P-13-28

Äspö Hard Rock Laboratory

Boremap mapping of cored drilled boreholes KA3011A01 and KA3065A01

Seje Carlsten, Allan Stråhle Geosigma AB

July 2013

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co

Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00

ISSN 1651-4416 SKB P-13-28 ID 1385931

Äspö Hard Rock Laboratory

Boremap mapping of cored drilled boreholes KA3011A01 and KA3065A01

Seje Carlsten, Allan Stråhle Geosigma AB

July 2013

Keywords: KA3011A01, KA3065A01 geology, Drill core mapping, Boremap, Fractures, BIPS, Äspö HRL, Äspö SDM.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

This report presents the Boremap mapping of KA3011A01, which is a c 100 m long core drilled borehole and KA3065A01, which is a c 125 m long core drilled borehole. The borehole KA3011A01 was drilled with the orientation $055^{\circ}/-1.2^{\circ}$ and the borehole KA3065A01 was drilled with the orientation $055^{\circ}/-0.6^{\circ}$. The borehole orientations are related to Äspö96. The mapping of KA3011A01 was conducted between 2011-11-28 and 2011-12-01 and KA3065A01 between 2012-01-17 and 2012-01-20.

The documentation of geological structures and lithology intersecting boreholes KA3011A01 and KA3065A01 were made using the drill core and BIPS-images. Geological structures are correctly oriented in space along the borehole with the Boremap system. All orientations are related to Äspö96.

The lithology in KA3011A01 is dominated by Ävrö granodiorite (501056). In the lower half of the borehole the Ävrö granodiorite (501056) is intermingled with Äspö diorite (501037). A section with fine-grained granite (511058) occurs in the upper part of the borehole. Subordinate rock types comprise occurrences of pegmatite (501061) and fine-grained diorite-gabbro (505102).

One section in KA3011A01 has been highlighted based on increased fracture frequencies, alterations and structural features. This section covers the interval 14–35 m.

The lithology in KA3065A01 is dominated by Äspö diorite (501037). Two sections with Ävrö granodiorite (501056) occurs in the upper part of the borehole, separated by a section with fine-grained diorite-gabbro (505102). A section with fine-grained granite (511058) occurs in the lower half of the borehole. Subordinate rock types comprise occurrences of pegmatite (501061) and sparse occurrences of breccia (508002) and mylonite (508004).

Sammanfattning

Denna rapport presenterar boremapkartering av KA3011A01 som är ett ca 100 meter långt kärnborrhål och KA3065A01 som är ett ca 125 meter långt kärnborrhål. Borrhål KA3011A01 borrades med orienteringen 055°/–1.2° och borrhål KA3065A01 med orienteringen 055°/–0.6°. Borrhålens orienteringar är relaterade till Äspö96. Boremapkartering för KA3011A01 utfördes mellan 2011-11-28 och 2011-12-01 och för KA3065A01 mellan 2012-01-17 och 2012-01-20.

Dokumentationen av geologiska strukturer och litologi som genomskär borrhålen KA3011A01 och KA3065A01 har utförts med borrkärna och BIPS-bilder. Geologiska strukturer har orienterats i rummet längs med borrhålet med Boremap systemet. Alla orienteringar är relaterade till Äspö96.

KA3011A01 domineras av Ävrögranodiorit (501056). I nedre delen av borrhålet är Ävrögranodiorit uppblandad med Äspödiorit (501037). En sektion med finkornig granit (511058) återfinns i borrhålets översta del. Underordnade bergarter utgörs av pegmatit (501061) och finkornig diorit-gabbro (505102).

En sektion i KA3011A01 kan urskiljas baserat på förhöjd sprickfrekvens, bergets omvandlingar och geologiska strukturer. Denna sektion återfinns i intervallet 14–35 m.

KA3065A01 domineras av Äspödiorit (501037). Två sektioner med Ävrögranodiorit (501056) förekommer i översta delen av borrhålet, åtskilda sinsemellan av en sektion med finkorning diorit-gabbro (505102). En sektion med finkornig granit (511058) återfinns i borrhålets nedre del. Underordnade bergarter utgörs av pegmatit (501061) och mindre delar med breccia (508002) och mylonit (508004).

Contents

1	Introd	uction	7
2	Object	ive and scope	9
3 3.1 3.2 3.3 3.4	Equipr Descrip Other e BIPS-in BIPS-in 3.4.1 3.4.2 3.4.3	nent ption of Software quipment mage video film sequences mage video film quality BIPS-image resolution BIPS-image contrast BIPS-image quality	11 11 11 11 11 11 11 12
4 4.1 4.2	Execut Genera 4.1.1 Executi 4.2.1 4.2.2 4.2.3 4.2.4	ion l Preparations ion of measurements Fracture definitions Fracture alteration and joint alteration number Mapping of fractures not visible in the BIPS-image Definition of veins and dikes	13 13 13 13 13 13 14 14
4.3 4.4	4.2.5 Data ha Geolog 4.4.1	Mineral codes andling ical summary table, general description Columns in the Geological summary table	15 15 15 16
5 5.1 5.2 5.3	Results Genera Litholo Fractur	s from KA3011A01 l gy and structures e mineralogy	19 19 19 19
6 6.1 6.2 6.3	Results Genera Litholo Fractur	s from KA3065A01 l gy and structures e mineralogy	21 21 21 21
Appe	ndix 1	Geological WellCAD summary table for KA3011A01	23
Appe	ndix 2	Geological summary table for KA3065A01	25
Appe	ndix 3	Search paths for the Geological summary table	27
Appe	ndix 4	BIPS-image for KA3011A01	29
Appe	ndix 5	BIPS-image for KA3065A01	35
Appe	ndix 6	WellCAD diagram for KA3011A01	43
Appe	ndix 7	WellCAD diagram for KA3065A01	45
Appe	ndix 8	Legend to WellCAD diagram for KA3011A01	47
Appe	ndix 9	Legend to WellCAD diagram for KA3065A01	49
Appe	ndix 10	In-data: Borehole length and diameter for KA3011A01	51
Appe	ndix 11	In-data: Borehole length and diameter for KA3065A01	53
Appe	ndix 12	In-data: Borehole deviation data for KA3011A01	55
Appe	ndix 13	In-data: Borehole deviation data for KA3065A01	57

1 Introduction

This report gives a brief presentation of the data gained from the mapping of boreholes KA3011A01 and KA3065A01, which is a part of the project TUDP002 "Expansion of Äspö HRL 2011–2012". After completion both boreholes were BIPS-logged and mapped according to the Boremap method. This document reports data gained by the Boremap mapping. The work was carried out in accordance with activity plan AP TD TUDP002-11-87. Controlling documents for performing this activity are listed in Table 1-1. Both activity plan and method descriptions are SKB's internal controlling documents. Rock type nomenclature that has been used is shown in Table 1-2.

Activity plan	Number	Version
Äspö utbyggnad, DP1-Karaktärisering – Boremapkartering av KA3011A01 och KA3065A01	AP TD TUDP002-11-87	1.0
Method descriptions	Number	Version
Nomenklatur vid Boremapkartering	SKB MD 143.008	1.0
Method Description for Boremap mapping	SKB MD 143.006	3.0
Mätsystembeskrivning för Boremap	SKB MD 146.005	1.0
Instruktion: Regler för bergarters benämningar vid plats- undersökning I Oskarshamn	SKB MD 132.004	3.0
Instruktion för längdkalibrering vid undersökningar i kärnborrhål	SKB MD 620.010	2.0

Table 1-1. Controlling documents for the performance of the activity.

Table 1-2. Rock type nomenclature for the investigation at the Äspö Site Descriptive Model.

Rock type	Rock code	Rock Description
Dolerite	501027	Dolerite
Fine-grained Götemar granite	531058	Granite, fine- to medium-grained, ("Götemar granite")
Coarse-grained Götemar granite	521058	Granite, coarse-grained, ("Götemar granite")
Fine-grained granite	511058	Granite, fine- to medium-grained
Pegmatite	501061	Pegmatite
Granite	501058	Granite, medium- to coarse-grained
Ävrö granite	501044	Granite to quartz monzodiorite, generally porphyritic
Ävrö granodiorite	501056	Granite to granodiorite, sparsely porphyritic to porphyritic
Ävrö quartz monzodiorite	501046	Quartz monzonite to quartz monzodiorite, generally porphyritic
Äspö diorite	501037	Quartz monzodiorite to granodiorite, porphyritic
Quartz monzodiorite	501036	Quartz monzonite to monzodiorite, equigranular to weakly porphyritic
Diorite-gabbro	501033	Diorite to gabbro
Fine-grained dioritoid	501030	Intermediate magmatic rock
Fine-grained diorite-gabbro	505102	Mafic rock, fine-grained
Gabbroid-dioritoid	508107	Mafic rock undifferentiated
Mylonite	508004	Mylonite
Sulphide mineralization	509010	Sulphide mineralization
Sandstone	506007	Sandstone
Quartz-dominated hydrothermal vein/segregation	508021	Quartz-dominated hydrothermal vein/segregation
Hybrid rock	505105	Hybrid rock
Breccia	508002	Breccia
Felsic volcanic rock	503076	Felsic volcanic rock

Boreholes KA3011A01 and KA3065A01 are situated in the Äspö Hard Rock Laboratory (Figure 1-1). KA3011A01 is a c 100 m long borehole drilled from the tunnel with the orientation $055^{\circ}/-1.2^{\circ}$ at the start. Mapping of the borehole was performed between 2011-11-28 and 2011-12-01. KA3065A01 is a c 125 m long borehole drilled from the tunnel with the orientation $055^{\circ}/-0.6^{\circ}$ at the start. Mapping of the borehole was performed between 2012-01-17 and 2012-01-20.

Detailed mapping of the drill cores is essential for a three dimensional modelling of the geology outside the tunnel. The mapping is based on the use of BIPS-image (Borehole Image Processing System) of the borehole wall and by the study of the drill core itself. The BIPS-image enables the study of orientations, since the Boremap software calculates strike and dip of planar features such as foliations, rock contacts and fractures.

All data were stored in the primary SKB database Sicada (Site Characterisation Database) and are traceable by the activity plan number.

Figure 1-1. Map showing the position of the cored boreholes KA3011A01 and KA3065A01.

2 Objective and scope

The principal aim of the mapping activities presented in this report is to obtain a documentation of geological structures and lithologies intersecting boreholes KA3011A01 and KA3065A01. Geological structures will be correctly orientated in space along the borehole with the Boremap system. All orientations are related to Äspö96.

3 Equipment

3.1 Description of Software

Software used for the mapping of KA3011A01 and KA3065A01 was Boremap v. 4.1.5.0 with bedrock and mineral standards of SKB. The data presentation was made using WellCAD v. 4, Microsoft Access and Microsoft Excel. Boremap is the software that unites orthodox core mapping with modern video mapping, where Boremap shows the image from BIPS (Borehole Image Processing System) and extracts the geometrical parameters: length, width, strike and dip from the image.

3.2 Other equipment

The following equipment is used to facilitate the core mapping: folding rule, pen, diluted hydrochloric acid, knife, water-filled atomiser and hand lens.

3.3 BIPS-image video film sequences

The BIPS-image of KA3011A01 covers the interval 1.852–99.900 m, and for KA3065A01 it covers the interval 1.992–125.000 m.

3.4 BIPS-image video film quality

The quality of the BIPS-image depends on several parameters

- The clarity of the borehole water (i.e. the amount of material in suspension).
- The condition of the borehole walls (e.g. the amount of sedimentation and/or gauge on the borehole wall).
- The quality of the BIPS-image (i.e. the technical limitations of the image; resolution and contrast).

3.4.1 BIPS-image resolution

Resolution of the BIPS-image is perhaps the principal reason why very thin fractures as well as very thin apertures are not visible in the BIPS-image and the resolution depends on the BIPS video camera pixel size and illumination angle.

3.4.2 BIPS-image contrast

Thick fractures are always visible in both drill core and the BIPS-image. However, the visibility of thin fractures depends strongly on the contrast between the fracture and the wall rock. A bright fracture in a dark rock is clearly visible in the BIPS-image. But a bright coloured fracture in a light coloured rock might, however, be clearly visible in the drill core but not visible in the BIPS-image, especially if the fracture and wall rock have the same colour. The opposite is true for dark fractures.

In very rare cases when the BIPS-image contrast between a very thin fracture and the wall rock is very strong the fracture might be visible in the BIPS-image even if it is not visible in the drill core.

3.4.3 BIPS-image quality

BIPS-image quality is sometimes limited due to:

- 1) blackish coatings probably related to the drilling equipment.
- 2) vertical bleached bands from the clayey mixture of drill cuttings and water.
- 3) light and dark bands at high angle to the drill hole related to the automatic aperture of the video camera.
- 4) vertical enlargements of pixels due to stick-slip movement of the camera probe.

Vertical bleached bands are usually the main disturbances in the BIPS-image quality.

The image quality is classified into four levels; good, acceptable, bad and very bad. Good quality means a more or less clear image which is easy to interpret. If the quality is acceptable it means that the image is not good, but that the mapping can be performed without any problems. An image of bad quality is somewhat difficult to interpret while an image of very bad quality cannot be interpreted except from very obvious and outstanding features. When the BIPS-image quality is so bad that fractures and structures cannot be identified, they can still be oriented using the *guide-line method* (Section 4.3.3). The BIPS-image quality for KA3011A01 is presented in Table 3-1 and for KA3065A01 in Table 3-2.

Table 3-1. BIPS-image quality in KA3011A01.

From (m)	To (m)	Quality
1.85	99.90	Good

Table 3-2. BIPS-image quality in KA3065A01.

From (m)	To (m)	Quality
1.99	90.4	Good
90.4	115.6	Acceptable
115.6	125.25	Good

4 Execution

4.1 General

Mapping of the drill core of the boreholes was performed and documented according to activity plan AP TD TUDP002-11-87 (SKB, internal document) referring to the *Method Description for Boremap mapping* (SKB MD 143.006, v.2.0), *Nomenklatur vid Boremapkartering* (SKB MD 143.008, v.2.0), *Instruktion: Regler för bergarters benämningar vid platsundersökningen i Oskarshamn* (SKB MD 132.004, v.1.0) and *Instruktion för längdkalibrering vid undersökningar i kärnborrhål* (SKB MD 620.010, v.2.0).

The drill core was displayed on inclined roller tables and mapped in its entire length with the Boremap software. The core mapping was carried out without any detailed geological knowledge of the area but with access to geophysical logs from the borehole and rock samples.

The term *oxidation* has been used as an alteration type until the mapping of KLX05. However, research has shown that the red colour of the bedrock is actually not only a result of oxidation. Since April 2005 the term *red staining* is used instead of the term *oxidation*.

The mapping was performed in November 2011 and January 2012 by Seje Carlsten and Allan Stråhle (Geosigma AB).

4.1.1 Preparations

Any depth registered in the BIPS-image deviates from the true depth in the borehole, a deviation which increases with length, with approximately 0.4 m/100 m.

Necessary in data for length adjustment and orientation in space are borehole diameter, length and deviation; all data is collected from Sicada database (Appendices 6–8).

4.2 Execution of measurements

Concepts used during the core mapping, are defined in this chapter.

4.2.1 Fracture definitions

Definitions of different fracture types, aperture, crush zones and sealed fracture network are found in *Nomenklatur vid Boremapkartering* (SKB MD 143.008, v.2.0).

Two types of fractures are mapped in Boremap; broken and unbroken. Broken are fractures that split the core while unbroken fractures do not split the core. All fractures are described with their fracture minerals and other characteristics, e.g. width, aperture and roughness. Visible apertures are measured down to 1 mm in the BIPS-image. Smaller apertures, which are impossible to detect in the BIPS-image, are denoted a value of 0.5 mm. If the core pieces don't fit well, the aperture is considered "probable". If the core pieces do fit well, but the fracture surfaces are dull or altered, the aperture is considered "possible".

All fractures with apertures > 0 mm are treated as open in the Sicada database. Only few broken fractures are given the aperture = 0 mm. Unbroken fractures usually have apertures = 0 mm. Unbroken fractures that have apertures > 0 mm are interpreted as partly open and are included in the open-category. Open and sealed fractures are finally frequency calculated and shown in Appendix 1 and Appendix 2.

4.2.2 Fracture alteration and joint alteration number

Joint alteration number is principally related to the thickness of, and the clay content in a fracture. Thick fractures rich in clay minerals are given joint alteration numbers between 2 and 3. The majority of the broken fractures are very thin to extremely thin and seldom contain clay minerals. These fractures receive joint alteration numbers between 1 and 2.

A subdivision of fractures with joint alteration numbers between 1 and 2 was introduced to facilitate both the evaluation process for fracture alterations and the possibility to compare the alterations between different fractures in the boreholes. The subdivision is based on fracture mineralogy as follows:

- a) fracture wall alterations,
- b) fracture mineral fillings assumed to have been deposited from circulating water-rich solutions,
- c) fracture mineral fillings most likely resulting from altered wall rock material.

Joint alteration number equal to 1: Fractures with or without wall rock alteration, e.g. oxidation or epidotization, and without mineral fillings is considered as fresh. The joint alteration number is thus set to 1.

Minerals such as calcite, quartz, fluorite, zeolites, laumontite and sulphides are regarded as deposited by circulating water-rich solutions and not as true fracture alteration minerals. The joint alteration number is thus set to 1.

Joint alteration number equal to 1.5: epidote, prehnite, hematite, chlorite and/or clay minerals are regarded as fracture minerals most likely resulting from altered wall rock. A weak alteration is thus assumed and the joint alteration number was set to 1.5. Extra considerations have been given to clay minerals since the occurrence of these minerals often resulted in a higher joint alteration number.

Joint alteration numbers higher than 1.5: When the mineral fillings is thick and contain a few mm of clay minerals, often together with epidote and chlorite, the joint alteration number is set to 2. In rare cases, when a fracture contains 5–10 mm thick clay, together with chlorite, the joint alteration number is set to 3 or higher.

When the alteration of a fracture is too thick (and/or intense) to give the fracture the joint alteration number 1.5 and too thin and/or weak to give it a 2, 1.7 and 1.8 is used.

4.2.3 Mapping of fractures not visible in the BIPS-image

Not all fractures are visible in the BIPS-images, and these fractures are orientated by using the *guide-line method*, based on the following data:

- Amplitude (measured along the drill core) which is the interval between fracture extremes along the drill core.
- The relation between the orientations of the fracture trace, measured on the drill core and a well defined structure visible in the BIPS-image.
- Absolute depth.

Orientation of fractures and other structures with the *guide-line method* is done in the following way: The first step is to calculate the amplitude of the fracture trace in the BIPS-image (with 76 mm diameter) from the measured fracture amplitude in the drill core (with 50 mm diameter). The second step is the correction of strike and dip. This is done by rotating the fracture trace in the BIPS-image relative to a feature with known orientation. The fracture trace is then put at the correct depth according to the depth measured on the drill core.

The *guide-line method* can be used to orientate any feature that is not visible in the BIPS-image. It is also a valuable tool to control that the personnel working with the drill core is observing the same feature as the personnel delineating the trace in the BIPS-image, especially in intervals rich in fractures.

The error of orientating fractures using the *guide-line method* is not known but experience and an estimation using stereographic plots indicated that the error is most likely insignificant. Accordingly, the *guide-line method* is so far considered better than mapping lots of non-oriented fractures. The fractures in question are mapped as "non-visible in BIPS" and can therefore be separated from fractures visible in BIPS which probably have a more accurate orientation.

4.2.4 Definition of veins and dikes

Rock occurrence is the way Boremap handles the occurrence of lithology up to 1 meter wide. Chiefly two different rock occurrences are mapped: veins and dikes. These two are separated by their respectively length in the drill core; veins are set to 0–20 cm and dikes are set to 20–100 cm. Rock occurrences that covers more than 100 cm of the drill core are mapped under the feature *rock type*.

4.2.5 Mineral codes

Properties and/or minerals are represented in the mineral list, following mineral codes.

4.3 Data handling

Mapping of the drill core is performed on-line on the SKB network, in order to obtain the best possible data security. Before every break (> 15 minutes) a back-up is saved on the local disk. Regular quality controls are performed. Every working day a Summary report (from Boremap) and a WellCAD plot are printed in order to find possible misprints. The mapping is also quality checked by a routine in Boremap before it is exported to and archived in Sicada database. Personnel from SKB also perform spot test controls and regular quality revisions. All primary data is stored in SKB's database Sicada and only these data are later used for interpretation and modelling.

4.4 Geological summary table, general description

A Geological summary table (Appendix 1 and Appendix 2) is an overview of the features mapped with the Boremap software. It also facilitates comparisons between Boremap information collected from different boreholes and is more objective than a pure descriptive borehole summary. All information is taken directly from the Boremap database using simple and well defined search paths for each geological parameter.

The Geological summary table consists of 23 columns, each one representing a specific geological parameter, presented as either intervals or frequencies (see Section 4.5.1 for column description). Intervals are calculated for parameters with a width ≥ 1 m and frequencies for parameters with a width < 1 m. Frequency information is treated as treated as point observations. It should be noted that parameters with a thickness of only 1 mm get the same "value" as a similar parameter with a thickness of 999 mm since both are treated as point observations and used for frequency calculations.

Parameters are sometimes related in such a way that the mapping of one parameter cause a decrease in the frequency of another parameter. This type of intimate relationship between parameters has been noted for the following cases;

- There is a decrease in the frequency of *unbroken fractures* with oxidized walls and without mineral fillings in intervals mapped with *Alteration red staining*.
- No unbroken fractures are mapped in intervals of sealed fracture network.
- No broken fractures are mapped in intervals with crush.
- Hybrid rock and composite dikes generally include a large amount of fine to medium grained granite veins. These veins are not mapped and the frequency presented for veins + dikes in column 6 (Appendix 1 and 2) are lower than the true frequency in composite dike intervals.

4.4.1 Columns in the Geological summary table

The Geological summary table includes the following 23 columns:

Column 1: *Rock Type / Lithology*, interval column. Only lithologies longer than 1 m are presented here. Shorter lithologies are presented in column 6. This column is identical with the ordinary WellCAD presentation.

Column 2: *Rock Type / Grain size*, interval column. Interval limits follows column 1. This column is identical with the ordinary WellCAD presentation.

Column 3: *Rock Type / Texture*, interval column. Interval limits follows column 1. This column is identical with the ordinary WellCAD presentation.

Column 4: *Alteration / Type*, interval column. No frequency column is presented for alteration/ red staining. The alteration/ red staining column are identical with the ordinary WellCAD presentation.

Column 5: *Alteration / intensity*, interval column. This column is identical with the ordinary WellCAD presentation.

Column 6: *Rock Occurrence / Veins* + *Dikes* < l m wide, frequency column. This rock type column can be seen as the frequency complement to the rock type/lithology interval column. Only rock type sections that are thinner than 1 m can be described as rock occurrences in Boremap. Thicker rock type sections are mapped as rock type.

Column 7: *Structure / Shear Zone < 1 m wide*, frequency column. This column includes ductile shear structures as well as brittle-ductile shear structures and these are mapped as rock occurrences in Boremap.

Column 8: *Structure / Brecciated < 1 m wide*, frequency column. Breccias < 1 m wide are mapped as rock occurrence in Boremap. Very thin micro breccias along sealed/natural fracture planes are generally not considered.

Column 9: *Structure / Brecciated* $\ge 1 \text{ m wide}$, interval column. Breccias > 1 m wide are mapped as rock type/structure in Boremap.

Column 10: *Structure / Mylonite < 1 m wide*, frequency column. Mylonites < 1 m wide are mapped as rock occurrence/structure in Boremap.

Column 11: *Structure* / *Mylonite* ≥ 1 *m wide* is an interval column. Mylonites > 1 m wide are mapped as rock type/structure in Boremap.

Column 12: *Structure / Foliation < 1 \text{ m} wide* is a frequency column. Sections with foliation < 1 m wide are mapped as rock occurrence/structure in Boremap.

Column 13: *Structure* / *Foliation* \ge *l m wide* is an interval column. Sections with foliation \ge 1 m wide are mapped as rock type/structure in Boremap.

Column 14: *Sealed fractures / All*, frequency column. This column includes all fractures mapped as unbroken in the Boremap system as well as broken fractures interpreted to have broken up artificially during/after drilling.

Column 15: Sealed fractures / Broken with aperture = 0, frequency column. This column includes unbroken fractures interpreted to have broken up artificially during/after drilling.

Column 16: Sealed fractures / Sealed Fracture Network < 1 m wide, frequency column. The sealed fracture network parameter is the only parameter that is generally evaluated directly from observations of the drill core. These types of sealed fractures can only in rare cases be observed in the BIPS-image.

Column 17: Sealed fractures / Sealed Fracture Network ≥ 1 m wide, interval column.

Column 18: *Open fractures / All Apertures > 0*, frequency column. This column includes all broken fractures, both fractures that with certainty were open before drilling and fractures that probably or possibly were open before drilling.

Column 19: *Open fractures / Uncertain, Aperture* = 0.5 *probable* + 0.5 *possible*, frequency column. This column includes fractures that probably or possibly open before drilling.

Column 20: *Open fractures / Certain Aperture* = 0.5 *certain and* > 0.5, frequency column. This column includes fractures that certainly were open before drilling.

Column 21: *Open fractures / Joint alteration > 1.5*, frequency column. This column show fractures with stronger joint alteration than normal. This parameter is generally correlated with the location of lithologies with a more weathered appearance.

Column 22: *Open fractures / Crush < 1 \text{ m wide*, frequency column. This column includes shorter sections with crush.

Column 23: Open fractures / Crush ≥ 1 m wide, interval column. This column includes longer sections with crush.

5 Results from KA3011A01

5.1 General

Borehole KA3011A01 is oriented $055^{\circ}/-1.2^{\circ}$ at the start. The drill core covers the interval 0.00-100.15 m and the BIPS-image covers the interval 1.85–99.900 m.

All results from the mapping are principally found in the Appendices. Information from the Sicada database is shown in the Geological summary table in Appendix 1 and a search path to Geological summary table is presented in Appendix 3. The BIPS-image is presented in Appendix 4, the WellCAD diagram in Appendix 6 and In-data, such as borehole length, deviation data and diameter are presented in Appendices 10 and 12.

Original data from the reported activity are stored in the primary database Sicada. Data are traceable in Sicada by the activity plan number (AP TD TUDP002-11-87). Only data in the databases are accepted for further interpretation and modelling. The data presented in this report are regarded as copies of the original data. Data in the databases may be revised, if needed. Such revisions will not necessarily result in a revision of the P-report, although the normal procedure is that major revisions entail a revision of the P-report. Minor revisions are normally presented as supplements, available at *www.skb.se*.

5.2 Lithology and structures

The lithology in KA3011A01 (Table 5-1) is dominated by Ävrö granodiorite (501056) and to a lesser extent fine-grained granite (511058). In the lower half of the borehole the Ävrö granodiorite (501056) is intermingled with Äspö diorite (501037). A section with fine-grained granite (511058) occurs in the upper part of the borehole. Subordinate rock types comprise Äspö diorite (501037), pegmatite (501061) and fine-grained diorite-gabbro (505102).

One section in KA3011A01 is recognized by increased fracture frequencies, alterations and structural features;

Section interval characteristics;

1. 14–35 m. Increased frequency of open and sealed fractures together with foliation. Pyrite impregnation at c 16 m. Two crush occur within the section, and a brittle-ductile shear zone. Varying degrees of oxidation occurs in the section.

5.3 Fracture mineralogy

Tables 5-2 and 5-3 show the frequency of minerals and oxidized walls in sealed fractures and open fractures, respectively. Minerals less than 0.1% are not accounted for.

Chlorite, calcite and hematite are the most frequently occurring minerals in open fractures. Subordinate minerals are iron hydroxide, laumontite, pyrite, epidote, quartz and prehnite. In sealed fractures the dominating minerals are epidote, calcite, chlorite, quartz and hematite. Subordinate minerals are prehnite, laumontite, unknown mineral and pyrite. Also, oxidized walls occur in both open and sealed fractures.

Rock types	%
Ävrö granodiorite (501056)	81.5
Fine-grained granite (511058)	12.9
Äspö diorite (501037)	5.2
Pegmatite (501061)	0.2
Fine-grained diorite-gabbro (505102)	0.2

Table 5-1. Lithology distribution in KA3011A01.

Mineral	%
Chlorite	76.7
Calcite	58.0
Hematite	11.7
Iron Hydroxide	8.1
Laumontite	5.5
Pyrite	3.8
No detectable mineral	3.0
Epidote	2.7
Unknown mineral	0.8
Quartz	0.5
Oxidized walls	0.5
Prehnite	0.3

Table 5-2. Frequency of minerals and oxidized walls in open fractures in KA3011A01.

Table 5-3. Frequency of minerals and oxidized walls in sealed fractures in KA3011A01.

Mineral	%
Epidote	32.8
Calcite	29.9
Chlorite	28.2
Quartz	18.7
Hematite	12.0
Oxidized Walls	6.6
Prehnite	5.8
Laumontite	1.2
Unknown Mineral	0.4
Pyrite	1.3

6 Results from KA3065A01

6.1 General

Borehole KA3065A01 is oriented $055^{\circ}/-0.6^{\circ}$ at the start. The drill core covers the interval 0.00-125.25 m and the BIPS-image covers the interval 1.992–125.000 m.

All results from the mapping are principally found in the Appendices. Information from the Sicada database is shown in the Geological summary table in Appendix 2 and a search path to Geological summary table is presented in Appendix 3. The BIPS-image is presented in Appendix 5, the WellCAD diagram in Appendix 7 and In-data, such as borehole length, deviation data and diameter are presented in Appendices 11 and 13.

Original data from the reported activity are stored in the primary database Sicada. Data are traceable in Sicada by the activity plan number (AP TD TUDP002-11-87). Only data in the databases are accepted for further interpretation and modelling. The data presented in this report are regarded as copies of the original data. Data in the databases may be revised, if needed. Such revisions will not necessarily result in a revision of the P-report, although the normal procedure is that major revisions entail a revision of the P-report. Minor revisions are normally presented as supplements, available at *www.skb.se*.

6.2 Lithology and structures

The lithology in KA3065A01 (Table 6-1) is dominated by Äspö diorite (501037) and to a lesser extent by Ävrö granodiorite (501056). Two sections with Ävrö granodiorite (501056) occurs in the upper part of the borehole, separated by a section with fine-grained diorite-gabbro (505102). Fine-grained granite (511058) occurs in the end of the borehole. Subordinate rock types comprise fine-grained diorite-gabbro (505102), fine-grained granite (511058), pegmatite (501061), breccia (508002), and very sparse occurrence of mylonite (508004).

No section in KA3065A01 can be recognized by increased fracture frequencies, alterations or structural features.

6.3 Fracture mineralogy

Tables 6-2 and 6-3 show the frequency of minerals and oxidized walls in sealed fractures and open fractures, respectively. Minerals less than 0.1% are not accounted for.

Calcite and chlorite are the most frequently occurring minerals in open fractures. Subordinate minerals are hematite, epidote, pyrite, laumontite, iron hydroxide, quartz and clay minerals. In sealed fractures the dominating minerals are calcite, calcite, epidote and chlorite. Subordinate minerals are hematite, prehnite, laumontite, pyrite, asphalt and zeolite. Also, oxidized walls occur in both open and sealed fractures.

Rock types	%
Äspö diorite (501037)	65.8
Ävrö granodiorite (501056)	20.6
Fine-grained diorite-gabbro (505102)	6.7
Fine-grained granite (511058)	6.4
Pegmatite (501061)	0.3
Breccia (508002)	0.2
Mylonite (508004)	0.0

Table 6-1. Lithology distribution in KA3065A01.

Mineral	%
Chlorite	78.6
Calcite	55.7
Hematite	14.5
Epidote	10.6
Pyrite	4.9
No detectable mineral	4.9
Oxidized walls	4.7
Laumontite	4.4
Iron Hydroxide	2.7
Quartz	2.5
Clay Minerals	0.5

Table 6-2. Frequency of minerals and oxidized walls in open fractures in KA3065A01.				
	Table 6-2. Frequency	v of minerals and oxidized	d walls in open fracture	es in KA3065A01.

Table 6-3. Frequency of minerals and oxidized walls in sealed fractures in KA3065A01.

Mineral	%
Quartz	40.5
Calcite	32.1
Epidote	31.3
Oxidized Walls	31.3
Chlorite	20.2
Hematite	6.9
Prehnite	5.3
Laumontite	4.6
No detectable mineral	0.4
Pyrite	0.4
Asphalt	0.4
Zeolite	0.4

SKB P-13-28

Geological WellCAD summary table for KA3011A01

GEOLOGICAL SUMMARY KA3011A01 APPENDIX: **ÄSPÖ** Geosigma AB Site Signed data Company SKB KA3011A01 Borchole Activity 1D 13283416 ÄSPÖ96 **Coordinate System** Seje Carlsten Seje Carlsten Mapped by 2011-11-28 15:37:00 Date of mapping Activity type GE041 ROCKTYPE ASPO TEXTURE GRAINSIZE ALTERATION TYPE ALTERATION INTENSITY STRUCTURE INTENSITY Fine-grained granite 511058 Fine-grained Oxidized Weak Faint Fine to medium grained Ävrö granodiorite 501056 o o o Augen-Bearing Medium Weak Aspö diorite 501037 Medium-grained •_• Unequigranular Strong ROCK OCCU-SEALED FRACTURES **OPEN FRACTURES** ROCKTYPE ALTERATION STRUCTURE LENGTH LENGTH (Interpreted) (interpreted) RENCE Veins + Dykes < 1m wide No/4m Sealed Fracture Network < 1m Wide No/4m Uncertain Ap = 0.5 possible and 0.5 probable Nol4m Mylonitic 1 m wide No/4m All Aperture > 0 Foliated < 1m Wide No/4m Broken with eperture = 0 No/4m Sealed Fracture Network =/= 1m Wide Grush 4 1m Wide No/4m < 1 m wide No/4m Joint alteration > 1.5 No/4m Grush #/> fm Wide Shear Zone No/4m All No/4m Foliated Brecolated #/>1 m wide Mylonitic #/>1m (m) (m) No/4m Lithology Grain Size Texture Type Intensity 10 100 100 20 20 . . 40 40 •:•: 0.0 60 60 0 0 0 . . •:• . . 80 80 000 0 0 1 . . 0 0 0 0 0.0.0.0 . .

Geological summary table for KA3065A01

Table head lines			Information so	Presentation	
Head lines	Sub head lines	Varcode	First suborder	Second suborder	Interval / frequence
Rock type	Lithology	5	Sub 1		Interval
	Grain size	5	Sub 5		Interval
	Texture	5	Sub 6		Interval
Alteration	Oxidation	7	Sub 1 = 700		Interval
	Oxidation intensity	7	Sub 1 = 700	Sub 2	Interval
Rock occurrence	Vein + dyke	31	Sub 1 = 2 and 18		Frequence
Structure	Shear zone	31	Sub 4 = 41 and 42		Frequence
	Brecciated, < 1 m wide	31	Sub 4 = 7		Frequence
	Brecciated, >/= 1 m wide	5 5	Sub 3 = 7 Sub 3 = 7	Sub 4; 101 and 102 = 102 Sub 4; 103 and 104 = 104	Interval
	Mylonite, < 1 m wide	31	Sub 4 = 34		Frequence
	Mylonite, >/= 1 m wide	5 5	Sub 3 = 34	Sub 4; 101 and 102 = 102	Interval
			Sub 3 = 34	Sub 4; 103 and 104 = 104	
	Foliation zone, < 1 m wide	31	Sub 4 = 81		Frequence
	Foliation zone, >/= 1 m wide	5 5	Sub 3 = 81	Sub 4; 101 and 102 = 102	Interval
		0	Sub 3 = 81	Sub 4; 103 and 104 = 104	
Sealed fracture	All unbroken fractures	3			Frequence
	and broken fractures	2	SNUM 11 = 0		
	Broken fractures, Aperture = 0	2	SNum 11 = 0		Frequence
	Sealed fracture network < 1 m wide	32			Frequence
	Sealed fracture network >/= 1 m wide	32			Interval
Open fractures	All, Aperture > 0	2 and 3	SNum 11 > 0		Frequence
	Uncertain, Aperture = 0.5 possible	2 and 3	SNum 11 > 0	Sub 12 > 1	Frequence
	and 0.5 probable				
	Certain, Aperture = 0.5 certain	2 and 3	SNum 11 > 0	Sub 12 = 1	Frequence
	Joint alteration > 1.5	2	SNum16 > 1.5		Frequence
	Crush < 1 m wide	4			Frequence
	Crush >/= 1 m wide	4			Interval

Search paths for the Geological summary table

BIPS-image for KA3011A01

Borehole Image Report

Borehole Name:	KA3011A01
Mapping Name:	KA3011A01_Geosigma_5
Mapping Range:	1.852–100.200 m
Diameter:	76.0 mm
Printed Range:	2.000-99.900
Pages:	6

Image File Information:

File:	K:\60_Externt\6026xx\602641_Boremapkartering KA3011A01 KA3065A01
Äspö HRL	
\Arbetsdata\KA3	011A01_2-100m_201111221812.BIP
Date/Time:	2011-11-22 18:12:00
Start Depth:	1.852 m
End Depth:	99.900 m
Resolution:	1.00 mm/pixel (depth)
Orientation:	Gravimetric
Image height:	98,048 pixels
Image width:	360 pixels
BIP Version:	BIP-III
Locality:	ASPO HRL
Borehole:	KA3011A1
Scan Direction:	Up
Color adjust:	0 0 0 (RGB)

Depth range: 2.000 - 22.000 m Azimuth: 55.0 Inclination: -0.9

2.000	6.000 5.546	10.000 9.559	14.000	18.000	
2.200	6.200	10.200	LUR 14.200	D-L U R 18.200	P-2 TU R
2.008	5.747	9.760	13.773	18 400	
2.098	5.947	9.961	13.974	17.987	
2.600	6.600 6.148	10.600 10.161	- 14.600 14.175	- 18.600 18.188	
2.800	6.800	10.800	- 14.800	- 18.800	
2.335	6.349	10.362	14.375	18.389	
3.000	7.000 6.549	11.000 10.563	- 15.000 14.576	- 19.000 18.589	
3.200	7.200	11.200	- 15.200	- 19.200	
2.737	6.750	10.763	14.777	18.790	
3.400_	7.400	11.400	15.400	19.400	
2.937	6.951	10.964	14.977	18.991	
3.600	7.600	11.600	15.600	- 19.600	20
3.138	7.151	11.165	15.178	19.191	
3.800	7.800	11.800	- 15.800	- 19.800	
3.339	7.352	11.365	15.379	19.392	
4.000	8.000 7.553	12.000 11.566	- 16.000 15.579	- 20.000 19.593	
4.200	8.200	12.200	- 16.200	20.200	
3.740	7.753	11.767	15.780	19.793	
4.400_	8.400	12.400	- 16.400	20.400	
3.941	7.954	11.967	15.981	19.994	
4.600	8.600	12.600	- 16.600	20.600	
4.141	8.155	12.168	16.181	20.195	
4.800	8.800	12.800	- 16.800	20.800	
4.342	8.355	12.369	16.382	20.395	
5.000	9.000	13.000	17.000	21.000	
4.543	8.556	12.569	16.583	20.596	
5.200	9.200	13.200	- 17.200	21.200	
4.743	8.757	12.770	16.783	20.797	
5.400	9.400	13.400	17.400	21.400	
4.944	8.957	12.971	16.984	20.997	
5.600	9.600	13.600	- 17.600	21.600	
5.145	9.158	13.171	17.185	21.198	
5.800	9.800	13.800	17.800	21.800	
5.345	9.359	13.372	17.385	21.399	
			Sec. Sec. 1		

Printed: 2012-11-15 10:51:12

Scale: 1 : 20

Aspect: 150 %

Depth range: 22.000 - 42.000 m Azimuth: 55.0 Inclination: -0.8

22.000 21.599		26.000 25.613	14 July 1	30.000 29.626		34.000 33.639		38.000 <mark>37.653</mark>	97 F
22.200_ 21.800	D L U R	26.200_ 25.813	D C U R	30.200_ 29.827	DEU R	34.200_ 33.840		38.200 37.853	CEU.
22.400 22.001		26.400 26.014		30.400 <u>30.027</u>		34.400 <mark>34.041</mark>		38.400 <u>38.054</u>	1. ÷
22.600_ 22.201		26.600_ 26.215		30.600_ 30.228	- 100	34.600_ <mark>34.241</mark>		38.600_ 38.255	
22.800 22.402		26.800 26.415	除 了	30.800 30.429		34.800 <mark>34.442</mark>		38.800 38.455	
23.000_ 22.603		27.000_ 26.616		31.000_ 30.629		35.000_ 34.643		39.000_ 38.656	
23.200 22.803		27.200_ 26.817	14.2	31.200_ 30.830		35.200 34.843		39.200 <u>38.857</u>	
23.400 23.004		27.400 27.017		31.400_ 31.031	陸軍 家	35.400_ 35.044		39.400_ 39.057	
23.600 23.205	i in an	27.600 27.218		31.600 31.231		35.600 35.245		39.600 39.258	
23.800 23.405		27.800 27.419		31.800 31.432		35.800 <mark>35.445</mark>		39.800 39.459	1
24.000_ 23.606		28.000_ 27.619		32.000_ <mark>31.633</mark>		36.000_ <mark>35.646</mark>		40.000_ 39.659	
24.200 23.807	(28.200 27.820		32.200_ <mark>31.833</mark>		36.200 <mark>35.847</mark>		40.200_ <mark>39.860</mark>	
24.400_ 24.007		28.400_ 28.021		32.400_ 32.034		36.400_ <u>36.047</u>		40.400_ <mark>40.061</mark>	
24.600 24.208		28.600 28.221	¢ a	32.600_ 32.235		36.600_ <mark>36.248</mark>		40.600_ 40.261	
24.800_ 24.409		28.800_ 28.422		32.800_ <mark>32.435</mark>		36.800_ <mark>36.449</mark>		40.800_ 40.462	
25.000 24.609		29.000 28.623		33.000_ <mark>32.636</mark>		37.000_ <u>36.649</u>		41.000 40.663	
25.200_ 24.810		29.200_ 28.823		33.200_ 32.837		37.200_ <mark>36.850</mark>		41.200_ 40.863	
25.400 25.011	and and an	29.400 29.024		33.400_ 33.037		37.400_ 37.051		41.400_ 41.064	
25.600_ 25.211		29.600_ 29.225		33.600_ 33.238	in an	37.600_ 37.251		41.600_ 41.265	
25.800 25.412		29.800 29.425		33.800 33.439		37.800 37.452		41.800 41.465	
			See Se		3.8		and the		5. H.

Printed: 2012-11-15 10:51:12

Scale: 1:20

Aspect: 150 %

3 (6)

Depth range: 42.000 - 62.000 m Azimuth: 55.1 Inclination: -0.8

42.000 41.666	46.000 45.679	50.000 49.693	54.000 53.706	58.000 57.719
42.200	46.200 45.880	50.200 49.893	54.200 53.907	58.200 57.920
42.400	46.400	50.400	54.400	58.400
42.600	46.600	50.600	54.600	58.600
42.268	46.800	50.800	54.800	58.800
42.469	46.482	50.495 51.000	54.509 55.000	58.522
42.669	46.683	50.696 51.200	54.709 55.200	58.723 59.200
42.870	46.883	50.897	54.910	58.923
43.400 43.071	47.400 47.084	51.400 51.097	55.400 55.111	59.400 59.124
43.600 43.271	47.600 47.285	51.600 51.298	55.600 55.311	59.600 59.325
43.800	47.800 47.485	51.800 51 499	55.800	59.800
44.000	48.000	52.000	56.000	60.000
43.073	47.000	52.200	56.200	60.200 50.007
43.873	47.887	52.400	56.400	60.400
44.074	48.087	52.101	56.114	60.127
44.600 44.275	48.600 48.288	52.600 52.301	56.600 56.315	60.600 60.328
44.800 44.475	48.800 48.489	52.800 52.502	56.800 56.515	60.800 60.529
45.000	49.000 48.689	53.000 52.703	57.000 56.716	61.000
45.200	49.200	53.200 52.903	57.200	61.200
45.400	49.400	53.400	57.400	61.400
45.600	49.600	53.600	57.600	61.600
45.278	49.291	53.305	57.318	61.331
45.800 45.479	49.800 49.492	53.800 53.505	57.800 57.519	61.800 61.532

Printed: 2012-11-15 10:51:12

Scale: 1 : 20

Aspect: 150 %

Depth range: 62.000 - 82.000 m Azimuth: 54.6 Inclination: -0.7

62.000	The backback of the mark safet in	66.000	Advantage of the second	70.000		74.000		78.000	
61.733	D.L.U.R.	65.746	LUR	69.759	DEUR	73.773	U.R.	77.786	bil u R
62.200_ 61.933	教 主導	66.200_ <mark>65.947</mark>		70.200_ 69.960		74.200_ 73.973		78.200_ 77.987	
62.400 62.134		66.400 <mark>66.147</mark>		70.400 70.161		74.400 74.174		78.400 <mark>78.187</mark>	
62.600_ 62.335		66.600_ <mark>66.348</mark>		70.600_ <mark>70.36</mark> 1		74.600_ 74.375	Č.	78.600_ <mark>78.388</mark>	
62.800 62.535		66.800 <mark>66.549</mark>		70.800 70.562		74.800 74.575		78.800 <mark>78.589</mark>	
63.000_ 62.736		67.000_ 66.749		71.000_ 70.763		75.000_ 74.776		79.000_ <mark>78.789</mark>	
63.200 62.937	1 Sector	67.200 66.950		71.200_ 70.963	3 Å.	75.200 74.977		79.200 78.990	
63.400_ 63.137		67.400_ 67.151		71.400_ <mark>71.164</mark>		75.400_ 75.177	et sign	79.400_ <mark>79.191</mark>	
63.600 63.338		67.600 <mark>67.351</mark>	i ed	71.600 <mark>71.365</mark>		75.600_ 75.378		79.600_ <mark>79.391</mark>	
63.800 63.539		67.800 67.552		71.800 <mark>71.565</mark>		75.800 75.579		79.800_ 79.592	
64.000_ 63.739		68.000_ 67.753		72.000_ <mark>71.766</mark>	(New	76.000_ 75.779	1. 1. 1926 -	80.000_ 79.793	
64.200 63.940		68.200 67.953		72.200 <mark>71.967</mark>		76.200 75.980	÷\$.	80.200_ 79.993	
64.400 64.141		68.400_ <mark>68.154</mark>		72.400 <mark>72.167</mark>		76.400_ <mark>76.181</mark>	1 the	80.400_ <mark>80.194</mark>	
64.600 64.341		68.600 68.355		72.600 <mark>72.368</mark>		76.600_ <mark>76.381</mark>		80.600_ <mark>80.395</mark>	
64.800_ 64.542	建主义	68.800_ 68.555		72.800_ 72.569		76.800_ <mark>76.582</mark>		80.800_ 80.595	-
65.000 64.743		69.000 <mark>68.756</mark>		73.000 72.769		77.000_ 76.783		81.000_ 80.796	14 MA
65.200_ 64.943		69.200_ <mark>68.957</mark>		73.200_ <mark>72.970</mark>		77.200_ <mark>76.983</mark>		81.200_ 80.997	
65.400 65.144	化十十	69.400 <mark>69.157</mark>		73.400 73.171	et.	77.400_ 77.184		81.400_ 81.197	
65.600_ 65.345	影主义	69.600_ <mark>69.358</mark>		73.600_ 73.371	(may	77.600_ 77.385		81.600_ 81.398	
65.800 65.545		69.800 <mark>69.559</mark>		73.800 73.572		77.800 77.585		81.800 81.599	
			Contraction of the		Non Mark		S. 1.		Sec. 1

Printed: 2012-11-15 10:51:12

Scale: 1:20

Aspect: 150 %

Depth range: 82.000 - 99.900 m Azimuth: 54.6 Inclination: -0.6

82.000	86.000	90.000	94.000	98.000
81.799	85.813	89.826	93.839	97.853
82.200	86.200_	90.200	94.200_	98.200
82.000	86.013	90.027	94.040	98.053
82.400	86.400	90.400	94.400	98.400
82.201	86.214		94.241	98.254
82.600_	86.600_	90.600	94.600_	98.600
82.401	86.415	90.428	94.441	98.455
82.800	86.800	90.800	94.800	98.800
82.602	86.615	90.629	94.642	98.655
83.000	87.000_	91.000_	95.000_	99.000
82.803	86.816	90.829	94.843	98.856
83.200	87.200	91.200	95.200	99.200
83.003	87.017	91.030	95.043	99.057
83.400	87.400	91.400	95.400	99.400
83.204	87.217	91.231	95.244	99.257
83.600	87.600	91.600	95.600	99.600
83.405	87.418	91.431	95.445	99.458
83.800	87.800	91.800	95.800	99.800
83.605	87.619	91.632	95.645	99.659
84.000	88.000_	92.000	96.000	100.000_
83.806	87.819	91.833	95.846	99.859
84.200	88.200	92.200	96.200	100.200_
84.007	88.020	92.033	96.047	100.060
84.400	88.400	92.400	96.400_	100.400_
84.207	88.221	92.234	96.247	
84.600	88.600	92.600	96.600	100.600_
84.408	88.421	92.435	96.448	
84.800	88.800	92.800	96.800	100.800_
84.609	88.622	92.635	96.649	
85.000	89.000	93.000	97.000	101.000_
84.809	88.823	92.836	96.849	
85.200_	89.200_	93.200	97.200	101.200_
85.010	89.023	93.037	97.050	
85.400	89.400	93.400	97.400	101.400_
85.211	89.224	93.237	97.251	
85.600_	89.600_	93.600	97.600_	101.600_
85.411	89.425	93.438	97.451	
85.800	89.800	93.800	97.800	101.800_
85.612	89.625	93.639	97.652	
		Contraction of the second		

Printed: 2012-11-15 10:51:12

Scale: 1:20

Aspect: 150 %

BIPS-image for KA3065A01

Borehole Image Report

Borehole Name:	KA3065A01
Mapping Name:	KA3065A01_GE041_Geo5
Mapping Range:	0.000–125.201 m
Diameter:	76.0 mm
Printed Range:	2.000-125.000
Pages:	8

Image File Information:

File:	K:\60_Externt\6026xx\602641_Boremapkartering KA3011A01 KA3065A01
Äspö HRL	
\Arbetsdata\KA3	065A01_2-125m_201112191025.BIP
Date/Time:	2011-12-19 10:25:00
Start Depth:	1.992 m
End Depth:	125.000 m
Resolution:	1.00 mm/pixel (depth)
Orientation:	Gravimetric
Image height:	123,008 pixels
Image width:	360 pixels BIP
Version:	BIP-III
Locality:	ASPO HRL
Borehole:	KA3065A1
Scan Direction:	Up
Color adjust:	0 0 0 (RGB)

Depth range: 2.000 - 22.000 m Azimuth: 55.4 Inclination: -0.6

*

-

	6.	000_	Construction Dis
	5.	810	
1. 8	6.	200_	an such
Change of	6.	010	
1000	6. 6	400 210	
	0.	210	
	6. 6.	600_ 411	
	6	800	
	6.	611	堂、夏
	7.	000	
一次墨	6.	812	
	7.	200	
	7.	012	1 A
	7.	400_	
	7.	212	den la
	7.	600	
	7.	413	
	7.	800 613	-
	· ·	010	2
	8. 7	813	
Sec. 1	 Q	200	
	8.	014	
	8	400	
	8.	214	
	8.	600	day .
	8.	414	
國立 增	8.	800_	
	8.	615	ter t
	9.	000	
	8.	815	隆 之
· 新· 是	9.	200	影는
	9.	400	
	9. 9	400 216	
	0.	600	
	9. <mark>9</mark> .	416	建 制 [1]
	Q	800	
	9.	616 ⁻	
a the second			ALC: NO
			6.000 5.810 6.200 6.010 6.400 6.210 6.600 6.411 6.800 6.611 7.000 6.812 7.200 7.012 7.400 7.212 7.600 7.413 7.800 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 7.413 8.000 8.014 8.400 8.214 8.600 8.014 8.414 8.800 8.615 9.000 8.815 9.200 9.015 9.400 9.216 9.600 9.416 9.800 9.616

10.000	
9.817	教育 二
10.200	
10.017	107
10.400	
10 600	
10.418	ale ta
10.800	
10.618	
11.000	St. do
10.819	第一日
11.200	Aug
11 400	1
11.219	100 K
11.600	3
11.420	
11.800	老
11.620	
12.000	
10.000	省人
12.200	承 图
12 400	Sec. 1
12.221	1
12.600	
12.421	
12.800	金、
12.022	
12.822	法令
13 200	
13.022	
13.400	
13.223	She in
13.600	
10.423	
13.800	17
	in the
	THE OWNER AND ADDRESS OF TAXABLE PARTY.

14.000 13.824	
14.200_ 14.024	
14.400 14.225	
14.600_ 14.425	
14.800 14.625	
15.000_ 14.826	
15.200 15.026	
15.400_ 15.226	
15.600 15.427	
15.800_ 15.627	
16.000_ 15.827	
16.200 16.028	
16.400_ 16.228	
16.600 16.428	
16.800 <u>-</u> 16.629	
17.000 16.829	~
17.200_ 17.030	
17.400 17.230	
17.600_ 17.430	
17.800_ 17.631	

18.000 17.831	
18.200_ 18.031	
18.400 18.232	-
18.600_ 18.432	
18.800 18.632	
19.000_ 18.833	126
19.200 19.033	<u>), 9</u>
19.400_ 19.233	秋
19.600 19.434	
19.800 19.634	
20.000 19.835	
20.200 20.035	
20.400 20.235	
20.600 20.436	6 9
20.800 20.636	
21.000 20.836	
21.200 21.037	
21.400 21.237	
21.600_ 21.437	
21.800 21.638	

Printed: 2012-11-15 10:48:26

Scale: 1:20

Aspect: 150 %

Depth range: 22.000 - 42.000 m Azimuth: 55.0 Inclination: -0.6

22.000	26.000	30.000	34.000	38.000	
21.838	25.845	29.852	33.859	37.800	oft (0 👾
22.200_	26.200	30.200	34.200	38.200	
22.038	26.045	30.053	34.060	38.067	
22.400	26.400	30.400	34.400	38.400	
22.239	26.246	30.253	34.260	38.267	
22.600_	26.600	30.600	34.600	38.600	
22.439	26.446	30.453	34.460	38.467	
22.800	26.800	30.800	34.800	38.800	
22.639	26.647	30.654	34.661	38.668	
23.000_ 22.840	27.000 26.847	31.000 30.854	35.000_ 34.861	39.000 _{38.868}	
23.200 23.040	27.200	31.200 31.054	35.200 35.061	39.200 39.069	
23.400_ 23.241	27.400 _{27.248}	31.400_ 31.255	35.400_ 35.262	39.400_ 39.269	
23.600	27.600	31.600	35.600	39.600	
23.441	27.448	31.455	35.462	39.469	
23.800	27.800	31.800	35.800	39.800	
23.641	27.648	31.655	35.662	39.670	
24.000_	28.000	32.000	36.000	40.000	
23.842	27.849	31.856	35.863	39.870	
24.200	28.200	32.200	36.200	40.200	
24.042	28.049	32.056	36.063	40.070	
24.400_	28.400_	32.400_	36.400_	40.400_	
24.242	28.249	32.256	36.264	40.271	
24.600	28.600	32.600	36.600	40.600	
24.443	28.450	32.457	36.464	40.471	
24.800_	28.800_	32.800	36.800_	40.800_	
24.643	28.650	32.657	36.664	40.671	
25.000	29.000	33.000	37.000	41.000	
24.843	28.850	32.858	36.865	40.872	
25.200_	29.200	33.200	37.200_	41.200	
25.044	29.051	33.058	37.065	41.072	
25.400	29.400	33.400	37.400	41.400	
25.244	29.251	33.258	37.265	41.272	
25.600_	29.600	33.600	37.600	41.600	
25.444	29.452	33.459	37.466	41.473	
25.800	29.800	33.800	37.800	41.800	
25.645	29.652	33.659	37.666	41.673	
		T. A		8 ()	

Printed: 2012-11-15 10:48:26

Scale: 1 : 20

Aspect: 150 %

Depth range: 42.000 - 62.000 m Azimuth: 55.2 Inclination: -0.5

42.000	46.000	50.000	54.000	58.000
	45.881	49.888	53.895	57.902
42.200	46.200	50.200	54.200	58.200
42.074	46.081	50.088	54.095	58.102
42.400	46.400	50.400	54.400	58.400
42.274	46.281	50.288	54.295	58.303
42.600_	46.600	50.600	54.600	58.600_
42.475	46.482	50.489	54.496	58.503
42.800	46.800	50.800	54.800	58.800
42.675	46.682	50.689	54.696	58.703
43.000	47.000	51.000	55.000	59.000
42.875	46.882	50.889	54.896	58.904
43.200	47.200	51.200	55.200	59.200
43.076	47.083	51.090	55.097	59.104
43.400	47.400	51.400	55.400	59.400
43.276	47.283	51.290	55.297	59.304
43.600	47.600	51.600	55.600	59.600
43.476	47.483	51.490	55.498	59.505
43.800	47.800	51.800	55.800	59.800
43.677	47.684	51.691	55.698	59.705
44.000	48.000_	52.000	56.000	60.000
43.877	47.884	51.891	55.898	59.905
44.200	48.200	52.200	56.200	60.200
44.077	48.084	52.092	56.099	60.106
44.400	48.400	52.400	56.400	60.400
44.278	48.285	52.292	56.299	60.306
44.600	48.600	52.600	56.600	60.600
44.478	48.485	52.492	56.499	60.506
44.800	48.800	52.800	56.800	60.800
44.678	48.686	52.693	56.700	60.707
45.000	49.000	53.000	57.000	61.000
44.879	48.886	52.893	56.900	60.907
45.200	49.200	53.200_	57.200	61.200_
45.079	49.086	53.093	57.100	61.107
45.400	49.400	53.400	57.400	61.400
45.279	49.287	53.294	57.301	61.308
45.600	49.600	53.600	57.600	61.600_
45.480	49.487	53.494	57.501	61.508
45.800	49.800	53.800	57.800	61.800
45.680	49.687	53.694	57.701	61.709

Printed: 2012-11-15 10:48:26

Scale: 1:20

Aspect: 150 %

Depth range: 62.000 - 82.000 m Azimuth: 54.9 Inclination: -0.3

62.000	66.000	70.000	74.000	78.000
61.909	65.916	69.923	73.930 D K U R	77.937
62.200	66.200_	70.200	74.200	78.200_
62.109	66.116	70.123	74.130	78.138
62.400	66.400	70.400	74.400	78.400
62.310	66.317	70.324	74.331	78.338
62.600	66.600	70.600	74.600	78.600_
62.510	66.517	70.524	74.531	78.538
62.800	66.800	70.800	74.800	78.800
62.710	66.717	70.724	74.732	78.739
63.000	67.000_	71.000_	75.000	79.000_
62.911	66.918	70.925	74.932	78.939
63.200	67.200	71.200	75.200	79.200
63.111	67.118	71.125	75.132	79.139
63.400	67.400	71.400	75.400	79.400
63.311	67.318	71.326	75.333	79.340
63.600	67.600	71.600	75.600	79.600
63.512	67.519	71.526		79.540
63.800	67.800	71.800	75.800	79.800
63.712	67.719	71.726	75.733	79.740
64.000	68.000	72.000 ₋	76.000	80.000
63.912	67.919	71.927	75.934	79.941
64.200	68.200	72.200	76.200	80.200
64.113	68.120	72.127	76.134	80.141
64.400_	68.400	72.400	76.400	80.400
64.313	68.320	72.327	76.334	80.341
64.600	68.600	72.600	76.600	80.600
64.513	68.521	72.528	76.535	80.542
64.800_	68.800	72.800	76.800	80.800
64.714	68.721	72.728	76.735	80.742
65.000	69.000	73.000_	77.000	81.000
64.914	68.921	72.928	76.935	80.943
65.200	69.200	73.200_	77.200	81.200
65.115	69.122	73.129	77.136	81.143
65.400	69.400	73.400	77.400	81.400
65.315	69.322	73.329		81.343
65.600 65.515	69.600 69.522	73.600	77.600	81.600 81.544
65.800 65.716	69.800 69.723	73.800	77.800	81.800 81 744

Printed: 2012-11-15 10:48:26

Scale: 1:20

Aspect: 150 %

Depth range: 82.000 - 102.000 m Azimuth: 54.9 Inclination: -0.1

82.000		86.000	
01.044	Bell U. R.	00.001	D. C. U. R
82.200 82.145		86.200_ 86.152	and a star
82.400	a gurant	86.400	
82.345	1.4 10	86.352	
82,600	8. 9. 月間	86 600	and the state
82.545		86.552	E. 推动引
82 800	的 一个问题	86 800	
82.746	から 北京	86.753	
83 000		87 000	
82.946		86.953	
02 200		97 200	
83.146	Marke of	87.153	
02 400		97 400	
83.347		87.354	S. A. A.
83 600		87 600	ale a d
83.547		87.554	188
83 800		87 800	1 131
83.747	11 a	87.755	4-20-41
04.000		00.000	
84.000		88.000_	
04.000		00.000	244
84.200		88.200	
	影性 計	00.100	C. Path
84.400	Sale di	88.400	The set
04.040	0.6	00.000	
84.600		88.600	
04.049		00.000	1 to 1
84.800	$\gamma_{ij} = \gamma_{ij}$	88.800	
04.745	and the second second	00.700	Jun 1
85.000		89.000	1 1
04.950	Section 24	00.907	the last
85.200		89.200	
00.100	1. 31	09.157	and a
85.400	全臣 南部	89.400	14
85.350	E AL	89.357	A State
85.600	97	89.600_	
85.551		89.558	水晶素
85.800		89.800	
85.751	and the second	89.758	10 L

90.000 89.958	
90.200_ 90.159	1 10 3
90.400 90.359	
90.600_ 90.560	
90.800 90.760	
91.000_ 90.960	刘顺。
91.200 91.161	
91.400 <u></u> 91.361	4
91.600 91.561	1 ***
91.800 91.762	
92.000_ 91.962	1
92.200 92.162	
92.400 <u>92.363</u>	*
92.600 92.563	
92.800 92.763	1.4
93.000 92.964	
93.200_ 93.164	
93.400 93.364	e F H
93.600 <u>93.565</u>	
93.800 93.765	

Scale: 1 : 20

94.000 93.966	F 静的时	98.000 97.973
94.200_ 94.166		98.200_ <mark>98.173</mark>
94.400 94.366		98.400 98.373
94.600_ 94.567		98.600_ 98.574
94.800 94.767		98.800 98.774
95.000_ 94.967	12	99.000_ 98.974
95.200 95.168		99.200 99.175
95.400_ 95.368	FF	99.400_ 99.375
95.600 95.568	時時間	99.600 99.575
95.800 95.769		99.800 99.776
96.000 <u></u> 95.969		100.000_ 99.976
96.200 96.169		100.200 100.176
96.400_ 96.370		100.400_ 100.377
96.600 96.570	f ar	100.600 100.577
96.800 96.770		100.800_ 100.778
97.000 96.971		101.000 100.978
97.200_ 97.171		101.200 <u>-</u> 101.178
97.400 97.372		101.400 101.379
97.600_ 97.572		101.600_ 101.579
97.800 97.772		101.800 101.779
	STATE OF STATE OF STATE	

Aspect: 150 %

6 (8)

Printed: 2012-11-15 10:48:26

Depth range: 102.000 - 122.000 m Azimuth: 54.5 Inclination: -0.1

102.000	106.000	110.000	114.000	118.000
	105.907	109.994	114.001	110.000
102.200	106.200_	110.200	114.200	118.200
102.180	106.187	110.194	114.201	118.208
102.400	106.400	110.400	114.400	118.400
102.380	106.387	110.395	114.402	118.409
102.600	106.600_	110.600	114.600	118.600_
102.581	106.588	110.595	114.602	118.609
102.800	106.800	110.800	114.800	118.800
102.781	106.788	110.795	114.802	118.809
103.000_	107.000_	111.000	115.000_	119.000
102.981	106.989	110.996	115.003	119.010
103.200	107.200	111.200	115.200	119.200
103.182	107.189	111.196	115.203	119.210
103.400_	107.400_	111.400_	115.400_	119.400
103.382	107.389	111.396	115.403	119.410
103.600	107.600	111.600	115.600	119.600
103.583	107.590	111.597	115.604	119.611
103.800	107.800_	111.800	115.800	119.800
103.783	107.790	111.797	115.804	119.811
104.000_	108.000 ₋	112.000_	116.000	120.000
103.983	107.990	111.997	116.004	120.012
104.200	108.200_	112.200	116.200	120.200
104.184	108.191	112.198	116.205	120.212
104.400	108.400_	112.400_	116.400	120.400
104.384	108.391	112.398	116.405	120.412
104.600	108.600_	112.600	116.600	120.600
104.584	108.591	112.598	116.606	120.613
104.800	108.800_	112.800_	116.800	120.800
104.785	108.792	112.799	116.806	120.813
105.000	109.000	113.000	117.000	121.000
104.985	108.992	112.999	117.006	121.013
105.200	109.200	113.200	117.200	121.200_
105.185	109.192	113.200	117.207	121.214
105.400	109.400	113.400	117.400	121.400
105.386	109.393	113.400	117.407	121.414
105.600	109.600_	113.600_	117.600	121.600
105.586	109.593	113.600	117.607	121.614
105.800	109.800	113.800	117.800	121.800
105.786	109.794	113.801	117.808	121.815
LACE PARTY		A Sau of	and a	

Printed: 2012-11-15 10:48:26

Scale: 1 : 20

Aspect: 150 %

Depth range: 122.000 - 125.000 m Azimuth: 54.5 Inolination: -0.1

Printed: 2012-11-15 10:4B:2G

Soale: 1:20

Aspeot: 150%

B (B)

WellCAD diagram for KA3011A01

WellCAD diagram for KA3065A01

Legend to WellCAD diagram for KA3011A01

Legend to WellCAD diagram for KA3065A01

In-data: Borehole length and diameter for KA3011A01 Hole Diam T – Drilling: Borehole diameter KA3011A01, 2011-11-02 08:05:00–2011-11-11 08:42:00 (0.000–100.150 m)

 Sub Secup (m)
 Sub Seciow (m)
 Hole Diam (m)
 Comment (m)
 QC

 0.000
 2.230
 0.1160
 *

 2.230
 100.150
 0.0758
 Corac N/3
 *

Printout from Sicada 2012-11-14 12:57:33.

In-data: Borehole length and diameter for KA3065A01 Hole Diam T – Drilling: Borehole diameter KA3065A01, 2011-12-06 13:00:00–2011-12-13 12:09:00 (0.000–125.250 m)

 Sub Secup (m)
 Sub Seclow (m)
 Hole Diam (m)
 Comment
 QC

 0.000
 2.290
 0.1160
 *

 2.290
 125.250
 0.0758
 Corac N/3
 *

Printout from Sicada 2012-11-14 13:01:25.

In-data: Borehole deviation data for KA3011A01

Sicada – Coordinate Information for KA3011A01 (Object type: Cored borehole

Northing (m)	Easting (m)	Elevation (m)	Coordinate System	Length (m)	Vertical Depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination Uncertainty	Bearing Uncertainty	Radius Uncertainty	Calc Date
7,404.36	2,368.61	-397.97	ÄSPÖ96	0.00	0.00	-0.90	54.97	0.209	1.074	0.00	2012-06-07 11:21
7,406.08	2,371.07	-398.02	ÄSPÖ96	3.00	0.05	-0.90	54.97	0.209	1.074	0.06	2012-06-07 11:21
7,407.81	2,373.53	-398.07	ÄSPÖ96	6.00	0.09	-0.90	54.91	0.209	1.074	0.11	2012-06-07 11:21
7,409.53	2,375.98	-398.11	ÄSPÖ96	9.00	0.14	-0.90	54.97	0.209	1.074	0.17	2012-06-07 11:21
7,411.25	2,378.44	-398.16	ÄSPÖ96	12.00	0.19	-0.90	55.07	0.209	1.074	0.22	2012-06-07 11:21
7,412.97	2,380.90	-398.21	ÄSPÖ96	15.00	0.23	-0.89	55.07	0.209	1.074	0.28	2012-06-07 11:21
7,414.68	2,383.36	-398.25	ÄSPÖ96	18.00	0.28	-0.83	55.08	0.209	1.074	0.34	2012-06-07 11:21
7,416.40	2,385.82	-398.30	ÄSPÖ96	21.00	0.32	-0.80	55.17	0.209	1.074	0.39	2012-06-07 11:21
7,418.11	2,388.28	-398.34	ÄSPÖ96	24.00	0.36	-0.80	55.10	0.209	1.074	0.45	2012-06-07 11:21
7,419.83	2,390.74	-398.38	ÄSPÖ96	27.00	0.41	-0.80	55.04	0.209	1.074	0.51	2012-06-07 11:21
7,421.55	2,393.20	-398.42	ÄSPÖ96	30.00	0.45	-0.80	54.97	0.209	1.074	0.56	2012-06-07 11:21
7,423.27	2,395.65	-398.46	ÄSPÖ96	33.00	0.49	-0.80	54.97	0.209	1.074	0.62	2012-06-07 11:21
7,424.99	2,398.11	-398.50	ÄSPÖ96	36.00	0.53	-0.80	55.12	0.209	1.074	0.67	2012-06-07 11:21
7,426.71	2,400.57	-398.55	ÄSPÖ96	39.00	0.57	-0.80	55.07	0.209	1.074	0.73	2012-06-07 11:21
7,428.42	2,403.03	-398.59	ÄSPÖ96	42.00	0.62	-0.80	55.07	0.209	1.074	0.79	2012-06-07 11:21
7,430.14	2,405.49	-398.63	ÄSPÖ96	45.00	0.66	-0.80	55.07	0.209	1.074	0.84	2012-06-07 11:21
7,431.86	2,407.95	-398.67	ÄSPÖ96	48.00	0.70	-0.80	55.02	0.209	1.074	0.90	2012-06-07 11:21
7,433.58	2,410.41	-398.71	ÄSPÖ96	51.00	0.74	-0.80	54.97	0.209	1.074	0.96	2012-06-07 11:21
7,435.31	2,412.86	-398.76	ÄSPÖ96	54.00	0.78	-0.80	54.85	0.209	1.074	1.01	2012-06-07 11:21
7,437.03	2,415.31	-398.80	ÄSPÖ96	57.00	0.83	-0.80	54.80	0.209	1.074	1.07	2012-06-07 11:21
7,438.76	2,417.76	-398.84	ÄSPÖ96	60.00	0.86	-0.72	54.74	0.209	1.074	1.12	2012-06-07 11:21
7,440.50	2,420.21	-398.88	ÄSPÖ96	63.00	0.90	-0.71	54.74	0.209	1.074	1.18	2012-06-07 11:21
7,442.23	2,422.66	-398.91	ÄSPÖ96	66.00	0.94	-0.72	54.79	0.209	1.074	1.24	2012-06-07 11:21
7,443.96	2,425.11	-398.95	ÄSPÖ96	69.00	0.98	-0.71	54.69	0.209	1.074	1.29	2012-06-07 11:21
7,445.69	2,427.56	-398.99	ÄSPÖ96	72.00	1.01	-0.71	54.69	0.209	1.074	1.35	2012-06-07 11:21
7,447.42	2,430.01	-399.02	ÄSPÖ96	75.00	1.05	-0.69	54.85	0.209	1.074	1.41	2012-06-07 11:21
7.449.15	2.432.46	-399.06	ÄSPÖ96	78.00	1.09	-0.67	54.85	0.209	1.074	1.46	2012-06-07 11:21

55

Northing (m)	Easting (m)	Elevation (m)	Coordinate System	Length (m)	Vertical Depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination Uncertainty	Bearing Uncertainty	Radius Uncertainty	Calc Date
7,450.88	2,434.92	-399.09	ÄSPÖ96	81.00	1.12	-0.65	54.85	0.209	1.074	1.52	2012-06-07 11:21
7,452.61	2,437.37	-399.13	ÄSPÖ96	84.00	1.15	-0.61	54.67	0.209	1.074	1.57	2012-06-07 11:21
7,454.34	2,439.81	-399.16	ÄSPÖ96	87.00	1.19	-0.61	54.67	0.209	1.074	1.63	2012-06-07 11:21
7,456.08	2,442.26	-399.19	ÄSPÖ96	90.00	1.22	-0.60	54.63	0.209	1.074	1.69	2012-06-07 11:21
7,457.81	2,444.71	-399.22	ÄSPÖ96	93.00	1.25	-0.60	55.02	0.209	1.074	1.74	2012-06-07 11:21
7,459.53	2,447.17	-399.25	ÄSPÖ96	96.00	1.28	-0.59	55.07	0.209	1.074	1.80	2012-06-07 11:21
7,461.24	2,449.63	-399.28	ÄSPÖ96	99.00	1.31	-0.59	55.07	0.209	1.074	1.86	2012-06-07 11:21
7,461.90	2,450.57	-399.30	ÄSPÖ96	100.15	1.32	-0.59	55.07	0.209	1.074	1.88	2012-06-07 11:21

Number of rows: 35. Printout from Sicada 2012-11-14 13:20:39.

In-data: Borehole deviation data for KA3065A01

Sicada – Coordinate Information for KA3065A01 (Object type: Cored borehole)

Northing (m)	Easting (m)	Elevati (m)	on Coordinate System	Length (m)	Vertical Depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination Uncertainty	Bearing Uncertainty	Radius Uncertainty	Calc Date
7,348.01	2,389.47	-406.65	ÄSPÖ96	0.00	0.00	-0.65	55.35	0.049	0.455	0.00	2012-06-07 11:21
7,349.72	2,391.94	-406.69	ÄSPÖ96	3.00	0.04	-0.72	55.26	0.049	0.455	0.02	2012-06-07 11:21
7,351.43	2,394.40	-406.73	ÄSPÖ96	6.00	0.07	-0.71	55.35	0.049	0.455	0.05	2012-06-07 11:21
7,353.12	2,396.88	-406.76	ÄSPÖ96	9.00	0.11	-0.67	55.75	0.049	0.455	0.07	2012-06-07 11:21
7,354.80	2,399.36	-406.80	ÄSPÖ96	12.00	0.14	-0.66	56.21	0.049	0.455	0.10	2012-06-07 11:21
7,356.47	2,401.85	-406.83	ÄSPÖ96	15.00	0.18	-0.66	55.95	0.049	0.455	0.12	2012-06-07 11:21
7,358.16	2,404.33	-406.87	ÄSPÖ96	18.00	0.21	-0.64	55.53	0.049	0.455	0.14	2012-06-07 11:21
7,359.86	2,406.80	-406.90	ÄSPÖ96	21.00	0.25	-0.63	55.42	0.049	0.455	0.17	2012-06-07 11:21
7,361.57	2,409.27	-406.93	ÄSPÖ96	24.00	0.28	-0.61	55.28	0.049	0.455	0.19	2012-06-07 11:21
7,363.29	2,411.73	-406.96	ÄSPÖ96	27.00	0.31	-0.60	54.85	0.049	0.455	0.21	2012-06-07 11:21
7,365.01	2,414.19	-407.00	ÄSPÖ96	30.00	0.34	-0.57	54.99	0.049	0.455	0.24	2012-06-07 11:21
7,366.72	2,416.65	-407.02	ÄSPÖ96	33.00	0.37	-0.54	55.56	0.049	0.455	0.26	2012-06-07 11:21
7,368.41	2,419.13	-407.05	ÄSPÖ96	36.00	0.40	-0.47	55.70	0.049	0.455	0.29	2012-06-07 11:21
7,370.11	2,421.60	-407.08	ÄSPÖ96	39.00	0.42	-0.46	55.61	0.049	0.455	0.31	2012-06-07 11:21
7,371.80	2,424.08	-407.10	ÄSPÖ96	42.00	0.44	-0.44	55.59	0.049	0.455	0.33	2012-06-07 11:21
7,373.49	2,426.56	-407.12	ÄSPÖ96	45.00	0.47	-0.42	55.65	0.049	0.455	0.36	2012-06-07 11:21
7,375.19	2,429.03	-407.14	ÄSPÖ96	48.00	0.49	-0.36	55.65	0.049	0.455	0.38	2012-06-07 11:21
7,376.88	2,431.51	-407.16	ÄSPÖ96	51.00	0.51	-0.35	55.72	0.049	0.455	0.40	2012-06-07 11:21
7,378.58	2,433.98	-407.18	ÄSPÖ96	54.00	0.52	-0.33	55.05	0.049	0.455	0.43	2012-06-07 11:21
7,380.30	2,436.44	-407.20	ÄSPÖ96	57.00	0.54	-0.30	55.19	0.049	0.455	0.45	2012-06-07 11:21
7,382.01	2,438.90	-407.21	ÄSPÖ96	60.00	0.56	-0.27	55.16	0.049	0.455	0.48	2012-06-07 11:21
7,383.72	2,441.37	-407.22	ÄSPÖ96	63.00	0.57	-0.25	55.36	0.049	0.455	0.50	2012-06-07 11:21
7,385.43	2,443.84	-407.24	ÄSPÖ96	66.00	0.58	-0.23	55.33	0.049	0.455	0.52	2012-06-07 11:21
7,387.13	2,446.30	-407.25	ÄSPÖ96	69.00	0.59	-0.21	55.24	0.049	0.455	0.55	2012-06-07 11:21
7,388.85	2,448.77	-407.26	ÄSPÖ96	72.00	0.60	-0.18	55.22	0.049	0.455	0.57	2012-06-07 11:21
7,390.56	2,451.23	-407.27	ÄSPÖ96	75.00	0.61	-0.17	55.22	0.049	0.455	0.60	2012-06-07 11:21
7.392.27	2,453.70	-407.28	ÄSPÖ96	78.00	0.62	-0.16	55.32	0.049	0.455	0.62	2012-06-07 11:21

Northing (m)	Easting (m)	Elevati (m)	on Coordinate System	Length (m)	Vertical Depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination Uncertainty	Bearing Uncertainty	Radius Uncertainty	Calc Date
7,393.97	2,456.16	-407.28	ÄSPÖ96	81.00	0.63	-0.15	55.25	0.049	0.455	0.64	2012-06-07 11:21
7,395.68	2,458.63	-407.29	ÄSPÖ96	84.00	0.64	-0.14	55.35	0.049	0.455	0.67	2012-06-07 11:21
7,397.39	2,461.10	-407.30	ÄSPÖ96	87.00	0.64	-0.15	55.35	0.049	0.455	0.69	2012-06-07 11:21
7,399.09	2,463.56	-407.31	ÄSPÖ96	90.00	0.65	-0.15	55.35	0.049	0.455	0.71	2012-06-07 11:21
7,400.80	2,466.03	-407.31	ÄSPÖ96	93.00	0.66	-0.12	55.20	0.049	0.455	0.74	2012-06-07 11:21
7,402.52	2,468.49	-407.32	ÄSPÖ96	96.00	0.66	-0.10	54.91	0.049	0.455	0.76	2012-06-07 11:21
7,404.24	2,470.94	-407.32	ÄSPÖ96	99.00	0.67	-0.10	54.87	0.049	0.455	0.79	2012-06-07 11:21
7,405.97	2,473.40	-407.33	ÄSPÖ96	102.00	0.67	-0.10	54.82	0.049	0.455	0.81	2012-06-07 11:21
7,407.70	2,475.85	-407.33	ÄSPÖ96	105.00	0.68	-0.09	54.82	0.049	0.455	0.83	2012-06-07 11:21
7,409.43	2,478.30	-407.34	ÄSPÖ96	108.00	0.68	-0.09	55.00	0.049	0.455	0.86	2012-06-07 11:21
7,411.14	2,480.76	-407.34	ÄSPÖ96	111.00	0.69	-0.08	55.16	0.049	0.455	0.88	2012-06-07 11:21
7,412.86	2,483.23	-407.35	ÄSPÖ96	114.00	0.69	-0.07	55.16	0.049	0.455	0.91	2012-06-07 11:21
7,414.57	2,485.69	-407.35	ÄSPÖ96	117.00	0.70	-0.08	55.16	0.049	0.455	0.93	2012-06-07 11:21
7,416.29	2,488.15	-407.36	ÄSPÖ96	120.00	0.70	-0.11	54.86	0.049	0.455	0.95	2012-06-07 11:21
7,418.02	2,490.60	-407.36	ÄSPÖ96	123.00	0.71	-0.11	54.80	0.049	0.455	0.98	2012-06-07 11:21
7,419.32	2,492.44	-407.37	ÄSPÖ96	125.25	0.71	-0.11	54.80	0.049	0.455	0.99	2012-06-07 11:21

Number of rows: 43.

Printout from Sicada 2012-11-14 13:11:58.