Instead, it is replaced
by a numerically derived conductivity value for a (24m)? block.
There are several reasons for this simplification. The two major
reasons are (i) it is a simple and straightforward way to control
the radius of influence, i.e. to maintain a unique point support of
each scale, and (ii) it provides a possibility to study the effects
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of (hydraulic) anisotropy. The anisotropy is approximately addressed
by doing each numerical flow experiment in two fixed orthogonal
directions. The working hypothesis is made that the two directions
are parallel to the principal directions of anisotropy of conduc-
tivity, i.e. it is assumed that the conductivity tensor (Kg) is in a
diagonal form regardless of the block size.

Two cases of conditioning are studied: (i) the -conductivity
field is totally determined (deterministic case), and (i) the
conductivity field is only partially determined (stochastic case).
In the latter case the remaining (unknown) values have to be
estimated. There are several estimation methods in common use [see,
for example, Warrick et al., 1990; Istok & Flint, 1991]. The ones
compared here are the inverse distance method and ordinary kriging.
The latter method takes the correlation into account, whereas the
former method does not.

The differences in the hydraulic behaviour between the deter-
ministic and the stochastic simulations are studied with respect to
the hydraulic behaviour of an a priori case representing an assumed
known realization of the flow domain. The chosen a priori case is
characterized by Ay/Ax = Ay/Ay = 2, oy = 4, and N = 64x64, ie. case
4-22. The a priori case is shown in Figure 70. For Ax = Ay = 3m, the
a priori case corresponds to a hypothetical rock block of (192m)?
and Ay = 6m. The hydraulic behaviour of the a priori case is of
course completely known, see Figure 78. The interest here is focused
on investigating the possibility of simulating the a priori be-
haviour on a different scale, or even on the same scale as the a
priori case but with only a limited amount of data for conditioning.

Two support scales are studied; a "24m scale” and a "3m scale".
In what follows, the a priori case is compared with various
realizations using block conductivities on these two scales. On the
24m scale, the flow domain is represented by 64 (24m)? blocks,
whereas on the 3m scale it is represented by 4,096 (3m)? blocks, see
Figure 66. The objectives are to investigate (i) the validity of
applying the results obtained from the unconditional simulations of
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flow in single blocks to flow in an aggregate of blocks, and (ii)
the differences between two scales of support. It is hypothesized
that anisotropy is important for the upscaling process.

The degree of disagreement between the simulation experiments (being
deterministic or stochastic; on the 3m scale or on the 24m scale)
and the a priori case is expressed in terms of an overall error
index (OED. This index is here defined as the sum of four dimen-
sionless errors. Two of these errors concern the differences in flux
on a homogenized "192m scale”, whereas the other two concern the
differences in head at more than 16,000 interior nodes. The
hydraulic behaviour is studied in two orthogonal directions. A low
value of the OEI indicates a good experimental fit.

The dimensionless error of the flux is equivalent to that of
the block conductivity (see relation (43)). For flow in direction i

the dimensionless error is denoted Ef( and defined as

K; - K?:

— ‘ i=12 (47a)

E} =‘

with K3 being the block conductivity of the a priori case for flow
in direction i. The dimensionless error in the head solution for
flow in the ith direction is denoted E&, and defined as [cf. Loague &
Green, 1990]

MSE(;
i=1,2 (47b)

Eg =
¢
(oG’

with MSE(ip being the mean square error in ¢ for flow in direction i,
1 ¥
i . apey 2 .
MSE&, = F-Zl(% - (iji) i=12 (47¢c)
J:
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(04’ in (47b) denotes the mean square deviation (variance) in @
of the a priori case in direction i. Consequently, the overall error

index (OEI) may be written as
2

OEI = [Ef'( + Eé, (47d)
i=1

In what follows, nine different numerical experiments, denoted A-/,
are carried out. Three experiments address the issue of interpola-
tion and conditioning, and six experiments address statistical and
hydraulic upscaling, see Figure 635.

A Inverse distance, 2 Ay K = fir?) 3m > 3m
B Ordinary kriging, 2 Ay K = f(n(h) 3m - 3m
C Ordinary kriging, 4 Ay K = f(y,(h)) 3m » 3m
D Stat. geometric mean K = exp(my) 3m 5 24m
E Ordinary kriging, 2 Ay K = f(y,(h) 3m - 24m
F  Ordinary kriging, 4 Ay K = f(y,(h) 3m > 24m
G Both components Ky=K; & Ky=K, 3m > 24m
H Hydr. geometric mean K = VK, K,) 3m > 24m
I One component K=K, or K=K, 3m > 24m

Fig. 65 The nine experiments used here to study interpolation and
conditioning (A-C) and upscaling (D-I).

As shown in Figure 65, three cases are studied using 3m blocks: (A)
the inverse distance method with a search radius of r = 2 Ay, (B)
ordinary kriging with r = 2 Ay, and (C) ordinary kriging with
r = 4 Ay. In each case, the equations are conditioned upon 512 "3m
packer tests" (conductivity values) using eight equidistant bore-
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holes, which means that 3,584 values are unknown and have to be
estimated (K*). Each borehole provides 64 conductivity values on the
3m scale and the borehole spacing is 24m, see Figure 67a. Upon
kriging, the variogram of the a priori case is used here rather than
the experimental variograms. According to Warrick er al. [1990], the
accuracy of ordinary kriging is more influenced by the sample on
which the interpolations are made than by the exact model.

Figures 68 and 69 show some statistics for the three cases A,
B, and C, as well as for the a priori case 4-22. Figures 71-73 show
the estimated conductivities using raster graphics. Figures 74 and
75 show the estimation errors (see also the statistics for the esti-
mation error in Figure 68). The flow nets for the three cases are
shown in Figures 79-81.

Figure 67b shows the 64 24m blocks used in this study. The 64
block conductivities are obtained either deterministically or
stochastically. The deterministic way 1is here represented by the
three cases denoted G, H, and I, see Figure 65. In these three
cases, the block conductivity for each one of the 64 24m blocks is
estimated by running the flow model for that particular block, i.e.
the blocks are separated one by one using the conductivity values of
the underlying a priori case. Furthermore, in order to investigate
the role of hydraulic anisotropy, the flow model is run in two
orthogonal directions for each block. The values obtained in this
manner are conceptually regarded as representing 24m packer tests
using the eight boreholes mentioned previousty. That is to say, each
borehole provides eight block conductivities on the 24m scale.

The stochastic way on the 24m scale is here represented by the
two cases denoted £ and F in Figure 65. In these two cases, the 64
block conductivities are estimated by computing the geometric mean
of the previously kriged conductivities in conjunction with cases B
and C. It should be noted that there are other more sophisticated
ways to accomplish such block estimates [see, for example, Journel &
Huijbregts, 1978; de Marsily, 1986; Peck et al., 1988].
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The last experiment to be discussed here is case D in Figure 65. In
this case, the conductivity of a block on the 24m scale is obtained
by computing the geometric mean of all 3m data within it, ie. the
estimate is in this case fully conditioned. Figure 76 shows a raster
graphics representation of case D. In Figure 77, the covariances for
cases D and / are shown. Figures 82-88 show the flow nets for cases
D-I. In Figures 89 and 90, the results of all the calculations are
presented. In words, the results from the nine experiments are

interpreted as follows:

Ordinary kriging (B) (Figures 72 and 80) yields a better result than
the inverse distance method (A) (Figures 71 and 79), but is not as
good as ordinary kriging (C) (Figures 73 and 81). The search radius
r=4 Ay gives full credit to the range of correlation of the log-
conductivity field. The search radius r =2 Ay is only half the
range of correlation. In the inverse distance method, the correla-
tion is irrelevant, which makes this method is of interest whenever

correlation is absent, ie. Ay > O.

Ordinary kriging (C) (Figures 73 and 81) on the 3m scale yields a
better result than using only one of the two components (/) of f(s on
the 24m scale (Figures 87 and 88).

The statistical (spatial) geometric mean (D) (Figures 76 and 82)
yields a better result than ordinary kriging (E) and (F) (Figures 83
and 84). The spatial geometric mean may in this case be regarded as
the optimal block estimator on the 24m scale.

A use of both components of f(s (G) (Figure 85) yields the best re-
sult. It is far better than using only one component (/) (Figures 87
and 88). Moreover, it is also better than using the hydraulic geo-
metric mean (H) (Figure 86), or the statistical (spatial) geometric
mean (D) (Figures 76 and 82). It is noteworthy that the flow net in
Figure 85 1is not locally orthogonal [cf. Bear, 1972]. In other
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words, the gradient of ¢ 1is not necessarily parallel to the
direction of flow in an anisotropic conductivity field.

The covariance functions on the 24m scale (see Figure 77), as
inferred by analysing the block conductivities in (D) and (),
suggest that (i) the initial exponential form of the covariance
function on the 3m scale is preserved on the 24m scale, and (i) the
changes in Ay and oy appear to follow the principle of conservation
of uncertainty [cf. Vanmarke, 1983]. These results are somewhat in
contradiction to the study by Rubin & Gémez-Herndndez {1990].

The results obtained here are of course only valid for the nine
experiments in Figure 65 under the prevailing conditions described
previously. It is important to note that the present study is de-
pendent on two assumptions, namely that (i) the conductivity tensor
on the 24m scale is in a diagonal form, and (ii) the principal com-
ponents of this tensor are equal to the conductivities in two fixed
orthogonal directions. Strictly speaking, both these assumptions are
physically incorrect, at least for small and moderate block sizes.
On the other hand, it is demonstrated in the present study that
these assumptions are probably more appropriate than the usual
statistical assumption of hydraulic isotropy. In spite of the tre-
mendous progress in subsurface hydrology owing to the developments
in stochastic continuum theory, it must not be forgotten that
physics is an experimental science, and the numerical experiments
presented here have shown that hydraulic anisotropy deserves much
more attention in the upscaling process.

The theory of regionalized variables and ordinary kriging
constitute cornerstones of geostatistics. For example, Warrick et
al. [1990] and Istok & Flint [1991] discuss important constraints of
traditional geostatistics. So does also Goémez-Herndndez [1991] who
questions the use of Gaussian generators, which he claimes to
neglect the impact of high connectivity between the exterme values.
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(b)

Fig. 66 Two different support scales representing the same medium:

(a) N=(64x64) Ax = Ay =3m {b) N=(8x8 Ax= 1y =24m.
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Fig. 67 Schematic view of the differences in "point support" for 8 boreholes:

(b) 64 24m-packer tests .

(a) 512 3m-packertests and
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Fig. 68 Histograms for three estimates of the hydraulic conductivity
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case is shown in (a) . In (e) and (f} error histograms for the two
kriging estimates (K*) are shown.
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Fig. 70 The a priori case, i.e. case 4-22 .
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Fig. 72 Case B: ordinary kriging, SR = 2A.
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Fig. 73 Case C: ordinary kriging, SR = 4.4,
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Fig. 76 Case D, geometric mean of all 3m data .
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Fig. 77 Covariances for the hydraulic conductivity of the upscaled blocks
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Fig. 78 Flow nets for the a priori case, i.e. case 1-22. N = (64 x 64) blocks,
Alax = Ajay =2 and s~ 3.89 . Piezometric head (dashed) and

stream function levels {solid) are in 5% increments between 0 and 1.
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Fig. 79 Flow nets for case A, inverse distance SR = 2X | N = (64 x 64) .

S = 2.76 . Piezometric head (dashed) and stream function

lavels (solid) are in 8% increments between 0 and 1.
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Fig. 80 Fiow nets for case B, ordinary kriging SR = 2 A\, N = (64 x 64) .
Sy = 2.79 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.
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Fig. 81 Flow nets for case G, ordinary kriging SR = 4 A, N = (64 x 64) .
Snk = 2.33 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 82 Flow nets for case D, geometric mean of all 3m data, N = (8x 8} .
i = 1.85 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 83 Flow nets for case E, ordinary kriging SR=2 A\, N = (8 x 8) .
S = 2.14 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 84 Flow nets for case F, ordinary kriging SR~ 4 A\, N = (8x8) .

S = 1.55 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 85 Flow nets for case G, both principal components, N = (8 x 8).
Piezometric head (dashed) and stream function (solid) levels

are in 5% increments between 0 and 1.



Fig. 86 Flow nets for case H, geometric mean v (K Ky), N = (8 x 8).
Snae = 1.99 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 87 Flow nets for case |, K,, principal component, N = (8 x 8) .

S = 2.16 . Piezometric head (dashed) and stream function

fevels (solid) are in 5% increments between 0 and 1.



Fig. 88 Flow nets for case |, Kyy principal component, N = (8x8).

Singo = 2.11 . Piezometric head (dashed) and stream function

levels (solid) are in 5% increments between 0 and 1.



Fig. 89 Detailed results for the nine experiments .
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Fig. 90 Overall error indices (OEH for the nine experiments .



3.5 Simulation of solute transport

Few problems in subsurface hydrology bring more attention than the
transport of solutes in heterogeneous geological media. Because of
the well-documented scale dependence in a large number of field and
laboratory experiments, the relevance of using the traditional
advection-dispersion equation is questioned. The field observations
imply that the dispersivities are dependent on the elapsed travel
time. Hence, a Fickian diffusion process from the onset of a solute
injection is not an adequate descripion of the hydrodynamic dis-
persion phenomenon on all scales.

In recent years, the stochastic continuum theory has been in-
creasingly used to study the scale dependence of advection-
dispersion phenomena, and different approaches are reported in the
literature. The developments used here are limited to deal with uni-
form average flow in two dimensions under a rather moderate hetero-
geneity of the log-conductivity field, i.e. ©y? < 1. This limitation
stems from a use of "first-order theory”, ie. a first-order ap-
proximation of a small perturbation of the log-conductivity field.
The non-linear effects that arise when ©y? > 1 are considered to be
important although few results have been reported so far [see, e.g.
Dagan, 1988; Neuman & Zhang, 1990; Rubin, 1990].

The objectives here are to investigate the possibility (¢) to
reproduce numerically the analytical results obtained by first-order
theory, and (i) to extend the numerical simulations to allow for
high conductivity contrasts. Only single realizations of three
different cases of heterogeneity are studied. Thus, the simulations
undertaken do not treat questions concerning the ensemble statis-
tics. However, the studied realizations are relatively large with
respect to the correlation lengths used, ie. LAy = {16, 32, 64}.
Because the injected solute, which in this study is represented by
particles, is released over the entire upstream boundary, it is
assumed that the spatial variability is adequately accounted for in
order to justify an analysis of the scale dependence of the macro-
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dispersivities in each realization. To simplify the problem, both
diffusion and local dispersivity are discarded in the numerical
simulations, implying that a purely advective transport process is
studied. Furthermore, because the implemented finite element model
uses only a first-order continuity in the heads in conjunction with
a discrete conductivity field of high contrasts, numerical con-
straints arise while computing the velocity v(x). That is to say,
the velocities do not satisfy continuity at the element boundaries
[see, e.g. Kinzelbach, 1987a; Durlofsky, 1991]. To circumvent this
problem, an alternative procedure is used here in the numerical
simulations of advective transport. The procedure is based on the
dual formulation of flow [see, e.g. Frind & Matanga, 1985], which is
suited for studying transport problems, because the relative differ-
ence in the stream function (¥) between any two streamlines is pro-
portional to the total discharge (£ AQ) of the flow domain. Further-
more, if the distance between the two streamlines is taken into ac-
count, the specific discharge of the streamtube is readily computed.
However, because the used finite element model furnishes only stream
function values at the nodes, an interpolation algorithm is
implemented to compute the velocities over the entire flow domain.
Goode [1990] discusses the advantages of wusing a bi-linear
interpolation method in relation to other interpolation methods for
a finite difference scheme. The method chosen here considers a more
general class of quadrilateral elements and is called isoparametric
interpolation [cf. Bear & Verruijt, 1987].

As mentioned previously, the size of the flow domain is impor-
tant in transport studies. In this study, the scale associated with
an asymptotic behaviour of the macrodispersivity is presumed to be
of interest. Whether or not the tortuosity is a relevant indicator
of the required scale may be an open question, but the tortuosity is
sometimes referred to in conjunction with permeability and disper-
sivity definitions [see, e.g. Bear, 1972, 1979; Dullien, 1979; Bear
& Verruijt, 1987]. As an assumed indicator of the required size, the
tortuosity is here computed for three realizations characterized by
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M/Ax = Ay/Ay = {0, 2, 4}, and 6y = 4. Following Dullien [1979], the
tortuosity (7) may be defined as

T = [_—]2 (48)

with L, being the "effective average path length” and L the shortest
linear distance along the direction of macroscopic flow. Four block
sizes are studied for each realization, namely N = {8x8, 16x16,
32x32, 64x64}, see Figures 91-93. Figure 94 shows that only the
largest block size appears to be suited for numerical simulation of
solute transport. For Ay/Ax = Ay/Ay = 4, however, the tortuosity
shows no tendency to be close to an asymptotic behaviour even for
the largest block size.

A particular problem in numerical transport studies concerns
the implementation of a flux-weighted boundary condition at the up-
stream boundary. The conventional approach to accomplish a flux-
weighted injection is to select a large number of uniformly distri-
buted injection points, and then to inject a flux-weighted number of
particles at the selected points. For instance, it is quite common
to take the positions of the grid nodes in a regular mesh of finite
elements or finite difference cells as injection points [see, for
example, Desbarats & Srivastava, 1991]. There is no ambiguity in
this approach from a conceptual point of view, but it is found here
that such an approach does not reproduce the results derived by
first-order theory, unless the spacing between the injection points
is very small, the heterogeneity of the conductivity field is quite
moderate, ie. Oy? « 1, or local dispersion is included. Figures 95
and 96 show four flow patterns for uniformly distributed injection
points for N/S-flow and S/N-flow, respectively. In Figure 95,
oy = 1, whereas Oy = 4 in Figure 96. It is readily seen that the
N/S-streamlines are different from the S$/N-streamlines regardless of
the number of particles injected. The present study suggests an
approach which is considered to be more consistent from a physical
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point of view. The suggested injection technique uses the equi-
distant contour level positions of the stream function solution on
the upstream boundary, and only one particle per streamline needs to
be injected. Figures 97-99 demonstrate the approach taken here.
Moreover, these figures clearly demonstrate the previously observed
differences in the channelling due the wvalue of the correlation
length (Ay). That is to say, comrelated conductivity fields consist
of a few major paths of preferential flow, whereas truly random
media consist of many minor paths.

Figure 100 shows the spreading of an instantaneous solute
injection in terms of particles in two orthogonal flow directions
denoted N/S and W/E, respectively. The suggested flux-weighted in-
jection technique described above is used. The flow domain in
Figure 100 is characterized by Ay/Ax = Ay/Ay =2, oy =1, and
N = 64x64. The instantaneous injection consists of 999 particles
(streamlines). Thus, the total discharge (X AQ) is divided into 1000
equally large increments. The spreading in Figure 100 is shown for
two travel times: f; = 0.125 ¢ and & = 0.5 1, where 1
denotes the mean transit time of the fluid. The spreading of the
particles as a function of time is studied by using the non-Fickian
position analysis outlined by Dagan [1982, 1984, 1987, 1988]. The
analysis is described briefly in Chapter 2. In short, the key entity
of interest is the displacement covariance tensor (X). The calcula-
tion of the longitudinal displacement covariance (X;;) as a func-
tion of time is essentially a straightforward matter because the
flow problem is one-dimensional. The computation of the transverse
displacement covariance (X,;), however, is more complicated. The

"

present study suggests the following "mixed" analysis:

The equidistant contour level positions of the stream function solu-
tion on the upstream boundary are conceptually considered to start
at a common point. The idea is figuratively visualized for oy = 4 in
Figures 101, 102, and 103. Indeed, these figures are merely modifi-
cations of Figures 58, 48, and 63, respectively. In other words, by

relating the time-dependent lateral positions of a moving particle,
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which follows a flux-weighted streamline, to its equidistant contour
level position on the upstream boundary, the computation of the
"transverse displacement covartance" as a function of time becomes a
straightforward matter from a practical point of view.

Figures 104-106 relate to Figure 100. Figures 104 and 105 show
the calculated histograms at three different times, 7, = 0.125 1
t, = 025t and # = 0.5 f,, whereas Figure 106 shows the two
displacement covariances, X,; and X,,, computed according to (39a)
and (39b), respectively. The differences between the two flow direc-
tions, as shown in Figure 106, are interesting. Apparently, the sta-
tistics of the studied conductivity field are not invariant by rota-
tion. Figure 111 shows the two corresponding time-dependent
dispersivities, A,; and A,,, as functions of the travel distance.
Ay and A,, are computed according to (40a) and (40b), respectively.

Figure 100 demonstrates a severe problem caused by the channel-
ling phenomenon, i.e. the fastest particles in each flow direction
reach the corresponding downstream boundaries at 7 = 0.6 . In
other words, the non-Fickian particle position analysis is for the
case shown in Figure 100 restricted to treating ¢ < 0.6 r, which
means that only 50-60% of the transport problem can be studied by
the position analysis (cf. Figure 111). For oy = 4, the situation is
even worse, ie. the time limit is found to be ¢ < 0.15 7, which
in fact makes the position analysis more or less useless to what
follows below. The obvious approach to circumvent the encountered
problem of the position analysis is to consider the non-Fickian
arrival time approach. However, the theoretical developments of this
approach are currently also limited to 642 £ 1 [cf. Shapiro &
Cvetkovic, 1988]. Because of the interest of knowing the scale where
a non-Fickian and a Fickian analysis meet, the results obtained from
the non-Fickian position analysis are here compared with a Fickian
analysis, which is based on the first two moments of the particle
arrival at a fixed plane perpendicular to the mean direction of flow
[cf. Kreft & Zuber, 1978]. It is important to note that the arrival
time analysis used here is a strict Fickian interpretation, i.e. it
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assumes a diffusion process from the onset of the solute injection,
thus devoid of any notion of scale. Figures 107-109 show a few
residence-time and residence-path histograms at a fixed plane coin-
ciding with the downstream boundary for N/S-flow in the following
nine cases: Ay/Ax = Ay/Ay = {0, 2, 4}, oy = {0.25, 1, 4}. In Figure
110, the residence-time histograms for a uniform porosity field are
shown in relation to the residence-time histograms for a positively
correlated porosity field. Figure 111 shows the longitudinal and
transverse  dispersivities for the Fickian arrival time analysis
calculated by using (42a) and (42b), respectively.

The principle of reciprocity is used in the present study to
verify both the particle tracking algorithm and the suggested
injection technique described previously. Figure 112 shows an
application to the case shown in Figure 100. It is important to note
that in Figure 112, the flow direction is unimportant. That is to
say, upon choosing a N/S-flow direction, the statistics for the
reverse direction (S/N-flow) are readily obtained by setting all
arrival times at the downstream boundary (§) to zero in a backward
calculation. In other words, the final dispersivities are indepen-
dent of the flow direction, although the evolution is dependent on
the flow direction. Figure 113 shows longitudinal Fickian arrival
time analyses for three different values of oGy, ie. oy = {IV2, 1,
4}, in relation to (40a). Figures 114-116 show longitudinal Fickian
arrival time analyses for the aforementioned cases 4-00, 4-22, and
4-44, in relation to (40a). Figure 117 shows the corresponding
transverse Fickian arrival time analyses for the three cases in
relation to (40b). Figure 118 shows a comparison of the non-Fickian
position analysis and the Fickian arrival time apalysis at a
distance of 32 Ay from the onset of the solute injection. The
asymptotic value of the longitudinal macrodispersivity given by
(41a) is also inserted. The comparison is made for different values
of oy>. It is important to note that the non-Fickian position
analysis is limited to ©y2 < 1. The obtained results from all the

different experiments discussed above are summarized as follows:
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The numerical algorithms used for the particle tracking, i.e. the
dual formulation of flow and the isoparametric interpolation, are
found to be well suited for studying advective transport in a het-

erogencous conductivity field.

The suggested technique to accomplish a consistent flux-weighted in-
jection mode by using the equidistant contour level positions of the
stream function on the upstream boundary is proved to be appro-
priate. The validity is verified in the study by the principle of

reciprocity.

The analytical results derived by the position analysis under first-
order theory are here numerically reproduced for Ay/Ax = Ay/Ay = 2,
6y = 1, and N = 64x64. The longitudinal dispersivities computed by
means of the Fickian arrival time analysis reach the asymptotic
values predicied by first-order theory, at a rate that is sur-
prisingly concordant with the non-Fickian position analysis.

For o042 <4, it is found that a Fickian arrival time analyis
deviates moderately from what is predicted by the equations of the
position analysis. For o©y? > 4, a Fickian arrival time analysis
yields the result that (§) the transverse dispersivity increases
linearly in proportion to Oy and (ii) the longitudinal dispersivity
approaches the asymptotic value at a faster rate than is predicted
by the position analysis. For ©y? = 16, numerical difficulties are
observed. However, the Fickian arrival time analysis shows a
remarkable reciprocity considering the immense conductivity con-
trasts which in this case comprise about 12 log,, cycles in K.

A uniform porosity field shows a larger spreading in arrival times.
Finally, a figurative visualization of the “transverse disper-

sion" in relation to the aforementioned statistically anisotropic
realization is shown in Figure A8 in the appendix.
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Fig. 99 Flux-weighted distribution of the injection points .
(@) 0, =1.00 and AfAx = N/ay=4. N= (64x64).

(b) 0, =400 and N/Ax = A/ay=4. N=(64x64).
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Fig. 101 Figurative plots of apparent transverse macrodispersion, that is,
lateral advective transport is estimated by lumping streamlines.

N=(64x64), Nax= MNay=0 and 0= 4.00.



Fig. 102 Figurative plots of apparent transverse macrodispersion, that is,
lateral advective transport is estimated by lumping streamlines.
N=(64x64), NMax= Aay=2 and 0,,,=4.00.



Fig. 103 Figurative plots of apparent transverse macrodispersion, that is,
lateral advective transport is estimated by lumping streamlines.
N = (64x64), ANax= Nay =4 and 0O,,=4.00.
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The dispersivities are computed by a mixed technique, see (42b).
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The longitudinal dispersivities are computed according to
Kreft & Zuber [1978], whereas the transverse dispersivities are

computed by a mixed technique, see (42b). L/A = 32,




3.6 A discontinuum model

The channelling observed in the experiments for oy? = 16 is signifi-
cant in many ways, see Figures 97-99. It is interesting observation
that large portions of the generated flow domain do not contribute
to the flow. It is of great interest to find a physical criterion
that makes it possible to discard the no-flow portions, because (i)
the computational constraints will be relaxed, meaning fewer
numerical problems and more computer memory at hand, and (ii) one
will have an opportunity to study the link between continuum models
and the more recent discrete fracture network models. An obvious no-
flow criterion is the measurement threshold of the double-packer
test equipment. For 3m packer tests, the measurement threshold is
ap-proximately 10! m/s [see, e.g. Nilsson, 1989, 1990]. For a
typical borehole of 500-600m depth in fractured hard rock, about 20-
50% of the measurements are below or at the measurement threshold,
so there is a significant loss of information. If the aforementioned
measurement threshold of a 3m packer test is translated into a
constant-valued aperture of a single fracture by means of the "cubic
law" [see, e.g. Witherspoon et al., 1980; Robinson, 1984; Herbert &
Splawski, 1990], an aperture of about 3-4 um is obtained, which in
fact is considered to be close to the lower limit of validity of the
cubic law [see, e.g. Engelder & Scholz, 1981; Witherspoon, 1986].
Hence, it may be physical features of the rock that cause the loss
of information, besides the technical constraints of the double-
packer test equipment. The objective here is to examine briefly the
differences in flow and transport between continuous and
discontinuous conductivity fields. The calculations are limited to
two-dimensional flow and the following cases are studied:
A/Ax = Ay/Ay = {0, 2, 4}, oy = 4, denoted 4-00, 4-22, and 4-44,
respectively. For each continuous field calculations are made for a
corresponding discontinuum field in which that part of the flow
domain with a conductivity less than the conductivity threshold of
25% 1is discarded.
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A conductivity threshold leads to impermeable boundaries in the
interior of the flow domain, see Figure 120. The stochastic discon-
tinuum shown in this figure is a replicate of the stochastic con-
tinuum shown in Figure 12 subjected to a 25% conductivity threshold.
The discontinuities or non-conducting support blocks are indicated
by an "X", and are in the following called "X-blocks". In addition
to the value of the conductivity threshold, the configurations of
the X-blocks are also dependent on the correlation length of the
hetero-geneity, see Figures 123, 125, and 127. Therefore, the exact
geo-metries of the X-blocks remain unknown until each realization is
generated. The analysis required prior to the solution of the flow
equations resembles to some extent the problem of determining the
connectivity of a discrete fracture network realization [cf., e.g.
Robinson, 1984; de Marsily, 1985]. In terms of the dual formulation
of flow, the perimeter of any impermeable part of the flow domain
constitutes a streamline of unknown stream function value. Thus,
while solving the flow equations for the stream function, the
modeller will face the classical problem of having more unknowns
than equations. The simple numerical technique developed in this
study to circumvent this problem may be explained as follows:

Consider the discontinuous conductivity field in Figure 120 and, in
particular, the two X-blocks placed vertically side-by-side close to
the lower-left corner. Upon solution, the perimeter of the two X-
blocks constitutes a streamline. Although the stream function value
of the perimeter is unknown, it is important to recognize that the
perimeter is constant-valued, i.e. all nodes lying on the perimeter
have the same W wvalue. In other words, the configuration of the
perimeter is unimportant from a node-numbering point of view while
seeking the stream function solution (¥). The technique suggested
here is to renumber the mesh and treat all the nodes on a common
perimeter of X-blocks as a single node. Thus, the problem of too
many unknowns is solved by a strategic node numbering. However, it
is important to note that the suggested numbering technique may lead
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to problems for the equation solver. For example, neither of the two
direct solvers used here, ie. a frontal method solver [Duff, 1981]
and a triangular de-composition solver [Istok, 1989], can treat the
resulting problem unless the assembling algorithms are updated.

In Figures 121 and 122, the solutions of the piezometric head (¢)
and the Lagrange streamm function (W) for two different discreti-
zations of the discontinuous (48m)2 block in Figure 120 are shown. A
visual comparison of the two solutions in relaton to the corre-
sponding ones shown in Figures 17 and 19, respectively, demon-
strates the validity of the suggested technique from a qualitative
point of view. A quantitative validation is given in Figure 119,
where it is demonstrated that four elements per block in the discon-
tinuous case (Case D-4) give approximately the same results as 64
elements per block in the continuous case (Case C-64). The increased
performance is due to less contrasts in the conductivity field.

Case No. of W/E-flow N/S-flow
elements K g Ky &
per K-value  [n+10 m/s] [n=10 m/s]

C-1 1 5.0535 6.3140

C-4 4 44722 5.8903

D-4 4 4.0998 5.4953

C-16 16 4,1823 5.6853

C-64 64 40178 5.5808

D-64 64 3.6240 5.1893

C = Continuous D = Discontinuous

Fig. 119 Comparison of block conductivities for the continuous con-
ductivity field shown in Figures 12 and the discontinuous
conductivity field shown in 120.

- 187 -



Figures 124, 126, and 128 demonstrate the flow patterns for the dis-
continuous cases shown in Figures 123, 125, and 127, respectively.
The flow patterns and the conductivity fields for the corresponding
continuous cases are shown in Figures 48/39, 58/55, and 63/60, re-
spectively. (Figure A9, in the appendix, shows a discontinuous rea-
lization corresponding to the statistically anisotropic conductivity
field shown in Figure Al for a conductivity threshold of 25%. The
corresponding flow pattern is shown in Figure A10.) Figure 129 shows
the ratio of the discontinuous block conductivity (K;) to the
corresponding continuous block conductivity (Kg) for different
values of the conductivity threshold. Figure 130 shows a comparison
of the residence-time histograms for case 4-22 and the corresponding
discontinuous replicate for a conductivity threshold of 25%.
Residence-time histograms are shown in Figure 130 for both direc-
tions of flow. Figure 131 shows a comparison of the dispersivities
for case 4-22 and the corresponding discontinuous replicate for to a
conductivity threshold of 25%. The dispersivities are computed by
the Fickian arrival time analysis discussed above. The results for
the different flow and transport simulations can be summarized as

follows:

Figures 119, 121, and, 122 demonstrate that the suggested extension
of the dual formulation of flow to address discontinuous conductiv-
ity fields relaxes the numerical constraints associated with high

conductivity contrasts.

The solutions for the three discontinuous realizations, see Figures
123-128, reveal that the flow patterns of the corresponding con-
tinuous realizations are essentially preserved in spite of dis-
carding all parts with a conductivity below a conductivity threshold
of 25%.

The experiments shown in Figure 129 reveal that the main effect of a
conductivity threshold is an increasing anisotropy. There is a clear
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difference in the anisotropy between the three realizations con-
sidered here. The uncorrelated case is observed to be the least sen-
sitive to a conductivity threshold. Moreover, it is observed that
for a discontinuous conductivity field, the relation between the
spatial geometric mean (K;) and the corresponding block conductivity
(K;) deviates from the analytical relation valid for a continuous
conductivity field (see (32)). The differences increase drastically

as the conductivity threshold increases.

Figure 130 shows that for the case studied here, ie. case 4-22 with
a conductivity threshold of 25%, the differences in the residence-
time histograms between the continuous and discontinuous cases are

moderate.

Figure 131 shows that for the case studied here, ie. case 4-22 with
a conductivity threshold of 25%, the "asymptotic values" of the
longitudinal ~ dispersivities in two  orthogonal directions are
somewhat larger compared to the asymptotic values of the longi-
tudinal dispersivities of the corresponding continuous realization.
The behaviour of the transverse dispersivities is more complex. In
one direction, the transverse dispersivity is somewhat larger,
whereas in the other direction, it is much smaller. In both
directions, however, they seem to obey the decreasing trend of the

corresponding continuous realization.

- 189 -



2-D HYDRAULYIC CONDUCTIVITY FIELD

No .

e

Cepeieliienss
SRS

#
I

+5.04E-14

ﬁ
+5_86E-08 &\\ +2 62E-07

[ S ns o
Lendt e

+7.02E-10

Fig. 120 lllustration of

of blocks:

A AT

o
5
2
3

"
5
g5

i
R

&
45

S
ikl
0
e

RO
X
%

'
5
4t
3

s
+
e,
a2
Kot

S

2
o
P

R
o
ey

.
KRR
2
e
R
e

&
b
3
ot
it
friete
i
%
X

XIXIXIXIXY]

3
D

BT TR
£ AN

ST
it
E

:
0

ackebtl e
e

+3.49E-09

' +9.78E-07

+5.04E-14

THRESHOLD

2.0

2
il 3%
o %
SRt

+3.49E-

16 > 16

AN

a;
o

c

R
B
SeCend

e
o

+1.73E-08

+3.50E-06

2.0

N

ATttty
IR

+5.86E-08

+2.67E-04

09

a 25% conductivity
threshold .



Fig. 121 Flow nets for a 25% conductivity threshold, 4 elements/block ,

Nbox = Ay =2 and 0= 4.00 . Piezometric head (dashed) and

stream function levels {solid) are in 5% increments between 0 and 1.



Fig. 122 Flow nets for a 25% conductivity threshold, 64 elements/block ,
Aax = MNasy =2 and o= 4.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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Fig. 124 Flow nets for a 25% conductivity threshold . N = (64 x 64) ,

Nax = Aay =2 and o, = 4.00. Piezometric head (dashed) and
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stream function levels (solid) are in 5% increments between 0 and 1.
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Fig. 128 Flow nets for a 25% conductivity threshold . N = (64 x 64) ,
Nax = Aay =4 and 0, = 4.00 . Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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4 SUMMARY AND CONCLUSIONS

The upscaling of model parameters, i.e. scale-dependent parameters,
is a key issue in many research fields concerned with parameter
heterogeneity. The present study deals with groundwater flow and
solute transport in fractured hard rock treated as a stochastic
continuum on a 3m scale, ie. the real world problem of three-
dimensional flow and transport in a fractured hard rock is here
simplified to a wo-dimensional numerical flow model of a continuum.

4.1 General background

Geological properties vary naturally over space as a consequence of
the complex processes through which the media evolve. Evidence that
geological media are heterogeneous even within well defined geolo-
gical units, is provided by laboratory analyses of soil and rock
samples, lithological and geophysical logs of boreholes, well tests,
surface geophysical surveys, and direct geological observations.
This evidence is in clear contradiction to the classical approach of
regarding all subsurface materials as continua in which material
characteristics are represented by constant parameters. Substantial
research activity is taking place not only to understand the effect
of this heterogeneity on flow and transport in geological media but
also to characterize media properties on scales appropriate to the
development of subsurface flow and transport models. Much of the
work reported in the literature depends on the development of models
that statistically describe the spatial distribution of media pro-
perties and permit their numerical simulation. Therefore, research
in physically based distributed modelling is becoming increasingly
concened with the incorporation of stochastic elements into such
models, particularly dealing with spatial variability and sub-grid
scale effects. Although a number of operational models have been
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developed, fundamental difficulties still exist both on the
conceptual level and in the numerical simulation. For instance,
material properties represented by parameters cannot be regarded as
representatives of the true material characteristics but only, at
best, as some scale-dependent average quantities of the latter. The
objectives of the present study can be summarized as follows:

Unconditional simulation of flow: The objective is to investigate
the relationship between the statistical (spatial) geometric mean of
local conductivities and the numerically computed equivalent block
conductivity as a function of scale, i.e. block size. The underlying
hypothesis is that present statistical upscaling techniques under-
estimate the conductivity of finite blocks, due to their inability
to take the effects of hydraulic anisotropy into account.

Flow field analysis: The objectives are (i) to validate the imple-
mentation of the flow model and its capability to deal with high
conductivity contrasts, and (ii) to improve the understanding of the
parameters used to characterize random heterogeneity and the impact

of these parameters on the flux.

Simulation of flow on different scales: The objectives are to inves-
tigate (i) the wvalidity of applying the results obtained from the
unconditional simulations, and (i) the differences between two

scales of support.

Simulation of solute transport: The objectives are to investigate
the possibility (i) to reproduce numerically the analytical results
obtained by first-order theory, and (i) to extend the numerical
simulations to deal with high conductivity contrasts.

A discontinuum model: The objective is to examine briefly the dif-
ferences in flow and transport between continuous and discontinuous

conductivity fields.
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4.2 Unconditional simulation of block conductivity

Values of unconditional block conductivity are computed under the
assumption of uniform average flow in a finite two-dimensional
domain. The computations are made with a numerical flow model and
the heterogeneities are generarted synthetically. Three kinds of
heterogeneity is studied, namely Ay/Ax = Ay/Ay = {0, 2, 4). The mean
and standard deviation of the underlying, infinite log-conductivity
field are set to Ly = —16 and oy = 4, respectively. The chosen para-
meter values are characteristic of the statistics of 3m packer tests
down to depths of about 500m in Swedish fractured hard rock.

For each realization, both the spatial geometric mean of the
local conductivity values and the conductivity in two orthogonal
directions are computed.The computations are made for six different
block sizes. Because all blocks are of finite dimensions, the term
(equivalent) block conductivity is used. In the present study, the
term effective conductivity rtepresents the equivalent conductivity
for uniform average flow in an unbounded (infinite) heterogeneous

medium.
The results from the unconditional simulations can be summar-

ized as follows:

1. The spatial geometric mean of the local conductivities within a
block is a random variable, where the expected value is found to
decrease with an increasing block size. The upper and lower li-
mits correspond to the arithmetic and geometric means, respec-
tively, of the underlying PDF of the local conductivities. A
Monte Carlo experiment reveals that the PDF of the spatial
geometric mean for a given block size is log-normal for small and
moderate block sizes and approximately symmetric for very large
block sizes. The infinite "block” has by definition no variance.

2. The expected value of the ratio between the block conductivity in
either of the two orthogonal directions and the spatial geometric
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mean is greater than or equal to unity. The maximum value is
obtained for a block size equal to the scale of the heterogene-
ity, i.e. the range of the correlation.

This result suggests that the spatial geometric mean tends to
underestimate the block conductivity of finite blocks. However,
the study of flow through single blocks prohibits any inference
about the effect of block interaction. Thus, it is not possible
to extend the result to include the case of flow in an aggregate
of blocks. This is discussed below.

. The expected value of the ratio between the block conductivities
in the two orthogonal directions is greater than or equal to
unity. The ratio reaches its maximum value for a block size ap-
proximately equal to the scale of heterogeneity, ie. the range
of the correlation.

This result suggests that the block conductivity of a hetero-
geneous block of finite extent must be treated as an anisotropic
entity. Hence, for small and moderate block sizes the block con-
ductivity is a tensor quantity and not a scalar as usually
assumed by statistical upscaling techniques. However, the present
boundary conditions of the numerical experiments provide no
information about the components of the full tensor in terms of
rotation. Furthermore, the study of flow through single blocks
prohibits any inference about the effect of block interaction.
Thus, it is not possible to extend the result about anisotropy to
inclnde the case of flow in an aggregate of blocks. This is
discussed below.

The question of anisotropy deserves more appraisal for the
modelling of flow and transport in the far field. Current single-
hole packer test procedures provide no information about the
anisotropy. Given the statistics of 3m packer tests discussed
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above, the two-dimensional numerical flow test experiments yield
the result that the scale of maximum anisotropy is of the same

order of magnitude as:

(i) the most common single-hole packer test straddle interval
used for study site investigations in Swedish fractured hard
rock, i.e. 20-30m

(ii) the smallest block scales that are used for the modelling of
groundwater flow and solute transport in the far field with
continuum models within the Aspé Hard Rock Laboratory and
the SKB-91 project, i.e. (50m)? and (36m)>, respectively.

It is suggested that the conventional interpretation techniques
for single-hole double-packer tests should be reviewed and, if
possible, updated. Recent developments concerning fractals and
fractional dimensions may be of interest, for example. Further-
more, it is considered that it would be of great interest to
develop a pumping test configuration that takes anisotropy into
account. However, this may be a cumbersome avenue of progress.
Meanwhile, it is suggested that both vertical and horizontal
boreholes are used whenever possible in order to gain more ex-
perience about the directional dependence of the conductivity.

. The expected value of the log-conductivity standard deviation is
found to decrease with the block size in a manner that mimics the
reported field findings concerning the relationship between
packer tests on the 3m and 30m straddle interval scales.

This result suggests that extreme contrasts in spatial varia-
bility of the conductivity (like those observed by means of 3m
packer tests in fractured hard rock) can be studied by numerical

experiments.
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4.3 Flow field analysis

The dual formulation for steady flow in two dimensions is used to
compute flow patterns for a nine different cases of heterogeneity.
Because the conductivity is a random function, the specific dis-
charge is a random vector function. Therefore, each computed flow
pattern is accompanied by a brief statistical analysis of the corre-
lation structure of the flux field. These analyses are neither in-
tended nor valid for any inference about the statistics of the en-
semble. |

One subset of the nine realizations differs in the correlation
length, Ay/Ax = Ay/Ay = {0, 2, 4}, whereas a second subset differs
in the standard deviation, oy = {0.25, 1.00, 4.00}. The three values
of oy correspond to (i) an approximately homogeneous medium, (ii)
the wupper limit of first-order theory, and (iii) the observed
spatial variability for 3m packer tests, respectively.

In addition to the common assumption of a homogeneous effective
porosity n for the computation of the (transport) velocity, the case
of a heterogencous porosity is also studied, although under the
limiting assumption of a positive linear correlation.

The following results are obtained in the qualitative analyses
of the different flow patterns and the statistical analyses of the
flux fields:

1. The representation of equidistant contour levels of the stream
function is found to be superior for the visualization of the
interaction between Oy and Ay and their impact on the spatial
variability of the flax field, especially in conjunction with a
raster graphics map of the percentiles of the flux.

2. Patches of low conductivity generally correspond to patches of no
flow, whereas patches of high conductivity do not necessarily
correspond to patches of high flow. Accordingly, the occurrence
of preferential flow paths (channelling) appears to be related to
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the correlation structure of the low conductivity patches.
Furthermore, the number of channels and their relative strength,
ie. streamline density, differ clearly between uncorrelated and
correlated  conductivity fields. It is observed that an
uncorrelated field contains several minor channels of weak
intensity, whereas a correlated field contains one or a few major
channels of great intensity depending on the correlation length.
For instance, it is demonstrated in some of the studied correla-
ted realizations that about 50% of the flux flows through less
than 2% of the total width of the available flow domain. An in-
teresting effect is the back flow phenomenon, ie. streamlines
such that the local flow is oppositely directed to the mean flow,
A pronounced back flow behaviour is believed to be an artifact of
the two-dimensional flow domain.

The drastic differences in the channelling between uncorrelated
and correlated conductivity fields, as inferred from the numeri-
cal experiments, are considered to be of importance for the far
field modelling of groundwater flow and solute transport in frac-
tured hard rock by means of continuum approximations. It is
suggested that the current field procedures for packer tests
shonld be improved in order to make full use of a geostatistical
analysis so that the correlation, if it exists, can be inferred.

. For oy2 =16, it is observed that the probability density
function (PDF) of the transverse component of the flux is normal,
whereas the PDF of the longitudinal distribution is approximately
log-normal provided that the back flow 1is discarded. The
variograms of the transverse component reveal that this component
is poorly auto-correlated. The correlation is, however, somewhat
better perpendicular to the mean direction of flow. The vario-
grams of the longitndinal component show the opposite situation.
This component is considerably well correlated, especially paral-
lel to the mean direction of flow. Accordingly, the PDF and the
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variograms of the resultant flux vector are dominated by the
statistics of the longitudinal component of the flux. It is
found, however, that the sills of the variograms of the resultant
flux vector equal the sums of the corresponding sills of the
variograms of its longitudinal and transverse components. This
additive variance relationship suggests a poor cross correlation
between the two orthogonal components of the flux. The observa-
tion is confirmed by examining their cross variogram. The absence
of correlation shows up as pure nugget effect, i.e. a constant-
valued variogram at all lags (separation distances).

The fact that the two orthogonal components of the flux vector
are uncorrelated does not necessarily mean that they are
independent. However, the observations that (i) the wvariances of
the orthogonal components of the flux are additive, and (i) the
probability density functions are different in nature, suggest
that the resultant flux field can be obtained as the sum of two
independent realizations. From an experimental point of view this
observation might be of interest. For instance, it suggests an
approach to generate a large number of realizations of the flux
field for numerical transport experiments as an alternative to
going through an often tedious stage of solving the flow
equations. This approach, of course, is not validated by the
observations in this stmudy, because we rely upon too few
realizations. It is definitely not valid in cases where the flux
may be non-stationary. Therefore, it is suggested that more ex-
periments should be made to investigate the statistical and
hydraulic nature of the flux field under a variety of circum-
stances. It is important to bear in mind that the results ob-
tained are also subjected to a number of physical simplifica-
tions. For example, the flow and transport equations are assumed
to be uncoupled, which implies a constant water density.
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4. The close relationship between K(x) and q(x), as suggested by
Darcy’s law, is clarified by an analysis in the log-space. With
respect to the observed differences in the shape of the PDF’s and
the variograms, it is concluded that the statistics of the flux
field are highly influenced by the correlation of the random
heterogeneity of the conductivity field.

5. A positive linear correlation between the porosity and the con-
ductivity in the log-space is observed to counteract the effects
discussed above of a spatial varying conductivity field. That is
to say, the PDF of the log-velocity is more symmetric and of less
variance, and the variograms are more statistically isotropic
than the corresponding statistics of the log-flux.

This result suggests that advective travel times will show less
variance in the case of a positive linear correlation between the
porosity and the conductivity in the log-space.

4.4 Simulation of flow on different scales

In the experimental study concerning simulation of flow on different
scales, two main cases are studied: (i) the conductivity field is
totally determined (deterministic case), and (ii) the conductivity
field is only sparsely determined (stochastic case). In the latter
case the remaining (unknown) values are estimated. There are several
methods in common practice. The ones compared here are the inverse
distance method and ordinary kriging. The latter takes the correla-
tion into account, whereas the former does not.

The differences in the hydraulic behaviour between the determi-
nistic and the stochastic simulations are studied with respect to
the hydranlic behaviour of an a priori case representing an assumed
known realization of the flow domain. The hydraulic behaviour of the
a priori case is of course completely known. The interest here is
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focused on investigating the relevance of simulating the a priori
behaviour on a different scale, or even on the same scale as the a
priori case but with less conditional data.

The two scales chosen here are the "24m scale” and the
"3m scale". On the 24m scale, the a priori case is substituted by 64
(24m)? blocks, whereas on the 3m scale it is "substituted” by 4,096
(3m)?> blocks. The degree of disagreement between the simulation
experiments (being deterministic or stochastic; on the 3m scale or
on the 24m scale) and the a priori case is studied. The hydraulic
behaviour is studied in two orthogonal directions, which provides an
opportunity to estimate the role of anisotropy. The objectives of
the simulations are to investigate (i) the validity of applying the
results obtained from the unconditional simulations of flow in
single blocks to flow in an aggregate of blocks, and (ii) the
differences between the two scales of support. The hypothesis is
that anisotropy is important for the upscaling process.

Three cases of conditioning and interpolation are studied on
the 3m scale: (i) the inverse distance method with a search radius
of r =2 Ay, (i) ordinary kriging with r = 2 Ay, and (i) ordinary
kriging with r = 4 A,. On the larger block scale, i.e. the 24m
scale, the block conductivities are obtained in two different ways,
one deterministic and one stochastic. In the deterministic case, the
block conductivities are represented by 24m packer tests using the
eight boreholes mentioned previously. In the stochastic case, the
block conductivities are estimated by means of ordinary kriging. Two
search radii are used in the stochastic case r = {2 Ay, 4 Ay}. In
all, nine different experiments are studied, three on the 3m scale

and six on the 24m scale.

The present study is dependent on two assumptions, namely that (i)
the conductivity tensor on the 24m scale is in a diagonal form, and
(ii) the principal components of this tensor are equal to the con-
ductivities in two fixed orthogonal directions. Strictly speaking,
both these assumptions are physically incorrect, at least for small
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and moderate block sizes. On the other hand, it is demonstrated in
the present study that these assumptions are more appropriate than
the statistical assumptions generally discussed in the literature.
Hence, in spite of the tremendous progress in subsurface hydrology
owing to the developments in stochastic continuum theory, it must
not be forgotten that physics is an experimental science. In other
words, anisotropy deserves much more attention in the upscaling
process. Consequently, there is a need for a pumping test configura-
tion that takes anisotropy into account.

4.5 Simulation of solute transport

In recent years, the stochastic continuum theory has been in-
creasingly used to study the scale dependence of advection-
dispersion phenomena, and different approaches are reported in the
literature. The developments used here are limited to deal with uni-
form average flow in two dimensions under a rather moderate hetero-
geneity of the log-conductivity field, i.e. oy* < 1. This limitation
stems from a wuse of "first-order theory", ie. a first-order ap-
proximation of a small perturbation of the log-conductivity field.
The non-linear effects that arise when ©y? > 1 are considered to be
important although few results have been reported so far.

The objectives in this study are to investigate the possibility
(i) to reproduce numerically the analytical results obtained by
first-order theory, and (i) to extend the numerical simulations to
allow for high conductivity contrasts. Only single realizations of
three different cases of heterogeneity are studied. Thus, the simu-
lations undertaken do not treat questions concerning the ensemble
statistics. However, the studied realizations are relatively large
with respect to the correlation lengths used, ie. L/Ay = {16, 32,
64}. Because the injected solute, which in this study is represented
by particles, is released over the entirc upstream boundary, it is
assumed that the spatial variability is adequately accounted for in
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order to justify an analysis of the scale dependence of the macro-
dispersivities in each realization.

The obtained results from the experiments may be summarized as

follows:

1. The numerical algorithms used for the particle tracking, ie. the
dual formulation of flow and the isoparametric interpolation, are
found to be well suited for studying advective transport in a
heterogeneous conductivity field.

2. The suggested technique of mine, the equidistant contour level
positions of the stream function solution on the upstream bound-
ary, to establish a consistent flux-weighted injection mode is
proved to be appropriate. Its validity is verified in the study
by the principle of reciprocity.

3. The analytical results derived by the position analysis under
first-order theory are here numerically reproduced for Ay/Ax =
A/Ay = 2, o642 =1, and N = 64x64. The longitudinal dispersivi-
ties computed by means of the Fickian arrival time analysis reach
the asymptotic values predicted by first-order theory, at a rate
that is surprisingly concordant with the non-Fickian position

analysis.

A general observation in the numerical simulations is that it is
not possible to apply the non-Fickan position analysis over the
total range of heterogeneity. This limitation is caused by the
channelling phenomenon, which leads to a loss of particles before
the position analysis is satisfactory completed. Analytical solu-
tions are presently limited to ©y? £ 1, whereas the Fickian
arrival time analysis, which assumes a diffusion process, is
devoid of any notion of uncertainty in /n(K).
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4. For 0,2 < 4, it is found that a Fickian arrival time analysis de-
viates moderately from what is predicted by the equations of the
position analysis. For oy? > 4, a Fickian arrival time analysis
yields the result that (i) the transverse dispersivity increases
linearly in proportion to oy and (i) the longitudinal disper-
sivity approaches the asymptotic value at a faster rate than is
predicted by the position analysis. For oy? = 16, numerical dif-
ficulties are observed. However, the dispersivities in two oppo-
site directions, as computed with the Fickian arrival time analy-
sis, show a remarkable reciprocity considering the immense con-
ductivity contrasts, which comprise about 12 log,, cycles in X.

Non-Fickian behaviour of transport -for short travel times is well
documented in the literature. In spite of this fact, a diffusion
process from the onset of a solute injection is often assumed in
practical applications dealing with, for example, groundwater
pollution. Although more research is required in order to deter-
mine the limitations of using the advection-dispersion equation,
the results obtained here are important and are therefore worth a
few comments. It should be noted that even though the dispersivi-
ties computed by the Fickian arrival-time analysis are surpris-
ingly concordant with the predictions of the non-Fickian position
analysis, there is a severe objection to using either constant-
valued or scale-dependent dispersivities in numerical models to
simulate far field solute transport in fractured hard rock. In
other words, contrasts in the conductivity field constrict the
flow into preferential flow paths. For Ay/Ax = Ay/Ay = (2, 4} and
0y? = 16, a persistent channelling is observed throughout the
studied flow domains ((192m)?). The conclusion reached here is
that the coefficients in the classical advection-dispersion
equation can never reproduce such a channelling within a large
model block. In other words, the choice of support scale for the
conductivity field is crucial for the modelling of solute

transport.

- 215 -



4.6 A discontinuum model

The channelling observed in the experiments for oy? = 16 is signifi-
cant in many ways. It is an interesting observation that large por-
tions of the generated flow domain do not contribute to the flow. It
is of great interest to find a physical criterion that makes it
possible to discard the no-flow portions, because () the computa-
tional constraints will be relaxed, meaning fewer numerical problems
and more computer memory at hand, and (i) one will have an
opportunity to study the link between continuum models and the more
recent discrete fracture network models.

For 3m packer tests, the measurement threshold is approximately
10! m/s. For a typical borehole of 500-600m depth in fractured
hard rock, about 20-50% of the measurements are below or at the
measurement threshold, which is a significant loss of information.
The objective here is to examine briefly the differences in flow and
transport between continuous and discontinuous conductivity fields.
The continuous case solutions are here compared to the solutions
corresponding to a conductivity threshold of 25%. A conductivity
threshold causes impermeable boundaries in the interior of the flow
domain. The numerical solution of the problem presented here
constitutes a powerful extension of the dual formulation of flow.

1. The suggested extension of the dual formulation of flow, com-
prising discontinuous conductivity fields, relaxes the numerical
constraints associated with high conductivity contrasts.

2. The solutions of the three discontinuous realizations reveal that
the flow patterns of the corresponding continuous realizations
are essentially preserved in spite of an imposed conductivity
threshold of 25%.

This is an interesting result, because it supports the working
hypothesis that flow in a continuous medium, which is subjected
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to high contrasts in conductivity, can be replaced by a model of
a discontinuous medium. Although the real world complex problem
is not investigated here, 1t is argued that fractured hard rock
can be regarded as a heterogeneous discontinuum. By way of con-
clusion, the modelling of flow in fractured hard rock by means of
porous media models based on dis-/continuum approximations re-

mains of interest.

. The experiments undertaken here reveal that the main effect of a
conductivity threshold is an increasing anisotropy. There is a
clear difference in the anisotropy between the three realizations
considered here; the uncorrelated case is observed to be the
least sensitive to a conductivity threshold. Moreover, it is ob-
served that for a discontinuous conductivity field, the relation
between the statistical (spatial) geometric mean and the corre-
sponding block conductivity deviates from the analytical relation
valid for a continuous conductivity field in two dimensions. The
differences increase drastically as the conductivity threshold

increases.

This result suggests that the asymptotic block conductivity of a
discontinuous conductivity field, if it exists, is a different
physical entity from the effective conductivity of an infinite
continuous conductivity field. However, a large number of experi-
ments are required in order to investigate whether the conduc-
tivity for a given threshold value approaches an asymptotic value
at any order of scale.

. For a conductivity threshold of 25%, the differences in the resi-
dence time histograms between the continuous and discontinuous

cases are moderate.

. For a conductivity threshold of 25%, the “"asymptotic values" of
the longitudinal dispersivities in two orthogonal directions are

- 217 -



somewhat almost the same as those of the longitudinal dispersivi-
ties of the cormesponding continuous case. The behaviour of the
transverse dispersivities is more complex. In one direction, the
transverse dispersivity is somewhat larger, whereas in the other
direction, it is much smaller. In both directions, however, they
seem to obey the decreasing trend of the corresponding continuous

case.

Of course. it is not possible to make final conclusions on the basis
of the brief experiments discussed above. The purpose here is to
investigate whether there are any sigrnificant differences between a
discontinuous case in relation to a continuous case. It s
interesting to note that the observed differences are quite moderate
in spite of a conductivity threshold of 25%. However, based on the
different flow and transport experiments undertaken throughout the
present study, the general conclusion is that macroscopic (asymp-
totic) properties in fractured hard rock, if they exist, require
such large averaging volumes that the relaton to the real world

problem is lost.

4.7 Concluding remarks

A number of important assumptions are made throughout the study. The
assumptions are generally working hypotheses and it is important to
keep them in mind, because they affect the validity of the results
and the conclusions. In the following, some of the assumptions con-
cerning the local conductivity fields are discussed.

1. The local conductivity field is a random scalar function.
This assumption is indeed a working hypothesis. There are good

reasons to accept it from a theoretical point of view, whereas
there are few, if any, reasons to accept it from a physical point
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of view. In the study, the assumption is motivated by two facts:
(i) there is no information about the anisotropy on the 3m scale,
and (i) the stochastic continuum theory, which is used here to
verify the numerical experiments, assumes a random scalar func-
tion in the local scale. It is important to note, however, that
the dual formulation of flow is not limited to a scalar conduc-
tivity field. On the contrary, the dual formulation of flow read-
ily comprises anisotropy in the local scale. One way to investi-
gate the assumption of isotropy in the field is to use cross-hole
tests over short distances.

2. The local conductivity field has a point-consistent scale of sup-

port.

This assumption is also a working hypothesis. It implies that the
volume associated with the determinatdon of the conductivity in
the field is neither a function of the conductivity value as such
nor any other variable of interest, e.g. position. Thus, all
measurements on a given scale are assumed to be of constant
volume. This assumption is physically unreal, because the radius
of influence in a well test is a function of the hydraulic pro-
perties. For instance, if all parameters are constant except the
conductivity, the radius of influence is greater for a high
conductivity value than for a low conductivity value. In the
study, the assumption is motivated by the facts that (i)
3m packer tests are devoid of any notion about volume, and (i)
the use of ordinary kriging assumes a point-consistent scale of
support. One possible solution to the case of varying volumes is
to use co-kriging in the conditional simulations.

3. The realizations are statistically stationary and isotropic.

In general, it is observed that the conductivity of fractured
hard rock is a function of depth, at least down to a depth of
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about 500m, although there are also many examples of observations
without depth dependence. Accordingly, statistical stationarity
is an open question. Statistical stationarity is one of the pre-
requisites of the results derived by stochastic continuum theory
that are used here for verification. Concerning statistical iso-
tropy, there are no reasons to expect that the conductivity field
of fractured hard rock is statistically isotropic. In this study,
the reasons for assuming statistical isotropy are (i) there is no
information about statistical anisotropy on the 3m scale, and
(@) it is ome of the prerequisites of the results derived by
stochastic continuum theory that are used here for wverification.
One way to investigate the assumption of statistical isotropy in
the field is to use both wvertical and horizontal boreholes in a
given rock block.

. The local conductivity values are synthetically generated.

All data that are used in the computations are synthetically
generated, which means that no data used here are measured in
sim. The study is of generic interest. Hence, conceptual ques-
tions are addressed and the use of site-specific data would
therefore counteract this objective. Furthermore, the studied
cases of spatial variability, as expressed by the standard
deviation and the correlation length of the log-conductivity, are
consistent with the field observations at the Swedish study
sites. This condition is considered to be more important for the
main objectives of the study than the use of site-specific data.

. All experiments are in two dimensions.
There are computational reasons for the use of two-dimensional
models, whereas there are few, if any, physical reasons for two-

dimensional flow. For instance, the back flow phenomenon is
expected to be attenuated and replaced by a "side flow" effect in
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three-dimensional flow. Hence, the probability of an early
arrival of dissolved constituents is perhaps underestimated in a
two-dimensional model. It is an open question to what extent a
two-dimensional analysis is valid. Nevertheless, it is argued
that the scope of the study is unaffected. The main reasons for
the choice of two-dimensional flow are as follows:

a. The theoretical derivation of the effective conductivity in
two dimensions is not limited to small values of oy, whereas
the theoretical derivation of the effective conductivity in
three dimensions is at present limited to oy? < 1.

b. Theoretical results for solute transport, which are based on
the first-order approximation of a small perturbation of the
log-conductivity, suggest that the longitudinal dispersivities
in two and three dimensions are not too different.

¢. The classical continuum approximationsthat arecommonlyused
to interpret double-packer tests are often based on the as-
sumption of a predominantly radial flow regime, i.e. a hori-
zontal and axi-symmetric flow.

d. The dual formulation of flow adopted is more readily applied
to flow in two dimensions than in three dimensions, the compu-
tational constraints are relaxed, and the impact of the para-
meters used to characterize random heterogeneity, namely Oy
and Ay, is more easily visualized.
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APPENDIX

Figures A1-A10 demonstrate uniform average flow in a stwatistically
anisotropic stochastic continuum. The following values of Ay and oy
are studied: Ay/Ax = 4, Ay/Ay = 1, and oy = {0.25, 1, 4} (oy = 4 is
denoted 4-41). The size of the flow domain is N = 64x64. The infor-
mation given in Figures A1-A10 is discussed in detail in Chapter 3.
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Fig. A5 Flow nets for N/S and W/E flow respectively. N = (64 x 64),
NAx =4, ANay =1 and O 0= 1.00 . Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.



Fig. A6 Flow nets for N/S and W/E flow respectively. N = (64 x 64),
ANax =4, MNay =1 and 0= 4.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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Fig. A8 Figurative plots of apparent transverse macrodispersion, that is,
lateral advective transport is estimated by lumping streamlines.
N=(64x64), Nax=4, Nay=1 and 0,=4.00.
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Fig. A10 Flow nets for a 25% conductivity threshold . N = (64 x 64) ,
Nax =4, Aay=1 and 0= 4.00.Piezometric head (dashed) and

stream function levels (solid) are in 5% increments between 0 and 1.
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