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Executive Summary

Fracture networks arise from the combination between fundamental fracturing processes and in situ 
conditions like geological factors, stress history, major faults, depth/pressure or rock mass properties. 
Changes of these conditions throughout space or time likely induce spatial variations of the fracture 
network geometrical properties. But the fracturing process itself induces consequent spatial variabil­
ity which is not easily distinguished from the former. Thus, the complex spatial variability of fracture 
properties is a key issue for the DFN modeling.

This project aims to review and upgrade the site DFN modeling approach initially introduced in 
Darcel et al. (2009), especially with regards to relations between models, model assessment from 
data and spatial variability of properties. In particular, we aim to identify this difference in the 
observed variability: intrinsic to the fracturing process or extrinsic, that is, constrained by in situ 
conditions changes.

In this perspective the first stage of the work is dedicated to DFN models and modeling method­
ology. The commonly named Poisson DFN models are considered and their spatial variability fully 
defined. These models are then used as reference cases when real data are considered.

In the second stage real data from Forsmark site are analyzed to initially appraise their intrinsic 
density spatial variability and scaling behavior. This shows a typical signature of the real fracturing 
process which clearly differs from Poisson models and is closer to otherwise called fractal DFN 
models. Then the classification approach and the class properties assessment are applied to the 
Forsmark site and typical Statistical Fracture Models (SFM) are derived. The method is adapted to 
make objective analyses from any number of initial data. In the present case, close to 150 datasets 
with more than 60,000 data, are simultaneously considered into the classification process. The final 
classification identifies 5 to 6 major SFMs, whose definition strongly rely on the total density and 
to a depth dependence of the density of horizontal fractures.
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Sammanfattning

Spricknätverk uppstår genom en kombination av fundamentala sprickprocesser och in situ 
förhållande såsom geologiska faktorer, spänningshistorik, större förkastningar, djup/tryck eller 
egenskaper hos bergmassan. Förändringar i dessa förhållanden över tid och rum kommer sannolikt 
att orsaka rumslig variation av spricknätverkets geometriska egenskaper. Dock orsakar sprick­
bildningen i sig själv en rumslig variabilitet vilken ej med lätthet kan skiljas från den förra. Således, 
den komplexa rumsliga variabiliteten av sprickornas egenskaper är en nyckelfråga för diskret 
spricknätverksmodellering (DFN-modellering)

Detta projekt syftar till att gå igenom och uppdatera metodiken för DFN-modellering av plats­
undersökningar som först presenterades i Darcel et al. (2009), i synnerhet när det gäller förhållandet 
mellan modeller, bedömning av modeller baserat på befintliga data samt den rumsliga variation av 
egenskaper. Framförallt vill vi identifiera denna skillnad i observerad variabilitet, den inneboende 
på grund av sprickbildningsprocessen eller den yttre, dvs begränsad av förändringar i in situ för­
hållande.

Ur denna synvinkel redovisas och analyseras DFN modeller och modelleringsmetodik i första delen 
av arbetet. De så kallade Poissonska DFN-modellerna undersöks och deras rumsliga variabilitet är 
fullt ut bestämd. Dessa modeller används sedan som referensfall när verkliga data beaktas.

I den andra delen av arbetet analyseras verkliga data från Formarksområdet för att inledningsvis 
bedöma sprickdensitetens rumsliga variabilitet och skalningseffekt. Resultatet avspeglar en typisk 
signatur av den verkliga sprickbildningsprocess vilken tydligt skiljer sig från Poissonska modeller 
och istället mer liknar de så kallade fraktala DFN-modellerna. Därefter tillämpas klassificerings­
strategin och klassegenskapsbedömningen på Forsmarkdata och typiska statistiska sprickdomäner, 
Statistical Fracture Models (SFM), utvecklas. Metoden är anpassad till att göra objektiva analyser 
från valfritt antal initialdata. I det föreliggande fallet beaktas närmare 150 dataset med mer än 
60 000 data samtidigt i klassificeringsprocessen. Den slutgiltiga klassificeringen identifierar 5–6 
statistiska sprickdomäner, SFM:er, vars gränser i huvudsak styrs av den totala sprickdensiteten och 
av djupberoendet av sprickdensiteten av horisontella sprickor.

4	 SKB R-13-54



Contents

1	 Introduction	 7

2	 Approach objectives and limitations	 9
2.1	 Key issues	 9
2.2	 Practical conditions	 9
2.3	 In situ determinants	 9

3	 Recalls and basic definitions 	 11

4	 On the stochastic variability of fracture networks and DFN models	 13
4.1	 Case of Poissonian processes to define fracture spatial locations	 13
4.2	 Measurement of variability	 16
4.3	 Illustration and checking for the Poisson case	 17
4.4	 Case of a stochastic fractal model to define fractures spatial locations	 20

4.4.1	 The 1D fractal case	 20
4.4.2	 The 3D fractal case	 21

5	 Classification of fracture datasets into SFMs	 23
5.1	 Method	 23
5.2	 Application and illustration	 26
5.3	 Outcome	 26

6	 The fracture organization in Forsmark 	 29
6.1	 Database	 29
6.2	 The field case, intrinsic variability of fracture density: scaling issues	 29
6.3	 Grid of analysis and preliminary results	 33
6.4	 Preliminary results: classification based on entire density only	 36
6.5	 Description based on horizontal versus vertical fractures	 37
6.6	 Densities and depth dependency 	 39
6.7	 Last stages of the classification, from 9 to 7 classes	 39
6.8	 Spatial organization of the SFMs	 41
6.9	 Alternate description based on one horizontal and two vertical directions 	 41

7	 Summary and conclusions 	 47

8	 Perspectives	 49

9	 Abbreviations	 51

References	 53

Appendix 1	 Forsmark datasets	 55

Appendix 2	 Classification into SFMs	 59

SKB R-13-54	 5



1	 Introduction

This project aims to further assess the robustness of the site DFN modeling approach initially 
presented in Darcel et al. (2009) and to particularly deepen the relation between possible 
Discrete Fracture Network (DFN) models and spatial variability of fracture properties. The 
method objectively sorts an initial amount of fracture datasets into an optimized set of “best” 
models. The consequent models should contain the information necessary to further applications 
into flow, transport and mechanical modeling. In any case, the sharpness of these resulting models 
is related to the amount of sampled areas, and collected data, relatively to the investigated site 
dimension. Therefore “best” is intended as “best with regards to available data”. Such modeling 
objectives are close to the objective pursued during the SKB site investigations and Site Descriptive 
Modeling (SDM) efforts performed for both the Forsmark (Olofsson et al. 2007) and Laxemar sites 
(La Pointe et al. 2008, Wahlgren et al. 2008). But the present approach primarily focuses on the 
statistical properties of DFN geometry and on their spatial variability, whereas the SDM modeling 
encompasses firstly deterministic-like information to define Fracture Domains (structural, geological 
inputs). The method presented here is complementary to SDM purposes.

Fracture networks arise from the combination between fracturing processes, site conditions and 
determinants like geological factors, stress history, major faults, depth/pressure or rock mass pro­
perties. Changes of in situ conditions likely induce changes into the fracture network geometrical 
properties. But the fracturing process itself induces consequent spatial variability which is not easily 
distinguished from the former. In this project, we aim at identifying this difference in the observed 
variability: intrinsic to the fracturing process or extrinsic, that is, constrained by in situ conditions 
changes. Characterizing the spatial variability of fracturing properties is therefore essential to the 
whole approach. At the end, it comes to identify, in an objective way, the locations (and relative 
datasets) for which fracturing is similar (in the sense that it can be reproduced by a unique model 
and associated parameters) and to define the related models. An additional level of complexity is that 
the fracturing properties themselves are defined by statistical figures: the fracture density defines the 
averaged occurrence of fractures into a given spatial domain. Any measure is thus associated with 
some statistical indetermination of the measured figure, which should be taken into account as soon 
as datasets and measures are compared.

The report is organized as follows: objectives, limitations and basic definitions are recalled in 
Chapters 2 and 3. Then, before reconsidering the DFN modeling and classification approach of real 
cases, we put first emphasis on the notion of variability (variable component of the underlying frac­
turing process) and on its consequences on the modeling. In this perspective, we initially consider 
the variability from known stochastic models, in particular Poisson models (Section 4.1 to 4.3) and 
fractal models (Section 4.4). These models are then used as references when the method is applied 
to real conditions. The classification method is recalled and illustrated in Chapter 5. Finally the 
approach, including the variability description of real data, is applied to the SKB Forsmark site 
and reported in Chapter 6. 
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2	 Approach objectives and limitations

2.1	 Key issues
A key element of the methodology is the determination of a rationale for assessing whether local 
fracture density measurements are statistically similar or not. If they are then they belong to a 
single group whose associated model characterization arises from the combination of its set of 
compatible datasets. The related model is called a Statistical Fracture Model (SFM). One main step 
of the approach is thus to infer the properties of SFMs from which local measurements derive. 
When datasets and density measurements are not statistically similar, then several different SFMs 
must be defined. 

The other major challenge comes from the consideration of the spatial variability inherent to frac­
turing properties. The distribution of fractures through space is viewed as the result of a stochastic 
and variable process. A SFM is defined by a stochastic DFN model which defines some spatial vari­
ability. But this one has to be considered together with some statistical indetermination of density 
measures and also with larger scales spatial variations (Section 2.3) and occurrence of various SFMs 
throughout a site.

2.2	 Practical conditions
The approach is currently developed for core logging data. In principle, core-logging datasets are 
made by a continuous sampling of at least fracture positions and orientations associated to borehole 
trend, plunge and acute angle. The DFN models are thus density/orientation models and sizes are 
not included or simply assumed. For boreholes long enough, a complete dataset likely crosses one 
to several different fracture domains, so that the initial dataset is subdivided into pieces. The initial 
borehole datasets are divided according to SKB’s classification, presented in SDM version 2.0, into 
Deformation Zones (DZ) and Fracture Domains (FD).

2.3	 In situ determinants
There are some deterministic elements which likely affect the DFN organization. For instance, not 
all the units of a site have undergone the same tectonic events and may therefore display various 
preferential orientations. Different lithologies may affect the fracture growth rate. The proximity 
to large shear bands (DZ) likely locally affects the fracture density. Near-surface effects or depth 
dependent processes may affect the fracture system through depth (Section 6.6). 

If these determinants have significant consequences on the fracturing properties the current approach 
outcomes should reflect these characteristics and therefore reinforce the geological modeling. On the 
reverse, it is tricky to use some knowledge on in situ determinants upstream to the classification pro­
cess without entailing some biases in the statistical analysis. One can assume that a set of datasets 
belongs to a single class and then derive the equivalent model parameters, including possibly a class 
internal variability larger than class to class properties. 

Also, following usual geological based modeling, one would expect some spatial consistency bet­
ween datasets of a class. While it would be tempting to combine the statistical comparison between 
density models to a notion of spatial proximity between datasets, it is in practice not simply possible 
without creating biases. Indeed, imposing an increase of the similarity probability between two close 
datasets would sometimes be consistent and sometimes inconsistent without any capacity to discrim­
inate; when the spatial boundaries of SFMs are unknown, the probability that two datasets belong 
to the same SFM is independent of the spatial distance between the datasets. Thus defining physical 
limits between SFMs and spatial interpolations occur after the classification, not simultaneously.
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Note that, one way to indirectly introduce the spatial “continuity” is to start analyses from one 
dataset and location and then gradually perform the classification by including datasets only below 
a certain spatial distance. Then one can consider how the possible SFMs first locally defined from 
few “concentrated” datasets expand towards the all site. 

However, if any geological determinant entails a correlation between spatial position and density, 
the own definition of Fracture Domains and/or SFMs should be reviewed to enable the density 
variation with some spatial characteristic. Moreover, the current classification algorithm has not 
the capacity to integrate such a refined rule; but it can for sure currently highlight such a trend.
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3	 Recalls and basic definitions 

A Statistical Fracture Model (SFM) is defined by a single DFN model. It reflects the fracturing prop­
erties arising from the stochastic nature of fracturing processes together with some in situ conditions. 
Its characteristics are assessed from a group of compatible datasets (and their respective locations 
and scales). There is yet no constraint on the spatial distance between the datasets locations. 

A DFN model is a stochastic model. It defines the statistical distributions of the geometrical proper­
ties of a Discrete Fracture Network (DFN). In the present case (i.e. restricted to core-logging data 
analyses) it encompasses the definition of a fracture bulk density, an orientation distribution (could 
also be the fracture aperture, roughness, etc.), and possibly a model of local spatial variations. 
Although fracture sizes are part of a complete DFN model, fracture size distributions are not  
investigated in the present work. We consider that the relation between fracture frequency and 
fracture bulk density is independent of the fracture size distribution itself. 

The fracture density is a scale averaging property, which gives the amount of fractures per unit size 
scale (volume, outcrop surface, or along-core length), with defined properties such as orientations 
in the present case. In practice the fracture density in 3D is the cumulated surface of fracture by unit 
of volume (noted dm). In 2D it is the cumulated length of fracture trace by unit of surface and in 1D 
it is the fracture frequency (noted f, being the number of fracture intercepts by unit of length). The 
fracture density can be defined either as a fully local property, that is, when the observation scale 
tends to zero, or as a bulk (macroscopic) one, that is, when the measurement scale tends to “infinity”. 
In general, the fracture density must be related to the length scale over which the averaging is made. 
The fracture density of a DFN model is a bulk density. 

A measure of fracture density is related to a sample support and a scale. The apparent fracture 
frequency f (also commonly called P10) associated to a borehole section (of size h) is simply:

totNf
h

= 								        Equation 3-1

where Ntot is the number of discrete fracture intercepts in the dataset. 

Similarly, the corresponding measured fracture density is given by: 

1

ˆ( )
totN

i
i

m

a
d

h

ψ
==
∑

								        Equation 3-2

Where ψi(â) is the orientation bias correction associated to each fracture pole.

In the absence of any other information, one takes the measured density as the best estimate for the 
DFN model or bulk density. But a fracture density measure in fact belongs to a statistical distribution 
with a mean (the bulk density) and a statistical width that is likely dependent at least on the number 
of fractures taken into account in the averaging procedure (the latter being related to the measure­
ment scale). When the measurement scale tends to zero, the underlying distribution has an infinite 
standard deviation, reflecting that it is not possible to know the fracture density when no fracture is 
sampled. On the opposite, the larger the sampling scale, the better the fracture bulk density estimate, 
but the lower the spatial resolution of measurements. The sampling scale is thus a statistical issue in 
the determination of local values of fracture densities. 

Finally, from any initial dataset, both the density estimate and the distribution statistical width con­
stitute the signature of the underlying SFM. The determination of the latter requires quantifying the 
evolution through scale of the variable part of the fracturing process. How this can be measured in 
practice is detailed in Section 4.2. 

In the following chapter we redefine first the density estimate distribution in case of a commonly 
used stochastic DFN model, that is the so-called “Poissonian” DFN model. This comes to display 
how the variable part of the fracturing process determines the density estimate distribution. This 
reference case is used for further defining the intrinsic variability of SFMs.
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4	 On the stochastic variability of fracture networks 
and DFN models

In this chapter we review first how known stochastic DFN models, like the ones based on 
“Poissonian processes”, lead to spatial variation of fracture density and then to density estimate 
distributions defined by a mean and a standard deviation. Then more complex models, involving 
a fractal distribution of fractures through space, are considered. 

4.1	 Case of Poissonian processes to define fracture  
spatial locations

In the field of probability theory and statistics, “the Poisson distribution is a discrete probability 
distribution that expresses the probability of a given number of events occurring in a fixed interval 
of time/space if these events occur with a known average rate/density and independently of the 
time/space since/from the last event” (Haight 1967). A DFN model with random positions of frac­
tures at fixed spatial density thus belongs to the class of Poisson distributions. In the following, we 
use the terms Poisson (DFN) model or Poissonian model to refer to such models. 

In this framework, the fracture density in a volume is viewed as the sum of a large number of 
independent random variables (fracture in the volume or not), each with finite mean and variance. 
According to the central limit theorem (Laplace 1814, Moivre 1756), the sum is approximately 
normally distributed. In the DFN case, the fracture density thus tends to a Gaussian distribution 
that is only characterized by its mean and standard deviation (sdev). Sdev is related to the number 
of summed random variables, which is also the number of fractures observed into the given volume. 

Thus the fracture density observed over a given volume belongs to a distribution (mean dm and sdev 
noted σvar) whose standard deviation σvar reflects the variable part of the fracturing process mimicked 
by the DFN model (here the Poisson model). The spatial variability of fracture density associated to 
the Poisson process is therefore characterized by σvar (suffix var recalls the link to variability). 

In practice, σvar for a given size of observation should be measured from datasets from volumes 
sampled at this given size. However, one needs to associate a density estimate and σvar for each 
individual dataset. Therefore, σvar has to be extrapolated from a scaling analysis of the fracture  
spatial variability within the dataset. Moreover, we consider a DFN model defined in 3D and 
sampled in 1D (equivalent to core logging), thus encompassing an orientation bias correction term. 

In the following we first define the variability – σvar – of the process associated to the fracture 
frequency (orientation term neglected or specific case with fractures perpendicular to the logging 
borehole) and finally add the orientation term and consider the density. When frequency, resp.  
density, is considered σvar is noted σf , resp. σd.

The characterization of σf and σd is performed from a probabilistic approach. 

Let X (Equation 4‑1) be the event for a fracture intercepting a borehole of length L to belong also 
to a subsection s of L (Figure 4‑1). Either the fracture does not belong to s, so that ψ0=0, or it does 
and ψ1=1. Moreover, if the fracture contribution to the 3D density distribution is accounted for, then 
ψ1=1/(cos(αc)) to handle the orientation bias correction, with αc defined in Figure 4‑1b. The event 
X is thus defined by:

0

1

0
11 or 

cos( )c

X
ψ

ψ
α

=
=  =

							       Equation 4-1
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Let f (Equation 3‑1) be the fracture frequency of the borehole, with N=f ·L the total number of 
fractures sampled by the borehole. The probability p to have one of the N fractures of L also in 
the sub-section s simply is: 

sp
L

= 									         Equation 4-2

X has 2 possibilities, either it belongs to s or not. Thus the mean <X> and variance σ2(X) associated 
to X are:

1 0 1

2 2 2 2
1 0 1

22 2 2
1

(1 )

(1 )

( ) (1 )

X p p p

X p p p

X X X p p

ψ ψ ψ

ψ ψ ψ

σ ψ

= ⋅ + ⋅ − =

= ⋅ + ⋅ − = ⋅

= − = ⋅ −

					     Equation 4-3

X is the event associated to one fracture. When the contribution, to the sub-section s, of all the 
N fractures of L is considered, we get:
 2 2( ) ( )N

N
s Xσ σ= ∑ 							       Equation 4-4

Combining Equation 4‑2, Equation 4‑3 and Equation 4‑4 leads to:

2 2
1( , ) 1 ( )N

N

s ss L i
L L

σ ψ = − ⋅  
∑ 						      Equation 4-5

Since ψ1=1 if frequency is considered we have:
 2

1 ( )
N

i N f Lψ = = ⋅∑ 							       Equation 4-6

Finally, the standard deviation σf (s), associated to the fracture frequency at observation size s, 
is defined by: 

( , ) 1N
f

f ss L
s s L

σ
σ  = = ⋅ −  

( )f
s L

fs
s

σ
<<
→

						     Equation 4-7

Figure 4‑1. a) Schematic view of a borehole section of length L and a smaller scale size s. b) Schematic 
view of the acute angle α, and angle αc= π/2–α, between a borehole and a fracture.
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σf (s,L) is defined by two terms, one for the finite size effects which becomes dominant when s is 
close to L and one term in power-law with s–0,5. When s is equal to L, σf (s=L,L) is equal to zero: 
there is no apparent variability in the frequency assessment at the borehole section scale. But the 
underlying process variability σf (s=L) observed a size L is not null and is given by the first term 
of Equation 4‑7. Therefore the density variability of the process has to be corrected from finite 
size effects and extrapolated as illustrated in Figure 4‑2. In the figure, the process variability, in 
(f/s)–0,5 is plotted in black whereas the apparent measures based on finite size samples with L=50 
and L=400 are plotted in blue and green respectively.

The preceding development shows that, for a Poissonian DFN model, the frequency estimate 
standard deviation decreases with the observation scale like:

( )f
f Ns
s s

σ = = 							       Equation 4-8

Thus the standard deviation increases with the number of fractures, but slower than the density 
estimate which increases like N, resulting in a decrease of the coefficient of variation in N –0,5. 

The developments from Equation 4‑4 to Equation 4‑8 are related to a given fracture frequency f 
and total number of intercepted fractures N. For any real or simulated dataset of a single stochastic 
process, the frequency will obviously vary from dataset to dataset, simply because of Equation 4‑8. 
In most cases it will fall within the range [Nmean – 2√Nmean; Nmean+2√Nmean], where Nmean is the mean 
number of fractures observed at this size. It follows that even if the variability scaling is well des­
cribed, any dataset variability estimate will be affected by the apparent frequency. This is further 
illustrated in Figure 4‑3: a DFN model (mean density and standard deviation at a given size) is 
considered at a scale such that N is on average equal to 300. The corresponding model distribution 
is plotted in a dashed line. Then the two most extreme realizations, after 200 runs are analyzed, 
result in the “low range” and “large range” plotted in solid lines. 

The reasoning to derive the standard deviation associated to fracture density σd (s) (in m2/m3), instead 
of the fracture frequency σf (s) (in m–1) is similar and simply changes by considering ψ1 as defined in 
Equation 4‑1 instead of equal to 1. The density estimate standard deviation becomes:

2
1

1 1( ) 1 ( )d
N

ss i
s L L

σ ψ = ⋅ − ⋅  
∑ 					     Equation 4-9

The evolution with scale of the standard deviation estimate are similar for both the frequency 
(Equation 4‑7) and the density (Equation 4‑9), with the term in √(1/s)·√(1–s/L). For the density, 
the contribution of highly biased intercepts (and thus having a significant weight to compensate 
the orientation) is dominating with the term in ψ 2(i) in Equation 4‑9. The standard deviation in the 
estimated distribution is larger when the observation is unlikely but potentially highly corrected. 

Figure 4‑2. Variability of the density estimate expressed by the evolution of σf, see text for details. 
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In summary, in the case of Poissonian DFN models we have: 

•	 A coefficient of variation of the density estimate distribution, expressed by a ratio σf (s)/<f> in 
frequency, varying like f –0.5 or N –0.5. Therefore, the largest the sampling volume (or size), the 
most precise the density estimate and the lowest the standard deviation on the density estimate. 

•	 From one observation (dataset) one can only partly infer the underlying DFN model. The best 
estimate that can be done is composed by the observed density and its standard deviation σvar 
(as illustrated in Figure 4‑2). 

•	 The Poissonian reference can be used to define guidelines: 
–	 Equation 4‑7 (for frequencies) or Equation 4‑9 (for densities) can be used to assess the sample 

size necessary to reach a certain value of the coefficient of variation of the density distribution 
estimates:

	
2

1

( )f

L
L

f
f

σ
=

 
⋅   

							       Equation 4-10

–	 If the coefficient of variation is 10%, the sampling section size L must be larger than 100/f. 
The value increases when accounting for the orientation bias. Designing the sampling condi­
tions to reach certain accuracy in the density estimates fully depends on the underlying DFN 
model too. Indeed, the total number of sampled fractures, which constrain the variability, 
both depends on the sample size and density behind. 

4.2	 Measurement of variability
The variability term of a dataset, σvar, is extrapolated (Figure 4‑2), at the sampled section size, from 
the density standard deviation evaluated at smaller scales. In practice, the sampled section is divided 
into Nw sub-sections of size s, where each sub-sample is viewed as a smaller realization of the same 
underlying process. The density standard deviation is thus assessed for varying values of the sub-
scale s, as defined in Equation 4‑11:

( ) ( )( )22
,

1

1( )
wN

m m i
iw

d s d s
N =

= ∑  

( ),
1

1( )
wN

m m i
iw

d s d s
N =

 =  ∑  

( ) ( )22
var ( ) ( ) ( )m ms d s d sσ = −  

						      Equation 4-11

Figure 4‑3. Density distribution model (dashed lines) expected in conditions such that N=300 on average. 
Corresponding extreme estimates (straight lines) selected out of 200 realizations.
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Finally, σvar(L) has to be extrapolated from the evolution of σvar(s) at small sizes (s<<L), simply 
because the sample finite size apparently reduces the estimate variability when the sub-sample  
size s increases. This is illustrated in Figure 4‑2.

In practice the extrapolation is done automatically by fitting a power-law (like Equation 4‑12) over 
a restricted range of scales (s<<L) and by getting the fitted power-law value at the sample size 
(L). The power-law exponent thus measured is called a variability scaling exponent, noted β (or βi, 
subscript i to denote a particular realization or dataset).

var ( )s s βσ −~ 								        Equation 4-12

4.3	 Illustration and checking for the Poisson case
Relations on σvar derived in the previous sections are further checked and illustrated for the case of 
Poissonian DFN models. For this purpose, three Poissonian DFN models (listed in Table 4‑1) are 
defined. They are also used as references throughout the whole study. Fractures are disc-shaped 
and of constant size (1 m). The size distribution is arbitrary. We recall that this assumption has no 
consequences when evaluating a Poissonian model orientation distribution and density from 1D 
or line sampling. 

The model VarA has constant orientations; it can be used to generate datasets without sampling 
bias and therefore frequency equal to density. The model VarB has uniform orientations, i.e. no 
preferential orientations. Finally, the model VarC has two preferential orientations modeled by 
two Fisher distributions. 

Realizations of the three models are generated into parallelepiped volumes of side 61 m and height 
1 m. Sampling 1D lines are simultaneously defined in the horizontal plane with trends equal to: 0°, 
29°, 90° and 120°, and centered in (0,0,0). Since fracture sizes are equal to 1 m, the vertical exten­
sion of the generation volume around the sampling lines can be limited to 1 m. Sections of length 
15 m, 30 m and 60 m are defined. 200 realizations of each DFN model are generated and sampled. 

We first consider the scale evolution, in s–0,5, of σf (s) and σd (s). It is illustrated for model VarA in 
Figure 4‑4. The evolution of σd (s) is averaged over 200 datasets of section length equal to 60 m. 
In this case, the average number of fracture intercepts on one dataset is equal to 600. The scale 
evolution in s–0,5 is well observed (black line in Figure 4‑4). The finite size effect (term in s/L in 
Equation 4‑9) is visible from s equal to 3–4 m (for a section length L=60 m). 

Moreover, as shown in Figure 4‑4, there is a discrepancy between the expected relation defined 
in Equation 4‑9 and the simulations. The observed finite size effect term is in (1–s/L) instead 
of (1–s/L)0,5. This shift is observed for all the cases referenced in Table 4‑1. The discrepancy is 
only on the finite size effect term. This is likely due to conditions of the sampling simulations 
(here fractures are generated in 3D with constant sizes and sampled along 1D lines). When 
straightaway randomly generated along a 1D line, the fracture intercept positions variability 
σd (s) follows Equation 4‑9 with the term in (1–s/L)0,5. Since the scale independent term in 
s–0.5 is not affected, at that stage, this is not further investigated.

Table 4‑1. Poissonian DFN models.

Name Density  
dm m2/m3

Orientations Number of generated 
realizations

VarA 10 Constant  
(strike 30, dip 90)

200

VarB 10 Uniform (no preferential direction) 200
VarC 10 2 Fisher distributions: 

dip ; dip direction ; kappa
90  ; 23                 ; 10
0    ; 10                 ; 10

200
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The observed evolution of σd(s) finally is defined by: 

2
1

1 1( ) 1 ( )d
N

ss i
s L L

σ ψ = ⋅ − ⋅  
∑ 					     Equation 4-13

In Figure 4‑5 we illustrate how orientations (third term in Equation 4‑13) affect the variability σd. 
All fractures of VarA are vertical and striking 30°, so that the orientation bias is null for a horiz­
ontal borehole trending 120° (noted T120) and equal to 1/cos (89°) for a borehole trending 29° 
(noted T29). With uniform orientations in VarB, the average sampling bias is independent of bore­
hole orientation. For a sampling section length equal to 60 m, the VarA-T120 datasets contain on 
average 600 intercepts, whereas the VarA-T29 have only about 11 intercepts and the VarB ones 
have 300 intercepts. 

The extrapolated value of σd(s) at the sampling size 60 m for VarA and borehole direction T120 is 
equal to 0.4, so that the ratio σd(s)/d, with d the density, is equal to 4%. If the borehole orientation 
changes so that orientation bias increases and the number of intercepted fractures decreases, the 
ratio can increase up to 30% if the acute angle is 1° (which is unlikely to happen in reality). For the 
uniform distribution of fracture orientations (VarB), the ratio is about 6% (when the average number 
of fractures in a dataset is 300). These values are mainly linked to the real number of fractures into 
a dataset (so linked to the parent density and borehole length). Also, variations observed from one 
realization to the other are larger when sample bias is more important (see the sdev bars on the 
standard deviation estimates in Figure 4‑5 and histogram of the exponents in Figure 4‑6).

Preceding figures show that on average, the variability term σd(s) is well defined by Equation 4‑13. 
There are however important variations from realization to realization. This is illustrated first 
through the histogram of estimated variability scaling exponents βi computed from individual 
realizations i. Basically βi is automatically measured from all the simulations of 60 m length data­
sets of VarA and VarB (respectively in direction T120 and EW). Corresponding histograms of the 
exponent absolute values are plotted in Figure 4‑6. The variability exponents are distributed in the 
range [0.35; 0.75], with most values close to 0.5. Both VarA and VarB histograms are similar, with 
a mean value close to but slightly larger than 0.5. This shift is likely linked to the automated fitting 
procedure combination with finite size effects.

Figure 4‑4. Evolution of <σd(s)> for the DFN model VarA, averaged over 200 datasets of section length 
equal to 60 m and resulting from the 1D sampling in direction trend 120.
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Moreover, there is no apparent correlation between βi and the apparent density assessed for each 
realization. We finally highlight, in Figure 4‑7, the correlation, by realization i, between σi(h) and βi, 
with h the extrapolation length. For each dataset, the value of σi(h) is normalized by the equivalent 
variability term, σP(h), directly computed from Equation 4‑13. 

Once normalized by σP(h), which reflects the density term, the variability term extrapolated at the 
section length is similar for the VarA and VarB cases. It depends on βi through an exponential cor­
relation. Therefore the variability term σi(h) is larger when βi is low. 

Even for datasets having up to 600 fracture intercepts (case VarA at section length 60 m), the  
Poissonian model displays sometimes apparent correlations (βi different from 0.5) departing from 
the averaged process. 

In the following sections we consider non-Poissonian models.

Figure 4‑5. Evolution of <σd(s) > for the DFN models VarA (2 sampling directions, T29 and T120; 
sampling length equal to 60 m) and VarB (EW direction). Simulated data are plotted as symbols, observed 
relation (Equation 4‑13) as dashed lines (see inlet for details) and scaling in s–0.5

 in solid black lines.

Figure 4‑6. Histogram of the measured exponents βi for 200 realizations of models VarA and VarB.
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4.4	 Case of a stochastic fractal model to define fractures 
spatial locations

In addition to the above studied uniform Poisson DFN models, DFN models with a fractal structure 
of fracture positions are worth being considered in parallel to natural systems. They indeed display 
specific long-range correlations which likely induce significant scaling effects. Although some fault 
networks have been found to be characterized by fractal dimensions significantly lower than topo­
logical dimensions (Bonnet et al. 2001), the fracture networks of the SKB sites (Darcel et al. 2004, 
2006) are characterized by relatively weak fractal dimensions (i.e. close to Euclidean dimension). 

The results presented here are preliminary.

4.4.1	 The 1D fractal case
We first describe the evolution of σf (s) from a 1D fractal DFN model. Fracture positions of 
the model have a fixed predefined fractal dimension. The fractal dimension (D ≤ 1) is generated 
from a multiplicative cascade process (Darcel et al. 2003b) similar to a Cantor process in 1D. Thus 
the fractal dimension of a simulated dataset is directly the dimension D.

The simulated datasets are in the range [30 m; 480 m] and contain on average 5 fractures per meter. 
Exploratory analyses were performed for a range of fractal dimensions. We present preliminary res­
ults with D=0.98 and show that even for a very weak fractal dimension the variability is significantly 
affected. The resulting fracture frequency variations are illustrated in Figure 4‑8 below, for D=0.98 
and 480 m. Although the fractal dimension is “weak”, we observe long range variations which are 
unlikely to occur with Poissonian DFN models. 

The evolution of σf (s)L is averaged over a large number of realizations. It differs on average from a 
Poissonian variation (Figure 4‑9a) with a slower decrease with size. The derived β exponents are 
comprised between 0.3 and 0.4. Also we observe limited variations with the domain size L 
(Figure 4‑9a). The larger L, the larger is the variability at s fixed.

More investigations are necessary to relate exactly the variability exponent to the fractal dimension. 
The presented simulations nevertheless are complementary to the previous Poissonian case to deter­
mine what model of variability could be consistent with real data.

Figure 4‑7. Observed evolution of σi(h)/ σP(h) as function of βi for 200 datasets (length 60 m) for both 
VarA and VarB. σP(h) is computed with Equation 4‑13 for each dataset (the total number of fracture 
intercepts varies from dataset to dataset). Results for VarA (resp. VarB) are plotted in green (resp. blue) 
symbols and exponential fit in black line.
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4.4.2	 The 3D fractal case
In complement to the section above, we consider a DFN model whose properties (including the frac­
tal dimension of fracture positions) are defined and generated in 3D directly and then sampled in 1D. 
We take a distribution that is likely close to natural fracture networks with both a fractal distribution 
of fracture centers and a power-law size distribution of fractures. In such case the fractal dimension 
observed from the fracture intercept positions can be partly hidden by the fracture size distribution 
(Darcel et al. 2003a). 

Two fractal dimensions are considered, equal to 2.5 or 2.95, and two power-law size distributions 
with exponents a equal to 3.1 or 4. The 4 models thus defined are associated to a density equal to 
15 (m2/m3). In each case, 4 realizations are generated into a 100×100×100 m volume and sampled 
according to boreholes of size 10 to 100 m. 

The resulting variability exponents are plotted in Figure 4‑10. The largest variability is observed for 
the smallest fractal dimension (D=2.5), with a variability exponent β close to 0.1. When the fractal 
correlation decreases (D=2.95) the variability exponent increases up to almost 0.5. When the size 
exponent decreases from 4 to 3.1, β increases from 0.1 to 0.2 (for D=2.5): a large proportion of 
large fractures tend to hide the fractal structure when observed from 1D line sampling (Darcel et al. 
2003a). β values higher than 0.5 occur only for the smallest datasets (mainly L=10 and about 150 
data by dataset), likely due to the too small size of the dataset. Beyond 50 m and about 750 fracture 
intercepts, the variability exponents are well defined (Figure 4‑10). 

Similarly to the 1D fractal case (previous section), even a weak fractal correlation in 3D leads 
to a change of the variability exponent β (by comparison to the non-fractal Poisson models from 
Figure 4‑6). At the extreme, a strong fractal correlation entails a large increase of the standard 
deviation associated to the density estimate. 

Figure 4‑8. Fracture frequency by meter, noted P10_m, (left vertical axis continuous line) and cumulative 
count (right vertical axis and dashed line in the plot) as function of position or depth along a linear 
sampling section for a) Cantor dataset with D=0.98 and b) Poissonian dataset. 

Figure 4‑9. Case D=0.98. a) Evolution of σf with scale s for several samples of lengths L. The brown solid 
line is the equivalent Poisson model for L=60 m. b) Evolution of σf (L), i.e. with sample size L, at constant 
observation scale s.
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Figure 4‑10. Variability exponents for fractal DFN models. See text for details.
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5	 Classification of fracture datasets into SFMs

With the classification process we aim to identify the best division of density distribution estimates 
into statistically distinct classes. Each class then refers to a Statistical Fracture Model (SFM). In 
practice the method identifies which datasets, among an initial set of datasets, display compatible 
statistical fracturing properties and clusters them accordingly, in order to finally infer the under­
lying density distribution of their relative SFM. Each dataset is firstly associated with one density 
distribution estimate and one class; then the classification algorithm is pursued until a certain 
acceptable variability threshold is reached into each defined class and finally the SFMs are defined. 
The methodology was initially presented in Darcel et al. (2009) and further illustrated in Darcel 
et al. (2012). In this chapter we recall the rules of the method and illustrate it with an application 
to synthetic data from Poissonian DFN models. 

5.1	 Method
The difference, noted Δ(j,k), between two density distribution estimates (datasets j and k) is defined 
by the absolute difference between the two corresponding densities dm, normalized by the sum of 
their standard deviations svar. If density distribution estimates are discretized according to orientation 
bins (n=1 to NZ orientation bins, see Figure 5‑1), then the average difference, Δa(j,k), is equal to:

( )
( ) ( )
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j k
N m mn n

a j k
nZ n n

d d
j k

N σ σ=
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∆ =

+
∑ 					     Equation 5-1

Δa(j,k) thus defines the averaged statistical distance between any pair of datasets. 

With this definition, a small difference at an orientation bin may compensate a larger difference at 
another orientation bin. A second more restrictive criteria, the maximal statistical distance noted 
Δr(j,k), is defined to ensure a fulfilled criterion for each orientation bin: 
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The use of one criterion or the other is further discussed in Darcel et al. (2012).

The datasets within a class – and their associated distribution estimates – belong to the same SFM, 
with fracturing properties satisfactorily described by the properties of the class itself. Two different 
classes reflect two different SFMs. The number of classes defines the number of different models 
required to fully define the fracturing properties of a site.

The method is derived from the agglomerative hierarchical clustering algorithm of Chelcea et al. 
(2006). It is based on an automated sorting process which generates disjointed classes that group 
objects with similar properties. Thus it defines classes with specific characteristics by partitioning 
the space of all possible models into different subspaces. 

The classification process includes any initial amount of datasets. It groups the datasets into sev­
eral classes and computes the associated equivalent density distributions. A class density estimate 
(dcs, σcs), where Ncs datasets are grouped, is given by:
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				    Equation 5-3
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To get the final classification, the sorting algorithm proceeds as follow:

•	 First, a class is defined for each dataset;

•	 Then, an iterative process starts:
–	 The two closest classes are merged together;
–	 The existing classes are updated, that is, if a dataset is closest to another class, the class 

definitions are accordingly changed and class estimates redefined (Equation 5‑3);

•	 The iterative process is stopped when the largest dispersion (from the difference between the class 
and its datasets, Equation 5‑1) within an existing class exceeds a fixed threshold (called Δmax).

{ }max max ( ,a jj cs ) ∆ = ∆ 							       Equation 5-4

In the perspective of the classification algorithm, a unique division into orientation bins must be 
used at once and simultaneously applied to any amount of datasets. Defining orientation bins is a 
compromise between the objective (to precisely identify preferential orientations of the fractures) 
and relative accuracy decrease (many zones imply less data in each one). Thus, when increasing Nz, 
the relative increase of σvar with regard to dm automatically decreases the terms of Δ(j,k) thus leading 
to limit the capacity to identify classes. Basically, if we subdivide a fracture set into different orienta­
tion classes, we also decrease the number of fractures in each subset and thus increase the variability 
of the underlying statistical distribution. In case of a uniform orientation distribution, the standard 
deviation increase is exactly defined by Equation 5‑5:
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					     Equation 5-5

The definition of orientation bins, as illustrated in Figure 5‑1, is an issue. Ideally, it would reflect 
evidence of preferential orientations (geological fracture sets) but in practice the number of orienta­
tion bins has to be limited (see above) and there is no unambiguous such division, especially when 
the amount of datasets is important. Several simple possibilities are reviewed in Figure 5‑1; first the 
“O-1” grid, with Nz=1, simply refers to a unique value of density, the entire density. With the “O-3” 
grid the stereonet is divided into three dip bins and thus separates subhorizontal fractures, subvertical 
fractures and intermediate fractures. This grid is adapted to focus on the particular effect of vertical 
position or depth and relative dip of the fractures. Two possibilities of “O-5” grids, i.e. with Nz=5, 
are also displayed in Figure 5‑1c and -d. Whatever the chosen grid, there is only a partial correspon­
dence between clusters of preferential orientations and orientation bins, even in the simplest case 
where only one dataset (as for dataset KFM08C-FFM01d in Figure 5‑1) is considered.

Even if an orientation grid does not fit with the apparent geological sets of a dataset, it does not 
make the consequent density estimates wrong, but highlights more or less successfully the occur­
rences of orientation clusters. This is further illustrated with VarB and VarC models (defined in 
Table 4‑1). 5 realizations of the two models are generated and synthetic borehole data generated 
from a single borehole orientation. Density distribution estimates are computed for the two “O-5” 
grids of Figure 5‑1c and -d and displayed in Figure 5‑2a and b. We first note that the value of σvar 
is increased when the orientation domain corresponds to highly biased values (like in bin 1 and 4 
of Figure 5‑2a, see Equation 4‑9).

Let recall that model VarB is uniformly oriented whereas model VarC is defined by two preferential 
orientations. The latter is better highlighted in Figure 5‑1c than in Figure 5‑1b. Also in Figure 5‑2b 
there is likely one preferential orientation of VarC, and therefore cluster of fractures, which is split 
through 2 orientation bins, leading to less apparent differences between bins 3 and 4. Both models 
have the same total density, which is defined by the sum of each orientation bin associated density, 
therefore independently from the chosen grid.
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Finally, the classification algorithm ends up into the right class definition (red and black colors in 
Figure 5‑2) for both cases. 

In summary, except for simple cases, there is no unique, or “best”, division into orientation domains. 
We assume however that the impact of this division is of secondary importance compared with den­
sity variations. 

Figure 5‑1. Illustration of dataset orientation binning, from dataset KFM08C-FFM01d. a) grid “O-1”: 
no binning, all orientations together, one value of the whole density, b) grid “O-3”: binning into 3 bins 
referring to vertical direction, i.e. from sub-horizontal (bin 1) to intermediate (bin 2) and sub-vertical 
(bin 3) fractures but not distinction into strike, c) “O-5” and d) “O-5KFM08C” systematic binning into 5 bins, 
one horizontal and 4 “vertical”, according to strike. d) “O-5KFM08C” is qualitatively adapted to KFM08C 
apparent pole cluster, the vertical cells are shifted with regards to case c). 

Figure 5‑2. Density estimates from grids similar to Figure 5‑1c) and d) for 5 realizations of each model 
VarB (black) and VarC (red).
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5.2	 Application and illustration
The method capacity to differentiate fracturing models, especially the role of Δmax, is illustrated 
further from the synthetic Poissonian DFN models, varA, varB and varC (Table 4‑1).

First the 200 realizations of the DFN model VarB are sampled and analyzed. The average number 
of fractures intercepts by borehole meter is close to 5. Realizations are sampled along 60 m length 
boreholes, so that on average the number of discrete data in one dataset is close to 300. The density 
estimates assessed for the 200 realizations are displayed in Figure 5‑3a. The estimate standard dev­
iations are automatically computed.

We apply the classification process until all realizations are grouped together. The corresponding 
evolution of Δmax is displayed in Figure 5‑3b. The required Δmax to get one final single class is equal 
to 1.66. This value can be taken as a reference to define a threshold for practical applications.

In a second time, we apply the classification process to several realizations (5 by model) from the 
three reference models (Table 4‑1) and test three different orientation grids: the O-1 and O-5 grids 
of Figure 5‑1 and the “O-13” grid defined in Figure 4-1c of Darcel et al. (2009). This last one pro­
vides an extreme case with a large number of bins.

Results are plotted in Figure 5‑4. The classification is capable of identifying the three different mod­
els (with Δmax=1.66) with a perfect accuracy except for the 1-bin grid, since the three models have the 
same total average density. This value steeply increases if one forces the classification up to less than 
3 classes. 

5.3	 Outcome
At the end of the classification process, a SFM is defined from the combination of several compat­
ible datasets, including a density estimate, a standard deviation and a variability scaling exponent 
(as schemed in Figure 5‑5). The standard deviation on the density estimate, σvar, is related to scale of 
observation and to the variability scaling of the process. 

A SFM provides a stochastic description of the fracturing properties and can be used to generate 
consistent DFN realizations at a given scale (Figure 5‑5).

Figure 5‑3. a) Distribution estimates, i.e. mean (filled circles) and standard deviation (bars), for 200 reali-
zations (reference on the x-axis). b) Evolution of the maximum class dispersion as function of the number of 
classes during the classification process. Here Δmax=1.66 is the final dispersion of the unique class for the 
200 realizations of the same underlying process.

a) b) 

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20

 D
en

si
ty

Realization reference Number of classes
0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.8

1.6

∆
m

ax

26	 SKB R-13-54



 

Set of 
compatible
datasets var ( )s s βσ −

var ( )Lσ

md

GenerationClassificationInitial data

( )m Gd Lσ±

'( )m Gd Lσ±
~

Figure 5‑5. Steps of SFM definition. From left to right, a set of initial datasets is identified as compatible 
and thus used to define the SFM of the class. This includes dm the density estimate, σvar(L) the standard 
deviation at scale L, where L refers to the cumulative size of the class datasets, and the variability scaling, 
through exponent β. Finally, the density estimate standard deviation expected at a given observation size 
(LG or LG’) is defined by the combination between the variability and scaling and the observation size itself. 
It naturally decreases when increasing volume of consideration.

Figure 5‑4. Results of the classification applied on three different Poissonian processes (varA, varB and 
varC) with three different orientation grids: a) “O-1”, b) “O-5” and c) “O-13”. Dots are colored accord-
ing to the final class indexes. d) Evolution of the maximum class dispersion as a function of the number of 
classes during the classification stage.
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6	 The fracture organization in Forsmark 

The approach described above is applied to the SKB Forsmark site. The Poisson (and fractal) DFN 
models are used as reference cases for the analysis of the real data density distribution estimates. 

6.1	 Database
The selected data are the cored borehole data (Sicada delivery 08_95) combined to interpretations of 
the Site Descriptive Modeling (SDM) reported in Olofsson et al. (2007): each entire borehole dataset 
will be divided into smaller sections according to the SDM Fracture Domains (FD, named FFM01 to 
FFM06 at Forsmark) and Deformation Zones (DZ) of Olofsson et al. (2007). All the defined datasets 
are listed in Appendix 1: Forsmark datasets.

6.2	 The field case, intrinsic variability of fracture density: 
scaling issues

The longest boreholes give the longest possible continuous sampling of fracture density and vari­
ability, likely through several distinct FDs and DZs. In a preliminary step, we consider the density 
variability at the scale of entire boreholes. This rough definition of “one domain by borehole” is 
not optimized. It surpasses the FDs and DZs classifications and comes to typically encompass 
local density variations as large as the ones highlighted in Figure 6‑1. The observed combination 
between small and large scale density variations is likely to end up with a variability scaling larger 
than what would be expected from a Poisson model (Equation 4‑13). Therefore the resulting vari­
ability scaling exponents fall in the range [0.2; 0.35], as plotted in Figure 6‑2 (brown histogram). 
This range is below the value (0.5) expected for a Poisson process. Small values of the variability 
scaling exponent will end up into a larger variability and larger standard deviation associated to the 
density estimate. If distinct SFMs are combined into one single dataset, one naturally expects more 
internal variability in the resulting domain and poor understanding of the fracturing determinants.

We then assume that, for each borehole, the SFMs changes are most likely defined by the current 
DZs and FDs local boundaries. Therefore each time a change in FD and/or DZ is encountered 
along a borehole (illustrated through a change of color in the base line in Figure 6‑1), a new data­
set, or borehole section, is started and the preceding ended. Too thin sections (i.e. width less than 
2–3 meters) are neglected and merged into their neighboring domain. For the example in Figure 6‑1, 
the final sections are recalled in Table 6‑1 below:

Table 6‑1. Example of borehole KFM08C: “our” basic datasets, or borehole sections, defined 
from and existing FD and DZ division. 

IDCODE Depth_min Depth_max IDCODE_section

KFM08C 102.3 161.1 KFM08C-FFM01a
KFM08C 161.1 190.6 KFM08C-DZ1
KFM08C 190.6 342.2 KFM08C-FFM01b
KFM08C 342.2 419.3 KFM08C-FFM06
KFM08C 419.3 541.8 KFM08C-DZ2
KFM08C 541.8 673.1 KFM08C-FFM01c
KFM08C 673.1 704.9 KFM08C-DZ3
KFM08C 704.9 950.5 KFM08C-FFM01d
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Figure 6‑1. Borehole KFM08C, local density (blue line) and frequency (red line) variations. The division 
into FDs (yellow and brown colors) and DZs (red, green, blue and violet colors) sections is schemed at the 
figure bottom. The local frequency P10 (red line), and dm (blue line), are smoothed by adjacent averaging 
over close to 19 m.

Borehole KFM08C is thus divided into 8 datasets. In general one would expect that a DZ section 
would be thinner than a FD section, since DZs are defined as major shear bands, thus more or less 
2D very large planar zones of disturbance. But we observe with KFM08C at least one really large 
DZ (light green in Figure 6‑1 and IDCODE_section KFM08C_DZ2), so that there is no systematic 
difference in size between the FD and DZ datasets. 

All over the Forsmark cored boreholes, the total number of datasets defined is 148. Dataset section 
sizes are between 5 m and 522 m and the range of number of data in each is between 5 and 4,229. 
The assessed variability exponents will thus arise from varying sampling conditions in term of 
segment sizes and number of intercepted fractures. The smaller is the number of data in a dataset 
(due to low density and/or small size), the larger is the variability; also, the smallest is the segment 
size, the largest is the bias relative to finite size effects towards small values (see Figure 4‑2). 
Whatever the initial conditions, the variability exponents are automatically extrapolated. The 
resulting histogram is displayed in Figure 6‑2a, whereas the histogram of the Poissonian analyses 
is plotted in Figure 6‑2b.

Like for the Poisson reference models, the real datasets end up into a distribution of scaling  
exponents β, but centered on 0.35 whereas the Poisson models are centered on 0.5. Therefore 
the variability associated to the borehole sections decreases faster than the variability associated 
to entire boreholes, but slower than a Poisson process. 

Figure 6‑2. Exponents β (of entire density) histograms for (a) entire boreholes and boreholes segmented 
according to the FD/DZ division at Forsmark and (b) reference DFN models VarA and VarB. 
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The analyses performed on the Poisson models have shown that data sampling leads to apparent 
clusters and therefore to a distribution of values around the theoretical one rather than to a unique 
variability exponent. This effect decreases while increasing the amount of data to perform the 
analysis. By analogy, the observed distribution for the real datasets may arise from a single 
underlying variability scaling whose process value would be very close to 0.35. 

We investigate further the possible origin of the variations towards the datasets size – equivalent 
to number of elements, belonging to a DZ or a FD. First, Figure 6‑3 displays the scaling exponent 
versus the estimated density, with dots colored according to the number of data by dataset. We 
observe that the largest datasets are in the range 0.2 to 0.4 for β, whereas values up to 0.8 and over 
are assigned to weakest datasets.

In Figure 6‑4, we show the scaling exponent by distinguishing FDs and DZs and the resulting 
distribution of scaling exponent for the two types of datasets. We observe no significant differences 
between FD and DZ in terms of scaling exponent.

The only apparent correlation between single β values and dataset parameters is a concentration of 
values in the range [0.2; 0.4] when the number of data by dataset is large enough.

Figure 6‑3. Scaling Exponent β (defined in Equation 4‑12) versus estimated density. Dots colored  
according to the number of data by dataset.

Figure 6‑4. a) Scaling exponent β versus number of fractures in a dataset, colored according to DZ or FD. 
b) Histogram of β for the DZs (grey bars) and FDs (green bars) datasets. 
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Despite these datasets to datasets variations we next consider the scaling evolution of σvar when 
averaged over several datasets. How this averaging process is done could still be debated. We pres­
ently simply consider the mean values, for each defined value of s, of σvar(s) normalized by (1–s/L) 
and based on the contribution of all datasets having a total length smaller than s. This is applied to 
a selection of spatially close datasets including borehole KFM08C and its neighbors (see Table 6‑2).

The averaged variations of <σf (s)>/(1–s/L) and <σd (s)> /(1–s/L) are plotted in Figure 6‑5a and 
Figure 6‑5b respectively. FDs and DZs datasets are treated separately. Both series display a well-
defined mean behavior with an evolution with scale s consistent with a power-law scaling in s–β and β 
in the range [0.3; 0.35]. Despite a shift between FDs and DZs (σFD(s)< σDZ(s)), due to highest densi­
ties for the latter, their scale evolution is the same. Thus the variability scaling exponent is likely 
one characteristic of the natural fracturing process variability, which occurs independently from the 
intensity of fracturing (like intensity variation between FDs and DZs). Moreover, the natural spatial 
density variability of fracture systems appears significantly different – and larger – from the one 
associated to Poisson models.

Finally we analyze the possible dependence of β on the considered range of fracture orienta­
tions. β is computed simultaneously for entire datasets and for subsets based on the division into 
bins of fracture pole orientations. The division into subsets is based on the “O-3” grid defined in 
Figure 5‑1b. Results are plotted in Figure 6‑6, where the exponents βi by orientation bin are plotted 
against the dataset reference exponent β. Dividing datasets into subsets obviously leads to a relative 
decrease of the amount of data into each subset, which automatically increases the apparent varia­
tions in these subsets. Despite this expected effect, there is a good correlation between variability 
scaling exponents per bin and the reference variability scaling exponent. The correlation is best 
observed for the sub-vertical bin, which is also the densest among the bins. 

Figure 6‑5. Averaged variations of a) <σf (s)>/(1–s/L) and b) <σd(s)>/(1–s/L) over the datasets selection 
defined in Table 6‑2.

Table 6‑2. Selection of datasets from KFM08C and its surrounding boreholes, including KFM08B, 
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In this section, we have tried to identify, through a scale analysis, the specific signature of the frac­
ture density spatial variability. Results are consistent for both DZs and FDs and for varying bins of 
orientations. Despite important fluctuations, which are anyway expected from a stochastic process 
like the Poisson model in similar conditions (i.e. datasets sizes), there are good indications toexpect 
a scaling of the density variability consistent with a power law of exponent β, on average equal 
to 0.3 to 0.35. This denotes a variability significantly larger than what would arise from a Poisson 
model and is likely the sign of intrinsic correlations between the fracturing properties. In other 
words, this property would be the signature of the real fracturing process. At this stage of invest­
igations, there is no well-defined model to explain it, although preliminary work on weak fractal 
DFN models likely ends up into compatible observations. 

The consequences of the fracture density spatial variations can nevertheless be quantified and 
integrated into the datasets density distribution estimates which are next combined into the 
classification process. 

6.3	 Grid of analysis and preliminary results
Pole clustering of fractures is commonly observed in field data, with most clusters close to hori­
zontally or vertically oriented fractures. The intermediate bin between “close to” horizontal and 
“close to” vertical poles rarely contains a dense cluster of preferential orientations. Besides, when 
the amount of data is significant, it is common to observe some displacement (in term of orienta­
tions) of the apparent fracture preferential orientations from one observation location to the other, 
whereas these fracture clusters may come from unique episodes of a site geological and stress 
history. However, the link between fracture formation or geological history and “moving clusters” 
is difficult to unambiguously established and may become irrelevant in case of too big variations to 
be modeled into single DFN models. Also, things get worst when the amount of data and potential 
number of clusters increases.

In this context, our approach allows a systematic analysis of fracture densities versus orientations, 
from various locations and datasets, and eventually from various orientation grids of analysis. Once 
an orientation grid of analysis is defined, its bins boundaries are fixed and fracture densities are 
accordingly computed, depending on fracture pole orientations. However, even if the grid bins are 
fixed, the contribution of each fracture to the bins may be distributed through several bins when 
a distribution is associated to each fracture pole rather than a unique value (Darcel et al. 2009). In 
doing this, the bins boundaries become fuzzy. 

Figure 6‑6. Scaling exponents by orientation bin versus “whole density” scaling exponent. Orientations 
division into 3 bins from sub-horizontal to sub-vertical dips values, respectively with dips in bin 1: [0;25],  
bin 2: [25;65] and bin 3: [65;90].
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A grid of analysis (Figure 5‑1) can be defined without prior information or possibly be defined to 
reflect as best as possible the presumed geological footprint, or some modeling application specific 
objectives. Defining the “best” grid of analysis or the best division of the fracture density into ori­
entation families is not trivial and may be unrealistic for usual conditions. The example of borehole 
KFM08C is used as an illustration. 

Discrete and contoured stereonets of the KFM08C datasets are plotted in Figure 6‑7 and Figure 6‑8 
respectively. This classical stereonet representation is incomplete: it does not include the total frac­
ture density or the variability estimate. But it still highlights the occurrence and intensity of pole 
clusters relatively to each dataset taken individually. In the present case, we observe, on each section, 
apparent pole cluster maxima corresponding both to sub-horizontal or sub-vertical fractures. The 
sub-vertical pole maxima positions in the stereonet apparently differ from one section to the other. 

The classification algorithm is applied for this set of datasets, first for the entire densities and then 
for an orientation grid including 5 bins (Figure 5‑1d). This was presented in Darcel et al. (2012) and 
is recalled in Figure 6‑9. 

Figure 6‑7. Discrete stereonets of KFM08C sections. Colors refer to the three SFMs resulting from the 
classification process applied on the O-5 grid (Figure 5‑1d).
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Figure 6‑8. Same as Figure 6‑7, contoured stereonets; without orientation bias correction, but the bias 
is the same for each dataset since they come from a unique borehole.

Figure 6‑9. Density distributions from Darcel et al. (2012):“KFM08C datasets density estimate and 
comparison in the SFD approach. Plots display density in y-axis and reference to bin number in x-axis; 
in each bin datasets values are evenly distributed for visualization purposes. Within each bin, each symbol 
represents a dataset, mean and standard deviation. Symbol colors indicate the class. a) Total density 
estimates: the 3 DZ datasets are grouped in one class of high density and the 5 FD datasets are grouped 
in a class of lower density. b) Same approach for a 5 bins study (Figure 5‑1d). 3 classes arise: one isolated 
DZ, the two other DZs and finally all the FDs, which remain in the same class.”
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The classification based on entire densities highlights the distinction between the DZs and FDs. 
This is not surprising since having a high density is one of the conditions to “be” a DZ. The second 
classification with 5 bins (Figure 5‑1d) keeps the FD datasets into a single class (and SFM), whereas 
the 3 DZ datasets are divided into two classes (see illustration in Figure 6‑7). When both density and 
variability are taken into account in the present case, with pole clusters potentially distributed into 
5 cells, the FFM06 dataset of KFM08C is not statistically different from the other FFM01 datasets 
of KFM08C. 

When the number of datasets increases and if the difference between datasets are less striking (for 
instance if only FFM datasets are considered, or only DZ datasets, the range of densities is likely 
diminished), it becomes unlikely to keep the “O-1” classification into the “O-5” one (Figure 6 and 
7 in Darcel et al. 2012). Moreover, with a difference between two datasets distributions defined in 
Equation 5‑1, i.e. defined as the average distance over Nz bins, increasing the number of bins leads 
to increase the possibility to compensate local differences from bin to bin. Applying the restrictive 
criterion (Equation 5‑2) instead, with 5 bins, leads defining many classes, thus reflecting the high 
variability of properties. 

Based on these preliminary observations, we limit the number of bins for applying the classification 
to all datasets at Forsmark. First the “O-1” is considered, and then the “O-3”.

6.4	 Preliminary results: classification based on entire 
density only

The “O-1” classification relies on comparisons between entire densities (mean and σvar estimates) 
of datasets, without consideration of pole-clusters position variations. The initial 148 datasets are 
defined in Section 6.1. The corresponding evolution of Δmax with the number of classes is displayed 
in Figure 6‑10. At each step of the clustering process the two closest classes are merged and the 
new formed class is updated. For each class, one associates one dispersion value as the maximum 
distance between the datasets of the class and the class model itself. Therefore at each step of the 
clustering process the total number of classes is reduced by one and the maximum dispersion (Δmax) 
is increased. Having a too large Δmax – and too small number of classes- finally means that some 
classes have clustered too many – not compatible – datasets.

For Δmax<0.5, clustering datasets together do not create a significant decrease of class cohesion 
(increase of Δmax). From Δmax >0.5 and above almost every new step of the clustering process 
does increase more significantly the distance within one class, leading to classes more and 
more dispersed. But there is no shift in the evolution of Δmax such as the one observed from the 
tested Poissonian models (when 3 models are forced into 2 classes, Figure 5‑4). We nevertheless 
use the Poissonian model reference to define a reasonable limit for Δmax and stop the process when 
Δmax is equal to 1.66, leading to 6 classes. 

Figure 6‑10. Forsmark data. Evolution of Δmax with the number of classes during the classification based 
on the O-1 grid.
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Once sorted according to the above limit, all the density distribution estimates are plotted in 
Figure 6‑11. As expected from the soft evolution of Δmax, there is no apparent density gap or jump 
between the identified groups of datasets. We rather observe a smooth variation of densities from 
the smallest to the largest densities. Classes 1 and 2, respectively having the largest and smallest 
densities, contain very few datasets. The four other main classes are logically ordered, with increa­
sing density, from class 3 mostly made of FD datasets and up to class 5 dominated by DZ datasets. 
DZ datasets are in general denser than FD datasets, however many dense FD datasets display  
densities compatible with DZ, and vice versa. 

In summary, in the present case, where only the entire densities are considered (i.e. without consi­
deration of preferential orientations and clusters of fracture poles in the orientation distribution) we 
observe 6 classes whose respective limits are defined from the classification process but which are 
not identified by striking changes in estimated densities. There is rather a significant overlapping 
between distributions (the density estimate of one dataset may belong to the range of another dataset 
density estimate even if the latter belongs to a different class). This can be explained by the fact that 
at the scale of observation the probability is high of having internal variations larger that “external” 
ones (i.e. from one SFM to the other). In these conditions there is some overlapping between a class 
definition and the external but close datasets. In other words, the apparent limits between SFMs 
appear fuzzy. On the other hand, considering only entire densities may prevent from identifying SFM 
particularities and specific signature related to preferential orientations in the fracturing system. This 
is further investigated in the next section. 

6.5	 Description based on horizontal versus vertical fractures
The O-3 grid schemed in Figure 5‑1b differentiates fractures according to their dip values, with 3 
orientation bins whose limits are: dip equal to 25° and to 65°. Fractures are then sorted through 3 
categories which correspond to “sub-horizontal”, “intermediate” or “sub-vertical” trends.

In these conditions, the evolution of Δmax with the number of classes is computed and results are 
plotted in Figure 6‑12. As long as Δmax <1, the increase is regular and slow. Once Δmax >1 two rela­
tively significant jumps of Δmax are observed, for 7 and 9 classes (black and blue dots in Figure 6‑12). 
The classification process is pursued until Δmax is equal to 1.66 and the corresponding number of 
classes equal to 7 (black dot in Figure 6‑12). 

The SFM density distributions for the 7 classes are presented in Figure 6‑13. The estimated mean 
and σvar values are plotted for each bin of orientations. The composition of each SFM is summarized 
in Table 6‑3 (and detailed in Appendix 2: Classification into SFMs). Within each of the 7 classes, 
the density of vertical fractures is larger than the one of sub-horizontal and intermediate orientations. 
The density of horizontal fractures is low in general but more significant for two classes, n°2 and 
n°4. Almost all classes – except the two smallest ones, classes 3 and 5 – combine both DZ and FD 
datasets (Table 6‑3). However, in each case either the one or the other is dominant in the class. In 
particular, class 6 is made of DZ datasets up to 80% and class 7 is made of FD datasets up to 80%. 
Although less important, classes 1 and 2 are dominated by DZs while classes 3, 4 and 5 are domi­
nated by FDs. The role of depth in the classification is further reviewed in the next section. 

Table 6‑3. Summary table for the 7 classes and SFM models from the Forsmark data based on 
the O-3 grid with Δmax=1.66. DZ is for Deformation Zones (SKB definition) and FD is for Fracture 
Domain (SKB definition).

Class Number of data‑
sets in the class

Color in Figure 6‑13 
and Figure 6‑16

Proportion of 
DZ datasets (%)

Comments

1 9 black 78 mostly DZ datasets and largest densities
2 17 red 65 DZ dominated and shallow depths
6 42 pink 81 DZ dominated
3 4 green 0 FD datasets dominated but few datasets
4 17 blue 29 FD dominated, shallow depths
7 51 brown 20 FD dominated
5 7 cyan 0 FD dominated, very low densities
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Figure 6‑12. Evolution of Δmax with the number of classes during the classification based on the O-3 grid 
(recalled in Figure 5‑1b).

Figure 6‑13. 7 SFMs of the Forsmark data based on the O-3 grid (Figure 5‑1b) with Δmax=1.66. See text 
for details.
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6.6	 Densities and depth dependency 
Density distributions of all the considered datasets, expressed as mean and σvar values for each 
orientation bin, are plotted as function of dataset mean elevation in Figure 6‑14a, -b and -c, 
respectively for the sub-horizontal, intermediate and sub-vertical bins. Results of the above­
mentioned classification are highlighted by the colors chosen to reflect the belonging to common 
classes. This representation thus highlights the potential density evolution with depth of the 3 grid 
bins (sub-horizontal, intermediate and sub-vertical fractures).

The global evolution with depth of the fracture density – all datasets considered together and accord­
ing to the vertical position of each one – is computed by orientation bin and plotted as a thick black 
line in the figure (Figure 6‑14a, b and c). We thus observe a global decrease of the fracture density of 
horizontal fractures toward large depths (Figure 6‑14a). From surface down to approximately 120 m, 
the horizontal fracturing density follows an exponential decrease whose characteristic scale is 60 m. 
Below this depth, the decrease is less important but still exponential now with a characteristic size 
equal to 500 m. There is no such depth effect observed for the two other bins of orientations, the 
intermediate and the sub-vertical ones. 

The final classification into 7 SFMs reflects partly the depth dependency: in addition to the general 
picture, where classes are organized from large densities and mainly DZs to smaller densities and 
mainly FDs, two classes are identified for large densities and shallow depths (classes 4 and 2). 
Indeed, both class 4 and 7 are dominated by FDs, but class 4 is located at shallow depths and the 
density of horizontal fractures is larger. The same combination occurs for class 2 and 6, with class 
2 having more horizontal fractures and shallower depths. 

In the next sections (6.7 and 6.9) we review first the classification robustness with regards to the last 
steps of the classification (i.e. what if the classification were stopped at a higher number of classes) 
and then consider the effect of changing the orientation grid of observation. 

6.7	 Last stages of the classification, from 9 to 7 classes
Here we illustrate how the classification evolves at the last stages of the classification process. The 
intermediate case with 9 classes is compared to the final 7 classes’ stage. Both stages correspond 
to a relatively important jump of Δmax. When 9 classes are defined Δmax=1.35, whereas it is equal to 
1.66 for 7 classes. 

The 9 classes classification is displayed in Figure 6‑15 (one color by class), where horizontal 
fractures densities are plotted against depth. This figure can be directly compared to Figure 6‑14a. 
Beyond a few changes for some datasets at classes boundaries, the main differences occur for class 
6 and class 7: both these large classes are split into 2 sub-classes (6-1, 6-2, 7-1, and 7-2). Class 7-2 
is mainly composed by datasets from FFM01 (80%) while 7-1 is composed mainly by datasets 
belonging to other FFM (80%). Therefore, although fracturing properties of most FFM are very 
close (and largely merged into one to two big classes in the final description), the higher refinement 
allows differentiating further the properties. The class 6, dominated by DZ datasets, is divided into 
two classes named 6-1 and 6-2. Class 6-1 is close to class 4 (FD shallow with a relative high density 
of horizontal fractures) while class 6-2 is closer to class 7 (other FD datasets). These two classes 
are in the further steps merged together because of their similar densities for both intermediate and 
vertical fractures.

Finally, the classification can be considered as robust: there are few variations between the main 
SFMs at the latest stages of the classification. Nevertheless, defining which final Δmax provides 
the best optimization is not trivial.
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Figure 6‑14. Evolution of fracture density with depth with the O-3 classification. The 7 final classes are 
represented by the different colors (see inlet), density vs. depth of a) sub-horizontal fractures, b) intermedi-
ate fractures and c) sub-vertical fractures. The “depth error bars” represent the borehole section min and 
max depth.
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6.8	 Spatial organization of the SFMs
The spatial distribution of SFMs is displayed in Figure 6‑16. Density values are plotted on three 
2D maps, each representing a certain range of elevation values: from surface down to 118 m, from 
118 m down to 592 m and finally below 592 m. For each layer, density values are plotted as “inten­
sity bullets” whose center is located at the corresponding dataset Northing/Easting position. Each 
bullet is colored by class index and its size is proportional to density (of horizontal fractures for the 
0–118 m layer, vertical fractures for the two other layers).

We observe that the surface effect (horizontal fracturing density increase, classes 2 and 4) is mainly 
localized in the south-western part of the area of interest. At larger depth (below 118 m) the fractur­
ing properties are dominated by a mix of classes 7 (FD dominated) and 6 (DZ dominated). The DZ 
do not seem to act as domain boundaries. Finally, at the deepest elevations (Figure 6‑16c) densities 
are rather low, with few differences between FD and DZ datasets. 

6.9	 Alternate description based on one horizontal and two 
vertical directions 

The previous analyses (sections 6.5 to 6.7), based on dip values only, have not considered the role 
of strikes in the definition of the SFMs. We finally modify the O-3 grid and replace the former “ver­
tical” and “intermediate” grid bins by two vertical grid bins (name “O-3hv”). The horizontal bin is 
unchanged. The previous intermediate fracture bin is merged into the two new vertical bins. The two 
new vertical bins are defined by two major strike directions (Figure 6‑17c). The limits of the vertical 
bins are chosen according to dominant strike direction of pole clusters from the entire site (i.e. all 
poles of all boreholes, Figure 6‑17a and b).

The classification process is applied until Δmax >1.66, which yields 7 classes whose densities are 
plotted in Figure 6‑18. Density distributions of all the considered datasets, expressed as mean and 
σvar values for each (horizontal, vertical bin 2, vertical bin 3) orientation bin, are plotted as function 
of dataset mean elevation in Figure 6‑19a, -b and -c (similar to Figure 6‑14; but only the horizontal 
bin is unchanged between the O-3 and the O-3hv cases). Results of the O-3hv classification are 
highlighted by the colors chosen to reflect the belonging to common classes, the color code is the 
same in Figure 6‑18 and Figure 6‑19.

Figure 6‑15. Evolution of fracture density with depth for the subhorizontal fractures. Datasets are colored 
according to the O-3 classification, but with Δmax=1.35.
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Figure 6‑16. Dataset estimated densities on three 2D maps, each representing a certain range of elevation 
values: a) density of “horizontal” fractures, occurring from surface down to 118 m, b) density of vertical 
fractures occurring from 118 m down to 592 m and finally c) density of vertical fracture occurring below 
592 m. See text for more details. The background map comes from Olofsson et al. (2007) and the area of 
interest is represented by the red line.
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Figure 6‑17. Contoured orientations in Forsmark for fractures from a) FDs and b) DZs. c) The alternate 
O-3 grid of analysis where orientation bins are named as grid zone 1, 2 and 3.

Figure 6‑18. Classes density distributions from the O-3hv classification, 7 classes defined. See text for 
more details. 
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Figure 6‑19. Evolution of fracture density with depth with the O-3hv classification. The 7 final classes 
represented by the different colors (see inlet), density vs. depth of a) sub-horizontal, b) vertical – bin 2 and 
c) bin 3 fractures. The “depth error bars” represent the borehole section min and max depth. Grid bins of 
the alternate O-3 grid are recalled in Figure 6‑17.
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We observe that the former class 1, with very high densities of DZ and the former class 2, with 
mainly DZ datasets displaying the horizontal fracturing surface effect, as recalled in Figure 6‑13 
and Table 6‑3, are still found in the present classes D and E respectively. 

With some limited recombinations, the former class 7 (and even class 7-2, i.e. low densities of 7) 
is now associated to former class 5 to define the new class G. This class G is mainly composed of 
“FFM01” datasets. Also a large part of former class 6 (even class 6-2, so the lower densities of 6) 
is now transformed into class A, largely characterized by a low density of horizontal fractures. 

The most important difference in the classification is reflected by the new class C: this one is now 
a mix between former class 7-1, former class 6-1 and former class 4. This class thus is composed in 
equal parts by FD and DZ datasets (50%–50%). It is mainly characterized by a preponderant density 
for bin 3 (i.e. vertical fractures striking NE).

The consideration of several distinct classification schemes improves the understanding of the 
fracture site organization. The O-3 scheme was adapted to clearly identify a surface effect like the 
density increase of horizontal fracturing close to surface. The influence of the surface effect in the 
final classification is nevertheless less visible in the second classification where 2 of the 3 orienta­
tion bins are for vertical fractures, thus counterbalancing the weight of the horizontal one. In this 
latter case, the high density of vertical fractures in bin 3 (i.e. vertical fractures striking NE) becomes 
decisive to define class C. 
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7	 Summary and conclusions 

The spatial variability of fracture density is a key issue for the DFN modeling. This project aimed 
to review and upgrade the site DFN modeling approach initially introduced in Darcel et al. (2009) 
especially with regards to relations between models, model assessment from data and spatial varia­
bility of properties. In this perspective the first stage was dedicated to DFN models and modeling 
methodology. In the second stage real data, from Forsmark site, were investigated to initially app­
raise the intrinsic spatial variability and scaling behavior of fracture properties. Then the classifi­
cation approach and the class SFMs properties assessment were applied to a DFN analysis of the 
Forsmark site. 

Poisson DFN models are commonly used to mimic the spatial variation of fracture density. For 
such cases, we derive the relation between the fracture density estimate standard deviation σvar 
and the scale of observation: on average σvar evolves like the square root inverse of the scale of 
observation. Thus, the spatial variability of Poisson DFN models is quantified and one can used 
it as a reference case. The other considered DFN models differ from the Poisson one through the 
addition of a fractal dimension assigned to the spatial distribution of fracture positions (Darcel et al. 
2003a). Thus defined, the fractal DFN models display an apparent slower decrease of σvar with scale 
and then lead to larger standard deviations of the density estimate distribution at constant number 
of data into a dataset. At this point, further investigations are required to fully define the evolution 
of σvar with scale and fractal dimension. In both Poisson and fractal cases, increasing the number of 
elements into a datasets, either by sampling a higher density zone, or by increasing the section of 
observation length, obviously improves the accuracy of the density estimate (and reduces σvar). 

Analyses of real datasets from Forsmark display a wide range of density distribution estimates. But 
in many cases, they are consistent with scaling of σvar in scale size to the power –0.3, which is clearly 
different from Poisson models and closer to weakly fractal DFN model. We consider that the found 
variability scaling exponent is likely the signature of real fracture properties at Forsmark. 

The complete approach is extensively used for synthetic references cases and real data. It includes 
first assessment of density estimate distribution for each dataset, then classification into groups of 
similar datasets from which SFMs are derived and finally possible changes in the analysis control­
ling parameters (dataset division into a number of ranges of fracture orientations – the orientation 
bins of the grid of analysis, Δmax).

From the real conditions analyses, with here close to 150 initial datasets and more than 60,000 data, 
it appears that the limits between SFMs can be fuzzy or equivalently, the final SFMs partly over­
lapping each other. As a consequence, small changes in the parameters may moderately change 
the SFMs limits and thus there is not a unique final classification and subsequent set of classes 
and SFMs. This is the straight consequence of real conditions, where variations of fracture density 
cover a wide range of values and spatial variations can be important both at small and larger scales. 
These conditions leads to use a limited number of orientation bins to define each density distribution, 
so that each density estimate still relies on a large number of data and therefore rather well defined 
estimates. 

Once this is stated, we recall that there are limits to the DFN modeling refinement: because of prop­
erties spatial variations, the access and knowledge of underlying models necessarily is limited. This 
is all the point of the method. At final stages of the classification process, each new class merging 
step induces larger and larger Δmax jumps. This reflects that each time bigger and bigger classes are 
merged and internal dispersion within a class increased. Changing the final threshold value of Δmax 
or even changing the orientation grid of analysis ends up into some changes in the final classifica­
tion, which are limited and do not put into question the main picture. We recommend that, given 
the complexity of real in situ fracture organization, site scale analyses should be done from several 
classifications attempts (definition of the orientation cells in the grid of analysis and final stages of 
the clustering into classes). In these conditions, the method has further proven its efficiency to make 
objective analyses from any number of initial data, while properly including the spatial variability 
on the density estimates. 
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We finally summarize the principal outcomes of the Forsmark site analysis. Five main SFMs are 
derived. Few key elements control the general picture. Firstly, dataset total density is of major 
importance. As a consequence, highest densities SFMs are dominated by DZs whereas lowest ones 
are made of FDs. However, in the wide space between highest and lowest densities, SFMs contains 
both DZs and FDs, which illustrates that there is not always a clear distinction between both, from 
the DFN statistical representation view. Second, there is a clear depth dependency of the density of 
horizontal fractures: shallow zones exhibits a larger density of horizontal fractures, in particular in 
the south-western part of the area (class 2 and class 4 from Table 6‑3). Two characteristic depths are 
thus identified, at 60 m and 500 m. 
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8	 Perspectives

The work presented here has proven the method efficiency to encompass a modeling of spatial 
variability both within SFMs and naturally in-between SFMs. It has also highlighted some 
continuing issues:

•	 The variability of fracture density is likely reflected by a specific signature and evolution as 
observation size to the power –0.3. The confidence in such a characteristic could be better  
evaluated through analyses of tightened sampling conditions. 

•	 Poisson DFN models underestimate the real local variations of fracturing properties. Fractal-like 
model are likely better adapted to reflect reality, however only preliminary analyses have been 
performed. This work should be pursued.

•	 The division of a site into spatial Fracture Domains each having their properties cannot reproduce 
a site scale trend evolution of density like the evolution with depth observed. How to combine 
such a site scale trend to Fracture Domains and or SFMs identified has to be developed. 

•	 Local spatial variations of fracture densities defined from specific ranges of pole orientations 
were investigated here. However, the possible spatial correlations between the orientation of a 
fracture and its neighbors were not investigated. This should be considered into a revision of the 
spatial correlation model of SFMs.
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9	 Abbreviations

DFN	 Discrete Fracture Network

SFM	 Statistical Fracture Model

FD	 Fracture Domain (Olofsson et al. 2007)

DZ	 Deformation Zone (Olofsson et al. 2007)

sdev	 Standard deviation

O-n	 Orientation grid based on n bins

3D	 Three Dimensional
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Appendix 1 

Forsmark datasets

IDCODE number height min_pos max_pos

KFM01A_FFM01a 112 90.03 290.49 380.52
KFM01A_FFM01b 140 219.96 410.10 630.06
KFM01A_FFM01c 185 300.42 678.69 979.11
KFM01A_FFM02a 397 93.18 102.98 196.15
KFM01A_FFM02b 303 92.87 196.83 289.70
KFM01A_ZFMENE1192 122 28.21 381.40 409.61
KFM01A_ZFMENE2254 256 46.67 631.35 678.02
KFM01B_FFM01a 346 190.54 223.79 414.32
KFM01B_FFM01b 118 45.58 452.22 497.80
KFM01B_FFM02a 459 82.53 57.17 139.70
KFM01B_FFM02b 136 83.27 140.01 223.28
KFM01B_ZFMA2 434 40.59 16.23 56.83
KFM01B_ZFMNNW0404 251 36.86 415.04 451.90
KFM01C_8ZFMA2 399 31.32 66.63 97.95
KFM01C_FFM01a 841 51.14 252.19 303.33
KFM01C_FFM01b 1574 112.58 329.00 441.58
KFM01C_FFM02a 174 19.27 12.28 31.55
KFM01C_FFM02b 245 21.14 45.47 66.62
KFM01C_FFM02c 462 54.79 98.49 153.28
KFM01C_FFM02d 580 77.75 156.06 233.81
KFM01C_ZFMENE0060A 265 17.92 234.08 251.99
KFM01C_ZFMENE0060C 508 25.30 303.54 328.84
KFM01C_ZFMENE1192 364 12.94 32.33 45.27
KFM01D_FFM01a 375 217.16 191.13 408.30
KFM01D_FFM01b 60 53.00 420.03 473.03
KFM01D_FFM01c 364 193.43 475.15 668.58
KFM01D_FFM01d 160 91.11 699.00 790.11
KFM01D_FFM02 311 74.80 92.35 167.15
KFM01D_PDZa 157 22.44 168.65 191.09
KFM01D_PDZb 58 11.08 408.85 419.94
KFM01D_ZFMENE0061 144 29.87 668.74 698.60
KFM02A_DZ2 102 20.22 101.53 121.75
KFM02A_DZ3 174 23.98 159.50 183.48
KFM02A_DZ6 646 102.88 417.35 520.22
KFM02A_DZ7 260 79.86 521.19 601.05
KFM02A_DZ8 57 13.77 893.26 907.03
KFM02A_FFM01a 249 288.25 601.36 889.61
KFM02A_FFM01b 145 80.66 911.72 992.37
KFM02A_FFM03a 80 37.12 122.21 159.33
KFM02A_FFM03b 471 230.68 184.80 415.48
KFM02B_DZ1 120 16.32 98.53 114.85
KFM02B_DZ2 481 58.42 145.02 203.44
KFM02B_DZ3 157 18.65 412.10 430.75
KFM02B_DZ5 170 10.75 462.26 473.01
KFM02B_DZ6 308 24.93 486.50 511.43
KFM02B_RU1a 14 8.96 88.95 97.91
KFM02B_RU1b 156 29.38 115.36 144.74
KFM02B_RU1c 175 90.19 204.11 294.30
KFM02B_RU1d 5 10.05 300.31 310.35
KFM02B_RU1e 88 18.15 432.76 450.91
KFM02B_RU1f 22 9.69 451.05 460.74
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IDCODE number height min_pos max_pos

KFM02B_RU1g 12 8.70 475.30 484.00
KFM02B_RU1h 108 58.87 512.57 571.45
KFM02B_RU2a 161 80.18 330.68 410.86
KFM04A_FFM01 1459 522.17 461.71 983.88
KFM04A_FFM04 227 25.63 174.84 200.46
KFM04A_ZFMA2 472 39.88 200.90 240.77
KFM04A_ZFMNE1188 1637 218.71 241.63 460.33
KFM04A_ZFMNW1200 525 65.07 109.66 174.73
KFM05A_DZ2 192 40.34 395.46 435.80
KFM05A_DZ3 1098 205.64 590.22 795.86
KFM05A_DZ4 543 107.03 892.50 999.53
KFM05A_FFM01a 208 158.66 235.71 394.37
KFM05A_FFM01b 169 149.25 439.71 588.95
KFM05A_FFM01c 88 96.03 796.16 892.19
KFM05A_FFM02 521 132.20 102.95 235.15
KFM06A_DZ1 224 43.34 102.28 145.62
KFM06A_DZ10 102 22.66 882.13 904.78
KFM06A_DZ11 321 70.88 925.38 996.26
KFM06A_DZ2 1067 162.17 195.81 357.98
KFM06A_DZ7 542 69.66 740.18 809.85
KFM06A_FFM01a 123 48.65 146.03 194.68
KFM06A_FFM01b 1023 381.19 358.75 739.94
KFM06A_FFM06a 207 71.56 810.26 881.82
KFM06A_FFM06b 56 19.74 905.12 924.86
KFM06B_DZ1 340 37.40 55.14 92.54
KFM06B_FFM02a 208 47.86 7.10 54.97
KFM06B_FFM02b 11 2.95 94.16 97.11
KFM06C_DZ1 393 66.55 102.19 168.75
KFM06C_DZ3 872 143.35 413.59 556.94
KFM06C_DZ5 423 53.53 623.28 676.80
KFM06C_FFM01 937 242.90 169.40 412.30
KFM06C_FFM05 454 90.50 906.28 996.78
KFM06C_FFM06a 246 65.16 557.74 622.90
KFM06C_FFM06b 1092 228.56 677.04 905.60
KFM07A-Dza 705 107.05 102.04 209.09
KFM07A-DZb 529 163.53 411.50 575.02
KFM07A-DZc 769 129.52 792.44 921.96
KFM07A-DZd 615 71.70 922.07 993.77
KFM07A-FFM01a 347 200.84 210.04 410.88
KFM07A-FFM01b 208 213.73 576.98 790.71
KFM07B-Dza 82 6.13 51.53 57.66
KFM07B-Dzb 117 8.63 93.19 101.82
KFM07B-Dzc 164 15.43 119.18 134.61
KFM07B-Dzd 161 17.96 226.51 244.47
KFM07B-FFM01a 29 28.33 196.65 224.98
KFM07B-FFM01b 248 51.94 245.38 297.32
KFM07B-FFM02a 374 45.60 5.39 50.99
KFM07B-FFM02b 182 34.81 58.04 92.85
KFM07B-FFM02c 85 15.23 102.95 118.18
KFM07B-FFM02d 252 59.08 135.45 194.53
KFM07C-Dza 606 79.86 308.09 387.95
KFM07C-Dzb 78 9.65 429.15 438.81
KFM07C-FFM01a 458 184.55 123.09 307.64
KFM07C-FFM01b 210 40.70 388.02 428.72
KFM07C-FFM01c 256 58.69 439.42 498.11
KFM08A-DZ1 1514 228.50 103.36 331.86
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IDCODE number height min_pos max_pos

KFM08A-DZb 1128 185.28 764.39 949.67
KFM08A-FFM01 1623 431.00 332.19 763.19
KFM08B-DZ1 192 28.05 156.56 184.61
KFM08B-FFM01 406 110.90 45.03 155.93
KFM08B-FFM02 123 38.85 6.12 44.97
KFM08C-DZ1 239 29.44 161.13 190.56
KFM08C-DZ2 1307 122.13 419.31 541.43
KFM08C-DZ3 360 31.57 673.25 704.82
KFM08C-FFM01a 92 58.44 102.48 160.93
KFM08C-FFM01b 535 151.01 191.08 342.09
KFM08C-FFM01c 509 130.57 542.41 672.97
KFM08C-FFM01d 850 245.24 705.05 950.29
KFM08C-FFM06 304 76.20 342.45 418.65
KFM08D-Bsa 235 83.62 64.33 147.96
KFM08D-BSb 771 95.88 148.01 243.89
KFM08D-BSc 333 57.01 244.43 301.44
KFM08D-Bse 988 181.93 360.05 541.98
KFM08D-BSf 4229 399.74 542.01 941.75
KFM09A_FFM01a 331 88.45 124.35 212.80
KFM09A_FFM01b 485 141.31 521.96 663.27
KFM09A_FFM05 1464 242.76 278.89 521.64
KFM09A_ZFMENE0159A 437 62.56 216.03 278.58
KFM09A_ZFMENE1208 1151 115.97 7.92 123.89
KFM09A_ZFMNW1200 1142 130.94 663.54 794.48
KFM09B_FFM01a 427 71.39 131.99 203.38
KFM09B_FFM01b 419 103.67 203.59 307.26
KFM09B_FFM01c 290 54.35 308.01 362.36
KFM09B_FFM01d 127 104.16 411.79 515.96
KFM09B_FFM01e 41 13.50 547.49 560.99
KFM09B_FFM01f 5 18.69 574.12 592.81
KFM09B_FFM02 265 27.18 76.85 104.03
KFM09B_FZMENE1208 847 67.43 9.27 76.70
KFM09B_ZFMENE0159A 275 25.95 105.35 131.30
KFM09B_ZFMENE2320 381 48.92 362.45 411.37
KFM09B_ZFMENE2325A 286 30.46 516.90 547.36
KFM09B_ZFMENE2325B 119 12.62 561.09 573.71
KFM10A_FFM03a 642 129.63 144.91 274.54
KFM10A_FFM03b 528 145.52 283.25 428.77
KFM10A_ZFMA2 484 64.57 429.15 493.72
KFM10A_ZFMENE2403 77 7.99 274.82 282.80
KFM10A_ZFMWNW0123 981 81.88 62.90 144.79
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Appendix 2

Classification into SFMs

The O-3 grid in 
Figure 5‑1b 
Δmax=1.66 
7 classes

The O-3 grid in 
Figure 5‑1b 
Δmax=1.35 
9 classes

The alternate O-3 
grid in Figure 6‑17 
 Δmax>1.66 
7 classes

Figure 6‑14 Figure 6‑15 Figure 6‑19

KFM01C_FFM01b 1 1 D
KFM02B_DZ5 1 1 D
KFM01C_ZFMENE0060A 1 6-1 D
KFM07B-Dza 1 1 E
KFM09A_ZFMNW1200 1 6-1 E
KFM04A_ZFMA2 1 1 D
KFM01C_FFM01a 1 1 D
KFM01C_ZFMENE1192 1 1 D
KFM01C_ZFMENE0060C 1 1 D
KFM10A_ZFMA2 2 6-1 E
KFM09B_FZMENE1208 2 2 E
KFM01C_8ZFMA2 2 2 E
KFM06C_DZ1 2 6-1 C
KFM07B-Dzc 2 2 E
KFM01C_FFM02a 2 2 E
KFM01C_FFM02b 2 2 E
KFM01C_FFM02c 2 2 E
KFM02B_DZ3 2 2 E
KFM07A-Dza 2 6-1 E
KFM01B_ZFMA2 2 2 E
KFM01B_FFM02a 2 6-1 E
KFM01D_PDZa 2 6-1 C
KFM09B_FFM02 2 6-1 E
KFM09A_ZFMENE1208 2 2 E
KFM07B-FFM02a 2 6-1 E
KFM07B-Dzb 2 2 C
KFM07B-FFM01b 3 3 F
KFM02B_RU1f 3 3 F
KFM06A_FFM06b 3 3 F
KFM02B_RU1g 3 3 F
KFM02A_DZ3 4 4 C
KFM02A_DZ6 4 4 C
KFM06B_FFM02b 4 4 C
KFM06B_FFM02a 4 4 C
KFM08D-Bsa 4 4 C
KFM06A_DZ1 4 4 C
KFM05A_FFM02 4 7-1 C
KFM09A_FFM01a 4 4 C
KFM08B-FFM02 4 4 C
KFM02A_DZ2 4 4 C
KFM09B_FFM01a 4 7-1 C
KFM01D_FFM02 4 4 C
KFM09B_FFM01b 4 4 C
KFM01A_FFM02a 4 4 C
KFM07B-FFM02b 4 4 C
KFM10A_FFM03b 4 4 C
KFM06C_FFM01 4 4 C
KFM07A-FFM01b 5 5 G
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The O-3 grid in 
Figure 5‑1b 
Δmax=1.66 
7 classes

The O-3 grid in 
Figure 5‑1b 
Δmax=1.35 
9 classes

The alternate O-3 
grid in Figure 6‑17 
 Δmax>1.66 
7 classes

Figure 6‑14 Figure 6‑15 Figure 6‑19

KFM01A_FFM01c 5 5 B
KFM02A_FFM01b 5 5 G
KFM02B_RU1d 5 5 G
KFM02A_FFM01a 5 5 G
KFM09B_FFM01f 5 5 B
KFM07B-FFM01a 5 5 G
KFM08A-DZb 6 6-2 A
KFM04A_ZFMNE1188 6 6-2 A
KFM04A_ZFMNW1200 6 6-1 E
KFM07C-Dzb 6 6-1 C
KFM02B_RU1b 6 6-1 C
KFM02B_DZ6 6 6-1 E
KFM08C-DZ2 6 6-1 D
KFM04A_FFM04 6 6-1 D
KFM07B-Dzd 6 6-1 C
KFM08B-DZ1 6 6-1 E
KFM08C-DZ1 6 6-2 C
KFM09A_FFM05 6 6-1 C
KFM09A_ZFMENE0159A 6 6-2 C
KFM02B_DZ2 6 6-1 C
KFM01C_FFM02d 6 6-1 E
KFM07A-DZd 6 6-2 A
KFM07A-DZc 6 7-1 A
KFM01B_ZFMNNW0404 6 6-2 A
KFM09B_ZFMENE2325A 6 6-2 A
KFM06B_DZ1 6 6-1 C
KFM10A_FFM03a 6 6-2 C
KFM01A_ZFMENE1192 6 7-1 C
KFM10A_ZFMWNW0123 6 6-1 E
KFM02B_DZ1 6 6-1 C
KFM06C_DZ5 6 6-1 C
KFM06C_DZ3 6 6-2 C
KFM08D-BSc 6 6-1 C
KFM08D-BSf 6 6-1 C
KFM06C_FFM06b 6 7-1 C
KFM01D_ZFMENE0061 6 6-2 C
KFM10A_ZFMENE2403 6 6-1 D
KFM08A-DZ1 6 6-1 C
KFM07C-FFM01c 6 7-1 C
KFM07C-FFM01b 6 6-2 C
KFM06A_DZ7 6 6-2 A
KFM06A_DZ2 6 6-1 C
KFM09B_ZFMENE0159A 6 6-1 C
KFM09B_ZFMENE2320 6 6-2 A
KFM01D_PDZb 6 6-2 A
KFM08C-DZ3 6 6-1 A
KFM08D-BSb 6 6-1 C
KFM05A_DZ3 6 6-2 A
KFM05A_DZ4 7 7-1 G
KFM07B-FFM02d 7 7-1 C
KFM05A_FFM01a 7 7-2 G
KFM07C-FFM01a 7 7-2 C
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The O-3 grid in 
Figure 5‑1b 
Δmax=1.66 
7 classes

The O-3 grid in 
Figure 5‑1b 
Δmax=1.35 
9 classes

The alternate O-3 
grid in Figure 6‑17 
 Δmax>1.66 
7 classes

Figure 6‑14 Figure 6‑15 Figure 6‑19

KFM07A-FFM01a 7 7-2 G
KFM06A_FFM01a 7 7-2 C
KFM06A_FFM01b 7 7-2 G
KFM04A_FFM01 7 7-1 C
KFM06A_DZ10 7 7-2 A
KFM01A_FFM01b 7 7-2 B
KFM08B-FFM01 7 7-1 C
KFM02B_RU1h 7 7-2 G
KFM02B_RU1e 7 7-1 G
KFM02B_RU1c 7 7-1 G
KFM05A_DZ2 7 7-1 A
KFM08C-FFM01a 7 7-2 G
KFM06C_FFM06a 7 7-1 C
KFM08C-FFM01c 7 7-1 G
KFM06A_DZ11 7 7-1 C
KFM07B-FFM02c 7 7-1 A
KFM02B_RU1a 7 7-2 G
KFM08C-FFM06 7 7-1 G
KFM08C-FFM01d 7 7-1 G
KFM08D-Bse 7 7-1 A
KFM08C-FFM01b 7 7-1 C
KFM02A_FFM03b 7 7-2 G
KFM09A_FFM01b 7 7-1 C
KFM02A_FFM03a 7 7-1 6
KFM02A_DZ8 7 7-1 A
KFM02A_DZ7 7 7-1 6
KFM02B_RU2a 7 7-1 6
KFM08A-FFM01 7 7-1 A
KFM01D_FFM01d 7 7-2 6
KFM09B_FFM01c 7 7-1 C
KFM09B_FFM01d 7 7-2 6
KFM09B_FFM01e 7 7-2 6
KFM01D_FFM01c 7 7-2 6
KFM01D_FFM01b 7 7-2 6
KFM01D_FFM01a 7 7-2 6
KFM05A_FFM01b 7 7-2 6
KFM05A_FFM01c 7 7-2 6
KFM01B_FFM02b 7 7-2 C
KFM09B_ZFMENE2325B 7 7-1 A
KFM01B_FFM01b 7 7-2 6
KFM01B_FFM01a 7 7-2 6
KFM01A_ZFMENE2254 7 7-1 6
KFM07A-DZb 7 7-1 C
KFM01A_FFM02b 7 7-1 C
KFM01A_FFM01a 7 7-2 6
KFM06C_FFM05 7 7-1 A
KFM06A_FFM06a 7 7-1 6

SKB R-13-54	 61


	Executive Summary
	Sammanfattning
	Contents
	1	Introduction
	2	Approach objectives and limitations
	2.1	Key issues
	2.2	Practical conditions
	2.3	In situ determinants

	3	Recalls and basic definitions 
	4	On the stochastic variability of fracture networks and DFN models
	4.1	Case of Poissonian processes to define fracture 
spatial locations
	4.2	Measurement of variability
	4.3	Illustration and checking for the Poisson case
	4.4	Case of a stochastic fractal model to define fractures spatial locations
	4.4.1	The 1D fractal case
	4.4.2	The 3D fractal case


	5	Classification of fracture datasets into SFMs
	5.1	Method
	5.2	Application and illustration
	5.3	Outcome

	6	The fracture organization in Forsmark 
	6.1	Database
	6.2	The field case, intrinsic variability of fracture density: scaling issues
	6.3	Grid of analysis and preliminary results
	6.4	Preliminary results: classification based on entire density only
	6.5	Description based on horizontal versus vertical fractures
	6.6	Densities and depth dependency 
	6.7	Last stages of the classification, from 9 to 7 classes
	6.8	Spatial organization of the SFMs
	6.9	Alternate description based on one horizontal and two vertical directions 

	7	Summary and conclusions 
	8	Perspectives
	9	Abbreviations
	References
	Appendix 1 
	Forsmark datasets

	Appendix 2
	Classification into SFMs


