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ABSTRACT 

The report describes a Bayesian, nonparametric 
method for the estimation of a distribution func­
tion and its quantiles. The basic theory behind 
the method has been presented in /Ferguson, 1973/. 
The method, presupposing random sampling, is 
nonparametric so the user has to specify a prior 
distribution on a space of distributions (and 
not on a parameter space). In the current appli­
cation, where the method is used to estimate the 
uncertainty of a parametric calculational model, 
the Dirichlet prior distribution is to a large 
extent determined by the first batch of Monte 
Carlo-realizations. In this case the result of 
the estimation technique is very similar to the 
conventional empirical distribution function. 

The resulting posterior distribution is also 
Dirichlet, and thus facilitates the determination 
of probability (confidence) intervals at any 
given point in the space of interest. Another 
advantage is that also the posterior distribution 
of a specified quantile can be derived and uti­
lized to determine a probability interval for 
that quantile. 

The method was devised for use in the PROPER 
code package for uncertainty and sensitivity 
analysis. 



.1 ii 

TABLE OF CONTENTS 

Page 
ABSTRACT ii 

SUMMARY iv 

1 INTRODUCTION 1 

') THE DIRICHLET DISTRIBUTION 2 L, 

3 THE DIRICHLET PROCESS 4 

4 ESTIMATION OF A DISTRIBUTION FUNCTION 5 

5 ESTIMATION OF QUANTILES 7 

6 AN EXAMPLE 9 

7 DISCUSSION AND CONCLUSIONS 11 

REFERENCES 12 

TABLE 

FIGURES 



iv 

SUMMARY 

The work reported in this paper has been perfor­
med on account of Swedish Nuclear Fuel and Waste 
Management Co. The aim of the work has been to 
find a method to estimate the uncertainty of the 
output of a parametric calculational model, when 
the input values of appropriate parameters are 
not exactly known. The method described was de­
vised for use in the PROPER code package for 
uncertainty and sensitivity analysis. 

Probability distributions are suitable tools for 
the description of the uncertainty associated 
with both the model parameters and the final 
results. Thereby, the main problem is to estimate 
a distribution function, based on available obser­
vations and desired quantiles of that distribu­
tion. Because of a limited number of observations 
there is also a statistical uncertainty associated 
with these estimates. 

The method applied in this study is a Bayesian 
nonparametric method, presented in /Ferguson, 
1973/. Being nonparametric means that the method 
does not presuppose any given type of distribu­
tion. However, the basic theory implies random 
sampling, which is not the case when variance 
reducing techniques are used. The method itself 
as well as an illustrating example are presented 
in this report. 
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INTRODUCTION 

The estimation of a distribution function or 
some specific quantile based on available obser­
vations is a general statistical problem. In 
this paper our treatment of the problem is con­
cerned with uncertainty analysis, where the uncer­
tainty attached to a parametric model is studied 
by the use of Monte Carlo sampling. Thus observa­
tions are generated by repeated application of 
the model, where in each application (realization) 
each uncertain parameter is assigned a value 
sampled from its probability distribution. In an 
earlier report /Porn, Akerlund, 1985/ different 
deterministic or stochastic sampling techniques 
were surveyed. 

If we assume that the unknown distribution is of 
a certain type (normal, lognormal etc), the corre­
sponding estimation technique is called paramet­
ric. In the nonparametric case, no specific dis­
tribution type is presupposed. For example the 
empirical distribution and its quantiles are 
nonparametric estimators of the unknown distri­
bution and the unknown quantiles respectively. 

In this report we will briefly describe and then 
implement a nonparametric Bayesian approach, 
suggested in /Ferguson, 1973/. The Bayesian metho­
dology greatly facilitates the determination of 
uncertainty (probability) intervals around the 
estimated distribution and estimated quantiles 
in particular. For the convenience of the reader, 
Ferguson's method is described in the next section 
in a brief and simplified manner. 



2 THE DIRICHLET DISTRIBUTION 

The Bayesian method is generally used for infe­
rences about some unknown parameter. Then one 
needs a prior distribution on the parameter 
space. To find a good prior distribution is in 
many cases a difficult task. The problem is even 
worse in the nonparametric case, where one has 
to specify a prior distribution on a space of 
probability distributions. 

Let us, for example, consider the space of all 
probability distributions Q = {F(t) fort E R 1 } 

where each distribution corresponds to a proba­
bility measure P through 

F(T) = P( (- 00 ,t)) (Eq 1) 

Then we have to define a prior distribution on 
Q. If A1 , ••• , Ak is an arbitrary partition of 
the space R 1 , each distribution FE Q corresponds 
to a probability vector (P(A 1 ), ••• , P(Ak)) (where 
2. P(Ak) = 1). 

A distribution is assigned to Q if we assume 
that the vector (P(A 1 ), ••• , P(Ak)) is Dirichlet 
distributed with a given parame~er. Ferguson 
shows that a Dirichlet distribution has two 
desirable properties as a prior distribution: 

1 

2 

It is broad and flexible. Every given 
distribution in Q can, with positive 
probability, be approximated arbitrarily 
well by a Dirichlet process P. 

Given a sample of observations from the 
true probability distribution, the pos­
terior distribution will be analytically 
manageable. 

To define a Dirichlet distribution we start with 
a gamma distribution G(a, ~) with shape parameter 
a> o and scale parameter~> o. Its probability 
density function is 

(Eq 2) 

Let 2 1 , 2 2 , ••• , Zn be independent random variables 
with z. ~ G(a.,1). 

J J 



Definition. The Dirichlet distribution, with 
parameter ~ = (a 1 , ••• , ak), D(a 1 , ••• , ak), is 
defined as the joint dis~ribution of (Y 1 , ••• , Yk)' 
where 

k 
Y. = z. I I z. 

J J i=l l 
for j = 1, ... , k ( Eg 3) 

B~cause ~ Y._~ 1~ D(a 1 , ••• ,ak) is a (k-1)-dimen­
sional d1stt1but1on of (Y 1 , ••• , Yk_ 1 ) and absol­
utely continuous with the density function 

(Eg 4) 

In the special case k=2 we have 

(Eg 5) 

where Be(a 1 ,a 2 ) denotes the Beta distribution. 
Also, the marginal distribution of each Y. is 

J 

Be ( a . , I a . -a . ) . 
J . l J 

l 

More generally, arbitrary sums of Y.-variables 
are still Dirichlet distributed. Fot example 

(Yl+Y2,Y3+Y4+Y5,···, Yk) ~ 

D(a1+a 2 ,a3+a 4+a 5 , ••• ,ak) 

The first two moments of the Dirichlet distri­
bution D(a1 , ... ;ak) are 

where 

E(Y.) = a./a, 
l l 

2 E(Y. ) = a. (a.+1)/[a(a+l)], 
l l l 

E(Y.Y.) = a.a./[a(a+l)], 
l J l J 

k 
a = Z a .. 

i=l 1 

(Eg 6) 
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THE DIRICHLET PROCESS 

Let X denote the sample space of interest for 
the distribution we consider. We say that 
(B 1 , ••• ,Bk) is a measurable partition of X if 
B. n B. = ~ (empty set) for i # j, and 

l J 

k 
U B.= X. 

j=l J 

This simply means that the sets B. do not inter­
sect each other and their union constitutes the 
whole sample space. 

Definition. Let a be a finite measure - positive 
and finitely additive - on X. The random proba­
bility measure Pisa Dirichlet process on X 
with parameter a if for every k = 1,2, ... and 
measurable partition (B 1 , ••• , Bk) of X, the 
distribution of (P(B 1 ), ••• , P(Bk)) is Dirichlet 
D ( a ( B 1 ) , • • • , a ( Bk ) ) · 

Thus a is the parameter of the Dirichlet distri­
bution and need not be a probability measure in 
the sense that a(X) = 1. The probabilities 
P(B 1 ), ••• , P(Bk)' which are random, correspond 
to a distributYon through (Eq 1). The randomness 
of this distribution follows the Dirichlet, 
D ( a ( B 1 ) , ••• , a ( Bk) ) . 

Let us denote n observations by x 1 , ••• ,X. These 
are said to be a sample of size n from Pnif, 
given P(C 1 ), ••• ,P(C ), the events {X 1 £ C1 }, ••• , 

{X 2 c} are indepgndent of the rest of the 
pr8cessnand are independent among themselves. 

Ferguson proves the theorem that makes the 
Dirichlet process so suitable for Bayesian use. 
The theorem states that if Pisa Dirichlet pro­
cess with parameter a, and if X1 , ••• , X is a 
sample from P, then the posterior distr£bution 
of P given x 1 , ••• ,X is also a Dirichlet process 
with parameter n 

where ox denotes the delta function. 
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ESTIMATION OF A DISTRIBUTION FUNCTION 

To repeat our assumptions, we consider a para­
meter space consisting of all probability measures 
Pon X. We have to choose an action a in some 
space suffering a loss, L(P, a). Our choice of 
action can be based on a sample X1 , ••• , X from 
P, and we seek a Bayes rule with respect eo the 
prior distribution, P ~ D(a) (Dirichlet process 
with parameter a known). 

The loss function is assumed to be of a quadratic 
type 

L(P,F) = J [F(t) - F(t)J 2dW(t) (Eg 7) 

where W is a given weight function and F(t) = 
P((- 00 ,t]). For the no-sample problem F(t) ~ 
Be(a(- 00 ,t],a(t, 00 )) for each t and the Bayes risk 
is 

E{L(P,F)} = J E[F(t) - F(t)J 2dW(t). (Eg 8) 

This Bayes risk is minimized by choosing, for 
each t, 

where, according to (Eg 6), 

representing our "best" prior guess at the 
unknown F(t). 

(Eg 9) 

(Eg 10) 

As was stated earlier, the posterior distribution 
of F(t) given a sample X1 , ••• ,X is also a 
Dirichlet distribution with thenparameter 

a+ Io . x. 
l l 

Therefore, in case of a sample of size n, the 
Bayes rule is 

n 
et( (- 00 ,t)) + L O ( (- 00 ,t]) 

. 1 x. 1= l 
a(X) + n 

pn) F n (t) x 1 , ... , xn) , (Eg 11) 
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where the mixing factor is 

pn = a(X)/(a(X)+n) (Eg 12) 

and the empirical distribution of the sample is 

n 
= nl }:; o ( ( -oo, t] ) 

. 1 x. 1= l 

(Eg 13) 

Thus the Bayes rule is a mixture of the prior 
guess and the empirical distribution, where the 
mixing factor is determined by the measure a(X) 
compared to the sample size n. For a very small 
a(X) compared ton, the Dirichlet prior is rather 
"noninformative" and the Bayes estimate converges 
to the empirical distribution function. 

In the application considered here, where the 
observations are generated by batchwise Monte 
Carlo simulation, the first batch is used to 
support our prior guess. If we have no further 
prior information in addition to the first batch 
of size n, it is quite reasonable to choose 
a(X) = n ~ By that way the information contained 
in the f~rst batch is given its appropriate weight. 

As the application of this estimation technique 
proceeds one gets successively more knowledge 
about the type of distribution that reasonably 
well can approximate the true distribution. Let 
us at this stage assume that the lognormal type 
of distribution is a good prior guess. Then, for 
the choice of the a-measure, a lognormal distri­
bution is by its first and second order moments 
adjusted to the observation of the first batch. 
This means that a(A) = n • P N(A), where A is 
an arbitrary measurable ~et iH X and P N(·) is 
the lognormal probability measure. By Broceeding 
in this way one can say that a lognormal distri­
bution, supported by the. first batch of obser­
vations, represents our very first guess at the 
shape of the unknown F(t). 
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ESTIMATION OF QUANTILES 

The qth quantile tq of P is defined as 

P((- 00 ,tq)) i qi P( (-oo,tq]) (Eq 14) 

The task is to estimate t of an unknown proba­
bility measure P or of thg corresponding unknown 
distribution F(t). In /Ferguson, 1973/ it is 
shown that for a Dirichlet distributed P, 
PE D(a), t is unique with probability one, so 
that tq is~ well-defined random variable. 

To estimate t means that we try to express our 
knowledge aboHt t in terms of a distribution of 
t. That distribu~ion can be derived from the 
f8rmula 

P{t < t} = q -

1 
J 

P{F(t) > q} = 
(Eq 15) 

because, as we have pointed out earlier, F(t) is 
Beta distributed for given t. In Eg 15, we have 

M = a(X) 
(Eq 16) 

so for given a-measure and q, Eq 15 expresses a 
function oft. If we are interested in a certain 
quantile of this distribution, the pth say, we 
set (Eq 15) equal top and solve for u. Then the 
uth quantile of F is the searched quantile of 
the tq-distributi8n, in the no-sample situation. 

For a sample of size n, the same formul~apply 
with a updated to 

and the uth quantile determined from the Bayes 
distribution estimate, given by (Eq 11). 
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In the application discussed here the estimation 
of the median (q = 1/2) and an upper quantile 
(q = 0.95) is of major interest. The estimation 
of the distributions of these quantities, accor­
ding to the procedure above, is therefore a main 
issue. 
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AN EXAMPLE 

To illustrate the methods described above it is 
quite natural to start with an example where we 
know the solution. In this case we choose obser­
vations obtained by simulating a gamma (10, 0.2)­
distribution. The simulation has been performed 
by using the PROPER package of random variate 
generators, which is based on the principle of 
distribution inversion. 

According to section 4 the observations are gene­
rated batchwise, in this example one hundred 
observations in each batch (n = 100). The first 
batch is used to provide the ~nitial Dirichlet 
parameter ~(A)= n • PLN(A), where PLN( •) de­
notes a lognormal 8istribution adjustea to the 
observations. Thus we have chosen the lognormal 
distribution to represent our very first guess 
at the shape of the unknown F(x). From the log­
normal distribution we determine a set of quan­
tiles (X) (see Table 1), in which points we sub­
sequently want to look at the estimated distri­
bution with associated uncertainty interval. The 
median (0.50-quantile) and the upper quantile 
(0.95-quantile) are also estimated with uncer­
tainty intervals at the level of 90 %. 

Table 1 shows the distribution estimates at the 
given X-points with associated uncertainty bounds 
on 90% level for various sample sizes. The first 
part of the Table (after O observations) shows 
the prior distribution - which in reality is 
based on the first hundred observations while 
the second part presents the corresponding quan­
tities after 100 additional observations etc. 
The uncertainty bounds at the estimated median 
are shown on separate lines in the Table. The 
last two lines of each subtable reveal the esti­
mates and associated bounds for the median and 
the 0.95-quantile. 

Some of the information in Table 1 is graphi­
cally displayed by Figures 1 and 2, where the 
true distribution is shown by the continuous 
curve and the dots display the mean value and 
the associated uncertainty bounds of the distri­
bution at the given X-points. The uncertainty 
intervals of the estimated median and the esti­
mated 0.95-quantile have also been marked in 
Figs. 1 and 2. 
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In Figure 3 we can see the tendency of decrea­
sing uncertainty intervals for the median and 
the 0.95-guantile for increasing sample sizes, 
as well as the true values of these quantiles. 
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DISCUSSION AHD CONCLUSIONS 

It has to be noted that we cannot get uncertainty 
bounds for the whole distribution by connecting 
the discrete points, even if these were infi­
nitely close to each other. The only correct 
interpretion is that for each specific value of 
X, the probability of having the true distribu­
tion within the corresponding uncertainty bounds 
is 0.9. Bayesian confidence bands for a distri­
bution function assuming a Dirichlet process as 
prior have been studied by /Breth, 3/. 

From the estimate of the distribution function, 
Eq 11, it is readily seen that it is discrete 
because the Dirichlet parameter ~ is changing 
discontinuously at the observed sample points. 
As is said in /Dalal, 4/, "it would be appealing 
to have a prior which increases the probability 
of a neighbourhood instead". In this reference, 
some modifications of the Dirichlet prior process 
are proposed to overcome this defect. In the 
application which is of interest here, however, 
the discreteness of the Dirichlet process does 
not cause any significant disadvantage. 
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Table 1 

Estimates of distribution and quantiles based 
on data simulated from gamma (10, 0.2). 

ESTIMATE OF CDF AND QUANT! LE AFTER 0 OBSERVATIONS 

X FL F FU OF 

2.141E+01 1.981E-05 5.000E-03 1 . 917E-02 1 . 91 SE-02 
2.590E+01 5.813E-03 2.SOOE-02 5.478E-02 4.897E-02 
2.855E+Ol 2.0llE-02 5.000E-02 9.007E-02 6.996E-02 
3.195E+01 5.584E-02 1 .OOOE-01 1 .533E-01 9.744E-02 
3.661E+01 1.381E-01 2.000E-01 2.688E-01 1 . 307E-01 
4.039E+01 2.273E-01 3.000E-01 3.773E-01 1.SOOE-01 
4.392E+01 3.209E-01 4.000E-01 4.814E-01 1 . 604E-01 
4.750E+01 4.181E-01 5.000E-01 5.819E-01 1 . 638E-01 
5. 137E+01 5.186E-01 6.000E-01 6.791E-01 1 .604E-01 
5.587E+Ol 6.227E-01 7.000E-01 7.727E-01 1 .SOOE-01 
6. 163E+Ol 7.312E-01 8.000E-01 8.619E-01 1. 307E-01 
7.062E+Ol 8.467E-01 9.000E-01 9.442E-01 9.744E-02 
7.902E+01 9.099E-01 9.SOOE-01 9.799E-01 6.996E-02 
8.712E+Ol 9.452E-01 9.750E-01 9.942E-01 4.897E-02 
1. 054E+02 9.808E-01 9.950E-01 1 .OOOE+OO 1 . 91 SE-02 

4.750E+Ol 4.181E-01 5.000E-01 5.819E-01 1 . 638E-01 

XL XQ XU DX 
.50-QUANTIL 4.456E+01 4.750E+Ol 5.064E+Ol 6.075E+OO 
. 95-QUANTIL 7.161E+01 7.833E+01 8.854E+01 1 . 693E+01 

ESTIMATE OF CDF AND QUANTILE AFTER 100 OBSERVATIONS 

X FL F FU DF 

2 .141 E+Ol 8.848E-04 7.SOOE-03 1.947E-02 1.858E-02 
2.590E+01 1 .490E-02 3.250E-02 5.539E-02 4.049E-02 
2.855E+01 3.130E-02 5.SOOE-02 8.375E-02 5.244E-02 
3. 195E+01 6.342E-02 9.SOOE-02 1. 312E-01 6.776E-02 
3.661E+01 1 .463E-01 1.SOOE-01 2.372E-01 9.093E-02 
4.039E+01 2.292E-01 2.SOOE-01 3.333E-01 1 • 042E-01 
4.392E+01 3.244E-01 3.SOOE-01 4.370E-01 1 .126E-01 
4.750E+01 3.975E-01 4.SSOE-01 5.131E-01 1 . 156E-01 
5. 137E+01 4.920E-01 5.SOOE-01 6.075E-01 1 . 155E-01 
5.587E+01 6.041E-01 6.GOOE-01 7.141E-01 1. 099E-01 
6 .163E+01 7.250E-01 7.750E-01 8.218E-01 9.683E-02 
7.062E+01 8.516E-01 8.900E-01 9.240E-01 7.236E-02 
7.902E+01 9.163E-01 9.450E-01 9.687E-01 5.244E-02 
8.712E+01 9.512E-01 9.725E-01 9.884E-01 3.722E-02 
1.054E+02 9.904E-01 9.975E-01 1 .OOOE+OO 9.584E-03 

4.938E+01 4.420E-01 5.000E-01 5.580E-01 1.161E-01 

XL XQ XU DX 
. 50-0UANTI L 4.656E+01 4.938E+01 5 .167E+01 5.112E+OO 
. 95-0UANTI L 7.236E+01 7.919E+01 8.639E+01 1 ,403E+01 

F = estimated distribution 
at the given X-value 

FL = lower uncertainty bound 

FU = upper uncertainty bound 

DF = FU - FL, uncertainty 
interval on 90 %-level 

XQ = estimated quantile (0.50 
and 0.95 respectively) 

XL= lower uncertainty bound 

XU = upper uncertainty bound 

DX = XU - XL, uncertainty 
interval on 90 %-level 
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Table 1, cont. 

ESTIMATE OF CDF AND QUANTILE AFTER 200 OBSERVATIONS 

X FL F FU DF 

2.141E+01 5.887E-04 5.000E-03 1 .299E-02 1. 241 E-02 
2.590E+01 2.204E-02 3.833E-02 5.812E-02 3.608E-02 
2.855E+01 4.477E-02 6.667E-02 9.185E-02 4.708E-02 
3 .195E+01 7.896E-02 1 .067E-01 1 .374E-01 5.840E-02 
3.661E+01 1. 756E-01 2.133E-01 2.532E-01 7.764E-02 
4.039E+01 2.478E-01 2.900E-01 3.338E-01 8.603E-02 
4.392E+01 3.572E-01 4.033E-01 4.502E-01 9.303E-02 
4.750E+01 4.459E-01 4.933E-01 5.408E-01 9.482E-02 
5. 137E+01 5.262E-01 5.733E-01 6.200E-01 9.380E-02 
5.587E+01 6.316E-01 6.767E-01 7.203E-01 8.870E-02 
6.163E+01 7.503E-01 7.900E-01 8.275E-01 7.719E-02 
7.062E+01 8.701E-01 9.000E-01 9.269E-01 5.675E-02 
7.902E+01 9.278E-01 9.SOOE-01 9.688E-01 4. 106E-02 
8.712E+01 9,544E-01 9.717E-01 9.854E-01 3. 107E-02 
1. 054E+02 9.870E-01 9.950E-01 9.994E-01 1. 241 E-02 

4.772E+01 4.513E-01 5.000E-01 5.461E-01 9.483E-02 

XL XQ XU DX 
.50-0UANTIL 4.528E+01 4.772E+01 4.994E+01 4.662E+OO 
. 95-0UANTI L 7.229E+01 7.845E+01 8.430E+01 1 . 201 E+01 

ESTIMATE OF CDF AND QUANTILE AFTER 300 OBSERVATIONS 

X FL F FU DF 

2.141E+01 1 .437E-03 6.250E-03 1 .380E-02 1 .237E-02 
2.590E+01 2.431E-02 3.875E-02 5.581E-02 3. 1 SOE-02 
2.855E+01 4.606E-02 6.SOOE-02 8.641E-02 4.036E-02 
3. 195E+01 7.655E-02 1. OOOE-01 1 . 257E-01 4.918E-02 
3.661E+01 1 . 727E-01 2.050E-01 2.390E-01 6.630E-02 
4.039E+01 2.414E-01 2. 775E-01 3. 149E-01 7.355E-02 
4.392E+01 3.625E-01 4.025E-01 4.431E-01 8.057E-02 
4.750E+01 4.564E-01 4.975E-01 5.386E-01 8.215E-02 
5.137E+01 5.317E-01 5.725E-01 6. 129E-01 8.128E-02 
5.587E+01 6.232E-01 6.625E-01 7.009E-01 7.768E-02 
6. 163E+01 7.294E-01 7.650E-01 7.991E-01 6.964E-02 
7.062E+01 8.577E-01 8.SSOE-01 9.101E-01 5.234E-02 
7.902E+01 9.222E-01 9.425E-01 9.603E-01 3.809E-02 
8. 712E+01 9.594E-01 9.738E-01 9.854E-01 2.600E-02 
1 .054E+02 9.902E-01 9.963E-01 9.996E-01 9.310E-03 

4.757E+01 4.569E-01 5.000E-01 5.391E-01 8.215E-02 

XL XQ XU DX 
. 50-QUANTI L 4. 561 E+01 4.757E+01 4.984E+01 4.230E+OO 
. 95-0UANTI L 7.685E+01 7.998E+01 8.404E+01 7 .184E+OO 

ESTIMATE OF CDF AND OUANTI LE AFTER 400 OBSERVATIONS 

X FL F FU DF 

2.141E+01 1 .149E-03 5.000E-03 1.105E-02 9.899E-03 
2.590E+01 2.589E-02 3.900E-02 5.420E-02 2.830E-02 
2.855E+01 4.533E-02 6.200E-02 8.066E-02 3.534E-02 
3. 195E+01 7.710E-02 9.SOOE-02 1. 207E-01 4.364E-02 
3.661E+01 1 . 713E-01 2.000E-01 2.301E-01 5.876E-02 
4.039E+01 2.437E-01 2.760E-01 3.093E-01 6.569E-02 
4.392E+01 3.623E-01 3.980E-01 4.342E-01 7.196E-02 
4.750E+01 4.613E-01 4.980E-01 5.348E-01 7.350E-02 
5. 137E+01 5.415E-01 5.780E-01 6.141 E-01 7.259E-02 
S.587E+01 6.392E-01 6.740E-01 7.080E-01 6.889E-02 
6. 163E+01 7.489E-01 7.SOOE-01 8.098E-01 6.087E-02 
7.062E+01 8.683E-01 8.920E-01 9. 139E-01 4.556E-02 
7.902E+01 9.284E-01 9.460E-01 9.615E-01 3.310E-02 
8.712E+01 9.601E-01 9.730E-01 9.837E-01 2.363E-02 
1.054E+02 9.922E-01 9.970E-01 9.996E-01 7.451E-03 

4.763E+01 4.640E-01 S.OOOE-01 5.375E-01 7.350E-02 

XL XQ XU ox 
. 50-0UANTIL 4.583E+01 4.763E+01 4.929E+01 3.459E+OO 
.95-0UANTIL 7.655E+01 7.927E+01 8.303E+01 6.478E+OO 
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Fig.3 Uncertainty intervals of median and 
0.95-quantile vs no. of observations 
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