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Update notice 
The original report, dated March 2023, was found to contain both factual and editorial errors which 
have been corrected in this updated version. The corrected factual errors are presented below. 
 

Updated 2023-08 

Location Original text Corrected text 
Page 7, Equation (2-7) �̇�𝑒 = (1 + 𝑒𝑒) 𝜀𝜀�̇�𝑣 , �̇�𝑒 = (1 + 𝑒𝑒0) 𝜀𝜀�̇�𝑣 , 

Page 11, text before  
Equation (3-4) 

Using (3-3) a local form of the 
solid mass balance can be 
derived. From this, the 
following three relations for 
updating the void ratio, using 
the volumetric strain, can be 
derived. Note that only the first 
relation updates the void ratio 
without approximations. 

Using (3-3) a local form of the 
solid mass balance can be 
derived. From this, the following 
approximate relation for 
updating the void ratio, using 
the volumetric strain, can be 
obtained. 

Page 11, Equation (3-4) �̇�𝑒 = (1 + 𝑒𝑒)𝜀𝜀�̇�𝑣,   

𝑒𝑒 ≈ (1 + 𝑒𝑒0)(𝜀𝜀𝑣𝑣 + 1) − 1,   

and  

�̇�𝑒 ≈ (1 + 𝑒𝑒0)𝜀𝜀�̇�𝑣 

�̇�𝑒 = (1 + 𝑒𝑒)𝐽𝐽/̇𝐽𝐽 ≈ (1 + 𝑒𝑒0)𝜀𝜀�̇�𝑣 

Page 19, Equation (4-5) and 
page 20, Equation (4-9) 

(1 − 𝜙𝜙)�̇�𝑒 = 𝜀𝜀�̇�𝑣 (1 − 𝜙𝜙0)�̇�𝑒 = 𝜀𝜀�̇�𝑣 

Page 20, last relation in 
Equation (4-11) 

𝑑𝑑𝑎𝑎𝑠𝑠 = (1 − 𝜙𝜙) 𝑑𝑑𝑎𝑎𝑠𝑠 = (1 − 𝜙𝜙0) 

Page 20, Equation (4-15), 
second row, second column 
element in matrix 

(1 − 𝜙𝜙) (1 −𝜙𝜙0) 

Page 21, part of Equations  
(4-22) and (4-23) 

1 + 𝑒𝑒 1 + 𝑒𝑒0 

Page 27, Equation (A-21) 
div𝒗𝒗 = tr �

𝜕𝜕�̇�𝝌(𝝌𝝌−1(𝒙𝒙, 𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝒙𝒙 �

=
𝜕𝜕
𝜕𝜕𝑡𝑡

tr �
𝜕𝜕𝝌𝝌(𝑿𝑿, 𝑡𝑡)
𝜕𝜕𝒙𝒙

�

=
𝜕𝜕
𝜕𝜕𝑡𝑡 tr �

𝜕𝜕(𝒖𝒖 + 𝑿𝑿)
𝜕𝜕𝒙𝒙

� =
𝜕𝜕
𝜕𝜕𝑡𝑡

tr �
𝜕𝜕𝒖𝒖
𝜕𝜕𝒙𝒙
�

=
𝜕𝜕
𝜕𝜕𝑡𝑡

(tr𝜺𝜺) = 𝜀𝜀�̇�𝑣 , 

div𝒗𝒗 =
𝐽𝐽̇
𝐽𝐽 , where  

𝐽𝐽 ≈ 𝜀𝜀𝑣𝑣 + 1 and 𝐽𝐽̇ ≈ 𝜀𝜀�̇�𝑣 

Page 28, text before  
Equation (B-11) 

We can formulate the following 
three relations for updating the 
void ratio using the volumetric 
strain, but only the first one is 
proper, 

We can formulate the following 
approximate relation for 
updating the void ratio using the 
volumetric strain, 

Page 34-36, term in Equations 
(F-5), (F-6), (F-7), (F-16),  
(F-18), (F-19), (F-20), (F-27), 
(F-28) and (F-32) 

1 + 𝑒𝑒 1 + 𝑒𝑒0 
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The original report, dated March 2023, was found to contain editorial errors which have been 
corrected in this updated version. 
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Abstract 
The Hysteresis Based Material (HBM) model is here described. The report is an attempt to give a full 
description of the formulation and the implementation in COMSOL Multiphysics®. Some parts of the 
model are discussed in greater detail; mass balances, total stress, clay potential functions, evolution 
equations governing the path dependent variable, and micro void ratio evolution equation. To 
facilitate future corrections and development, full derivations of a significant part of the model are 
included in the appendices. The goal has been to give a clear and transparent description where 
entities are defined when introduced and assumptions are declared. 

Sammanfattning 
Här beskrivs den HysteresBaserade Materialmodellen (HBM). Rapporten är avsedd att ge en 
fullständig beskrivning av formuleringen och implementationen i COMSOL Multiphysics®. Några 
delar av modellen är beskrivna i detalj; massbalanser, totalspänning, lerpotentialfunktioner, 
evolutionsekvationerna av den vägberoende variabeln och evolutionsekvationen för mikroportalet. 
För att underlätta framtida korrektioner och utveckling så är härledningar för stora delar av 
formuleringen inkluderat i appendix. Målet har varit att ge en klar och transparent beskrivning där 
storheter definieras när de introduceras och antaganden är tydligt deklarerade. 
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1 Introduction 
This report describes the formulation of the Hysteresis Based Material (HBM) model of compacted 
bentonite which has been developed within the project “Hydromechanical modelling using COMSOL 
Multiphysiscs®”. The description follows the formulation as it stands at the end of 2022. Information 
about the implementation of the HBM-model in COMSOL Multiphysiscs® is also given.  

It should from the start be pointed out that this report is of theoretical character. No specific problems 
are set up and solved. The report is intended to describe the general formulation without specifying 
geometries, parameter values, etc. 

If information about the capabilities and performance of the model when solving specific problems is 
sought, this can be found in reports produced within work package 3 and 5 of the EU-funded 
Bentonite Mechanical Evolution (BEACON) project, see Gens (2018, 2020, 2021), Talandier (2019, 
2020a, 2020b), Charlier et al. (2021), and Talandier et al. (2022). It should, however, be noted that 
the version of HBM presented in this report has not been used within BEACON. The main difference 
is the described evolution equation for the path dependent variable, which was developed and 
implemented after the end date of BEACON.  

The new version has, however, been used within Task 13 of the Task Force on Engineered Barrier 
Systems (EBS TF). This was also the first time that wall friction and HBM were successfully solved 
together in a simulation. The simulation could however not be calculated in its entirety. Friction is 
often part of the problem formulations which SKB want to address, for example along the deposition 
hole wall and the tunnel wall. Contact and friction mechanics are well known for being numerically 
demanding and when combined with other nonlinear representations the complexity often results in 
numerical simulations which do not converge.  During this project there have been several attempts 
to solve problems where both friction and HBM were included, but it is only the most recent which 
has shown progress. The ability to use HBM and friction in the same model indicates that the 
usability of the formulation has improved with the latest modification of the path dependent variable.  

The project started in 2016, in part because of difficulties when carrying out simulations of 
homogenization tasks within the EBS TF, see Börgesson et al. (2020) and Dueck et al. (2019). It had, 
however, for a long time been known that the available material models had limitations which made a 
new model desirable. The project was aimed at developing a model for bentonite where the 
fundamental driving forces are a starting point rather than an afterthought. An equally important part 
was developing an implementation which can be used for simulating realistic conditions and 
geometries. The work has been carried out in parallel with the BEACON project, which provided 
suitable tasks where the new model could be tested and demanded new features being developed and 
implemented. 

Thus, HBM was developed in part due to needs identified while carrying out large amounts of 
thermo-hydro-mechanical (THM) simulations of bentonite components in different environments. 
The available material models at that time could be used successfully but were found to have limited 
capabilities. For example, they had difficulties in representing essential material characteristics such 
as the swelling pressure curve, behaviour during free swelling, and the strong coupling between 
hydraulics and mechanics. To obtain representative results, the parameter setup often demanded a 
prediction of the processes which were to take place in the simulation. Also, the range for which the 
models were accurate, was quite narrow. Thus, the allowed heterogeneity in the simulations was 
restricted. 

The short introduction to the basis of HBM given below should serve as a good starting point for 
what follows in the report. In section 2 a full but brief description of the model is given. More 
information about the formulation can be found in section 3 where the balance equations and 
mechanical material model are discussed in more detail. The implementation into COMSOL 
Multiphysics® is described in section 4, where the treatment of mass balances and mechanics are 
discussed separately. In section 5, final comments and conclusions are given. For completeness, to 
facilitate understanding, as well as for facilitating future development, there are appendices 
containing information about the formulation on several topics: Appendix A. Theoretical framework, 
Appendix B. Solid mass balance, Appendix C. Balance of water mass, Appendix D. 
Spherical/deviatoric-split, Appendix E. Stiffness components at shearing and constant suction, 
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Appendix F. Rate form of the stress relation, and Appendix G. Strain-driven formulation of the 
limiting condition of 𝒇𝒇. 

1.1 Introduction to the HBM formulation 
Here, a short introduction and overview of the mechanical material model within HBM is given to 
provide a good starting point for the more detailed information in the rest of the report. To facilitate 
understanding, it begins with describing an isotropic and saturated version of the model, the 
generalization to handling of general stress states and unsaturated states are then included at the end. 

At the core of HBM constitutive relations, the difference between chemical potentials 𝜇𝜇𝑐𝑐 and 𝜇𝜇0, 
belonging to the water within a saturated clay sample and its external water respectively, is coupled 
to the pressure, 𝑝𝑝, acting on the clay. The constitutive relation comes from expressing the chemical 
potential of the water within the saturated clay sample when it is pressurized, 

𝜇𝜇𝑐𝑐 = 𝜇𝜇0 + 𝑅𝑅𝑅𝑅ln
𝑝𝑝𝑐𝑐
𝑝𝑝0

+ 𝜈𝜈𝑝𝑝 , (1-1) 

where 𝑅𝑅 is the universal gas constant, 𝑅𝑅 absolute temperature, 𝑝𝑝𝑐𝑐 the vapor pressure measured above 
the clay sample, 𝑝𝑝0 the vapor pressure measured above the external water, and 𝜈𝜈 the molar volume of 
water. The fraction in vapor pressure defines relative humidity, 𝑅𝑅𝑅𝑅 = 𝑝𝑝𝑐𝑐/𝑝𝑝0. (1-1) can be rearranged 
to,  

𝑝𝑝 + 𝑠𝑠 = Ψ , (1-2) 

where the suction, 𝑠𝑠, and a clay potential, Ψ, have been defined according to, 

𝑠𝑠 = −
𝜇𝜇𝑐𝑐 − 𝜇𝜇0

𝜈𝜈
, and   Ψ = −

𝑅𝑅𝑅𝑅
𝜈𝜈

ln(𝑅𝑅𝑅𝑅) , (1-3) 

respectively. The clay potential can be linked to both hydraulic and mechanical experimental results 
such as swelling pressure, deviator stress at failure, retention at wetting, and retention at drying. The 
character of mechanical and retention experimental data indicate that the bentonite clay potential 
should be dependent on dry density, 𝜌𝜌𝑑𝑑, and incorporate hysteresis, i.e., path dependency.  

To incorporate this, the clay potential is made dependent on the void ratio, 𝑒𝑒 = 𝜌𝜌𝑠𝑠\𝜌𝜌𝑑𝑑 − 1 (𝜌𝜌𝑠𝑠 being 
the solid density), and a path dependent variable, 𝑓𝑓, is introduced, i.e., Ψ = Ψ�(𝑒𝑒,𝑓𝑓). The path 
dependency comes from an evolution equation of 𝑓𝑓, 

𝑓𝑓 = 𝑓𝑓0 +�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒
𝑒𝑒(𝑡𝑡)

𝑒𝑒0
 , 

(1-4) 

which, in this isotropic model, is driven by void ratio. The differential in (1-4) is made dependent on 
the magnitude of 𝑓𝑓 and direction changes (history) of 𝑒𝑒. Figure 1-1 shows an example of how a 
cyclic void ratio history gives a path dependence in 𝑓𝑓 and Ψ. The incorporation of the path 
dependence (hysteresis) is why the model was called the hysteresis-based material model. 
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Figure 1-1. Path dependent variable, 𝒇𝒇, and clay potential, 𝜳𝜳, versus void ratio, 𝒆𝒆. The left graph shows an 
example of the path variable for a cycle of swelling-consolidation-swelling. The right graph shows the response for 
the clay potential for the same cycle. 

 

The model discussed so far is isotropic, generalizing to general stress states gives the expression, 

𝑠𝑠𝟏𝟏 = 𝚿𝚿 + 𝝈𝝈I , (1-5) 

where a stress tensor for the saturated clay, 𝝈𝝈I, and clay potential tensor, 𝚿𝚿, has been introduced. In 
this formulation the path dependent variable is a tensor, 𝒇𝒇, which is dependent on the strain evolution.   

The above is valid for the saturated clay phase, i.e., mineral sheets and interlayer water. When 
generalizing to unsaturated states, a gas phase is introduced. Thus, the unsaturated clay can be viewed 
as an immiscible mixture of a saturated clay phase and a gas phase. The additional pore space makes 
it possible to distinguish between interlayer pore space and total pore space. A total void ratio can be 
obtained from, 𝑒𝑒 = 𝜌𝜌𝑠𝑠\𝜌𝜌𝑑𝑑 − 1, and a micro void ratio can be obtained from, 𝑒𝑒𝜇𝜇 = 𝑤𝑤𝜌𝜌𝑠𝑠\𝜌𝜌𝑤𝑤, where 𝑤𝑤 
is the gravimetric water content and 𝜌𝜌𝑤𝑤 the water density. 

When introducing gas pores in the material it can be thought of as the volume and outer surface area 
of a representative volume element (RVE) increases. The stresses present in the saturated clay phase, 
𝝈𝝈I, must somehow be reduced as to translate these to a total stress, 𝝈𝝈, representative for the entire 
RVE. This was done by introducing a contact area variable 𝛼𝛼, approximating the ratio of the contact 
area between saturated clay grains to total area of an RVE so that, 

𝝈𝝈 = 𝛼𝛼𝝈𝝈𝐼𝐼  . (1-6) 

[-]

[M
Pa

]

1
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2 Brief description of HBM 
This chapter contains a brief description of the HBM model. The description of the model starts with 
the adopted material structure from which definitions of quantities enable formulation of balance 
equations. Thereafter constitutive equations of the liquid phase, gas phase and the mechanics of the 
porous solid are described. More information can be found in chapter 3, Appendix A, Appendix B, 
and Appendix C. 

The energy balance has not been addressed here. If vapor diffusion is to be represented this would be 
needed. In the present description however, isothermal conditions are assumed. 

2.1 Material structure assumptions 
In Figure 2-1 a sketch of the assumed material structure is given to the left and a descriptive diagram 
to the right. The adopted clay material structure can be described using a tree diagram which 
visualize the hierarchical nature of the model. The top-level, or macro-level, is populated by the clay 
which can be saturated or unsaturated. The clay is an immiscible mixture of two phases populating 
the mid-level, or meso-level. The first phase on the meso-level is saturated clay grains and the second 
gas filled pores. The phase consisting of saturated clay grains is an immiscible mixture of two phases 
populating the lower-level, or micro-level. The phase of gas filled pores is a miscible mixture of dry 
air and water vapor. The two phases at the micro-level, the building blocks of the phase of saturated 
clay grains, are interlayer water and minerals. 

 
Figure 2-1. Description of the adopted material structure. 

To the left in Figure 2-1, volume elements needed for the formulation are identified. From using 
these, different void ratios can be formulated. The total void ratio is defined by, 

𝑒𝑒 =
𝑑𝑑𝑣𝑣𝑝𝑝

𝑑𝑑𝑣𝑣 − 𝑑𝑑𝑣𝑣𝑝𝑝
=

𝑑𝑑𝑣𝑣𝑝𝑝
𝜇𝜇 + 𝑑𝑑𝑣𝑣𝑝𝑝𝑚𝑚

𝑑𝑑𝑣𝑣 − ( 𝑑𝑑𝑣𝑣𝑝𝑝
𝜇𝜇 + 𝑑𝑑𝑣𝑣𝑝𝑝𝑚𝑚 )

 . 
(2-1) 

The total porosity is given by, 

𝜙𝜙 =
𝑑𝑑𝑣𝑣𝑝𝑝
𝑑𝑑𝑣𝑣

=
𝑑𝑑𝑣𝑣𝑝𝑝

𝜇𝜇 + 𝑑𝑑𝑣𝑣𝑝𝑝𝑚𝑚

𝑑𝑑𝑣𝑣
=

𝑒𝑒
1 + 𝑒𝑒

 . 
(2-2) 

The immiscibility of phases at the micro-level makes it possible to define a micro void ratio, 

Meso

Macro

Micro

Clay
Macro mixture 

(immiscible)

Saturated clay grains
Meso mixture I 

(immiscible)

Gas filled pores
Meso mixture II 

(miscible)

Interlayer water Minerals

Dry air & Water vapor

Phase I Phase II

Phase I,i Phase I,ii
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𝑒𝑒𝜇𝜇 =
𝑑𝑑𝑣𝑣𝑝𝑝

𝜇𝜇

𝑑𝑑𝑣𝑣s
 . (2-3) 

When discussing the total stress at unsaturated states in section 3.2.1 a meso porosity, 𝜙𝜙𝑚𝑚, is used. It 
is defined as, 

𝜙𝜙𝑚𝑚 =
𝑑𝑑𝑚𝑚 𝑣𝑣𝑝𝑝
𝑑𝑑𝑣𝑣

= 1 −
1 + 𝑒𝑒𝜇𝜇
1 + 𝑒𝑒

 (2-4) 

and is, as shown, possible to express in terms of total and micro void ratios. 

As indicated in the right diagram of Figure 2-1, and in the first paragraph of this section, volumes in 
the structure are allotted specific constituents (mineral, water and air): 

• The meso pore space contains dry air and water vapor: 𝑑𝑑𝑚𝑚𝑝𝑝
𝑚𝑚 = 𝑑𝑑𝑚𝑚𝑔𝑔

𝑎𝑎 + 𝑑𝑑𝑚𝑚𝑔𝑔
𝑤𝑤 

• The micro pore space contains interlayer water: 𝑑𝑑𝑚𝑚𝑝𝑝
𝜇𝜇 = 𝑑𝑑𝑚𝑚𝑙𝑙

𝑤𝑤 

• The solid volume contains minerals: 𝑑𝑑𝑚𝑚𝑠𝑠 = 𝑑𝑑𝑚𝑚𝑚𝑚 

 

The above gives that 𝑑𝑑𝑣𝑣𝑔𝑔 = 𝑑𝑑𝑣𝑣𝑝𝑝𝑚𝑚 , 𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤 = 𝑑𝑑𝑣𝑣𝑝𝑝
𝜇𝜇  and that there is a solid volume element 𝑑𝑑𝑣𝑣𝑠𝑠. The 

degree of liquid saturation can then be expressed as, 

𝑆𝑆𝑙𝑙 =
𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤

𝑑𝑑𝑣𝑣𝑝𝑝
=
𝑒𝑒𝜇𝜇
𝑒𝑒

 . (2-5) 

Using mass elements and volume elements makes it possible to formulate mass densities: 

𝜌𝜌𝑠𝑠 =
𝑑𝑑𝑚𝑚𝑠𝑠

𝑑𝑑𝑣𝑣𝑠𝑠
 ,𝜌𝜌𝑙𝑙 =

𝑑𝑑𝑚𝑚𝑙𝑙
𝑤𝑤

𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤
 and 𝜌𝜌𝑔𝑔 =

𝑑𝑑𝑚𝑚𝑔𝑔
𝑎𝑎

𝑑𝑑𝑣𝑣𝑔𝑔
+
𝑑𝑑𝑚𝑚𝑔𝑔

𝑤𝑤

𝑑𝑑𝑣𝑣𝑔𝑔
= 𝜃𝜃𝑔𝑔𝑎𝑎 + 𝜃𝜃𝑔𝑔𝑤𝑤 . (2-6) 

2.2 Balance equations 
Using what is defined above, balance equations of solid mass, water mass and force can be 
formulated.  

The solid mass balance, 

�̇�𝑒 = (1 + 𝑒𝑒0) 𝜀𝜀�̇�𝑣 , (2-7) 

is expressed in terms of total void ratio and the volumetric strain invariant 𝜀𝜀𝑣𝑣 = tr𝜺𝜺, where the small 
strain tensor, 𝜺𝜺 = 0.5(Grad𝒖𝒖+ (Grad𝒖𝒖)𝑇𝑇), is defined by displacement gradients, Grad𝒖𝒖. 

The water mass balance, 

�̇�𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙) + 𝜌𝜌𝑙𝑙�̇�𝑒𝜇𝜇(1−𝜙𝜙) + div(𝜌𝜌𝑙𝑙𝒗𝒗𝑑𝑑,𝑙𝑙) + �̇�𝜃𝑔𝑔
𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) + 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒(1− 𝜙𝜙)

− 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒𝜇𝜇(1− 𝜙𝜙) + div�𝜃𝜃𝑔𝑔𝑤𝑤𝒗𝒗𝑑𝑑,𝑔𝑔� = 𝑓𝑓 
(2-8) 

is expressed in terms of total porosity, total and micro void ratio, liquid water density, vapor mass per 
gas phase, liquid water mass flux 𝜌𝜌𝑙𝑙𝒗𝒗𝑑𝑑,𝑙𝑙, and vapor mass flux 𝜃𝜃𝑔𝑔𝑤𝑤𝒗𝒗𝑑𝑑,𝑔𝑔. The liquid Darcy flux, 𝒗𝒗𝑑𝑑,𝑙𝑙, 
and gas Darcy flux, 𝒗𝒗𝑑𝑑,𝑔𝑔, are defined as, 

𝒗𝒗𝑑𝑑,𝑙𝑙 = 𝑒𝑒𝜇𝜇(1− 𝜙𝜙)(𝒗𝒗𝑙𝑙 − 𝒗𝒗) , and 𝒗𝒗𝑑𝑑,𝑔𝑔 = �𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)(𝒗𝒗𝑔𝑔 − 𝒗𝒗) . (2-9) 

The force balance, 

div𝝈𝝈 + 𝒃𝒃 = 𝟎𝟎 , (2-10) 

is expressed in terms of the stress tensor, 𝝈𝝈 , and the body force, 𝒃𝒃. 

2.3 Constitutive equations 
The chosen independent variables, for which the balance equations are solved for, is the set 
consisting of displacements, 𝒖𝒖, and suction, 𝑠𝑠. The latter is related to the difference in chemical 
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potential between the interlayer water of the clay and a chosen referential state (normally that of the 
groundwater), see (1-3). If the thermal problem is to be solved, the energy balance and temperature, 
𝑅𝑅, will be added to the equation system and independent variables, respectively. Below, however, 
only isothermal conditions are considered. 

To complete the formulation, material specific relations are specified for the remaining variables. If 
not stated, pressures are given in Pa and temperatures in K in the equations below. An assumption of 
a uniform gas pore pressure field, where  𝑝𝑝𝑔𝑔 = 0.1 MPa, has been used. A tilde above a character 
indicate that it is a function and the same character without a tilde indicates a parameter given by that 
function, i.e., 𝑎𝑎 = 𝑎𝑎�(𝑥𝑥).  

The interlayer water is specified by the liquid density,  

𝜌𝜌�𝑙𝑙(𝑠𝑠) = 𝜌𝜌𝑙𝑙0 exp(−𝛼𝛼𝑠𝑠) , (2-11) 

with reference value 𝜌𝜌𝑙𝑙0 and a compressibility 𝛼𝛼, and the Darcy flux, 

𝒗𝒗𝑑𝑑,𝑙𝑙 = 𝒒𝒒�𝑙𝑙�𝑒𝑒, 𝑒𝑒𝜇𝜇, 𝑠𝑠� =
 �̃�𝜅�𝑒𝑒, 𝑒𝑒𝜇𝜇�

𝜇𝜇
grad𝑠𝑠 , 

(2-12) 

driven by gradients in suction. 𝜇𝜇 denotes the viscosity and  �̃�𝜅�𝑒𝑒, 𝑒𝑒𝜇𝜇� the permeability function given 
by, 

�̃�𝜅�𝑒𝑒, 𝑒𝑒𝜇𝜇� = 𝜅𝜅0 �
𝑒𝑒
𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟

�
𝛽𝛽

�
𝑒𝑒𝜇𝜇
𝑒𝑒 �

𝜆𝜆
 , 

(2-13) 

where 𝜅𝜅0  and 𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟 are reference values, 𝛽𝛽 determines the dependence on void ratio, and λ the 
dependence on degree of water saturation. As shown earlier, see (2-5), the fraction formed by micro 
void ratio and total void ratio is equal to the degree of water saturation. 

The gas phase is assumed to be a mixture of two ideal gases, water vapor and dry air. Thus, 𝑝𝑝𝑔𝑔 =
𝑝𝑝𝑔𝑔𝑤𝑤 + 𝑝𝑝𝑔𝑔𝑎𝑎, where 𝑝𝑝𝑔𝑔𝑤𝑤 and 𝑝𝑝𝑔𝑔𝑎𝑎 denote the partial gas pressures for the water and air constituents, 
respectively. The formulation agrees with that of CODE_BRIGHT. The gas density, 𝜌𝜌𝑔𝑔, can be 
expressed in terms of the two constituents’ “relative” densities, vapor mass per gas phase, 𝜃𝜃𝑔𝑔𝑤𝑤, and 
dry air mass per gas phase, 𝜃𝜃𝑔𝑔𝑎𝑎, see (2-6), 

𝜌𝜌�𝑔𝑔(𝑠𝑠,𝑅𝑅) = 𝜃𝜃�𝑔𝑔
𝑤𝑤(𝑠𝑠,𝑅𝑅) + 𝜃𝜃�𝑔𝑔

𝑎𝑎(𝑠𝑠,𝑅𝑅) . (2-14) 

The constituents’ relative densities are given by, 

𝜃𝜃�𝑔𝑔
𝑤𝑤(𝑠𝑠,𝑅𝑅) =

𝑀𝑀𝑤𝑤

𝑅𝑅𝑅𝑅
 𝑝𝑝�𝑔𝑔𝑤𝑤𝑠𝑠𝑎𝑎𝑡𝑡(𝑅𝑅)𝑅𝑅𝑅𝑅� (𝑠𝑠,𝑅𝑅), (2-15) 

𝜃𝜃�𝑔𝑔
𝑎𝑎(𝑠𝑠,𝑅𝑅) =  

𝑀𝑀𝑎𝑎

𝑅𝑅𝑅𝑅
�𝑝𝑝𝑔𝑔 − 𝑝𝑝�𝑔𝑔𝑤𝑤𝑠𝑠𝑎𝑎𝑡𝑡(𝑅𝑅)𝑅𝑅𝑅𝑅� (𝑠𝑠,𝑅𝑅)� , (2-16) 

where 

𝑝𝑝�𝑔𝑔𝑤𝑤𝑠𝑠𝑎𝑎𝑡𝑡(𝑅𝑅) = 136075 · 106exp�
−5239.7

𝑅𝑅
� , 

(2-17) 

𝑅𝑅𝑅𝑅� (𝑠𝑠,𝑅𝑅) = exp�
−𝑠𝑠𝑀𝑀𝑤𝑤

𝑅𝑅𝑅𝑅𝜌𝜌𝑙𝑙0
� . (2-18) 

In the expressions above 𝑀𝑀𝑤𝑤 = 0.018 mol/kg, 𝑀𝑀𝑎𝑎 = 0.029 mol/kg and 𝑅𝑅 = 8.314472 J/mol/K. 
The vapor diffusion flux 𝒊𝒊𝑔𝑔𝑤𝑤 is driven by a gradient in vapor mass concentration grad𝑐𝑐, 

𝜃𝜃𝑔𝑔𝑤𝑤𝑚𝑚 𝒗𝒗𝑑𝑑,𝑔𝑔 = 𝒊𝒊𝑔𝑔𝑤𝑤 = −𝑫𝑫��𝑒𝑒, 𝑒𝑒𝜇𝜇, 𝑠𝑠,𝑅𝑅�grad𝑐𝑐 . (2-19) 

𝑫𝑫��𝑒𝑒, 𝑒𝑒𝜇𝜇, 𝑠𝑠,𝑅𝑅�, the diffusion coefficient function, is given by, 

𝑫𝑫��𝑒𝑒, 𝑒𝑒𝜇𝜇, 𝑠𝑠,𝑅𝑅� = 𝜏𝜏𝜙𝜙𝜌𝜌�𝑔𝑔(𝑠𝑠,𝑅𝑅) �1−
𝑒𝑒𝜇𝜇
𝑒𝑒 �

𝐷𝐷
𝑅𝑅2.3

𝑝𝑝𝑔𝑔
𝟏𝟏 , (2-20) 
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where 𝜏𝜏 denotes the tortuosity, 𝜙𝜙 the porosity, and 𝐷𝐷 the diffusion coefficient of vapor. Since the 
vapor mass concentration can be formulated using the expressions for the densities 𝜃𝜃𝑔𝑔𝑤𝑤 and 𝜌𝜌𝑔𝑔, 

�̃�𝑐(𝑠𝑠,𝑅𝑅) = �
𝜃𝜃�𝑔𝑔

𝑤𝑤(𝑠𝑠,𝑅𝑅)
𝜌𝜌�𝑔𝑔(𝑠𝑠,𝑅𝑅) � , (2-21) 

the gradient can be expressed in terms of gradients in suction and temperature, 

grad𝑐𝑐 =  
𝜕𝜕�̃�𝑐(𝑠𝑠,𝑅𝑅)
𝜕𝜕𝑠𝑠

grad𝑠𝑠 +
𝜕𝜕�̃�𝑐(𝑠𝑠,𝑅𝑅)
𝜕𝜕𝑅𝑅

grad𝑅𝑅 . (2-22) 

As mentioned above, the present description has not included the energy balance and only isothermal 
conditions are considered, the temperature gradient in the expression above is therefore zero. 

The mechanical material model relates stress to deformation (strain) and suction. The total stress 𝝈𝝈 
for unsaturated/saturated states is given by scaling the saturated grain stress 𝝈𝝈I by a contact area 
variable 𝛼𝛼, 

𝝈𝝈 = 𝛼𝛼𝝈𝝈𝐼𝐼  . (2-23) 

The contact area variable approximates the ratio of the contact area between saturated grains to total 
area of a representative volume element. The contact area variable is given by the function, 

𝛼𝛼 = 𝛼𝛼��𝑒𝑒, 𝑒𝑒𝜇𝜇� = �
1 + 𝑒𝑒𝜇𝜇
1 + 𝑒𝑒

�
𝛾𝛾

, (2-24) 

where 𝛾𝛾 defines the shape of the function. It is worth to note that the bracketed expression is equal to 
the volume fraction of the clay phase which can be expressed 1 −𝜙𝜙𝑚𝑚, using the meso porosity 
defined in (2-4).  

As discussed in chapter 1, the thermodynamically motivated relation of HBM, describing the 
hydromechanical coupling for a saturated system can be expressed, 

−𝝈𝝈𝐼𝐼 = 𝚿𝚿− 𝑠𝑠𝟏𝟏 . (2-25) 

The stress in the saturated grains is here related to suction and a quantity which is called clay 
potential tensor, 𝚿𝚿. Thus, the clay potential tensor can be viewed to bridge the mechanical and 
hydraulic processes.  

Experimentally determined retention and swelling pressures for bentonite show a dependency on void 
ratio and the path which the state has been arrived at. The clay potential is therefore made dependent 
on void ratio and a path dependent variable 𝒇𝒇, according to, 

𝚿𝚿 = Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇�𝟏𝟏+ Ψ�Δ�𝑒𝑒𝜇𝜇�𝒇𝒇 . (2-26) 

The present formulation uses two functions dependent on the micro void ratio, Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇� and Ψ�Δ�𝑒𝑒𝜇𝜇�. 
The first one being a “mean” function and the second a “deviation” function multiplied to the path 
dependent variable.  

The path dependent variable is governed by a limiting condition and an evolution equation driven by 
strain, given by, 

𝐹𝐹 = 𝑅𝑅2 − �𝑓𝑓𝑝𝑝
2 + 𝑓𝑓𝑞𝑞

2� (2-27) 

𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= �−𝑲𝑲
𝐹𝐹
𝑅𝑅2

𝑑𝑑𝐹𝐹 < 0

−𝑲𝑲 𝑑𝑑𝐹𝐹 ≥ 0
    , 𝑲𝑲 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑙𝑙 , (2-28) 

where the invariants 𝑓𝑓𝑝𝑝 and 𝑓𝑓𝑞𝑞 are obtained from, 

𝑓𝑓𝑝𝑝 ≡
1
3

tr𝒇𝒇   and   𝑓𝑓𝑞𝑞
2 ≡

3
2
𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 · 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 , (2-29) 

where,  

𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 = 𝒇𝒇 − 𝑓𝑓𝑝𝑝 𝟏𝟏. (2-30) 
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The final part of the mechanical constitutive relations is an evolution equation of the micro void ratio, 

𝑑𝑑𝑒𝑒𝜇𝜇 =
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 , (2-31) 

The first of the differentials describes a kinematical coupling to the total void ratio and the second 
describe the swelling of the saturated clay grains at the micro scale given a change in suction. The 
first differential is chosen as being given by the contact area function, 

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

= 𝛼𝛼��𝑒𝑒, 𝑒𝑒𝜇𝜇�, (2-32) 

and the second differential by, 

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

=

⎩
⎪
⎨

⎪
⎧�𝑒𝑒 − 𝑒𝑒𝜇𝜇�Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇�

𝑠𝑠
1

�𝑒𝑒 − 𝑒𝑒𝜇𝜇�
𝜕𝜕Ψ�𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

− Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇�
if �̇�𝑠 < 0

−𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝
�𝑠𝑠 − Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇 − 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝��

otherwise

 . (2-33) 
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3 Additional information about HBM 
This chapter contains additional/complementary information about the HBM formulation to what was 
given in the brief description in chapter 2. More information about the derivations/descriptions in this 
chapter can be found in the referenced appendices and Larsson (2012). 

In 3.1 some steps in the derivation of the mass balance equations and the final results are given. 
Detailed derivations of the mass balances can be found in Appendix B and Appendix C. The solid 
mass balance and the connection to a proper updating-scheme for the void ratio/porosity and a clear 
definition of the Darcy-flow (in terms of velocities and pore structure variables) are described.  

In 3.2 the mechanical constitutive relations are discussed in more detail. Studies of the connections 
between the homogenized stress approach and the present formulation might give new insights about 
how to view some of the used mechanical entities and how to proceed forward. The clay-potential 
plays a central role in the model and its connection to experiments is described next. The most recent 
part of the formulation, the new relations governing the rate dependent variable, are given together 
with a graphical representation. The relations governing the micro void ratio are also described. 

3.1 Mass balance equations 

3.1.1 Solid mass balance 

The solid mass per mixture volume can be expressed, 
𝑑𝑑𝑚𝑚𝑠𝑠

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑠𝑠

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜌𝜌𝑠𝑠(1− 𝜙𝜙). (3-1) 

The total solid mass ℳ𝑠𝑠 is obtained from integrating the expression above over the body, 

ℳ𝑠𝑠 = � 𝜌𝜌𝑠𝑠(1−𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

  . (3-2) 

Taking the time derivative with respect to the solids reference configuration gives the global form of 
the solid mass balance, 

𝐷𝐷𝑠𝑠ℳ𝑠𝑠

𝐷𝐷𝐷𝐷
= ℳ̇𝑠𝑠 = 0 . (3-3) 

Using (3-3) a local form of the solid mass balance can be derived. From this, the following 
approximate relation for updating the void ratio, using the volumetric strain, can be obtained. 

�̇�𝑒 = (1 + 𝑒𝑒)𝐽𝐽/̇𝐽𝐽 ≈ (1 + 𝑒𝑒0)𝜀𝜀�̇�𝑣 (3-4) 

3.1.2 Liquid water mass balance 

The liquid water mass per mixture volume can be expressed as, 
𝑑𝑑𝑚𝑚𝑙𝑙

𝑤𝑤

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑙𝑙

𝑤𝑤

𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤
𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙) (3-5) 

The total liquid water mass ℳ𝑙𝑙 is obtained from, 

ℳ𝑙𝑙 = � 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

 (3-6) 

After taking the time derivative and performing several steps, the local form of the balance of liquid 
water mass reads, 

�̇�𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙) + 𝜌𝜌𝑙𝑙�̇�𝑒𝜇𝜇(1− 𝜙𝜙) + div(𝜌𝜌𝑙𝑙𝒗𝒗𝑑𝑑,𝑙𝑙) = 𝑓𝑓𝑙𝑙
𝑤𝑤 . (3-7) 

Here 𝑓𝑓𝑙𝑙
𝑤𝑤 is a source term and 𝒗𝒗𝑑𝑑,𝑙𝑙 the Darcian velocity, defined by 𝒗𝒗𝑑𝑑,𝑙𝑙 = 𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝒗𝒗𝑟𝑟,𝑙𝑙, where the 

relative velocity 𝒗𝒗𝑟𝑟,𝑙𝑙 = 𝒗𝒗𝑙𝑙 − 𝒗𝒗, between the liquid phase and solid phase is introduced.  
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3.1.3 Gaseous water mass balance 

The gaseous water mass per mixture volume can be expressed as, 
𝑑𝑑𝑚𝑚𝑔𝑔

𝑤𝑤

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑔𝑔

𝑤𝑤

𝑑𝑑𝑣𝑣𝑔𝑔
𝑑𝑑𝑣𝑣𝑔𝑔
𝑑𝑑𝑣𝑣𝑠𝑠

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) (3-8) 

The total gaseous water mass ℳ𝑔𝑔 is obtained from, 

ℳ𝑔𝑔 = � 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

. (3-9) 

Performing the same procedure as for the liquid phase the local form of the balance of gaseous water 
is obtained as, 

�̇�𝜃𝑔𝑔
𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) + 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒(1− 𝜙𝜙)− 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒𝜇𝜇(1− 𝜙𝜙) + div�𝜃𝜃𝑔𝑔𝑤𝑤𝒗𝒗𝑑𝑑,𝑔𝑔� = 𝑓𝑓𝑔𝑔

𝑤𝑤 , (3-10) 

where 𝑓𝑓𝑔𝑔
𝑤𝑤is a source term, and 𝒗𝒗𝑑𝑑,𝑔𝑔 = �𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝒗𝒗𝑟𝑟,𝑔𝑔 the Darcian velocity expressed in terms 

of the relative velocity 𝒗𝒗𝑟𝑟,𝑔𝑔 = 𝒗𝒗𝑔𝑔 − 𝒗𝒗 between the gas phase and solid phase. 

3.2 Mechanical material model 
The basis of the total stress used in HBM is discussed in 3.2.1, the clay potential functions in chapter 
3.2.2, the path dependent variable in chapter 3.2.3, and the micro void ratio evolution equation in 
chapter 3.2.4. 

3.2.1 Total stress in HBM and total stress in a homogenized stress framework 

As described in (2-23), in HBM the total stress is given by scaling a saturated grain stress by a 
contact area variable, approximating the ratio between the contact area between saturated grains and 
the total area for a representative volume element (RVE). In this section the relation between the 
HBM formulation and that used in a homogenized stress framework is investigated. Homogenized 
stress is commonly part of formulations representing mixtures. 

First, some basic context is given, and the general theory of the homogenized stress is outlined. The 
next step is to express the unsaturated clay system at the meso-level, where it contains the two 
phases: (I) saturated clay and (II) gas, within the homogenized framework, see Figure 2-1. Thereafter 
follows a comparison between HBM and the homogenized formulation. Finally, the mechanics 
taking place at the scale of individual clay grains are discussed to find out if what was found when 
comparing the formulations seems reasonable.  

Below, two “scales” will be denoted by microscopic and macroscopic, respectively. They should not 
be confused with the macro, meso, and micro, used when describing the different levels in the 
material structure assumptions. All entities (variables and parameters) in HBM belong to what below 
is denoted the macroscopic scale, i.e., we use a macroscopic representation of the material. This is 
mentioned since the nomenclature could be somewhat confusing. For instance, the micro void ratio 
𝑒𝑒𝜇𝜇 is a macroscopic variable which contains information about the material at the microscopic level. 
Both notations, for the material structure levels and scales in the homogenized stress framework, 
serve their purposes, and better ones have not yet been found. 

In the homogenized stress formulation, the total stress of the mixture, 𝝈𝝈, is defined as the volumetric 
mean value of a “micro stress field”, 𝝈𝝈𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚, which may vary over an RVE, with volume 𝑉𝑉. Thus, 

𝝈𝝈 =
1
𝑉𝑉
� 𝝈𝝈𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑑𝑑𝑣𝑣
ℬ

 . (3-11) 

The link between the macroscopic and microscopic scale is visible in the definition above. Fields 
varying over the RVE are microscopic. Fields that are constant over the RVE are macroscopic. The 
latter statement is also called “the principle of scale separation”, which will be used later. One can 
also say that the RVE is representing a macroscopic point.  
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If defining a homogenized stress for a mixture where there are several phases, 𝑃𝑃, their individual 
contribution to the total stress can be expressed as a summation of phase stresses at the micro-, 
𝝈𝝈𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚, and macro-level, 𝝈𝝈𝑃𝑃, 

𝝈𝝈 =
1
𝑉𝑉
�� 𝝈𝝈𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑑𝑑𝑣𝑣

ℬ𝑃𝑃∀𝑃𝑃

= �𝝈𝝈𝑃𝑃
∀𝑃𝑃

. (3-12) 

The last equality was obtained by using the principle of scale separation. The homogenized phase 
stress 𝝈𝝈𝑃𝑃, also denoted partial stress of  𝑃𝑃, can be expressed in terms of an intrinsic stress of  𝑃𝑃, 
𝝈𝝈𝑃𝑃𝑖𝑖𝑖𝑖, using a volume fraction for the phase, 𝑛𝑛𝑃𝑃 = 𝑉𝑉𝑃𝑃 𝑉𝑉⁄ , 

𝝈𝝈𝑃𝑃 = 𝑛𝑛𝑃𝑃𝝈𝝈𝑃𝑃𝑖𝑖𝑖𝑖 , (3-13) 

where, 

𝝈𝝈𝑃𝑃𝑖𝑖𝑖𝑖 =
1
𝑉𝑉𝑃𝑃

� 𝝈𝝈𝑃𝑃𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑑𝑑𝑣𝑣
ℬ𝑃𝑃

 . (3-14) 

The total stress may thus be expressed as, 

𝝈𝝈 = �𝑛𝑛𝑃𝑃𝝈𝝈𝑃𝑃𝑖𝑖𝑖𝑖
∀𝑃𝑃

 . (3-15) 

The unsaturated clay is now expressed in the homogenized stress framework. The present model has 
two phases at the intermediate (meso) level, the saturated clay phase, I, and the gas phase, II, see 
Figure 2-1. The volume fraction of phase II can be identified as the meso-porosity, see Equation 
(2-4),  𝑛𝑛𝐼𝐼𝐼𝐼 = 𝜙𝜙𝑚𝑚 = 𝑑𝑑𝑣𝑣𝑝𝑝𝑚𝑚 𝑑𝑑𝑣𝑣⁄ , which gives that, 𝑛𝑛𝐼𝐼 = 1 − 𝜙𝜙𝑚𝑚. The intrinsic stress for the second 
phase is given by the gas pressure, 𝝈𝝈𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = −𝑝𝑝𝑔𝑔1. Using this results in, 

𝝈𝝈 = (1 −𝜙𝜙𝑚𝑚)𝝈𝝈𝐼𝐼𝑖𝑖𝑖𝑖 − 𝜙𝜙𝑚𝑚𝑝𝑝𝑔𝑔𝟏𝟏 . (3-16) 

In the HBM-formulation, given by (2-23), (2-24) and (2-4), the macroscopic total stress reads, 

𝝈𝝈∗ = (1− 𝜙𝜙𝑚𝑚)𝛾𝛾𝝈𝝈𝐼𝐼∗  , (3-17) 

where 𝛾𝛾 > 1. The superscript * is used for differentiation between stresses in our formulation from 
those defined in the homogenized stress formulation. Note that 𝝈𝝈𝐼𝐼∗ is defined as the stress at fully 
saturated conditions given by 𝝈𝝈𝐼𝐼∗ = −𝚿𝚿 + 𝑠𝑠𝟏𝟏. 

To facilitate a comparison between the formulations above, the listing in Table 3-1 is given. 

Table 3-1 Type of formulation and stress contributions. 
 Stress contributions  

 Phase I: Saturated clay Phase II: Gas 

Homogenized formulation (1− 𝜙𝜙𝑚𝑚)𝝈𝝈𝐼𝐼𝑖𝑖𝑖𝑖 (a) −𝜙𝜙𝑚𝑚𝑝𝑝𝑔𝑔𝟏𝟏 

HBM formulation (1− 𝜙𝜙𝑚𝑚)𝛾𝛾𝝈𝝈𝐼𝐼∗ (b)  

a) 𝝈𝝈𝐼𝐼𝑖𝑖𝑖𝑖 = 1
𝑉𝑉𝐼𝐼 ∫ 𝝈𝝈𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑑𝑑𝑣𝑣ℬ𝐼𝐼  

b) 𝝈𝝈𝐼𝐼∗ = −𝚿𝚿 + 𝑠𝑠𝟏𝟏 

 

The listing in Table 3-1 shows that the gas phase pressure contribution has been approximated to zero 
in HBM, 

𝑝𝑝𝑔𝑔 ≈ 0 , (3-18) 

and when studying the saturated clay stress contributions, the HBM formulation can be viewed as to 
approximate the intrinsic stress (volume average of micro stress over I) by, 
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𝝈𝝈𝐼𝐼𝑖𝑖𝑖𝑖 =
1
𝑉𝑉𝐼𝐼
� 𝝈𝝈𝐼𝐼𝑚𝑚𝑖𝑖𝑐𝑐𝑟𝑟𝑚𝑚𝑑𝑑𝑣𝑣
ℬ𝐼𝐼

≈ (1− 𝜙𝜙𝑚𝑚)𝛾𝛾−1𝝈𝝈𝐼𝐼∗ . (3-19) 

In the relation above 𝝈𝝈𝐼𝐼∗ is scaled by the factor (1 −𝜙𝜙𝑚𝑚)𝛾𝛾−1, where an exponent 𝛾𝛾 − 1 > 0 have 
been used for representing bentonite, thus, 0 < (1− 𝜙𝜙𝑚𝑚)𝛾𝛾−1 ≤ 1. HBM may be viewed as 
approximating the intrinsic stress by reducing the stress at full saturation, 𝝈𝝈𝐼𝐼∗, by a function 
increasing with increasing saturation, see Figure 3-1. This can be thought of as if the stress is being 
transferred more effectively with increasing saturation.  

 
Figure 3-1. Illustration of a typical appearance of the function (𝟏𝟏 − 𝝓𝝓𝒎𝒎)𝜸𝜸−𝟏𝟏 scaling the stress at full saturation in 
HBM. 𝟏𝟏 − 𝝓𝝓𝒎𝒎 is equal to the volume ratio of the saturated clay phase. 

In the final paragraphs of this section an “evaluation” of the result from the comparison is attempted. 
For this purpose, the mechanics at the scale of individual clay grains is discussed using a toy model. 
The given description should only be taken as a rough sketch, focused as to give information 
necessary for the evaluation: how do the averaged micro stress field depends on the degree of 
saturation. 

The drawing in Figure 3-2 is a schematic illustration of the idea behind the mechanics at the scale of 
individual clay grains. In the drawing, a saturated grain of clay is illustrated at two states of different 
water saturation of the mixture. This means that there are different volume ratios of the gas phase in 
the mixture at the two states, i.e., the meso-porosity, 𝜙𝜙𝑚𝑚, is different.  

At its boundary, the saturated clay grain either faces other saturated clay grains, indicated by (1) or 
porosities containing the gas phase indicated by (2). In this example it is assumed that the gas 
pressure is unsignificant as compared to the stress at the grain interfaces. When the grain takes up 
water it is assumed to swell isotropically. Due to differences in “mechanical support” at (1) and (2) a 
heterogeneous stress field will develop within the clay grain.  

Compressive stresses of higher magnitude will develop between the clay grain interfaces indicated by 
(1), where there is strong support. In the drawings volumes with high compressive stresses are 
indicated with hatched boundaries and the symbol + internally. At the interfaces against the gas 
phase, indicated by (2), there is weak support, the clay swells into the gas filled pores, and normal 
stresses are unchanged. 

When the saturation increases (going from the left to the right drawing) the swelling increases the 
area of the clay grain interfaces and the area of the gas phase interfaces decreases. The clay grain 
thereby experiences an increased support from the neighbouring clay grains and the part of the grain 
which can transfer stresses increases as well. At full saturation (not shown in the drawing) only grain 
to grain contacts exist and the stress is transmitted perfectly. 

Following the reasoning above: the higher the saturation the closer the volume average of the micro 
stress field is to the higher stress level in the grain. Relation (3-19), found when comparing HBM 
with the homogenized view, agrees with this reasoning. This indicates that the chosen expression for 
the area fraction function in HBM agrees well with characters sought in a function for an intrinsic 
stress in a homogenized formulation. 
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Figure 3-2. Schematic illustration of individual clay grains at two different saturations. 

3.2.2 Clay potential functions 

When carrying out the modelling tasks in the BEACON project it became obvious that the 
parametrization and fit of the clay potential function was an essential part in achieving solutions that 
provide a good representation of experimental behaviour of bentonite. Models which simulate 
unsaturated conditions require a clay potential with a very good fit to experimental data over a large 
interval in void ratio. This is due to the large active range in micro void ratio during such simulations, 
especially so when starting out from very dry conditions (or if the material undergo significant 
drying). 

The clay potential bridges the mechanical and hydraulic processes at the core of the model. A well-
designed clay potential function should therefore enable the model to produce both characteristic 
mechanical and characteristic hydraulic behaviour. This must be kept in mind when selecting the 
experimental data for calibrating the clay potential, when selecting a suitable parametrization, and 
performing the fitting. To establish a link from experimental data to the clay potential, several 
characteristic quantities are defined. These are the swelling pressure, 𝑝𝑝𝑠𝑠, the deviator stress at 
failure, 𝑞𝑞𝑟𝑟, the wetting retention, 𝑠𝑠𝑤𝑤, and the drying retention, 𝑠𝑠𝑑𝑑. The clay potential curves, Ψ𝑀𝑀 and 
ΨΔ, are then identified in terms of these characteristic quantities. The identification is facilitated by 
dividing the mechanical model in a spherical and deviatoric part, this is described in Appendix D.  

For the mechanical regime, the swelling pressure, 𝑝𝑝𝑠𝑠, is defined as the minimum pressure attained at 
full saturation and when suction is zero, and the deviator stress at failure, 𝑞𝑞𝑟𝑟, (also at full saturation) 
is defined as the maximum attainable deviator stress, 

𝑝𝑝𝑠𝑠 ≡ min(𝑝𝑝) when 𝑠𝑠 = 0 , (3-20) 

𝑞𝑞𝑟𝑟 ≡ max(𝑞𝑞) . (3-21) 

With these definitions the clay potential contributions Ψ𝑀𝑀 and ΨΔ can be identified as, 

Ψ𝑀𝑀 = 𝑝𝑝𝑠𝑠 + 𝑞𝑞𝑟𝑟   and  ΨΔ =
1
𝑅𝑅
𝑞𝑞𝑟𝑟  . (3-22) 

For the hydraulic regime, the wetting retention, 𝑠𝑠𝑤𝑤, is defined as the minimum suction obtained under 
unconfined conditions, and the drying retention, 𝑠𝑠𝑑𝑑, is defined as the maximum suction obtained 
under unconfined conditions, 

𝑠𝑠𝑤𝑤 ≡ min(𝑠𝑠) when 𝝈𝝈 = 𝟎𝟎 , (3-23) 

𝑠𝑠𝑑𝑑 ≡ max(𝑠𝑠) when 𝝈𝝈 = 𝟎𝟎 . (3-24) 

With the given definitions the clay potential contributions  Ψ𝑀𝑀 and ΨΔ can be identified as, 
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Ψ𝑀𝑀 =
𝑠𝑠𝑑𝑑 + 𝑠𝑠𝑤𝑤

2
  and  ΨΔ =

𝑠𝑠𝑑𝑑 − 𝑠𝑠𝑤𝑤
2𝑅𝑅

 . (3-25) 

Thus, to achieve proper representations in both regimes (mechanical and hydraulic) both data sets 
{𝑝𝑝𝑠𝑠,𝑞𝑞𝑟𝑟} and {𝑠𝑠𝑑𝑑 , 𝑠𝑠𝑤𝑤} must be considered and these must be well suited and consistent when fitting 
Ψ𝑀𝑀 and ΨΔ. 

3.2.3 Path dependent variable 

The history dependency of 𝒇𝒇 is seen in its incremental updating scheme which can be expressed as, 

𝒇𝒇 = 𝒇𝒇0 + � 𝑑𝑑𝒇𝒇
𝑡𝑡

𝑡𝑡0
 . 

(3-26) 

The increment in the path dependent variable, 𝑑𝑑𝒇𝒇, is given by an incremental relation expressed in 
terms of strain, 

𝑑𝑑𝒇𝒇 =
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

𝑑𝑑𝜺𝜺 , 
(3-27) 

where the partial derivative is a fourth order tensor which can be expressed as, 
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

=
𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝜕𝜕𝜀𝜀𝑖𝑖𝑙𝑙

𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑙𝑙 . (3-28) 

The partial derivative is given by, 

𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= �−𝑲𝑲
𝐹𝐹
𝑅𝑅2

𝑑𝑑𝐹𝐹 < 0

−𝑲𝑲 𝑑𝑑𝐹𝐹 ≥ 0
 , (3-29) 

where 𝑲𝑲 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑙𝑙 is an unitless “stiffness tensor” and 𝐹𝐹 is part of the limiting 
condition, 

𝐹𝐹 = 𝑅𝑅2 − �𝑓𝑓𝑝𝑝
2 + 𝑓𝑓𝑞𝑞

2�, (3-30) 

where 𝑅𝑅 is a parameter determining the limiting value and the definitions of 𝑓𝑓𝑝𝑝 and 𝑓𝑓𝑞𝑞 are given in 
(2-29) and (2-30). 

In the present model 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 ≠ 0 for components where 𝑖𝑖 = 𝑘𝑘 & 𝑗𝑗 = 𝑙𝑙 . Due to symmetry in stress 
(𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖) we have that 𝒇𝒇 is symmetric and therefore 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 . Symmetry in strain gives that 
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖. The modulus 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 governs how “fast” 𝒇𝒇 goes towards the limiting value and have two 
different values, 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝐾𝐾𝑎𝑎𝑎𝑎 for the compressive/tensile components such as 𝑑𝑑𝑓𝑓11, and 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝐾𝐾𝑎𝑎𝑎𝑎 
for the shear components such as 𝑑𝑑𝑓𝑓12. 𝐾𝐾𝑎𝑎𝑎𝑎 is obtained by fitting the solution of the model against 
strain-deviator stress evolutions in triaxial tests. 𝐾𝐾𝑎𝑎𝑎𝑎 was calculated by expressing a given strain state 
in two different coordinate systems. This resulted in a tensile/compressive representation and a shear 
representation from which the ratio 𝐾𝐾𝑎𝑎𝑎𝑎/𝐾𝐾𝑎𝑎𝑎𝑎 = 1/2 could be obtained, see Appendix E. 

The vector, 

𝝋𝝋 ≡ 𝑓𝑓𝑝𝑝𝒆𝒆𝑝𝑝 + 𝑓𝑓𝑞𝑞𝒆𝒆𝑞𝑞 , (3-31) 

is useful when studying the limiting condition, which then may be expressed as, 

As shown in (3-29), the partial derivative is given different values depending on the sign of 𝑑𝑑𝐹𝐹, 
which can be expressed as, 

A graphical representation of the limiting condition is given in Figure 3-3. The left drawing shows 
the condition in 𝑓𝑓𝑝𝑝−𝑓𝑓𝑞𝑞 space where 𝐹𝐹 = 0 is indicated by the circle intersecting the axes at 𝑅𝑅 and 
−𝑅𝑅. Inside the circle 𝐹𝐹 > 0 and outside the circle 𝐹𝐹 < 0. The only parts “active” in the model are 
inside or on the circle. The current state is given by the vector 𝝋𝝋. At its tip two possible increments of 

𝐹𝐹 = 𝑅𝑅2 − 𝝋𝝋 · 𝝋𝝋. (3-32) 

𝑑𝑑𝐹𝐹 = −2𝝋𝝋 · 𝑑𝑑𝝋𝝋. (3-33) 
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the vector are indicated by 𝑑𝑑𝝋𝝋+ and 𝑑𝑑𝝋𝝋−. The superposed indices indicate the sign of the scalar 
product 𝝋𝝋 · 𝑑𝑑𝝋𝝋. 

The right drawing in Figure 3-3 shows the limiting condition when viewing the cut A-A indicated in 
the left figure. The horizontal coordinate is aligned with 𝝋𝝋 and the vertical coordinate shows the 
value of 𝐹𝐹. The products 𝝋𝝋 · 𝑑𝑑𝝋𝝋+ and 𝝋𝝋 · 𝑑𝑑𝝋𝝋−, show how the difference in alignment of 𝑑𝑑𝝋𝝋∓ with 
𝝋𝝋 gives different sign of 𝑑𝑑𝐹𝐹 and, by (3-29), different values for the partial derivatives.  

 
Figure 3-3. Graphical representation of the limiting condition for the path dependent variable. 

It is possible to formulate the rule in (3-29) as: 

• When 𝝋𝝋 · 𝑑𝑑𝝋𝝋 > 0, the stiffness tensor 𝑲𝑲 is scaled with 𝐹𝐹/𝑅𝑅2. 

• When 𝝋𝝋 · 𝑑𝑑𝝋𝝋 < 0, the stiffness tensor 𝑲𝑲 is scaled with 1. 

Thus, when getting closer to the limiting circle (𝐹𝐹 = 0) the change of the path dependent variable 
decreases until it becomes zero at the limit. When distancing from the limiting circle the change of 
the path dependent variable is maximized.  

3.2.4 Micro void ratio 

The evolution equation of the micro void ratio reads, 

𝑑𝑑𝑒𝑒𝜇𝜇 =
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

𝑑𝑑𝑒𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

𝑑𝑑𝑠𝑠 , 
(3-34) 

The first of the differentials describes a kinematical coupling to total void ratio and the second 
describe the swelling of the saturated clay grains in terms of suction. The first differential is chosen 
as being given by the contact area function, 

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

= 𝛼𝛼��𝑒𝑒, 𝑒𝑒𝜇𝜇�, 
(3-35) 

and the second differential by, 

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

=

⎩
⎪
⎨

⎪
⎧�𝑒𝑒 − 𝑒𝑒𝜇𝜇�Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇�

𝑠𝑠
1

�𝑒𝑒 − 𝑒𝑒𝜇𝜇�
𝜕𝜕Ψ�𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

− Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇�
if �̇�𝑠 < 0

−𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝
�𝑠𝑠 − Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇 − 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝��

otherwise

 . 

(3-36) 

The differential with respect to suction describes the swelling of the saturated clay grains. The 
suction differential is different for different sign of the suction rate. The expression active for drying 

A
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conditions was developed to better account for what is observed in experiments. Below follows a 
description of how the suction differential was formulated.   

For negative suction rates, the properties of 𝜕𝜕𝑒𝑒𝜇𝜇/𝜕𝜕𝑠𝑠 is illustrated in the left panel of Figure 3-4. The 
derivative is defined so that: i) the suction decreases faster than the ψ𝑀𝑀-function for increasing 𝑒𝑒𝜇𝜇-
values; and ii) so that saturated conditions (i.e., 𝑒𝑒𝜇𝜇 = 𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡) is reached precisely when 𝑠𝑠 = 0. The first 
condition implies that a stress which corresponds to 𝑓𝑓 = 0, (𝒇𝒇 = 𝑓𝑓𝟏𝟏) will display an increasing trend. 
This is achieved with the condition that the s/ψ𝑀𝑀-ratio displays a linear decrease with an increasing 
𝑒𝑒𝜇𝜇-value (Figure 3-4, left panel, right graph). The introduction of this ratio (𝑟𝑟) means that: 

𝑠𝑠 = 𝑟𝑟Ψ𝑀𝑀 . (3-37) 

Taking the derivative of the expression above with respect to 𝑒𝑒𝜇𝜇 results in the first relation in the 
equation below. 

𝜕𝜕𝑠𝑠
𝜕𝜕𝑒𝑒𝜇𝜇

=
𝜕𝜕𝑟𝑟
𝜕𝜕𝑒𝑒𝜇𝜇

Ψ𝑀𝑀 + 𝑟𝑟
𝜕𝜕Ψ𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

=
−𝑠𝑠
Ψ𝑀𝑀

1
𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡 − 𝑒𝑒𝜇𝜇

Ψ𝑀𝑀 +
𝑠𝑠
Ψ𝑀𝑀

𝜕𝜕Ψ𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

 (3-38) 

This expression is obtained by identifying 𝜕𝜕𝑟𝑟/𝜕𝜕𝑒𝑒𝜇𝜇 as a straight line from the point (𝑒𝑒𝜇𝜇, 𝑟𝑟) to point 
(𝑒𝑒𝑡𝑡𝑚𝑚𝑡𝑡, 0) in Figure 3-4 (left panel, right graph), and by substituting r with s/Ψ𝑀𝑀. Inverting the relation 
above gives the sought reciprocal partial derivative. 

For positive suction rates, the properties of the corresponding derivative are illustrated in the right 
panel of Figure 3-4. The derivative is defined so that the suction value changes asymptotically 
towards the Ψ𝑀𝑀-function. This implies that a stress (with 𝑓𝑓 = 0) will display an asymptotic trend 
towards zero. 

For this purpose, a parameter 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝 is introduced. The derivative is defined so that a stress path in 
each point (𝑒𝑒𝜇𝜇, 𝑠𝑠) is directed towards the point �𝑒𝑒𝜇𝜇 − 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝,Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇 − 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝�� which yields the 
following expression: 

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

=
−𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝

�𝑠𝑠 − Ψ�𝑀𝑀�𝑒𝑒𝜇𝜇 − 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝��
 . 

(3-39) 

Since 𝑒𝑒𝑠𝑠𝑡𝑡𝑒𝑒𝑝𝑝 is constant, this means that the point of direction will change with decreasing 𝑒𝑒𝜇𝜇 values. 
The absolute value is introduced so that the derivative will yield a negative value regardless of the 
relative magnitude of s and Ψ𝑀𝑀. 

Negative suction rates Positive suction rates 

  
Figure 3-4. Definition of 𝝏𝝏𝒆𝒆𝝁𝝁/𝝏𝝏𝝏𝝏. Left panel: Negative suction rates, 𝜳𝜳�𝑴𝑴 and 𝝏𝝏 vs 𝒆𝒆𝝁𝝁 (left); 𝝏𝝏/𝜳𝜳�𝑴𝑴- ratio vs. 𝒆𝒆𝝁𝝁 
(right). Right panel: Positive suction rates, 𝜳𝜳�𝑴𝑴 and 𝝏𝝏 vs. 𝒆𝒆𝝁𝝁. 
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4 Implementation in COMSOL® 
When implementing the HBM formulation in COMSOL Multipysics® the mass balances were 
implemented using a general partial differential equation (PDE) interface, the stress balance was 
incorporated by using the available solid mechanics interface and mechanical constitutive relations 
were specified using a distributed ordinary differential equation (DODE) interface.  

The mass balance equations have been implemented in two different ways, both considered to be 
proper, see section 4.1. Either with the mass balances implemented separately, or in a combined 
equation system. Whether one of the implementations is to be preferred before the other has not yet 
been established. The combined implementation was developed trying to improve convergency.  

Simple constitutive functions, such as 𝜌𝜌�𝑙𝑙(𝑠𝑠) = 𝜌𝜌𝑙𝑙0 exp(−𝛼𝛼𝑠𝑠), were, on recommendation from 
COMSOL® developers, implemented as variables rather than functions. Variable representation is 
apparently closer to what the algorithm uses internally. 

Constitutive relations on rate form, present in the mechanical part of the model, e.g., �̇�𝝈 = ℂ �̇�𝜺 + 𝕕𝕕 �̇�𝑠, 
implemented as DODEs, is discussed in section 4.2. 

When using the PDE and DODE interfaces, the discretization must be defined by specifying three 
quantities, shape function type, element order, and frame.  

• Shape function type: Lagrangean except for 𝝈𝝈 and 𝒇𝒇 where discontinuous Lagrangean were 
used. It has not yet been understood why discontinuous function should work better, but so 
has been the case. 

• Element order: Displacements uses cubic, and the rest is using quadratic.  

• Frame: Material frame was used for all cases. 

4.1 Solid and liquid water mass balance 
When describing the implementation of the water mass balance, only the liquid water mass balance is 
considered for clarity and readability. In COMSOL® there is an option of implementing a general 
form PDE which reads, 

𝑒𝑒𝑎𝑎
𝜕𝜕2𝑢𝑢
𝜕𝜕𝐷𝐷2

+ 𝑑𝑑𝑎𝑎
𝜕𝜕𝑢𝑢
𝜕𝜕𝐷𝐷

+ ∇ · Γ = 𝑓𝑓 . (4-1) 

For HBM 𝑒𝑒𝑎𝑎 = 0 has been used, which results in, 

𝑑𝑑𝑎𝑎
𝜕𝜕𝑢𝑢
𝜕𝜕𝐷𝐷

+ ∇ · Γ = 𝑓𝑓 . (4-2) 

This equation may be multidimensional, the ingoing entities might be arrays of different orders and 
dimensions. When formulating an axisymmetric problem, the divergence operator is not correctly 
represented in COMSOL®. This was, in the case of the water mass balance, compensated for by 
adding the term, 

−
𝜌𝜌𝑙𝑙𝒒𝒒𝑙𝑙
𝑅𝑅

 , (4-3) 

to the right-hand side. This is explained in the COMSOL® reference manual (2022) under equation-
based modelling. 

The formulation has the water and solid mass balances given in subsections 2.2 and 3.1, which are 
repeated below, 

(1− 𝜙𝜙)𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇̇ +  div(𝜌𝜌𝑙𝑙𝒒𝒒𝑙𝑙) = 𝑓𝑓𝑙𝑙
𝑤𝑤 (4-4) 

(1− 𝜙𝜙0)�̇�𝑒 = 𝜀𝜀�̇�𝑣 (4-5) 

The time derivative in the water mass balance can be expressed in terms of time derivatives of void 
ratio and suction using that, 
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�̇�𝜌𝑙𝑙 =
𝜕𝜕𝜌𝜌𝑙𝑙
𝜕𝜕s

�̇�𝑠 (4-6) 

�̇�𝑒𝜇𝜇 =
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

ṡ (4-7) 

so that the balance equations take the form, 

(1− 𝜙𝜙)� 𝑒𝑒𝜇𝜇
𝜕𝜕𝜌𝜌𝑙𝑙
𝜕𝜕s

+ 𝜌𝜌𝑙𝑙
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

� �̇�𝑠 +  div(𝜌𝜌𝑙𝑙𝒒𝒒𝑙𝑙) = 𝑓𝑓𝑙𝑙
𝑤𝑤 − (1− 𝜙𝜙)𝜌𝜌𝑙𝑙

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 (4-8) 

(1− 𝜙𝜙0)�̇�𝑒 = 𝜀𝜀�̇�𝑣 (4-9) 

The two balance equations can be solved separately if choosing, 

𝑢𝑢𝑙𝑙 = 𝑠𝑠 ,𝑢𝑢𝑠𝑠 = 𝑒𝑒 , (4-10) 

and identify, 

𝑑𝑑𝑎𝑎
𝑙𝑙 = (1− 𝜙𝜙)� 𝑒𝑒𝜇𝜇

𝜕𝜕𝜌𝜌𝑙𝑙
𝜕𝜕s

+ 𝜌𝜌𝑙𝑙
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

� ,𝑑𝑑𝑎𝑎
𝑠𝑠 = (1 − 𝜙𝜙0) (4-11) 

𝚪𝚪𝑙𝑙 = 𝜌𝜌𝑙𝑙𝒒𝒒𝑙𝑙 ,𝚪𝚪𝑠𝑠 = 𝟎𝟎 (4-12) 

𝑓𝑓𝑙𝑙 = 𝑓𝑓𝑙𝑙
𝑤𝑤 − (1− 𝜙𝜙)𝜌𝜌𝑙𝑙

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 ,𝑓𝑓𝑠𝑠 = 𝜀𝜀�̇�𝑣  . (4-13) 

The two balance equations can also be solved together in a combined equation system if choosing, 

𝒖𝒖 = [𝑠𝑠 𝑒𝑒]𝑇𝑇 . (4-14) 

The following can then be identified, 

𝒅𝒅𝑎𝑎 = �
(1− 𝜙𝜙)� 𝑒𝑒𝜇𝜇

𝜕𝜕𝜌𝜌𝑙𝑙
𝜕𝜕s

+ 𝜌𝜌𝑙𝑙
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

� (1− 𝜙𝜙)�𝜌𝜌𝑙𝑙
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�

0 (1− 𝜙𝜙0)
� , (4-15) 

𝚪𝚪 = �𝜌𝜌𝑙𝑙𝒒𝒒𝑙𝑙𝟎𝟎 � , (4-16) 

𝒇𝒇 = �𝑓𝑓𝑙𝑙
𝑤𝑤

𝜀𝜀�̇�𝑣
� . (4-17) 

4.2 Mechanics 
The total stress of HBM must be inserted in the quasistatic balance of momentum (balance of stress), 

div𝝈𝝈 + 𝒃𝒃 = 𝟎𝟎 , (4-18) 

which in COMSOL® is available through using the solid mechanics interface. The total stress of 
HBM is introduced in (4-18) by using an external stress contribution to a linear elastic material. The 
elastic material itself is “deactivated” by adopting zero stiffness. 

To implement the mechanical constitutive equations in COMSOL® the DODE interface is used. The 
constitutive relations are defined by evolution equations of; total stress, the internal path dependent 
variable, and the micro void ratio, given by, 

�̇�𝝈 = ℂ �̇�𝜺 + 𝕕𝕕 �̇�𝑠 , �̇�𝒇 =
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

�̇�𝜺 , and  �̇�𝑒𝜇𝜇 =
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

ṡ , (4-19) 

respectively. 

As chapter 2.3 shows, the relation describing the total stress is not formulated on rate form. The 
derivation to get this is given in Appendix F and the result is given below using index notation. The 
total stress rate is given by, 

�̇�𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝜀𝜀�̇�𝑖𝑙𝑙 + 𝑑𝑑𝑖𝑖𝑖𝑖�̇�𝑠 , (4-20) 
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where, 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 =  𝛼𝛼𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑎𝑎𝜀𝜀𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑙𝑙 , (4-21) 

𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = −(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕Ψ𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝛿𝛿𝑖𝑖𝑖𝑖 +
𝜕𝜕ΨΔ
𝜕𝜕𝑒𝑒𝜇𝜇

𝑓𝑓𝑖𝑖𝑖𝑖� 𝛿𝛿𝑖𝑖𝑙𝑙 − ΨΔ
𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝜕𝜕𝜀𝜀𝑖𝑖𝑙𝑙

 , (4-22) 

𝑎𝑎𝜀𝜀 = �
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

+
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

� (1 + 𝑒𝑒0) , (4-23) 

and 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑠𝑠𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖 , (4-24) 

𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 −
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕Ψ𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝛿𝛿𝑖𝑖𝑖𝑖 +
𝜕𝜕ΨΔ
𝜕𝜕𝑒𝑒𝜇𝜇

𝑓𝑓𝑖𝑖𝑖𝑖� , (4-25) 

𝑎𝑎𝑠𝑠 =
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

 . (4-26) 

As described in chapter 3.2.3, the partial differential, 𝜕𝜕𝒇𝒇/𝜕𝜕𝜺𝜺, in the evolution equation of the path 
dependent variable, is dependent on the sign of the rate of the limiting condition function 𝐹𝐹. A strain 
driven format of the evolution equation of the path dependent variable has been derived, see 
Appendix G. The resulting algorithm reads, 

if ��
7
3
𝑓𝑓𝑝𝑝 𝟏𝟏 − 3𝒇𝒇� · (−𝑲𝑲�̇�𝜺) ≥ 0�  then 

𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= −𝑲𝑲 , else 
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= −
𝐹𝐹
𝑅𝑅2

𝑲𝑲 . (4-27) 

It could also be mentioned that to get a numerically convenient formulation of the micro void ratio 
evolution equation, the partial derivative with respect to suction has been multiplied with a smooth 
step function so that it goes to zero when suction < 0. 

In COMSOL®, the distributed ordinary differential equations are given on the format, 

𝒆𝒆𝑎𝑎
𝜕𝜕2𝒖𝒖
𝜕𝜕𝐷𝐷2

+ 𝒅𝒅𝑎𝑎
𝜕𝜕𝒖𝒖
𝜕𝜕𝐷𝐷

= 𝒓𝒓 . (4-28) 

Using 𝒆𝒆𝑎𝑎 = 𝟎𝟎 and 𝒅𝒅𝑎𝑎 = �𝛿𝛿𝑖𝑖𝑖𝑖� gives,  

𝜕𝜕𝒖𝒖
𝜕𝜕𝐷𝐷

= 𝒓𝒓 . (4-29) 

The identification of 𝒖𝒖 and 𝒓𝒓 in the three systems of ordinary differential equations is given in Table 
4-1. 

Table 4-1 Identification of 𝒖𝒖 and 𝒓𝒓 in the mechanical constitutive equations. 

 

 �̇�𝝈 = ℂ �̇�𝜺 + 𝕕𝕕 �̇�𝑠 �̇�𝒇 =
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

�̇�𝜺 , �̇�𝑒𝜇𝜇 =
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

ṡ 

𝒖𝒖 [𝜎𝜎11,𝜎𝜎22,𝜎𝜎33,𝜎𝜎12,𝜎𝜎13,𝜎𝜎23]T [𝑓𝑓11, 𝑓𝑓22, 𝑓𝑓33, 𝑓𝑓12, 𝑓𝑓13, 𝑓𝑓23]T 𝑒𝑒𝜇𝜇 

𝒓𝒓 ℂ �̇�𝜺 + 𝕕𝕕 �̇�𝑠 𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

�̇�𝜺 
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

ṡ 
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5 Final comments 
One of the main insights gained from evaluating the work in the BEACON project was that the HBM 
model agrees well with how bentonite behaves in a variety of different cases using a single set of 
parameters identified from experimental data. There seems to be significantly less need for tweaking 
the parameter set when modelling different cases using HBM as compared to when using the material 
models Clay Technology usually utilize.  

These properties indicates that HBM is based on a proper description of bentonite’s behaviour and 
that it is well worth to continue working with this formulation. Thermodynamics and mixture theory 
are also common parts when describing bentonite’s behaviour and using these as a basis provide 
possibilities to generalize the model so that it also can incorporate dependencies on groundwater 
salinity, ion-exchange, ion-transport, freezing, etc.  

The main and most important part of the parameter set is used for representing the clay potential 
which is directly linked to characteristic material properties of bentonite such as swelling pressure 
curves and retention curves. To obtain an accurate representation of the material it is crucial to 
parametrize and calibrate the clay potential functions so that they agree with the characteristic 
material properties. The need for reliable experimental data is also obvious.  

The HBM formulation is at the time of writing this report still in a phase of development. The basis 
of the formulation is, however, considered to be suitable for the application, and it is flexible enough 
to provide different possibilities on how to describe the material behaviour. An example of this is the 
novel description of the evolution equation for the path-dependent variable. The new variant is less 
complex and seems to be numerically favourable. A recent accomplishment: progress in solving 
problems including HBM and wall friction, which is known to be numerically demanding, indicates 
that this is the case.  

The ability to use friction and contact mechanics is important and it has therefore been a long-term 
goal of the project to be able to address problems where friction and HBM is solved together. Several 
unsuccessful attempts have been made during the project, but it was not until a new version of the 
expression for the path-dependent variable had been implemented that first steps towards this were 
made. Even with this new expression, which seem to increase the numerical stability of HBM, the 
simulation was not possible to run in its entirety.  

A stepwise strategy was used to find an initially convergent model setup with HBM and wall friction. 
First, a simulation where wall friction was solved together with a very simple mechanical material 
model was constructed and solved. The mechanical material model was then exchanged for BBM, 
available within the COMSOL® software, and a new suitable setting of the friction properties and 
numerical solver was sought to obtain convergence. This procedure was continued in small steps 
until an initially convergent simulation with HBM and wall friction had been found. In this way some 
knowledge of the settings, suitable for solving problems including friction, was gained throughout the 
process and a good starting point for including HBM was achieved.   

There is often an initial phase of “resistance” when starting to use a new software. This was not 
different in the case of COMSOL Multiphysics®, where a lot of new components had to be 
understood: a new graphical interface, the structure and inner workings of the code, 
capabilities/interfaces of different physics modules, selecting solvers, setting up numerical tolerances, 
etc. There often was a need for rewriting the formulation on a format which allowed for, and/or 
simplified, the implementation. In the case of HBM, the entire mechanical material model is 
formulated on a rate form driven by strain and suction. Both the stress relation and the relation for the 
path-dependent variable have been rewritten on rate forms.  

At present the implementation of HBM in COMSOL® is carried out in a straightforward way using 
modules accessible through the graphical interface. It should however be understood that the only 
utilized part within COMSOL® representing an actual physics module is the solid mechanics 
interface where the stress equilibrium is represented, and within this the material model is 
deactivated. For the rest of the implementation purely mathematical interfaces for partial differential 
equations and distributed ordinary differential equations are used. 

Below some suggestions for future work are listed: 
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• HBM contains non-linear functions and discrete formulations which makes it a difficult task 
for the solver. The usability of the model, for example improving concurrent use of friction 
mechanics, could be enhanced if it was possible to “linearize” and making the formulation 
“smoother”. The recent development regarding the path dependent variable is an example of 
such smoothing. 

• Investigate different ways to couple micro to macro. Could there be another way to describe 
the micro to macro coupling than the presently used micro void ratio evolution equation? 
There might be insights to be gained from studying the homogenized framework. 

• Incorporate a check that the state obtained by integration of the rate formulation meet the 
direct formulation −𝝈𝝈I = 𝚿𝚿− 𝑠𝑠𝟏𝟏. 

• HBM-module within COMSOL®. At the time being the implementation of HBM occupies a 
large part of and is spread throughout the COMSOL® interface. It could therefore be 
beneficial to develop an “HBM-module” within COMSOL® to simplify use and give a better 
overview of models incorporating HBM.  
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Appendix A: Theoretical framework 
To set the stage properly for the description of the material model, the theoretical framework in 
which this is formulated is described below. 

Index free notation is used to the major part, but sometimes index notation is used. A Cartesian 
coordinate frame, consisting of a reference point (the origin) and a positive orthonormal basis 
{𝒆𝒆1,𝒆𝒆2, 𝒆𝒆3}, is used. Using this a vector 𝒗𝒗 can be expressed, 

𝒗𝒗 = 𝑣𝑣1𝒆𝒆1 + 𝑣𝑣2𝒆𝒆2 + 𝑣𝑣2𝒆𝒆2 = 𝑣𝑣𝑖𝑖𝒆𝒆𝑖𝑖 (A-1) 

and a second order tensor 𝑻𝑻 can be expressed as, 

𝑻𝑻 =
𝑅𝑅11𝒆𝒆1 ⊗ 𝒆𝒆1 + 𝑅𝑅12𝒆𝒆1 ⊗ 𝒆𝒆2 + 𝑅𝑅13𝒆𝒆1 ⊗ 𝒆𝒆3 +
𝑅𝑅21𝒆𝒆2 ⊗ 𝒆𝒆1 + 𝑅𝑅22𝒆𝒆2 ⊗ 𝒆𝒆2 + 𝑅𝑅23𝒆𝒆2 ⊗ 𝒆𝒆3 +
𝑅𝑅31𝒆𝒆3 ⊗ 𝒆𝒆1 + 𝑅𝑅32𝒆𝒆3 ⊗ 𝒆𝒆2 + 𝑅𝑅33𝒆𝒆3 ⊗ 𝒆𝒆3

= 𝑅𝑅𝑖𝑖𝑖𝑖𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖  , (A-2) 

where ⊗ denote the tensor product between vectors so that 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖 is a second order tensor. As can 
be seen in the right-hand sides above, summation convention is used to compress the index notation. 
The second order unit tensor 𝟏𝟏 is defined by 𝟏𝟏𝒗𝒗 = 𝒗𝒗, and the following is used when using index 
notation, 

𝟏𝟏 = 𝛿𝛿𝑖𝑖𝑖𝑖𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖  , 𝛿𝛿𝑖𝑖𝑖𝑖 = �1 if 𝑖𝑖 = 𝑗𝑗
0 if 𝑖𝑖 ≠ 𝑗𝑗  . (A-3) 

For a single-phase continuum, position vectors 𝑿𝑿 of material particles in a body in its reference 
configuration ℬ0 together with a function 𝝌𝝌, describing the motion of the points, give position 
vectors 𝒙𝒙 = 𝝌𝝌(𝑿𝑿, 𝐷𝐷), in the current configuration ℬ. For a fixed time, the inverse mapping 𝑿𝑿 =
𝝌𝝌−1(𝒙𝒙, 𝐷𝐷) exists. Displacements are defined by 𝒖𝒖 = 𝒙𝒙 − 𝑿𝑿. 

Taking the partial time derivative of the motion gives the velocity, 

𝒗𝒗(𝑿𝑿, 𝐷𝐷) =
𝜕𝜕𝝌𝝌(𝑿𝑿, 𝐷𝐷)

𝜕𝜕𝐷𝐷
 (A-4) 

which, by using the inverse map, also can be given by, 

𝒗𝒗(𝒙𝒙, 𝐷𝐷) =
𝜕𝜕𝝌𝝌(𝝌𝝌−1(𝒙𝒙, 𝐷𝐷), 𝐷𝐷)

𝜕𝜕𝐷𝐷
. (A-5) 

In line with the above, fields may be defined over the body in both configurations, thus a field 𝜑𝜑 may 
be given as 𝜑𝜑(𝑿𝑿, 𝐷𝐷) or 𝜑𝜑(𝒙𝒙, 𝐷𝐷), being the material description and spatial description, respectively. 

The material time derivative �̇�𝜑 and spatial time derivative �́�𝜑 of the 𝜑𝜑-field are defined by:  

�̇�𝜑(𝑿𝑿, 𝐷𝐷) =
𝜕𝜕𝜑𝜑(𝑿𝑿, 𝐷𝐷)

𝜕𝜕𝐷𝐷
  (holding 𝑿𝑿 fixed) , A-6) 

and 

�́�𝜑(𝒙𝒙, 𝐷𝐷) =
𝜕𝜕𝜑𝜑(𝒙𝒙, 𝐷𝐷)
𝜕𝜕𝐷𝐷

  (holding 𝒙𝒙 fixed) , (A-7) 

respectively. When 𝜑𝜑 is a spatial field (given in terms of 𝒙𝒙) its material time derivative is given by, 

�̇�𝜑(𝒙𝒙, 𝐷𝐷) = �́�𝜑(𝒙𝒙, 𝐷𝐷) +
𝜕𝜕𝜑𝜑(𝒙𝒙, 𝐷𝐷)
𝜕𝜕𝒙𝒙

· 𝒗𝒗(𝒙𝒙, 𝐷𝐷) . (A-8) 

The deformation gradient, 

𝑭𝑭 =
𝜕𝜕𝒙𝒙
𝜕𝜕𝑿𝑿

=
𝜕𝜕(𝑿𝑿+ 𝒖𝒖)

𝜕𝜕𝑿𝑿
= 𝟏𝟏 +

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

 , (A-9) 

is a kinematical entity linking an infinitesimal material fibre 𝑑𝑑𝑿𝑿 in the reference (undeformed) 
configuration to an infinitesimal material fiber 𝑑𝑑𝒙𝒙 in the deformed configuration. The determinant of 
𝑭𝑭 links a volume element in the reference configuration 𝑑𝑑𝑉𝑉 to a volume element in the current 
configuration 𝑑𝑑𝑣𝑣, 
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𝑑𝑑𝑣𝑣 = det𝑭𝑭 𝑑𝑑𝑉𝑉 = J 𝑑𝑑𝑉𝑉 . (A-10) 

We also have the useful relation, 

J̇
J

= div𝒗𝒗 . (A-11) 

The model in this work uses a mixture formulation consisting of several phases 𝛼𝛼 which are 
superimposed upon each other. This leads to several position vectors 𝑿𝑿𝛼𝛼 of material points belonging 
to different reference configurations ℬ0𝛼𝛼 together with functions 𝝌𝝌𝛼𝛼 describing the motion of the 
points which results in a position vector 𝒙𝒙 = 𝝌𝝌𝛼𝛼(𝑿𝑿𝛼𝛼, 𝐷𝐷) belonging to the current configuration. This 
leads to velocities, 

𝒗𝒗𝛼𝛼 =
𝐷𝐷𝛼𝛼𝒙𝒙
𝐷𝐷𝐷𝐷

=
𝜕𝜕𝝌𝝌𝛼𝛼(𝑿𝑿α, 𝐷𝐷)

𝜕𝜕𝐷𝐷
 , (A-12) 

where 𝐷𝐷𝛼𝛼() 𝐷𝐷𝐷𝐷⁄  is a compact notation of a material derivative with respect to reference configuration 
ℬ0𝛼𝛼. 

Now consider the case where there are two immiscible phases: a solid phase (s) and a fluid phase (f). 
The immiscibility makes it possible to define phase volumes 𝑉𝑉𝑠𝑠 + 𝑉𝑉𝑟𝑟 = 𝑉𝑉 and volume fractions 
𝑛𝑛𝑠𝑠 = 𝑉𝑉𝑠𝑠/𝑉𝑉 and 𝑛𝑛𝑟𝑟 = 𝑉𝑉𝑟𝑟/𝑉𝑉. 

The solid phase is chosen as the referential phase and therefore we identify ℬ0 = ℬ0𝑠𝑠, 𝑿𝑿 = 𝑿𝑿𝑠𝑠, 
𝝌𝝌(𝑿𝑿, 𝐷𝐷) = 𝝌𝝌𝑠𝑠(𝑿𝑿𝑠𝑠, 𝐷𝐷),   𝒗𝒗 = 𝒗𝒗s , thus, 

𝒗𝒗 = 𝒗𝒗s =
𝐷𝐷𝑠𝑠𝒙𝒙
𝐷𝐷𝐷𝐷

= �̇�𝝌(𝑿𝑿, 𝐷𝐷) , (A-13) 

where the “dot derivative” is introduced and defined as the material derivative with respect to the 
solid reference configuration. 

All the kinematics described for a single-phase formulation are therefore now describing the solid 
phase kinematics. A relative velocity 𝒗𝒗𝑟𝑟 = 𝒗𝒗𝑟𝑟 − 𝒗𝒗𝑠𝑠 and a Darcian velocity 𝒗𝒗𝑑𝑑 = 𝑛𝑛𝑟𝑟𝒗𝒗𝑟𝑟can be 
introduced.  

In this paragraph a definition of the small strain tensor 𝜺𝜺 and the underlying approximation made is 
given. The Lagrangean (large) strain tensor,  

𝑬𝑬 =
1
2

(𝑭𝑭𝑇𝑇𝑭𝑭 − 𝟏𝟏) , (A-14) 

is used as a basis for describing the small strain approximation. Using the relation between the 
deformation gradient and the displacement gradient makes it possible to write, 

𝑬𝑬 =
1
2
��𝟏𝟏 +

𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

�
𝑇𝑇

�𝟏𝟏 +
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

� − 𝟏𝟏� =
1
2
�
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

+ �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

�
𝑇𝑇

+ �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

�
𝑇𝑇 𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

� . (A-15) 

If the displacement gradient is small, i.e. 𝜕𝜕𝒖𝒖 𝜕𝜕𝑿𝑿⁄ = 𝑭𝑭 − 𝟏𝟏 is small, the last higher order term of the 
Lagrangean strain tensor becomes insignificant in relation to the first order terms. The Lagrangean 
strain may then be approximated by the small (infinitesimal) strain: 

𝑬𝑬 ≈ 𝜺𝜺 ≡
1
2
�
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

+ �
𝜕𝜕𝒖𝒖
𝜕𝜕𝑿𝑿

�
𝑇𝑇

� =
1
2

(𝑭𝑭 + 𝑭𝑭𝑇𝑇)− 𝟏𝟏. (A-16) 

As can be seen, conventional continuum mechanics sign conventions are adopted, when a material 
fiber undergoes elongation strain is positive. The same pass for stresses 𝝈𝝈 being positive for tensile 
conditions.  

The stress and strain tensors can be decomposed in a spherical part and a deviatoric part according to, 

𝝈𝝈 =
1
3

tr𝝈𝝈 𝟏𝟏 + 𝝏𝝏 = −𝑝𝑝 𝟏𝟏 + 𝝏𝝏 and 𝜺𝜺 =
1
3

tr𝜺𝜺 𝟏𝟏 + 𝒆𝒆 =
1
3
𝜀𝜀𝑣𝑣  𝟏𝟏+ 𝒆𝒆 , (A-17) 

where tr denotes the trace of the tensor, i.e. tr𝝈𝝈 = 𝝈𝝈 · 𝟏𝟏. 
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Pressure, p, (positive in compression) and volumetric strain, 𝜀𝜀𝑣𝑣, (positive for an increase in volume) 
are defined using the spherical part of the tensors according to, 

𝑝𝑝 ≡ −
1
3

tr𝝈𝝈 and 𝜀𝜀𝑣𝑣 ≡ tr𝜺𝜺 , (A-18) 

respectively.  

In the following a tilde above an entity indicate that the entity should be considered a function, i.e. 

𝛼𝛼 = 𝛼𝛼�(𝑎𝑎,𝑏𝑏) (A-19) 

should be understood as the variable 𝛼𝛼 is given by the function 𝛼𝛼� having the input variables 𝑎𝑎 and 𝑏𝑏. 

Reynold’s transport relation will be used in the derivations, when applied to a field 𝜓𝜓(𝒙𝒙, 𝐷𝐷), it reads, 

𝑑𝑑
𝑑𝑑𝐷𝐷
�� 𝜓𝜓(𝒙𝒙, 𝐷𝐷)𝑑𝑑𝑣𝑣(𝒙𝒙)

ℬ
� = � ��̇�𝜓 + 𝜓𝜓div𝒗𝒗� 𝑑𝑑𝑣𝑣

ℬ
 , (A-20) 

and the relation, 

div𝒗𝒗 =
𝐽𝐽̇
𝐽𝐽

, where 𝐽𝐽 ≈ 𝜀𝜀𝑣𝑣 + 1 and 𝐽𝐽̇ ≈ 𝜀𝜀�̇�𝑣 (A-21) 

is therefore often also valuable. 
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Appendix B: Solid mass balance 
The solid mass per mixture volume can be expressed, 

𝑑𝑑𝑚𝑚𝑠𝑠

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑠𝑠

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜌𝜌𝑠𝑠(1− 𝜙𝜙). (B-1) 

The total solid mass ℳ𝑠𝑠 is obtained from integrating the expression above over the body in its 
current configuration ℬ. The integral can also be pulled back to the reference configuration of the 
body ℬ0, thus, 

ℳ𝑠𝑠 = � 𝜌𝜌𝑠𝑠(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

= � 𝜌𝜌𝑠𝑠(1− 𝜙𝜙)𝐽𝐽𝑑𝑑𝑉𝑉
ℬ0

= � 𝑀𝑀𝑠𝑠𝑑𝑑𝑉𝑉
ℬ0

  . (B-2) 

To do this it has been used that 𝑑𝑑𝑣𝑣 = 𝐽𝐽 𝑑𝑑𝑉𝑉, see Appendix A. Taking the time derivative with respect 
to the solids reference configuration gives,  

𝐷𝐷𝑠𝑠ℳ𝑠𝑠

𝐷𝐷𝐷𝐷
= ℳ̇𝑠𝑠 = � �̇�𝑀𝑠𝑠𝑑𝑑𝑉𝑉

ℬ0
= 0 . (B-3) 

Thus, the local form of the solid mass balance is given by, 

�̇�𝑀𝑠𝑠 = 𝜌𝜌𝑠𝑠(1−𝜙𝜙)𝐽𝐽��������������̇ = �̇�𝜌𝑠𝑠(1− 𝜙𝜙)𝐽𝐽 − 𝜌𝜌𝑠𝑠�̇�𝜙𝐽𝐽 + 𝜌𝜌𝑠𝑠(1− 𝜙𝜙)𝐽𝐽̇ = 0 , (B-4) 

and assuming that 𝜌𝜌𝑠𝑠 is constant gives,  

ℳ̇𝑠𝑠 = 𝜌𝜌𝑠𝑠 �
�̇�𝑀𝑠𝑠

𝜌𝜌𝑠𝑠
𝑑𝑑𝑉𝑉

ℬ0
= 𝜌𝜌𝑠𝑠 � �−�̇�𝜙𝐽𝐽 + (1− 𝜙𝜙)𝐽𝐽�̇𝑑𝑑𝑉𝑉

ℬ0
= 0 , (B-5) 

𝜌𝜌𝑠𝑠 � �−�̇�𝜙 + (1− 𝜙𝜙)
𝐽𝐽̇
𝐽𝐽
� 𝐽𝐽𝑑𝑑𝑉𝑉

ℬ0
= 𝜌𝜌𝑠𝑠 � �−�̇�𝜙 + (1− 𝜙𝜙)div𝒗𝒗�𝐽𝐽𝑑𝑑𝑉𝑉

ℬ0
= 0 . (B-6) 

The local condition reads, 

�−�̇�𝜙 + (1 −𝜙𝜙)div𝒗𝒗�𝐽𝐽 = 0 (B-7) 

which, since 𝐽𝐽 > 0, can be simplified to, 

−�̇�𝜙 + (1− 𝜙𝜙)div𝒗𝒗 = 0 . (B-8) 

If reformulating this, we obtain, 

�̇�𝜙 = (1 −𝜙𝜙)
𝐽𝐽̇
𝐽𝐽

= (1− 𝜙𝜙)div𝒗𝒗 ⇒ �̇�𝑒 = (1 + 𝑒𝑒)
𝐽𝐽̇
𝐽𝐽

= (1 + 𝑒𝑒)div𝒗𝒗 . (B-9) 

Since �̇�𝑀𝑠𝑠 = 0, it also follows that 𝑀𝑀𝑠𝑠 = 𝑀𝑀𝑠𝑠0 which gives, 

(1− 𝜙𝜙)𝐽𝐽 = 1 − 𝜙𝜙0  ⇒  1 + 𝑒𝑒 = (1 + 𝑒𝑒0)𝐽𝐽 . (B-10) 

We can formulate the following approximate relation for updating the void ratio using the volumetric 
strain, 

𝐽𝐽̇ ≈ 𝜀𝜀�̇�𝑣 ⇒ �̇�𝑒 ≈ (1 + 𝑒𝑒0)𝜀𝜀�̇�𝑣 , (B-11) 
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Appendix C: Balance of water mass 
The water mass per mixture volume is given by an addition of the contributions from the liquid and 
gaseous phase, i.e.,  

𝑑𝑑𝑚𝑚𝑤𝑤

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑙𝑙

𝑤𝑤

𝑑𝑑𝑣𝑣
+
𝑑𝑑𝑚𝑚𝑔𝑔

𝑤𝑤

𝑑𝑑𝑣𝑣
 . (C-1) 

For readability, the derivation of the balance of water is given separately for the two phases. 

Liquid water 
The liquid water mass per mixture volume can be expressed as, 

𝑑𝑑𝑚𝑚𝑙𝑙
𝑤𝑤

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑙𝑙

𝑤𝑤

𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤
𝑑𝑑𝑣𝑣𝑙𝑙𝑤𝑤

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙) (C-2) 

The total liquid water mass ℳ𝑙𝑙 is obtained from, 

ℳ𝑙𝑙 = � 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

= � 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝐽𝐽𝑑𝑑𝑉𝑉
ℬ0

= � 𝑀𝑀𝑙𝑙𝑑𝑑𝑉𝑉
ℬ0

  , (C-3) 

where a pull-back operation has been made, i.e., the integral is first performed in the current 
configuration, ℬ, but is “pulled back” to the reference configuration, ℬ0. To do this it has been used 
that 𝑑𝑑𝑣𝑣 = 𝐽𝐽 𝑑𝑑𝑉𝑉, see Appendix A. 

Taking the time derivative with respect to the liquid reference configuration, and performing a series 
of pull-back to the liquid reference ℬ𝑙𝑙

0, push-forward to the current configuration, ℬ, and finally a 
pull-back to the solid reference configuration, ℬ0, we have, 

𝐷𝐷𝑙𝑙ℳ𝑙𝑙

𝐷𝐷𝐷𝐷
=
𝐷𝐷𝑙𝑙

𝐷𝐷𝐷𝐷
� 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

=
𝐷𝐷𝑙𝑙

𝐷𝐷𝐷𝐷
� 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝐽𝐽𝑙𝑙𝑑𝑑𝑉𝑉
ℬ𝑙𝑙0

= �
𝐷𝐷𝑙𝑙

𝐷𝐷𝐷𝐷
�𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝐽𝐽𝑙𝑙�𝑑𝑑𝑉𝑉

ℬ𝑙𝑙0

= � �
𝐷𝐷𝑙𝑙 �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷
+ 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)

𝐽𝐽�̇�𝑙

𝐽𝐽𝑙𝑙
� 𝐽𝐽𝑙𝑙𝑑𝑑𝑉𝑉

ℬ𝑙𝑙0

= � �
𝐷𝐷𝑙𝑙 �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷
+ 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗𝑙𝑙�𝑑𝑑𝑣𝑣

ℬ

= � �
𝐷𝐷𝑙𝑙 �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷
+ 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗𝑙𝑙� 𝐽𝐽𝑑𝑑𝑉𝑉

ℬ0
= 0  . 

(C-4) 

Thus, the local form of the liquid mass balance is given by, 

�
𝐷𝐷𝑙𝑙 �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷
+ 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗𝑙𝑙� 𝐽𝐽 = 0 , (C-5) 

where 𝐽𝐽 > 0 makes it possible, by also expanding the time derivative, to reduce this to, 
𝜕𝜕
𝜕𝜕𝐷𝐷 �

𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�+ grad �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)� · 𝒗𝒗𝑙𝑙 + 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗𝑙𝑙 = 0 . (C-6) 

A relative velocity, 𝒗𝒗𝑟𝑟,𝑙𝑙 = 𝒗𝒗𝑙𝑙 − 𝒗𝒗, can be used when formulating a Darcian velocity for the liquid 
phase, 𝒗𝒗𝑑𝑑,𝑙𝑙 = 𝑒𝑒𝜇𝜇(1− 𝜙𝜙)𝒗𝒗𝑟𝑟,𝑙𝑙. Introducing 𝒗𝒗𝑟𝑟,𝑙𝑙 in the expression above gives, 

𝜕𝜕
𝜕𝜕𝐷𝐷 �

𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)�+ grad �𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)� · (𝒗𝒗+ 𝒗𝒗𝑟𝑟,𝑙𝑙) + 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div(𝒗𝒗+ 𝒗𝒗𝑟𝑟,𝑙𝑙)
= 0 , 

(C-7) 

which by introducing the material time derivative gives, 
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𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)���������������̇ + div(𝜌𝜌𝑙𝑙𝒗𝒗𝑑𝑑,𝑙𝑙) + 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗 = 0 . (C-8) 

If expanding the time derivative, we see that, 

𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)��������������� =̇ �̇�𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1−𝜙𝜙) + 𝜌𝜌𝑙𝑙�̇�𝑒𝜇𝜇(1− 𝜙𝜙) − 𝜌𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙)div𝒗𝒗 , (C-9) 

which on insertion gives, 

�̇�𝜌𝑙𝑙𝑒𝑒𝜇𝜇(1− 𝜙𝜙) + 𝜌𝜌𝑙𝑙�̇�𝑒𝜇𝜇(1− 𝜙𝜙) + div(𝜌𝜌𝑙𝑙𝒗𝒗𝑑𝑑,𝑙𝑙) = 0 , (C-10) 

where a source term 𝑓𝑓𝑙𝑙
𝑤𝑤can be added to the right-hand side. 

Gaseous water 
The gaseous water mass per mixture volume can be expressed as, 

𝑑𝑑𝑚𝑚𝑔𝑔
𝑤𝑤

𝑑𝑑𝑣𝑣
=
𝑑𝑑𝑚𝑚𝑔𝑔

𝑤𝑤

𝑑𝑑𝑣𝑣𝑔𝑔
𝑑𝑑𝑣𝑣𝑔𝑔
𝑑𝑑𝑣𝑣𝑠𝑠

𝑑𝑑𝑣𝑣𝑠𝑠
𝑑𝑑𝑣𝑣

= 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) (C-11) 

The total gaseous water mass ℳ𝑔𝑔 is obtained from, 

ℳ𝑔𝑔 = � 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝑑𝑑𝑣𝑣
ℬ

= � 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝐽𝐽𝑑𝑑𝑉𝑉
ℬ0

= � 𝑀𝑀𝑔𝑔𝑑𝑑𝑉𝑉
ℬ0

  . (C-12) 

Performing the same procedure as for the liquid, but now taking the time derivative with respect to 
the gas reference configuration, and performing a pull-back to/push-back from this configuration, 
gives, 

𝐷𝐷𝑔𝑔ℳ𝑔𝑔

𝐷𝐷𝐷𝐷
=
𝐷𝐷𝑔𝑔

𝐷𝐷𝐷𝐷
� 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝐽𝐽𝑔𝑔𝑑𝑑𝑉𝑉
ℬ𝑔𝑔0

= �
𝐷𝐷𝑔𝑔

𝐷𝐷𝐷𝐷
�𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)𝐽𝐽𝑔𝑔�𝑑𝑑𝑉𝑉

ℬ𝑔𝑔0

= � �
𝐷𝐷𝑔𝑔 �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷ℬ𝑔𝑔0

+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)
𝐽𝐽̇𝑔𝑔

𝐽𝐽𝑔𝑔
� 𝐽𝐽𝑔𝑔𝑑𝑑𝑉𝑉

= � �
𝐷𝐷𝑔𝑔 �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷ℬ

+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)div𝒗𝒗𝑔𝑔�𝑑𝑑𝑣𝑣

= � �
𝐷𝐷𝑔𝑔 �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷ℬ0

+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)div𝒗𝒗𝑔𝑔� 𝐽𝐽𝑑𝑑𝑉𝑉 = 0  . 

(C-13) 

Thus, the local form of the gaseous water mass balance is given by, 

�
𝐷𝐷𝑔𝑔 �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)�

𝐷𝐷𝐷𝐷
+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)div𝒗𝒗𝑔𝑔� 𝐽𝐽 = 0 , (C-14) 

where 𝐽𝐽 > 0 makes it possible, by also expanding the total time derivative (into a spatial one), to 
reduce to, 
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𝜕𝜕
𝜕𝜕𝐷𝐷 �

𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)�+ grad �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)� · 𝒗𝒗𝑔𝑔

+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)div𝒗𝒗𝑔𝑔 = 0 . 
(C-15) 

Using a relative velocity, 𝒗𝒗𝑟𝑟,𝑔𝑔 = 𝒗𝒗𝑔𝑔 − 𝒗𝒗, a Darcian velocity for the gaseous phase, 𝒗𝒗𝑑𝑑,𝑔𝑔 =
�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1−𝜙𝜙)𝒗𝒗𝑟𝑟,𝑔𝑔 can be formulated. Using 𝒗𝒗𝑟𝑟,𝑔𝑔 in the expression above results in, 

𝜕𝜕
𝜕𝜕𝐷𝐷 �

𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1−𝜙𝜙)� + grad �𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)� · (𝒗𝒗 + 𝒗𝒗𝑟𝑟,𝑔𝑔)

+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1−𝜙𝜙)div(𝒗𝒗+ 𝒗𝒗𝑟𝑟,𝑔𝑔) = 0 . 
(C-16) 

When formulating this using a material time derivative makes it possible to arrive at, 

𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)��������������������������̇ + div�𝜃𝜃𝑔𝑔𝑤𝑤𝒗𝒗𝑑𝑑,𝑔𝑔�+ 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)div𝒗𝒗 = 0 , (C-17) 

and expanding the time derivative,  

𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙)��������������������������̇

= �̇�𝜃𝑔𝑔
𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) + 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒(1− 𝜙𝜙)− 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒𝜇𝜇(1− 𝜙𝜙)

− 𝜃𝜃𝑔𝑔𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1−𝜙𝜙)div𝒗𝒗 , 
(C-18) 

gives on insertion, 

�̇�𝜃𝑔𝑔
𝑤𝑤�𝑒𝑒 − 𝑒𝑒𝜇𝜇�(1− 𝜙𝜙) + 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒(1− 𝜙𝜙)− 𝜃𝜃𝑔𝑔𝑤𝑤�̇�𝑒𝜇𝜇(1− 𝜙𝜙) + div�𝜃𝜃𝑔𝑔𝑤𝑤𝒗𝒗𝑑𝑑,𝑔𝑔� = 0 , (C-19) 

where a source term 𝑓𝑓𝑔𝑔
𝑤𝑤could be added to the right-hand side. 
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Appendix D: Spherical/deviatoric-split 
For some cases it is beneficial to study the spherical and deviatoric part of the stress apart. To obtain 
such a formulation, we start with the stress relation of the model which can be written, 

−𝝈𝝈 = 𝛼𝛼(Ψ𝑀𝑀𝟏𝟏+ ΨΔ𝒇𝒇 − 𝑠𝑠𝟏𝟏) . (D-1) 

Stress and path variables can be divided into spherical and deviatoric parts, 

𝝈𝝈 =
1
3

tr𝝈𝝈 𝟏𝟏 + 𝝏𝝏 = −𝑝𝑝𝟏𝟏+ 𝝏𝝏 , (D-2) 

𝒇𝒇 =
1
3

tr𝒇𝒇 𝟏𝟏+ 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 = 𝑓𝑓𝑝𝑝 𝟏𝟏+ 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 . (D-3) 

Von Mises stress 𝑞𝑞 and a similar invariant for the path variable 𝑓𝑓𝑞𝑞 can be formed using the deviatoric 
part of the tensors, 

(𝑞𝑞)2 =
3
2
𝝏𝝏 · 𝝏𝝏   and    𝑓𝑓𝑞𝑞

2 =
3
2
𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 · 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 . (D-4) 

We may now use the above to arrive at a formulation of the stress relation which are split in spherical 
and deviatoric parts, 

−(−𝑝𝑝𝟏𝟏+ 𝝏𝝏) = 𝛼𝛼Ψ𝑀𝑀𝟏𝟏+ 𝛼𝛼ΨΔ�𝑓𝑓𝑝𝑝 𝟏𝟏+ 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣� − 𝛼𝛼𝑠𝑠𝟏𝟏 , (D-5) 

which can be written separately, 

𝑝𝑝 = 𝛼𝛼Ψ𝑀𝑀 + 𝛼𝛼ΨΔ𝑓𝑓𝑝𝑝 − 𝛼𝛼𝑠𝑠   and  − 𝝏𝝏 = 𝛼𝛼ΨΔ𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 . (D-6) 

If starting with the second relation above and multiplying each side by itself and 3/2 we have, 
3
2
𝝏𝝏 · 𝝏𝝏 = (𝛼𝛼ΨΔ)2

3
2
𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣 · 𝒇𝒇𝑑𝑑𝑒𝑒𝑣𝑣   ⇔   (𝑞𝑞)2 = (𝛼𝛼ΨΔ)2𝑓𝑓𝑞𝑞

2 . (D-7) 

 

As a side note, expressions of 𝑓𝑓𝑝𝑝
2 and 𝑓𝑓𝑞𝑞

2 in terms of components of 𝒇𝒇 is given, 

𝑓𝑓𝑝𝑝
2 =

1
9
�𝑓𝑓11

2 + 𝑓𝑓22
2 + 𝑓𝑓33

2 + 2(𝑓𝑓11𝑓𝑓22 + 𝑓𝑓11𝑓𝑓33 + 𝑓𝑓22𝑓𝑓33) �, (D-8) 

𝑓𝑓𝑞𝑞
2 = 𝑓𝑓11

2 + 𝑓𝑓22
2 + 𝑓𝑓33

2 − 𝑓𝑓11𝑓𝑓22 − 𝑓𝑓11𝑓𝑓33 − 𝑓𝑓22𝑓𝑓33 + 3𝑓𝑓12
2 + 3𝑓𝑓13

2 + 3𝑓𝑓23
2 . (D-9) 
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Appendix E: Stiffness components at shearing and 
constant suction 

We study the formulation, 

−𝝈𝝈 = 𝛼𝛼(Ψ𝑀𝑀𝟏𝟏+ ΨΔ𝒇𝒇− 𝑠𝑠𝟏𝟏) (E-1) 

𝐹𝐹 = 𝑅𝑅2 − �𝑓𝑓𝑝𝑝
2 + 𝑓𝑓𝑞𝑞

2� (E-2) 

𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= �−𝑲𝑲
𝐹𝐹
𝑅𝑅2

𝑑𝑑𝐹𝐹 < 0

−𝑲𝑲 𝑑𝑑𝐹𝐹 ≥ 0
 (E-3) 

under the conditions, 

𝝈𝝈 = 𝜎𝜎1𝒆𝒆1 ⊗ 𝒆𝒆1 + 𝜎𝜎3𝒆𝒆3 ⊗ 𝒆𝒆3,𝜎𝜎1 = −𝜎𝜎3 = 𝜎𝜎13 = 𝜎𝜎31 (E-4) 

𝜺𝜺 = 𝜀𝜀1𝒆𝒆1 ⊗ 𝒆𝒆1 + 𝜀𝜀3𝒆𝒆3 ⊗ 𝒆𝒆3, 𝜀𝜀1 = −𝜀𝜀3 = 𝜀𝜀13 = 𝜀𝜀31       (𝑛𝑛𝑛𝑛 𝑐𝑐ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒 𝑖𝑖𝑛𝑛 𝑣𝑣𝑛𝑛𝑙𝑙𝑢𝑢𝑚𝑚𝑒𝑒) (E-5) 

𝑑𝑑𝑠𝑠 = 0 (E-6) 

𝑑𝑑𝐹𝐹 < 0 (E-7) 

Thus, 

𝑑𝑑𝒇𝒇 = −
𝐹𝐹
𝑅𝑅2

𝑲𝑲𝑑𝑑𝜺𝜺 . (E-8) 

The incremental form of the model then reduces to, 

−𝑑𝑑𝝈𝝈 = 𝛼𝛼ΨΔ𝑑𝑑𝒇𝒇 = −𝛼𝛼ΨΔ
𝐹𝐹
𝑅𝑅2

𝑲𝑲𝑑𝑑𝜺𝜺. (E-9) 

For the conditions given above, the component in the first principal direction and when rotated as to 
obtain maximal shearing read, 

−𝑑𝑑𝜎𝜎11 = −𝑑𝑑𝜎𝜎13 = −𝛼𝛼ΨΔ
𝐹𝐹
𝑅𝑅2

𝐾𝐾1111 𝑑𝑑𝜀𝜀11 = −𝛼𝛼ΨΔ
𝐹𝐹
𝑅𝑅2

𝐾𝐾1111 𝑑𝑑𝜀𝜀13 (E-10) 

−𝑑𝑑𝜎𝜎13 = −𝛼𝛼ΨΔ
𝐹𝐹
𝑅𝑅2

(𝐾𝐾1313𝑑𝑑𝜀𝜀13 + 𝐾𝐾1331𝑑𝑑𝜀𝜀31) = −𝛼𝛼ΨΔ
𝐹𝐹
𝑅𝑅2

2𝐾𝐾1313𝑑𝑑𝜀𝜀13 (E-11) 

⇒ 2𝐾𝐾1313 = 𝐾𝐾1111 (E-12) 
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Appendix F: Rate form of the stress relation 
The implementation uses an incremental or rate form (both wordings will be used interchangeably in 
the following) of the constitutive relation for the stress. The total stress is given by: 

𝝈𝝈 = 𝛼𝛼𝝈𝝈𝐼𝐼  , (F-1) 

which gives 

�̇�𝝈 = 𝛼𝛼 �̇�𝝈𝐼𝐼 + �̇�𝛼 𝝈𝝈𝐼𝐼 . (F-2) 

Thus, when a rate form of the stress is to be formulated, an expression for the rate �̇�𝛼, i.e., 

�̇�𝛼 =
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

�̇�𝑒𝜇𝜇  , (F-3) 

is needed. Since our selected independent variables to solve for are solid displacements (which can be 
used to form strains) and suction, the expression above is reformulated somewhat, 

�̇�𝛼 =
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

�
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�̇�𝑒 +
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕s

ṡ� = �
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

+
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

� �̇�𝑒 +
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

ṡ . (F-4) 

The void ratio increment can be expressed in terms of strain increment, 

�̇�𝑒 =
𝜕𝜕𝑒𝑒
𝜕𝜕𝜀𝜀𝑣𝑣

𝜕𝜕𝜀𝜀𝑣𝑣
𝜕𝜕𝜺𝜺

· �̇�𝜺 = (1 + 𝑒𝑒0)𝟏𝟏 · �̇�𝜺 (F-5) 

which makes it possible to arrive at:  

�̇�𝛼 = �
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

+
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

� (1 + 𝑒𝑒0)𝟏𝟏 · �̇�𝜺 +
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

ṡ = 𝑎𝑎𝜀𝜀𝟏𝟏 · �̇�𝜺 + 𝑎𝑎𝑠𝑠 �̇�𝑠 . (F-6) 

where, 

𝑎𝑎𝜀𝜀 = �
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒

+
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

� (1 + 𝑒𝑒0)    and    𝑎𝑎𝑠𝑠 =
𝜕𝜕𝛼𝛼
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

 . (F-7) 

The increment in total stress can now be expressed in terms of increments in saturated clay grain 
stress, strain and suction, 

�̇�𝝈 = 𝛼𝛼 �̇�𝝈𝐼𝐼 + 𝑎𝑎𝜀𝜀(𝝈𝝈𝐼𝐼 ⊗ 𝟏𝟏)�̇�𝜺+ 𝑎𝑎𝑠𝑠𝝈𝝈𝐼𝐼  �̇�𝑠 . (F-8) 

We continue with formulating an expression of the rate of the saturated grain stress beginning with, 

𝝈𝝈𝐼𝐼 = 𝝈𝝈�𝐼𝐼(𝜺𝜺,𝒇𝒇, 𝑠𝑠), (F-9) 

where the path dependent parameter 𝒇𝒇 has been seen as an independent variable. Since 

�̇�𝒇 =
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

�̇�𝜺 , (F-10) 

𝒇𝒇 is really a function of strain. The present format, however, is selected to obtain a more manageable 
derivation. 

So, on taking the ”time” derivative, 

�̇�𝝈𝐼𝐼 =
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝜺𝜺
�̇�𝜺 +

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝒇𝒇
�̇�𝒇 +

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝑠𝑠
�̇�𝑠 , (F-11) 

where, 

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝜺𝜺
=
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
𝜕𝜕𝝍𝝍
𝜕𝜕𝜺𝜺

,
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝒇𝒇
=
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
𝜕𝜕𝝍𝝍
𝜕𝜕𝒇𝒇 and

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝑠𝑠
=
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
𝜕𝜕𝝍𝝍
𝜕𝜕𝑠𝑠

+ 𝟏𝟏 . (F-12) 

The first derivative, common for all three terms above, is given by, 
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𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
= −𝕀𝕀, (F-13) 

where 𝕀𝕀 denotes the fourth order unit tensor with components (𝕀𝕀)𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑙𝑙.  

𝜕𝜕𝝍𝝍
𝜕𝜕𝜺𝜺

=
𝜕𝜕𝝍𝝍
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

⊗
𝜕𝜕𝑒𝑒
𝜕𝜕𝜀𝜀𝑣𝑣

𝜕𝜕𝜀𝜀𝑣𝑣
𝜕𝜕𝜺𝜺

 , (F-14) 

𝜕𝜕𝝍𝝍
𝜕𝜕𝑒𝑒𝜇𝜇

=
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇 (F-15) 

𝜕𝜕𝑒𝑒
𝜕𝜕𝜀𝜀𝑣𝑣

= 1 + 𝑒𝑒0 (F-16) 

𝜕𝜕𝜀𝜀𝑣𝑣
𝜕𝜕𝜺𝜺

= 𝟏𝟏 (F-17) 

𝜕𝜕𝝍𝝍
𝜕𝜕𝜺𝜺

= (1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�⊗ 𝟏𝟏 (F-18) 

Thus, 

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝜺𝜺
= −

𝜕𝜕𝝍𝝍
𝜕𝜕𝜺𝜺

= −(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�⊗ 𝟏𝟏 (F-19) 

and using index notation, 

𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖𝑰𝑰

𝜕𝜕𝜀𝜀𝑖𝑖𝑙𝑙
= −

𝜕𝜕𝜓𝜓𝑖𝑖𝑖𝑖
𝜕𝜕𝜀𝜀𝑖𝑖𝑙𝑙

= −(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝛿𝛿𝑖𝑖𝑖𝑖 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝑓𝑓𝑖𝑖𝑖𝑖� 𝛿𝛿𝑖𝑖𝑙𝑙 (F-20) 

We have that,  
𝜕𝜕𝝍𝝍
𝜕𝜕𝒇𝒇

= 𝜓𝜓Δ𝕀𝕀 , (F-21) 

which gives, 

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝒇𝒇
=
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
𝜕𝜕𝝍𝝍
𝜕𝜕𝒇𝒇

= −𝜓𝜓Δ𝕀𝕀 . (F-22) 

Finally, 
𝜕𝜕𝝍𝝍
𝜕𝜕𝑠𝑠

=
𝜕𝜕𝝍𝝍
𝜕𝜕𝑒𝑒𝜇𝜇

𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

 , (F-23) 

and using the expression for the clay potential derivative, 

𝜕𝜕𝝍𝝍
𝜕𝜕𝑠𝑠

=
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇� , (F-24) 

which gives, 

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝑠𝑠
=
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝝍𝝍
𝜕𝜕𝝍𝝍
𝜕𝜕𝑠𝑠

+ 𝟏𝟏 = −
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�+ 𝟏𝟏 . (F-25) 

Returning to,  

�̇�𝝈𝐼𝐼 =
𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝜺𝜺
�̇�𝜺 +

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝒇𝒇
�̇�𝒇 +

𝜕𝜕𝝈𝝈𝐼𝐼

𝜕𝜕𝑠𝑠
�̇�𝑠 , (F-26) 

and using all the above give, 
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�̇�𝝈𝐼𝐼 = �−(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�⊗ 𝟏𝟏 −𝜓𝜓Δ
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺
� �̇�𝜺 + 

�𝟏𝟏 −
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�� �̇�𝑠 , 

 

(F-27) 

and if introducing (defining) ℂ𝐼𝐼 and 𝕕𝕕𝐼𝐼 as, 

ℂ𝐼𝐼 = −(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇�⊗ 𝟏𝟏− 𝜓𝜓Δ
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

 (F-28) 

𝕕𝕕𝐼𝐼 = 𝟏𝟏 −
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝟏𝟏+
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝒇𝒇� (F-29) 

we get, 

�̇�𝝈𝐼𝐼 = ℂ𝐼𝐼�̇�𝜺+ 𝕕𝕕𝐼𝐼�̇�𝑠. (F-30) 

Using index notation, 

�̇�𝜎𝐼𝐼𝑖𝑖𝑖𝑖 = 𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝜀𝜀�̇�𝑖𝑙𝑙 + 𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖�̇�𝑠 . (F-31) 

where,  

𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 = −(1 + 𝑒𝑒0)
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑒𝑒

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝛿𝛿𝑖𝑖𝑖𝑖 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝑓𝑓𝑖𝑖𝑖𝑖� 𝛿𝛿𝑖𝑖𝑙𝑙 − 𝜓𝜓Δ
𝜕𝜕𝑓𝑓𝑖𝑖𝑖𝑖
𝜕𝜕𝜀𝜀𝑖𝑖𝑙𝑙

 (F-32) 

𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 −
𝜕𝜕𝑒𝑒𝜇𝜇
𝜕𝜕𝑠𝑠

�
𝜕𝜕𝜓𝜓𝑀𝑀
𝜕𝜕𝑒𝑒𝜇𝜇

𝛿𝛿𝑖𝑖𝑖𝑖 +
𝜕𝜕𝜓𝜓Δ
𝜕𝜕𝑒𝑒𝜇𝜇

𝑓𝑓𝑖𝑖𝑖𝑖� (F-33) 

The increment in total stress can now be expressed in terms of increments in strain and suction, 

�̇�𝝈 = [𝛼𝛼 ℂ𝐼𝐼 + 𝑎𝑎𝜀𝜀𝝈𝝈𝐼𝐼 ⊗ 𝟏𝟏]�̇�𝜺 + [𝛼𝛼 𝕕𝕕𝐼𝐼 +  𝑎𝑎𝑠𝑠𝝈𝝈𝐼𝐼] �̇�𝑠 = ℂ �̇�𝜺 + 𝕕𝕕 �̇�𝑠 , (F-34) 

where, 

ℂ =  𝛼𝛼 ℂ𝐼𝐼 + 𝑎𝑎𝜀𝜀𝝈𝝈𝐼𝐼 ⊗ 𝟏𝟏 (F-35) 

𝕕𝕕 = 𝛼𝛼 𝕕𝕕𝐼𝐼 +  𝑎𝑎𝑠𝑠𝝈𝝈𝐼𝐼  . (F-36) 

On index notation, 

�̇�𝜎𝑖𝑖𝑖𝑖 = �𝛼𝛼𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑎𝑎𝜀𝜀𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑙𝑙�𝜀𝜀�̇�𝑖𝑙𝑙 + �𝛼𝛼𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑠𝑠𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖��̇�𝑠 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝜀𝜀�̇�𝑖𝑙𝑙 + 𝑑𝑑𝑖𝑖𝑖𝑖�̇�𝑠 , (F-37) 

where,  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 =  𝛼𝛼𝐶𝐶𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 + 𝑎𝑎𝜀𝜀𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑙𝑙 (F-38) 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑑𝑑𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑠𝑠𝜎𝜎𝐼𝐼𝑖𝑖𝑖𝑖  . (F-39) 
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Appendix G: Strain-driven formulation of the limiting 
condition of 𝒇𝒇 

An alternative, strain-driven, expression for the limiting condition of 𝒇𝒇 is here derived. The strain-
driven format can be used in an expression of the evolution relation for 𝒇𝒇 suitable for implementation 
in Comsol in that it does not require additional state variables.  

The increment of the limiting condition becomes, 

𝑑𝑑𝐹𝐹 = −2�𝑓𝑓𝑝𝑝𝑑𝑑𝑓𝑓𝑝𝑝 + 𝑓𝑓𝑞𝑞𝑑𝑑𝑓𝑓𝑞𝑞�. (G-1) 

The increment can be expressed further using, 

𝑑𝑑𝑓𝑓𝑝𝑝 =
1
3

tr(𝑑𝑑𝒇𝒇) =
1
3
𝟏𝟏 · 𝑑𝑑𝒇𝒇 (G-2) 

𝑓𝑓𝑞𝑞
2 =

3
2
�𝒇𝒇 − 𝑓𝑓𝑝𝑝 𝟏𝟏� · �𝒇𝒇 − 𝑓𝑓𝑝𝑝 𝟏𝟏� =

3
2
�𝒇𝒇 · 𝒇𝒇 − 3𝑓𝑓𝑝𝑝

2� (G-3) 

2𝑓𝑓𝑞𝑞𝑑𝑑𝑓𝑓𝑞𝑞 =
3
2
�2𝒇𝒇 · 𝑑𝑑𝒇𝒇 − 6𝑓𝑓𝑝𝑝𝑑𝑑𝑓𝑓𝑝𝑝� = 3�𝒇𝒇 − 𝑓𝑓𝑝𝑝𝟏𝟏� · 𝑑𝑑𝒇𝒇 (G-4) 

𝑑𝑑𝐹𝐹 = −2𝑓𝑓𝑝𝑝𝑑𝑑𝑓𝑓𝑝𝑝 − 2𝑓𝑓𝑞𝑞𝑑𝑑𝑓𝑓𝑞𝑞 = �−2𝑓𝑓𝑝𝑝
1
3
𝟏𝟏 − 3�𝒇𝒇 − 𝑓𝑓𝑝𝑝𝟏𝟏�� · 𝑑𝑑𝒇𝒇 = �

7
3
𝑓𝑓𝑝𝑝 𝟏𝟏 − 3𝒇𝒇� · 𝑑𝑑𝒇𝒇 (G-5) 

The evolution equation of the path dependent variable can be expressed as, 

if ��
7
3
𝑓𝑓𝑝𝑝 𝟏𝟏 − 3𝒇𝒇� · −𝑲𝑲𝑑𝑑𝜺𝜺 ≥ 0�  then 

𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= −𝑲𝑲 , else 
𝜕𝜕𝒇𝒇
𝜕𝜕𝜺𝜺

= −
𝐹𝐹
𝑅𝑅2

𝑲𝑲 . (G-6) 
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