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SUMMARY 

A broken canister with radioactive waste from nuclear power plants is 

assumed to have come in contact with water. Radiation (mainly a) will 

radio lyze the water to form the main products· hydrogen and hydrogen 

peroxide. The rate of the radiolysis decreases with time. The hydrogen 

is not very reactive and will diffuse away. The hydrogen peroxide will 

oxidize ferrous iron in the backfill and rock matrix to ferric iron. 

Normally there is a reducing environment in the bedrock, but with the 

migration of the hydrogen peroxide into the bedrock it will change to 

an oxidizing environment. The hydrogen peroxide is very reactive and 

cannot coexist with ferrous iron. Thus a sharp front between oxidizing 

and reducing conditions is developed. This redox front moves very 

slowly in comparison with the movement of the radionuclides in the 

fissure. Some of the nuclides (Np, Tc and U) have a rruch lower 

solubility under reducing conditions than under oxidizing conditions. 

These will precipitate at the redox front to the solubility 

concentration. 

A model with diffusion in the axial and transverse directions, 

advection in the axial direction and diffusion into the rock matrix is 

used in a numerical computation to describe the movement of the redox 

front. An analytical solution with advection only in the fissure has 

also been used. 

Christensen and Bjergbakke (1982b) have computed the production rate 

of the oxidizing agents. From these computations two cases have been 

studied: a probable case with a production of 144 moles H20 2 in one 

million years and a hypotetical maximum case with a production of 

29 000 moles H202 • In the first case the canister is assumed to be 

intersected by one fissure and in the other by five fissures. 

The computations for the probable case give an extension of the redox 

front in the direction of flow 6,8 m in one million years, compared 

with 6 m obtained by the analytical solution. The extension in the 

transverse direction from the centre line has been calculated to be at 

most 1.6 m. The penetration into the rock matrix at the inlet of the 

fissure has been calculated to be 3.7•10- 2 m. 
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1. Background 

The canister with radioactive waste in a final repository is assumed 

to have been penetrated. Radiolysis of water by radiation (mainly a) 

from the radioactive material occurs and produces reducing species 

(hydrogen gas) and oxidizing species (mainly hydrogen peroxide). The 

hydrogen gas is not very reactive and wi 11 diffuse away. The hydrogen 

peroxide, which is very reactive, will attack the canister material 

and oxidize ferrous iron in the backfill and will finally diffuse into 

the bedrock where it will oxidize the ferrous iron. 

The amount of ferrous iron in the backfi 11 is 1 imited and the redox 

front quickly penetrates this to the bedrock. In an initial period the 

transport into the bedrock adjacent to the backfill is faster than the 

transport into the flowing water in the fissures of the bedrock. After 

some time, when the bedrock nearest the backfill is oxidized and the 

distance for diffusion into the bedrock has increased, the H202 migra

tion into the flowing water in the fissures will dominate. 

Some nuclides (Np, Tc, U) have a much lower solubility under reducing 

conditions (normally bedrock conditions) than under oxidizing con

ditions. These nuclides will precipitate at the redox front. 
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2. For~~ 1 at ion of _ _!_b~_prob 1 em 

The oxidizing agent (OA) released from the fuel diffuses out through 

the backfill and into water flowing in a fissure intersecting the 

repository hole. The OA is released at a known rate which is changing 

with time. Figure 1 shows the fissure intersecting the repository 

hole. Figure 2 shows the streamlines along the fissure and how the 

cylindrical hole is replaced by a plane source to simplify the 

computations. Figure 3 shows the expected movement of the redox front 

along the fissure and into the rock matrix. 

The change in concentration of OA in the water can be described by the 

advection dispersion equation in two dimensions. 

(2.1) 

The last term accounts for the diffusion into the rock matrix. 

The OA which goes into the matrix reacts very fast with the reducing 

agent (RA) in the matrix. OA and RA cannot coexist. A sharp front will 

develop: on one side there is OA, on the other there is the full con

centration of RA. Figure 4 shows the movement of the redox front for a 
case when there is a large surplus of RA. 

It has been shown by Neretnieks (1974) that when q » cs the con

centration gradient is constant from the surface and into the front at 

Xb, The rate of movement of the front is small in relation to the 
time constant for diffusion of OA. For this case the rate of movement 

of xb is obtained by stochiometric mass balance· 

The reaction is· 

OA + f RA = (RA) l OA 
r 

(2.2) 

(2.3) 
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Figure 1. A fissure with f1 owing water intersects a repository ho 1 e 
containing a waste cy1inder. 
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b) Simplified case. Release only downstream from a plane 
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Redox front in fluid 

back f i II 

IV Redox front in matrix 

Figure 3. The movement of the redox front downstream from the re 1 ease 
zone. 

a) view of the fissure 
b) view of the matrix. 

Locus of the front at various times. 
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where f is the stochiometric factor. Equations 2.1 and 2.2 are to be 

solved with the following initial and boundary conditions: 

C = O· q = qo for X ) O· z > 0: all y; t = 0 (2.4a) 
' ' 

C = O; q = qo for X + +oo• y -+ ±co; z + +oo· t > 0 (2.4b) 
- J - ' 

N = N ( t); z = 0: in -Rh ,;; y ,;; Rh; -2b ,.;; X ,;; O; t > 0 (2.4c) 

These conditions imply that at the beginning the water and the matrix 

have no OA and the matrix has a concentration q0 of RA (2.4a). Far 

away from the source so it will remain (2.4b). From time zero and on

wards OA is released into the water at a rate of N(t) moles/s over a 

distance of 2Rh and the width 2b of the fissure, x = 0 at one of the 

fissure walls. 

The boundary condition 2.4c is exchanged for N = u•2b•2Rh•c0 in 

the calculations to increase stability. This makes very little 

difference in practice as u c >> - D i£I which implies that 
o z 3x z=O 

advection dominates over diffusion to release the oxidants to the 

water. 

3c 
As _p 

3x is constant over x within the diffusion front in the rock 

matrix 

(2.5) 

and equation 2.1 becomes 

(2.6) 

and equation 2.2 becomes 

(2. 7) 
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Figure 4. The movement of a redox front into the rock matrix. 

Cs= concentration at rock surface of OA 
q = concentration of RA in matrix 
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3. Method of solution 

The DuFort-Frankel explicit finite difference approximation scheme in 

a modified form, is used to solve the problem numerically (Lapidus and 

Pinder 1982). 

The terms in equation 2.1 are discretized as follows: 

3c 
at= (cr+l s t - cr-1 s t)/2 ~t 

' ' ' ' 
(3.1) 

3c 
- = (c - c )/~z 
az r,s,t r,s-1,t 

(3.2) 

To ascertain stability c is exchanged for r,s,t 

C - a 
r,s,t - 2 C + r+l,s,t 

(3. 3) 

where 1 ~a~ 2 (a= 1 gives the DuFort-Frankel scheme). 

In the second derivatives the c expression of 3.3 is also used 
r,s,t 

and a discretization gives 

(c - a c - (2-a) c + c )/1:::.2 2 
r,s+l,t r+l,s,t r-1,s,t r,s-1,t 

(3. 4) 

a2c _ 
ay2 - (c - a c - (2-a) c + c )/1:::.y2 

r,s,t+l r+l,s,t r-1,s,t r,s,t-1 

(3.5) 

The matrix diffusion term is 



a C +l t + ( 2 - a) C l t r ,s, r- ,s, 
2 X b,r,s,t 

(3.6) 

Substituting the above equations into 2.1 gives 

+ 8 (c 1 + cr,s,t-1))/Bo 4 r,s,t+ (3. 7) 

where 1 D D D 
B a (-u- + _z_ + y + e ) = - + 

0 2tit 2tiz tiz 2 tiy 2 2bx b,r,s,t 

(3.8) 

1 D D De 
B - -- - (2-a) (-u- + _z_ + L + ) 
1 2 tit 2tiz tiz 2 tiy2 2bx b,r,s,t 

(3.9) 

D 
B - z 
2 - tiz 2 (3.10) 

D 
B = _3_ + ~ 

3 tiz 2 tiz 
(3.11) 

D 
B 

y 
4 - tiy2 (3.12) 

The increase in Xb according to equation 2.7 is 

C r,s.t 
X b,r.s,t 

(3.13) 

9 
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Assuming constant concentration an integration of 3.13 gives 

D •t:.t 
x = [x 2 +-e- (a c + (2-a) c )]o, 5 
b,r+l,s,t b,r,s,t q0 •f r+l,s,t r-1,s,t 

(3.14) 

Equations 3.6, 3.7 and 3.14 are solved by iteration. 

The concentration at the canister can be computed from 

(3.15) 

N(t) = production rate of 0A moles/year 

2ynr = number of t:.y occupied by the canister 

2t:.y Ynr = 2Rh = equivalent flow width (m) 

The numerical scheme does not give a sharp front beyond which the 

concentration is zero. The concentration drops continuously although 

very sharply in the transverse as well as in the axial dif'ection. 

Typically it will drop ten orders of magnitude over 5 elements in the 

transverse direction in the region where the zero concentration 

boundary is expected to be. The location of the boundary can be found 

with sufficient accuracy for the present purpose by the following 

consideration: In the element where the boundary is, there is an 

influx of mass by flow and diffusion in the water to just compensate 

the influx by diffusion into the matrix :~ = 0 in equation 

2.1. Transport by diffusion in the z direction can be neglected 
C - C 

dt fl B . t· ac n+l,m n,m f'dtht compare o ow. y approx,ma 1ng 32 = t:.z we 1n a 

ac 
cn+l,m = O. If the diffusive transport in they-- = - C /1:.Z as az n,m 

direction also is neglected equation 2.1 gives 

D 
xb = e 

•t:.z (3.16) 
u•b 
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4. Calculated example 

Christensen and Bjergbakke have calculated the effects of a-radiation 

(1982a) and a- and B-radiation (1982b) from spent fuel on water which 

has penetrated into the fuel rods in one copper canister of the pro

posed Swedish design. In their calculations they assume that all the 

voids between the fuel pellets and the zircaloy cladding is evenly 

filled with water (4.3 1). This gives a water film about 0.03 ITTT1 thick 

on the outer surface (144 m2) of the pellets. That is also the 

effective range of a-particles in water. This amount of water is 

certainly exaggerated as there are bound to be expanded corrosion 

products from the copper and zircaloy which will intrude into the 

original free voids. Christensen and Bjergbakke (1982b) found that 

when there is simultaneous a- and B-radiation the B-radiation produces 

a significant number of radicals which will aid the recombination of 

produced hydrogen and hydrogen peroxide. This is a 1 so aided 

considerably by the presence in the water of Fe(II) and Fe(III) which 

together with the OH-radical act as a catalytic scavenger pair for 

hydrogen and hydrogen peroxide. Christensen and Bjergbakke (1982b) 

concluded that the most probable production of radiolysis products is 

1 mole each of H202 and H2 per square meter of wetted pellet surf ace 

with a 0.03 ITTT1 film of water in one million years (case 1). In the 

hypothetical case (case 2) in which there is no iron present the 

production of H2 and H202 may increase to 200 moles/m 2 in 10 6 years. 

In table 1 and 2 the production rate and the integrated production up 

to one million years are given for the two cases according to 

Christensen and Bjergbakke (1982b). 

TABLE 1. Hydrogen production in water irradiated with mixed alfa- and 

beta-radiation from BWR fuel with a burn-up of 33 MWd/t. 

( Case 1. ) 

Storage time Production rate Integrated production 

years moles/year moles 

100 8.3 E-4 5.4 E-2 

300 6.7 E-4 2.0 E-1 

1000 4.6 E-4 6.0 E-1 

104 2.5 E-4 3.84 

105 1.8 E-4 23 

10 6 0.9 E-4 144 



12 

TABLE 2. Irradiation of pure water with mixed a lf a- and 

beta-radiation. BWR fuel. (Case 2.) 

Storage time Production rate Integrated production 

years moles/year moles 

100 3.6 260 

300 2.5 860 

1000 1.17 2100 

104 0.25 8600 

105 1. 3 E-2 20600 

10 6 0.6 E-2 29000 

The ferrous iron content of some Swedish crysta 11 i ne rocks has been 

measured and values between 1 and 7 % by weight (Torstenfelt et al. 

1983) have been found. In the examples 1 % is used. With a rock 

density of 2700 kg/m 3 the 144 moles H202 in case 1 would be able to 

oxidize 288 moles of Fe(II) to Fe(III). This is equivalent to 0.60 m3 

of rock. In the other case, the 29 000 moles H202 would be able to 

oxidize a rock volume of 60 m3 • 

The flow rate of water in the bedrock (u 0 ) may be expected to be 

less than 0.3 l/m2 ,year (Bengtsson et al. 1983). In the computation 

0.1 l/m2 ,year was used. Assuming that the effective fissure spacing 

(S) is 5 m so that only one fissure (0.5 fT1T1 wide) intersect the 5 m 

long canister (L), then the equivalent flow rate (0eq) which must 

carry the produced H20 2 is 0.67 1/year•canister, as calculated by the 

near field model (Neretnieks 1982). In the fissure the water 

downstream from the canister would have an equivalent flow width 2 

Rh with a concentration c0 (t) of the oxidizing agents when leaving 

the vicinity of the canister, see figure 5. The equivalent flow width 

can be evaluated from 

( 4 .1) 

(4.2) 
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TABLE 3. Values for cases 1 and 2. 

Case 1 Case 2 

Production of 0A in 106 144 29 000 
years (moles) 

Number of fissures per canister 1 5 

Fissure width, 2b, (m) 5 • 10- 4 1-10- 4 

s (m) 5 1 

2b 10-4 10- 4 
E: = -s 

Rh (m) 1.34 1.34 

Qeq (1/year•canister) 0.67 0.67 

uo (l/m 2 •year) 0.1 0.1 

u (m/year) 1 1 

If there is no diffusion or dispersion in the axial and transverse 

directions the movement of the redox front may be calculated by 

analytical methods (Neretnieks 1982b). This is done in appendix 1. In 

case 1 the redox front is calculated to have moved 5.8 m downstream 

from the canister in the fissure and 3.7•10- 2 m into the rock matrix 

at the inlet to the fissure (z = 0). in one million years. In the 

other case the redox front is ea 1 cu 1 ated to have moved 16. 6 m in the 

fissure and 0.5 m into the rock matrix at the fissure inlet. The 

effective diffusivity in the bedrock is taken to be De = 5·10- 14 

m2 /s (Skagius and Neretnieks 1982). 

For the very low velocity in the fissure the dispersion in the axial 

direction is dominated by molecular diffusion (Fried 1971). The 

dispersion in the transverse direction then also would be due to 

molecular diffusion. The molecular diffusivity for small molecules in 

water is around Dv = 2•10- 9 m2/s (Perry and Chilton 1973). 
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H2 0 2 diffusion equivalent width 
/of H2~ penetration 

/-------

stream lines 

Figure 5. The water which passes the repository hole will pick up 

oxidizing agent to an equivalent depth of Rh with a 

concentration c0 (t). 
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The numerical method described previously is used to solve this 

problem. Equation (3.16) is used to localize the redox front (xb 

(case 1) = 3.2•10- 3 m and Xb (case 2) = 2.3•10- 2 m with eq (3.16)). 

In the computations the following steps in time and space were used: 

Timestep ~t (years) 

Spacestep ~Y (m) 

- " - ~z (m) 

The front extends 

Case 1 

5000 

0.34 

0.50 

Case 2 

1000 

0.34 

0.73 

6 .8 m in the flow direction and 1.6 m from the 

centre line at the widest place for case 1. In the other case it 

extends 18 m in the flow direction and 2.4 mat the widest place. The 

redox boundary along the fissure plane is shown for case 2 in figure 

6. 

The penetration of the redox front into the rock matrix at the inlet 

of the fissure is computed in case 1 to be 3.7•10- 2 m and in case 2 to 

be S/2 = 0.5 m. In figures 7 and 8 the redox front extension in the 

flow direction as well as in the transverse direction in the rock 

matrix is shown. 

Upstream from the canister the redox front has in case 1 moved 0.9 m 

and in case 2 1.5 m in one million years. 
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16 
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Figure 6. The extension of the redox front in a single fissure. 

Production 5800 mol in 10 6 years. u0 = 0.1 l/m 2 year. 

( Case 2. ) Red ox front with advect ion only according to the 

analytical solution is marked with lines. 
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Figure 7. Penetration of the redox front into the rock matrix. 

(Case 1.) 

a) In the flow direction (z) for different y. 

b) In the transverse direction (y) for different z. 

xb = penetration depth. 
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Figure 8. Penetration of the redox front into the rock matrix. 

(Case 2.) 

a) In the flow direction (z) for different y. 

b) In the transverse direction (y) for different z 

xb = penetration depth 
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5. The movement of a nuclide which precipitates at the redox front 

Some of the important nuclides U, Np and Tc have a higher solubility 

in oxidizing waters than in reducing waters. Grenthe and Puigdomenech 

(1983) have discussed the dissolution of the fuel matrix and some of 

its constituents (Np, Pu) under conditions where radiolysis takes 

place, using a stepwise equilibrium calculation method. They assume 

that the oxidizing agent oxidizes the uo2 of the matrix to the hexa

valent state. This is then carried away as a carbonate complex out of 

the system. In the previous description H202 was used as the carrier 

with oxidizing power. The same would apply if UO~+ bound as some 

complex was the carrier with oxidizing power. The uranium would then 

be reduced at the redox front by reaction with ferrous iron. The minor 

constituents such as Tc and Np would be released congruently when the 

uo2 matrix dissolves due to oxidation and complexing. Tc and Np may 

precipitate at the redox front because their solubility is considerab

ly less in reducing waters. They precipitate along the whole redox 

front and are carried downstream from it by the water at a concentra

tion equal to their solubility. The transverse spreading of the 

nuclides in the oxidized zone is fast enough to make them spread to 

the outer edges of the redox front (Neretnieks, Aslund 1983). If the 

width and the length of the redox front is known, the amount of water 

flowing through the oxidized region is known, the equivalent flow rate 

carrying the species can be computed in the following way. Figure 9 

shows the oxidized region downstre~n from the repository. In the 

fissure the width 2 Yo is oxidized and the water leaving this region 

has the solubility concentration of the precipitated species. The 

species has also penetrated a distance out into the water 

perpendicular to the flow direction. This can be expressed as an 

equivalent distance n (penetration thickness) with the solubility 

concentration (Bird, Stewart and Lightfoot 1960, p. 540 and Neretnieks 

1980) 

,z E: 
- ,' 0 
n = 1.13 /' - • D 

u0 V 
( 5 .1) 
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Figure 9. Shows that the water leaving the redox front has attained 

the equilibrium concentration c~ed of the precipitated 

species. The species has also penetrated a distance n out

side the front by diffusion. 
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The flow rate carrying species in concentration then is 

Qred = L • (2 y + 2 n) • u 
eq o o (5.2) 

where L is the length of the canister (or repository hole) 2 y0 is 

the width of the redox front, z0 its length, t: the porosity of the 

bedrock (2b/s) and u0 the water flux in the bedrock. Dv is the 

diffusivity of the species. 

For z0 = 7 m, t: = 2b/S = 5°10- 4 /5 = 1-10- 4 , Dv = 2-10- 9 m2 /s and 

u0 = 0.l•l0- 3 m3 /m 2 year we find that n = 0.75 m. 

For L = 5 m and 2 Yo = 3 m the equivalent oxidized crossection is 

22.5 m2 and Q:~d = 2.3 1/canister and year. This is 3.4 times larger 

than the flow rate (Qeq = 0.67 1/canister,year) which carries 

species which do not have a solubility limitation. It can also be 

noted that Q;~d is considerably smaller than the average water 

flow rate per canister in the whole repository. The whole repository 

has an area ofabout 10 6 m2 and contains 5000 canisters, which gives 

200 m2/canister. The average flow rate per canister is u0 •200 = 20 

1/canister.year. Thus only about 12 % of the water downstream from the 

repository is saturated with the precipitating species in this 

example. 
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6. Discussion and conclusions 

In the most probable case the redox front has been calculated to move 

6.8 m with the numerical method and 5.8 m with the analytical method 

in one million years. The numerical method takes diffusion in axial 

and transverse directions into consideration and has to be regarded as 

the more accurate method of the two. The total mass balance in the 

numerical method has a discrepancy of about 10 % when 360 elements and 

200 time steps are used. 

The penetration of the redox front into the rock matrix at the inlet 

of the fissure has with both methods been calculated to be 3.7•10- 2 m 

for the most probable case. 

Gancarz and Curtis (1982b) have in a study on radiolysis effects in 

one of the natural 0KL0 reactors found surprisingly similar amounts of 

radiolysis products per tonne of spent fuel as is assumed to be 

produced in the most probable case. 

In the computations the curvature of the cylinder is approximated to a 

plate with very little extension in the flow direction of water (z). 

Diffusion in the transverse direction from the plate is neglected. In 

the normal case species diffuse from the backfill into the rock matrix 

through the rock surface of the cylindrical hole that forms the 

repository. In our calculations diffusion into the rock matrix is 

assumed to begin at the inlet of the fissure. 

The presence of an oxidized region gives rise to an increase of 

transport of those nuclides which have a higher solubility in 

oxidizing waters than in reducing waters. This is because they have 

time to diffuse from the redox front into the flowing water. The 

increase is moderate and only a small fraction of the water dowstream 

from a repository will be saturated with the nuclide. 



7. Notation 

B 
0 

B2 

b 

C 

C 0 ( t) 

C r,s,t 

1 D D De 
___ + a (-u- + _z_ + _J_ + ____ _ 

2~t 2~z ~z 2 ~y2 2bx b,r,s,t 

D D D 
__ 1 __ (2-a) (-u- + z + __L_ + _e ___ _ 

2M 2~z -;:;_I ~y2 2bx b,r,s,t 

D 
- z + u 
-7:z! ~z 

half fissure width 

concentration of oxidizing agent in water 

concentration of oxidizing agent at inlet 

of fissure - time dependent 

concentration at surface of fissure of 
oxidizing agent 

concentration in element s,t at timer 

equilibrium concentration of precipitated 

nuclides at the redox front 

De=DPEP effective diffusivity in rock matrix 

D pore diffusivity p 

D diffusivity 
V 

in water 

Dy diffusivity in y-direction 

DZ diffusivity in z-direction 

D € C 

D* = p p 0 

( S /2) 2 qo f 
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(m) 

(mol/m 3 ) 

(mo l /m 3 ) 

(m 2/s) 

(m 2 /s) 

(m 2 /s) 

(m 2 /s) 

(m 2 /s) 



f stochiometric factor 

L 

m = 

N(t) 

Q = 

Qeq 

Qred 
eq 

q 

qo 

R 

2 Rh 

s 

t 

u 

uo 

X 

y 

z = 

a 

£ 

E: 

n 

p 

0 = 

length of repository hole 

£ 

k 
production rate of oxidizing agents 
- time dependent 

q/q dimensionless concentration of 
0 

reducing agent 

equivalent flow rate 

equivalent flow rate carrying species 
red 

in concentration c0 

concentration of reducing agent in rock matrix 

concentration of reducing agent in matrix 
at the inlet 

radius of cylindrical hole 
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1 

APPENDIX 1 

The analytical solution of the movement of the redox front when there 

is no diffusion or dispersion in the axial and transverse directions. 

The solution is given by Neretnieks (1982a). 

When there is no film resistance the simplified equations can be used 

where 

Q(G,Z) = I 2D*t' - Z for 0,;; ½ 

Q(e,Z) = e - Z + ½ 

D s z 
z = p p 

(S/2) 2 mu 

0 s c 
D* = pp o 

(S/2) 2 q f 
0 

z e = ( t - - )D* 
u 

for 
1 

0 > -2 

(Al) 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 



2 

Case 1 

D E: = 5•10- 14 m2 Is p p 

co = 0.22 mol/m3 (average over 10 6 years) 

s = 5 m 

q/ = 500 mol/m3 

mu~ u0 = 0.l•l0- 3 m3 /m 2 .year 

Qeq = 0.67•10- 3 m3 /canister,year 

This gives 0 = l.08•10- 4 and with eq. (Al) for Q = 0 Z = l.47°10- 2 • 

Eq. (A3) is used to compute how far downstream from the canister in 

the fissure the redox front has moved in 10 6 years. This gives z = 

5.8 m. In the rock matrix, at z = o. the redox front is at a distance 

xb = 3.7•10- 2 m from the fissure plane. 

Case 2 

c0 = 43.3 mol/m 3 (average over 10 6 years) 

S = 1 m (5 fissures/canister) 

The other parameters are the same as for case 1. 

This gives 0 = 0.55 and with eq (A2) for Q = 0 Z = 1.05 the redox 

front moves 16.6 m downstream from the canister in the fissure in 10 6 

years and 0.5 into the rock matrix at z = 0. 
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