

Preliminary corrosion studies of glass ceramic code 9617 and a sealing frit for nuclear waste canisters

I F Sundquist

Corning Glass Works 78-03-14

POSTADRESS: Kärnbränslesäkerhet, Fack. 102 40 Stockholm. Telefon 08-67 95 40

PRELIMINARY CORROSION STUDIES OF GLASS CERAMIC CODE 9617 AND A SEALING FRIT FOR NUCLEAR WASTE CANISTERS

I F Sundquist Corning Glass Works 78-03-14

Denna rapport utgör redovisning av ett arbete som utförts på uppdrag av KBS. Slutsatser och värderingar i rapporten är författarens och behöver inte nödvändigtvis sammanfalla med uppdragsgivarens.

I slutet av rapporten har bifogats en förteckning över av KBS hittills publicerade tekniska rapporter i denna serie.

PRELIMINARY CORROSION STUDIES OF GLASS-CERAMIC CODE 9617 and a SEALING FRIT FOR NUCLEAR WASTE CANNISTERS

J. D. Sundquist Corning Glass Works Corning, New York

March 14, 1978

for

Karnbranselsakerhet Order No. 166 Stockholm, Sweden

PRELIMINARY CORROSION STUDIES OF GLASS-CERAMIC CODE 9617 AND A SEALING FRIT FOR NUCLEAR WASTE CANNISTERS

J. D. Sundquist

ABSTRACT

At the request of ASEA-ATOM, Sweden, a study was initiated to evaluate glass-ceramic Code 9617 and a sealing frit (glass Code 186AYU) to dete mine the suitability of these materials for use in the construction of a cannister to contain and permanently isolate spent nuclear fuel rods. The study was aborted after one quarter of the work was completed. Nevertheles results obtained define test conditions for future work and provide prelim inary estimates of corrosion rates.

The granite repository storage conditions included ground water in co tact with bentonite clay plus sand with temperature cooling from 100 to 40 in 500 years. The water exchange rate is 1 ml per cm² of cannister surfac per year. Tests were conducted at 60, 90, 130, and 180°C. Most of this preliminary work was done with distilled water with a few tests in water containing bentonite and sand or salt.

It is recommended that future tests be conducted under conditions while embrace the actual storage temperatures, thus allowing prediction of long term rates from an extrapolation of time rather than from the accelerated effect of increased temperature which our results indicate may alter the reaction mechanism. Other test conditions should also simulate real conditions as nearly as possible. Of particular importance is a consideration of the changing chemistry of the test solutions when "static" conditions an used; i.e., when the test solution remains in contact with the test specime for long periods of time.

Preliminary data suggest that the glass-ceramic would lose about 0.1 (of thickness in the first 1000 years of storage. The figure shown below presents a comparison of estimated

corrosion rates as a function of temperature for a flowing and a static water system.

There is little evidence to suggest that the corrosion rate in ground water/bentonite/sand mix or in salt water would differ by more than an order of magnitude.

It appears that the spodumene fraction of the glass-ceramic is very corrosion resistant, even at 180°C. This suggests that modifications in bulk composition or processing could dramatically decrease overall corrosion rates.

- 1 -

1. Introduction

At the request of ASEA-ATOM, Sweden, a study was initiated in July, 1977, to evaluate glass-ceramic Code 9617 as a cannister material for the containment of spent nuclear fuel rods. Corning was to have one year to determine whether it could fabricate the large $(1\frac{1}{2}$ by 8 foot) cylinders, seal them and assure that they would survive the environment in which they would be stored. There were three areas of study:

- 1. feasibility and cost of fabrication
- 2. physical durability of the cannister in the proposed environment, and
- 3. chemical durability of the cannister in the 'proposed environment.

The project was discontinued October 31, 1977.

This report details the chemical durability study (item 3) up to that time.

The objectives were to:

- 1. evaluate methods of testing, and
- 2. use the best methods to predict corrosion over a 1,000 year span.

We have completed objective 1 and have some preliminary data concerning objective 2.

In this report, I:

- 1. discuss the proposed site conditions,
- 2. describe the experimental approach
- 3. provide an evaluation of the various methods and techniques, and
- 4. estimate corrosion rates from the preliminary data and discuss possible mechanisms of attack.

2. Problem Definition-Repository Conditions

The proposed repository conditions are summarized be-

low:

a mixture of 9 parts sand and 1 part bentonite will be packed around the spent fuel rods contained in the cannister,

the cannisters will be stored in shafts 500 meters deep in granite and surrounded with the 9 sand and 1 bentonite mix,

the temperature is initially 100°C, cooling to 60°C after 100 years, 40°C after 500 years and 25°C after 3000 years, (see zeolite, Figure 2),

*the ground water flow through the granite will be 1 liter/meter²/year,

the ground water composition will be as shown in Table 1.

Figure 1, represents the proposed storage configuration as we understand it:

Figure 1. Proposed Repository Configuration.

Figure 2. 1

Temperature decay curve in granite repository. (Spent fuel rods are stored 10 years before placing in cannisters, then stored 40 years before being placed in the repository.) (Reference 1)

ASEA-ATOM

Addendum to Inquiry of February 21, 1977

Water	chemistry	for	materials	selection:
	•			
pН			6.	5 - 8.6
Ca			5	mg/l
Mg			1	mg/1
Na			270	mg/1
K			1	mg/l
C1			280	mg/1
SO_4			35	mg/l
HCO 3	•		240	mg/1
NO 3			1.7	7 mg/1
PO_4			0.3	3 mg/1
F			4.3	mg/1
SiO_2			4	mg/l
Fell			3	mg/1
Mn ^{II}			1.3	mg/l

Table 1.ASEA ATOM Definition of Ground Waterat Repository Site.

For one cannister I have made some calculations from the previous information to aid in our experimental design, method and evaluation:

5

LATERAL SHAFT: Void Volume	36.8 m ³
Surface Area	53.6 m^2
VOLUME OCCUPIED BY CANNISTER	$0.39m^3$
OUTSIDE SURFACE AREA=	$4.86m^2$
(SHAFT VOLUME) - (CANNISTER VOLUME) = 36.4 m^3	= 26.4×10^3
(9) sand + (1) bentonite packing density =	1.63 gms/c
sand density =	2.35 gms/c
bentonite density =	2.0 gms/c
<pre>sand/bentonite mix = 70% solid ;</pre>	and 30% void
FINAL VOID SPACE = $(30\%) \times (36.4 \times 10^3)$ L	$10.9 \times 10^3 L$
WATER LEAK RATE IN =	56.6 L/year
TIME TO FILL VOID =	200 years
SOLUTION VOLUME TO CANNISTER SURFACE AREA RATIO	$D = 220 \text{ cc/cm}^2$
RATE OF CHANGE OF SOLUTION = 1.1 cc/year/cm	m^2 of canniste

3. Equipment and Test Conditions

The time interval over which we seek to predict corrosion is extremely long. To shorten laboratory testing time we frequently accelerate tests by increasing temperature and/or solution corrosivity and then extrapolate back to the real-life condition. This is relatively easy when predicting for a few years. To apply this technique to a 1,000 year interval requires further consideration. The changing test solution chemistry becomes critical as does the changing on-site chemistry. Also, the increased temperature required may introduce new variables. In this light our present and proposed test procedure and methods of evaluation were studied in detail.

- 6 -

3.1 Equipment

The glass-ceramic candidate (CGW Code 9617) and frit (experimental) were tested at temperatures of 60, 90, 130, and 180°C. We purchased high temperature ovens and constant temperature baths from the Blue M Company, Long Island, New York and reaction vessels (high temperature bombs) from the PARR Instrument Company, Chicago, Illinois. Chemically resistant glass test tubes were obtained from our company. Figures 3 and 4 show some of the equipment.

3.2 <u>Test Conditions</u>

The glass-ceramic and frit durabilities were studied in distilled, deionized water at the four temperatures indicated in 3.1. The variables evaluated included time, temperature and the ratio of test solution volume to test sample surface area. The latter will hereafter be referred to as "the ratio" or "R".

We also obtained some data on the effect of a 9 sand and 1 bentonite mixture and on the effect of an aqueous solution of sodium chloride on durability.

- 7 -

Our evaluation methods included weight loss, atomic absorption analysis of the test solution, and 5 methods of sample surface analysis. These methods were scanning electron microscopy, transmission electron microscopy, transmission x-ray energy dispersion analysis; x-ray diffraction and H^+ profiling by ¹⁵N bombardment.

4. Data

A considerable amount of data was obtained. Because the project was terminated many experiments were not concluded. Other experiments, though completed, have not been validated with replicates.

In Sections 5 and 6 I discuss the results which we feel are significant.

Figure 3. 20 ml High-Temperature Nickel Coated Reaction Vessels (Bombs)

(A)

(B)

(C)

Figure 4: Photographs of some of the equipment. (A)-constant temperature bath. (B)-oven. (C)- mini-reactor.

This section includes the evaluation of the test equipment and an evaluation of the various analytical tools that were employed throughout the study.

- 10 -

5.1 Equipment

High temperature reaction vessels ("bombs") of various composition and size were considered. Materials considered were tantalum, monel, stainless steel and nickel. Corrosion resistance, cost and delivery time led us to select nickel-plated 22 milliliter bombs.

Fifty milliliter Corning Code 7740 test tubes with screw tops were used for most of the low temperature work. They were pre-aged in hot hydrochloric acid. As the tests proceeded the decision was made to switch to plastic test tubes since the relatively large surface area of the tubes compared to the samples gave high blank values.

The ovens and baths functioned well.

The mini-reactor was not evaluated since it was received after the work was finished.

5.1.1 <u>Corrosion of Stainless Steel Bombs</u>. We rejected high quality stainless steel bombs as test containers because of their extremely poor resistance to attack by NaCl. The steel, #316, is molybdenum doped which improves its resistance to chloride attack.

In a sodium chloride solution at both 130 and 180°C for four days the steel bomb was deeply corroded and the test solutions discolored. Figure 5 shows a photograph of the tops of the two bombs after they had been "cleaned" by sand blasting compared with an unused bomb.

В

С

- 11 -

Figure 5. Photograph of High Quality Stainless Steel
 (316) Containers After Exposure to an Aqueous
 NaCl Solution for Short Periods of Time.
 A = Blank, B = 130°C/4 days, C = 180°C/4 days.

Incidentally, Code 9617 glass-ceramic by comparison is hardly touched!

5.1.2 <u>Corrosion of Code 774() Glass Tubes</u>. Chemically resistant CGW glass Code 7740 test tubes were used in the constant temperature baths at temperatures less than 100°C. Code 7740 glass corrosion rate in water is 0.15 cm/1000 year (Y). However, because of the relatively large surface area of the test tube compared to the test specimen (ranging from 100/1 to 50/1) the blank contribution by the tubes becomes significant. Because of this high blank it is recommended that plastic tubes be used for small samples.

5.2 Analytical Tools

A

Several analytical techniques were evaluated including weight loss, flame spectrometric analysis, microscopy and hydrogen ion profiling.

Weight loss has the advantages of ease and speed as well as the availability of much historical data on other materials that can be used as references. It has the disadvantage of requiring a major disruption of a test when interim data is required as the test proceeds. This disruption is not only inconvenient but will affect the results since it introduces a sample cooling and drying step before weighing.

- 12 -

A better method for monitoring tests as they progress is the flame spectrometric analysis of test solution aliquots. This can be done with less disturbance, especially if the solution volume is large (> 100 ml) and the test is not being run in high temperature bombs. Disadvantages include the possibility that all the products of corrosion might not be in solution, the decrease in solution volume or the change in solution chemistry if the removed volume is replaced with fresh water, the fact that the use of the bombs requires the cooling of the test solution before an aliquot can be removed and the fact that the bombs are of a small volume (22 ml). The effect of these drawbacks can be lessened with the use of the 300 ml mini-reactor which we purchased. This bomb permits the addition and removal of solution in situ.

Scanning and transmission electron microscopy are useful in visually assessing surface effects.

A technique for H^+ profiling of the surface of materials to a depth of a few micrometers has also been used.² A linear accelerator produces ¹⁵N atoms which collide with hydrogen in the sample to yield gamma rays in proportion to the concentration of hydrogen present. Depth of analysis is changed by changing the energy of the ¹⁵N. This method was used to profile reacted glass-ceramic surfaces. The technique is also capable of providing other ion profiles such as lithium which is present in the glass-ceramic composition. It is not yet clear whether this method can be used to predict corrosion rates.

5.3 Experimental Variables

Experimental variables studied include the ratio (R) of the test solution volume to test sample surface area (ml/cm^2) , pH, time, temperature, and the effects of the sand plus bentonite mix, and sodium chloride.

Ground water composition effects were not evaluated initially since we preferred to study the principal variables in a simple matrix - pure water. Once these were understood we planned to introduce ground water as an effect.

We used very small sample sizes $(0.5 \text{ to } 2 \text{ cm}^2)$ in order to fit them into the small bombs. This small sample size introduces two additional variables, neither of which we have evaluated. They are the error in determining the geometric area of small samples and the "edge effect". With large samples $(> 5 \text{ cm}^2)$ this effect is negligible but becomes more important as one uses sample sizes in the regime in which we have. The corrosion rate at the sharp edges of a material is accelerated over that rate for a flat surface. The smaller the sample size, the greater the proportion of edge length to total surface area and the greater this effect. This relationship for various shapes of rectangles is plotted in Figure 6.

6. Preliminary Rate Prediction

This section presents our comments and conclusions regarding various aspects of the data. None of the conclusions and predictions have been supported with replicate experiments. The corrosion rates were calculated assuming linear attack (etch).

- 13 -

OUR WORKING RANGE (1.5) NORMAL WORKING RANGE (0.01)

Figure 6. Increased Importance of Edge Effect with Lower Surface Area Samples. Rate of Change of Ratio in Parentheses

This is probably not the case, but it provides a high estimate.

6.1 Ratio Effect

The first variable studied in detail was the effect of test solution volume to sample surface area (R). This is an important consideration since R affects the rate of change of solution chemistry with time. An example of this effect is shown in Figure 7.

Here, corrosion rate in cm/1000 years is plotted versus time at 180°C for two values of R. Apparently, the lower ratio test solution becomes saturated with corrosion products at a faster rate than the higher one and reduces the rate of attack by the solution.

- 15 -

The Effect of the Ratio of Test Solution Figure 7. Volume to Sample Surface Area (ml/cm²) on Corrosion Rate for the Code 9617 Glass-Ceramic

Since the proposed system is nearly static (a key assumption from the calculated rate of change of solution which was $\sim 1 \text{ ml/cm}^2$ of glass-ceramic/year) we need to determine the saturated solution corrosion rate to predict the long term corrosion. One can determine this equilibrium corrosion rate by extending the time of experimentation to the point where the corrosion rate becomes constant. To assure that this holds true for any ratio the experiment should be done for more than one starting ratio. Also, if the experimental time becomes prohibitive one can extrapolate a family of curves to a point where they coincide. This is shown graphically in Figure 8.

Figure 8. Predicting Equilibrium Long-Term Corrosion Rate and Ratio

This should then be done for several different temperatures so that one could extrapolate to the actual test site temperature range.

After having gathered some data in this manner, it has become apparent that the use of high temperature tests creates many problems. Control of the experiment is difficult and we have indications that there is a change in the corrosion mechanism at the higher temperatures that prevents a straight forward extrapolation to the lower temperatures. (This change is discussed later in this report.)

Rather than accelerating the corrosion of the materials and extrapolating down to actual conditions to obtain the long term corrosion rate, I feel that the best approach in the future

would be to take corrosion data under conditions very close to those predicted for the repository site. By using a low enough solution volume to surface area ratio, we would probably approach the equilibrium quite rapidly even at the lower temperatures of 60° and 90°C.

6.2 Corrosion Rate Estimates

Based on data so far obtained I have calculated the ceramic and frit water corrosion rate as a function of temperature and ratio:

Sample	R	I	'est	Corrosion Rat
	6	Time(days)	Temperature(°C)	<u>(cm/1000 Y)</u>
Glass-ceramic	20	4	180	78
	10	4	180	62
	5	4	180	41
	20	4	130	18
	10	4	130	10
	5	4	130	7
	20	4	90	1.8
	10	4	90	0.9
	5	4	90	0.5
Frit	20	4	180	68
	10	4	180	34
	5	4	180	18

Table 2. Estimated Corrosion Rate of the Code 9617 Glass-Ceramic and Experimental Sealing Frit.

NOTE: That as the ratio is lowered the corrosion rate drops.

Extrapolation of these data back to a zero ratio should give an estimate of the equilbrium (long term) corrosion rate under static conditions. In Figure 9 below I have done this for the data in Table 2. The glass-ceramic 180°C data are not linear. This may be a change in glass corrosion mechanism or an error in the data.

Figure 9. Corrosion Rate as a Function of the Ratio of Solution-Volume to Surface Area. Zero Ratio is Equivalent to Corrosion Over the Long Term.

- 18 -

The predicted long term corrosion rates from this extrapolation are shown below in Table 3.

Material	<u>T(°C)</u>	Corrosion Rate (cm/1000 Y)
Glass-Ceramic	180	8 to 33
	130	3
	90	0.1
Frit	180	2

Table 3. Predicted Long Term Corrosion Rates from the Extrapolation of Data to a Zero Ratio.

Figure 10 shows the glass-ceramic corrosion rate plotted as a function of temperature for ratios of 0 (obtained by extrapolation), 5, 10, and 20 ml/cm². The zero ratio curve represents our best guess for the long term corrosion rate.

To obtain an accurate prediction of actual total corrosion we need to consider the effects of cooling. Using the cooling curve shown earlier in Figure 2, the following calculations can be made:

Average Temperature (°C)	Time Interval (yrs)	Rat $\frac{(cm/100)}{R = 20}$	te 00 Y) <u>R = 0</u>	$\frac{\text{Materi}}{\text{R}=20}$	al <u>(cm)</u> <u>R = 0</u>
100	20	3.5	0.28	0.07	0.006
75	80	0.5	0.08	0.04	0.006
50	400	0.023	< 0.001	0.009 <	0.0004
40	500	0.005	< 0.001	<u>0.003</u> <	0.0005
Total	1000			0.12	0.013

Table 4.Estimated Glass-Ceramic Corrosion Rate in WaterTaking Into Account the cooling of the repositorySite.Sample is Assumed Wet at Time of Deposit.

Figure 10. Corrosion Rate as a Function of Temperature and Ratio for the Glass-Ceramic

- 20 -

These estimated rates are well within the limit of 1 cm/1000 years that we were targeting.

Note that if it is taken into account that the repository void space is not filled with water until 200 years these estimates are high.

6.3 The Effect of Sand and Bentonite

The preliminary data on the effect of sand and bentonite on corrosion are shown below:

Material	Test Matrix	R	Temperature °C	Estimated Corrosion Rat cm/1000 Y
Frit	9 sand/1 bentonite/ H_20^c 9 sand/1 bentonite/ H_20^c	220 75	90 90	4 3
Glass-ceramic Glass-ceramic	9 sand/l bentonite/H ₂ O ^C 9 sand/l bentonite/H ₂ O ^C H ₂ O	~75 2 ~ 2	90 60 ~ 60	~75 ^a 0.7 ~ 0.01 ^b

Table 5. Preliminary Corrosion Estimates on the Effect of the Sand Bentonite Mix^c Compared to Pure Water

> ^afrom Figure 9; ^bfrom Figure 10; ^c9 grams sand + 1 gram bentonite made up to volume with H₂O

These values indicate the corrosion in the mix to be within accepted limits considering that the data are for ratios higher than the expected equilibrium ratio of zero.

-21 -

6.4 The Effect of Solution Flow

The rate of influx of ground water is estimated to be about 1 milliliter per centimeter of glass-ceramic per year. This low rate was considered insignificant in its effect on the chemistry of the system and was not investigated.

6.5 The Effect of the Composition of the Ground Water

This was to be studied later in the course of our work.

6.6 Sodium Chloride Corrosion

A small amount of data was obtained on corrosion by aqueous salt solution (0.5 gms/ml). Some of the data was confounded by corrosion of the stainless steel test containers. In these instances, the glass-ceramic showed little corrosion relative to the steel. Table 6 shows the corrosion rate estimates for aqueous salt attack on the frit and the glass-ceramic.

Material	Solution	R	Time (Hours)	Temperature °C	Corrosion H	
Glass-Ceramic	NaCl 20		96	180	30.	
	H ₂ O 20		96	180	78.	
	NaCl	20	96	130	18.	
	H ₂ O	20	96	130	18.	
• ·	NaCl	20	96	90	0.4	
	H ₂ O	20	96	90	1.8	
Frit	NaCl	20	96	130	27.	
	H ₂ O	8	96	130	26.	
	NaCl	20	96	90	2.8	
	H ₂ O	20	96	90	8.2	

Table 6. Preliminary Data on the Corrosion Rate of NaCl Solution Compared to H_2O for the Glass-Ceramic and the Frit.

These corrosion rates seem to be comparable to water corrosion rates.

7. Corrosion Mechanism

We have evaluated the corrosion mechanism on a macro and an atomic scale. The next two sections address these topics.

7.1 <u>Selective Attack</u>

The Code 9617 glass-ceramic is a composite of several phases as shown below:

*determined by scanning transmission electron energy dispersion.

Because of this, one would expect the composite material to exhibit different localized corrosion rates. This appears to be the case. Scanning electron microscopy of the H_2O corroded glass-ceramic surface showed the glass phase to be removed leaving the crystalline phases relatively untouched.

В

А

Figure 11. Scanning Electron Micrographs Comparing Water Attacked Surface (B) with Unattacked Surface (A). Attack was 4 Hours at 180°C in H₂O

Figure 12 shows the remaining crystalline phases in greater detail.

Figure 12. Higher Magnification Scanning Electron Micrograph of Glass-Ceramic Showing Only Crystals Remaining After 4 Days at 180°C in Water

This evidence coupled with the cloudiness of the solution suggests the mechanism of attack described below in Figure 13.

Figure 13. Suggested Corrosion Mechanism: Selective Leaching Away of Glassy Phase Followed by Dislodging of Unreacted Crystalline Phase.

Improving the durability of this glassy phase should improve the overall glass-ceramic durability. This was demonstrated using an SO_2 treatment, a common method in the glass container industry to improve the durability of some glasses. Hot, wet SO_2 provides free H⁺ ions which exchange with alkali at the surface of the glass. The surface then reconsolidates into a more durable high silica skin. At the temperature of treatment

 $(\sim 550^{\circ}C)$ the crystalling phases are probably not affected.

Chemical durability results on some SO_2 treated samples is shown in the table below compared with untreated samples.

Sample	Time(Days)	Temperature °C	Corrosion Rate <u>(cm/1000 Y)</u>
Untreated SO_2 Treated	1	180 180	27. 11.
Untreated SO_2 Treated	17 16	180 180	4.5 0.7
Untreated SO_2 Treated	17 16	130 130	1.3

Table 7.

The Effect of SO_2 Treatment on Ceramic Durability. Glassy Phase Durability Is Improved (R = 0.9)

Though the improved durability only lasts until the silica-rich skin is removed the long range durability will be improved by holding off attack until the cannister and its surroundings have cooled to a condition of lesser corrosivity.

The proposed corrosion mechanism presents other opportunities for improving chemical durability:

1. reduction of the amount of glassy phase

2. changing the composition of the glassy phase.

It is worth noting that the spodumene phase appears to be highly durable in a water environment and efforts to improve ceramic durability should aim at increasing the amount of β spodumene.

7.2 Ion Exchange

Hydrogen ion profiling of the reacted sample surface may aid in understanding the corrosion mechanism on an atomic scale.

- 26 -

Hydrogen and/or water migration into the surface of materials, especially glass and glass-ceramics, play a major role in the corrosion process. Until recently, there has been no method available for profiling this reacted surface. Recent work by Dr. William Lanford 2 at Yale University has provided us with a method for determining hydrogen ion profiles in glass and glass-ceramics.

The generally agreed upon model for H_2O corrosion of glass is shown schematically in Figure 14.

In:

- Step 1: H⁺ ions replace free alkali ions in the glass by ion exchange (leaching)
- Step 2: The presence of the alklai ions in the water raises its pH and the resulting hydroxyl groups attack the Si-O-Si network breaking the Si-O to form Si-OH (etching).

Lanford's work suggests that hydronium ions $(H_{3}0^{+})$, not hydrogen ions (H^{+}) , are the exchanging species. (in Step 1). Figure 15 shows a typical H^{+} profile and how it relates to the glass (or glass-ceramic) surface.

Figure 15. Typical Hydrogen Ion Profile by ¹⁵N and How It Relates to the Sample

The horizontal line in the figure labelled "All Li Exchanged" corresponds to the point where the H^+ ion concentration is three times the concentration of the Li⁺ ions in the bulk ceramic as calcuated from the composition. That is, we assume that one H_30^+ ion exchanges for one Li⁺ ion. The hydrogen ions in excess of this value are assumed to correspond to bulk water that saturates the ion exchanged silica skin. This is called the hydrated gel layer. The depth of exchange below the gel/bulk interface is called the exchanged layer.

From H^+ profiles measured by Lanford and weight loss data we have computed the thickness of the etch, gel and ion-exchanged layers for several test conditions:

Test	Conditions			
Time (hours)	Temperature (°C)	Etch	Gel	Ion-Exchange
4	130	0.04	0.00	0.06
24	130	0.07	0.00	0.15 (?)
96	130	0.47	0.00	0.06
408	130	0.59	0.05	0.08
4	180	0.47	0.00	0.07
24	180	0.74	0.00	0.08
96	180	1.6	0.08	0.08
408	180	2.1	0.72 (?)	0.66 (?)

Table 8. Some Preliminary Calculations of Etch, Gel and Ion-Exchange Layers from Weight Loss and Hydrogen Ion Profile Data (R = 0.9)

The sharp increase in the thickness of the gel and ion-exchange layer at 408 hours -180°C is suggestive of a mechanism change. More work is necessary to fully understand this.

8. Conclusions

The first objective, learning how to best do experiments for long term prediction under the specified conditions has been achieved. Some tentative conclusions can be drawn from the data regarding the second objective-predicting the extent of corrosion over a 1000 year span. Information has also been obtained regarding other chemical environments such as an aqueous salt system and modifications to the storage site and/or the cannister

material to prolong the storage life.

The optimum test conditions would embrace the actual time, temperature, chemistry and flow conditions to be found at the repository site. Since this cannot be done, it is preferable to conduct the tests at test site temperatures and extrapolate to the longer times required for prediction. Mechanism changes seem to occur when increased temperature is used and this could invalidate conclusions. However, a few tests at elevated temperatures might be used to rapidly identify possible "worst case" situations. Such worst case situations should then be validated under expected site temperatures.

Extreme care must be taken in the design and interpretation of experiments to assure that the chemistry simulation is accurate, and/or that deviations are understood and accounted for. Simply duplicating the initial chemistry of the system is not enough. This is particularly true in a situation that is expected to be "static" regarding ground water movement.

If further work is to be done in the system described in this report, the following is recommended:

- 1. Temperature 30°, 60°, 90°, and 120°C
- 2. Time as long as practical
- Initial solution ground water in equilibrium with
 9 sand and 1 bentonite
- 4. Solution volume to sample surface area ratio very high, very low
- 5. Determine Weight loss, ions in solution (Si, Li, etc.)
 Electron micrographs of surface and cross-section
 - Hydrogen and possibly lithium ion profiles.

Composite "sandwiches" of the ceramic-frit-ceramic body should be tested as well as small samples from an actual cannister.

The data obtained at this point indicate that the ceramic would be reduced in thickness by about 0.1 cm in 1000 years under the specified conditions. The experimental frit candidate tested would apparently be corroded to a depth of about 1 cm in 1000 years. The corrosion rates in cm/1000 years for the glass-ceramic are estimated in Figure 10 (zero ratio = static condition). Typically, rates in flowing conditions are 2 cm/1000 Y at 100°C, 0.1 at 50°C; in static conditions, 0.2 cm/1000 Y at 100°C and 0.001 at 50°C.

Corrosion rates in aqueous salt systems do not appear to differ dramatically from those found in water; if anything they appear to be lower. In limited testing we found a static corrosion rate of about 0.1 cm/1000 Y. These data may have been affected by the stainless steel corrosion products from the test container.

The strong dependency of the corrosion rate 'on the ratio" of solution volume to sample surface area in actuality represents the effect of different concentrations of dissolved ions, probably silicon and aluminum complexes. This suggests that any potential corrosion of a cannister stored in a water cooled basin could be decreased by appropriate chemical additions to that water.

The β -spodumene crystal fraction of the glass-ceramic seems to be extremely corrosion resistant to near neutral (pH ~ 7) solutions. The glassy phase is apparently the less durable fraction.

It is probable that more resistant glass-ceramics could be designed by either adjusting the composition or the ceramming process.

- 32 -

Any further studies should include the evaluation of the effects of radiation damage on corrosion, the possibility of crystal growth and resultant fracture in the fritted seal joint and the change in physical strength as corrosion proceeds.

- 33 -

Two major concerns emerge:

- the limited results on water in contact with bentonite and sand suggest that the rate of corrosion could be different than for water, and
- 2. the H⁺ profile results suggest that, long term, there could be a mechanism change to accelerate the corrosion process.

Finally, note that the bulk of these conclusions regarding corrosion rates and mechanisms rests on limited data and should be further studied.

References

¹Private Communication from L. Hyden to J. D. Sundquist, July/77.

²W. A. Lanford, ¹⁵N Hydrogen Profiling, Scientific Applications" Presented at 3rd Int. Cont. on Ion Beam Analysis, Washington, D. C. June 27 - July 01, 1977. USERDA Contract No. EY-76-C-02-3074.

ACKNOWLEDGMENT

I would like to thank Mr. Russell LaFever for doing most of this work and keeping a good record of all of it.

Dr, R. A. Burdo and Messrs. Thresher and Robinson provided many timely analyses without which this report could not be.

Mrs. E. L. Cross did an excellent job of organizing the tables of data and typing the report.

.

 $\sim 10^{-1}$

APPENDIX I. GLASS CERAMIC CODE 9617 Corrosion Test Date а

•

,

Ref.	Test Description	Ratio	Time	Temperature	Final	Wt. Loss		Extrac	ted Solu	tion)mg/	cm²)
5	11.0		<u>(Days)</u>		<u></u>	(mg/cm^2)	<u>S10</u> ,	<u></u>	Li ₂ 0	MgO	ZnO
3	$H_2O/9$ sand/1 benton- ite (3 gms)	1.7	17	60	8.9	0.076	0.005	<0.0002	0.001	0.00005	0.00 002
61	1120	220	4	ัจกั	6 7	-0.01					
64	11,0	220	16	90	71	E 0.01	0.11	0.00			• •
79	11,0	200	14	90	7.1	0.04	0.44	<0.02	< 0.002	<0.002	0.007
114	1120	200	54	90	7.5	2 20	2.4				
60	H ₂ 0	150	4	90	6 1	2.27					
63	1120	150	16	90	7.0						
97	11,20	100	16	90	7.0	<0.01					
62	H ₂ O	75	4	90	67	0.03					
65	1120	75	16	90	6.9	0.03					
78	H20	20	16	90	7 9	0.05	0 57	0.026	0.007		
96	H ₂ O	20	16	90	73	0.05	0.57	0.036	0.007	0.010	0.001
77	H ₂ O	10	16	90	7.5 ตา	0.13					
76	11,0	5	16	90	81	0.02					
107*	change II20 once/week	76	70	90	5.0	0.02					
128	change H ₂ O once/week	10	77	90	8.4	0.04					
70	$H_2O/9$ SiO ₂ /l benton- ite (5 gms)	220	 /1	90	9.0	0.05	*detai	led in A	ppendix	3	
68	$H_20/9$ SiO ₂ /1 benton- ite (10 gms)	220	16	90	8.7	0.02	1 (Hydr 2 Borat	oxy-methy etiiC1	/1) amin	o methane	HIC1
69	H ₂ O/9 SiO ₂ /l benton- ite (5 gms)	75	16	90	8.7	0.11		- HOL			
194	H ₂ O/NaCl(0.5 gms/ml)	20	4	90	7.5	<0.01					
74	Buffered ¹ (pH=8.5)	150	16	90	8.5	0.03	^a Note	: no da	ata ex	cluded	although
57	Buffered ¹ (pll=8.5)	15	3	90	8.4	<0.01	some	may b	e spur	ious.	0
59	Buffered ² (pll=8.6)	15	3	90	8.6	0.12					
75	Buffered ¹ (pll=8.5)	15	16	90	8.6	0.02					
73	Buffered ¹ (pH=8.5)	10	4	90	8.4	<0.01					
56,	Buffered ¹ (pH=8.5)	2	3	90	8.3	<0.01					
58	Buffered ² (pH=8.6)	2	2	۵n	0 r	0.010					

APPE XI - continued - Page 2.

.

Ref.	Test Description	Ratio	Time	Temperature	Final	Wt. Loss	•	Extracted	1 Solution	(mg/cm ³	! }
-	· ·	$(m1/cm^2)$	(days)	(0°)	pH	(mg/cm ²)	S10,	A1,0,	LL,0	MgO	ZnO
22	H ₂ O	11	4	130	7.0	0.32	0.067	< 0.001	0.077	0.043	0.029
48	1120	0.9	4	130	7.0	< 0.01	0.0057	0.0007	0.0007	0.0002	
50	H ₂ O	0.9	1	130	7.2	0.018	0.011	0.0008	0.0011	0.0001	0.00004
52	1120	0.9	4	130	7.7	0.12	0. 067	0.0052	0.0041	0.0004	0.0002
54	H ₂ O	0.9	17	130	7.5	0.15	0.104	0.0065	0.0063	0.0005	0.00002
93	11,0/NaC1(0.5 gms/ml)	20	4	130	5.3	0.5					
87	Buffered ¹ (pH=8.5)	10	4	130	8.3	0.18					
106	H ₂ O (glass-ceramic SO ₂ treated)	0.9	16	130	7.0	0.04					
21	H20 ³	21	4	180	7.4	2.123	2.21	0.095	0.29	0.28	0.04
100	1120	20	4	180	7.6	2.2	·				
121	H 20	18	1	180	7.8	5.4					•
124	HzO	11	4	180	8.9	2.1					
123	1120	10	1/6	180	8.0	0.07					
101	H ₂ O	10	4	180	7.5	1.25					
20	H ₂ 0 ³	10	4	180	7.9	2.83	1.56	0.12	0.25	0.092	0.17
122	H ₂ O	9	1	180'	7.9	0.73					
19	H ₂ O	5.6	4	180	7.8	1.24	0.73	0.036	0.14	0.02	0.15
23	HzO	3.4	4	180	7.5	0.96	0.71		0.081	0.008	0.066
102	1120	3	4	180	7.4	0.054					
18	11 ₂ 0	2.7	4	180	7.7	0.32	0.40		0.073	0.009	0.086
49	H ₂ O	0.9	1/6	180	7.7	0.12	0.066	0.0086	0.0039	0.0007	0.0001
' 88	11 20	0.9	1	180	7.7	0.19	0.12	0.017	0.0069	0.0005	0.00009
53	H ₂ 0	0.9	4	180;	8.0	0.40	0.27	0.034	0.014	0.0005	0.0006
98	H ₂ O	0.9	4	180	7.7	0.43					
99	1120	0.9	16	180	8.8	0.72					
55	H ₂ O	0.9	17	180	8.4	0.54	0.40	0.02	0.02	0.0006	0.0006
129	experimental glass-ceramic/H ₂ O	20	14	180	8.2	4.32					
125	- experimental glass-ceramic/H ₂ O	11	4	180	7.7	1.67		•			
115	experimental glass-ceramic/H ₂ O	4.6	L	180	7.0	0.59					
103	experimental glass-ceramic/H ₂ O	0.9	16	180	8.6	0.67	a				
92	$H_2O/NaC1(6 gms/m1)^3$	20	1/6	180	4.4	0.18 ³	Not	e: no d	ata ex	cludec	i althoug
91	$H_2O/NaC1(6 \text{ gms/m1})^3$	20	l	180	4.5	0.463	som	e may b	e spur	ious.	
90	$H_2O/NaCl(6 gms/ml)^3$	20	4	180	3.6	0.853					
89	HzO/NaCl(6 gms/ml) ³	10	4	180	9.7	0.98					
104	H,O/glass-ceramic -SO, treated	0.9	1	180	8.0	0.08					
120	(#104 continued)	0.9	16	180	8.9	0.62					
105	H ₂ O (glass-ceramic SO ₂ treated) 0.9	16	180	8.9	0.08					

•

Experimental fill Glass Code LOGAIU. Corrosion Test	Experimental	Frit	Glass	Code	186AYU.	Corrosion	Test	Data
---	--------------	------	-------	------	---------	-----------	------	------

Ref	Test Description	Ratio 220	Time <u>(days)</u>	Temperature (°C)	Final H	Wt Lc (mg/c 0.19
85	H ₂ O		63	60	5.6	
33		62	1/6	90	7.2	0.00
34	•	67	1-1/6	90	6.7	0.16
35		63	4	90	6.5	0.25
66		220	4	90	6.9	0.33
67		220	16	90	6.9	0.36
27		8	1/6	130	6.4	0.05
28		8	1-1/6	130	6.5	0.39
29		8	4	130	6.7	0.73
30		8	1/6	180	6.7	0.46
31		8	1-1/6	180	7.1	1.9
32		8	4	180	7.0	3.17
81		3	4	180	7.7	0.52
82		5	4	180	7.2	0.61
83		10	4	180	7.2	0.80
84	T	20	4	180	7.2	1.93
110	H ₂ O change solution (10 gms) once/wk	150	70	90	5.5	0.66
71	H ₂ O/sand/bentonite (10 gms)	220	1/6	90	8.6	0.06
72	• • • • • • • • • • • • • • • • • • •	220	16	90	7.5	0.44
96	$H_2O/NaCl$	20	4	90	7.6	0.08
95	$H_2O/NaCl$	20	4	130	6.3	0.76

*Solution extraction < $0.03 \text{ mg/cm}^2 \text{ PbO}$

^aNdte: no data excluded although some may be spurious

March 14, 1978 APPENDIX III-A -H₂O Solution Analysis for Glass-Ceramic (fresh water once a week)

Ref.	R	Time	Temperature	mg/cm ²						
		(Weeks)	(°C)	<u>Si0,</u>	<u>A1,0</u>	<u>_Li_0</u>	MgO	ZnO		
107	76	1	90	0.46	< 0.008	0.008	0.002	< 0.0008		
		2		0.16	< 0.008	0.008	0.002	< 0.0008		
		3	•	0.15	< 0.008	< 0.0008	0.002	< 0.0008		
		4		0.11	< 0.008	< 0.0008	0.0008	0.002		
		5		0.09	< 0.008	< 0.0008	0.002	0.002		
		6		0.12	< 0.008	< 0.0008	0.002	0.002		
108	13	1	130	0.21	0.039	0.033	0.006	0.0001		
		2		0.18	0.008	0.019	0.003	0.0004		
		3		0.19	0.006	0.02	0.003	0.0001		
		4		0.19	0.022	0.023	0.002	0.0008		
. · ·		5		0.19	0.063	0.021	0.002	0.002		
· .		6		0.19	< 0.001	0.021	0.002	0.001		
109	9	1	180	0.70	0.047	0.079	0.002	0.005		
		2		0.62	0.067	0.065	0.002	0.005		
		3		0.55	0.063	0.058	0.002	0.005		
		4		0.57	0.14	0.067	0.001	0.005		
		5		0.57	0.13	0.078	0.001	0.005		
		6		0.60	0.14	0.077	0.001	0.006		
APPEND	IX II:	I-B -H20	Solution Analys	is for	r Frit (fr	esh water	once a	week)		
110/	59	1	90	$\frac{S10}{1.3}$	<u> </u>	6				
		2		0.32	< 0.000	6				
		3		0.71	0.012					
		4		0.59	< 0.000	6				
		6		0.65	< 0.000	6				
		10			0.056					
111	7.3	3 1	130	0.035	0.15					
	•	2		0.042	0.03					
		3		0.031	0.024					
		4	•	0.024	0.017					
	-	5		0.060	0.032					
		6		0.039	0.022					
		10			0.016					
112	8.4	1	180	0.21	0.068					
•		2		0.078	0.029					
		3		0.060	0.027					
		4		0.066	0.026					
		5		0.003	0.023					
		6		0.009	0.051					
		10		•	0.02					
elc		a		-						

3/17/78

.

.

..

Note: no data excluded although some may be spurious.

March 14, 1978 APPENDIX IV - Compositions (Sundquist, J.D.)

A. <u>Water Solution After Contact with 9 Sand & 1 Bentonite Mix</u>^a (1 gram/20 ml)

Conditions		Concentration in Solution (ppm)						
Time(c	lays)Temperature(°C)	SiO ₂	A1203	Li20	MgO	Na ₂ O	<u>Zn0</u>	
4	25	175	127	0.06	15.	60	0.1	
4	130	340	354	0.1	38.	120.	0.6	
4	180	390	190	0.1	23.	90.	1.2	

- 01 Källstyrkor i utbränt bränsle och högaktivt avfall från en PWR beräknade med ORIGEN Nils Kjellbert AB Atomenergi 77-04-05
- 02 PM angående värmeledningstal hos jordmaterial Sven Knutsson Roland Pusch Högskolan i Luleå 77-04-15
- 03 Deponering av högaktivt avfall i borrhål med buffertsubstans Arvid Jacobsson Roland Pusch Högskolan i Luleå 77-05-27
- 04 Deponering av högaktivt avfall i tunnlar med buffertsubstans Arvid Jacobsson Roland Pusch Högskolan i Luleå 77-06-01
- 05 Orienterande temperaturberäkningar för slutförvaring i berg av radiøaktivt avfall, Rapport 1 Roland Blomqvist AB Atomenergi 77-03-17
- OG Groundwater movements around a repository, Phase 1, State of the art and detailed study plan Ulf Lindblom Hagconsult AB 77-02-28
- 07 Resteffekt studier för KBS Del 1 Litteraturgenomgång Del 2 Beräkningar Kim Ekberg Nils Kjellbert Göran Olsson AB Atomenergi 77-04-19
- 08 Utlakning av franskt, engelskt och kanadensiskt glas med högaktivt avfall Göran Blomqvist AB Atomenergi 77-05-20

- 09 Diffusion of soluble materials in a fluid filling a porous medium Hans Häggblom AB Atomenergi 77-03-24
- 10 Translation and development of the BNWL-Geosphere Model Bertil Grundfelt Kemakta Konsult AB 77-02-05
- 11 Utredning rörande titans lämplighet som korrosionshärdig kapsling för kärnbränsleavfall Sture Henriksson AB Atomenergi 77-04-18
- 12 Bedömning av egenskaper och funktion hos betong i samband med slutlig förvaring av kärnbränsleavfall i berg Sven G Bergström Göran Fagerlund Lars Rombén Cement- och Betonginstitutet 77-06-22
- 13 Urlakning av använt kärnbränsle (bestrålad uranoxid) vid direktdeponering Ragnar Gelin AB Atomenergi 77-06-08
- 14 Influence of cementation on the deformation properties of bentonite/quartz buffer substance Roland Pusch Högskolan i Luleå 77-06-20

٠.

- 15 Orienterande temperaturberäkningar för slutförvaring i berg av radioaktivt avfall Rapport 2 Roland Blomquist AB Atomenergi 77-05-17
- 16 Översikt av utländska riskanalyser samt planer och projekt rörande slutförvaring Åke Hultgren AB Atomenergi augusti 1977
- 17 The gravity field in Fennoscandia and postglacial crustal movements Arne Bjerhammar Stockholm augusti 1977
- 18 Rörelser och instabilitet i den svenska berggrunden Nils-Axel Mörner Stockholms Universitet augusti 1977
- 19 Studier av neotektonisk aktivitet i mellersta och norra Sverige, flygbildsgenomgång och geofysisk tolkning av recenta förkastningar Robert Lagerbäck Herbert Henkel Sveriges Geologiska Undersökning september 1977

Tektonisk analys av södra Sverige, Vättern – Norra Skåne 20 Kennert Röshoff Erik Lagerlund Lunds Universitet och Högskolan Luleå september 1977 21 Earthquakes of Sweden 1891 - 1957, 1963 - 1972 Ota Kulhánek Rutger Wahlström Uppsala Universitet september 1977 22 The influence of rock movement on the stress/strain situation in tunnels or bore holes with radioactive consisters embedded in a bentonite/quartz buffer mass Roland Pusch Högskolan i Luleå 1977-08-22 23 Water uptake in a bentonite buffer mass A model study Roland Pusch Högskolan i Luleå 1977-08-22 24 Beräkning av utlakning av vissa fissionsprodukter och aktinider från en cylinder av franskt glas Göran Blomqvist AB Atomenergi 1977-07-27 25 Blekinge kustgnejs, Geologi och hydrogeologi Ingemar Larsson KTH Tom Lundgren SGI Ulf Wiklander SGU Stockholm, augusti 1977 26 Bedömning av risken för fördröjt brott i titan Kjell Pettersson AB Atomenergi 1977-08-25 27 A short review of the formation, stability and cementing properties of natural zeolites Arvid Jacobsson Högskolan i Luleå 1977-10-03 28 Värmeledningsförsök på buffertsubstans av bentonit/pitesilt Sven Knutsson Högskolan i Luleå 1977-09-20 29 Deformationer i sprickigt berg Ove Stephansson Högskolan i Luleå 1977-09-28 30 Retardation of escaping nuclides from a final depository Ivars Neretnieks Kungliga Tekniska Högskolan Stockholm 1977-09-14 31 Bedömning av korrosionsbeständigheten hos material avsedda för kapsling av kärnbränsleavfall. Lägesrapport 1977-09-27 samt kompletterande yttranden. Korrosionsinstitutet och dess referensgrupp

- 32 Long term mineralogical properties of bentonite/quartz buffer substance Preliminär rapport november 1977 Slutrapport februari 1978 Roland Pusch Arvid Jacobsson Högskolan i Luleå
- 33 Required physical and mechanical properties of buffer masses Roland Pusch Högskolan Luleå 1977-10-19
- 34 Tillverkning av bly-titan kapsel Folke Sandelin AB VBB ASEA-Kabel Institutet för metallforskning Stockholm november 1977
- 35 Project for the handling and storage of vitrified high-level waste Saint Gobain Techniques Nouvelles October, 1977
- 36 Sammansättning av grundvatten på större djup i granitisk berggrund Jan Rennerfelt Orrje & Co, Stockholm 1977-11-07
- 37 Hantering av buffertmaterial av bentonit och kvarts Hans Fagerström, VBB Björn Lundahl, Stabilator Stockholm oktober 1977
- 38 Utformning av bergrumsanläggningar Arne Finné, KBS Alf Engelbrektson, VBB Stockholm december 1977
- 39 Konstruktionsstudier, direktdeponering ASEA-ATOM VBB Västerås
- 40 Ekologisk transport och stråldoser från grundvattenburna radioaktiva ämnen Ronny Bergman Ulla Bergström Sverker Evans AB Atomenergi
- 41 Säkerhet och strålskydd inom kärnkraftområdet. Lagar, normer och bedömningsgrunder Christina Gyllander Siegfried F Johnson Stig Rolandson AB Atomenergi och ASEA-ATOM

- 42 Säkerhet vid hantering, lagring och transport av använt kärnbränsle och förglasat högaktivt avfall Ann Margret Ericsson Kemakta november 1977
- 43 Transport av radioaktiva ämnen med grundvatten från ett bergförvar Bertil Grundfelt Kemakta november 1977
- 44 Beständighet hos borsilikatglas
 Tibor Lakatos
 Glasteknisk Utveckling AB
- 45 Beräkning av temperaturer i ett envånings slutförvar i berg för förglasat radioaktivt avfall Rapport 3 Roland Blomquist AB Atomenergi 1977-10-19
- 46 Temperaturberäkningar för använt bränsle Taivo Tarandi VBB
- 47 Teoretiska studier av grundvattenrörelser Preliminär rapport oktober 1977 Slutrapport februari 1978 Lars Y Nilsson John Stokes Roger Thunvik Inst för kulturteknik KTH

٠.

- 48 The mechanical properties of the rocks in Stripa, Kråkemåla, Finnsjön and Blekinge Graham Swan Högskolan i Luleå 1977-09-14
- Bergspänningsmätningar i Stripa gruva
 Hans Carlsson
 Högskolan i Luleå 1977-08-29
- 50 Lakningsförsök med högaktivt franskt glas i Studsvik Göran Blomqvist AB Atomenergi november 1977
- 51 Seismotechtonic risk modelling for nuclear waste disposal in the Swedish bedrock F Ringdal H Gjöystdal E S Hysebye Royal Norwegian Council for scientific and industrial research
- 52 Calculations of nuclide migration in rock and porous media, penetrated by water H Häggblom AB Atomenergi 1977-09-14

- 53 Mätning av diffusionshastighet för silver i lera-sand-blandning Bert Allard Heino Kipatsi Chalmers tekniska högskola 1977-10-15
- 54 Groundwater movements around a repository
 - 54:01 Geological and geotechnical conditions Håkan Stille Anthony Burgess Ulf E Lindblom Hagconsult AB september 1977
 - 54:02 Thermal analyses Part 1 Conduction heat transfer Part 2 Advective heat transfer Joe L Ratigan Hagconsult AB september 1977
 - 54:03 Regional groundwater flow analyses Part 1 Initial conditions Part 2 Long term residual conditions Anthony Burgess Hagconsult AB oktober 1977
 - 54:04 Rock mechanics analyses Joe L Ratigan Hagconsult AB september 1977

٠.

- 54:05 Repository domain groundwater flow analyses Part 1 Permeability perturbations Part 2 Inflow to repository Part 3 Thermally induced flow Joe L Ratigan Anthony S Burgess Edward L Skiba Robin Charlwood
- 54:06 Final report Ulf Lindblom et al Hagconsult AB oktober 1977
- 55 Sorption av långlivade radionuklider i lera och berg Del 1 Bestämning av fördelningskoefficienter Del 2 Litteraturgenomgång Bert Allard Heino Kipatsi Jan Rydberg Chalmers tekniska högskola 1977-10-10
- 56 Radiolys av utfyllnadsmaterial Bert Allard Heino Kipatsi Jan Rydberg Chalmers tkniska högskola 1977-10-15

- 57 Stråldoser vid haveri under sjötransport av kärnbränsle Anders Appelgren Ulla Bergström Lennart Devell AB Atomenergi 1978-01-09
- 58 Strålrisker och högsta tillåtliga stråldoser för människan Gunnar Walinder FOA 4 november 1977
- 59 Tectonic lineaments in the Baltic from Gävle to Simrishamn Tom Flodén Stockholms Universitet 1977-12-15
- 60 Förarbeten för platsval, berggrundsundersökningar Sören Scherman

Berggrundvattenförhållande i Finnsjöområdets nordöstra del Carl-Erik Klockars Ove Persson Sveriges Geologiska Undersökning januari 1978

61 Permeabilitetsbestämningar Anders Hult Gunnar Gidlund Ulf Thoregren

٠.

Geofysisk borrhålsmätning Kurt-Åke Magnusson Oscar Duran Sveriges Geologiska Undersökning januari 1978

- 62 Analyser och åldersbestämningar av grundvatten på stora djup Gunnar Gidlund Sveriges Geologiska Undersökning 1978-02-14
- 63 Geologisk och hydrogeologisk grunddokumentation av Stripa försöksstation Andrei Olkiewicz Kenth Hansson Karl-Erik Almén Gunnar Gidlund Sveriges Geologiska Undersökning februari 1978
- 64 Spänningsmätningar i Skandinavisk berggrund förutsättningar, resultat och tolkning Sten G A Bergman Stockholm november 1977
- 65 Säkerhetsanalys av inkapslingsprocesser Göran Carleson AB Atomenergi 1978-01-27
- 66 Några synpunkter på mekanisk säkerhet hos kapsel för kärnbränsleavfall Fred Nilsson Kungl Tekniska Högskolan Stockholm februari 1978

- 67 Mätning av galvanisk korrosion mellan titan och bly samt mätning av titans korrosionspotential under 3 st tekniska PM. Sture Henrikson Stefan Poturaj Maths Åsberg Derek Lewis AB Atomenergi januari-februari 1978
- 68 Degraderingsmekanismer vid bassänglagring och hantering av utbränt kraftreaktorbränsle Gunnar Vesterlund Torsten Olsson ASEA-ATOM 1978-01-18
- 69 A three-dimensional method for calculating the hydraulic gradient in porous and cracked media Hans Häggblom AB Atomenergi 1978-01-26
- 70 Lakning av bestrålat UO₂-bränsle Ulla-Britt Eklund Ronald Forsyth AB Atomenergi 1978-02-24
- 71 Bergspricktätning med bentonit Roland Pusch Högskolan i Luleå 1977-11-16
- 72 Värmeledningsförsök på buffertsubstans av kompakterad bentonit Sven Knutsson Högskolan i Luleå 1977-11-18
- 73 Self-injection of highly compacted bentonite into rock joints Roland Pusch Högskolan i Luleå 1978-02-25
- 74 Highly compacted Na bentonite as buffer substance Roland Pusch Högskolan i Luleå 1978-02-25
- 75 Small-scale bentonite injection test on rock Roland Pusch Högskolan i Luleå 1978-03-02
- 76 Experimental determination of the stress/strain situation in a sheared tunnel model with canister Roland Pusch Högskolan i Luleå 1978-03-02
- 77 Nuklidvandring från ett bergförvar för utbränt bränsle Bertil Grundfelt Kemakta konsult AB, Stockholm
- 78 Bedömning av radiolys i grundvatten Hilbert Christenssen AB Atomenergi 1978-02-17

- 79 Transport of oxidants and radionuclides through a clay barrier Ivars Neretnieks Kungl Tekniska Högskolan Stockholm 1978-02-20
- 80 Utdiffusion av svårlösliga nuklider ur kapsel efter kapselgenombrott Karin Andersson Ivars Neretnieks Kungl Tekniska Högskolan Stockholm 1978-03-07

81 Tillverkning av kopparkapsel Kåre Hannerz Stefan Sehlstedt Bengt Lönnerberg Liberth Karlson Gunnar Nilsson ASEA, ASEA-ATOM

- 82 Hantering och slutförvaring av aktiva metalldelar Bengt Lönnerberg Alf Engelbrektsson Ivars Neretnieks ASEA-ATOM, VBB, KTH
- 83 Hantering av kapslar med använt bränsle i slutförvaret Alf Engelbrektsson VBB Stockholm april 1978
- 84 Tillverkning och hantering av bentonitblock Alf Engelbrektsson Ulf Odebo ASEA, VBB
- 85 Beräkning av kryphastigheten hos ett blyhölje innehållande en glaskropp under inverkan av tyngdkraften Anders Samuelsson

Förändring av krypegenskaperna hos ett blyhölje som följd av en mekanisk skada Göran Eklund Institutet för Metallforskning september 1977 - april 1978

- 86 Diffusivitetsmätningar av metan och väte i våt lera Ivars Neretnieks Christina Skagius Kungl Tekniska Högskolan Stockholm 1978-01-09
- 87 Diffusivitetsmätningar i våt lera Na-lignosulfonat, Sr²⁺, Cs⁺ Ivars Neretnieks Christina Skagius Kungl Tekniska Högskolan Stockholm 1978-03-16
- 88 Ground water chemistry at depth in granites and gneisses Gunnar Jacks Kungl Tekniska Högskolan Stockholm april 1978

- 89 Inverkan av glaciation på en deponeringsanläggning belägen i urberg 500 m under markytan Roland Pusch Högskolan i Luleå 1978-03-16
- 90 Koppar som kapslingsmaterial för icke upparbetat kärnbränsleavfall – bedömning ur korrosionssynpunkt Lägesrapport 1978-03-31 Korrosionsinstitutet och dess referensgrupp
- 91 Korttidsvariationer i grundvattnets trycknivå Lars Y Nilsson Kungliga Tekniska Högskolan Stockholm september 1977
- 92 Termisk utvidgning hos granitoida bergarter Ove Stephansson Högskolan i Luleå april 1978
- 93 Preliminary corrosion studies of glass ceramic code 9617 and a sealing frit for nuclear waste canisters I D Sundquist Corning Glass Works 78-03-14
- 94 Avfallsströmmar i upparbetningsprocessen Birgitta Andersson Ann-Margret Ericsson Kemakta mars 1978
- 95 Separering av C-14 vid upparbetningsprocessen Sven Brandberg Ann-Margret Ericsson Kemakta mars 1978