Technical Report

TR-14-18

A comparative study of two rock crushing methods using quartz monzodiorite from Laxemar, Oskarshamn

Effects on oxygen consumption, sorption capacity, morphology and pore size distribution

Elin Lavonen, Maria Lagerström Department of Materials and Environmental Chemistry, Stockholm University

Henrik Drake, Isochron Geoconsulting

July 2014

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co

Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00

ISSN 1404-0344 SKB TR-14-18 ID 1428240

A comparative study of two rock crushing methods using quartz monzodiorite from Laxemar, Oskarshamn

Effects on oxygen consumption, sorption capacity, morphology and pore size distribution

Elin Lavonen, Maria Lagerström Department of Materials and Environmental Chemistry, Stockholm University

Henrik Drake, Isochron Geoconsulting

July 2014

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

In this study, rock material from Laxemar, Oskarshamn, Sweden have been crushed into smaller fractions using traditional crushing with hammer and swing mill with agate mortar and by an alternative method developed by selFrag AB in Switzerland where the rock is subjected to high voltage pulse power fragmentation. Grains produced from these two crushing methods were compared with regards to:

- alteration and fragmentation of the crushed samples using an optical microscope and a Scanning Electron Microscope (SEM),
- pore size distribution calculated from N₂ adsorption analysis,
- oxygen consumption by monitoring the O₂ (g) over sterilized samples of crushed rock in deionised water using gas chromatography,
- sorption capacity of Sr²⁺ in a synthetic groundwater by determining the distribution coefficient (R_d) and the adsorption and desorption isotherms, of which the latter two suffered from experimental problems and higher uncertainties than the former methods, which data thus can be classified as being of higher quality.

The ambition of the study was to investigate which of the crushing methods that is most able to produce material representative for intact bedrock. Unfortunately, the material used for the different crushing methods differed slightly in mineralogical and chemical composition, although being sampled at close distance (m scale) and from the same rock type.

None of the crushing methods have created grains that show similar pore size distributions over the entire spectra of grain sizes. This indicates, together with SEM-observations of micro-fracture formation, that both crushing methods have led to alteration of the rock material making none of them representative for intact bedrock and implies that none of the crushing methods have produced completely unaffected grains. Even if the pore size distribution curves demonstrate that there is some variability in pore occurrence between the high-voltage crushed grain size fractions, the observed slightly greater oxygen consumption, the more angular feldspar surfaces and the higher amount of micro-fractures indicate that mechanical crushing has created larger area of reactive surfaces or higher reactivity of the surfaces. The SEM investigations showed that the high voltage crushing has affected grains less than the mechanical crushing, and also produced grains that are more similar between different size fractions. Therefore, although the general conclusion is that high voltage crushing method creates a material that is most representative for intact bedrock, although there are large uncertainties related to some of the experimental methods and to the slight difference in starting material composition.

Contents

1	Introduction	7
1.1	Background	7
	1.1.1 Reducing and sorption capacity	7
	1.1.2 Representative rock material	7
1.2	Aim of the study	7
1.3	Limitations	8
2	Materials and experimental methods	9
2.1	Rock material	9
2.2	Crushing methods	9
2.3	Chemical/mineral composition, element distribution and rock classification	9
2.4	Pore size distribution and surface area	10
2.5	Sample fracturing and alteration	10
2.6	Redox Reactivity	10
2.7	Sorption capacity and weathering tendency	11
	2.7.1 Adsorption	12
	2.7.2 Desorption	12
	2.7.3 pH and chemical analysis	12
3	Results and discussion	13
3.1	Composition and rock classification	13
	3.1.1 Mineral composition	13
	3.1.2 Rock classification	13
	3.1.3 Chemical composition	14
	3.1.4 Conclusions and suggested improvements	15
3.2	N ₂ adsorption isotherm and pore size distribution	16
	3.2.1 Classification of adsorption isotherms	16
	3.2.2 Pore size distribution (PSD)	16
	3.2.3 Conclusions	19
3.3	Studies of fracturing and alteration using a Scanning Electron	22
	Microscope (SEM)	23
	3.3.1 Intact drill core samples	23
	3.3.2 M sample, $2.0-3.0$ mm fraction	23
	3.5.5 HV sample, 2.0–3.0 mm fraction	27
	3.3.4 M sample, 0.5–1.0 mm fraction	30
	3.5.5 HV sample, 0.5–1.0 mm fraction	32 25
2 /	0.5.0 Final conclusions from the SEW study	25
3.4	Peducing capacity	35
3.5	Sorption capacity and weathering tendency	30
5.0	3.6.1 Distribution ratio R.	39
	3.6.2 Isotherms	41
	3.6.3 Iron aluminium and magnesium	45
	3.6.4 Conclusions	45
4	Summary and conclusions	47
5	Acknowledgements	49
Refe	rences	51
Appe	endix 1	53
Appe	endix 2	69

1 Introduction

1.1 Background

The properties of the bedrock that constitutes the third barrier in the proposed storage method KBS-3 are important aspects regarding the final repository of spent nuclear fuel (HLW) in Sweden. The first barrier is a copper canister with a thickness of 5 cm and a cast iron inset and the second is a layer of bentonite clay used to protect the canister against minor movements in the bedrock, to limit the inflow of the low concentrations of corrosive agents in the groundwater and to minimize radionuclide mobilization in case of canister failure (Rosborg and Werme 2008).

1.1.1 Reducing and sorption capacity

The copper canisters holding the HLW may corrode if in contact with oxygen (O_2) -containing water. This water could be introduced via highly transmissive fractures during a future glacial period when melt water may contain a relatively high amount of dissolved oxygen, low concentration of organic matter and the groundwater flow might be enhanced (Spiessl et al. 2007, Drake et al. 2009). During the initial period after backfilling, the HLW repository will also be subjected to a period of increased dissolved oxygen, compared to the undisturbed reducing conditions of the groundwaters at the actual depth (Yang et al. 2007).

In case of canister failure, dissolved oxygen present in the groundwater may increase the mobility of several long-lived radionuclides (Rivas-Perez et al. 2003, Toulhoat 2002). Organic material is present at repository depth in concentrations enough to allow for complete oxygen reduction by microbial activity (Pedersen 2000) but it is still important to investigate the abiotic contribution to the reducing capacity in the form of reduced minerals present on fracture walls (*e.g.* chlorite) and in the rock matrix (*e.g.* biotite and pyrite) (Drake et al. 2008, Sidborn and Neretnieks 2008, Sidborn et al. 2010). Furthermore, it is important to study the sorption capacity of the bedrock to investigate its capacity to retard potential mobilized radionuclides (Toulhoat 2002).

1.1.2 Representative rock material

Because diffusion and reaction rates are slow in intact bedrock, smaller fractions of rock are generally used in laboratory experiments. Traditionally, larger pieces of bedrock are crushed mechanically using a swing mill with agate mortar or a hammer to acquire smaller fractions. However, this crushing method could create surfaces with higher reactivity because fragmentation may occur across mineral grains instead of along natural grain boundaries where the binding energy is weaker (Friedman et al. 1972). Furthermore, mechanical crushing is hypothesized to alter the surfaces of the grains through an increase in micro-cracks leading to an overestimation of the surface area, in particular for smaller fractions (André 2009). Therefore, concern has been raised regarding how representative mechanically crushed grains are for intact bedrock. selFrag AG in Switzerland has developed a new crushing method were rock samples are submerged in water and fragmented using high voltage (HV) pulsed power technology. This allows the grains to be separated along natural grain boundaries (www.selfrag.se). The hypothesis is that the HV method will create grains that are more representative for the actual bedrock, compared with the mechanical crushing method.

1.2 Aim of the study

The aim of this study was to investigate potential differences in rock material crushed by two different methods, *i.e.* mechanically crushed (M) material and rock fragmented using high voltage current (HV). The parameters studied were:

- 1) oxygen consumption,
- 2) sorption capacity and weathering tendency,
- 3) fracturing and possible alteration of grains,
- 4) pore size distribution.

These provide material-specific information that can be of use in the context of a repository for spent nuclear fuel, e.g. with regard to abiotic oxygen consumption after the operation phase (1), retardation of radionuclides by sorption (2) and matrix diffusion (implications from 4). The third parameter is mainly used to test the suitability of different crushed materials to be used in experiments to interpret the other parameters.

1.3 Limitations

The starting conditions for this study were not optimal because the original rock material (samples from the borehole KLX09C, Laxemar, Oskarshamn) used for preparation according to the two different crushing methods differed somewhat in both foliation and composition. Compensations for this were made when possible during the interpretation of the results but it would have been more favourable if the rock had been more homogeneous resulting in the same rock composition for both samples and their respective size fractions. The reason for the difference in rock composition is the heterogeneity of the rock type. Both samples are Ävrö granite, from the same borehole and sampled only two meters apart and it was therefore assumed that their composition would be very similar. Unfortunately, this was not the case, which partly may be attributed to relatively small sample volumes, due to the narrow drill core diameter and fractures that had to be avoided. A further explanation is that the rock is porphyritic, with large feldspar phenocrysts. The latter are heterogeneously distributed and have large effect on the composition if sample volumes are small.

2 Materials and experimental methods

2.1 Rock material

Two samples were taken at the beginning of 2010 from the borehole KLX09C in Laxemar, Oskarshamn. The borehole was drilled in January 2006 and the cores subsequently stored in drill core wooden boxes. The sample that was sent to Switzerland for high voltage crushing originated from 38 m while the mechanically crushed sample was taken from 40 m depth. Intact samples of the drill core from the depths of interest were also investigated.

2.2 Crushing methods

Throughout this report the abbreviations "M" and "HV" are used to denote samples crushed mechanically and through high-voltage pulse power fragmentation, respectively.

The mechanical crushing was performed by Isochron Geoconsulting, Sweden, using hammer (sample was wrapped in paper to avoid metallic iron from the hammer in the crushed material) and swing mill with agate mortar inset. Hammer was used as a first step in order to make drill core pieces small enough to fit into the agate mortar.

The high-voltage pulse power fragmentation was conducted at selFrag AG, Kerzers, Switzerland. Worth noting is that due to limited size of the sample preparation vessel at selFrag the sample was subjected to some mechanical treatment prior to the high voltage fragmentation. The process water in which the sample was submerged was degassed with N_2 gas purging to avoid oxidation, and a PTFE vessel and a special Cu-electrode were used to avoid iron contamination. The sample was treated with a pulse voltage of 110–140 kV and a frequency of 2 Hz. After treatment, the sample was sedimented and decanted, freeze dried, PUR-sieved and shipped in vacuum-sealed bags to the University of Stockholm.

Both samples (mechanically crushed and high-voltage fragmentation) were sieved by Isochron Geoconsulting, Sweden, to acquire five different size fractions; <0.25 mm, 0.25–0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm and 2.0–3.0 mm. The mechanical milling and all sieving was performed during the period May–June 2010 in aerobic environment and the samples thereafter were kept in plastic jars with lids.

Samples resulting from both crushing methods were washed in ethanol-water mixtures before the redox and sorption experiments, as described below in Sections 2.6 and 2.7, in order to remove small particles and to achieve sterile conditions.

2.3 Chemical/mineral composition, element distribution and rock classification

The rock samples were sent to ALS Scandinavia AB for total extraction and quantification using ICP-QMS and ICP-AES. Materials analysed for both HV and M sample were: pieces of the intact drill cores (crushed and ground without sieving) and the 0.5–1.0 mm size fractions.

Rock classification was performed according to the IUGS (International Union of Geological Sciences) classification system. The classification was performed at Stockholm University through identification of minerals in 30 μ m thin sections prepared from the drill cores (using a polarizing petrographic microscope in plane-polarized and cross-polarized light). For the analysis 1,000 points of the thin sections were identified in order to determine the mineral content of the bedrock with high certainty.

Thin sections were also prepared from the 0.5–1.0 mm and 2.0–3.0 mm size fractions.

2.4 Pore size distribution and surface area

Data from measurements of N_2 adsorption (Micromeritics ASAP 2020, Surface area and porosity analyser) were used to calculate the pore size distribution using the density functional theory (DFT). The samples are dried for 6 hours at 350°C with a vacuum set point of 10 μ mHg. The equilibrium criterion for the isotherm measurements was <0.01% under 10 sec.

The DFT method allows the pore size distribution (PSD) to be determined over a relatively large range of pore diameters compared to older models. The PSD was calculated for all samples using the DFT Plus v3.00 (ASAP 2020 v1.05) software from Micromeritics for slit-shaped pores. DFT is a quantum mechanical modelling method used in physics and chemistry to investigate the electronic structure of many-body systems (cf. Ravikovitch et al. 1998). Samples from the 0.5–1.0 mm size fractions (about 11 to 15 g) were analysed in duplicates to verify/validate the results of the BET (Brunauer, Emmett, and Teller) surface area and pore size measurements. The total uncertainty in the surface area analysis is estimated to be less than 10%.

Before the experiments all samples were washed in ethanol and decanted to remove dust particles and then dried in an oven at 110°C. The measurements were performed in August and November 2010.

2.5 Sample fracturing and alteration

To verify any potential differences in fracturing and possible alteration of the samples during the two different crushing procedures, both in grain boundaries and within grains, thin sections of the drill cores and the 0.5–1.0 mm and 2.0–3.0 mm size fractions (mounted in epoxy on a glass slide and polished) were investigated using a scanning electron microscope (SEM JEOL JSM-7000F).

2.6 Redox Reactivity

The reactivity towards dissolved O_2 was tested through batch experiments. Flasks of ca 115 mL containing ca 30 g crushed rock of the 1.0-2.0 mm size fraction and 65 mL water as well as control samples with no rock material and ca 75 mL water were prepared by Microbial Analytics Sweden AB and sealed with a rubber septum (Table 2-1). All the materials and solutions (except the mineral samples) were autoclave-sterilized to prevent any microbial contribution to oxygen consumption and, hence, focus the study on the intrinsic reducing capacity of the minerals present. The mineral samples were previously sterilised by washing with a 70% ethanol aqueous solution and then rinsing with sterilised distilled water. At the beginning of the experiment each flask was injected with ca 2.6 mL air ($\approx 1.08 \cdot 10^{-4}$ mol O₂) and the O₂ concentration in the gas phase was then monitored regularly using gas chromatography (parameters listed in Table 2-2 below). Duplicate flasks of both HV and M as well as control samples without rock material were prepared. The control samples should not show any change in O_2 due to consumption and therefore these changes in oxygen are considered to represent the variations that might occur due to possible leakage of oxygen into the flasks (+), potential oxygen consumption by microbes (–) and the error range of the gas chromatograph (\pm). The estimated uncertainty of the method was $\pm 5\%$. The amount of O₂ added is well below the expected Fe(II) content of the rock samples, which should be ≈ 0.01 mol (from an Fe₂O₃ content of $\approx 6\%$, assuming that half of the iron is Fe(II), see Drake and Tullborg (2006, Section 7.5).

Sample	Rock material (g)	H₂O (mL)	O ₂ (ppm) before injection	O ₂ (ppm) (+1 day)
Control 1	_	75	<1,000	12,963.1
Control 2	_	74	<1,000	14,989.3
HV1	30.06	64	<1,000	14,723.6
HV2	30.03	63	<1,000	12,971.7
M1	30.07	64	<1,000	16,511.8
M2	30.04	64	<1,000	15,428.6
M1 M2	30.07 30.04	64 64	<1,000 <1,000	16,511.8 15,428.6

Table 2-1. Starting conditions for the O₂ consumption samples before and after air injection.

Parameter	Setup
Column	CP-PoraBOND Q 25 m × 0.32 mm and CP-Molsieve 5A 50 m × 0.53 mm (parallel)
Detector	Thermal Conductive Detector (TCD)
Carrier gas	Helium (flow: 20 mL/min)
Temperature	50°C
Injection	Split1-2

 Table 2-2. Parameters used for the determination of oxygen concentration in the gas phase using the gas-chromatograph.

Because both the gas phase volume and the injected volume of air differed slightly between flasks there was some difference in starting concentration of O_2 between the samples (Table 2-1).

The syringe used for gas extraction from the flasks and subsequent injection into the GC was flushed with helium gas prior to each extraction of 200 μ L to avoid O₂ contamination of the samples. The sterile environment in the flasks was maintained by washing all equipment in ethanol before use.

The argon gas contained in the air injected into each flask was used as a calibration of the exact volume of air initially added (ca 200 μ L). Therefore, all measured oxygen peak areas were normalized against the simultaneously measured peak area of the inert Ar(g) (see Appendix A1.1).

Two measurements per flask were carried out at each sampling event. The GC parameters are listed in Table 2-2. Quantification was carried out with an external calibration curve (see Appendix, Table A1-1) and measurements were performed once per month during four months. The oxygen levels were monitored over a total time period of 217 days.

The reproducibility of the measurements of changes in the O_2 contents in the gas phase of these batch experiments was found to be $\pm 5\%$.

2.7 Sorption capacity and weathering tendency

Studies of the sorption capacity were carried out using a modified method from Cui and Eriksen (1995). In the present study the radioanalytical method using ⁸⁵Sr could not be used, and Sr concentrations were analysed by ICP-OES (see 2.7.3) at Stockholm University. The sorption experiments were performed between 16 Nov. and 21 Dec. 2010 and were followed immediately by the desorption study that lasted until the end of Jan. 2011. For determination of both the *distribution coefficient* (R_d) and the adsorption/ desorption *isotherms* two sets of samples were prepared in PE bottles and tubes using a synthetic groundwater (SGW) with the composition given in Table 2-3. The size fraction used was 0.5–1.0 mm. All samples were washed in ethanol before the experiment start to remove dust particles. To focus the study on the properties of the surfaces rather than the quantity of surface area, the sample weights used were determined so that the same BET surface area to SGW ratio was achieved, see Table 2-4. However, it should be noted that similar BET surface area may not *per se* give totally comparable results because BET may not correspond equally to the amount of reactive surfaces in the different samples.

 Table 2-3. Composition of the synthetic groundwater (SGW). All chemicals used were of proanalytical grade.

Conc. (mM)
2.4
2.0
0.2

Table 2-4. Experimental set-up and B	ET surface areas for the rock material.
--------------------------------------	---

Sample	Rock material (g)	BET (m²/g)	SGW (mL)	m²/mL SGW
HV R _d	18.19	0.2159	60.00	0.06550
HV isotherm	1.365	0.2159	4.500	0.06550
M R _d	20.00	0.1964	60.00	0.06550
M isotherm	1.500	0.1964	4.500	0.06550

SrCl₂ was added to the SGW to obtain solutions with the following Sr concentrations: 10^{-5} mol L⁻¹ for the determination of the distribution coefficients (presented in Section 3.6.1), and 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , 10^{-6} mol L⁻¹ for the isotherm determinations (presented in Section 3.6.2). Strontium from the slow leaching (dissolution) of the mineral samples affected the analysis, and attempts were made to correct for this effect by measuring blank samples, described in the next section. After the addition of strontium, the pH of the distribution coefficient solutions was adjusted by addition of suprapure HCl or NaOH to 8.2 to reflect natural pH-conditions, while for the solution through formation of SrCO₃, which precipitates between pH 6.1 and 8 for the different Sr concentrations used.

To describe the uptake of cations the distribution ratio, R_d , is commonly defined as the ratio between the amount of cations sorbed either per weight or surface area of the solid (q) and the remaining cations in the aqueous phase (C). When the sorption system reaches an equilibrium state the distribution ratio becomes the equilibrium distribution coefficient, K_d . Because the samples were weighted so as to acquire the same surface area rather than comparing the same mass, the adsorption density, q, is defined as the amount of cations sorbed per unit surface area of solid:

$$R_d = q/C = (V/SA) \cdot (C_0 - C_t)/C_t$$

where V = volume of solution (cm³); SA = surface area of solid phase (m²); C₀ = initial [Sr²⁺]; C_t = [Sr²⁺] at time t. This equation was used for the adsorption and desorption experiments described below. The precision of the calculated distribution coefficients, based on the precision in the analyses of the aqueous solutions, was $\pm 50 \text{ cm}^3/\text{m}^2$.

2.7.1 Adsorption

All samples were prepared in duplicate sets. Blank samples were prepared both in Sr-free SGW to monitor Sr in the aqueous phase due to leaching from the rock material and without rock in Sr-containing SGW to see if any Sr adsorbed to the container walls.

To even out concentration gradients (homogenise) all samples were placed on a shaking table after addition of the solutions. The samples were mixed continuously the first 2 hours and thereafter for 1 min every hour during the first 24 hours followed by 1 min every 2 hours for the remaining 34 days of the experiment. 500 μ L sub-samples for the distribution coefficient samples were taken and diluted 10 times to a total volume of 5 mL approximately at 1, 3.5, 5.5, 7.5, 25, 73.5, 169, 336.5, 504, 672 and 840 hours after the initial addition of the Sr-containing SGW and acidified with concentrated HNO₃ (1%volume). Samples from the isotherm solutions were only taken once; after 35 days.

2.7.2 Desorption

The Sr-containing SGW was removed after 35 days and all samples were washed in MilliQ water to remove non-sorbed strontium. Sr-free SGW was then added to the samples to initiate the desorption phase. Because strontium has been found to sorb mainly through ion exchange processes (Park and Hahn 1999) a sequential chemical extraction was applied on the distribution coefficient samples during the desorption using first SGW for 21 days (eight samplings), then 0,5 M CaCl₂ (one sampling) and finally 0,5 M KCl (one sampling) for 1 week each. The isotherm solutions were kept in SGW and sampled once; after 35 days.

Measurements of blank samples (described in the previous section) were used to correct the measured concentrations.

2.7.3 pH and chemical analysis

pH was measured at each sampling event with a pH-meter. All aqueous samples were analysed at Stockholm University for Sr, Al, Fe and Mg (not presented due to experimental problems) with an ICP-OES (Varian Vista) using external calibration curves.

3 Results and discussion

3.1 Composition and rock classification

The drill core samples crushed with the two different methods were first thought to differ in chemical and mineral composition due to their visual appearance. However, the results from the investigation combining mineral determination using point counting on thin sections (Figure 3-1) and analyses of chemical composition performed at ALS Scandinavia AB in Luleå (Figure 3-3) showed only small differences between the samples.

3.1.1 Mineral composition

Point counting of the two thin sections prepared from the drill core samples demonstrates four major minerals – plagioclase (NaAlSi₃O₈ – CaAl₂Si₂O₈), quartz (SiO₂), K-feldspar (KAlSi₃O₈) and biotite (K(Mg, Fe)₃(AlSi₃O₁₀)(F, OH)₂) – composing 93.0 and 94.5 vol.% of the HV and M samples respectively, see Figure 3-1 and Table A1-12 in Appendix A1.2. The total amount of feldspars is quite similar for the two drill core samples with 66.8 vol.% for HV and 64.2 vol.% for M. The distribution between plagioclase and alkali feldspars on the other hand differs. K-feldspar is more common in the HV sample compared to M while plagioclase shows the opposite behaviour. Furthermore, the M sample contains more quartz and the HV sample more biotite even if the difference for the latter is small (<2%).

3.1.2 Rock classification

The results from the point counting were used to classify the rock according to the IUGS (International Union of Geological Sciences) classification. There are different diagrams for classification based on the texture of the rock and because all grains in the rock were visible without the aid of a microscope the texture is said to be phaneritic (coarse grained) leading to the use of the diagram (Figure 3-2).

As can be seen in Figure 3-2, the rock from both depths, 38 m (HV) and 40 m (M), would be classified as quartz monzodiorite even if the latter is somewhat of a borderline case.

Figure 3-1. The mineral composition of the two drill core samples determined by point counting from thin sections.

Figure 3-2. IUGS classification of the rock samples. Blue = HV, orange = M.

3.1.3 Chemical composition

Iron and magnesium

The chemical analysis for the unsieved whole rock samples (Figure 3-3) shows that the M sample contains more Fe and Mg than the HV sample which is indicative of larger biotite abundance. This is not detected for the 0.5–1.0 mm samples where the differences in concentrations are negligible.

Furthermore, both the HV and M 0.5–1.0 mm samples have lower Fe compared to the whole rock samples. An explanation for this could be accumulation of some mineral(s) in other size fractions. In the 0.5–1.0 mm size fraction, the selective removal of Fe-containing minerals during crushing/ fragmentation is greater for the M sample (~40% decrease in Fe₂O₃) than for the HV sample (~25% decrease). Along with a decrease in Mg for the M samples, this ultimately results in total compositions for the two samples that are less than 5% different from each other (evening out of concentration differences compared to the drill core samples mentioned above). This suggests that the two crushing methods have led to different accumulation of minerals during fragmentation of the rocks.

Figure 3-3. Chemical composition of the HV and M whole rock samples (crushed and unsieved drill core sample) and 0.5-1 mm size fraction samples. Error bars of $\pm 5\%$ are included.

However, to confirm this assumed fractionation of mineral(s) in other size fractions, all size fractions should have been investigated. Furthermore, it is noticeable that the HV material has no difference in Mg between the whole rock and 0.5–1.0 mm size fraction samples which would be hard to explain if the decrease in Fe was solely attributable to a decrease in the amount of biotite (which probably accumulates in the finer fractions) as this mineral is easily fragmented and contains both Fe and Mg. The lower Fe content of the crushed samples could therefore in addition be due to a fractionation of epidote and/or titanite, which contain Fe but negligible Mg, and are relatively resistant (less affected by crushing), leading to accumulation in the coarser fractions. The decrease in Fe could be an effect of a lesser amount of Fe-oxide in the crushed sample but since its occurrence in the whole rock is low (≤ 0.5 vol%) this is not very likely.

Potassium, sodium and calcium

For the unsieved whole rock drill core samples, potassium is more abundant in the HV sample (Figure 3-3) which could be due to a larger K-feldspar occurrence in the HV than the M drill core (see Figure 3-1). However, K also occurs in biotite and therefore it is difficult to draw any further conclusions. Potassium increases in the M 0.5–1 mm size fraction and decreases for the HV sample compared to the whole rock drill core sample. This could be an effect of selective accumulation of biotite and/or K-feldspar in different size fractions.

For the unsieved whole rock drill core samples both Ca and Na concentrations are greater in the M sample (Figure 3-3) indicating that M contains more plagioclase. Both elements have increased in the HV 0.5–1.0 mm size fraction which implies accumulation of plagioclase in this fraction while Na in the M sample are practically the same for the whole rock drill core sample and the crushed sample and the concentration of Ca somewhat lower in the 0.5–1 mm fraction.

3.1.4 Conclusions and suggested improvements

The chemical analysis of the unsieved whole rock drill core and the 0.5–1 mm fraction samples and the mineral identification through point counting from the drill core thin sections has led to somewhat different results as can be seen in the summarizing Table 3-1 and Table 3-2. This is an indication of either unrepresentative samples, unreliable methods or both. As mentioned in Chapter 1, the samples are small and the rock type heterogeneous, coarse-grained and porphyritic, which evidently have had effect on the different chemical and mineralogical composition of the samples used for the two methods.

It is possible that crushing the rock has led to the accumulation of some minerals in different size fractions, see Table 3-2, as Fe and Mg have decreased in the 0.5–1.0 mm M sample compared to the whole rock samples whereas Ca and Na have increased in the crushed fraction for the HV sample. For the M material this suggests an accumulation of biotite in either larger or smaller size fractions (most likely smaller due to the brittleness of the mineral), although biotite alone cannot explain the preferential loss of Fe over Mg. Plagioclase may have accumulated in the 0.5–1.0 mm fraction for HV. Without further analyses of additional size fractions it is hard to establish any correlations between particle size and mineral occurrence. However, both crushing methods may have led to the accumulation of different minerals, but in different manners, which indicate that both methods are incapable of producing samples that are representative for the bedrock regarding the chemical composition.

For more reliable results several thin sections should have been prepared and several size fractions as well as larger samples used for chemical analysis to reduce the risk of unrepresentative samples.

Table 3-1. Largest occurrence of different minerals in the drill core thin sections analysed for chemical composition as indicated by the sample name.

	K-feldspar	Plagioclase	Biotite
Chemical analysis	(HV)	Μ	Μ
Point counting	HV	Μ	HV

Table 3-2. Differences in mineral occurrence in the 0.5–1 mm size fraction compared to the drill core samples as interpreted from the chemical composition analyses.

	K-feldspar	Plagioclase	Biotite
м	Small increase	No difference/small decrease	Decrease
ΗV	Small decrease	Increase	Contradictive results

3.2 N₂ adsorption isotherm and pore size distribution

3.2.1 Classification of adsorption isotherms

The N₂ adsorption isotherms are very similar for the HV and M samples for all size fractions, see example in Figure 3-5, and all isotherms in Appendix 2. They all correspond to the IUPAC (International Union of Pure and Applied Chemistry) classification type IV isotherm (Figure 3-4 left) that show a characteristic hysteresis loop which is associated with mesopores (20–500 Å). The hysteresis loop may exhibit different shapes (Figure 3-4 right) which are thought to be related to the pore structures. It is not completely straightforward to identify the type of hysteresis loop due to the lack of scale in the IUPAC figures but in this case it should be either type H3 or H4. Since H3 is a type observed for aggregates and H4 corresponds to narrow slit-like pores it is H4 that should be the most correct one for the samples in this study (Sing 1982). The desorption curve in Figure 3-5 shows lower amount adsorbed (line with crosses) than the adsorption curve in the end of the adsorption at low relative pressure. This could be due to weathering and release (desorption) of Sr already attached to the samples prior to the experiment, although in very low amounts.

3.2.2 Pore size distribution (PSD)

The pores were divided first into two groups; ca 15–800 Å and >800 Å (Figure 3-7) as reported in the DFT results. The complete PSD of pores with sizes 15–800 Å can be seen in Figure 3-9 to Figure 3-12 and will be discussed further down.

Reports from measurements of the PSD according to DFT can be found in Appendix 2.

A conceptual presentation of common porosity features is found in Figure 3-6.

Figure 3-4. Types of physisorption isotherms (left) and of hysteresis loops (right) (from Sing 1982).

Figure 3-5. Isotherm plot for the M 0.5–1 mm sample.

Figure 3-6. Conceptual presentation of porosity features in the rock mass: intra-crystal porosity (with close-up of pore surface area and pore volume), pore volume and pore surface area between grains and micro-fractures through different mineral crystals and along grain-boundaries. Different mineral grains are shown with different colour.

Pore sizes 15–800 Å and >800 Å

For the M sample the surface area for pores with sizes 15–800 Å decreases somewhat with increased particle size over the three smallest size fractions, see Figure 3-7. The 2.0–3.0 mm fraction, on the other hand, opposes this trend. The surface area for pores >800 Å also generally decreases with size from the smallest to the largest fraction for the M sample and what is striking is that these pores are almost non-existing in the 2.0–3.0 mm size fraction. Looking at the percentage distribution between pores of these two size groups (Figure 3-8) one can see that it is very similar for the three smallest fractions with ca 12–14% for pores with sizes 15–800 Å and ca 76–78% for pores exceeding 800 Å. Due to the very small amount of pores >800 Å for the 2–3 mm the smaller pores represent approximately 97% of the total amount.

Figure 3-7. PSD for sizes >800 Å and 15–800 Å. Blue = HV, orange = M. The values for the 0.5–1 mm fraction are mean values from two measurements. The actual values were 0.0405 ± 0.0035 Å (HV) and 0.0300 ± 0 Å (M) for pores in the range 15–800 Å and 0.0925 ± 0.0015 Å (HV) and 0.096 ± 0.0040 Å (M) for pores exceeding 800 Å. Error bars show +/–10%.

Figure 3-8. Percentage distribution of pores >800 Å and 15–800 Å. Blue = HV, orange = M.

The surface area for pores with sizes 15–800 Å is increasing with increasing grain size for the three smallest fractions of HV samples (opposite behaviour compared to the M samples). On the other hand, the pores exceeding 800 Å for the same fractions decrease, see Figure 3-7, leading to an increased percentage of pores between 15 and 800 Å for HV (Figure 3-8) (although the variability change is generally within 10%). The 2.0–3.0 mm fraction is deviating from this trend since the values of surface area for pore sizes 15–800 Å decrease while the value for pores exceeding 800 Å increases compared to the 1.0–2.0 mm size fraction.

Both HV and M samples show trends of decreasing amount of total pores with increased particle size with the exception of the HV 2.0-3.0 mm sample that has an amount about equal to the HV 0.5-1 mm fraction.

PSD of pore sizes 15–800 Å

Regarding the pores between 15 and 800 Å, the distribution can be seen in Figure 3-9 to Figure 3-12 below. All samples have a significant amount of mesopores (20–500 Å) which is consistent with the IUPAC type IV isotherm discussed in Section 3.2.1.

Pores with sizes 15–20 and 20–40 Å show no consistent difference between the HV and M samples (Figure 3-9 to Figure 3-12), showing distribution of pore surface area over different pore width. The duplicate measurements indicate largest pore size variations in these areas and up to ca 90 Å (Figure 3-10). It is possible that the washing of the samples prior to analysis was not sufficient enough to remove all dust particles leading to these variations. However, for pores with the sizes 90–800 Å the surface area is largest for the HV sample in all cases, see Figure 3-13 (although the difference in the smallest and largest fractions are within the 10% uncertainty of the method), and similarly in the 230–800 Å size span. Furthermore, both the HV and M 0.25–0.50 mm samples show a positive deviation from the other grain sizes in the 230–800 Å size span (Figure 3-13, Figure 3-14, and Figure 3-15), although the M sample is within the 10% uncertainty of values from other grain sizes. The values are 0.020 (HV) and 0.018 (M) m²/g for the 0.25–0.50 mm fraction compared to 0.017 m²/g and 0.013 m²/g for all the larger fractions of the HV and M samples respectively. No other significant differences could be established between the two crushing methods from the pore size distribution and quantity of pores.

3.2.3 Conclusions

- Both M and HV samples show trends for the three smallest size fractions regarding the pore width groups 15–800 Å and >800 Å. For the HV samples the total surface area of pores >800 Å decreases with increased particle size while the surface area for smaller pores (15–800 Å) increases slightly (note that increase is smaller than method error). The M samples generally show a decrease in both 15–800 Å and <800 Å pores from the 0.25–0.50 Å to the two larger fractions leading to a very similar percentage distribution (Figure 3-8). The 2.0–3.0 mm fraction deviates for both HV and M samples, perhaps due to dominance of resistant K-feldspar phenocrysts. Since the surface area for both pore width groups differ for both samples between the grain sizes alteration and/or selectivity is likely to have occurred during both crushing procedures.
- None of the crushing methods have created grains that show similar pore size distributions over the entire spectra of grain sizes (Figure 3-14 and Figure 3-15). This indicates that both crushing methods have led to alteration of the rock.
- The samples crushed with high voltage have more pores compared to the M samples from 90 to 800 Å for all grain sizes, see Figure 3-13. This could indicate that the high voltage crushing is less capable of producing unaltered samples than mechanical crushing but could also be an effect of different starting conditions.
- The fact that the 0.25–0.50 mm size fraction has the largest surface area for the pore width range 230–800 Å might be an indication that pores in this range are formed during continued treatment with both methods. Since the other grain size fractions are more similar to each other in this region it is possible that this effect only occurs after a certain amount of treatment and that the larger grains are unaffected.

Suggestion for further studies: Preferably, further N_2 adsorption measurements would be performed on intact bedrock to compare with the results for the crushed samples to make sure that the observed differences in not an effect of different starting conditions. Larger pores will be discussed further in Section 3.3 (visual investigation with SEM) where comparisons with the drill cores are also made.

Figure 3-9. Distribution of pore surface area over different pore widths. Particle size: 0.25–0.50 mm; $\oplus = HV$, $\times = M$. Uncertainty is +/-10%.

Figure 3-10. Distribution of pore surface area over different pore widths. Particle size: 0.50–1.0 mm; $\oplus = HV(1), \Delta = HV(2), \nabla = M(1), \times = M(2)$. Uncertainty is +/–10%.

Figure 3-11. Distribution of pore surface area over different pore widths. Particle size: 1.0-2.0 mm; $\oplus = HV$, $\times = M$. Uncertainty is +/-10%.

Figure 3-12. Distribution of pore surface area over different pore widths. Particle size: 2.0–3.0 mm; $\oplus = HV, \times = M$. Uncertainty is +/–10%.

Figure 3-13. Incremental surface area of pores in the range 90–800 Å on the left and 230–800 Å on the right. Error bars represent maximum uncertainty of $\pm 10\%$.

Figure 3-14. Distribution of pore surface area over different pre widths. M samples: $\oplus = 0.25 - 0.50$ mm, $\times = 0.50 - 1.0$ mm (1), $\Delta = 0.50 - 1.0$ mm (2), $\nabla = 1.0 - 2.0$ mm, $\Box = 2.0 - 3.0$ mm. Uncertainty is +/-10%.

Figure 3-15. Distribution of pore surface area over different pre widths. HV samples. $\oplus = 0.25-0.50$ mm, $\times = 0.50-1.0$ mm (1), $\Delta = 0.50-1.0$ mm (2), $\nabla = 1.0-2.0$ mm, $\Box = 2.0-3.0$ mm. Uncertainty is +/-10%.

3.3 Studies of fracturing and alteration using a Scanning Electron Microscope (SEM)

3.3.1 Intact drill core samples

The presence of pores varied to some extent for the two drill core samples; from rather low occurrence (Figure 3-16), to more affected grains (Figure 3-17). Overall there were more grains with a larger occurrence of pores and cracks in the M than the HV drill core samples. The interpretation of larger number of pores in the M sample is however slightly uncertain as this thin section is less evenly polished than the HV sample.

Two types of grain boundaries could be found in both drill core samples. Type I where the minerals were closely attached without any fracturing between them, see Figure 3-17. Type II where fractures occur between the minerals, see Figure 3-18.

3.3.2 M sample, 2.0–3.0 mm fraction

In this sample it is easy to find quartz and feldspar grains with a relatively small amount of visible pores (Figure 3-19). It is possible that these grains have been more resistant to the mechanical crushing and therefore are more common in the largest fraction (than in smaller fractions described below). The low amount of pores may, at least partially, explain the low value for surface area of pores exceeding 800 Å for this fraction (Figure 3-7) since the width of these pores are in the approximate range of $0.1-2 \mu m$, see Figure 3-19.

For some of the mineral grains with low pore occurrence there was no difference between the fracture surface and the inner area of the grain (Figure 3-20, left) but for most of them the grain boundary had been altered through an increase in cracks with lengths in the range of several μ m (Figure 3-20, right). Mechanical crushing may lead to localized strain bands with an adjacent zone of micro-cracks and that fractures form when enough micro-cracks connect (André 2009). This could lead to the formation of grains with disturbed grain boundaries with both fractures and micro-cracks.

Figure 3-16. HV on the left and *M* on the right. Examples of quartz grains (darker grey colour, lighter grey = biotite) with relatively low crack occurrence.

Figure 3-17. HV on the left and *M* on the right. Examples of quartz (right side on both pictures) and plagioclase grains (left side on both pictures) with a relatively large amount of cracks/pores. Relatively poor polishing on the right thin section. Grain boundary is of Type I.

Figure 3-18. Type II, fractured grain boundaries.

Figure 3-19. Examples of grains with low amount of pores. Dark coloured area is epoxy.

Figure 3-20. Unaltered plagioclase grain boundary on the left, affected quartz on the right.

Grains with a larger pore occurrence for quartz and feldspars were also found (Figure 3-21) even if the smoother ones dominated. The disturbed zone at the grain boundary was found on most grains examined.

Many biotite grains were markedly affected and sheets tended to separate close to the grain boundary (Figure 3-22). Less affected biotite grains were also found (Figure 3-23) even if they were not as common. Noticeable is also that the biotite grains, in similarity with feldspars and quartz, had a low pore occurrence and that the grain interiors tended to be relatively smooth.

Larger cracks, ranging from about ten up to several hundred µm were also found (Figure 3-24). These were most frequent relatively close to the grain boundaries and within grains rather than between grains. Some larger cracks were however located between mineral grains (Figure 3-25, left and Figure 3-19, left) but examples of cracks going straight through a mineral were also found (Figure 3-25, right).

Fractures in biotite grains did not only occur between sheets were the binding energy is low but also perpendicular to the cleavage plane (Figure 3-24).

Figure 3-21. An example of quartz with larger pore occurrence. The increased amount of cracks at the grain boundary can be spotted on the right. The porous occurrence of the left quartz grain to the right is probably partially due to poor polishing at this specific area of the thin section.

Figure 3-22. Biotite grain boundaries. Notice how the sheets separate close to the grain boundary.

Figure 3-23. Examples of biotite that is practically unaffected at the grain boundary.

Figure 3-24. Left: plagioclase with cracks parallel to grain boundary. Right: biotite with do not only occurring between the sheets but also perpendicular to them, see also Figure 3-23, left.

Figure 3-25. Larger cracks between biotite grains on the left and within a plagioclase grain on the right.

Summary and conclusions for M 2.0–3.0 mm

- The M 2.0–3.0 mm sample generally contains quartz and feldspar grains with a relatively small presence of pores within the grains compared to both the M drill core sample and the smaller fraction (see Sections 3.3.1 and 3.3.4). This could be an effect of these grains being more resistant to the mechanical crushing and therefore overrepresented in the larger grain fraction.
- Most grain boundaries have an increased amount of cracks compared to the interior of the grains. Since these cracks have not been spotted in the drill core sample it is possible that their appearance is an effect of the mechanical crushing subjecting the material to high stress. However, one should not exclude the possibility that at least some of these cracks may have formed during the preparation of the thin section.

3.3.3 HV sample, 2.0–3.0 mm fraction

The selectivity of grains with a low pore occurrence that was found to have happened for the M 2.0–3.0 mm sample was not seen for the HV sample partially due to that the polishing of the HV sample was less satisfactory than for the M sample making a thorough comparison between these two samples of this fraction difficult. Also, in contrast to the M sample (Figure 3-20 and Figure 3-21), most grain boundaries showed no or little increase in cracks in the μ m range (Figure 3-26 and Figure 3-27).

Figure 3-26. K-feldspar from the same grain boundary at different magnification. There is no sign of increased crack occurrence close to the grain boundary compared to the interior.

Figure 3-27. Example of quartz grain with slight increase in crack frequency close to the grain boundary. Poor polishing is observed in the highly magnified right image.

Biotite grains were less affected at grain boundaries compared to the M sample even if examples with sheet separation close to the grain boundary were found, see Figure 3-28. Regarding the grain interiors, the amount of pores was higher for the HV sample than the M sample, but due to the difference in degree of polishing between these thin sections, this observation is uncertain.

The larger fractures ranging from about ten up to several hundred μ m found in the M sample were found to be even more common in the HV sample. Also, they tended to a larger extent to occur in the middle of grains (Figure 3-29) compared to the M sample. Examples where these cracks occurred more frequently close to the grain boundary were also found (Figure 3-30) even if the former were more common.

Summary and conclusions, HV 2.0–3.0 mm fraction

- For the HV sample there is no sign of selectivity of fracturing along grain boundaries of certain type
 of grains (as was the case for the same size fraction of the M sample, see Section 3.3.2) and no or
 little increase in cracks in the μm range close to the grain boundaries. Furthermore, there are fewer
 biotite grains with sheet separation close to the grain boundary compared to the M sample. This
 could indicate that the high voltage crushing is less destructive than the mechanical crushing.
- However, since the larger fractures occur to a greater extent in the HV sample it seems more likely that both crushing methods have had an altering effect on the grains even if in different manners.

Figure 3-28. Examples of biotite grains. The lower grain shows no separation of the biotite sheets while the upper is more affected.

Figure 3-29. Examples of larger fractures.

Figure 3-30. Examples of larger cracks occurring close to the grain boundary.

3.3.4 M sample, 0.5–1.0 mm fraction

The M 0.5-1.0 mm sample had a markedly different appearance compared to the larger fraction examined. Firstly, the pores in the width range of approximately $0.1-2 \mu m$ that were low in occurrence for the 2.0–3.0 mm fraction sample were found in all quartz and feldspar grains, see example in Figure 3-31. However, the polishing of this thin section is poor, and an uncertain degree of pores can be artefacts from the polishing and therefore the increase in porosity is uncertain, in contrast to micro-fracturing which is visible even if polishing is poor and which cannot be misinterpreted as artefacts from the polishing. The cracks with lengths in the μm range that were found to be present at grain boundaries in the largest fraction were not as common in the 0.5–1.0 mm fraction even if they did appear in some cases. The appearance of these cracks was also somewhat different from those in the larger fraction. The length was overall shorter and the width somewhat more narrow. Their shape together with the higher presence of pores compared to the 2.0–3.0 mm fraction made these cracks easier to spot at a higher magnification, see example in Figure 3-32 (×5,000 magnification).

Furthermore, the interior of biotite grains also appeared much richer in pores compared to the larger size fraction, see Figure 3-33, compare to Figure 3-22 and Figure 3-23, but this may to an unknown extent be due to poor polishing. There was, however, little or no tendency for the sheets to separate close to grain boundaries (Figure 3-34) compared to the 2.0–3.0 mm fraction (Figure 3-22). Larger fractures penetrating the grains were found, though exclusively between sheets (Figure 3-33 and Figure 3-34). Cracks perpendicular to sheets that were found for the larger fraction (e.g. Figure 3-23, left), were absent in the 0.5–1.0 mm fraction.

Figure 3-31. Example of a plagioclase grain. Note the large amount of pores present, although the poor polishing makes it difficult to estimate how much of this porosity that originates from poor polishing and how much that originates from the crushing.

Figure 3-32. Cracks in the μ m range.

Figure 3-33. Examples of biotite grains.

Figure 3-34. Examples of biotite grains. Note the general absence of sheet separation at grain boundaries as seen in the larger fraction.

Larger fractures were found in quartz and feldspar grains as well (Figure 3-35) though they could not be found to appear more regularly close to grain boundaries as was the case for the larger fraction. They occurred both randomly and along cleavage planes for feldspar minerals.

Figure 3-35. Larger cracks penetrating grains of quartz (left) and plagioclase (right).

Summary and conclusions, M sample 0.5–1.0 mm fraction

- The M 0.5–1.0 mm sample was found to be rich in pores in the approximate size range 0.1–2 μm. The pores were widely spread across the entire grains of quartz and feldspar and also appeared in biotite minerals. The occurrence of these pores were much larger compared to the 2.0–3.0 mm fraction. This may be an effect of pore-rich minerals being more prone to fragment, using mechanical crushing, than more solid ones leading to the overrepresentation of these grains in the smaller fraction. One cannot exclude the possibility that at least some of the pores have been created during the crushing since their occurrence is high also when comparing with the drill core sample. However, the poor polishing of this thin section makes the interpretation of pore occurrences very uncertain for this sample.
- In comparison with the 2.0–3.0 mm fraction the smaller grains did not seem as altered at the grain boundaries with regards to µm sized cracks. Even if it cannot be verified it is possible that, due to the larger amount of pores, fractures close to the grain boundaries have more easily been connected leading to the formation of new small grains without applying so much of a mechanical force.
- Cracks perpendicular to the orientation of biotite sheets were not found in the 0.5–1.0 mm fraction. This could be an effect of the formation of new grains with these cracks found in the 2.0–3.0 mm fraction as fresh grain boundaries. This is especially possible since these cracks should be the most obvious places for fragmentation to occur when applying a mechanical force.
- Larger fractures in quartz and feldspar crystals did not appear specifically at grain boundaries as was the case for the larger fraction. This could be merely an effect of the size of the particles since mechanical crushing is likely to lead to a larger percent of a grain being altered with decreasing particle size (André 2009).

3.3.5 HV sample, 0.5–1.0 mm fraction

The 0.5–1.0 mm HV sample was apparently quite porous in the size range of approximately $0.1-2 \mu m$ (Figure 3-36). These pores can be considered to be somewhat more common in the 0.5–1.0 mm fraction compared to the 2.0–3.0 mm, although the rather inconsistent polishing of the thin sections make straightforward comparisons of these thin sections difficult, and overall makes it difficult to distinguish whether the pores are natural pores or just uneven parts of poorly polished mineral grains. Grain boundaries tended to be altered to the same extent as the larger fraction, *i.e.* no or just a slight increase compared to the interior of the grains (Figure 3-37 and Figure 3-38). The short and narrow cracks found in the M sample in the same size fraction (Figure 3-32) were not seen for the HV sample.

For biotite, pores were detected within grains (Figure 3-37) about to the same extent as the M 0.5–1.0 mm sample (Figure 3-31) and somewhat more than for the larger HV fraction (Figure 3-28). Larger fractures were found between biotite sheets (Figure 3-39) but no spreading of the sheets close to grain boundaries was detected (Figure 3-40, cf. Figure 3-24 (M 2.0–3.0 mm) and Figure 3-27 (HV 2.0–3.0 mm)). Cracks perpendicular to the cleavage plane were almost completely absent but a few examples were found (Figure 3-39, right).

Larger fractures, in the range of tens of μ m to the same size as the grains, were also found in quartz and feldspar grains and to a relatively large extent. Their occurrence and placement was about the same as for the larger fraction, *i.e.* some fractures were present mainly close to grain boundaries (Figure 3-41) but most fractures occurred in the middle of grains (Figure 3-42). Fractures seemed to have formed both randomly and along cleavage planes.

Figure 3-36. Plagioclase (left) and quartz (right). The interior of the grain is quite porous in the approximate $0.1-2 \mu m$ pore width range, however, this is mainly due to poor polishing.

Figure 3-37. Example of a K-feldspar grain at two different magnifications. At the grain boundary there is only slightly (arrow), if any, increased alteration compared to in the interior of the grain. However, the uneven thin section surface (poor polishing), makes a thorough investigation of fracturing at the grain boundary difficult. A slightly better polished area in the image below illustrates these features better.

Figure 3-38. Example of a plagioclase grain with increased amount of cracks in the μ *m range at the grain boundary.*

Figure 3-39. Examples of biotite grains where pores within the grains are somewhat more common compared to the larger fraction. Note the crack perpendicular to the cleavage plane on the right picture (arrow).

Figure 3-40. Example of fractures occurring between biotite sheets. There is no spreading of the sheets close to the grain boundary as was the case for the larger fractions of both M and HV samples.

Figure 3-41. K-feldspar with larger fractures (arrows) close to the grain boundary.

Figure 3-42. K-feldspar, plagioclase and quartz crystals with larger fractures penetrating the entire grains (arrows).

Summary and conclusions, HV sample, 0.5–1.0 mm fraction

- Although there is difficulty in comparing porosity between thin sections due to inconsistent degree of polishing, there is an indication of an increase in porosity of $0.1-2 \mu m$ pores in quartz and feldspars than in the larger fraction but it is hard to establish a certain difference.
- Cracks in the µm range close to grain boundaries and larger fractures through grains were very similar to the larger fraction. The only difference is that biotite sheet separation was found for the larger but not the smaller fraction.

3.3.6 Final conclusions from the SEM study

All crushed samples show some alteration compared to the drill core samples. Regarding pores within crystals, the M sample minerals contained small amounts of pores in the $0.1-2 \mu m$ range. These were seemingly underrepresented in the smaller fraction but due to the inconsistency in the degree of polishing of these thin sections, no certain conclusion can be drawn. The difference in micro-fracturing is thus the most reliable observation to distinguish differences between the two crushing methods and between the different fractions. In this comparison the M sample 2-3 mm had higher amount of cracks close to the grain boundaries, more sheet separation of biotite along grain-boundaries and more fractures perpendicular to cleavage planes in the interior of biotite grains than the smaller M fraction and both of the HV fractions. The HV sample (both fractions) had more fractures through large grains, or grain aggregates, than in the M sample. The two HV fractions were similar to each other, although the smaller fraction had almost no sheet separation of biotite at grain-boundaries, in contrast to the larger fraction. The HV method seems to have resulted in similar crushing-related alteration features for the different fractions compared the M fractions, and has therefore produced a more homogeneous residue. The minerals of the M sample, at least the 2-3 mm, were more affected by the crushing than the HV samples, if longer fractures through mineral grains are excluded. The M method seems to have preferentially affected mineral grains close to grain-boundaries (increased fracturing), whereas the HV method to a larger extent fragmented grains at a larger scale, across whole grains and aggregates of grains. Furthermore, the M method seems to have affected the larger crystals more than the smaller ones, especially biotite, which showed more intense fracturing and alteration in the larger fraction.

3.4 Optical microscope

All fractions were examined using optical microscope, see Figure 3-43. The most evident difference between the two differently crushed rocks was the shape of the grains. The mechanically crushed grains were more angular than the grains crushed with high voltage that seemed more rounded. This was observed for the large fractions and even more so in the smaller fractions (0.25-0.50 and <0.25 mm) where many of the mechanically crushed grains had very sharp edges and rather elongated shapes. Most of these grains were observed to be feldspars, probably fragmented along their natural crystal lattice.

Μ

2-3 mm

1-2 mm

0,5-1 mm

Figure 3-43. Example photos (both above and on the next page) of the different size fractions observed in the optical microscope (M to the left and HV to the right). The same magnification was used for both samples when comparing the size fractions. Width of photos is about 2 cm, except <0.25 mm, which is 2 mm wide.

0,25-0,5 mm

< 0,25 mm

Figure 3-43. (Continued).

A large part of the M sample grains in the three smallest fractions were observed to be in the form of thin flat flakes. No such equivalent was found for the HV samples in the same size fractions. Another observation was that the size distribution seemed more even for the HV samples compared to the M samples for all fractions.

3.5 Reducing capacity

Measurements of the oxygen gas content in the flasks were carried out frequently during a period of 217 days to study the reducing capacity of the rock material (Figure 3-44 and Appendix A1.1). Because the starting concentration of O_2 differed somewhat in the six samples the results are presented as % change in O_2 (i.e. $(O_{2, time T}/O_{2, start}) - 1$), although it should be noted that this approach did not take into account any effect of the specific O_2 -consumption rates resulting from different starting concentrations of O_2 . The maximum positive change of the control samples were +5.1% and the negative change -5.9%. Changes within this range (marked with grey dotted lines in Figure 3-44) can thus not be considered to have happened due to oxygen consumption in the samples containing rock material.

Except for a couple of anomalously high or low values, the oxygen contents of the gas phase showed a steady decreasing trend for the flasks containing rock material.

Figure 3-44. Change in oxygen gas concentration in relation to the starting value over the 217 days measurement period. The grey dotted lines show the maximum range where variations have been detected in the control samples.

The HV 1 sample showed a large increase in $[O_2]$ during the first 35 days of the experiment. For the remaining of the monitoring period, the HV 1 sample experienced a net decrease in oxygen concentration, but due to the initial increase, the final value is within the estimated error equal to that of the control samples. The HV 2 sample has a final value that can be considered to show a true decrease in oxygen concentration (-8%, somewhat below the precision of the blank samples).

The two M samples show a greater decrease in oxygen during the last period of the experiment and both samples have experienced a larger consumption of oxygen at the end of the study $((10\pm5)\%)$ and $(11\pm5)\%)$ than the HV 2 sample, although within the estimated uncertainty of the method.

For the HV 2 sample a decrease of 8% in the oxygen content after 217 days would correspond to an oxygen consumption rate of about $1.5 \cdot 10^{-11}$ mol/(kg rock) (in total $2.8 \cdot 10^{-4}$ mol consumed O₂ per kg rock) for the HV sample, and for the M sample corresponding values would be $2 \cdot 10^{-11}$ mol/(kg rock) (in total $3.7 \cdot 10^{-4}$ mol consumed O₂ per kg rock) (based on the average O₂ decrease of the two samples). Using the BET data (see Table 3-3) this corresponds to $8.3 \cdot 10^{-14}$ mol/(m² s) and $9.4 \cdot 10^{-14}$ mol/(m² s) for the HV and M samples, respectively (total mol consumed O₂ per m² surface area being $1.56 \cdot 10^{-6}$ and $1.77 \cdot 10^{-6}$, respectively), i.e. slightly larger oxygen consumption per m² surface area for the M sample (although it should be noted that the differences in O₂ consumption between the samples were within the estimated $\pm 5\%$ uncertainty). Biotite makes up about 17 vol.% in the HV sample and 15.1 vol.% in the M sample, reported in the Appendix (Table A-12), and expecting similar densities for all minerals, the oxygen consumption rate is about $9 \cdot 10^{-11} \text{ mol/(kg-biotite s)}$ for the HV sample (by dividing the oxygen consumption rate per kg rock with the portion of biotite in the rock).

Table 3-3 shows, as expected, general decreasing BET areas with increasing grain size for both the HV and the M samples, in accordance with André (2009). However, the HV 2–3 mm sample and the M 1.0–2.0 mm do not follow this trend. Due to the high BET surface area in the largest HV fraction, there is a large difference between the HV and M sample when comparing the difference of the largest and smallest fractions, which have smallest and largest surface area, respectively, in the M sample.
Size fraction (mm)	BET (m ² /g) for HV samples	BET (m²/g) for M samples
0.25–0.50	0.2834	0.3369
0.50–1.0 (1)	0.2159	0.1964
0.50–1.0 (2)	0.2047	0.1949
1.0–2.0	0.1840	0.2167
2.0–3.0	0.2325	0.1390

Table 3-3. BET area (m^2/g) for the HV and M samples. Duplicate measurements were made for the 0.50–1.0 mm samples.

3.6 Sorption capacity and weathering tendency

The study of the sorption capacity did not go as planned due to substantial release of strontium from the rock material. It was thought that by monitoring the weathering of Sr using blank samples with strontium-free synthetic groundwater these values could be deducted from the Sr concentration in the sorption samples. However, it turned out that the contribution of Sr from weathering was so large that it affected the entire sorption system. In this section actual concentrations in the solution and modified concentrations, where blank concentrations are subtracted, are presented. It should be noted that the modified concentrations probably do not fully account for the actual sorption mechanisms, as these are dependent on the concentration used in the experiment.

3.6.1 Distribution ratio, R_d

Adsorption

As can be seen in Figure 3-45, Sr(aq) only experienced the expected decrease in concentration initially, during the first seven hours. Thereafter, from the sampling performed 24 hours after the experiment start, the actual concentration increased due to the contribution from leaching. Even after deducting the [Sr] values from the blank samples it was obvious that the leached strontium had affected the entire sorption system to such an extent that concentrations were still increasing after 24 hours. Due to this, plots of the distribution ratio are not presented.

Figure 3-45. Strontium concentration in solution over time during the adsorption phase. The values from the blank samples have been deducted from the actual concentration for the samples named HV and M modified. All values are mean values from double samples. Error bars show the minimum and maximum values.

The initial rapid decrease in strontium concentration is most likely attributable to sorption on outer surfaces (Park and Hahn 1999). The modified concentrations for both samples show small differences during this initial time period but due to the dominating contribution of Sr from leaching for the remaining time period of the experiment it is hard to draw any conclusions regarding sorptive properties of the samples, and from the blank measurements (Figure 3-46) it is obvious that equilibrium is never achieved which further hinders useful interpretations. Furthermore, pH measurements indicate that the pH was not constant throughout the experiments, at least not within the first approximately 100 hours (Figure 3-50 and Figure 3-51), also indicative of disequilibrium. However, there is a significant difference in Sr concentration over time between the two samples, see Figure 3-45. The data shows that more strontium leached from the M sample, possibly due to relatively high fragmentation (indicatively larger surface area and/or higher reactivity of the surfaces) of Sr-bearing mica and plagioclase (probably also epidote). In the blank samples the concentration was higher in the M sample throughout the entire adsorption phase (Figure 3-46).

Desorption

During the desorption phase the initial plan was to perform a sequential extraction with synthetic groundwater (SWG), $CaCl_2$ (0.5 M) and KCl (0.5 M) to study the binding mechanism and potential differences in behaviour between the two differently crushed rock samples. However, due to contamination of Sr in the CaCl₂ solution only values from the desorption in SGW will be presented. The Sr concentrations during desorption in SGW are presented in Figure 3-47.

The actual [Sr] differed between the HV and M sample. However, after deducting the leached strontium (from the blank samples) there was no significant difference (Figure 3-47). The total desorbed amount was 87 ppm for HV and 85 ppm for the M sample. It is not possible to fully determine how much Sr that adsorbed to the rock due to leaching but based on the initial seven hours of the adsorption phase one can say that it was at least 708 ppm for the HV sample and 716 ppm for M. This means that about 12% of the initially adsorbed Sr has desorbed in SGW for both samples. This is consistent with earlier studies where 10% of adsorbed strontium desorbed in groundwater conditions (Park and Hahn 1999).

There was less difference between the blank samples compared to the adsorption phase but more Sr had leached from the M sample even if the difference was not significant at all times, see Figure 3-48.

Figure 3-46. Mean concentrations of Sr in the blank samples during the adsorption phase. Error bars show the maximum and minimum values.

Figure 3-47. Concentration of strontium in the solution over time during desorption. The values from the blank samples have been deducted from the actual concentration for the samples named HV and M modified. All values are mean values of duplicate samples. Error bars show the minimum and maximum values measured.

Figure 3-48. Mean concentrations of Sr in the blank samples during the desorption phase. Error bars show the maximum and minimum values. HV and M stand for high-voltage and mechanical crushing, respectively.

Because the concentrations increased with time as expected the distribution ratio, R_d , was plotted, see Figure 3-49. The data shows that there were no significant differences between the two samples during desorption. However, because leaching accounted for about half of all Sr released to solution (53% for M, 49% for HV) it is very likely that this contribution had a large effect on the sorption system and the R_d plot should therefore be interpreted with caution.

3.6.2 Isotherms

Figure 3-52 shows the percentage of the initial Sr that had adsorbed after 35 days and Figure 3-53 presents the percentage that has desorbed of the initially adsorbed strontium (corrected using a mean value of two blank measurements, which further increases the uncertainty of these samples, e.g. the M sample blank varied by >10%). The experimental time (35 days) was estimated to be sufficient from the results of the adsorption and desorption experiments described in the previous two sections.

Figure 3-49. R_d values during the desorption phase. Error bars show the maximum and minimum values for the double samples.

Figure 3-50. Average pH values (n=2) during the sorption experiment. Only values measured from 3 hours onwards are plotted; the initial pH values (8.2) have been excluded from the diagram. Error bars show the standard deviation for the double samples.

Figure 3-51. Average pH values (n=2) during the desorption experiment. Error bars show the standard deviation for the double samples.

Figure 3-52. % adsorbed strontium of the initially added. Error bars show the minimum and maximum values of the duplicate samples.

Figure 3-53. % desorbed strontium of the initially adsorbed. Error bars show the minimum and maximum values of the duplicate samples.

The samples prepared for the sorption isotherms were of course also affected by the leaching of strontium. Due to this large addition the two lowest concentrations have been removed when plotting the isotherms in Figure 3-54. Although there are large uncertainties, the percentage desorbed Sr was generally in the range of 13–15% for HV and 14–15% for M (Figure 3-53) which is not very far from the reported 10% that is expected to desorb in groundwater conditions (Park and Hahn 1999).

Sorption of strontium is commonly reported not to be dependent on strontium concentration. This gives rise to a linear isotherm which is expected for ion exchange. Because ion exchange has been found to be the major sorption process for strontium the data were plotted according to the linearised Freundlich equation:

$$\log q = n \cdot \log C + \log K$$

(Equation 3-1)

where q is the sorption density, C the concentration of the sorbate in solution, K is the sorption density under standard conditions and n is a units-less constant describing the binding strength of the sorption sites (note the different n for sorption and desorption). The unit for q, C and K is mg/m^2 .

If the sorption is completely reversible then $n_{desorption}/n_{adsorption} = 1$ and $K_{desorption}/K_{adsorption} = 1$ and this was clearly not the case for the samples in this study, see Figure 3-54, Table 3-4 and Table 3-5 where data from the duplicate samples is presented. One cannot exclude the possibility that leaching also has affected the 10^{-4} M samples even if the leached amount only accounted for 5.3 and 6.6% for the HV and M samples respectively during adsorption. For the desorption phase the corresponding values were 8.7% (HV) and 10.2% (M). However, even if the 10^{-4} M samples would be removed from the isotherm graph the equations for adsorption and desorption would still differ. The most likely explanation is that pH differed in the adsorption and desorption solutions because the formation of SrCO₃ was avoided during adsorption only by adjusting to pH~6. The SGW used during desorption had a pH of approximately 8. pH impacts sorption processes trough protonation or deprotonation of functional groups which affects the surface charge (Friedman et al. 1972). pH dropped to about 7.2±0.1 during the adsorption phase and was 7.5±0.1 at the end of the desorption phase, as measured after 35 days (A1.8 in Appendix 1). However, no significant difference between the two differently crushed samples can be found from the isotherm plot leading to the conclusion that, under this experimental set-up, there was no difference in the sorption capacity for the two samples.

Figure 3-54. Freundlich isotherms for both adsorption and desorption. The data is mean values from the duplicate samples. The weathering contribution to [Sr] has been deducted using values from the blank samples. Only the data points corresponding to the initial Sr concentrations of 10^{-4} , 10^{-5} and 10^{-6} M are shown here.

Sample	n _{adsorption}	Kadsorption	n _{desorption}	K _{desorption}	n_{des}/n_{ads}	$\mathbf{K}_{des}/\mathbf{K}_{ads}$
HV1	0.5245	0.2350	1.550	3.914	2.955	16.66
HV2	0.5583	0.3109	1.567	3.973	2.807	12.78
Mean	0.5414	0.273	1.559	3.944	2.881	14.72
±	0.0169	0.038	0.009	0.030	0.074	1.94

Table 3-4. Values of K (intercept) and n (slope) from the isotherm plot for the HV double samples.

Table 3-5. Values of K (intercept) and n (slope) from the isotherm plot for the M double samples.

Sample	n _{adsorption}	Kadsorption	N _{desorption}	K _{desorption}	n_{des}/n_{ads}	$\mathbf{K}_{des}/\mathbf{K}_{ads}$
M1	0.5102	0.2087	1.563	3.893	3.064	18.65
M2	0.5752	0.3471	1.521	3.827	2.644	11.03
Mean	0.5427	0.2779	1.542	3.860	2.854	14.84
±	0.0325	0.0692	0.021	0.033	0.210	3.81

3.6.3 Iron, aluminium and magnesium

The concentration of the metals Al, Fe and Mg varied over time for all samples during both adsorption and desorption. The bottles containing the samples were shaken prior to each sampling to even out potential concentration gradients. At several occasions, small particles of biotite were detected in the solution after shaking and it is very likely that some of these particles were taken up along with the extracted samples and dissolved when the samples were acidified. This would explain the variation in concentrations and the strong correlation between the three metals because they would all originate mainly from biotite. Due to this probable strong influence from residual biotite, the results of adsorption and desorption are not presented in detail but only as raw data in the Appendix.

3.6.4 Conclusions

Due to the substantial release of strontium from the rock material the determination of the distribution ratio and isotherms did not go as planned. However, from the blank analyses it is indicated that more strontium has leached from the M samples. This implies that the mechanically crushed rock has a larger area of reactive surfaces or higher reactivity of the surfaces.

4 Summary and conclusions

Several of the sub-investigations presented in this report can be regarded as being of high scientific quality (SEM and microscope investigations coupled with analyses of chemical composition, as well as pore volume measurements; pore size distribution and surface area). In contrast, the investigations of sorption capacity and weathering tendency suffered from larger experimental problems and uncertainties and the implications of these results are thus more limited. In addition, the material used for the different methods (high-voltage and mechanical crushing) differed slightly in chemical and mineralogical composition, which probably has influenced the results to a variable, and generally unquantifiable, degree. The results of the mineralogical and pore size distribution can be summarized as follows:

- Studies with optical microscope showed that angular feldspar surfaces occurred more frequently in the M samples compared with the HV samples. The SEM investigations showed that all crushed samples had some alteration compared to the drill core samples. No certain conclusions regarding intra-crystalline pores could generally be drawn for the different materials and fractions due to inconsistency in the degree of thin section polishing. There were, however, distinguishable differences in the degree and characteristics of micro-fracturing. The minerals of the M sample, at least the 2–3 mm, were more affected by the crushing than the HV samples, if longer fractures through mineral grains are excluded. The M method seems to preferentially have affected mineral grains close to grain-boundaries (increased fracturing), whereas the HV method to a larger extent had fragmented grains at a larger scale, across whole grains and aggregates of grains. Furthermore, the M method seems to have affected the larger crystals more than the smaller ones, especially regarding biotite, which showed more intense fracturing and alteration in the larger fraction. The two HV fractions were generally more similar to each other than the M fractions.
- BET areas generally decreased with increasing grain size for both the HV and the M samples, although the HV 2–3 mm sample did not follow this trend. The pore size distribution curves show that in the range of 90 to 800 Å HV samples from all size fractions measured have larger quantities of pores compared to the M samples. This indicates either that the HV crushing has increased the amount of pores in this size range or that there were differences in pore occurrence in the original rock material. The PSD was quite similar between the larger size fractions while the smallest fraction measured, 0.25–0.50 mm showed a positive deviation for both crushing methods. For the HV samples the total surface area of pores >800 Å decreased with increased particle size while the surface area for smaller pores (15–800 Å) increased slightly. The M samples show a general decrease in both 15–800 Å and <800 Å pores from the 0.25–0.50 Å to the two larger fractions. The 2.0–3.0 mm fraction deviated for both HV and M samples, perhaps due to dominance of resistant K-feldspar phenocrysts. Because the surface area for both pore width groups differed for both samples between the grain sizes, alteration and/or selectivity is likely to have occurred during both crushing procedures.

Conclusions of the investigations of oxygen consumption and sorption capacity and weathering tendency are limited as stated above, but include:

- The 217 days long monitoring of oxygen consumption showed trends of decreasing concentrations for both rock samples. Although, indication of largest decrease for the mechanically crushed sample was observed (M: -11% compared to HV: -8%), it was within the estimated uncertainty $\pm5\%$ of the method.
- The sorption experiment did not proceed as planned due to massive amounts of strontium leaching from the rock material which affected the entire sorption system. It was indicated that more strontium leached from the mechanically crushed rock, implying larger area of reactive surfaces or higher reactivity of the surfaces of this material.

In conclusion, the observed slightly greater oxygen consumption and angular feldspar surfaces indicate that mechanical crushing has created larger area of reactive surfaces or higher reactivity of the surfaces. None of the crushing methods have created grains that show similar pore size distributions over the entire spectra of grain sizes. This indicates that both crushing methods have led to alteration of the rock material making none of them representative for intact bedrock and, hence, none of the crushing methods have produced completely unaffected grains. Even so, SEM investigations showed that the high voltage crushing has affected the crushed grains less than the mechanical crushing, and also produced grains that are more similar between different size fractions. Therefore, the general conclusion is that high voltage crushing method creates a material that is more representative for intact bedrock, although there are large uncertainties related to some of the methods and to the slight difference in the composition of the starting material.

5 Acknowledgements

The authors want to acknowledge Prof. Mats Johnsson at Stockholm University for all guidance and moral support during the project as well as Prof. Alasdair Skelton (Stockholm University) for assisting with mineral identification and rock classification, Kjell Jansson, Stockholm University for help while using the SEM and also to Eva Björkman, Stockholm University for creative input.

This project was funded by the Swedish Nuclear Fuel and Waste Management Co. (SKB).

References

SKB's (Svensk Kärnbränslehantering AB) publications can be found at www.skb.se/publications.

André M, 2009. New methods for the determination of sorption capacities and sorption-related properties of intact rock. PhD thesis. Royal Institute of Technology, Stockholm, Sweden.

Cui D, Eriksen T E, 1995. Reversibility of strontium sorption on fracture fillings. In Murakami T, Ewing R C (eds). Scientific basis for nuclear waste management XVIII: symposium held in Kyoto, Japan, 23–27 October 1994. Pittsburgh, PA: Materials Research Society. (Materials Research Society Symposium Proceedings 353), 1045–1052.

Drake H, Tullborg E-L, 2006. Oskarshamn site investigation. Mineralogical, chemical and redox features of red-staining adjacent to fractures – Results from drill core KLX04. SKB P-06-02, Svensk Kärnbränslehantering AB.

Drake H, Tullborg E-L, Annersten H, 2008. Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures. Applied Geochemistry 23, 1898–1920.

Drake H, Tullborg E-L, MacKenzie A B, 2009. Detecting near-surface redox front in crystalline bedrock using fracture mineral distribution, geochemistry and U-series disequilibrium. Applied Geochemistry 24, 1023–1039.

Friedman M, Handin J, Alani G, 1972. Fracture-surface energy of rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 9, 757–764.

Park C-K, Hahn P-S, 1999. Reversibility and linearity of sorption for some cations onto a Bulguksa granite. Korean Journal of Chemical Engineering 16, 758–763.

Pedersen K, 2000. Microbial processes in radioactive waste disposal. SKB TR-00-04, Svensk Kärnbränslehantering AB.

Ravikovitch P I, Haller G L, Neimark A V, 1998. Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Advances in Colloid and Interface Science 76–77, 203–226.

Rivas-Perez J, Tullborg E-L, Banwart S A, 2003. The kinetics of O₂(aq) reduction during oxidative weathering of naturally occurring fracture minerals in groundwater. Mineralogical Magazine 67, 399–414.

Rosborg B, Werme L, 2008. The Swedish nuclear waste program and the long-term corrosion behaviour of copper. Journal of Nuclear Materials 379, 142–153.

Sidborn M, Neretnieks I, 2008. Long-term oxygen depletion from infiltrating groundwaters: model development and application to intra-glaciation and glaciation conditions. Journal of Contaminant Hydrology 100, 72–89.

Sidborn M, Sandström B, Tullborg E-L, Salas J, Maia F, Delos A, Molinero J, Hallbeck L, Pedersen K, 2010. SR-Site: Oxygen ingress in the rock at Forsmark during a glacial cycle. SKB TR-10-57, Svensk Kärnbränslehantering AB.

Sing K S W, 1982. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 54, 2201–2218.

Spiessl S M, MacQuarrie K T B, Mayer K U, 2007. Identification of key parameters controlling dissolved oxygen migration and attenuation in fractured crystalline rocks. Journal of Contaminant Hydrology 95, 141–153.

Toulhoat P, 2002. Confinement and migration of radionuclides in a nuclear waste deep repository. Comptes Rendus Physique 3, 975–986.

Yang C, Samper J, Molinero J, Bonilla N, 2007. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. Journal of Contaminant Hydrology 93, 130–148.

Reduction of oxygen

See Section 2.6 for a description of the experimental procedure, and Table 2-2 for a list of gas chromatographic parameters.

Oxygen (ppm)	Area
209,000	217,575.2
104,500	110,353.2
62,700	65,596.9
20,900	23,520.9
10,450	9,552.1
10,450	10,942.7
10,450	11,418.3
6,270	6,165.3
4,180	4,553.3
4,180	4,688.7
989	1,252.4
989	898.7
989	1,005

Table A1-1. Oxygen calibration data.

Calibration curve 200 µl

Figure A1-1. Calibration curve for oxygen.

Table A1-2. Argon areas for selected samples having an injection volume into the gas chromatograph of 200 μL. Outliers and values for samples different than 200 μL were not included in the average peak area calculation.

Flask	Argon	Argon areas for injection volume 200 μL											Mean area	Std.dev.			
Control 1	833.8	843.7	723.1	809.8	735.5	805.6	772.7	731.8	730.6	799.1	816.3	766.7	830.5	719.2		784.6	43.46
Control 2	836.8	829.7	945.3	849.5	868.3	843.5	906.3	850.8	813.2	934.5	945.8					874.9	49.07
M 1	943.1	1,081.5	1,009.4	949.5	1,020.8	1,004.7	975.9	1,075.1	1,008.4	954.1	1,055.7					1,007.1	48.91
M 2	858.7	857.9	954.3	947.8	869	904	899.9	904.6	932.9	1,012.1	998.7	892.1				919.3	51.06
HV 1	860.4	788.2	952.9	1,051.9	868.6	1,057.1	889.7	935.9	895	900	1,084.4	947.2	1,015.8	964.8	1,047.6	950.6	86.27
HV 2	713.3	854.8	731.1	776.2	740	751.6	781.1	860.4	792.7	815.1	843.7	798.1	884.0			795.5	53.83

Table A1-3. Calculated oxygen concentration (in ppm) for the 217 day experiment period. Values are mean values from two samples.

	Days afte	Days after experiment start												
Flask	1	2	6	9	14	17	20	27	35	115	145	177	217	
Control 1	12,963.1	13,278.6	13,125.9	13,623.0	13,268.9	13,050.6	13,215.8	12,791.3	13,206.9	12,898.4	13,053.5	12,555.9	12,741.7	
Control 2	14,989.3	14,114.7	15,046.9	15,155.5	14,842.1	14,543.4	14,107.3	14,692.5	14,698.0	14,511.7	15,130.1	14,248.7	14,869.3	
M 1	16,511.8	16,962.4	16,085.6	15,964.0	16,728.6	16,628.1	16,907.4	16,855.4	16,223.1	15,885.5	15,831.7	14,937.4	14,670.4	
M 2	15,428.6	15,002.4	15,384.4	15,048.2	14,936.5	14,853.5	14,465.2	15,137.4	14,713.5	14,191.9	12,786.3	13,837.2	13,849.2	
HV 1	14,723.6	16,385.8	15,590.0	15,510.3	16,134.7	15,824.9	15,598.9	15,899.4	15,553.4	14,897.4	14,843.6	15,378.2	14,064.4	
HV 2	12,971.7	13,101.6	13,165.9	13,241.3	13,589.5	12,872.1	12,799.1	12,517.8	12,678.9	12,029.6	12,275.6		11,927.6	

54

	Days after experiment start												
Flask	1	2	6	9	14	17	20	27	35	115	145	177	217
Control 1	0.0	2.4	1.3	5.1	2.4	0.7	1.9	-1.3	1.9	-0.5	0.7	-3.1	-1.7
Control 2	0.0	-5.8	0.4	1.1	-1.0	-3.0	-5.9	-2.0	-1.9	-3.2	0.9	-4.9	-0.8
M 1	0.0	2.7	-2.6	-3.3	1.3	0.7	2.4	2.1	-1.7	-3.8	-4.1	-9.5	-11.2
M 2	0.0	-2.8	-0.3	-2.5	-3.2	-3.7	-6.2	-1.9	-4.6	-8.0	-17.1	-10.3	-10.2
HV 1	0.0	11.3	5.9	5.3	9.6	7.5	5.9	8.0	5.6	1.2	0.8	4.4	-4.5
HV 2	0.0	1.0	1.5	2.1	4.8	-0.8	-1.3	-3.5	-2.3	-7.3	-5.4		-8.0

Table A1-4. Change in oxygen concentration (%). The values for the control flasks marked with gray background are the minimum and maximum change detected.

S A1.1 Sorption and weathering

Table A1-5. pH over time for the R_d samples.

pH, ads	orption expe	eriments									
HV1	HV2	HVblank1	HVblank2	M1	M2	Mblank1	Mblank2	blank 1	blank 2	Time (h)	Time (days)
7.71	7.73	7.44	7.19	7.53	7.58	7.59	7.71	7.81	7.81	3.0	
7.73	7.47	7.15	6.99	7.51	7.66	7.75	7.68	7.79	7.73	6.0	
7.42	7.34	7.02	7.42	7.63	7.77	7.8	7.75	7.95	7.88	8.0	
7.68	7.54	7.7	7.98	7.91	7.99	8.05	8.05	8.08	7.81	25.8	1
7.67	7.74	7.83	7.94	7.95	8.02	8.03	8.12	8.08	7.90	74.2	3
7.36	7.24	7.71	7.88	7.79	7.84	7.86	7.81	8.05	7.86	169.2	7
7.70	7.73	7.65	7.52	7.75	7.78	7.74	7.77	8.05	7.97	337.7	14
7.67	7.53	7.60	7.64	7.77	7.88	7.78	7.73	8.05	8.00	505.9	21
7.64	7.64	7.58	7.64	7.8	7.83	7.74	7.83	8.06	8.00	673.4	28
7.68	7.74	7.68	7.71	7.94	8	7.89	8	8.19	8.02	838.9	35
pH, des	orption expe	eriments									
HV1	HV2	HVblank1	HVblank2	M1	M2	Mblank1	Mblank2	blank 1	blank 2	Time (h)	Time (days)
8.02	7.92	7.75	7.63	7.45	7.75	7.48	7.45	7.75	7.68	2.3	
8.05	7.79	7.51	7.36	7.39	7.38	7.45	7.49	7.74	7.58	4.4	
8.06	7.82	7.78	7.77	7.78	7.79	7.7	7.68	7.9	7.87	7.7	
7.62	7.49	7.59	7.61	7.6	7.63	7.69	7.75	7.77	7.72	23.7	1
7.6	7.51	7.32	7.23	7.44	7.52	7.57	7.57	7.8	7.78	47.1	2
7.81	7.82	7.92	7.89	7.9	7.92	7.85	7.93	8.07	8.05	169.3	7
7.60	7.50	7.58	7.68	7.76	7.77	7.77	7.83	8.01	8.00	335.6	14
7.57	7.77	7.43	7.66	7.58	7.68	7.74	7.84	8.06	8.01	502.1	21

Table A1-6. pH in solutions before experiment start.

[Sr] mol/L	initial pH
1.00E-02	6.01
1.00E-03	6.04
1.00E-04	5.99
1.00E-05	5.97
1.00E-06	6.02
Blank isotherm	6.23
Rd, 1E-5	8.21
Blank Rd	8.21

Table A1-7. Mass of samples.

Isotherm Mass of samples (g)

samnlo	1 00E-06	1 00E-05	1 00E-04	1 00E-03	1 00E-02	blank	
Sample	1.002 00	1.002 00	1.002 04	1.002 00	1.002 02	Dialik	
HV1	1.368	1.366	1.366	1.365	1.362	1.368	
HV2	1.367	1.364	1.368	1.366	1.366	1.362	
M1	1.498	1.497	1.497	1.504	1.503	1.498	
M2	1.500	1.497	1.4 9	1.497	1.501	1.501	

Rd Mass of samples (g)

HV1	HV2	HV blank	HV blank2	M1	M2	M blank1	M blank2
18.194	18.193	18.196	18.194	19.999	19.999	19.999	20.002

Table A1-8. pH in isotherm samples.

	pH, isotherm	[Sr] (mol/l	L)					
	Sample	1.00E-02	1.00E-03	1.00E-04	1.00E-05	1.00E-06	0	Time (days)
Adsorption	HV 1	6.80	7.13	7.24	7.29	7.29	7.34	35
	HV 2	6.89	7.13	7.27	7.29	7.22	7.13	35
	M 1	7.06	7.21	7.30	7.39	7.32	7.24	35
	M 2	7.13	7.21	7.29	7.34	7.37	7.34	35
	blank (no rock)	7.09/7.01						35
Desorption	HV 1	7.61	7.56	7.58	7.59	7.51	7.42	35
	HV 2	7.57	7.56	7.53	7.59	7.44	7.32	35
	M 1	7.61	7.59	7.55	7.51	7.54	7.40	35
	M 2	7.56	7.53	7.54	7.51	7.54	7.30	35
	blank (no rock)	7.57/7.55						35

Table A1-9.	Concentrations	of Sr, Mg, F	e and Al in R _d	յ samples dւ	uring adsorptio	n.
-------------	----------------	--------------	----------------------------	--------------	-----------------	----

HV1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.27	796.95	942.71	735.19	308.26
3.67	649.28	688.93	561.00	257.58
5.69	1,708.02	2,294.19	1,466.00	239.51
7.72	3,664.35	5,391.34	3,268.57	208.14
25.34	52,712.33	78,952.64	44,290.50	375.02
73.54	31,716.93	46,727.83	26,335.09	336.96
168.67	33,649.91	48,267.19	27,537.57	376.96
337.02	35,401.66	49,960.01	28,027.05	410.45
505.30	49,338.22	69,789.14	38,895.45	448.90
672.80	41,589.18	57,676.01	32,431.18	451.19
838.45	53,983.75	75,660.81	42,198.57	488.50

HV2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.27	1,254.11	1,667.28	1,151.59	309.15
3.68	723.42	818.85	608.33	231.60
5.67	924.17	1,054.87	754.95	222.34
7.70	13,861.58	20,625.75	13,396.69	252.63
25.32	15,190.83	22,391.55	12,729.08	266.61
73.48	17,438.39	25,395.39	14,558.81	286.80
168.67	22,929.52	33,202.00	19,132.12	323.86
337.03	26,743.02	38,097.90	21,125.29	379.91
505.30	29,016.94	40,879.04	22,733.52	417.57
672.82	33,242.13	46,316.80	25,853.75	435.09
838.47	41,230.49	56,822.80	32,148.78	468.14

HV blank1	ppb (µg/L)				HV b
time (hrs)	Mg	Fe	AI	Sr	time
1.05	927.02	1,170.48	858.49	38.24	1.0
3.47	10,123.48	13,704.34	9,673.75	95.59	3.4
5.40	1,320.35	1,649.09	1,092.33	45.63	5.3
7.28	3,197.28	4,738.52	2,946.59	64.97	7.3
25.10	13,740.41	20,062.80	11,526.27	105.09	25.0
73.22	19,927.50	28,950.62	16,573.84	130.45	73.1
168.40	24,210.13	35,246.37	19,823.33	148.49	168.4
336.80	38,552.04	55,104.33	31,223.86	187.73	336.
505.05	31,362.29	44,086.29	24,585.18	201.02	505.0
672.55	33,758.50	46,230.60	26,215.45	225.26	672.
838.23	44,527.86	62,364.12	34,685.50	230.11	838.2

HV blank2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.02	717.53	856.98	671.43	44.29
3.48	682.04	731.63	595.51	44.17
5.37	855.85	955.98	709.46	49.54
7.32	3,098.41	4,532.42	2,892.13	59.47
25.07	17,776.67	26,177.15	14,901.54	117.79
73.18	21,118.52	30,712.67	17,725.28	130.05
168.40	26,868.76	38,703.03	21,902.37	163.08
336.78	30,535.35	43,066.26	24,391.89	184.79
505.03	33,586.58	46,876.15	26,291.70	210.10
672.52	40,192.44	55,126.08	31,206.41	219.10
838.25	49,310.93	68,561.61	38,436.14	244.28

Table A1-9 (Continued).

M1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.33	1,819.74	2,186.60	2,480.16	321.94
3.83	1,884.65	2,249.69	2,431.34	281.97
5.75	1,204.94	1,157.75	1,516.23	263.71
7.60	3,571.88	4,563.58	4,502.28	263.85
25.38	27,120.44	36,670.61	24,817.79	405.76
73.72	49,447.09	67,806.97	41,577.37	469.54
168.78	60,817.83	83,257.52	50,227.23	516.33
337.13	94,389.84	129,138.79	75,634.08	611.15
505.77	57,531.91	77,658.96	46,294.16	553.65
673.25	71,237.85	94,784.23	56,307.00	571.93
839.10	82,786.68	110,290.03	64,538.05	601.04

M2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.33	1,037.39	1,009.77	1,378.71	302.95
3.85	5,474.15	7,491.72	5,626.52	291.12
5.73	2,821.51	3,522.00	3,374.26	281.64
7.58	5,851.97	7,963.32	6,643.84	286.37
25.38	29,509.28	41,053.08	26,516.35	399.45
73.70	38,648.97	52,833.99	32,677.08	415.28
168.78	60,652.55	86,639.49	50,439.48	507.64
337.13	38,211.56	53,282.18	31,051.02	484.86
505.77	70,293.02	98,807.81	56,339.90	557.92
673.25	69,851.64	100,097.79	55,211.00	549.39
839.12	85,701.01	121,710.06	66,854.32	600.88

M blank1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.08	1,526.96	1,765.36	1,794.46	65.33
3.60	1,663.27	1,970.04	1,851.54	71.31
5.50	1,373.53	1,469.58	1,549.13	71.37
7.35	5,765.86	7,797.10	6,585.23	117.21
25.17	26,031.96	35,288.17	23,191.87	209.30
73.43	50,459.02	69,132.81	41,582.75	254.35
168.55	51,762.35	70,031.48	42,327.93	284.55
335.88	76,564.17	105,640.16	60,788.50	330.16
505.52	59,723.42	83,056.38	47,390.48	315.82
673.02	69,448.45	95,562.87	54,370.48	337.32
839.02	96,052.17	131,011.32	74,365.85	377.31

M blank2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.10	914.80	925.70	1,125.35	56.09
3.60	3,207.59	4,170.55	4,565.65	107.21
5.50	2,968.59	3,673.26	3,184.10	83.50
7.35	6,111.06	8,384.74	6,551.51	112.30
25.18	38,326.31	52,240.20	32,228.24	227.80
73.43	43,230.28	59,019.09	35,445.30	231.46
168.60	49,725.33	66,796.84	40,013.65	279.04
335.90	66,774.51	90,556.03	52,984.64	311.94
505.55	57,069.51	77,829.16	45,153.92	312.89
673.03	73,393.57	99,241.15	57,110.88	333.31
839.15	114,852.81	156,942.35	88,220.45	385.17

Table A1-10. C	Concentrations	of Sr, Mg	Fe and Al in	l R₀ sam	ples during	g desorp	otion.
----------------	----------------	-----------	--------------	----------	-------------	----------	--------

HV1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.12	2,412.18	3,466.23	2,270.39	83.18
2.00	2,740.34	3,885.02	2,562.84	82.26
4.02	4,399.20	6,607.28	4,112.22	89.45
7.02	3,257.53	5,213.86	3,065.97	97.49
23.23	5,681.46	8,378.46	5,338.77	121.72
46.23	4,976.77	7,259.80	4,625.39	133.06
168.32	5,952.82	8,697.70	5,464.34	148.56
335.13	6,607.84	9,613.21	5,993.61	162.01
501.27	7,989.49	11,654.07	7,279.77	169.09

HV2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.10	2,486.95	3,538.69	2,331.84	80.51
2.00	2,429.91	3,488.66	2,298.88	81.18
4.03	2,790.66	4,048.24	2,623.03	83.33
7.03	2,640.77	3,746.92	2,460.80	96.43
23.25	4,855.51	7,049.34	4,439.67	116.43
46.25	4,866.74	7,097.41	4,492.83	121.65
168.32	5,518.52	7,998.67	5,005.50	154.53
335.15	6,424.09	9,375.45	5,792.11	162.68
501.28	7,381.34	10,823.89	6,661.63	173.31

HV blank1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.10	2,583.98	3,719.44	2,416.05	38.16
1.98	2,596.37	3,678.66	2,428.43	41.80
4.03	3,644.79	5,314.77	3,420.21	41.78
7.05	2,871.10	4,084.61	2,689.10	43.75
23.27	4,360.10	6,330.83	4,075.83	56.38
46.27	4,813.57	7,065.45	4,459.67	65.40
168.32	5,575.33	8,165.86	5,102.33	70.51
335.20	5,993.11	8,641.30	5,386.94	73.89
501.30	7.267.61	10,749.23	6,617.50	88.68

HV blank2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.12	3,294.46	4,800.46	3,073.15	44.44
1.97	3,423.50	4,990.98	3,201.72	40.16
4.07	3,836.12	5,577.75	3,575.59	44.69
7.08	3,112.62	4,433.87	2,904.04	44.33
23.28	5,497.10	7,995.81	5,121.53	57.29
46.28	5,399.70	7,895.20	4,993.67	57.63
168.38	6,907.47	10,182.67	6,406.22	70.41
335.22	7,592.63	11,123.81	6,980.97	81.26
501.37	8,435.83	12,613.95	7,706.19	79.99

Table A1-10 (Continued).

M1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.12	4,305.59	5,966.13	3,905.54	91.02
2.10	5,457.03	7,682.42	4,969.37	102.28
4.15	5,182.67	7,124.88	4,666.30	104.98
7.08	4,408.80	6,035.32	3,992.90	104.15
23.30	7,267.04	10,223.93	6,514.14	133.14
46.30	5,645.52	7,660.64	4,948.75	135.18
168.53	5,966.46	8,075.25	5,122.17	152.86
335.30	9,498.11	13,204.81	8,230.85	174.33
501.95	8,739.81	12,237.57	7,618.52	180.05

M2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.10	4,749.95	6,660.49	4,306.77	93.34
2.10	5,426.31	7,654.11	4,894.32	96.46
4.18	5,284.70	7,469.41	4,787.16	103.68
7.08	6,814.98	9,674.35	6,196.24	113.74
23.30	9,908.91	14,314.76	8,907.51	142.96
46.30	7,941.78	11,237.99	7,065.74	145.24
168.53	7,140.27	9,966.45	6,294.17	167.34
335.28	7,482.56	10,417.00	6,496.54	177.45
501.97	7,292.23	10,234.37	6,244.29	182.37

M blank1	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.08	5,184.14	7,399.12	4,730.09	50.26
2.08	5,155.92	7,182.25	4,613.53	55.31
4.20	3,852.85	5,256.53	3,454.94	59.58
7.07	4,307.06	5,946.88	3,859.35	57.67
23.30	6,240.31	8,662.01	5,561.69	71.70
46.28	5,265.35	7,175.12	4,648.30	75.55
168.52	8,879.87	12,395.15	7,795.57	86.65
335.25	9,059.00	12,680.35	7,812.80	96.89
501.93	8,529.63	11,870.87	7,365.40	99.36

M blank2	ppb (µg/L)			
time (hrs)	Mg	Fe	AI	Sr
1.10	4,655.27	6,469.26	4,221.97	50.09
2.13	4,155.74	5,753.56	3,789.69	46.61
4.23	5,838.55	8,163.89	5,197.94	54.20
7.10	7,153.62	10,197.44	6,477.89	64.71
23.32	6,866.67	9,649.13	6,186.49	76.60
46.32	10,463.33	14,773.47	9,164.00	76.84
168.52	9,074.78	12,792.54	7,974.06	82.80
335.27	9,591.58	13,406.08	8,415.76	89.46
501.95	10,268.61	14,649.61	8,960.86	93.92

Table A1-11. Concentrations of Mg, Fe, AI and Sr in isotherm samples during adsorption (left) and desorption (right).

Adsorption phase, isotherm samples. Conc. in ppb. Sample Μα Fe Al Sr				
Sample	Mg	Fe	AI	Sr
HV10-2 1	5,034.01	5,118.22	3,095.37	791,725.69
HV10-2 2	3,583.67	3,117.66	1,896.17	774,931.15
HV10-3 1	3,380.26	3,218.59	1,929.17	54,323.93
HV10-3 2	3,512.32	3,366.06	1,998.75	53,560.72
HV10-4 1	4,117.13	4,618.05	2,671.59	3,887.51
HV10-4 2	3,642.64	3,934.37	2,374.51	3,859.39
HV10-5 1	2,255.97	1,722.19	1,197.40	549.49
HV10-5 2	2,374.25	1,895.67	1,136.86	567.24
HV10-6 1	2,857.27	2,856.08	1,729.48	242.02
HV10-6 2	3,575.49	3,878.41	2,271.60	277.10
HVblank 1	3,353.77	3,778.33	2,268.31	197.39
HVblank 2	2,542.87	2,259.34	1,370.75	213.08
blank1	7.92	9.89	89.97	865,389.41
blank2	8.90	9.32	90.70	884,951.96
M10-2 1	19,938.16	23,655.70	16,334.63	798,385.32
M10-2 2	18,229.00	21,204.20	14,532.96	768,696.46
M10-3 1	6,359.78	7,155.74	5,683.22	53,025.40
M10-3 2	6,885.76	7,751.17	5,757.84	52,036.38
M10-4 1	9,511.36	11,963.86	8,424.74	4,011.11
M10-4 2	5,625.18	6,403.35	4,907.57	4,014.04
M10-5 1	5,412.59	6,343.08	4,666.78	529.71
M10-5 2	4,231.70	4,338.55	3,040.61	586.45
M10-6 1	3,807.83	3,968.99	2,778.55	269.03
M10-6 2	3,623.46	3,445.78	2,425.92	310.02
HVblank 1	6,576.53	7,334.92	5,380.24	298.74
HVblank 2	4,096.70	4,347.75	3,132.77	234.85

2,000

HV 2, des

time (hrs)

→ Mg

---- Fe

--- Al

---- Mg

---- Fe

--- Al

HV 1, des

Figure A1-2. (Continued).

2,000

time (hrs)

Figure A1-2. (Continued).

A1.2 Mineral compositions

Table A1-12. Determination of mineral composition by point counting using thin sections of drill core samples and classification of rock type. Points that were counted as "not valid" were in grain boundaries and not included in the % distribution between minerals. Points where the mineral could not be identified (marked "unknown") were included in all calculations. Primes (in the lower table) are calculated as in the following example: $Q' = 100 \cdot Q / (Q + P + A + F)$.

Point counting from this	n sections					% distribution					
Mineral	M 1	M 2	HV 1	HV 2	Mineral	M1	M2	M mean	HV1	HV2	HV mean
Plagioclase	296	264	258	233	Plagioclase	59.2	52.8	56.0	51.6	46.6	49.1
Quartz	74	78	52	39	Quartz	14.8	15.6	15.2	10.4	7.8	9.1
Biotite	76	75	98	72	Biotite	15.2	15.0	15.1	19.6	14.4	17.0
K-feldspar	28	54	58	119	K-feldspar	5.6	10.8	8.2	11.6	23.8	17.7
Zirkon	1	1	1	3	Zirkon	0.2	0.2	0.2	0.2	0.6	0.4
Epidote	8	7	18	27	Epidote	1.6	1.4	1.5	3.6	5.4	4.5
Titanite	5	10	2	0	Titanite	1.0	2.0	1.5	0.4	0.0	0.2
Unknown	9	11	10	5	Unknown	1.8	2.2	2.0	2.0	1.0	1.5
Fe-oxide	2	0	3	2	Fe-oxide	0.4	0.0	0.2	0.6	0.4	0.5
Not valid	43	73	25	31	Not valid						
Sum	542	573	525	531	Sum	99.8	100.0	99.9	100.0	100.0	100.0

Classification of rock type				normalized	normalized			
Mineral		HV mean	M mean	HV	Μ		HV	Μ
Quartz	Q	9.1	15.2	68.2	28.8	Q'	12	19
Plagioclase	Р	49.1	56	6.1	3.8	P'	65	71
Alkali feldspar	А	17.7	8.2	22.7	38.5	A'	23	10
Feldspathoids	F	0	0	0.0	0.0	F'	0	0
Mafic + accessories	М	17	15.1	3.0	28.8	M'		
Sum		92.9	94.5	100	100			

Table A1-13. Calculation of atomic % from wt % oxide using analysis results from ALS Scandinavia.

HV drill core	wt%	M oxide	mole oxide / 100 g	mole element / 100 g	atomic%	
SiO ₂	60.400	60.083	1.005	1.005	52.116	Si
AI_2O_3	17.100	101.961	0.168	0.398	20.626	AI
CaO	3.620	56.077	0.065	0.065	3.347	Са
Fe_2O_3	7.790	159.687	0.049	0.108	5.621	Fe
K₂O	4.500	94.195	0.048	0.163	8.469	К
MgO	1.860	40.304	0.046	0.046	2.393	Mg
MnO	0.109	70.937	0.002	0.002	0.080	Mn
Na₂O	4.010	61.979	0.065	0.129	6.709	Na
P_2O_5	0.318	141.943	0.002	0.004	0.232	Р
TiO ₂	0.628	79.865	0.008	0.008	0.408	Ti
Sum	100.335		1.527	1.929	100.000	

HV 0.5–1 mm	wt%	M oxide	mole oxide / 100 g	mole element / 100 g	atomic%	
SiO ₂	62.000	60.083	1.032	1.032	53.335	Si
AI_2O_3	17.900	101.961	0.176	0.416	21.526	AI
CaO	4.180	56.077	0.075	0.075	3.853	Са
Fe_2O_3	5.800	159.687	0.036	0.081	4.173	Fe
K ₂ O	3.310	94.195	0.035	0.120	6.210	К
MgO	1.970	40.304	0.049	0.049	2.526	Mg
MnO	0.098	70.937	0.001	0.001	0.071	Mn
Na ₂ O	4.650	61.979	0.075	0.150	7.756	Na
P_2O_5	0.226	141.943	0.002	0.003	0.165	Р
TiO ₂	0.595	79.865	0.007	0.007	0.385	Ti
Sum	100.729		1.549	1.935	100.000	

M drill core	wt%	M oxide	mole oxide / 100 g	mole element / 100 g	atomic%		M 0.5–1 mm	wt%	M oxide	mole oxide / 100 g	mole element / 100 g	atomic%	
SiO ₂	57.400	60.083	0.955	0.955	49.998	Si	SiO ₂	60.500	60.083	1.007	1.007	52.306	Si
AI_2O_3	17.400	101.961	0.171	0.405	21.187	AI	Al ₂ O ₃	17.900	101.961	0.176	0.416	21.634	Al
CaO	4.520	56.077	0.081	0.081	4.218	Са	CaO	4.050	56.077	0.072	0.072	3.752	Са
Fe ₂ O ₃	9.760	159.687	0.061	0.136	7.110	Fe	Fe ₂ O ₃	6.190	159.687	0.039	0.086	4.476	Fe
K₂O	2.810	94.195	0.030	0.102	5.338	К	K ₂ O	3.470	94.195	0.037	0.126	6.543	К
MgO	2.570	40.304	0.064	0.064	3.337	Mg	MgO	2.110	40.304	0.052	0.052	2.720	Mg
MnO	0.140	70.937	0.002	0.002	0.103	Mn	MnO	0.114	70.937	0.002	0.002	0.083	Mn
Na₂O	4.620	61.979	0.075	0.149	7.802	Na	Na ₂ O	4.680	61.979	0.076	0.151	7.845	Na
P_2O_5	0.427	141.943	0.003	0.006	0.315	Р	P_2O_5	0.287	141.943	0.002	0.004	0.210	Р
TiO ₂	0.901	79.865	0.011	0.011	0.590	Ti	TiO ₂	0.663	79.865	0.008	0.008	0.431	Ti
Sum	100.548		1.512	1.911	100.000		Sum	99.964		1.533	1.925	100.000	

Appendix 2

A2.1 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the HV sample size fraction 0.25–0.5 mm

mi micromeritics° **mi micromeritics**° ASAP 2020 V1.05 H Unit 1 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Serial #: 182 Page 1 Page 2 Sample: STONE8 Sample: STONE8 Operator Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Started: 2010-08-27 13:30:49 Analysis Adsorptive: N2 Analysis Adsorptive: N2 Completed: 2010-08-27 19:02:17 Analysis Bath Temp .: -195.671 °C Completed: 2010-08-27 19:02:17 Analysis Bath Temp .: -195.671 °C Report Time: 2010-08-30 13:45:58 Thermal Correction: No Report Time: 2010-08-30 13:45:58 Thermal Correction: No Sample Mass: 12.7631 g Smoothed Pressures: No Sample Mass: 12.7631 g Smoothed Pressures: No Warm Free Space: 23.3044 cm³ Measured Cold Free Space: 67.3010 cm³ Warm Free Space: 23.3044 cm3 Measured Cold Free Space: 67.3010 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None

Automatic Degas: Yes

Automatic Degas: Yes

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 3
Sample: STO Operator: Submitter: File: D:\D	NE8 ATA\2020\EVA\STONE8.	SMP	
Started: 2010-08- Completed: 2010-08- Report Time: 2010-08- Sample Mass: 12.7631 Warm Free Space: 23.3044 Equilibration Interval: 10 s Automatic Degas: Yes	27 13:30:49 27 19:02:17 30 13:45:58 9 cm ³ Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm ³ Low Pressure Dose: None	

Isotherm Log Plot -+- STONE8 - Adsorption -O- STONE8 - Desorption 0.55 0.50-0.45-0.40-(cm³/g STP) orbed (0.30-Ads 0.25antity ਰੋ _{0.20}-000 0.15-0.10-+ot 0.05-0.00-0.01 0.05 0.1 0.5 Relative Pressure (p/p°)

mi micromeritics°

Unit 1

Sample: Operator:	STONE8
Submitter: File:	D:\DATA\2020\EVA\STONE8.SMP

Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-30 13:45:58 Sample Mass: 12.7631 g Warm Free Space: 23:3044 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Low Pressure Dose: None

Serial #: 182

Page 4

BET Surface Area Report

BET Surface Area: 0.2834 ± 0.0026 m²/g Slope: 15.230264 ± 0.139239 g/cm³ STP Y-Intercept: 0.130975 ± 0.028776 g/cm³ STP C: 117.283795 Qm: 0.0651 cm³/g STP Correlation Coefficient: 0.9997076 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (cm³/g STP) (p/p°) 0.059651432 0.0599 1.059576 0.076094372 0.0629 1.309491 0.092588298 0.0656 1.556286 0.109096425 0.0681 1.799131 0.109096423 0.158093131 0.207663446 0.257094660 0.0746 2.517359 3.247940

0.0866

0.0925

0.0981

0.306574610

0.355482879

3.994362

4.782029

5.621256

mi micromeritics[®]

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 5 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 6 Sample: STONE8 Sample: STONE8 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-30 13:45:58 Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-30 13:45:58 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Sample Mass: 12.7631 g Warm Free Space: 23.3044 cm³ Measured Smoothed Pressures: No Sample Mass: 12.7631 g Warm Free Space: 23.3044 cm³ Measured Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Cold Free Space: 67.3010 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Langmuir Reports Primary Data 4052- Fewer than two points are selected for this report.

mi micromeritics°

710/11 2020 11.0011	ASAP	2020	V1.	.05	н
---------------------	------	------	-----	-----	---

Unit 1

Sample: STONE8 Operator: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP

 Started:
 2010-08-27 13:30:49

 Completed:
 2010-08-27 19:02:17

 Report Time:
 2010-08-30 13:45:58

 Sample Mass:
 12.7631 g

 Warm Free Space:
 23.3044 cm³ Measured

 Equilibration Interval:
 10 s

 Automatic Degas:
 Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Low Pressure Dose: None

Serial #: 182

Page 7

t-Plot Report

 Micropore Volume:
 -0.000004 cm³/g STP

 Micropore Area:
 *

 External Surface Area:
 0.2919 m²/g

 Slope:
 0.018871 ± 0.000057 cm³/g Å STP

 Y-Intercept:
 -0.002692 ± 0.000236 cm³/g STP

 Correlation Coefficient:
 0.999986

 Surface Area Correction Factor:
 1.000

 Density Conversion Factor:
 0.0015468

 Total Surface Area (BET):
 0.2834 m²/g

 Thickness Range:
 3.5000 Å to 5.0000 Å

 Thickness Range:
 1.900 / 0.034 - log(p/p°)] ^ 0.5

Relative Pressure (p/p°)	Statistical Thickness (Å)	Quantity Adsorbed (cm ³ /g STP)
0.011722209	2.6683	0.0455
0.030050761	2.9984	0.0529
0.040187232	3.1279	0.0556
0.049518831	3.2321	0.0577
0.059651432	3.3343	0.0599
0.076094372	3.4839	0.0629
0.092588298	3.6202	0.0656
0.109096425	3.7475	0.0681
0.158093131	4.0930	0.0746
0.207663446	4.4183	0.0807
0.257094660	4.7353	0.0866
0.306574610	5.0551	0.0925
0.355482879	5.3809	0.0981
0.404856579	5.7260	0.1038
0.454147694	6.0933	0.1095
0.503555226	6.4919	0.1152
0.552780219	6.9283	0.1212
0.602067377	7.4163	0.1279
0.651503005	7.9729	0.1357
0.700789530	8.6170	0.1451
0.766139527	9.6674	0.1618
0.815692680	10.6878	0.1806
0.864916683	12.0079	0.2084
0.913206819	13.8029	0.2571
0.958/984/3	16.3596	0.3762
0.983908195	18.4619	0.5888

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.

mi micromeritics°

Serial #: 182

Page 8

Unit 1

File: D:\DATA\2020\EVA\STONE8.SMP

ASAP 2020 V1.05 H

Sample: STONE8

Operator:

Submitter:

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE8 Operator: Submitter: File: D:\DATA\2020\E	EVA\STONE8.SMP			Sample: STONE8 Operator: Submitter: File: D:\DATA\2020)/EVA\STONE	8.SMP
Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-30 13:45:58 Sample Mass: 12.7631 g Warm Free Space: 23:3044 cm³ Measur Equilibration Interval: 10 s Automatic Degas: Yes	9 Ana 7 Anal 3 Th Smo red (Lov	ilysis Adsorptive: N2 ysis Bath Temp.: -195.671 °C rmal Correction: No othed Pressures: No Jold Free Space: 67.3010 cm ³ / Pressure Dose: None		Started: 2010-08-27 13:30; Completed: 2010-08-27 19:02: Report Time: 2010-08-30 13:45; Sample Mass: 12.7631 g Warm Free Space: 23.3044 cm³ Meas Equilibration Interval: 10 s Automatic Degas: Yes	49 17 58 ured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm ³ Low Pressure Dose: None

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1219.7 - 484.9	580.5	0.000368	0.000368	0.025	0.025
484.9 - 233.9	278.6	0.000209	0.000577	0.030	0.055
233.9 - 151.4	174.8	0.000083	0.000661	0.019	0.074
151.4 - 111.2	124.8	0.000047	0.000707	0.015	0.089
111.2 - 87.4	96.3	0.000031	0.000739	0.013	0.102
87.4 - 67.8	74.9	0.000027	0.000765	0.014	0.117
67.8 - 57.6	61.8	0.000015	0.000780	0.009	0.126
57.6 - 49.8	53.1	0.000012	0.000792	0.009	0.135
49.8 - 43.7	46.3	0.000010	0.000802	0.009	0.144
43.7 - 38.6	40.8	0.000009	0.000811	0.009	0.153
38.6 - 34.3	36.2	0.000009	0.000820	0.010	0.162
34.3 - 30.7	32.3	0.000009	0.000829	0.011	0.174
30.7 - 27.5	28.9	0.000010	0.000839	0.014	0.187
27.5 - 24.7	25.9	0.000010	0.000848	0.015	0.202
24.7 - 22.1	23.2	0.000010	0.000859	0.018	0.220
22.1 - 19.6	20.7	0.000011	0.000869	0.020	0.241
19.6 - 17.3	18.3	0.000010	0.000879	0.022	0.263

BJH Adsorption Cumulative Pore Volume

mi micromeritics°

Page 10

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 11	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 12
Sample: STONE8 Operator: Submitter: File: D:\DATA\	2020\EVA\STONE8.SMP			Sample: STON Operator: Submitter: File: D:\DA	IE8 TA\2020\EVA\STONE8.SM	Ρ	
Started: 2010-08-27 13 Completed: 2010-08-27 13 Report Time: 2010-08-30 13 Sample Mass: 12.7631 g Warm Free Space: 23.3044 cm³ M Equilibration Interval: 10 s Automatic Degas: Yes	3:30:49 An 9:02:17 Ana 3:45:58 Th Smc Measured Lor	alysis Adsorptive: N2 lysis Bath Temp.: - 195.671 °C ermal Correction: No othed Pressures: No Cold Free Space: 67.3010 cm ³ v Pressure Dose: None		Started: 2010-08-2 Completed: 2010-08-2 Report Time: 2010-08-3 Sample Mass: 12.7631 g Warm Free Space: 23.304 c Equilibration Interval: 10 s Automatic Degas: Yes	7 13:30:49 // 7 19:02:17 A 0 13:45:58 Sr m ³ Measured L	unalysis Adsorptive: N2 nalysis Bath Temp.: -195.671 °C Fhermal Correction: No noothed Pressures: No Cold Free Space: 67.3010 cm ³ .ow Pressure Dose: None	

BJH Adsorption dV/dlog(D) Pore Volume

mi micromeritics°

BJH Adsorption dA/dD Pore Area

mi micromeritics°

Page 15

ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE Operator: Submitter: File: D:\DAT/	8 A\2020\EVA\STONE8.SMP	
Started: 2010-08-27 Completed: 2010-08-27 Report Time: 2010-08-30 Sample Mass: 12.7631 g Warm Free Space: 23.3044 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	13:30:49 Ana 19:02:17 Anal 13:45:58 Th Smo ³ Measured (alysis Adsorptive: N2 lysis Bath Temp.: -195.671 °C ermal Correction: No othed Pressures: No Cold Free Space: 67.3010 cm ³ w Pressure Dose: None

mi micromeritics°

ASAP 2020 V1.05 H Unit 1

Page 16

Sample: STONE8 Operator: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP

Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-20 13:45:58 Sample Mass: 12.7631 g Warm Free Space: 23:3044 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Low Pressure Dose: None

Serial #: 182

Horvath-Kawazoe Report

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000911 cm³/g at Relative Pressure: 0.983908195 Median Pore Width: 500.634 Å Relative Pressure Range: 1.172e-02 to 9.839e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg-cm^44

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
9.04161	0.011722209	0.0455	10.490	0.0001	0.0000
23.17853	0.030050761	0.0529	12.614	0.0001	0.0000
30,99651	0.040187232	0.0556	13.516	0.0001	0.0000
38.19349	0.049518831	0.0577	14.269	0.0001	0.0000
46.00808	0.059651432	0.0599	15.031	0.0001	0.0000
58.68944	0.076094372	0.0629	16.188	0.0001	0.0000
71.41011	0.092588298	0.0656	17.303	0.0001	0.0000
84.14114	0.109096425	0.0681	18.379	0.0001	0.0000
121.92900	0.158093131	0.0746	21.506	0.0001	0.0000
160.15788	0.207663446	0.0807	24.722	0.0001	0.0000
198.27847	0.257094660	0.0866	28.164	0.0001	0.0000
236.43564	0.306574610	0.0925	31.909	0.0001	0.0000
274.15454	0.355482879	0.0981	36.102	0.0002	0.0000
312.23239	0.404856579	0.1038	40.839	0.0002	0.0000
350.24655	0.454147694	0.1095	46.323	0.0002	0.0000
388.35049	0.503555226	0.1152	52.839	0.0002	0.0000
426.31366	0.552780219	0.1212	60.663	0.0002	0.0000
464.32477	0.602067377	0.1279	70.345	0.0002	0.0000
502.45038	0.651503005	0.1357	82.821	0.0002	0.0000
540.46100	0.700789530	0.1451	99.134	0.0002	0.0000
590.86005	0.766139527	0.1618	131.830	0.0003	0.0000
629.07629	0.815692680	0.1806	170.943	0.0003	0.0000
667.03870	0.864916683	0.2084	238.796	0.0003	0.0000
704.28088	0.913206819	0.2571	383.898	0.0004	0.0000
739.44196	0.958798473	0.3762	809.529	0.0006	0.0000
758.80701	0.983908195	0.5888	2028.382	0.0009	0.0000

mi micromeritics[®]

Horvath-Kawazoe Differential Pore Volume Plot

Unit 1

ASAP 2020 V1.05 H

Sample: STONE8 Operator: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP

Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-20 13:45:58 Sample Mass: 12.7631 g Warm Free Space: 23:3044 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area

Single point surface area at p/p° = 0.306574610: 0.2791 m²/g

BET Surface Area: 0.2834 m²/g

t-Plot External Surface Area: 0.2919 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2629 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3851 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1222.6311 Å at p/p° = 0.983908195: 0.000911 cm³/g

t-Plot micropore volume: -0.000004 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000879 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000478 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 128.5417 Å

BJH Adsorption average pore diameter (4V/A): 133.826 Å

BJH Desorption average pore diameter (4V/A): 49.651 Å

Horvath-Kawazoe Maximum pore volume at $p/p^{\circ} = 0.983908195$: 0.000911 cm³/g

Median pore width: 500.6344 Å

Dubinin-Radushkevich Micropore surface area: 0.0000 m²/g

1

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.2860 m²/g

Limiting micropore volume: 0.000146 cm³/g

mi micromeritics°

Unit 1

ASAP 2020 V1.05 H

Sample: STONE8 Operator: Submitter: File: D:\DATA\2020\EVA\STONE8.SMP

Started: 2010-08-27 13:30:49 Completed: 2010-08-27 19:02:17 Report Time: 2010-08-30 13:45:58 Sample Mass: 12.7631 g Warm Free Space: 23:3044 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.671 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.3010 cm³ Low Pressure Dose: None

Dubinin-Astakhov

MP-Method Cumulative surface area of pores between 18.4619 Å and 18.4619 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.4619 Å and 18.4619 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

Page 20

A2.2 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the HV sample size fraction 0.5–1 mm.

mi micromeritics° mi micromeritics° ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 1 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 2 Sample: STONE3 Sample: STONE3 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP File: D:\DATA\2020\EVA\STONE3.SMP Started: 2010-08-18 9:26:17 Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Thermal Correction: No Report Time: 2010-08-30 13:52:22 Thermal Correction: No Sample Mass: 13.6461 g Smoothed Pressures: No Sample Mass: 13.6461 g Smoothed Pressures: No

Relative	Absolute	Quantity	Elapsed Time	Saturation
Pressure (p/p°)	Pressure	Adsorbed	(h:min)	Pressure
,	(mmHg)	(cm ³ /g STP)	. ,	(mmHg)
			02:15	764 44897
0.011486452	8,77627	0.0396	02:59	
0.029970071	22,89794	0.0455	03:02	
0.039965561	30,53404	0.0476	03:04	
0.049545642	37.85197	0.0493	03:07	
0.059991988	45.83118	0.0507	03:10	
0.076134620	58.16137	0.0529	03:13	
0.092803120	70.89240	0.0549	03:16	
0.109057211	83.30696	0.0566	03:18	
0.158174046	120.82222	0.0614	03:21	
0.207726703	158.66772	0.0659	03:24	
0.257173959	196.43005	0.0703	03:27	
0.306693968	234.24529	0.0748	03:30	
0.355850112	271.78314	0.0793	03:32	
0.405174185	309.44385	0.0840	03:35	
0.454719320	347.27072	0.0886	03:38	
0.504187869	385.03644	0.0933	03:41	
0.553404906	422.60742	0.0981	03:44	
0.602725712	460.26041	0.1034	03:46	
0.652061463	497.91718	0.1095	03:49	
0.701421821	535.59637	0.1174	03:51	
0.767095208	585.72992	0.1314	03:53	
0.816564845	623.48138	0.1476	03:56	
0.865905433	661.13165	0.1717	03:59	
0.914323406	698.08307	0.2141	04:01	
0.960201343	733.07623	0.3170	04:05	
0.985584972	752.40253	0.4997	04:11	
0.886248744	6/6.528/5	0.2649	04:16	700 0050
0.000074704	005 00004	0 0005	04:19	763.3352
0.832271724	635.30231	0.2265	04:23	
0.8000000000000000000000000000000000000	611.09985	0.2114	04:27	
0.735708293	501.59204	0.1885	04:29	
0.707938138	540.39410	0.1806	04:32	
0.002310101	491.93312	0.10/3	04:35	
0.090001108	400.00204	0.1000	04:38	
0.000700409	424.21240	0.1493	04:40	
0.014004014	352.41043	0.1425	04.43	
0.403032345	307 58246	0.0907	04.40	
0.330362754	252 17752	0.0003	04.49	
0.293955579	224 38664	0.0781	04.52	
0 238178412	181 80997	0.0740	04:57	
0.210813207	160 92114	0.0002	04.50	
0 155504557	118 70210	0.0002	05:01	
0.400000000	77.04000	0.0000	00.01	

Cold Free Space: 65.3565 cm³

Low Pressure Dose: None

Warm Free Space: 22.4610 cm³ Measured

Equilibration Interval: 10 s

Automatic Degas: Yes

Cold Free Space: 65.3565 cm³

Low Pressure Dose: None

Warm Free Space: 22.4610 cm3 Measured

Equilibration Interval: 10 s

Automatic Degas: Yes

Page 3

ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\E	EVA\STONE3.SMP	
Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-18 14:45:12 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measur Equilibration Interval: 10 s Automatic Degas: Yes	Analysis A Analysis B Thermal (Smoothed 1 red Cold Fr Low Press	udsorptive: N2 ath Temp.: -195.755 °C Correction: No Pressures: No 'ee Space: 65.3565 cm ³ sure Dose: None

Isotherm Log Plot -+- STONE3 - Adsorption ----- STONE3 - Desorption 0.50-0.45-0.40-0.35 / Adsorbed (cm³/g STP) 0.30-0.52ø ф Ouantity Ouantity Ø 0 0.15-- OF OF OF OF OF 0.10--A-0.05-0.00-0.05 0.1 0.01 0.5 Relative Pressure (p/p°)

mi micromeritics°

Unit 1

Sample:	STONE3
Submitter:	
File:	D:\DATA\2020\EVA\STONE3.SMP

0.306693968

0.355850112

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Adsorptive: N2 Analysis Bath Temp:: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

4.926766

5.913240

6.967421

Serial #: 182

Page 4

BET Surface Area Report

BET Surface Area: 0.2271 ± 0.0022 m²/g Slope: 19.096377 ± 0.181013 g/cm³ STP Y-Intercept: 0.075643 ± 0.037434 g/cm³ STP C: 253.454621 Qm: 0.0522 cm³/g STP Correlation Coefficient: 0.9996857 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (cm³/g STP) (p/p°) 0.059991988 0.0507 1.257879 0.076134620 0.0529 1.556438 0.092803120 0.0549 1.864100 0.109057211 0.0566 2.162867 0.158174046 0.207726703 0.257173959 0.0614 0.0659 0.0703 3.058585 3.978476

0.0748

0.0793

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 5 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 6 Sample: STONE3 Sample: STONE3 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP File: D:\DATA\2020\EVA\STONE3.SMP Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Sample Mass: 13.6461 g Smoothed Pressures: No Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Smoothed Pressures: No Warm Free Space: 22.4610 cm³ Measured Cold Free Space: 65.3565 cm³ Cold Free Space: 65.3565 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Langmuir Reports

mi micromeritics°

Primary Data 4052- Fewer than two points are selected for this report.

Unit 1

ASAF 2020 V 1.00 F	ASAP	2020	V1	.05 H	
--------------------	------	------	----	-------	--

Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

0.0933

0.0981

0.1034

0.1095

0.1174

0.1314

0.1476

0.1717

0.2141

0.3170

0.4997

Serial #: 182

Page 7

t-Plot Report

Micropore Volume:	0.000007 cm3/g STP
Micropore Area:	0.0131 m²/g
External Surface Area:	0.2139 m²/g
Slope:	0.013829 ± 0.000023 cm ³ /g·Å STP
Y-Intercept:	0.004791 ± 0.000095 cm ³ /g STP
Correlation Coefficient:	0.999996
Surface Area Correction Factor:	1.000
Density Conversion Factor:	0.0015468
Total Surface Area (BET):	0.2271 m²/g
Thickness Range:	3.5000 Å to 5.0000 Å
Thickness Equation:	Harkins and Jura
t = [13.99 / (0.034	- log(p/p°))] ^ 0.5

Relative Statistical Quantity Pressure (p/p°) Thickness (Å) Adsorbed (cm³/g STP) 0.011486452 2.6623 0.0396 0.029970071 2.9972 0.0455 0.039965561 0.0476 3.1253 0.049545642 3.2324 0.0493 0.059991988 3.3376 0.0507 0.076134620 3.4842 0.0529 0.092803120 3.6219 0.0549 0.109057211 3.7472 0.0566 0.158174046 4.0936 0.0614 0.207726703 4.4187 0.0659 0.257173959 4.7358 0.0703 0.306693968 5.0559 0.0748 0.355850112 5.3834 0.0793 0.405174185 0.454719320 5.7282 6.0977 0.0840 0.0886 0.504187869

0.553404906

0.602725712

0.652061463

0.701421821

0.767095208 0.816564845

0.865905433

0.914323406

0.960201343

0.985584972

6.4972

6.9342

7.4233

7.9796

8.6259

9.6849 10.7081

12.0387

13.8530

16.4598

18.6305

mi micromeritics°

Unit 1

Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Adsort

Quantity

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

Serial #: 182

Page 8

Harkins and Jura + STONE3 O Fitted Points 0.50-0.45-0.40-0.35-(dLS 0.30-0.25-+0.20 0.15 0.10-0.05-0.00

TITT

Thickness (Å)

mimmi

9 10 11 12 13 14 15 16 17 18

8

5 6

2

3 4

ó

1

t-Plot

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\E	VA\STONE3.SMP			Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\E	VA\STONE3.	SMP
Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-18 14:45:14 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm ³ Measure Equilibration Interval: 10 s Automatic Degas: Yes	Ana Anal Th Smo ed (0 Lov	alysis Adsorptive: N2 lysis Bath Temp.: -195.755 °C ermal Correction: No othed Pressures: No Cold Free Space: 65.3565 cm ³ v Pressure Dose: None		Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13:6461 g Warm Free Space: 22.4610 cm ³ Measurd Equilibration Interval: 10 s Automatic Degas: Yes	эd	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm ³ Low Pressure Dose: None

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1359.9 - 502.2	600.0	0.000316	0.000316	0.021	0.021
502.2 - 237.5	283.0	0.000181	0.000498	0.026	0.047
237.5 - 153.1	176.8	0.000073	0.000571	0.017	0.063
153.1 - 112.3	126.1	0.000041	0.000612	0.013	0.076
112.3 - 88.4	97.2	0.000027	0.000639	0.011	0.087
88.4 - 68.5	75.7	0.000023	0.000662	0.012	0.099
68.5 - 58.3	62.5	0.000012	0.000674	0.008	0.107
58.3 - 50.5	53.8	0.000009	0.000683	0.007	0.114
50.5 - 44.3	46.9	0.000007	0.000690	0.006	0.120
44.3 - 39.2	41.4	0.000007	0.000698	0.007	0.127
39.2 - 35.0	36.8	0.000007	0.000705	0.008	0.135
35.0 - 31.3	32.9	0.000008	0.000712	0.009	0.145
31.3 - 28.1	29.5	0.000008	0.000721	0.011	0.156
28.1 - 25.2	26.5	0.000008	0.000729	0.012	0.168
25.2 - 22.6	23.8	0.000008	0.000737	0.013	0.181
22.6 - 20.2	21.3	0.000007	0.000744	0.013	0.194
20.2 - 17.9	18.9	0.000007	0.000750	0.014	0.209

BJH Adsorption Cumulative Pore Volume

mi micromeritics°

Page 10

mi micromeritics°

BJH Adsorption dA/dD Pore Area

mi micromeritics°

mi micromeritics[®]

Unit 1

ASAP 2020	V1.05 H
-----------	---------

Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

Serial #: 182

Page 15

mi micromeritics°

Unit 1

ASAP 2020 V1.05 H

Serial #: 182

Page 16

Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Adsorptive. N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

Horvath-Kawazoe Report

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000773 cm³/g at Relative Pressure: 0.985584972 Median Pore Width: 530.494 Å Relative Pressure Range: 1.149e-02 to 9.856e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg·cm^4

Density Conversion Factor: 0.0015468

Absolu Pressu (mmHg	te re g)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (Å)	Cumulative Pore Volume (cm³/g)	Differential Pore Volume (cm³/g·Å)
8.7	7627	0.011486452	0.0396	10.459	0.0001	0.0000
22.8	39794	0.029970071	0.0455	12.619	0.0001	0.0000
30.5	53404	0.039965561	0.0476	13.510	0.0001	0.0000
37.8	35197	0.049545642	0.0493	14.285	0.0001	0.0000
45.8	33118	0.059991988	0.0507	15.064	0.0001	0.0000
58.1	16137	0.076134620	0.0529	16.205	0.0001	0.0000
70.8	39240	0.092803120	0.0549	17.333	0.0001	0.0000
83.3	30696	0.109057211	0.0566	18.392	0.0001	0.0000
120.8	32222	0.158174046	0.0614	21.521	0.0001	0.0000
158.6	6772	0.207726703	0.0659	24.763	0.0001	0.0000
196.4	13005	0.257173959	0.0703	28.183	0.0001	0.0000
234.2	24529	0.306693968	0.0748	31.961	0.0001	0.0000
271.7	78314	0.355850112	0.0793	36.161	0.0001	0.0000
309.4	14385	0.405174185	0.0840	40.905	0.0001	0.0000
347.2	27072	0.454719320	0.0886	46.442	0.0001	0.0000
385.0)3644	0.504187869	0.0933	52.973	0.0001	0.0000
422.6	60742	0.553404906	0.0981	60.871	0.0002	0.0000
460.2	26041	0.602725712	0.1034	70.586	0.0002	0.0000
497.9	91718	0.652061463	0.1095	83.102	0.0002	0.0000
535.5	59637	0.701421821	0.1174	99.469	0.0002	0.0000
585.7	72992	0.767095208	0.1314	132.272	0.0002	0.0000
623.4	18138	0.816564845	0.1476	172.866	0.0002	0.0000
661.1	13165	0.865905433	0.1717	241.469	0.0003	0.0000
698.0	08307	0.914323406	0.2141	388.175	0.0003	0.0000
733.0	07623	0.960201343	0.3170	857.632	0.0005	0.0000
752.4	10253	0.985584972	0.4997	2234.708	0.0008	0.0000

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 17	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 18
Sample: STONE Operator: Submitter: File: D:\DAT/	3 A\2020\EVA\STONE3.SMP			Sample: STONE3 Operator: Submitter: File: D:\DATA	\2020\EVA\STONE3.SM	P	
Started: 2010-08-18 Completed: 2010-08-18 Report Time: 2010-08-30 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	9:26:17 Ana 14:45:14 Anal 13:52:22 Th Smo ? Measured (Ilysis Adsorptive: N2 ysis Bath Temp.: -195.755 °C rmal Correction: No othed Pressures: No Jold Free Space: 65.3565 cm ³ / Pressure Dose: None		Started: 2010-08-18 9 Completed: 2010-08-18 1 Report Time: 2010-08-30 1 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	:26:17 A 4:45:14 Ar 3:52:22 T Measured L	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.755 °C Thermal Correction: No noothed Pressures: No Cold Free Space: 65.3565 cm ³ .ow Pressure Dose: None	

Horvath-Kawazoe Differential Pore Volume Plot

mi micromeritics[®]

ASAP 2020 V1.05 H

Sample: STONE3 Operator:

Started: 2010-08-18 9:26:17

Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22

Warm Free Space: 22.4610 cm3 Measured

Submitter:

Sample Mass: 13.6461 g

Equilibration Interval: 10 s

Automatic Degas: Yes

Unit 1

Serial #: 182

Page 19

ASAP 2020 V1.05 H

mi micromeritics[®]

Unit 1

Page 20

Sample: STONE3 Operator: Submitter: File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-08-30 13:52:22 Sample Mass: 13.6461 g Warm Free Space: 22.4610 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

Serial #: 182

Dubinin-Astakhov Micropore surface area: 0.2415 m²/g

Limiting micropore volume: 0.000119 cm3/g

MP-Method Cumulative surface area of pores between 18.6305 Å and 18.6305 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.6305 Å and 18.6305 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

Summary Report

Surface Area Single point surface area at $p/p^{\circ} = 0.306693968$: 0.2258 m²/g

BET Surface Area: 0.2271 m²/g

File: D:\DATA\2020\EVA\STONE3.SMP

t-Plot Micropore Area: 0.0131 m²/g

t-Plot External Surface Area: 0.2139 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2087 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3360 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1362.2067 Å at p/p° = 0.985584972: 0.000773 cm³/g

t-Plot micropore volume: 0.000007 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000750 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000416 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 136.1775 Å

BJH Adsorption average pore diameter (4V/A): 143.821 Å

BJH Desorption average pore diameter (4V/A): 49.480 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.985584972: 0.000773 cm³/g

Median pore width: 530.4943 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.3565 cm³ Low Pressure Dose: None

A2.3 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the HV sample size fraction 0.5–1 mm (duplicate)

mi micromeritics mi micromeritics° ASAP 2020 V1.05 H Unit 1 ASAP 2020 V1.05 H Serial #: 182 Page 1 Unit 1 Serial #: 182 Sample: S0.5-1 Sample: S0.5-1 Operator: Operator: Submitter Submitter: File: D:\DATA\2020\EVA\S0.5-1 File: D:\DATA\2020\EVA\S0.5-1 Started: 2010-10-29 11:05:26 Started: 2010-10-29 11:05:26 Analysis Adsorptive: N2 Analysis Adsorptive: N2 Completed: 2010-10-29 15:48:56 Analysis Bath Temp.: -195.721 °C Completed: 2010-10-29 15:48:56 Analysis Bath Temp.: -195.721 °C Report Time: 2010-11-05 10:51:27 Report Time: 2010-11-05 10:51:27 Thermal Correction: No Thermal Correction: No Sample Mass: 13.2809 g Smoothed Pressures: No Sample Mass: 13.2809 g Smoothed Pressures: No Warm Free Space: 22.6921 cm3 Measured Cold Free Space: 66.0676 cm3 Warm Free Space: 22.6921 cm3 Measured Cold Free Space: 66.0676 cm3 Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Page 2

Isotherm Log Plot

→ S0.5-1 - Adsorption → S0.5-1 - Desorption

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 3	ASAP 2020 V1.05 H	U
Sample: S0.5-1 Operator: Submitter: File: D:\DATA	A\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D:\DATA\2020\	EVA
Started: 2010-10-29 Completed: 2010-10-29 Report Time: 2010-11-05 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	11:05:26 Anal 15:48:56 Analy 10:51:27 The Smoo Measured C Low	ysis Adsorptive: N2 sis Bath Temp.: -195.721 °C rmal Correction: No thed Pressures: No old Free Space: 66.0676 cm ³ Pressure Dose: None		Started: 2010-10-29 11:05:2 Completed: 2010-10-29 15:48:5 Report Time: 2010-11-05 10:51:2 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Measu Equilibration Interval: 10 s Automatic Degas: Yes	.6 6 7 ured

mi micromeritics[®]

Unit 1

 26
 Analysis Adsorptive: N2

 56
 Analysis Bath Temp.: -195.721 °C

 27
 Thermal Correction: No

 Smoothed Pressures: No

 cold Free Space: 66.0676 cm³

 Low Pressure Dose: None

Serial #: 182

Page 4

BET Surface Area Report

BET Surface Area Report BET Surface Area: 0.2047 ± 0.0005 m²/g Slope: 20.861679 ± 0.049593 g/cm³ STP Y-Intercept: 0.404397 ± 0.010246 g/cm³ STP C: 52.587155 Qm: 0.0470 cm³/g STP Correlation Coefficient: 0.9999802 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p%p - 1)] Adsorbed (cm³/g STP) Pressure (p/p°) 0.059589960 0.0390 1.623571 0.076049422 0.092580734 0.0414 1.989034 2.348930 0.0434 0.0454 0.0506 0.0554 0.109025403 2.696404 0.158093686 0.207531119 0.256945814 2.696404 3.713140 4.727855 5.746940 0.0602 0.306404651 6.804143 0.0649 0.355579784 0.0705 7.823038

0.45-0.40-0.35n³/g STP) 0.30-5 0.25eq Ť 0.20tity Quar 0.15-0.10-0.05-0.00-0.01 0.05 0.1 0.5 Relative Pressure (p/p °)

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 6
Sample: S0.5-1 Operator: Submitter: File: D:\DAT/	A\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D:\DATA	\2020\EVA\S0.5-1		
Started: 2010-10-29 Completed: 2010-10-29 Report Time: 2010-11-05 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ⁶ Equilibration Interval: 10 s Automatic Degas: Yes	11:05:26 15:48:56 10:51:27 ³ Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Started: 2010-10-29 1 Completed: 2010-10-29 1 Report Time: 2010-11-05 1 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm³ Equilibration Interval: 10 s Automatic Degas: Yes	1:05:26 5:48:56 0:51:27 Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None	

Langmuir Reports Primary Data 4052- Fewer than two points are selected for this report.

ASA	AP 2020 V1.05 H Unit	1 Serial #: 182	Page 7	AS	SAP 2020	V1.05 H		Unit	1		Serial #	<i>‡</i> : 182		P
	Sample: S0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\S(0.5-1				Sample Operator Submitter File	e: S0.5-1 r: r: e: D:\DATA	\2020\EVA\S0	0.5-1					
Warn Equilib Aut	Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Sample Mass: 13.2809 g m Free Space: 22.6921 cm ³ Measured oration Interval: 10 s tomatic Degas: Yes	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Wa Equil Ai	Com Repor Sample arm Free libration In utomatic	Started: 20 pleted: 20 t Time: 20 Mass: 13 Space: 22 hterval: 10 Degas: Ye	110-10-29 1 110-10-29 1 110-11-05 1 2.2809 g 2.6921 cm ³ 5 8	1:05:26 5:48:56 0:51:27 Measured	Analysi Analysi Therm Smooth Col Low P	is Adsorp s Bath Te lal Correc ed Pressi d Free Sp ressure D	otive: N2 mp.: -19 tion: No ures: No bace: 66. lose: No)5.721 ℃ .0676 cm [?] ne	3	
	Micropore V Micropore	t-Plot Report /olume: -0.000017 cm³/g STP							t-Plot Harkins and	Jura				
	Micropore Area: 0 2319 m²/g				+ S0	.5-1	O Fi	tted Points						
		Slope: 0.014994 ± 0.000029 cm3/g·Å STP											1	1
	Y-Int	ercept: -0.010819 ± 0.000119 cm³/g STP		0.45	1									
	Surface Area Correction	Πicient: 0.999994 Factor: 1.000		0.40		1								i.
	Density Conversion	Factor: 0.0015468												1
	Total Surface Area	(BET): 0.2047 m ² /g		0.40										
	Thickness I Thickness Fa	Range: 3.5000 A to 5.0000 A		0.40									1	1
														1
	t = [13.99 /	(0.034 - log(p/p ⁻))] ^ 0.5		0.25	1							: 1		1
	Belative	Statistical Quantity		0.00-										1
	Pressure (p/p°)	Thickness (Å) Adsorbed												1
		(cm ³ /g STP)			1i									+
	0.011538826	2,6636 0.0281		0 0.30- 0 ·									1	1
	0.030415171	3.0034 0.0338		Ê.										1
	0.040180138	3.1278 0.0358		<u> </u>	1	1								1
	0.049625065	3.2332 0.0375		- 0.25 										1
	0.076049422	3.4835 0.0414		sor										1
	0.092580734	3.6202 0.0434		Ad .	1							+ /		1
	0.109025403	3.7469 0.0454		.≩ ^{0.20−}	† †									
	0.158093686	4.0930 0.0506		- rau	-									i -
	0.207531119	4.4175 0.0554		ă j	1 :	1 1	1	1 1			1		1	1
	V 2:10.24:1014													

0.15-

0.10-

0.05-

0.00-

ó ÷. ź 3 4 5 6

mi micromeritics°

7

8

8 9 10 Thickness (Å)

11 12

13

14 15

Page 8

17 18

16

0.207531119 0.256945814 0.306404651 0.355579784 0.405270937 0.454235987 0.503653050 0.553074218 0.602291916 0.6515527 5.3815 5.7289 6.0940 6.4927 0.0705 0.0754 0.0802 0.0853 6.9311 7.4187 7.9748 0.0908 0.651659537 0.1042 0.831639537 0.700889303 0.766458776 0.816137933 0.865203643 8.6184 9.6732 10.6981 0.1134 0.1298 0.1460 12.0168 0.1687 0.2079 0.3029 0.913663301 13.8233 0.959946489 16.4415 0.985047321 18.5760 0.4721

4.7344 5.0540

0.0602

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 10
Sample: S0.5-1 Operator: Submitter: File: D:\DATA	A\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D:\DA	TA\2020\EVA\S0.5-1		
Started: 2010-10-29 Completed: 2010-10-29 Report Time: 2010-11-05 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	11:05:26 // 15:48:56 A 10:51:27 Si Measured L	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.721 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Started: 2010-10-2 Completed: 2010-10-2 Report Time: 2010-11-0 Sample Mass: 13.2809 g Warm Free Space: 22.6921 or Equilibration Interval: 10 s Automatic Degas: Yes	9 11:05:26 9 15:48:56 5 10:51:27 n ³ Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None	

Alpha-S Method

Primary Data At least two fitted data points are needed for alpha-S calculations. BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p^o)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1310.2 - 497.5	595.3	0.000291	0.000291	0.020	0.020
497.5 - 234.2	279.3	0.000166	0.000457	0.024	0.043
234.2 - 150.8	174.3	0.000067	0.000524	0.015	0.059
150.8 - 110.5	124.1	0.000038	0.000561	0.012	0.071
110.5 - 86.6	95.4	0.000027	0.000588	0.011	0.082
86.6 - 66.8	74.0	0.000028	0.000616	0.015	0.097
66.8 - 56.7	60.8	0.000015	0.000631	0.010	0.107
56.7 - 48.9	52.1	0.000011	0.000643	0.009	0.116
48.9 - 42.7	45.3	0.000009	0.000652	0.008	0.124
42.7 - 37.6	39.8	0.00008	0.000660	0.008	0.132
37.6 - 33.4	35.2	0.000008	0.000668	0.009	0.141
33.4 - 29.7	31.3	0.000007	0.000675	0.009	0.150
29.7 - 26.5	27.9	0.000007	0.000682	0.011	0.161
26.5 - 23.7	24.9	0.000010	0.000693	0.016	0.177
23.7 - 21.1	22.2	0.000007	0.000700	0.013	0.190
21.1 - 18.6	19.7	0.000007	0.000707	0.014	0.204
18.6 - 16.3	17.3	0.00006	0.000713	0.014	0.218

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 11	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 12
Sample: S0.5-1 Operator: Submitter: File: D:\DATA	\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D:\DATA/2	2020\EVA\S0.5-1		
Started: 2010-10-29 1 Completed: 2010-10-29 1 Report Time: 2010-11-05 1 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	1:05:26 5:48:56 // 0:51:27 S Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Started: 2010-10-29 11 Completed: 2010-10-29 15 Report Time: 2010-11-05 10 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:05:26 :48:56 :51:27 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None	

BJH Adsorption dV/dD Pore Volume 3.5 x 10⁻⁶ 3.0 x 10⁻⁶ 2.5 x 10⁻⁶ 1.5 x 10⁻⁶ 5 x 10⁻⁷ 0 x 10⁻⁷ 0 x 10⁻⁷ 0 x 10⁻⁷ 0 x 10⁻⁷ 1.5 x 10⁻⁶ 1.5 x 10⁻⁶ 5 x 10⁻⁷ 0 x 10⁻⁷ 1.5 x 10⁻⁶ 5 x 10⁻⁷ 1.5 x 10⁻⁷ 1.5

mi micromeritics°

BJH Adsorption Cumulative Pore Area

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 13	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 14
Sample: S0.5-1 Operator: Submitter: File: D:\DAT	~A\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D∖DATA\2	2020\EVA\S0.5-1		
Started: 2010-10-29 Completed: 2010-10-29 Report Time: 2010-11-05 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm Equilibration Interval: 10 s Automatic Degas: Yes	11:05:26 15:48:56 10:51:27 ³ Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Started: 2010-10-29 11 Completed: 2010-10-29 15 Report Time: 2010-11-05 10 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:05:26 :48:56 :51:27 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None	

-+- S0.5-1 0.0007-0.0006-0.0005-(b) bore Volume 0.0003-0.0002-0.0001-**0.0000** 500 50) 100 Pore Diameter (Å)

-+- S0.5-1 0.22-0.20-0.18-0.16-0.14-Pore Area (m²/g) 0.08-0.06-0.04-0.02-0.00-80 100 Pore Diameter (Å) 400 20 40 60 200

BJH Adsorption dV/dlog(D) Pore Volume

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 15	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 16
Sample: S0.5-1 Operator: Submitter: File: D:\DATA	\\2020\EVA\S0.5-1			Sample: S0.5-1 Operator: Submitter: File: D:\DATA\20	020\EVA\S0.5-1		
Started: 2010-10-29 1 Completed: 2010-10-29 1 Report Time: 2010-11-05 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	11:05:26 15:48:56 10:51:27 Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None		Started: 2010-10-29 11: Completed: 2010-10-29 15: Report Time: 2010-11-05 10: Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm ³ Me Equilibration Interval: 10 s Automatic Degas: Yes	05:26 48:56 51:27 easured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm ³ Low Pressure Dose: None	

BJH Adsorption dA/dlog(D) Pore Area

mi micromeritics[®]

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 17 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 18 Sample: S0.5-1 Sample: S0.5-1 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\S0.5-1 File: D:\DATA\2020\EVA\S0.5-1 Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 ℃ Thermal Correction: No Sample Mass: 13.2809 g Smoothed Pressures: No Sample Mass: 13.2809 g Smoothed Pressures: No Warm Free Space: 22.6921 cm³ Measured Cold Free Space: 66.0676 cm³ Warm Free Space: 22.6921 cm³ Measured Cold Free Space: 66.0676 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000730 cm³/g at Relative Pressure: 0.985047321 Median Pore Width: 502.587 Å Relative Pressure Range: 1.154e-02 to 9.850e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg-cm^4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (A)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm ³ /g·Å)
8.85017	0.011538826	0.0281	10.467	0.0000	0.0000
23.32790	0.030415171	0.0338	12.655	0.0001	0.0000
30.81713	0.040180138	0.0358	13.518	0.0001	0.0000
38.06088	0.049625065	0.0375	14.280	0.0001	0.0000
45.70316	0.059589960	0.0390	15.036	0.0001	0.0000
58.32631	0.076049422	0.0414	16.193	0.0001	0.0000
71.00430	0.092580734	0.0434	17.309	0.0001	0.0000
83.61558	0.109025403	0.0454	18.383	0.0001	0.0000
121.24699	0.158093686	0.0506	21.511	0.0001	0.0000
159.15988	0.207531119	0.0554	24.727	0.0001	0.0000
197.05565	0.256945814	0.0602	28.170	0.0001	0.0000
234.98392	0.306404651	0.0649	31.916	0.0001	0.0000
272.69382	0.355579784	0.0705	36.110	0.0001	0.0000
310.79974	0.405270937	0.0754	40.887	0.0001	0.0000
348.34830	0.454235987	0.0802	46.378	0.0001	0.0000
386.24026	0.503653050	0.0853	52.901	0.0001	0.0000
424.13580	0.553074218	0.0908	60.788	0.0001	0.0000
461.87613	0.602291916	0.0969	70.426	0.0001	0.0000
499.73090	0.651659537	0.1042	82.916	0.0002	0.0000
537.47754	0.700889303	0.1134	99.247	0.0002	0.0000
587.75543	0.766458776	0.1298	131.979	0.0002	0.0000
625.84729	0.816137933	0.1460	171.135	0.0002	0.0000
663.46588	0.865203643	0.1687	240.805	0.0003	0.0000
700.62140	0.913663301	0.2079	384.673	0.0003	0.0000
736.10486	0.959946489	0.3029	849.929	0.0005	0.0000
755.33679	0.985047321	0.4721	2214.680	0.0007	0.0000

mi micromeritics

mi micromeritics[®]

Unit 1

ASAP 2020 V1.05 H

Sample: S0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\S0.5-1

Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Sample Mass: 13:2809 g Warm Free Space: 22:6921 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Serial #: 182

Page 19

Unit 1

mi micromeritics

Serial #: 182

Page 20

Sample: S0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\S0.5-1

Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm³ Low Pressure Dose: None

Summary Report

Surface Area Single point surface area at p/p° = 0.306404651: 0.1960 m²/g

BET Surface Area: 0.2047 m²/g

t-Plot External Surface Area: 0.2319 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2184 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3044 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1314.0579 Å at p/p° = 0.985047321: 0.000730 cm³/g

t-Plot micropore volume: -0.000017 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000713 cm3/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000417 cm3/g

Pore Size

Adsorption average pore width (4V/A by BET): 142.6879 Å

BJH Adsorption average pore diameter (4V/A): 130.535 Å

BJH Desorption average pore diameter (4V/A): 54.736 Å

Horvath-Kawazoe

Maximum pore volume at p/p ° = 0.985047321: 0.000730 cm³/g

Median pore width: 502.5869 Å

Dubinin-Radushkevich Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.1927 m²/g

Limiting micropore volume: 0.000104 cm3/g

ASAP 2020 V1.05 H

Unit 1

Page 21

Sample: S0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\S0.5-1

Started: 2010-10-29 11:05:26 Completed: 2010-10-29 15:48:56 Report Time: 2010-11-05 10:51:27 Sample Mass: 13.2809 g Warm Free Space: 22.6921 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.721 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 66.0676 cm³ Low Pressure Dose: None

Serial #: 182

Dubinin-Astakhov

MP-Method

Cumulative surface area of pores between 18.5760 Å and 18.5760 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.5760 Å and 18.5760 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

A2.4 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the HV sample size fraction 1–2 mm

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 1	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 2
Sample: STONE1 Operator: Submitter: File: D:\DATA\2	020\EVA\STONE1.SMP			Sample: STONE1 Operator: Submitter: File: D:\DATA\2020\	EVA\STONE1.S	MP	
Started: 2010-06-30 9:4 Completed: 2010-06-30 17: Report Time: 2010-11-15 15: Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	6:22 Ana 43:41 Ana 11:35 Th smo easured (Lov	alysis Adsorptive: N2 ysis Bath Temp.: -195.696 ℃ armal Correction: No othed Pressures: No Cold Free Space: 69.1966 cm ³ / Pressure Dose: None		Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:4 Report Time: 2010-11-15 15:11:3 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm ³ Measu Equilibration Interval: 10 s Automatic Degas: Yes	1 5 red	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 ℃ Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm ³ Low Pressure Dose: None	

Isotherm Tabular Report							
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)			
			04:30	769.29688			
0.011479078	8.82922	0.0391	05:36	100.20000			
0.030229565	23.25111	0.0442	05:39				
0.039985956	30,75500	0.0459	05:42				
0.049469881	38.04920	0.0473	05:45				
0.059755138	45.95961	0.0486	05:48				
0.076035512	58.48106	0.0502	05:50				
0.092763161	71.34618	0.0516	05:53				
0.109043299	83.86713	0.0526	05:55				
0.158519260	121.91862	0.0549	05:59				
0.207922865	159.91408	0.0575	06:02				
0.257165338	197.78552	0.0600	06:04				
0.306493757	235.72136	0.0626	06:08				
0.355635109	273.51324	0.0652	06:11				
0.405028906	311.49951	0.0677	06:13				
0.454236680	349.34134	0.0703	06:16				
0.503675257	387.36005	0.0730	06:19				
0.553043180	425.32379	0.0759	06:22				
0.602335027	463.22968	0.0790	06:24				
0.651639598	501.14355	0.0831	06:27				
0.701034169	539.12750	0.0886	06:29				
0.766491767	589.46417	0.0993	06:31				
			06:33	769.03754			
0.815935287	627.48486	0.1126	06:36				
0.865034840	665.24426	0.1325	06:38				
0.913246371	702.32074	0.1689	06:41				
0.959185188	737.64941	0.2600	06:45				
0.984915925	757.43732	0.4191	06:50				
0.904865677	695.87567	0.2396	06:54				
0.832896836	640.52893	0.1898	06:57				
0.800626370	615.71173	0.1755	06:59				
0.735776388	565.83966	0.1556	07:03				
0.708090398	544.54810	0.1491	07:06				
0.652209448	501.57355	0.1383	07:08				
0.596972074	459.09393	0.1300	07:12				
0.555834204	427.45737	0.1245	07:16				
0.514123909	395.38058	0.1196	07:18				
0.463709664	356.61014	0.0780	07:23				
0.403010624	309.93030	0.0705	07:25				
0.330245468	253.97116	0.0650	07:28				
0.2/4705155	211.25858	0.0611	07:31				
0.238493827	183.41071	0.0587	07:34				
0.210/80259	162.09/93	0.0568	07:37				
0.155436336	119.53638	0.0534	07:39				
0.100727229	77.46302	0.0493	07:42				

mi micromeritics[®]

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 3 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 4 Sample: STONE1 Sample: STONE1 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE1.SMP File: D:\DATA\2020\EVA\STONE1.SMP Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 ℃ Thermal Correction: No Sample Mass: 15.0799 g Smoothed Pressures: No Sample Mass: 15.0799 g Smoothed Pressures: No Warm Free Space: 22.9868 cm³ Measured Cold Free Space: 69.1966 cm³ Warm Free Space: 22.9868 cm³ Measured Cold Free Space: 69.1966 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Isotherm Log Plot 0.40-0.35 0.30-STP) 0.25-b/ U0.25-Adsorbed 0.20tity Qua 0.15 0.10-0.05-0.00-0.01 0.05 0.1 0.5 Relative Pressure (p/p°)

BET Surface Area Report

mi micromeritics

BET Surface Area: 0.1840 ± 0.0034 m²/g Slope: 23.906471 ± 0.431722 g/cm³ STP Y-Intercept: -0.251497 ± 0.089264 g/cm3 STP C: -94.056662 Qm: 0.0423 cm3/g STP Correlation Coefficient: 0.9988605 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p%p - 1)] Pressure Adsorbed (cm3/g STP) (p/p°) 0.059755138 0.0486 1.307885

0.076035512	0.0502	1.640798
0.092763161	0.0516	1.982955
0.109043299	0.0526	2.328772
0.158519260	0.0549	3.431158
0.207922865	0.0575	4.563399
0.257165338	0.0600	5.76823
0.306493757	0.0626	7.061381
0.355635109	0.0652	8.460121

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5	ASAP 2020 V1.05 H
Sample: STONE Operator: Submitter: File: D:\DAT	E1 A\2020\EVA\STONE1.SMP			Sampli Operato Submitte File
Started: 2010-06-30 Completed: 2010-06-30 Report Time: 2010-11-15 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm Equilibration Interval: 10 s Automatic Degas: Yes	9:46:22 Ana 17:43:41 Anal 15:11:35 The Smoc ³ Measured C Low	lysis Adsorptive: N2 ysis Bath Temp.: -195.696 °C rrmal Correction: No thed Pressures: No 20Id Free Space: 69.1966 cm ³ / Pressure Dose: None		Started: 24 Completed: 24 Report Time: 22 Sample Mass: 11 Warm Free Space: 22 Equilibration Interval: 10 Automatic Degas: Ye

mi micromeritics°

Unit 1

Serial #: 182

Page 6

Sample: STONE1 Operator: Submitter: File: D:\DATA\2020\EVA\STONE1.SMP

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Sample Mass: 15:0799 g Free Space: 22:9868 cm³ Measured ation Interval: 10 s matic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm³ Low Pressure Dose: None

Langmuir Reports

Primary Data 4052- Fewer than two points are selected for this report.

m	i micro	meritics

ASAP 2020 V1.05 H

Unit 1

Page 7

Sample: STONE1 Operator: Submitter: File: D:\DATA\2020\EVA\STONE1.SMP

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm³ Low Pressure Dose: None

Serial #: 182

t-Plot Report				
Micropore Vo	olume: 0.000037	cm³/g STP		
Micropore	Area: 0.0673 m ²	/g		
External Surface	Area: 0.1167 m ²	² /g		
	Slope: 0.007545	± 0.000148 cm ³ /g·Å STP		
Y-Inte	ercept: 0.024196	± 0.000615 cm³/g STP		
Correlation Coeff	icient: 0.999421			
Surface Area Correction F	actor: 1.000			
Density Conversion F	actor: 0.0015468	3		
Total Surface Area (BEI): 0.1840 m ²	[/] g		
I NICKNESS H	ange: 3.5000 A	0 5.0000 A		
Thickness Equ	lation: Harkins al	nd Jura		
t = [13.99 /	(0.034 - log(p/p°))]^0.5		
Relative	Statistical	Quantity		
Pressure (p/p°)	Thickness (Å)	Adsorbed		
		(cm ³ /g STP)		
0.011479078	2.6621	0.0391		
0.030229565	3.0008	0.0442		
0.039985956	3.1255	0.0459		
0.049469881	3.2316	0.0473		
0.059755138	3.3353	0.0486		
0.076035512	3.4834	0.0502		
0.092763161	3.6216	0.0516		
0.109043299	3.7471	0.0526		
0.158519260	4.0959	0.0549		
0.207922865	4.4200	0.0575		
0.25/165338	4.7358	0.0600		
0.306493757	5.0546	0.0626		
0.355635109	5.3819	0.0652		
0.405028906	5./2/2	0.0677		
0.40420000	6.0940	0.0703		
0.503675257	6.4929	0.0750		
0.00040100	7 /101	0.0739		
0.651639598	7 97/5	0.0831		
0.701034169	8 6204	0.0886		
0 766491767	9 6738	0.0993		
0.815935287	10.6934	0.1126		
0.865034840	12.0115	0.1325		
0.913246371	13.8046	0.1689		
0.959185188	16.3870	0.2600		
0.984915925	18.5627	0.4191		

Unit 1

Page 8

Sample: STONE1 Operator: Submitter: File: D:\DATA\2020\EVA\STONE1.SMP

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm³ Low Pressure Dose: None

Serial #: 182

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE1 Operator: Submitter: File: D:\DATA\202	20\EVA\STONE1.SMP			Sample: STONE1 Operator: Submitter: File: D:\DATA\2	2020\EVA\STON	E1.SMP
Started: 2010-06-30 9:46: Completed: 2010-06-30 17:43 Report Time: 2010-11-15 15:11 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm ³ Mea Equilibration Interval: 10 s Automatic Degas: Yes	22 Anal 3:41 Analy :35 The Smoo ssured C Low	lysis Adsorptive: N2 rsis Bath Temp.: -195.696 °C rmal Correction: No thed Pressures: No old Free Space: 69.1966 cm ³ Pressure Dose: None		Started: 2010-06-30 9: Completed: 2010-06-30 17 Report Time: 2010-11-15 15 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	16:22 :43:41 :11:35 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: 195.69 Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 Low Pressure Dose: None

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1302.2 - 491.7	587.4	0.000278	0.000278	0.019	0.019
491.7 - 236.3	281.1	0.000163	0.000440	0.023	0.042
236.3 - 153.9	177.2	0.000064	0.000504	0.014	0.056
153.9 - 113.7	127.3	0.000034	0.000539	0.011	0.067
113.7 - 89.9	98.7	0.000023	0.000561	0.009	0.076
89.9 - 70.1	77.3	0.000017	0.000578	0.009	0.085
70.1 - 60.0	64.1	0.000008	0.000586	0.005	0.090
60.0 - 52.2	55.4	0.000005	0.000591	0.004	0.094
52.2 - 46.0	48.6	0.000003	0.000594	0.002	0.096
46.0 - 40.9	43.1	0.000003	0.000597	0.003	0.099
40.9 - 36.6	38.5	0.000003	0.000600	0.003	0.102
36.6 - 33.0	34.6	0.000003	0.000604	0.004	0.106
33.0 - 29.8	31.2	0.000003	0.000606	0.004	0.110
29.8 - 27.0	28.2	0.000004	0.000610	0.006	0.115
27.0 - 24.4	25.5	0.000004	0.000614	0.006	0.121
24.4 - 21.9	23.0	0.000003	0.000618	0.006	0.127
21.9 - 19.6	20.6	0.000004	0.000621	0.007	0.134
19.6 - 17.3	18.2	0.000001	0.000622	0.002	0.136

SKB TR-14-18

mi micromeritics°

Page 10

6 ℃ 5 cm³

BJH Adsorption Cumulative Pore Volume

BJH Adsorption dV/dlog(D) Pore Volume

mi micromeritics°

-+- STONE1 0.14-0.12-0.10-Area (m²/g) 0.08 Pore 0.06 0.04 0.02-0.00+ 10 50 100 500 Pore Diameter (Å)

BJH Adsorption dA/dlog(D) Pore Area

Horvath-Kawazoe Report

Slit Pore Geometry (Original H-K)

mi micromeritics

Maximum Pore Volume: 0.000648 cm³/g at Relative Pressure: 0.984915925 Median Pore Width: 558.143 Å Relative Pressure Range: 1.148e-02 to 9.849e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg·cm^4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm ³ /g·Å)
8.82922	0.011479078	0.0391	10.455	0.0001	0.0000
23.25111	0.030229565	0.0442	12.636	0.0001	0.0000
30.75500	0.039985956	0.0459	13.498	0.0001	0.0000
38.04920	0.049469881	0.0473	14.270	0.0001	0.0000
45.95961	0.059755138	0.0486	15.046	0.0001	0.0000
58.48106	0.076035512	0.0502	16.196	0.0001	0.0000
71.34618	0.092763161	0.0516	17.312	0.0001	0.0000
83.86713	0.109043299	0.0526	18.370	0.0001	0.0000
121.91862	0.158519260	0.0549	21.538	0.0001	0.0000
159.91408	0.207922865	0.0575	24.758	0.0001	0.0000
197.78552	0.257165338	0.0600	28.177	0.0001	0.0000
235.72136	0.306493757	0.0626	31.924	0.0001	0.0000
273.51324	0.355635109	0.0652	36.119	0.0001	0.0000
311.49951	0.405028906	0.0677	40.857	0.0001	0.0000
349.34134	0.454236680	0.0703	46.345	0.0001	0.0000
387.36005	0.503675257	0.0730	52.863	0.0001	0.0000
425.32379	0.553043180	0.0759	60.746	0.0001	0.0000
463.22968	0.602335027	0.0790	70.441	0.0001	0.0000
501.14355	0.651639598	0.0831	82.933	0.0001	0.0000
539.12750	0.701034169	0.0886	99.268	0.0001	0.0000
589.46417	0.766491767	0.0993	132.006	0.0002	0.0000
627.48486	0.815935287	0.1126	171.170	0.0002	0.0000
665.24426	0.865034840	0.1325	239.111	0.0002	0.0000
702.32074	0.913246371	0.1689	384.402	0.0003	0.0000
737.64941	0.959185188	0.2600	810.589	0.0004	0.0000
757.43732	0.984915925	0.4191	2193.758	0.0006	0.0000

mi micromeritics°

micromeritics[®]

ASAP 2020 V1.05 H

Unit 1

Sample: STONE1 Operator: Submitter: File: D:/DATA/2020/EVA/STONE1.SMP

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-01-15 15:11:35 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area

Single point surface area at p/p° = 0.306493757: 0.1889 m²/g

BET Surface Area: 0.1840 m²/g

t-Plot Micropore Area: 0.0673 m²/g

t-Plot External Surface Area: 0.1167 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.1360 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2716 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1302.8106 Å at p/p° = 0.984915925: 0.000648 cm³/g

t-Plot micropore volume: 0.000037 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000622 cm3/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000378 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 140.9215 Å

BJH Adsorption average pore diameter (4V/A): 182.944 Å

BJH Desorption average pore diameter (4V/A): 55.630 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.984915925: 0.000648 cm³/g

Median pore width: 558.1430 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

mi micromeritics[®]

Unit 1

ASAP 2020 V1.05 H

Serial #: 182

Page 20

Sample: STONE1 Operator: Submitter: File: D:\DATA\2020\EVA\STONE1.SMP

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-11-15 15:11:35 Sample Mass: 15.0799 g Warm Free Space: 22.9868 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.696 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 69.1966 cm³ Low Pressure Dose: None

Dubinin-Astakhov

Micropore surface area: 0.2289 m²/g

Limiting micropore volume: 0.000108 cm3/g

MP-Method

Cumulative surface area of pores between 18.5627 Å and 18.5627 Å hydraulic radius: 0.0000 m^2/g

Cumulative pore volume of pores between 18.5627 Å and 18.5627 Å hydraulic radius: 0.000000 cm3/g

Average pore hydraulic radius (V/A): 0.0000 Å

A2.5 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the HV sample size fraction 2–3 mm

mi micromeritics°

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 1	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 2
Sample: STONE5_1 Operator: Submitter: File: D:\DATA\2	2 020\EVA\STONE5_2.SMF	2		Sample: STONE5_ Operator: Submitter: File: D:\DATA\2	2 2020\EVA\STONE5_2	2.SMP	
Started: 2010-08-19 9:3 Completed: 2010-08-19 14: Report Time: 2010-08-30 13: Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm ³ M Equilibration Interval: 10 s Automatic Degas: No	0:17 Ana 59:06 Anal 51:37 The easured C Low	lysis Adsorptive: N2 rsis Bath Temp.: -195.716 °C rmal Correction: No thed Pressures: No old Free Space: 65.2999 cm ³ Pressure Dose: None		Started: 2010-08-19 9: Completed: 2010-08-19 14 Report Time: 2010-08-30 13 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm ³ M Equilibration Interval: 10 s Automatic Degas: No	30:17 :59:06 :51:37 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm ³ Low Pressure Dose: None	

	Isoth	nerm Tabular Re	port	
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01.41	767 06036
0.011697437	8,97739	0.0397	03:03	
0.030253059	23.21881	0.0455	03:07	
0.040080440	30,76179	0.0476	03:10	
0.049550579	38.03086	0.0494	03:13	
0.059714317	45.83258	0.0511	03:16	
0.075898555	58.25562	0.0534	03:19	
0.092490836	70.99232	0.0555	03:22	
0.109227443	83.84031	0.0576	03:25	
0.158157467	121.40015	0.0625	03:28	
0.207514173	159.28793	0.0671	03:30	
0.256854283	197.16650	0.0717	03:34	
0.306082984	234.95999	0.0763	03:37	
0.355358041	272.79053	0.0810	03:40	
0.404549126	310.55606	0.0857	03:42	
			03:45	767.67456
0.453860361	348.41705	0.0904	03:47	
0.503435478	386.47461	0.0950	03:50	
0.552872015	424.42578	0.0997	03:52	
0.602070589	462.19427	0.1049	03:54	
0.651436922	500.09155	0.1113	03:58	
0.700884590	538.05127	0.1188	04:00	
0.766231183	588.21619	0.1317	04:02	
0.815743808	626.22577	0.1464	04:05	
0.864843714	663.91852	0.1685	04:07	
0.913533446	701.29639	0.2069	04:09	
0.959451500	736.54651	0.3007	04:13	
0.984728143	755.95074	0.4682	04:19	
0.903562132	693.64166	0.2840	04:23	
0.832383037	614 74744	0.2322	04:26	
0.800791726	614.74744	0.2160	04:29	
0.735340980	542 62202	0.1928	04:31	
0.700100404	543.03293	0.1045	04.33	
0.001991907	459 46792	0.1715	04.39	
0.555633357	436.40703	0.1009	04.43	
0.5555555557	304 80850	0.1337	04:40	
0.463426907	355 76105	0.1470	04:54	
0.402553075	309 02975	0.1020	04:56	
0.330647748	253 82986	0.0014	04:59	
0.293967162	225 67111	0.0027	05:02	
0 238383695	183 00110	0 0727	05:02	
0.210907146	161,90805	0.0698	05:08	
0.155605798	119.45461	0.0641	05.11	
0.100735664	77.33221	0.0578	05:14	
		0.0010		

mi micromeritics[®]

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 3 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 4 Sample: STONE5_2 Sample: STONE5_2 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE5 2.SMP File: D:\DATA\2020\EVA\STONE5 2.SMP Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Thermal Correction: No Sample Mass: 13.4041 g Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm³ Measured Smoothed Pressures: No Smoothed Pressures: No Warm Free Space: 22.5588 cm³ Measured Cold Free Space: 65.2999 cm³ Cold Free Space: 65.2999 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: No Automatic Degas: No

→ STONE5_2 - Adsorption → STONE5_2 - Desorption 0.45 0.40 0.35 (cm³/g STP) 0.30 0.25 8 ഗ Adso ϕ 0.20 Quantity / 8 ø 0.15 - POT 90T PTP. 0.10 +-+++++-0.05 0.00-0.01 0.05 0.1 0.5 Relative Pressure (p/p°)

Isotherm Log Plot

BET Surface Area Report

mi micromeritics°

BET Surface Area: 0.2325 ± 0.0022 m²/g Slope: 18.626372 ± 0.174861 g/cm³ STP Y-Intercept: 0.096725 ± 0.036111 g/cm3 STP C: 193.569432 Qm: 0.0534 cm3/g STP Correlation Coefficient: 0.9996917 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (p/p°) (cm³/g STP) 0.059714317 0.0511 1.242808 0.075898555 0.0534 1.539117 0.092490836 1.836502 0.0555 0.109227443 0.0576 2.130326 0.158157467 0.0625 3.008186 0.207514173 0.0671 3.904358 0.256854283 0.0717 4.820222

0.0763

0.0810

5.778336

6.809577

0.306082984

0.355358041

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5
Sample: STONE5 Operator: Submitter: File: D:\DATA	_2 \2020\EVA\STONE5_2.SMP		
Started: 2010-08-19 9 Completed: 2010-08-19 1 Report Time: 2010-08-30 1 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm ³ I Equilibration Interval: 10 s Automatic Degas: No	:30:17 Analy 4:59:06 Analy 3:51:37 Ther Smoot Measured Cc Low	/sis Adsorptive: N2 sis Bath Temp.: -195.716 °C mal Correction: No hed Pressures: No bld Free Space: 65.2999 cm ³ Pressure Dose: None	

mi micromeritics°

Unit 1

Serial #: 182

Page 6

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5_2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13:4041 g Warm Free Space: 22:5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Bath Temp:: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Langmuir Reports

Primary Data 4052- Fewer than two points are selected for this report.

SKB TR-14-18

Unit 1

Serial #: 182 Page 7

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5_2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

t-Plot Report				
Micropore Vo	olume: 0.000005	cm³/g STP		
Micropore	Area: 0.0090 m ²	/g		
External Surface	Area: 0.2235 m ²	/g		
5	Slope: 0.014450	± 0.000095 cm ³ /g·Å STP		
Y-Inte	ercept: 0.003288	± 0.000395 cm³/g STP		
Correlation Coeff	icient: 0.999935			
Surface Area Correction F	actor: 1.000			
Density Conversion F	actor: 0.0015468	3		
Total Surface Area (BET): 0.2325 m ²	/g		
I hickness R	ange: 3.5000 A 1	0 5.0000 A		
I nickness Equ	lation: Harkins ar	nd Jura		
t = [13.99 / ((0.034 - log(p/p°))]^0.5		
Relative	Statistical	Quantity		
Pressure (p/p°)	Thickness (Å)	Adsorbed		
,		(cm ³ /g STP)		
0.011607427	2 6676	0.0207		
0.020252050	2.0070	0.0455		
0.030233039	3 1266	0.0433		
0.049550579	3 2324	0.0494		
0.059714317	3 3349	0.0511		
0.075898555	3 4822	0.0534		
0.092490836	3.6195	0.0555		
0.109227443	3,7484	0.0576		
0.158157467	4.0934	0.0625		
0.207514173	4.4174	0.0671		
0.256854283	4.7338	0.0717		
0.306082984	5.0519	0.0763		
0.355358041	5.3800	0.0810		
0.404549126	5.7237	0.0857		
0.453860361	6.0911	0.0904		
0.503435478	6.4909	0.0950		
0.552872015	6.9292	0.0997		
0.602070589	7.4164	0.1049		
0.651436922	7.9721	0.1113		
0.700884590	8.0183	0.1188		
0.700231183	9.0691	0.1317		
0.815/43808	10.0890	0.1404		
0.004043714	12.0000	0.1003		
0.959451500	16.4060	0.3007		

18.5438

0.984728143

0.4682

mi micromeritics°

ASAP 2020 V1.05 H

Unit 1

Page 8

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5 2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Serial #: 182

t-Plot

ASAP 2020	V1.05 H
-----------	---------

Unit 1

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5 2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13:4041 g Warm Free Space: 22:5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Serial #: 182

Page 9

BJH Adsorption Pore Distribution Report

t = 3.54 [-5/ ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1284.6 - 493.0	589.7	0.000290	0.000290	0.020	0.020
493.0 - 235.3	280.2	0.000165	0.000455	0.024	0.043
235.3 - 151.8	175.3	0.000066	0.000522	0.015	0.058
151.8 - 111.7	125.3	0.000037	0.000559	0.012	0.070
111.7 - 87.9	96.8	0.000025	0.000584	0.010	0.081
87.9 - 68.3	75.4	0.000021	0.000605	0.011	0.092
68.3 - 58.1	62.2	0.000012	0.000617	0.008	0.099
58.1 - 50.3	53.6	0.000010	0.000627	0.008	0.107
50.3 - 44.1	46.7	0.000008	0.000634	0.007	0.113
44.1 - 39.1	41.2	0.000007	0.000642	0.007	0.121
39.1 - 34.8	36.6	0.000007	0.000649	0.008	0.129
34.8 - 31.1	32.7	0.000008	0.000657	0.010	0.139
31.1 - 27.9	29.3	0.000009	0.000666	0.012	0.151
27.9 - 25.1	26.3	0.000009	0.000675	0.013	0.164
25.1 - 22.5	23.6	0.000009	0.000683	0.015	0.178
22.5 - 20.1	21.1	0.000008	0.000692	0.016	0.194
20.1 - 17.8	18.8	0.00008	0.000699	0.016	0.210

mi micromeritics°

Unit 1

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5_2.SMP Started: 2010-08-19 9:30:17 Analy

Completed: 2010-08-19 5-30-17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13:4041 g Warm Free Space: 22:5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Bath Temp: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Serial #: 182

Page 10

BJH Adsorption Cumulative Pore Volume

BJH Adsorption dV/dlog(D) Pore Volume

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 13	ASAP 2020 V1.05 H
Sample: STONE5 Operator: Submitter: File: D:\DATA	_2 \2020\EVA\STONE5_2.SMP			Sample: STONE5_2 Operator: Submitter: File: D:\DATA\202
Started: 2010-08-19 9 Completed: 2010-08-01 9 Report Time: 2010-08-30 1 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm ³ Equilibration Interval: 10 s Automatic Degas: No	:30:17 Analy 4:59:06 Analys 3:51:37 Ther Smoot Measured Cc Low I	sis Adsorptive: N2 is Bath Temp.: -195.716 °C nal Correction: No ned Pressures: No Id Free Space: 65.2999 cm ³ Pressure Dose: None		Started: 2010-08-19 9:30: Completed: 2010-08-19 14:59 Report Time: 2010-08-30 13:51 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm ³ Mea Equilibration Interval: 10 s Automatic Degas: No

mi micromeritics°

Unit 1 Serial #: 182 20\EVA\STONE5_2.SMP 0:17 59:06 1:37 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None asured

BJH Adsorption dA/dD Pore Area

Page 14

BJH Adsorption Cumulative Pore Area 0.20-0.18-0.16-0.14-Pore Area (m²/g) -01.0 0.08-0.06-0.04-0.02-0.00-80 100 20 60 200 400 40 Pore Diameter (Å)

0.006-0.005-

BJH Adsorption dA/dlog(D) Pore Area

Horvath-Kawazoe Report

mi micromeritics°

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000724 cm³/g at Relative Pressure: 0.984728143 Median Pore Width: 499.369 Å Relative Pressure Range: 1.170e-02 to 9.847e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg·cm^4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm³/g STP)	Pore Width (Å)	Cumulative Pore Volume (cm³/g)	Differential Pore Volume (cm³/g·Å)
8.97739	0.011697437	0.0397	10.491	0.0001	0.0000
23.21881	0.030253059	0.0455	12.641	0.0001	0.0000
30.76179	0.040080440	0.0476	13.515	0.0001	0.0000
38.03086	0.049550579	0.0494	14.276	0.0001	0.0000
45.83258	0.059714317	0.0511	15.038	0.0001	0.0000
58.25562	0.075898555	0.0534	16.190	0.0001	0.0000
70.99232	0.092490836	0.0555	17.305	0.0001	0.0000
83.84031	0.109227443	0.0576	18.395	0.0001	0.0000
121.40015	0.158157467	0.0625	21.525	0.0001	0.0000
159.28793	0.207514173	0.0671	24.743	0.0001	0.0000
197.16650	0.256854283	0.0717	28.160	0.0001	0.0000
234.95999	0.306082984	0.0763	31.904	0.0001	0.0000
272.79053	0.355358041	0.0810	36.098	0.0001	0.0000
310.55606	0.404549126	0.0857	40.794	0.0001	0.0000
348.41705	0.453860361	0.0904	46.317	0.0001	0.0000
386.47461	0.503435478	0.0950	52.833	0.0001	0.0000
424.42578	0.552872015	0.0997	60.711	0.0002	0.0000
462.19427	0.602070589	0.1049	70.401	0.0002	0.0000
500.09155	0.651436922	0.1113	82.886	0.0002	0.0000
538.05127	0.700884590	0.1188	99.211	0.0002	0.0000
588.21619	0.766231183	0.1317	131.932	0.0002	0.0000
626.22577	0.815743808	0.1464	171.074	0.0002	0.0000
663.91852	0.864843714	0.1685	238.978	0.0003	0.0000
701.29639	0.913533446	0.2069	384.189	0.0003	0.0000
736.54651	0.959451500	0.3007	848.864	0.0005	0.0000
755.95074	0.984728143	0.4682	2126.720	0.0007	0.0000

1,000

Pore Width (Å)

1,500

2,000

Horvath-Kawazoe Differential Pore Volume Plot

mi micromeritics°

0.0000-

0

500

ASAP 2020 V1.05 H

Unit 1

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5 2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm³ Measured Equilibration Interval: 10 s Automatic Decas: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area Single point surface area at p/p° = 0.306082984: 0.2306 m²/g

BET Surface Area: 0.2325 m²/g

t-Plot Micropore Area: 0.0090 m²/g

t-Plot External Surface Area: 0.2235 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2099 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3402 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1287.0712 Å at p/p° = 0.984728143: 0.000724 cm³/g

t-Plot micropore volume: 0.000005 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000699 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000446 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 124.6003 Å

BJH Adsorption average pore diameter (4V/A): 133.209 Å

BJH Desorption average pore diameter (4V/A): 52.474 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.984728143: 0.000724 cm³/g

Median pore width: 499.3694 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

mi micromeritics°

Unit 1

ASAP 2020 V1.05 H

Serial #: 182

Page 20

Sample: STONE5_2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE5_2.SMP

Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Report Time: 2010-08-30 13:51:37 Sample Mass: 13.4041 g Warm Free Space: 22.5588 cm³ Measured Equilibration Interval: 10 s Automatic Degas: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.716 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 65.2999 cm³ Low Pressure Dose: None

Dubinin-Astakhov

Micropore surface area: 0.2413 m²/g

Limiting micropore volume: 0.000119 cm³/g

MP-Method

Cumulative surface area of pores between 18.5438 Å and 18.5438 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.5438 Å and 18.5438 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

A2.6 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the M sample size fraction 0.25–0.5 mm

mi micromeritics° **mi micromeritics**° ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 1 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Sample: STONE7 Operator: Sample: STONE7 Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP File: D:\DATA\2020\EVA\STONE7.SMP Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2 Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Analysis Bath Temp.: -195.692 °C Completed: 2010-08-27 11:57:51 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Thermal Correction: No Report Time: 2010-08-30 13:51:00 Thermal Correction: No Sample Mass: 11.1358 g Sample Mass: 11.1358 g Smoothed Pressures: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Warm Free Space: 23.5373 cm3 Measured Warm Free Space: 23.5373 cm³ Measured Cold Free Space: 68.4897 cm³ Equilibration Interval: 10 s Equilibration Interval: 10 s Low Pressure Dose: None Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Isotherm Tabular Report								
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)				
			17:06	769 49225				
0 011420284	8 78805	0.0507	17:23	100.10220				
0.030000650	23.08600	0.0597	17:27					
0.040167827	30,90996	0.0632	17:30					
0.049385928	38 00365	0.0658	17:33					
0.059634298	45 89022	0.0686	17:36					
0.075893098	58.40199	0.0724	17:38					
0.092521979	71,19873	0.0758	17:41					
0.108868263	83,77799	0.0790	17:43					
0.158003664	121.58998	0.0872	17:46					
0.207747081	159.87021	0.0948	17:49					
0.257039923	197.80405	0.1021	17:52					
0.306243137	235.66890	0.1092	17:54					
0.355555916	273.61871	0.1161	17:57					
0.404843698	311.55011	0.1229	18:01					
0.454185583	349.52307	0.1299	18:04					
0.503512713	387.48444	0.1367	18:06					
0.552907539	425.49942	0.1440	18:10					
0.602290900	463.50604	0.1519	18:14					
0.651387941	501.29126	0.1607	18:16					
0.700641560	539.19720	0.1711	18:18					
0.766165317	589.62543	0.1893	18:21					
0.815659899	627.71832	0.2090	18:24					
0.864732786	665.48602	0.2378	18:26					
0.913137238	702.74060	0.2886	18:29					
0.959321616	738.28809	0.4092	18:33					
0.984076880	757.34534	0.6244	18:38					
0.884618993	680.80774	0.3309	18:43					
0.830629308	639.25989	0.2855	18:46					
0.800446556	616.03284	0.2680	18:48					
0.735368532	565.95062	0.2397	18:51					
0.707750018	544.69666	0.2301	18:53					
0.652159750	501.91571	0.2135	18:56					
0.596911285	459.39813	0.1997	19:00					
0.555575617	427.58710	0.1901	19:03					
0.514006695	395.59625	0.1814	19:06					
			19:08	769.63483				
0.462051824	355.61118	0.1378	19:12					
0.402951514	310.12552	0.1247	19:16					
0.330567697	254.41641	0.1131	19:18					
0.294198128	226.42513	0.1071	19:21					
0.238172158	183.30559	0.0985	19:24					
0.210749592	162.20023	0.0941	19:27					
0.155542179	119.71068	0.0851	19:30					
0.100777868	77.56216	0.0749	19:32					

Page 2

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 3 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 4 Sample: STONE7 Sample: STONE7 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP File: D:\DATA\2020\EVA\STONE7.SMP Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Thermal Correction: No Sample Mass: 11.1358 g Smoothed Pressures: No Sample Mass: 11.1358 g Smoothed Pressures: No Warm Free Space: 23.5373 cm³ Measured Cold Free Space: 68.4897 cm³ Warm Free Space: 23.5373 cm³ Measured Cold Free Space: 68.4897 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Isotherm Log Plot ----- STONE7 - Desorption 0.6 0.5-Adsorbed (cm³/g STP) 0.3 ؆ Quantity / Ø ø Ø 60⁰ 0.2-*** -0-01-01-01-⁰¹⁻⁰¹⁻⁰¹⁻ 0.1-0.0-0.01 0.05 0.1 0.5 Relative Pressure (p/p°)

BET Surface Area Report

mi micromeritics°

BET Surface Area: 0.3369 ± 0.0030 m²/g Slope: 12.769758 ± 0.114361 g/cm³ STP Y-Intercept: 0.149788 ± 0.023626 g/cm3 STP C: 86.252154 Qm: 0.0774 cm3/g STP Correlation Coefficient: 0.9997194 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (p/p°) (cm³/g STP) 0.059634298 0.0686 0.923939 0.075893098 0.0724 1.134872 1.345393 0.092521979 0.0758 0.108868263 0.0790 1.547080 0.158003664 0.0872 2.151853 0.207747081 0.0948 2.765896 0.257039923 0.1021 3.388127 0.306243137 0.1092 4.044113

0.1161

4.753077

0.355555916

ASAP 2020 V1.05 H	Unit 1	Sei	rial #: 182	Page 5	ASAP 2020 V1.05 H	Unit 1
Sample: STONE Operator: Submitter: File: D:\DAT	7 A\2020\EVA\STONE7.SMP				Sample: ST Operator: Submitter: File: D:	(ONE7 \DATA\2020\EVA\STO
Started: 2010-08-26 Completed: 2010-08-27 Report Time: 2010-08-30 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm Equilibration Interval: 10 s Automatic Degas: Yes	16:10:34 Anal 11:57:51 Analy 13:51:00 Theu Smoo ³ Measured C Low	ysis Adsorptive: sis Bath Temp.: mal Correction: thed Pressures: old Free Space: Pressure Dose:	N2 -195.692 °C No 68.4897 cm ³ None		Started: 2010-0 Completed: 2010-0 Report Time: 2010-0 Sample Mass: 11.135 Warm Free Space: 23.537 Equilibration Interval: 10 s Automatic Degas: Yes)8-26 16:10:34)8-27 11:57:51)8-30 13:51:00 ;8 g '3 cm ³ Measured

mi micromeritics[®]

Page 6

A\STONE7.SMP

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Langmuir Reports

Primary Data 4052- Fewer than two points are selected for this report.

122

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 7	
Sample: STONE7 Operator: Submitter: File: D:\DATA\	2020\EVA\STONE7.SMP			
Started: 2010-08-26 16 Completed: 2010-08-27 11 Report Time: 2010-08-30 13 Sample Mass: 11.1358 g	5:10:34 Analy 1:57:51 Analy 3:51:00 Ther Smoot	rsis Adsorptive: N2 sis Bath Temp.: -195.692 °C mal Correction: No hed Pressures: No Jed Free Space: 68 4897 cm ³		

Low Pressure Dose: None

mi micromeritics°

Unit 1

ASAP 2020 V1.05 H

t-Plot

Page 8

Sample: STONE7 Operator: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Harkins and Jura + STONE7 O Fitted Points 0.6-0.5 Quantity Adsorbed (cm³/g STP) + 0.4 0.3-+0.2 + +0.1-0.0-16 17 18 11 12 13 14 15 7 9 ò ź 3 4 5 6 8 10 1 Thickness (Å)

t-Plot Report STP TP 0.158003664 0.207747081 0.0872 4.0924 4.4189 0.0948 0.257039923 4.7350 0.1021 0.306243137 0.355555916 0.404843698 0.1092 5.0529 5.3814 0.1161 5.7259 0.1229 0.454185583 6.0936 0.1299 0.503512713 6.4915 0.1367 0.552907539 6.9295 0.1440 0.602290900 7.4187 0.1519 0.1607 0.651387941 0.700641560 7.9715 8.6149 0.766165317 9.6679 0.1893 0.815659899 10.6870 0.2090 0.864732786 12.0021 0.2378 0.913137238 13.7998 0.2886 0.959321616 16.3968 0.4092 0.984076880 18.4787 0.6244

Equilibration Interval: 10 s

Automatic Degas: Yes

	Micropore Vo Micropore	olume: -0.000014	cm ³ /g STP	
	External Surface	Area: 0.3645 m ²	/a	
		Slope: 0.023562	± 0.000149 cm ³ /g	٠Å S
	Y-Inte	ercept: -0.009358	± 0.000616 cm ³ /g	J SI
	Correlation Coeff	icient: 0.999940		
Surface	Area Correction F	actor: 1.000		
Den	sity Conversion F	actor: 0.0015468	3	
То	tal Surface Area (BET): 0.3369 m ²	/g	
		ange: 3.5000 A	0 5.0000 A	
	I nickness Equ	lation: Harkins a	nd Jura	
	t = [13.99 /	(0.034 - log(p/p°))]^0.5	
	Relative	Statistical	Quantity	
	Pressure (p/p°)	Thickness (A)	Adsorbed	
			(cm³/g STP)	
	0.011420284	2.6606	0.0507	
	0.030000650	2.9977	0.0597	
	0.040167827	3.1277	0.0632	
	0.049385928	3.2307	0.0658	
	0.059634298	3.3341	0.0686	
	0.075893098	3.4821	0.0724	
	0.092521979	3.6197	0.0758	
	0 108868263	3 7458	0.0790	

,	<u> </u>	
	\mathbf{c}	
	در	

Unit 1

ASAP	2020	V1.05	н

Sample: STONE7 Operator: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Sample Mass: 11.1358 Warm Free Space: 23:5373 cm³ Measured Equilibration Interval: 10 Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Page 9

BJH Adsorption Pore Distribution Report

t = 3.54 [-5/ ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1232.0 - 490.6	587.5	0.000372	0.000372	0.025	0.025
490.6 - 233.3	278.1	0.000211	0.000583	0.030	0.056
233.3 - 150.8	174.2	0.000087	0.000670	0.020	0.076
150.8 - 110.8	124.4	0.000048	0.000718	0.016	0.091
110.8 - 87.1	95.9	0.000033	0.000751	0.014	0.105
87.1 - 67.3	74.5	0.000030	0.000781	0.016	0.121
67.3 - 57.2	61.4	0.000017	0.000798	0.011	0.132
57.2 - 49.5	52.7	0.000014	0.000811	0.011	0.142
49.5 - 43.3	45.9	0.000013	0.000824	0.011	0.153
43.3 - 38.2	40.4	0.000012	0.000836	0.012	0.165
38.2 - 33.9	35.8	0.000011	0.000847	0.013	0.178
33.9 - 30.3	31.9	0.000012	0.000859	0.015	0.193
30.3 - 27.1	28.5	0.000012	0.000872	0.017	0.210
27.1 - 24.2	25.5	0.000013	0.000884	0.020	0.230
24.2 - 21.7	22.8	0.000013	0.000897	0.023	0.253
21.7 - 19.2	20.3	0.000013	0.000911	0.027	0.279
19.2 - 16.9	17.9	0.000013	0.000924	0.030	0.309

mi micromeritics°

Unit 1

Sample: STONE7 Operator:	
Submitter: File: D:\DATA\2020\I	EVA\STONE7.SMP
Started: 2010-08-26 16:10:34	4 An
Completed: 2010-08-27 11:57:5	1 Ana

Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Sample Mass: 11.1358 g Warm Free Space: 23:5373 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Page 10

BJH Adsorption Cumulative Pore Volume

BJH Adsorption dV/dlog(D) Pore Volume

Sample: STONE7 Operator: Submitter: File: D:\DATA/2020\EVA\STONE7.SMP Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Analysis Bath Temp: -195.692 °C Report Time: 2010-08-30 13:51:00 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm ³ Measured Equilibration Interval: 10 s Automatic Degas: Yes	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 15	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 16
	Sample: STONE7 Operator: Submitter: File: D:\DATA\20 Started: 2010-08-26 16:1 Completed: 2010-08-27 11:5 Report Time: 2010-08-30 13:5 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm³ Me Equilibration Interval: 10 s Automatic Degas: Yes	20\EVA\STONE7.SMP 0:34 Analy 7:51 Analy 1:00 The Smoo asured C Low	ysis Adsorptive: N2 sis Bath Temp.: -195.692 °C mal Correction: No thed Pressures: No old Free Space: 68.4897 cm ³ Pressure Dose: None		Sample: STONE7 Operator: Submitter: File: D.\DATA\2020 Started: 2010-08-26 16:10 Completed: 2010-08-20 11:57 Report Time: 2010-08-30 13:51: Sample Mass: 11.1358 g Warn Free Space: 23.5373 cm³ Meas Equilibration Interval: 10 s Automatic Degas: Yes	0\EVA\STONE7.SM 34 A 51 Ar 00 T Sured L	P Analysis Adsorptive: N2 nalysis Bath Temp: -195.692 °C Thermal Correction: No noothed Pressures: No Cold Free Space: 68.4897 cm ³ .ow Pressure Dose: None	

Constrained by the stone of the

BJH Adsorption dA/dlog(D) Pore Area

Horvath-Kawazoe Report

mi micromeritics°

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000966 cm³/g at Relative Pressure: 0.984076880 Median Pore Width: 456.503 Å Relative Pressure Range: 1.142e-02 to 9.841e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg·cm^4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm³/g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
8,78805	0.011420284	0.0507	10.446	0.0001	0.0000
23.08600	0.030000650	0.0597	12.614	0.0001	0.0000
30.90996	0.040167827	0.0632	13.518	0.0001	0.0000
38.00365	0.049385928	0.0658	14.263	0.0001	0.0000
45.89022	0.059634298	0.0686	15.036	0.0001	0.0000
58.40199	0.075893098	0.0724	16.186	0.0001	0.0000
71.19873	0.092521979	0.0758	17.301	0.0001	0.0000
83.77799	0.108868263	0.0790	18.359	0.0001	0.0000
121.58998	0.158003664	0.0872	21.504	0.0001	0.0000
159.87021	0.207747081	0.0948	24.744	0.0001	0.0000
197.80405	0.257039923	0.1021	28.161	0.0002	0.0000
235.66890	0.306243137	0.1092	31.906	0.0002	0.0000
273.61871	0.355555916	0.1161	36.099	0.0002	0.0000
311.55011	0.404843698	0.1229	40.835	0.0002	0.0000
349.52307	0.454185583	0.1299	46.319	0.0002	0.0000
387.48444	0.503512713	0.1367	52.835	0.0002	0.0000
425.49942	0.552907539	0.1440	60.713	0.0002	0.0000
463.50604	0.602290900	0.1519	70.403	0.0002	0.0000
501.29126	0.651387941	0.1607	82.889	0.0002	0.0000
539.19720	0.700641560	0.1711	99.215	0.0003	0.0000
589.62543	0.766165317	0.1893	131.937	0.0003	0.0000
627.71832	0.815659899	0.2090	171.080	0.0003	0.0000
665.48602	0.864732786	0.2378	238.987	0.0004	0.0000
702.74060	0.913137238	0.2886	381.783	0.0004	0.0000
738.28809	0.959321616	0.4092	843.571	0.0006	0.0000
757.34534	0.984076880	0.6244	2028.827	0.0010	0.0000

Horvath-Kawazoe Differential Pore Volume Plot

	2020 1/1	05 1
AGAL		.0.7 11

Unit 1

Sample: STONE7 Operator: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-27 11:57:50 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area Single point surface area at p/p° = 0.306243137: 0.3296 m²/g

BET Surface Area: 0.3369 m²/g

t-Plot External Surface Area: 0.3645 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3092 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.4294 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1235.3483 Å at p/p° = 0.984076880: 0.000966 cm³/g

t-Plot micropore volume: -0.000014 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000924 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000514 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 114.6636 Å

BJH Adsorption average pore diameter (4V/A): 119.546 Å

BJH Desorption average pore diameter (4V/A): 47.848 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.984076880: 0.000966 \mbox{cm}^3/\mbox{g}

Median pore width: 456.5032 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.3307 m²/g

Limiting micropore volume: 0.000173 cm3/g

mi micromeritics°

ASAP 2020 V1.05 H

Unit 1

Sample: STONE7 Operator: Submitter: File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Completed: 2010-08-27 11:57:51 Report Time: 2010-08-30 13:51:00 Sample Mass: 11.1358 g Warm Free Space: 23.5373 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.692 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4897 cm³ Low Pressure Dose: None

Serial #: 182

Page 20

Dubinin-Astakhov

MP-Method

Cumulative surface area of pores between 18.4787 Å and 18.4787 Å hydraulic radius: 0.0000 m²/g $\,$

Cumulative pore volume of pores between 18.4787 Å and 18.4787 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

129

SKB

TR-14-18

A2.7 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the M sample size fraction 0.5–1 mm

mi micromeritics[®]

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 1	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 2
Sample: STONE4 Operator: Submitter: File: D:\DATA\20	20\EVA\STONE4.SM	۱P		Sample: STONE4 Operator: Submitter: File: D:\DATA\2020	\EVA\STONE4.SM	IP	
Started: 2010-08-18 15:1 Completed: 2010-08-18 20:5 Report Time: 2010-08-30 13:5 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ Me Equilibration Interval: 10 s Automatic Degas: Yes	0:05	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.755 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None		Started: 2010-08-18 15:10: Completed: 2010-08-18 20:57: Report Time: 2010-08-30 13:51:5 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ Measu Equilibration Interval: 10 s Automatic Degas: Yes	05 // 19 A 15 Si ured L	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.755 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None	

	Isoth	nerm Tabular Re	port	
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			01:45	764 07812
0 011974025	9 14410	0.0277	03:35	704.07012
0.030423055	23 23256	0.0277	03.38	
0.040211879	30 70734	0.0348	03:41	
0.049497503	37 79764	0.0364	03:44	
0.059947481	45 77684	0.0379	03.47	
0.000011101	10.11001	0.0010	03:50	763 60443
0.076049645	58.07185	0.0396	03:52	100.00110
0.092483481	70.62080	0.0416	03:54	
0.108946063	83,19170	0.0436	03:56	
0.158191450	120.79569	0.0489	04:00	
0.207743451	158.63382	0.0537	04:03	
0.256814041	196.10434	0.0584	04:05	
0.306216622	233.82837	0.0631	04:08	
0.355537753	271.49020	0.0677	04:10	
0.404903686	309.18625	0.0723	04:14	
0.454212988	346.83905	0.0769	04:17	
0.503520012	384.49011	0.0815	04:19	
0.552804456	422.12393	0.0861	04:22	
0.602108602	459.77280	0.0913	04:24	
0.651493159	497.48306	0.0972	04:27	
0.700757620	535.10162	0.1045	04:29	
0.766437733	585.25525	0.1168	04:31	
0.815667704	622.84747	0.1303	04:34	
0.864837248	660.39355	0.1502	04:36	
0.913619929	697.64423	0.1858	04:38	
0.960353836	733.33044	0.2727	04:41	
0.985310403	/52.38/39	0.4280	04:46	
0.901041212	688.03906	0.2385	04:49	
0.831133664	634.65735	0.1917	04:52	
0.800106707	610.96503	0.1780	04:54	
0.735464329	501.00382	0.1576	04:57	
0.707003900	407 05907	0.1300	05.00	
0.002110210	497.90807	0.1382	05:03	
0.556610162	433.72137	0.1279	05:09	
0.555019102	202 61269	0.1209	05:00	
0.014100409	352.01500	0.0815	05.11	
0.401040223	308 10138	0.0013	05:17	
0.330227474	252 16316	0.0722	05:20	
0.293915663	224 43530	0.0007	05:20	
0 238286649	181 95674	0.0535	05:25	
0 191824845	146 47830	0.0482	05:27	
0 155430547	118 68745	0.0440	05:30	
0.100884269	77.03568	0.0371	05:33	

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 3 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 4 Sample: STONE4 Sample: STONE4 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE4.SMP File: D:\DATA\2020\EVA\STONE4.SMP Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:59 Report Time: 2010-08-30 13:51:55 Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:59 Report Time: 2010-08-30 13:51:55 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Sample Mass: 11.8628 g Sample Mass: 11.8628 g Smoothed Pressures: No Smoothed Pressures: No Cold Free Space: 68.4359 cm³ Warm Free Space: 23.4907 cm³ Measured Cold Free Space: 68.4359 cm³ Warm Free Space: 23.4907 cm³ Measured Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

BET Surface Area Report

0.207743451

0.256814041

0.306216622

0.355537753

mi micromeritics°

BET Surface Area: 0.1979 ± 0.0012 m²/g Slope: 21.570809 ± 0.125629 g/cm³ STP Y-Intercept: 0.424181 ± 0.025954 g/cm3 STP C: 51.852851 Qm: 0.0455 cm3/g STP Correlation Coefficient: 0.9998813 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (p/p°) (cm³/g STP) 0.059947481 0.0379 1.680881 0.076049645 0.0396 2.075915 0.092483481 2.447439 0.0416 0.108946063 0.0436 0.0489 2.805340 0.158191450 3.846216

0.0537

0.0584

0.0631

0.0677

4.882088

5.920165

6.995680

8.150245

Isotherm Log Plot

131

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE4 Operator: Submitter: File: D:\DATA\202	20\EVA\STONE4.SMF			Sample Operato Submitte File	e: STONE4 r: r: e: D:\DATA\2020\EVA\STON	E4.SMP
Started: 2010-08-18 15:11 Completed: 2010-08-18 20:5 Report Time: 2010-08-18 20:5 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ Mea Equilibration Interval: 10 s Automatic Degas: Yes	0:05 Ai 7:59 An 1:55 T ssured Lc	nalysis Adsorptive: N2 alysis Bath Temp.: -195.755 °C nermal Correction: No oothed Pressures: No Cold Free Space: 68.4359 cm ³ w Pressure Dose: None		Started: 20 Completed: 20 Report Time: 20 Sample Mass: 11 Warm Free Space: 23 Equilibration Interval: 10 Automatic Degas: Ye	010-08-18 15:10:05 010-08-18 20:57:59 010-08-30 13:51:55 1.8628 g 3.4907 cm ³ Measured 0 s es	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None

Primary Data 4052- Fewer than two points are selected for this report.

Langmuir Reports

mi micromeritics°

Page 6

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 7	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 8
Sample: STONE4 Operator: Submitter: File: D:\DATA\2	020\EVA\STONE4.SMP			Sample: STONE4 Operator: Submitter: File: D:\DATA\202	0\EVA\STONE	4.SMP	
Started: 2010-08-18 15: Completed: 2010-08-18 20: Report Time: 2010-08-30 13: Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	10:05 Ana 57:59 Anal 51:55 Th Smo easured (Lov	lysis Adsorptive: N2 ysis Bath Temp.: -195.755 °C rrmal Correction: No othed Pressures: No Cold Free Space: 68.4359 cm ³ Pressure Dose: None		Started: 2010-08-18 15:10 Completed: 2010-08-18 20:57 Report Time: 2010-08-30 13:51 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Mea Equilibration Interval: 10 s Automatic Degas: Yes	:05 :59 :55 sured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None	

t-Plot Report

Micropore Volume:	-0.000020 cm³/g STP
Micropore Area:	*
External Surface Area:	0.2323 m²/g
Slope:	0.015020 ± 0.000053 cm ³ /g·Å STP
Y-Intercept:	-0.012685 ± 0.000218 cm3/g STP
Correlation Coefficient:	0.999982
Surface Area Correction Factor:	1.000
Density Conversion Factor:	0.0015468
Total Surface Area (BET):	0.1979 m²/g
Thickness Range:	3.5000 Å to 5.0000 Å
Thickness Equation:	Harkins and Jura
t = [13.99 / (0.034	- log(p/p°))] ^ 0.5

Relative Pressure (p/p°)	Statistical Thickness (Å)	Quantity Adsorbed (cm ³ /g STP)
0.011974025	2.6746	0.0277
0.030423055	3.0035	0.0329
0.040211879	3.1282	0.0348
0.049497503	3.2318	0.0364
0.059947481	3.3371	0.0379
0.076049645	3.4835	0.0396
0.092483481	3.6194	0.0416
0.108946063	3.7463	0.0436
0.158191450	4.0937	0.0489
0.207743451	4.4188	0.0537
0.256814041	4.7335	0.0584
0.306216622	5.0528	0.0631
0.355537753	5.3813	0.0677
0.404903686	5.7263	0.0723
0.454212988	6.0938	0.0769
0.503520012	6.4916	0.0815
0.552804456	6.9286	0.0861
0.602108602	7.4168	0.0913
0.651493159	7.9728	0.0972
0.700757620	8.6165	0.1045
0.766437733	9.6729	0.1168
0.815667704	10.6872	0.1303
0.864837248	12.0054	0.1502
0.913619929	13.8214	0.1858
0.960353836	16.4708	0.2727
0.985310403	18.6026	0.4280

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.

ASAP	2020	V1.05 H	
------	------	---------	--

Unit 1

Sample: STONE4 Operator: Submitter:

File: D:\DATA\2020\EVA\STONE4.SMP

- Started:
 2010-08-18 15:10:05

 Completed:
 2010-08-18 20:57:59

 Report Time:
 2010-08-30 13:51:55

 Sample Mass:
 11.8628 g

 Warm Free Space:
 23.4907 cm³ Measured

 Equilibration Interval:
 10 s

 Automatic Degas:
 Yes
- Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm³ Low Pressure Dose: None

Serial #: 182

Page 9

BJH Adsorption Pore Distribution Report

t = 3.54 [-5/ ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
1333.5 - 502.7	601.3	0.000267	0.000267	0.018	0.018
502.7 - 234.2	279.4	0.000152	0.000419	0.022	0.039
234.2 - 150.5	174.0	0.000060	0.000479	0.014	0.053
150.5 - 110.4	124.0	0.000033	0.000513	0.011	0.064
110.4 - 86.7	95.5	0.000022	0.000535	0.009	0.073
86.7 - 67.0	74.1	0.000020	0.000554	0.011	0.084
67.0 - 56.8	61.0	0.000011	0.000566	0.008	0.091
56.8 - 49.0	52.3	0.000009	0.000575	0.007	0.098
49.0 - 42.8	45.5	0.000008	0.000582	0.007	0.105
42.8 - 37.8	40.0	0.000007	0.000589	0.007	0.112
37.8 - 33.5	35.4	0.000007	0.000597	0.008	0.120
33.5 - 29.9	31.5	0.000007	0.000604	0.010	0.130
29.9 - 26.7	28.1	0.00008	0.000612	0.011	0.141
26.7 - 23.8	25.1	0.00008	0.000620	0.013	0.154
23.8 - 21.2	22.4	0.00008	0.000628	0.015	0.169
21.2 - 18.8	19.9	0.000008	0.000636	0.016	0.185
18.8 - 16.5	17.5	0.00008	0.000644	0.018	0.202

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1
Sample: Operator: Submitter:	STONE4
File:	D:\DATA\2020\EVA\STONE4.SMP
Started: 201	0-08-18 15:10:05 An

Completed: 2010-08-18 20:57:59 Report Time: 2010-08-30 20:57:59 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm³ Low Pressure Dose: None

Serial #: 182

Page 10

BJH Adsorption Cumulative Pore Volume

BJH Adsorption dV/dlog(D) Pore Volume

ASAP 2020 V1.05 H Unit 1	Serial #: 182	Page 13	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 14
Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\EVA\STONE Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:59 Report Time: 2011-08-30 13:51:55 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes	4.SMP Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None		Sample: STONE4 Operator: Submitter: File: D:\DATA\2020 Started: 2010-08-18 15:10: Completed: 2010-08-30 13:51: Report Time: 2010-08-30 13:51: Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measu Equilibration Interval: 10 s Automatic Degas: Yes	NEVA\STONE4.SMP 25 Analysis Bat 25 Thermal Cr 25 Smoothed Pr 2010 Cold Fre 2010 Low Pressu	Isorptive: N2 h Temp.: -195.755 °C prrection: No ressures: No e Space: 68.4359 cm ³ re Dose: None	

BJH Adsorption Cumulative Pore Area

ASAP 2020 V1.05 H L	Jnit 1	Serial #: 182	Page 15	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 16
Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\EVA Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:59 Report Time: 2010-08-30 13:51:55 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes	ANSTONE4.SMP Analysis Adsor Analysis Bath T Thermal Corre Smoothed Press Cold Free S Low Pressure I	ptive: N2 emp.: -195.755 °C ction: No sures: No pace: 68.4359 cm ³ Dose: None		Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\/ Started: 2010-08-18 15:10:0 Completed: 2010-08-30 13:51:5 Report Time: 2010-08-30 13:51:5 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measu Equilibration Interval: 10 s Automatic Degas: Yes	EVA\STONE4.SMP 5 Analysis Adb 9 Analysis Bath 5 Thermal Co Smoothed Pre Cold Free Low Pressur	sorptive: N2 n Temp.: -195.755 °C rrection: No essures: No 9 Space: 68.4359 cm ³ e Dose: None	

500

+ STONE4 0.30 0.25 0.25 0.15 0.15

50

100 Pore Diameter (Å)

BJH Adsorption dA/dlog(D) Pore Area

Horvath-Kawazoe Report Slit Pore Geometry (Original H-K)

mi micromeritics°

Maximum Pore Volume: 0.000662 cm³/g at Relative Pressure: 0.985310403 Median Pore Width: 514.535 Å Relative Pressure Range: 1.1976-02 to 9.8538-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg·cm^4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm³/g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
9.14410	0.011974025	0.0277	10.537	0.0000	0.0000
23.23256	0.030423055	0.0329	12.662	0.0001	0.0000
30.70734	0.040211879	0.0348	13.526	0.0001	0.0000
37.79764	0.049497503	0.0364	14.281	0.0001	0.0000
45.77684	0.059947481	0.0379	15.061	0.0001	0.0000
58.07185	0.076049645	0.0396	16.201	0.0001	0.0000
70.62080	0.092483481	0.0416	17.313	0.0001	0.0000
83.19170	0.108946063	0.0436	18.386	0.0001	0.0000
120.79569	0.158191450	0.0489	21.535	0.0001	0.0000
158.63382	0.207743451	0.0537	24.755	0.0001	0.0000
196.10434	0.256814041	0.0584	28.173	0.0001	0.0000
233.82837	0.306216622	0.0631	31.919	0.0001	0.0000
271.49020	0.355537753	0.0677	36.114	0.0001	0.0000
309.18625	0.404903686	0.0723	40.852	0.0001	0.0000
346.83905	0.454212988	0.0769	46.382	0.0001	0.0000
384.49011	0.503520012	0.0815	52.906	0.0001	0.0000
422.12393	0.552804456	0.0861	60.738	0.0001	0.0000
459.77280	0.602108602	0.0913	70.433	0.0001	0.0000
497.48306	0.651493159	0.0972	82.923	0.0002	0.0000
535.10162	0.700757620	0.1045	99.256	0.0002	0.0000
585.25525	0.766437733	0.1168	131.990	0.0002	0.0000
622.84747	0.815667704	0.1303	171.149	0.0002	0.0000
660.39355	0.864837248	0.1502	239.083	0.0002	0.0000
697.64423	0.913619929	0.1858	384.357	0.0003	0.0000
733.33044	0.960353836	0.2727	849.233	0.0004	0.0000
752.38739	0.985310403	0.4280	2212.870	0.0007	0.0000

0.05-

0.00

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 17	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 18
Sample: STONE4 Operator: Submitter: File: D:\DATA\:	2020\EVA\STONE4.SMP			Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\E	EVA\STONE4.SM	ИР	
Started: 2010-08-18 15 Completed: 2010-08-18 2C Report Time: 2010-08-30 13 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ N Equilibration Interval: 10 s Automatic Degas: Yes	5:10:05 An: 5:57:59 Ana 3:51:55 Th Measured C	alysis Adsorptive: N2 lysis Bath Temp.: -195.755 °C ermal Correction: No othed Pressures: No Cold Free Space: 68.4359 cm ³ v Pressure Dose: None		Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:55 Report Time: 2010-08-30 13:51:55 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm ³ Measur Equilibration Interval: 10 s Automatic Degas: Yes	5 / / 5 S red	Analysis Adsorptive: N2 Inalysis Bath Temp.: -195.755 °C Thermal Correction: No imoothed Pressures: No Cold Free Space: 68.4359 cm ³ Low Pressure Dose: None	

ASAP	2020	V1	05	н
AGAF	2020	V I	.00	

Unit 1

Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\EVA\STONE4.SMP

Started: 2010-08-18 15:10:05 Completed: 2010-08-18 20:57:59 Report Time: 2010-08-18 20:57:59 Sample Mass: 11.8628 g Warm Free Space: 23.4907 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area Single point surface area at $p/p^{\circ} = 0.306216622$: 0.1905 m²/g

BET Surface Area: 0.1979 m²/g

t-Plot External Surface Area: 0.2323 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2022 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2896 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1337.1795 Å at p/p° = 0.985310403: 0.000662 cm³/g

t-Plot micropore volume: -0.000020 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000644 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000366 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 133.7969 Å

BJH Adsorption average pore diameter (4V/A): 127.409 Å

BJH Desorption average pore diameter (4V/A): 50.527 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.985310403: 0.000662 cm³/g

Median pore width: 514.5350 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.1859 m²/g

Limiting micropore volume: 0.000100 cm3/g

mi micromeritics[®]

ASAP 2020 V1.05 H

Unit 1

Page 20

Sample: STONE4 Operator: Submitter: File: D:\DATA\2020\EVA\STONE4.SMP

 Started:
 2010-08-18
 15:10:05

 Completed:
 2010-08-18
 20:57:59

 Report Time:
 2010-08-30
 13:51:55

 Sample Mass:
 11.8628 g
 g

 Warm Free Space:
 23.4907 cm³ Measured
 Equilibration Interval:
 10 s

 Automatic Degas:
 Yes
 Yes
 Yes
 Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.755 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4359 cm³ Low Pressure Dose: None

Serial #: 182

Dubinin-Astakhov

MP-Method

Cumulative surface area of pores between 18.6026 Å and 18.6026 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.6026 Å and 18.6026 Å hydraulic radius: $0.000000 \text{ cm}^3/\text{g}$

Average pore hydraulic radius (V/A): 0.0000 Å

SKB

139

A2.8 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the M sample size fraction 0.5–1 mm (duplicate)

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 1	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 2
Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2	2020\EVA\AG0.5-1			Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\202	20\EVA\AG0.5-1		
Started: 2010-10-27 16 Completed: 2010-10-27 22 Report Time: 2010-11-05 10 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:44:56 Ana :42:00 Ana :51:55 Th feasured (Lov	alysis Adsorptive: N2 ysis Bath Temp.: -195.730 °C ermal Correction: No othed Pressures: No Jold Free Space: 67.4384 cm ³ <i>y</i> Pressure Dose: None		Started: 2010-10-27 16:44 Completed: 2010-10-27 22:42 Report Time: 2010-11-05 10:51 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ Mea Equilibration Interval: 10 s Automatic Degas: Yes	4:56 2:00 1:55 Isured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None	

	Isoth	nerm Tabular Re	port	
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
			03:36	766.75122
0.011935530	9.15118	0.0296	03:39	
0.030271051	23,20834	0.0350	03:42	
0.040285258	30.88472	0.0369	03:45	
0.049397316	37.86884	0.0385	03:48	
0.059670285	45.74294	0.0401	03:50	
0.076080164	58.32012	0.0423	03:53	
0.092518535	70.91805	0.0444	03:56	
0.108967137	83.52393	0.0462	03:58	
0.158357882	121.37691	0.0509	04:01	
0.207855135	159.30589	0.0552	04:05	
0.257045524	197.00102	0.0593	04:07	
0.306452934	234.86028	0.0633	04:09	
0.355809329	272.67426	0.0672	04:12	
0.405069496	310.41571	0.0711	04:14	
0.454493075	348.27512	0.0751	04:17	
0.503921014	386.13455	0.0791	04:20	
0.553145409	423.83472	0.0834	04:23	
0.602638043	461.74384	0.0884	04:25	
0.651885634	499.455/2	0.0941	04:28	
0.701184275	537.21124	0.1016	04:30	
0.766970197	007.007.04	0.1147	04.33	
0.010000190	623.30220	0.1279	04.30	
0.0007/00002	700 50934	0.1470	04:40	
0.014403033	736 35100	0.1003	04:43	
0.986239149	755 39642	0.2020	04:49	
0.902094236	690 92664	0.2295	04:51	
0.832386649	637 49945	0 1847	04:55	
0.801096456	613.50842	0.1721	04:58	
0.736610404	564.09802	0.1530	05:01	
0.708667168	542.67529	0.1461	05:04	
0.653354300	500.28925	0.1331	05:08	
0.597588139	457.57440	0.1222	05:10	
0.556438958	426.04776	0.1151	05:13	
0.514875947	394.20703	0.1088	05:16	
0.462019851	353.72308	0.0803	05:19	
0.404018003	309.30325	0.0717	05:22	
0.330910025	253.32304	0.0643	05:25	
0.294330605	225.31038	0.0606	05:28	
0.238763850	182.76598	0.0555	05:31	
0.211433353	161.83829	0.0528	05:34	
0.155732496	119.19948	0.0475	05:36	
			05:39	765.37823
0 101172606	77 43531	0.0410	05.42	

mi micromeritics[®]

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 3	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 4
Sample: AG0.5-1 Operator: Submitter: File: D:\DATA	\2020\EVA\AG0.5-1			Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2	2020\EVA\AG0.5-1		
Started: 2010-10-27 1 Completed: 2010-10-27 2 Report Time: 2010-11-05 1 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	16:44:56 Anal 22:42:00 Analy 10:51:55 The Smoo Measured C Low	ysis Adsorptive: N2 sis Bath Temp.: -195.730 °C mal Correction: No thed Pressures: No old Free Space: 67.4384 cm ³ Pressure Dose: None		Started: 2010-10-27 16 Completed: 2010-10-27 22 Report Time: 2010-11-05 10 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:44:56 :42:00 :51:55 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None	

Isotherm Log Plot -+- AG0.5-1 - Adsorption -O- AG0.5-1 - Desorption 0.40-0.35-0.30-(cm³/g STP) Adsorbed 0.20tity Quar 0.15-0.10-0.05-0.00-0.01 0.05 0.1 0.5 Relative Pressure (p/p °)

BET Surface Area Report

BET Surface Area Report BET Surface Area: 0.1949 ± 0.0019 m²/g Slope: 22.109460 ± 0.217455 g/cm³ STP Y-Intercept: 0.230832 ± 0.044955 g/cm³ STP C: 96.781610 Qm: 0.0448 cm³g STP Correlation Coefficient: 0.9996616 Molecular Cross-Sectional Area: 0.1620 nm² Relative Pressure Quantity Adsorbed 1/[Q(p%p - 1)] (p/p°) (cm³/g STP) 0.059670285 0.0401 1.582060 0.076080164 0.0423 1.946350 0.092518535 0.108967137 0.158357882 2.298468 2.646800 3.699795 0.0444 0.0462 0.0509 0.207855135 0.0552 4.756084 0.257045524 0.0593 5.832021 0.306452934 0.0633 6.977225 0.355809329 0.0672 8.216965

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2	2020\EVA\AG0.5-1			Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2020\EV	A\AG0.5-1	
Started: 2010-10-27 16 Completed: 2010-10-27 22 Report Time: 2010-11-05 10 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	::44:56 ::42:00 A ::51:55 S Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None		Started: 2010-10-27 16:44:56 Completed: 2010-10-27 22:42:00 Report Time: 2010-11-05 20:51:55 Sample Mass: 12:4026 g Warm Free Space: 22:9376 cm ³ Measured Equilibration Interval: 10 s Automatic Degas: Yes	1	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None

Langmuir Reports

mi micromeritics[®]

Page 6

Primary Data 4052- Fewer than two points are selected for this report.

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 7	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 8
Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2	2020\EVA\AG0.5-1			Sample: AG0.5-1 Operator: Submitter: File: D:/DATA\	2020\EVA\AG0.5-1		
Started: 2010-10-27 16; Completed: 2010-10-27 22; Report Time: 2010-11-05 10; Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:44:56 :42:00 :51:55 leasured	Analysis Adsorptive: N2 Analysis Bath Temp: - 195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None		Started: 2010-10-27 16 Completed: 2010-10-27 22 Report Time: 2010-11-05 10 Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	6:44:56 2:42:00 0:51:55 Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None	

Micropore Vo Micropore External Surface Y-Int Correlation Coeff Surface Area Correction F Density Conversion F Total Surface Area (Thickness Eq. t = [13.99 / 0	olume: -0.000006 Area: * Area: 0.2070 m² Slope: 0.013379 grcept: -0.003983 icient: 0.999944 actor: 1.000 actor: 0.0015466 BET): 0.1949 m² Lange: 3.5000 Å ti lation: Harkins ar (0.034 - log(p/p°)	cm ³ /g STP ^{/g} ± 0.000081 cm ³ /g·Å STF ± 0.000338 cm ³ /g STP ³ ^{/g} o 5.0000 Å od Jura)] ^ 0.5
Relative Pressure (p/p°)	Statistical Thickness (Å)	Quantity Adsorbed (cm ³ /g STP)
0.011935530 0.030271051 0.040285258 0.049397316 0.059670285 0.076080164 0.092518535 0.108967137 0.158357825 0.257045524 0.306452934 0.355809329 0.405069496 0.454493075 0.503921014 0.553145409 0.602638043 0.651885634 0.701184275 0.766970197 0.816600190 0.86550022	2.6736 3.0014 3.1291 3.2308 3.345 3.4837 3.7465 4.0948 4.4196 4.7350 5.0543 5.3831 5.7275 6.0960 6.4950 6.4950 6.4950 6.4951 7.74223 7.9775 8.6226 9.6826 10.7089	0.0296 0.0350 0.0369 0.0385 0.0401 0.0423 0.0444 0.0462 0.0509 0.0552 0.0593 0.0633 0.0672 0.0711 0.0751 0.0791 0.0834 0.0884 0.0884 0.0884 0.0941 0.1147 0.1279
0.914459095 0.961290842 0.986239149	13.8592 16.5389 18.6975	0.1805 0.2623 0.4109

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.

mi micromeritics°

t-Plot Report

1	
4	
S	

Unit 1

Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\AG0.5-1

Started: 2010-10-27 16:44:56 Completed: 2010-10-27 22:42:00 Report Time: 2010-11-05 10:51:55 Sample Mass: 12:4026 g Warm Free Space: 22:9376 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp: - 195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm³ Low Pressure Dose: None

Serial #: 182

Page 9

Alpha-S Method

Primary Data At least two fitted data points are needed for alpha-S calculations.

mi micromeritics[®]

ASAP 2020 V1	.05 H	Unit 1	Seri	al #: 182	Page 10
C	Sample: AG0.5-1 Operator:				
Si	ubmitter:				
	File: D:\DATA\2020	EVA\AG0.5-1			
Star Comple Report Ti Sample M Warm Free Sp Equilibration Inter Automatic Dep	ted: 2010-10-27 16:44: ted: 2010-10-27 22:42: me: 2010-11-05 10:51: ass: 12.4026 g ace: 22.9376 cm ³ Meas rval: 10 s gas: Yes	56 00 A 55 S ured	Analysis Adsorptive: Analysis Bath Temp.: Thermal Correction: moothed Pressures: Cold Free Space: Low Pressure Dose:	N2 -195.730 °C No No 67.4384 cm ³ None	

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

	Pore Diameter Range (Å)	Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
	1422.5 - 514.9	615.1	0.000256	0.000256	0.017	0.017
	514.9 - 236.8	282.5	0.000143	0.000399	0.020	0.037
	236.8 - 151.9	175.6	0.000057	0.000455	0.013	0.050
	151.9 - 111.3	125.0	0.000032	0.000487	0.010	0.060
	111.3 - 87.3	96.2	0.000022	0.000509	0.009	0.069
	87.3 - 67.4	74.6	0.000022	0.000531	0.012	0.081
	67.4 - 57.2	61.4	0.000012	0.000544	0.008	0.089
	57.2 - 49.4	52.7	0.000009	0.000553	0.007	0.096
	49.4 - 43.2	45.9	0.000007	0.000560	0.006	0.102
	43.2 - 38.2	40.3	0.000006	0.000566	0.006	0.109
	38.2 - 33.9	35.7	0.000006	0.000572	0.006	0.115
	33.9 - 30.2	31.8	0.000006	0.000579	0.008	0.123
	30.2 - 27.0	28.4	0.000006	0.000585	0.009	0.132
	27.0 - 24.2	25.4	0.000006	0.000591	0.010	0.142
	24.2 - 21.6	22.7	0.000007	0.000598	0.012	0.153
	21.6 - 19.2	20.2	0.000007	0.000605	0.014	0.167
	19.2 - 16.8	17.8	0.000007	0.000612	0.015	0.183

BJH Adsorption dV/dD Pore Volume

BJH Adsorption dA/dlog(D) Pore Area

ASA	AP 2020 V1.05 H	Unit 1
	Sample: AG0.5-1	

Operator: Submitter: File: D:\DATA\2020\EVA\AG0.5-1

Started: 2010-10-27 16:44:56 Completed: 2010-10-27 22:42:00 Report Time: 2010-11-05 10:51:55 Sample Mass: 12:4026 g Warm Free Space: 22:9376 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm³ Low Pressure Dose: None

Serial #: 182

Page 17

Horvath-Kawazoe Report Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000636 cm³/g at Relative Pressure: 0.986239149 Median Pore Width: 510.567 Å Relative Pressure Range: 1.194e-02 to 9.862e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg-cm⁴4

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
9.15118	0.011935530	0.0296	10.528	0.0000	0.0000
23,20834	0.030271051	0.0350	12.645	0.0001	0.0000
30.88472	0.040285258	0.0369	13.533	0.0001	0.0000
37.86884	0.049397316	0.0385	14.268	0.0001	0.0000
45.74294	0.059670285	0.0401	15.044	0.0001	0.0000
58.32012	0.076080164	0.0423	16.201	0.0001	0.0000
70.91805	0.092518535	0.0444	17.310	0.0001	0.0000
83.52393	0.108967137	0.0462	18.382	0.0001	0.0000
121.37691	0.158357882	0.0509	21.531	0.0001	0.0000
159.30589	0.207855135	0.0552	24.750	0.0001	0.0000
197.00102	0.257045524	0.0593	28.168	0.0001	0.0000
234.86028	0.306452934	0.0633	31.944	0.0001	0.0000
272.67426	0.355809329	0.0672	36.142	0.0001	0.0000
310.41571	0.405069496	0.0711	40.883	0.0001	0.0000
348.27512	0.454493075	0.0751	46.418	0.0001	0.0000
386.13455	0.503921014	0.0791	52.946	0.0001	0.0000
423.83472	0.553145409	0.0834	60.784	0.0001	0.0000
461.74384	0.602638043	0.0884	70.549	0.0001	0.0000
499.45572	0.651885634	0.0941	83.059	0.0001	0.0000
537.21124	0.701184275	0.1016	99.418	0.0002	0.0000
587.58734	0.766970197	0.1147	132.205	0.0002	0.0000
625.58228	0.816600190	0.1279	172.778	0.0002	0.0000
663.23029	0.865769032	0.1470	241.348	0.0002	0.0000
700.50934	0.914459095	0.1805	387.980	0.0003	0.0000
736.35199	0.961290842	0.2623	857.204	0.0004	0.0000
755.39642	0.986239149	0.4109	2319.619	0.0006	0.0000

mi micromeritics[®]

ASAP 2020 V1.05	H Unit 1	Serial #: 182	Page 18
Sam Opera Submi I	ple: AG0.5-1 ator: tter: File: D:\DATA\2020\EVA\AG0.5	j-1	
Started: Completed:	2010-10-27 16:44:56 2010-10-27 22:42:00 2010-11-25 10:51:55	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C	
Sample Mass:	12.4026 g	Smoothed Pressures: No	
Warm Free Space: Equilibration Interval:	22.9376 cm ³ Measured 10 s	Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None	

Automatic Degas: Yes

Horvath-Kawazoe Cumulative Pore Volume Plot

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 19	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 20
Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2	2020\EVA\AG0.5-1			Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2020	\EVA\AG0.5-1		
Started: 2010-10-27 16; Completed: 2010-10-27 22; Report Time: 2010-11-05 10; Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	:44:56 A :42:00 A :51:55 Si leasured I	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.730 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None		Started: 2010-10-27 16:44: Completed: 2010-10-27 22:42: Report Time: 2010-11-05 10:51: Sample Mass: 12.4026 g Warm Free Space: 22.9376 cm ³ Mease Equilibration Interval: 10 s Automatic Degas: Yes	56 00 55 ured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm ³ Low Pressure Dose: None	

Summary Report

mi micromeritics°

Surface Area Single point surface area at p/p° = 0.306452934: 0.1912 m²/g

BET Surface Area: 0.1949 m²/g

t-Plot External Surface Area: 0.2070 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.1828 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.2713 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1425.8429 Å at p/p° = 0.986239149: 0.000636 cm³/g

t-Plot micropore volume: -0.000006 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000612 cm3/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000355 cm3/g

Pore Size

Adsorption average pore width (4V/A by BET): 130.4547 Å

BJH Adsorption average pore diameter (4V/A): 133.845 Å

BJH Desorption average pore diameter (4V/A): 52.315 Å

Horvath-Kawazoe

Maximum pore volume at $p/p^{\circ} = 0.986239149$: 0.000636 cm³/g

Median pore width: 510.5666 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.1951 m²/g

Limiting micropore volume: 0.000103 cm3/g

ASAP 2020 V1.05 H

Unit 1

Serial #: 182 Page 21

Sample: AG0.5-1 Operator: Submitter: File: D:\DATA\2020\EVA\AG0.5-1

Started: 2010-10-27 16:44:56 Completed: 2010-10-27 22:42:00 Report Time: 2010-11-05 10:51:55 Sample Mass: 12.4026 g Warm Free Space: 22:9376 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.730 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 67.4384 cm³ Low Pressure Dose: None

Dubinin-Astakhov

MP-Method

Cumulative surface area of pores between 18.6975 Å and 18.6975 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.6975 Å and 18.6975 Å hydraulic radius: 0.000000 cm3/g

Average pore hydraulic radius (V/A): 0.0000 Å

A2.9 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the M sample size fraction 1–2 mm

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 1 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 2 Sample: STONE2 Sample: STONE2 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Completed: 2010-07-01 14:50:49 Analysis Bath Temp.: -195.658 °C Analysis Bath Temp.: -195.658 °C Report Time: 2010-08-30 13:54:09 Thermal Correction: No Thermal Correction: No Sample Mass: 12.5394 g Sample Mass: 12.5394 g Smoothed Pressures: No Smoothed Pressures: No Warm Free Space: 23.3411 cm³ Measured Cold Free Space: 68.4296 cm³ Warm Free Space: 23.3411 cm³ Measured Cold Free Space: 68.4296 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Relative Pressure (p/p°)	Absolute Pressure	Quantity Adsorbed	Elapsed Time (h:min)	Saturation Pressure
	(mmHg)	(cm³/g STP)		(mmHg)
			01.45	770 77069
0.011369676	8 78445	0.0346	01.45	112.11300
0.030277137	23 39250	0.0340	02:40	
0.030217137	20.03200	0.0402	02:45	
0.040010971	38 27844	0.0423	02.40	
0.0596/9726	46 08464	0.0440	02:43	
0.076072967	58 77240	0.0400	02:55	
0.092651437	71 57981	0.0501	02:58	
0 109018585	84 22369	0.0520	03:01	
0 158130380	122 16431	0.0570	03:04	
0 207673332	160 43777	0.0617	03:06	
0.257171288	198.67522	0.0662	03:09	
0.306382392	236,69023	0.0706	03:12	
0.355669081	274,76282	0.0750	03:15	
0.404918257	312,80560	0.0794	03:18	
0.454356458	350,99359	0.0837	03:21	
0.503683300	389.09613	0.0880	03:23	
0.553001435	427,18832	0.0924	03:27	
0.602377537	465.32755	0.0971	03:29	
0.651691297	503.41806	0.1027	03:31	
0.701084968	541.56781	0.1094	03:34	
0.766673213	592.22644	0.1209	03:37	
0.816066226	630.37390	0.1334	03:40	
0.865313465	668.41034	0.1520	03:42	
0.914006406	706.01807	0.1845	03:44	
			03:46	772.43768
0.960616940	742.01672	0.2669	03:49	
0.985459028	761.20569	0.4150	03:54	
0.900310763	695.43396	0.2422	03:57	
0.831075035	641.95367	0.2002	04:01	
0.800209219	618.11176	0.1875	04:03	
0.735255225	567.93884	0.1682	04:06	
0.707841948	546.76379	0.1614	04:08	
0.652009277	503.63654	0.1500	04:10	
0.596866262	461.04199	0.1404	04:13	
0.555589853	429.15854	0.1339	04:15	
0.514157150	397.15436	0.1276	04:18	
0.462022047	356.88324	0.0918	04:21	
0.403049231	311.33041	0.0819	04:25	
0.330418607	255.22778	0.0736	04:27	
0.293858364	226.98727	0.0693	04:30	
0.238206622	183.99977	0.0635	04:33	
0.211131870	163.08621	0.0604	04:35	
0.155470092	120.09096	0.0545	04:38	
0.100709959	77.79217	0.0477	04:41	

mi micromeritics[®]

Jaatharm Tahular Danart

mi micromeritics[®]

Page 3

ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE: Operator: Submitter: File: D:\DAT4	2 A\2020\EVA\STONE2.:	SMP
Started: 2010-07-01 (Completed: 2010-07-01 Report Time: 2010-08-30 Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	9:54:31 14:50:49 13:54:09 Measured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm ³ Low Pressure Dose: None

mi micromeritics°

Unit 1

Sample: Operator:	STONE2
Submitter:	
File:	D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Completed: 2010-07-01 3:34:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12:5394 g Warm Free Space: 23:3411 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 4

BET Surface Area Report

BET Surface Area: 0.2167 ± 0.0020 m²/g Slope: 19.908977 ± 0.182248 g/cm³ STP Y-Intercept: 0.175710 ± 0.037667 g/cm³ STP C: 114.305845 Qm: 0.0498 cm³/g STP Correlation Coefficient: 0.9997068 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (cm³/g STP) (p/p°) 0.059649726 0.0456 1.392122 0.076072967 0.0479 1.717278 0.092651437 0.0501 2.039153 0.109018585 0.0520 2.352795 0.158130380 0.207673332 0.257171288 0.0570 0.0617 3.293853 4.248638

0.0662

0.0706

0.0750

0.306382392

0.355669081

5.229663

6.252692

7.355902

ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 5 ASAP 2020 V1.05 H Unit 1 Serial #: 182 Page 6 Sample: STONE2 Sample: STONE2 Operator: Operator: Submitter: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Started: 2010-07-01 9:54:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Sample Mass: 12.5394 g Smoothed Pressures: No Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm³ Measured Smoothed Pressures: No Warm Free Space: 23.3411 cm³ Measured Cold Free Space: 68.4296 cm³ Cold Free Space: 68.4296 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Automatic Degas: Yes

Langmuir Reports Primary Data 4052- Fewer than two points are selected for this report.

Unit 1

ASAP 2020 V 1.03 H	ASAP	2020	V1.	05 I	н
--------------------	------	------	-----	------	---

Sample: STONE2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Completed: 2010-07-01 9:34:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12:5394 g Warm Free Space: 23:3411 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 7

mi micromeritics°

Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Completed: 2010-07-01 3:34:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12:5394 g Warm Free Space: 23:3411 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

Unit 1

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 8

+

9 10 11 12 13 14 15 16 17 18

 $\frac{1}{1}$ 2 3

4 5

------6 7 8

8

Thickness (Å)

0.00-

ó

ASAP 2020 V1.05 H

Sample: STONE2

t-Plot Report Micropore Volume: -0.000003 cm3/g STP Micropore Area: * External Surface Area: 0.2233 m²/g Slope: 0.014438 ± 0.000070 cm³/g Å STP Y-Intercept: -0.002130 ± 0.000288 cm²/g STP Correlation Coefficient: 0.999965 Surface Area Correction Factor: 1.000 Density Conversion Factor: 0.0015468 Total Surface Area (BET): 0.2167 m²/g Thickness Range: 3.5000 Å to 5.0000 Å Thickness Equation: Harkins and Jura t = [13.99 / (0.034 - log(p/p°))] ^ 0.5

Relative Pressure (p/p°)	Statistical Thickness (Å)	Quantity Adsorbed (cm ³ /g STP)
0.011369676	2.6593	0.0346
0.030277137	3.0015	0.0402
0.040018971	3.1259	0.0423
0.049545227	3.2324	0.0440
0.059649726	3.3343	0.0456
0.076072967	3.4837	0.0479
0.092651437	3.6207	0.0501
0.109018585	3.7469	0.0520
0.158130380	4.0933	0.0570
0.207673332	4.4184	0.0617
0.257171288	4.7358	0.0662
0.306382392	5.0539	0.0706
0.355669081	5.3822	0.0750
0.404918257	5.7264	0.0794
0.454356458	6.0949	0.0837
0.503683300	6.4930	0.0880
0.553001435	6.9304	0.0924
0.602377537	7.4196	0.0971
0.651691297	7.9752	0.1027
0.701084968	8.6211	0.1094
0.766673213	9.6772	0.1209
0.816066226	10.6965	0.1334
0.865313465	12.0202	0.1520
0.914006406	13.8387	0.1845
0.960616940	16.4899	0.2669
0.985459028	18.6177	0.4150

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP			Sample: STONE2 Operator: Submitter: File: D:\DATA!2020\EVA\STONE2.SMP			
Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49 Analysis Bath Temp.: -195.658 °C Report Time: 2010-08-30 13:54:09 Thermal Correction: No Sample Mass: 12.5394 g Smoothed Pressures: No Warm Free Space: 23.3411 cm³ Measured Cold Free Space: 68.4296 cm³ Equilibration Interval: 10 s Low Pressure Dose: None Automatic Degas: Yes Yes			Started: 2010-07-01 9:54:3 Completed: 2010-07-01 14:50: Report Time: 2010-08-30 13:54: Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm³ Meas Equilibration Interval: 10 s Automatic Degas: Yes	1 49 09 ured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm Low Pressure Dose: None	

~

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333

Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00 l.e.e ~

Range (Å)	Diameter (Å)	Pore Volume (cm ³ /g)	Pore Volume (cm ³ /g)	Pore Area (m²/g)	Pore Area (m²/g)
1347.7 - 506.8	606.0	0.000256	0.000256	0.017	0.017
506.8 - 236.1	281.5	0.000144	0.000400	0.021	0.037
236.1 - 151.9	175.5	0.000055	0.000455	0.013	0.050
151.9 - 111.5	125.1	0.000031	0.000487	0.010	0.060
111.5 - 87.7	96.5	0.000021	0.000507	0.009	0.069
87.7 - 67.9	75.0	0.000019	0.000526	0.010	0.079
67.9 - 57.7	61.9	0.000011	0.000537	0.007	0.086
57.7 - 49.9	53.2	0.000009	0.000546	0.007	0.092
49.9 - 43.7	46.3	0.000007	0.000553	0.006	0.098
43.7 - 38.6	40.8	0.000007	0.000560	0.007	0.105
38.6 - 34.4	36.2	0.000007	0.000567	0.008	0.113
34.4 - 30.7	32.3	0.000008	0.000575	0.009	0.122
30.7 - 27.5	28.9	0.00008	0.000583	0.011	0.134
27.5 - 24.7	25.9	0.00008	0.000591	0.013	0.147
24.7 - 22.1	23.2	0.00008	0.000599	0.015	0.161
22.1 - 19.7	20.7	0.00008	0.000608	0.016	0.177
19.7 - 17.3	18.3	0.00008	0.000616	0.018	0.196

mi micromeritics°

Page 10

BJH Adsorption Cumulative Pore Volume

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 11	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 12
Sample: STONE2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP			Sample: STONE2 Operator: Submitter: File: D:\DATA!2020\EVA\STONE2.SMP				
Started:2010-07-019:54:31Analysis Adsorptive:N2Completed:2010-07-0114:50:49Analysis Bath Temp.:-195.658 °CReport Time:2010-08-3013:54:09Thermal Correction:NoSample Mass:12:5394 gSmoothed Pressures:NoWarm Free Space:23:3411 cm³ MeasuredCold Free Space:68.4296 cm³Equilibration Interval:10 sLow Pressure Dose:NoneAutomatic Degas:YesYesYes			Started: 2010-07-01 9:54 Completed: 2010-07-01 14:5 Report Time: 2010-08-30 13:5 Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm³ Me Equilibration Interval: 10 s Automatic Degas: Yes	:31 0:49 4:09 asured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm ³ Low Pressure Dose: None		

BJH Adsorption dV/dlog(D) Pore Volume

BJH Adsorption dA/dD Pore Area

Unit 1

ASAP	2020	V1	.05 H	ł
/ (0/ (2020		.001	

Sample: STONE2 Operator: Submitter:

File: D:\DATA\2020\EVA\STONE2.SMP

 Started:
 2010-07-01 9:54:31

 Completed:
 2010-07-01 14:50:49

 Report Time:
 2010-08-30 13:54:09

 Sample Mass:
 12.5394 g

 Warm Free Space:
 23.3411 cm³ Measured

 Equilibration Interval:
 10 s

 Automatic Degas:
 Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 15

Pore Diameter (Å)

mi micromeritics[®]

Unit 1

ASAP 2020 V1.05 H

Sample: STONE2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 16

Horvath-Kawazoe Report

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000642 cm³/g at Relative Pressure: 0.985459028 Median Pore Width: 497.903 Å Relative Pressure Range: 1.137e-02 to 9.855e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg-cm^44

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm³/g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
8,78445	0.011369676	0.0346	10.432	0.0001	0.0000
23.39250	0.030277137	0.0402	12.635	0.0001	0.0000
30,91883	0.040018971	0.0423	13,497	0.0001	0.0000
38.27844	0.049545227	0.0440	14.269	0.0001	0.0000
46.08464	0.059649726	0.0456	15.031	0.0001	0.0000
58.77240	0.076072967	0.0479	16.187	0.0001	0.0000
71.57981	0.092651437	0.0501	17.303	0.0001	0.0000
84.22369	0.109018585	0.0520	18.360	0.0001	0.0000
122.16431	0.158130380	0.0570	21.506	0.0001	0.0000
160.43777	0.207673332	0.0617	24.722	0.0001	0.0000
198.67522	0.257171288	0.0662	28.164	0.0001	0.0000
236.69023	0.306382392	0.0706	31.909	0.0001	0.0000
274.76282	0.355669081	0.0750	36.103	0.0001	0.0000
312.80560	0.404918257	0.0794	40.839	0.0001	0.0000
350.99359	0.454356458	0.0837	46.324	0.0001	0.0000
389.09613	0.503683300	0.0880	52.840	0.0001	0.0000
427.18832	0.553001435	0.0924	60.719	0.0001	0.0000
465.32755	0.602377537	0.0971	70.411	0.0002	0.0000
503.41806	0.651691297	0.1027	82.897	0.0002	0.0000
541.56781	0.701084968	0.1094	99.225	0.0002	0.0000
592.22644	0.766673213	0.1209	131.950	0.0002	0.0000
630.37390	0.816066226	0.1334	171.097	0.0002	0.0000
668.41034	0.865313465	0.1520	240.752	0.0002	0.0000
706.01807	0.914006406	0.1845	387.027	0.0003	0.0000
742.01672	0.960616940	0.2669	855.108	0.0004	0.0000
761.20569	0.985459028	0.4150	2228.144	0.0006	0.0000

ASAP 2020 V1.05 H

Sample: STONE2 Operator:

Submitter: File: D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12.5394 g Warm Free Space: 23.3411 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp: - 195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area Single point surface area at $p/p^\circ = 0.306382392$: 0.2133 m²/g

Unit 1

BET Surface Area: 0.2167 m²/g

t-Plot External Surface Area: 0.2233 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.1956 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.3062 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1350.6100 Å at p/p° = 0.985459028: 0.000642 cm³/g

t-Plot micropore volume: -0.000003 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000616 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000377 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 118.4574 Å

BJH Adsorption average pore diameter (4V/A): 126.012 Å

BJH Desorption average pore diameter (4V/A): 49.201 Å

Horvath-Kawazoe

Maximum pore volume at p/p° = 0.985459028: 0.000642 cm³/g

Median pore width: 497.9027 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

Dubinin-Astakhov

Micropore surface area: 0.2171 m²/g

Limiting micropore volume: 0.000110 cm3/g

mi micromeritics°

ASAP 2020 V1.05 H

Unit 1

Serial #: 182

Page 20

Sample: STONE2 Operator: Submitter: File: D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Completed: 2010-07-01 14:50:49 Report Time: 2010-08-30 13:54:09 Sample Mass: 12:5394 g Warm Free Space: 23:3411 Cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.658 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.4296 cm³ Low Pressure Dose: None

Dubinin-Astakhov

MP-Method

Cumulative surface area of pores between 18.6177 Å and 18.6177 Å hydraulic radius: 0.0000 m²/g $\,$

Cumulative pore volume of pores between 18.6177 Å and 18.6177 Å hydraulic radius: 0.000000 $\rm cm^3/g$

Average pore hydraulic radius (V/A): 0.0000 Å

A2.10 N₂ adsorption isotherms (as referenced to in Section 3.2.1) for the M sample size fraction 2–3 mm

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 1	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 2
Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP				Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP			
Started: 2010-08-26 9 Completed: 2010-08-26 1 Report Time: 2010-08-30 1 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	13:17 Anal 3:13:33 Analy 3:51:20 The Smoo Measured C Low	ysis Adsorptive: N2 sis Bath Temp.: -195.741 °C rmal Correction: No thed Pressures: No old Free Space: 68.7163 cm ³ Pressure Dose: None		Started: 2010-08-26 9: Completed: 2010-08-26 13 Report Time: 2010-08-26 13 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	13:17 :13:33 :51:20 leasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm ³ Low Pressure Dose: None	

Isotherm Tabular Report								
Relative Pressure (p/p°)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm ³ /g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)				
			01.02	765 / 6100				
0.011/77207	8 78236	0.0320	01.02	703.40100				
0.030256591	23 15161	0.0320	01:40					
0.040340685	30 86697	0.0374	01:52					
0.049682604	38 01411	0.0385	01:55					
0.059682726	45 66487	0.0393	01:57					
0.076073161	58,20425	0.0403	02:00					
0.092731039	70,94765	0.0412	02:03					
0.109173945	83,52663	0.0420	02:05					
0.158510260	121,26894	0.0433	02:09					
0.207824997	158,99486	0.0442	02:11					
0.257162967	196,73579	0.0450	02:14					
0.306512921	234.48596	0.0458	02:16					
0.355829628	272.20734	0.0465	02:19					
0.405137713	309.92032	0.0471	02:22					
0.454504756	347.67661	0.0476	02:25					
0.503796744	385.37674	0.0479	02:27					
0.553162272	423.12857	0.0486	02:30					
0.602646091	460.96909	0.0495	02:33					
0.651839070	498.58929	0.0510	02:35					
0.701291295	536.40234	0.0536	02:38					
0.767101640	586.72992	0.0585	02:40					
0.816132280	624.21692	0.0664	02:43					
0.865799752	662.19446	0.0797	02:45					
0.914554978	699.47308	0.1053	02:47					
0.961349310	735.23914	0.1728	02:51					
0.986796310	754.67102	0.2980	02:56					
0.898330916	686.99908	0.1561	02:59					
0.830531294	635.13416	0.1263	03:02					
			03:04	764.72021				
0.800629666	612.25769	0.1169	03:07					
0.734738661	561.86951	0.1049	03:09					
0.688899015	526.81500	0.0989	03:12					
0.652146757	498.70981	0.0947	03:15					
0.596779030	456.36899	0.0899	03:18					
0.555585539	424.86749	0.0869	03:20					
0.514276358	393.27753	0.0841	03:24					
0.462019450	303.31001	0.0544	03:27					
0.403022333	252 00060	0.0469	03.30					
0.329002041	202.09909	0.0459	03.32					
0.214314029	209.01937	0.0438	03.35					
0.219108862	1/6 / 2029	0.0419	03:37					
0.131400040	10/ 20260	0.0405	03.40					
0.130300100	65 60750	0.0365	03:45					
0.000010010	00.00100	0.0000	00.40					

Page 3

ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE6 Operator: Submitter: File: D:\DATA\2020	NEVA\STONE6.SMP	
Started: 2010-08-26 9:13:1 Completed: 2010-08-26 13:13: Report Time: 2010-08-30 13:51: Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Meas Equilibration Interval: 10 s Automatic Degas: Yes	7 Analys 33 Analysis 20 Therm Smoothe ured Colo Low Pr	is Adsorptive: N2 Bath Temp.: -195.741 °C al Correction: No ed Pressures: No Free Space: 68.7163 cm ³ ressure Dose: None

mi micromeritics[®]

Unit 1

Sample:	STONE6
Operator:	
Submitter:	
File:	D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 4

BET Surface Area Report

BET Surface Area: 0.1309 ± 0.0044 m²/g Slope: 33.986334 ± 1.099654 g/cm³ STP Y-Intercept: -0.735076 ± 0.227404 g/cm³ STP C: -45.235115 Om: 0.0301 cm³/g STP Correlation Coefficient: 0.9963559 Molecular Cross-Sectional Area: 0.1620 nm² Relative Quantity 1/[Q(p°/p - 1)] Pressure Adsorbed (p/p°) (cm³/g STP) 0.059682726 0.0393 1.616728

0.076073161	0.0403	2.040584
0.092731039	0.0412	2.480224
0.109173945	0.0420	2.918276
0.158510260	0.0433	4.347179
0.207824997	0.0442	5.930485
0.257162967	0.0450	7.688889
0.306512921	0.0458	9.652403
0.355829628	0.0465	11.886416

mi micromeritics[®]

mi micromeritics°

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 5	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 6
Sample: STONE6 Operator: Submitter: File: D:\DATA	3 \\2020\EVA\STONE6.SMP			Sample: STONE Operator: Submitter: File: D:\DATA	3 A\2020\EVA\STONE6.SM	Р	
Started: 2010-08-26 S Completed: 2010-08-26 I Report Time: 2010-08-30 I Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	9:13:17 Analy 13:13:33 Analys 13:51:20 Then Smoot Measured Cc Low F	sis Adsorptive: N2 is Bath Temp.: -195.741 °C nal Correction: No ned Pressures: No Id Free Space: 68.7163 cm ³ Pressure Dose: None		Started: 2010-08-26 9 Completed: 2010-08-26 9 Report Time: 2010-08-30 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	9:13:17 / / 13:13:33 A 13:51:20 Sr Measured L	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.741 °C Thermal Correction: No noothed Pressures: No Cold Free Space: 68.7163 cm ³ .cow Pressure Dose: None	

Langmuir Reports Primary Data 4052- Fewer than two points are selected for this report.

Unit 1

Sample: STONE6 Operator:

Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp: 195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 7

t-Plot Report

0.000045 cm³/g STP
0.0790 m²/g
0.0519 m²/g
0.003354 ± 0.000274 cm3/g Å STP
0.029325 ± 0.001134 cm ³ /g STP
0.990166
1.000
0.0015468
0.1309 m²/g
3.5000 Å to 5.0000 Å
Harkins and Jura
- log(p/p°))] ^ 0.5

Relative Statistical Quantity Pressure (p/p°) Thickness (Å) Adsorbed (cm³/g STP) 0.011477297 2.6621 0.0320 0.030256591 3.0012 0.0360 0.040340685 3.1297 0.0374 0.049682604 3.2338 0.0385 0.059682726 3.3346 0.0393 0.076073161 3.4837 0.0403 0.092731039 3.6214 0.0412 0.109173945 3.7480 0.0420 0.158510260 4.0958 0.0433 0.207824997 4.4194 0.0442 0.257162967 4.7358 0.0450 0.306512921 5.0547 0.0458 0.355829628 5.3832 0.0465 0.355829828 0.405137713 0.454504756 0.503796744 5.7280 6.0961 0.0471 0.0476 0.0479 6.4939 0.553162272 6.9319 0.0486 0.602646091 7.4224 0.0495 0.651839070 7.9769 0.0510 0.701291295 0.0536 8.6241 0.767101640 0.816132280 9.6850 10.6980 0.0585 0.0664 12.0354 0.0797 0.865799752 0.914554978 13.8635 0.1053 0.961349310 16.5432 0.1728 18.7550 0.986796310 0.2980

mi micromeritics°

Unit 1

Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes

ASAP 2020 V1.05 H

Analysis Adsorptive: N2 Analysis Bath Temp: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 8

ASAP 2020 V1.05 H Un	it 1 Serial #: 182	Page 9	ASAP 2020 V1.05 H	Unit 1	Serial #: 182
Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\\$	STONE6.SMP		Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\E	VA\STONE6.SM	MP
Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Measured Equilibration Interval: 10 s Automatic Decas: Yes	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm ³ Low Pressure Dose: None		Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Measure Equilibration Interval: 10 s Automatic Decas: Yes) Sed	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm ³ Low Pressure Dose: None

BJH Adsorption Pore Distribution Report

t = 3.54 [-5 / ln(p/p°)] ^ 0.333 Diameter Range: 17.000 Å to 3000.000 Å Adsorbate Property Factor: 9.53000 Å Density Conversion Factor: 0.0015468 Fraction of Pores Open at Both Ends: 0.00

Average Diameter (Å)	Incremental Pore Volume (cm ³ /g)	Cumulative Pore Volume (cm ³ /g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
617.6	0.000217	0.000217	0.014	0.014
285.5	0.000120	0.000337	0.017	0.031
178.4	0.000044	0.000382	0.010	0.041
127.5	0.000022	0.000404	0.007	0.048
98.8	0.000013	0.000416	0.005	0.053
77.3	0.000005	0.000422	0.003	0.056
64.1	0.000002	0.000424	0.001	0.057
19.9	0.000002	0.000426	0.004	0.061
18.5	0.000003	0.000429	0.006	0.068
17.6	0.000003	0.000432	0.007	0.075
	Average Diameter (Å) 617.6 285.5 178.4 127.5 98.8 77.3 64.1 19.9 18.5 17.6	Average Diameter (Å) Incremental Pore Volume (cm ³ /g) 617.6 0.000217 285.5 0.000120 178.4 0.000012 127.5 0.000021 98.8 0.0000013 77.3 0.0000002 19.9 0.000002 18.5 0.000003 17.6 0.000003	Average Diameter (Å) Incremental Pore Volume (cm³/g) Cumulative Pore Volume (cm³/g) 617.6 0.000217 0.000217 285.5 0.000120 0.000337 178.4 0.000044 0.000342 127.5 0.000013 0.00044 98.8 0.000013 0.00046 77.3 0.000002 0.000424 19.9 0.000002 0.000426 18.5 0.000003 0.000429 17.6 0.00003 0.000432	Average Diameter (Å) Incremental Pore Volume (cm³/g) Cumulative Pore Volume (cm³/g) Incremental Pore Area (cm³/g) 617.6 0.000217 0.000217 0.014 285.5 0.000120 0.000337 0.017 178.4 0.000024 0.000332 0.017 127.5 0.000022 0.00044 0.000332 0.017 98.8 0.000013 0.000442 0.003 0.00126 0.003 64.1 0.000002 0.000424 0.001 19.9 0.000002 0.000424 0.001 19.9 0.000002 0.000424 0.004 10.004 18.5 0.000429 0.006 17.6 0.00003 0.000432 0.007 0.00432 0.007

mi micromeritics°

Page 10

BJH Adsorption Cumulative Pore Volume

mi micromeritics[®]

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 11	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 12
Sample: STONE6 Operator: Submitter: File: D:\DATA\20	020\EVA\STONE6.SMP			Sample: Operator: Submitter: File:	STONE6 D:\DATA\2020\EVA\STONE6.S	MP	
Started: 2010-08-26 9:1 Completed: 2010-08-26 13: Report Time: 2010-08-30 13: Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Me Equilibration Interval: 10 s Automatic Degas: Yes	3:17 An 13:33 Ana 51:20 Th Smc easured Lov	alysis Adsorptive: N2 ysis Bath Temp.: 195.741 °C ermal Correction: No othed Pressures: No Jold Free Space: 68.7163 cm ³ v Pressure Dose: None		Started: 20 Completed: 20 Report Time: 20 Sample Mass: 13. Warm Free Space: 23. Equilibration Interval: 10 Automatic Degas: Yes	10-08-26 9:13:17 10-08-26 13:13:33 10-08-30 13:51:20 0402 g 1536 cm ³ Measured s s	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm ³ Low Pressure Dose: None	

BJH Adsorption dV/dlog(D) Pore Volume

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 13	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 14
Sample: STONE6 Operator: Submitter: File: D:\DATA	\$ \\2020\EVA\STONE6.SMP			Sample: STONE6 Operator: Submitter: File: D:\DATA\2	020\EVA\STONE6.SM	ΙP	
Started: 2010-08-26 5 Completed: 2010-08-26 1 Report Time: 2010-08-30 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Equilibration Interval: 10 s Automatic Degas: Yes	9:13:17 An: 13:13:33 Ana 13:51:20 Th Smo Measured Lov	alysis Adsorptive: N2 ysis Bath Temp.: -195.741 °C ermal Correction: No othed Pressures: No Cold Free Space: 68.7163 cm ³ v Pressure Dose: None		Started: 2010-08-26 9:1 Completed: 2010-08-26 13: Report Time: 2010-08-30 13: Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ M Equilibration Interval: 10 s Automatic Degas: Yes	3:17 13:33 // 51:20 Seasured	Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No moothed Pressures: No Cold Free Space: 68.7163 cm ³ Low Pressure Dose: None	

BJH Adsorption dA/dD Pore Area

ASAP 2020 \	/1.05 H
-------------	---------

Unit 1

Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

 Started:
 2010-08-26 9:13:17

 Completed:
 2010-08-26 13:13:33

 Report Time:
 2010-08-30 13:51:20

 Sample Mass:
 13:0402 g

 Warm Free Space:
 23:1536 cm³ Measured

 Equilibration Interval:
 10 s

 Automatic Degas:
 Yes

Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 15

mi micromeritics°

Unit 1

ASAP 2020 V1.05 H

Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp: - 195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 16

Horvath-Kawazoe Report

Slit Pore Geometry (Original H-K)

Maximum Pore Volume: 0.000461 cm³/g at Relative Pressure: 0.986796310 Median Pore Width: 675.742 Å Relative Pressure Range: 1.148e-02 to 9.868e-01

Diameter of Adsorptive Molecule: 3.000 Å Diameter of Adsorptive at Zero Interaction Energy: 2.574 Å Diameter of Sample Atom: 3.040 Å Diameter of Sample Atom at Zero Interaction Energy: 2.609 Å Interaction Parameter: 3.49e-43 erg-cm^44

Density Conversion Factor: 0.0015468

Absolute Pressure (mmHg)	Relative Pressure (p/p°)	Quantity Adsorbed (cm ³ /g STP)	Pore Width (Å)	Cumulative Pore Volume (cm ³ /g)	Differential Pore Volume (cm³/g·Å)
8,78236	0.011477297	0.0320	10.459	0.0000	0.0000
23.15161	0.030256591	0.0360	12.645	0.0001	0.0000
30.86697	0.040340685	0.0374	13.539	0.0001	0.0000
38.01411	0.049682604	0.0385	14.293	0.0001	0.0000
45.66487	0.059682726	0.0393	15.047	0.0001	0.0000
58.20425	0.076073161	0.0403	16.205	0.0001	0.0000
70.94765	0.092731039	0.0412	17.321	0.0001	0.0000
83.52663	0.109173945	0.0420	18.398	0.0001	0.0000
121.26894	0.158510260	0.0433	21.550	0.0001	0.0000
158.99486	0.207824997	0.0442	24.771	0.0001	0.0000
196.73579	0.257162967	0.0450	28.192	0.0001	0.0000
234.48596	0.306512921	0.0458	31.939	0.0001	0.0000
272.20734	0.355829628	0.0465	36.137	0.0001	0.0000
309.92032	0.405137713	0.0471	40.877	0.0001	0.0000
347.67661	0.454504756	0.0476	46.411	0.0001	0.0000
385.37674	0.503796744	0.0479	52.939	0.0001	0.0000
423.12857	0.553162272	0.0486	60.776	0.0001	0.0000
460.96909	0.602646091	0.0495	70.539	0.0001	0.0000
498.58929	0.651839070	0.0510	83.048	0.0001	0.0000
536.40234	0.701291295	0.0536	99.404	0.0001	0.0000
586.72992	0.767101640	0.0585	132.187	0.0001	0.0000
624.21692	0.816132280	0.0664	171.402	0.0001	0.0000
662.19446	0.865799752	0.0797	241.179	0.0001	0.0000
699.47308	0.914554978	0.1053	387.711	0.0002	0.0000
735.23914	0.961349310	0.1728	856.612	0.0003	0.0000
754.67102	0.986796310	0.2980	2403.986	0.0005	0.0000

ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 17	ASAP 2020 V1.05 H	Unit 1	Serial #: 182	Page 18
Sample: STONE Operator: Submitter: File: D:\DAT.	6 A\2020\EVA\STONE6.SMP			Sample: STONE6 Operator: Submitter: File: D:\DATA\20	020\EVA\STONE6.SM	Ρ	
Started: 2010-08-26 Completed: 2010-08-26 Report Time: 2010-08-30 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm Equilibration Interval: 10 s Automatic Degas: Yes	9:13:17 Ana 13:13:33 Anal 13:51:20 Th 3 Measured (Low	Ilysis Adsorptive: N2 ysis Bath Temp.: -195.741 °C ermal Correction: No othed Pressures: No Cold Free Space: 68.7163 cm ³ y Pressure Dose: None		Started: 2010-08-26 9:1 Completed: 2010-08-26 13 Report Time: 2010-08-30 13: Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm ³ Me Equilibration Interval: 10 s Automatic Degas: Yes	3:17 // 13:33 A 51:20 Sr pasured L	Analysis Adsorptive: N2 nalysis Bath Temp.: -195.741 °C Thermal Correction: No noothed Pressures: No Cold Free Space: 68.7163 cm ³ .ow Pressure Dose: None	

Horvath-Kawazoe Differential Pore Volume Plot

Unit 1

ASAP 2020 V1.05 H

Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-20 13:13:33 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Page 19

Summary Report

Surface Area

Single point surface area at p/p° = 0.306512921: 0.1382 m²/g

BET Surface Area: 0.1309 m²/g

t-Plot Micropore Area: 0.0790 m²/g

t-Plot External Surface Area: 0.0519 m²/g

BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.0749 m²/g

BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å diameter: 0.1842 m²/g

Pore Volume

Single point adsorption total pore volume of pores less than 1484.9928 Å at p/p° = 0.986796310: 0.000461 cm³/g

t-Plot micropore volume: 0.000045 cm3/g

BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000432 cm³/g

BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å diameter: 0.000247 cm³/g

Pore Size

Adsorption average pore width (4V/A by BET): 140.8412 Å

BJH Adsorption average pore diameter (4V/A): 230.819 Å

BJH Desorption average pore diameter (4V/A): 53.710 Å

Horvath-Kawazoe Maximum pore volume at p/p° = 0.986796310: 0.000461 cm³/g

Median pore width: 675.7419 Å

Dubinin-Radushkevich

Micropore surface area: 0.0000 m²/g

Monolayer capacity: 0.000000 cm3/g

mi micromeritics°

ASAP 2020 V1.05 H

Unit 1

Page 20

Sample: STONE6 Operator: Submitter: File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Completed: 2010-08-26 13:13:33 Report Time: 2010-08-30 13:51:20 Sample Mass: 13.0402 g Warm Free Space: 23.1536 cm³ Measured Equilibration Interval: 10 s Automatic Degas: Yes Analysis Adsorptive: N2 Analysis Bath Temp.: -195.741 °C Thermal Correction: No Smoothed Pressures: No Cold Free Space: 68.7163 cm³ Low Pressure Dose: None

Serial #: 182

Dubinin-Astakhov

Micropore surface area: 0.1857 m²/g

Limiting micropore volume: 0.000086 cm3/g

MP-Method

Cumulative surface area of pores between 18.7550 Å and 18.7550 Å hydraulic radius: 0.0000 m²/g

Cumulative pore volume of pores between 18.7550 Å and 18.7550 Å hydraulic radius: 0.000000 cm³/g

Average pore hydraulic radius (V/A): 0.0000 Å

A2.11 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the HV sample size fraction 0.25–0.5 mm

	Micromeri	tics Instrument	Corporation		Micromeritics Instrument Corporation			Corporation	ration	
DFT Plus(R) V3.0	00 (ASAP 2020 V1	.05)	Unit 1	Page 1	DFT Plus(R) V3.0	00 (ASAP 2020 V	1.05)	Unit 1	Page 2	
S Ope Subr Source	Sample: STONE8 erator: nitter: e File: D:\DATA\2	020\EVA\STONE8.	SMP		Subr Source	Sample: STONE8 erator: nitter: e File: D:\DATA\	2020\EVA\STONE8.	SMP		
Starte Complete Report Tim Sample Mas Warm Freespace	d: 2010-08-27 13: d: 2010-08-27 19: e: 2010-12-22 11: s: 12.7631 g e: 23.3044 cm ³	30:49 Analysi 02:17 A 56:46 Therma Equ Co	Adsorptive: N Analysis Bath: 7 Al Correction: N Al. Interval: 1 Ald Freespace: 6	2 7.479 K 0 s 7.3010 cm ³	Starte Complete Report Tim Sample Mas Warm Freespace	d: 2010-08-27 13 d: 2010-08-27 19 e: 2010-12-22 11 s: 12.7631 g e: 23.3044 cm ³	3:30:49 Analysi 9:02:17 A L:56:46 Therma Equ Co	Analysis Bath: Analysis Bath: Al Correction: M Al. Interval: 1 Ald Freespace: 6	12 17.479 K No LO s 57.3010 cm ³	
Por	osity Distributic Model: N2 Method: Non-neg	n by Original D @ 77K on Carbo ative Regulariz	ensity Function on, Slit Pores ation; No Smoot)	al Theory ning	Por	osity Distributi Model: N Method: Non-ne	on by Original E 12 @ 77K on Carbo egative Regulariz	Density Function Dn, Slit Pores Sation; No Smoot	al Theory	
Volu Total Volu Ar Total Ar	ame in Pores < ame in Pores <= cea in Pores > cea in Pores >=	14.83 Å 798.65 Å 798.65 Å 14.83 Å	: 0.00001 cm ³ : 0.00053 cm ³ : 0.131 m ² / : 0.172 m ² /	a a a	Volu Total Volu Ar Total Ar	ame in Pores < ame in Pores <= rea in Pores > rea in Pores >=	14.83 Å 798.65 Å 798.65 Å 14.83 Å	: 0.00001 cm : 0.00053 cm : 0.131 m ² : 0.172 m ²	\d 3\d 3\d	
		Pore Size Tab	ole				Pore Size Tab	ole		
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	
14.83 15.91 17.16 18.59 20.02 21.62 23.41	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.002 0.000 0.000 0.000 0.000 0.000 0.000	200.69 216.60 233.93 252.52 272.71 294.51 317.92	0.00011 0.00011 0.00012 0.00014 0.00017 0.00020	0.00000 0.00000 0.00000 0.00001 0.00002 0.00002 0.00003	0.020 0.020 0.021 0.023 0.024 0.026	0.000 0.000 0.000 0.001 0.002 0.002 0.002	
25.20 27.34 29.49 31.81 34.31 36.99	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.002 0.002 0.002 0.003 0.003 0.003	0.000 0.000 0.001 0.000 0.000 0.000	3 43 .30 3 70.64 4 00.31 4 32 .30 4 66 .79 5 03 .96	0.00024 0.00029 0.00033 0.00036 0.00038 0.00041	0.00004 0.00005 0.00004 0.00003 0.00003 0.00003	0.029 0.031 0.033 0.035 0.036 0.037 0.037	0.003 0.003 0.002 0.001 0.001 0.001	
40.03 43.25 46.64 50.40 54.33 58.80 63.44	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.003 0.003 0.003 0.003 0.003 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000	544.17 587.60 634.42 684.99 739.68 798.65	0.00044 0.00046 0.00047 0.00049 0.00051 0.00052	0.00002 0.00002 0.00002 0.00002 0.00001 0.00001	0.039 0.039 0.040 0.040 0.040	$\begin{array}{c} 0.001 \\ 0.000 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$	
68.45 73.99 79.88 86.32 93.11 100.61	0.00001 0.00001 0.00001 0.00002 0.00003 0.00003	0.00000 0.00000 0.00000 0.00001 0.00001 0.00001	0.004 0.005 0.006 0.007 0.009 0.010	0.000 0.001 0.001 0.001 0.002 0.002						
108.66 117.23 126.53 136.71 147.61 159.41	0.00004 0.00005 0.00005 0.00006 0.00007 0.00007	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.011 0.012 0.013 0.015 0.016 0.018	0.001 0.001 0.001 0.001 0.002 0.002						
172.10 185.86	0.00010 0.00011	0.00001 0.00001	0.019 0.020	0.001 0.001						

Page 3

Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP

 Started:
 2010-08-27
 13:30:49
 Analysis Adsorptive:
 N2

 Completed:
 2010-08-27
 19:02:17
 Analysis Bath:
 77.479 K

 Report Time:
 2010-12-22
 11:56:46
 Thermal Correction:
 No

 Sample Mass:
 12.7631 g
 Equil. Interval:
 10 s

 Warm Freespace:
 23.3044 cm³
 Cold Freespace:
 67.3010 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00223, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed	Fitted Quantity Adsorbed	Absolute Residual	Relative Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.011783670	0.0456	0.0465	-0.0009	-0.019237
0.014515520	0.0468	0.0473	-0.0005	-0.010791
0.017706521	0.0482	0.0485	-0.0003	-0.006433
0.021398440	0.0498	0.0495	0.0003	0.005966
0.025631230	0.0514	0.0505	0.0009	0.018130
0.030442240	0.0530	0.0515	0.0015	0.027778
0.035865448	0.0545	0.0527	0.0019	0.034386
0.041930798	0.0560	0.0539	0.0021	0.037207
0.048663601	0.0576	0.0554	0.0022	0.037700
0.056084011	0.0591	0.0570	0.0021	0.035816
0.064206667	0.0608	0.0589	0.0019	0.030793
0.073040441	0.0624	0.0610	0.0014	0.022389
0.082588248	0.0640	0.0632	0.0007	0.011267
0.092847057	0.0656	0.0656	0.0000	-0.000141
0.103808001	0.0673	0.0680	-0.0007	-0.009959
0.115456402	0.0690	0.0702	-0.0012	-0.018107
0.127772301	0.0707	0.0723	-0.0017	-0.023600
0.140730694	0.0724	0.0743	-0.0019	-0.026514
0.154301897	0.0741	0.0761	-0.0020	-0.027387
0.168452203	0.0759	0.0779	-0.0020	-0.026567
0.183144197	0.0777	0.0796	-0.0019	-0.024022
0.198337302	0.0796	0.0812	-0.0016	-0.020289
0.213988706	0.0815	0.0828	-0.0013	-0.015856
0.230053306	0.0834	0.0843	-0.0009	-0.010882
0.246484801	0.0854	0.0859	-0.0005	-0.005760
0.263235897	0.0874	0.0874	-0.0001	-0.000910
0.280259013	0.0894	0.0894	0.0000	0.00004
0.297506303	0.0914	0.0910	0.0004	0.003850
0.314930797	0.0934	0.0929	0.0005	0.005248
0.332486212	0.0955	0.0948	0.0007	0.007234
0.350127310	0.0975	0.0967	0.0008	0.008192
0.367810607	0.0995	0.0987	0.0008	0.008107
0.385494202	0.1016	0.1009	0.0007	0.007078
0.403138310	0.1036	0.1031	0.0006	0.005322
0.420704991	0.1057	0.1053	0.0003	0.003072
0.438158900	0.1077	0.1076	0.0001	0.000667
0.455466807	0.1096	0.1098	-0.0002	-0.001436

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 4

Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Analysis Adsorptive: N2

Juar Leu.	2010-00-27 13.30.49	Analysis Ausoiptive.	112
Completed:	2010-08-27 19:02:17	Analysis Bath:	77.479 K
Report Time:	2010-12-22 11:56:46	Thermal Correction:	No
Sample Mass:	12.7631 g	Equil. Interval:	10 s
Warm Freespace:	23.3044 cm ³	Cold Freespace:	67.3010 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00223, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0 472500106	0 1116	0 1110	0 0003	0 002021
0.472550100	0.1135	0.1140	-0.0005	-0.003031
0.506219923	0.1155	0.1160	-0.0005	-0.004132
0.522661209	0.1174	0.1180	-0.0000	-0.004866
0.538827300	0 1194	0 1199	-0.0005	-0.004224
0.554699600	0 1214	0 1218	-0.0004	-0.003433
0.570261598	0.1234	0.1237	-0.0003	-0.002222
0.585499227	0.1255	0.1256	-0.0001	-0.000682
0.600400090	0.1276	0.1276	0.0001	0.000677
0.614954293	0.1298	0.1299	-0.0001	-0.000948
0.629153311	0.1320	0.1319	0.0001	0.000473
0.642990828	0.1342	0.1340	0.0002	0.001524
0.656461716	0.1365	0.1365	0.0000	-0.000003
0.669562697	0.1389	0.1387	0.0001	0.000855
0.682291925	0.1413	0.1414	-0.0001	-0.000798
0.694648683	0.1438	0.1438	0.0000	0.000260
0.706633508	0.1463	0.1461	0.0002	0.001235
0.718248010	0.1490	0.1492	-0.0002	-0.001351
0.729494929	0.1517	0.1514	0.0003	0.001945
0.740377605	0.1546	0.1549	-0.0003	-0.002018
0.750900388	0.1575	0.1571	0.0004	0.002497
0.761068285	0.1603	0.1607	-0.0004	-0.002220
0.770887017	0.1632	0.1628	0.0004	0.002622
0.780362606	0.1664	0.1677	-0.0013	-0.008075
0.789501607	0.1698	0.1698	0.0000	-0.000016
0.798311174	0.1733	0.1719	0.0014	0.008187
0.806798697	0.1769	0.1775	-0.0006	-0.003407
0.814971626	0.1803	0.1796	0.0007	0.003651
0.822837889	0.1838	0.1846	-0.0008	-0.004167
0.830405474	0.1877	0.1869	0.0008	0.004345
0.837682605	0.1918	0.1926	-0.0008	-0.004430
0.844677329	0.1959	0.1950	0.0009	0.004560
0.851397991	0.2000	0.2008	-0.0008	-0.003899
0.85/852995	0.2040	0.2032	0.0008	0.004012
0.864050388	0.2078	0.2087	-0.0008	-0.003934
0.869998574	0.2118	0.2110	0.0009	0.004023
U.875705481	0.2165	0.2179	-0.0014	-0.006517

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 6 Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Analysis Adsorptive: N2 Completed: 2010-08-27 19:02:17 Analysis Bath: 77.479 K Report Time: 2010-12-22 11:56:46 Thermal Correction: No Sample Mass: 12.7631 g Equil. Interval: 10 s Warm Freespace: 23.3044 cn³ Cold Freespace: 67.010 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00223, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.5462	0.5432	0.0030	0.005430
0.979859591	0.5545	0.5571	-0.0026	-0.004752
0.980795979	0.5624	0.5598	0.0026	0.004689
0.981689274	0.5700	0.5700	0.0000	0.00000
0.982541502	0.5772	0.5793	-0.0021	-0.003644
0.983354270	0.5841	0.5820	0.0021	0.003604

Micromeritics Instrument Corporation

Page 5

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP

 Started:
 2010-08-27
 13:30:49
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-27
 19:02:17
 Analysis
 Bath:
 77.479 K

 Report Time:
 2010-12-22
 11:56:46
 Thermal Correction: No
 Equil. Interval:
 10 s

 Warm Freespace:
 23.3044 cm³
 Cold Freespace:
 67.3010 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00223, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.881179392	0.2215	0.2201	0.0014	0.006513
0.886428118	0.2268	0.2284	-0.0016	-0.007138
0.891459525	0.2322	0.2306	0.0016	0.007096
0.896281302	0.2377	0.2392	-0.0015	-0.006511
0.900900900	0.2429	0.2414	0.0016	0.006474
0.905325770	0.2481	0.2493	-0.0013	-0.005191
0.909563184	0.2529	0.2516	0.0013	0.005178
0.913620114	0.2575	0.2576	-0.0001	-0.000281
0.917503417	0.2609	0.2600	0.0009	0.003407
0.921219707	0.2631	0.2625	0.0006	0.002354
0.924775481	0.2649	0.2650	-0.0001	-0.000383
0.928177178	0.2668	0.2675	-0.0007	-0.002531
0.931430817	0.2693	0.2699	-0.0006	-0.002314
0.934542298	0.2727	0.2738	-0.0011	-0.004001
0.937517405	0.2773	0.2762	0.0011	0.003990
0.940361619	0.2832	0.2856	-0.0025	-0.008662
0.943080306	0.2904	0.2879	0.0025	0.008502
0.945678592	0.2990	0.3029	-0.0038	-0.012864
0.948161721	0.3090	0.3052	0.0039	0.012500
0.950534225	0.3204	0.3204	0.0000	0.000027
0.952800930	0.3331	0.3388	-0.0057	-0.017085
0.954966187	0.3470	0.3413	0.0057	0.016449
0.957034409	0.3620	0.3687	-0.0067	-0.018503
0.959009588	0.3780	0.3713	0.0067	0.017762
0.960896015	0.3940	0.4003	-0.0063	-0.016044
0.962697208	0.4092	0.4029	0.0063	0.015481
0.964416981	0.4238	0.4295	-0.0057	-0.013492
0.966058910	0.4377	0.4320	0.0057	0.013088
0.967626274	0.4510	0.4510	0.0000	0.00006
0.969122529	0.4636	0.4685	-0.0049	-0.010476
0.970550597	0.4757	0.4708	0.0049	0.010226
0.971913695	0.4872	0.4915	-0.0043	-0.008753
0.973214507	0.4983	0.4940	0.0043	0.008572
0.974455774	0.5088	0.5124	-0.0037	-0.007204
0.975640416	0.5188	0.5151	0.0037	0.007074
0.976770699	0.5283	0.5283	0.0000	0.000001
0.977849126	0.5375	0.5404	-0.0030	-0.005512

Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP

 Started:
 2010-08-27
 13:30:49
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-27
 19:02:17
 Analysis
 Bath:
 77
 Report Time: 2010-12-22 11:56:46 Sample Mass: 12.7631 g Warm Freespace: 23.3044 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.479 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.3010 cm³

Unit 1

Page 7

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	∋ in	Pores	<	14.83	Ă	:	0.00001	cm³/g
Total	Volume	e in	Pores	<=	798.65	Å	:	0.00053	cm³/g
	Area	a in	Pores	>	798.65	Å	:	0.131	m²/g
Tota	al Area	a in	Pores	>=	14.83	Å	:	0.172	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 8 Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP
 Started:
 2010-08-27
 13:30:49
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-27
 19:02:17
 Analysis
 Bath:
 77
 Analysis Bath: 77.479 K Report Time: 2010-02-22 11:56:46 Sample Mass: 12.7631 g Warm Freespace: 23.3044 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.3010 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00001 cm³/g 798.65 Å : 0.00053 cm3/g Total Volume in Pores <= Area in Pores > 798.65 Å : 0.131 m²/g Total Area in Pores >= 14.83 Å : 0.172 m²/q

174

DFT Plus(R) V3.00 (ASAP 2020 V1.05)	Unit 1	Page 9
Sample: STONE8		

Sample: SIONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP

Started:	2010-08-27 13:30:49	Analysis Adsorptive:	N2
Completed:	2010-08-27 19:02:17	Analysis Bath:	77.479 K
Report Time:	2010-12-22 11:56:46	Thermal Correction:	No
Sample Mass:	12.7631 g	Equil. Interval:	10 s
Warm Freespace:	23.3044 cm ³	Cold Freespace:	67.3010 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm ³ /c
Total	Volume	in	Pores	<=	798.65	Å	:	0.00053	Cm 3 / 0
	Area	in	Pores	>	798.65	Å	:	0.131	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.172	m²/g

Micromeritics Instrument Corporation

OFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page10
Sar Opera	nple: STONE8 ator:		
Submit	tter:		
Source 1	File: D:\DATA\2020\EVA	\STONE8.SMP	
Started:	2010-08-27 13:30:49	Analysis Adsorptive:	N2
Completed:	2010-08-27 19:02:17	Analysis Bath:	77.479 K
Report Time:	2010-12-22 11:56:46	Thermal Correction:	No
Sample Mass:	12.7631 g	Equil. Interval:	10 s
Warm Freespace:	23.3044 cm3	Cold Freespace:	67.3010 cm ³
Poros	ity Distribution by Or	riginal Density Functio	onal Theory

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm ³ /c
Total	Volume	in	Pores	<=	798.65	Å	:	0.00053	cm ³ /c
	Area	in	Pores	>	798.65	Å	:	0.131	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.172	m²/q

Unit 1 Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP

 Started:
 2010-08-27
 13:30:49
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-27
 19:02:17
 Analysis
 Bath:
 77
 Report Time: 2010-12-22 11:56:46 Sample Mass: 12.7631 g Warm Freespace: 23.3044 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.479 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.3010 cm³

Page11

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Ă	:	0.00001	Cm ³ /
Total	Volume	in	Pores	<=	798.65	Å	:	0.00053	Cm 3 /
	Area	in	Pores	>	798.65	Å	:	0.131	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.172	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page12 Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Analysis Adsorptive: N2 Completed: 2010-08-27 19:02:17 Analysis Bath: 77 Analysis Bath: 77.479 K Report Time: 2010-02-22 11:56:46 Sample Mass: 12.7631 g Warm Freespace: 23.3044 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.3010 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing 1/ 23 Å 0 00001 m 3 / a Tota

	vorume	11	Pores	<	14.83	А	:	0.00001	cm ² /g
otal	Volume	in	Pores	<=	798.65	Å	:	0.00053	cm³/g
	Area	in	Pores	>	798.65	Å	:	0.131	m²/g
Tot	al Area	in	Pores	>=	14.83	Å	:	0.172	m²/g

176

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page14 Sample: STONE8 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE8.SMP Started: 2010-08-27 13:30:49 Analysis Adsorptive: N2 Completed: 2010-08-27 19:02:17 Analysis Bath: 77.479 K Report Time: 2010-12-22 11:56:46 Thermal Correction: No Sample Mass: 12.7631 g Warm Freespace: 23.3044 cm³ Equil. Interval: 10 s Cold Freespace: 67.3010 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Standard Deviation of Fit: 0.00223, cm³/g Goodness of Fit 0.60-0.55-0.50-0.45-0.45-0.40-0.35-0.30-0.30onantity 0.25-0.15-0.10-0.05

0.0

0.1

0.2

0.3

0.4

0.5

Relative Pressure (P/Po)

0.6

0.7

0.8

0.9

1.0

A2.12 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the HV sample size fraction 0.5-1 mm

Micromeritics Instrument Corporation

0.018

0.019

0.001

0.001

DFT Plus(R) V3.00) (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.(00 (ASAP 2020 V	1.05)	Unit 1	Page 2
S. Ope: Subm. Source	ample: STONE3 rator: itter: File: D:\DATA\	2020\EVA\STONE3.	SMP		: Op Sub Sourc	Sample: STONE3 erator: nitter: e File: D:\DATA\	\2020\EVA\STONE3.	. SMP	
Started Completed Report Time Sample Mass Warm Freespace	: 2010-08-18 9: : 2010-08-18 14 : 2010-12-22 11 : 13.6461 g : 22.4610 cm ³	26:17 Analysi 1:45:14 A 1:55:20 Therma Equ Co	s Adsorptive: M nalysis Bath: 7 l Correction: M il. Interval: 1 ld Freespace: 6	12 17.395 K 10 .0 s .5.3565 cm ³	Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-08-18 9 d: 2010-08-18 1 e: 2010-12-22 1 s: 13.6461 g e: 22.4610 cm ³	:26:17 Analys: 4:45:14 i 1:55:20 Therma Equ Ca	is Adsorptive: M Analysis Bath: 7 al Correction: M uil. Interval: 1 old Freespace: 6	√2 77.395 K No 10 s 65.3565 cm³
Poro	sity Distributi Model: N Method: Non-ne	on by Original D 12 @ 77K on Carbo gative Regulariz	ensity Function n, Slit Pores ation; No Smoot	al Theory hing	Por	osity Distribut: Model: M Method: Non-ne	ion by Original I N2 @ 77K on Carbo egative Regulari:	Density Function on, Slit Pores zation; No Smoot	al Theory
Volume in Pores < 14.83 Å : 0.00002 cm ³ /g Total Volume in Pores <= 931.26 Å : 0.00050 cm ³ /g Area in Pores > 931.26 Å : 0.094 m ² /g Total Area in Pores >= 14.83 Å : 0.131 m ² /g				Volu Total Volu م Total An	ame in Pores < ame in Pores <= cea in Pores > cea in Pores >=	14.83 Å 931.26 Å 931.26 Å 14.83 Å	: 0.00002 cm : 0.00050 cm : 0.094 m ² : 0.131 m ²	\d }\d }\d	
		Pore Size Tab	le				Pore Size Tal	ole	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/q)	Cumulative Area (m²/q)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/q)	Cumulative Area (m²/q)	Incremental Area (m²/q)
14.83 15.91 17.16 18.59 20.02	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000 \end{array}$	0.000 0.000 0.000 0.000 0.000	200.69 216.60 233.93 252.52 272.71	0.00011 0.00011 0.00011 0.00012 0.00014	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00001\\ 0.00001\\ 0.00002 \end{array}$	0.019 0.019 0.020 0.020 0.022	0.000 0.000 0.000 0.001 0.001
21.62 23.41 25.20 27.34 29.49 31.81	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\end{array}$	0.00016 0.00018 0.00022 0.00026 0.00029 0.00029	0.00002 0.00002 0.00004 0.00004 0.00004 0.00004	0.023 0.024 0.026 0.028 0.030 0.031	0.001 0.001 0.002 0.002 0.002 0.001
34.31 36.99 40.03 43.25 46.64 50.40	0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001 \end{array}$	0.000 0.000 0.000 0.000 0.000 0.000	466.79 503.96 544.17 587.60 634.42 684.99	0.00034 0.00037 0.00039 0.00041 0.00042 0.00044	0.00002 0.00003 0.00002 0.00002 0.00001 0.00001	0.032 0.034 0.035 0.035 0.035	0.001 0.001 0.001 0.001 0.000 0.000
54.33 58.80 63.44 68.45 73.99	0.00000 0.00000 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000 0.00000	0.001 0.002 0.002 0.003 0.004	0.000 0.000 0.001 0.001 0.001	739.68 798.65 862.45 931.26	0.00045 0.00046 0.00047 0.00048	0.00001 0.00001 0.00001 0.00001	0.036 0.037 0.037 0.037	0.000 0.000 0.000 0.000
79.88 86.32 93.11 100.61 108.66 117.23 126.52	0.00002 0.00002 0.00003 0.00004 0.00004 0.00005	0.00000 0.00001 0.00001 0.00001 0.00001 0.00001	$\begin{array}{c} 0.005 \\ 0.006 \\ 0.008 \\ 0.009 \\ 0.010 \\ 0.012 \\ 0.013 \end{array}$	0.001 0.001 0.002 0.001 0.001 0.001					
126.53 136.71 147.61 159.41	0.00006 0.00008 0.00009	0.00001 0.00001 0.00001 0.00001	0.013 0.014 0.015 0.017	0.001 0.001 0.002 0.001					

172.10

185.86

0.00010

0.00011

0.00001

0.00001

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 4
Sa Oper Submi Source	mple: STONE3 ator: tter: File: D:\DATA\2020\EVA	\STONE3.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-18 9:26:17 2010-08-18 14:45:14 2010-12-22 11:55:20 13.6461 g 22.4610 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.395 K No 10 s 65.3565 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00193, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed	Fitted Quantity Adsorbed	Absolute Residual	Relative Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.472598106	0.0903	0.0903	0.0000	-0.000530
0.489524394	0.0919	0.0919	0.0000	-0.000446
0.506219923	0.0935	0.0935	0.0000	0.00006
0.522661209	0.0951	0.0950	0.0001	0.000937
0.538827300	0.0967	0.0968	-0.0001	-0.000700
0.554699600	0.0983	0.0982	0.0001	0.000561
0.570261598	0.0999	0.0997	0.0002	0.001940
0.585499227	0.1015	0.1015	0.0000	0.000092
0.600400090	0.1031	0.1030	0.0001	0.001369
0.614954293	0.1048	0.1049	-0.0002	-0.001480
0.629153311	0.1065	0.1065	0.0000	0.000460
0.642990828	0.1083	0.1081	0.0002	0.002269
0.656461716	0.1101	0.1102	-0.0001	-0.000460
0.669562697	0.1121	0.1119	0.0002	0.001478
0.682291925	0.1141	0.1144	-0.0002	-0.002180
0.694648683	0.1162	0.1162	0.0000	0.000321
0.706633508	0.1183	0.1180	0.0003	0.002668
0.718248010	0.1205	0.1207	-0.0002	-0.001998
0.729494929	0.1228	0.1224	0.0003	0.002703
0.740377605	0.1252	0.1255	-0.0003	-0.002707
0.750900388	0.1276	0.1271	0.0004	0.003274
0.761068285	0.1300	0.1304	-0.0004	-0.002894
0.770887017	0.1324	0.1319	0.0004	0.003368
0.780362606	0.1351	0.1364	-0.0013	-0.009965
0.789501607	0.1380	0.1380	0.0000	-0.000053
0.798311174	0.1410	0.1396	0.0014	0.010100
0.806798697	0.1440	0.1447	-0.0006	-0.004427
0.814971626	0.1470	0.1463	0.0007	0.004706
0.822837889	0.1500	0.1508	-0.0008	-0.005124
0.830405474	0.1533	0.1525	0.0008	0.005326
0.837682605	0.1568	0.1577	-0.0009	-0.005496
0.844677329	0.1604	0.1595	0.0009	0.005639
0.851397991	0.1639	0.1648	-0.0008	-0.004976
0.857852995	0.1674	0.1666	0.0009	0.005097
0.864050388	0.1707	0.1715	-0.0008	-0.004671
0.869998574	0.1741	0.1733	0.0008	0.004773
0.875705481	0.1780	0.1793	-0.0013	-0.007374

Micromeritics Instrument Corporation

Page 3

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE3 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE3.SMP

Started:	2010-08-18 9:26:1	7 Analysis Adsorptive:	N2
Completed:	2010-08-18 14:45:	14 Analysis Bath:	77.395 K
Report Time:	2010-12-22 11:55:	20 Thermal Correction:	No
Sample Mass:	13.6461 g	Equil. Interval:	10 s
Warm Freespace:	22.4610 cm3	Cold Freespace:	65.3565 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00193, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.011/836/0	0.0397	0.0404	-0.0007	-0.01648/
0.014515520	0.0407	0.0410	-0.0003	-0.007698
0.017706521	0.0418	0.0417	0.0001	0.003434
0.021398440	0.0431	0.0424	0.0007	0.015719
0.025631230	0.0444	0.0432	0.0012	0.027501
0.030442240	0.0456	0.0440	0.0017	0.036539
0.035865448	0.0468	0.0449	0.0020	0.042345
0.041930798	0.0480	0.0458	0.0022	0.045272
0.048663601	0.0492	0.0470	0.0023	0.045777
0.056084011	0.0502	0.0482	0.0020	0.039736
0.064206667	0.0513	0.0497	0.0017	0.032448
0.073040441	0.0525	0.0513	0.0013	0.024259
0.082588248	0.0537	0.0530	0.0007	0.013812
0.092847057	0.0549	0.0548	0.0001	0.001095
0.103808001	0.0561	0.0566	-0.0006	-0.010245
0.115456402	0.0572	0.0584	-0.0011	-0.019411
0.127772301	0.0585	0.0600	-0.0015	-0.025510
0.140730694	0.0598	0.0615	-0.0017	-0.028877
0.154301897	0.0611	0.0629	-0.0019	-0.030301
0.168452203	0.0624	0.0643	-0.0019	-0.030385
0.183144197	0.0637	0.0656	-0.0018	-0.028993
0.198337302	0.0651	0.0668	-0.0017	-0.026481
0.213988706	0.0665	0.0680	-0.0015	-0.023220
0.230053306	0.0679	0.0692	-0.0013	-0.019634
0.246484801	0.0693	0.0704	-0.0011	-0.015646
0.263235897	0.0708	0.0716	-0.0008	-0.011093
0.280259013	0.0724	0.0729	-0.0005	-0.006481
0.297506303	0.0740	0.0741	-0.0002	-0.002316
0.314930797	0.0756	0.0756	0.0000	-0.000429
0.332486212	0.0772	0.0770	0.0002	0.001955
0.350127310	0.0788	0.0785	0.0003	0.003395
0.367810607	0.0804	0.0802	0.0002	0.002840
0.385494202	0.0821	0.0818	0.0003	0.003425
0.403138310	0.0838	0.0835	0.0003	0.003186
0.420704991	0.0854	0.0853	0.0002	0.002072
0.438158900	0.0871	0.0870	0.0001	0.000820
0.455466807	0.0887	0.0887	0.0000	-0.000123

Analysis Bath: 77.395 K

Page 5

Sample: STONE3 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Analysis Adsorptive: N2 Completed: 2010-08-18 14:45:14 Analysis Bath: 77. Report Time: 2010-12-22 11:55:20 Thermal Correction: No Sample Mass: 13.6461 g Equil. Interval: 10 s Warm Freespace: 22.4610 cm³ Cold Freespace: 65.3565 cm³

> Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

> > Standard Deviation of Fit: 0.00193, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.881179392	0.1823	0.1809	0.0013	0.007369
0.886428118	0.1868	0.1883	-0.0015	-0.008092
0.891459525	0.1915	0.1899	0.0015	0.008040
0.896281302	0.1961	0.1976	-0.0015	-0.007496
0.900900900	0.2007	0.1992	0.0015	0.007447
0.905325770	0.2051	0.2064	-0.0013	-0.006179
0.909563184	0.2094	0.2081	0.0013	0.006156
0.913620114	0.2134	0.2141	-0.0008	-0.003538
0.917503417	0.2167	0.2159	0.0008	0.003567
0.921219707	0.2189	0.2186	0.0002	0.001105
0.924775481	0.2205	0.2205	0.0000	0.000154
0.928177178	0.2221	0.2223	-0.0002	-0.000907
0.931430817	0.2241	0.2241	0.0000	-0.000217
0.934542298	0.2267	0.2275	-0.0009	-0.003775
0.937517405	0.2301	0.2293	0.0009	0.003776
0.940361619	0.2346	0.2365	-0.0019	-0.008153
0.943080306	0.2401	0.2382	0.0019	0.008023
0.945678592	0.2468	0.2498	-0.0030	-0.012252
0.948161721	0.2545	0.2515	0.0030	0.011935
0.950534225	0.2634	0.2634	0.0000	0.000030
0.952800930	0.2733	0.2778	-0.0045	-0.016563
0.954966187	0.2842	0.2796	0.0045	0.015978
0.957034409	0.2960	0.3013	-0.0054	-0.018120
0.959009588	0.3086	0.3033	0.0054	0.017423
0.960896015	0.3220	0.3275	-0.0055	-0.017197
0.962697208	0.3349	0.3294	0.0055	0.016569
0.964416981	0.3473	0.3523	-0.0050	-0.014446
0.966058910	0.3591	0.3541	0.0050	0.013998
0.967626274	0.3704	0.3704	0.0000	0.000007
0.969122529	0.3812	0.3855	-0.0043	-0.011235
0.970550597	0.3915	0.3872	0.0043	0.010957
0.971913695	0.4013	0.4051	-0.0038	-0.009439
0.973214507	0.4107	0.4069	0.0038	0.009237
0.974455774	0.4196	0.4229	-0.0033	-0.007849
0.975640416	0.4281	0.4248	0.0033	0.007704
0.976770699	0.4363	0.4363	0.0000	0.00002
0.977849126	0.4440	0.4467	-0.0027	-0.006089

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 6

Sample: STONE3 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE3.SMP Started: 2010-08-18 9:26:17 Analysis Adsorptive: N2

Completed:	2010-08-18 14:45:14	Analysis Bath:	77.395 K
Report Time:	2010-12-22 11:55:20	Thermal Correction:	No
Sample Mass:	13.6461 g	Equil. Interval:	10 s
Warm Freespace:	22.4610 cm ³	Cold Freespace:	65.3565 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00193, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.4514	0.4487	0.0027	0.005996
0.979859591	0.4585	0.4609	-0.0024	-0.005273
0.980795979	0.4653	0.4628	0.0024	0.005202
0.981689274	0.4717	0.4717	0.0000	0.000001
0.982541502	0.4778	0.4798	-0.0020	-0.004119
0.983354270	0.4837	0.4817	0.0020	0.004072
0.984129488	0.4893	0.4909	-0.0016	-0.003308
0.984869003	0.4946	0.4930	0.0016	0.003275
0.985574186	0.4997	0.4997	0.0000	0.000000

DFT Plus(R) V3.00 (ASA	AP 2020 V1.05)	Unit 1	Page 7
Sample: Operator: Submitter:	STONE3		
Source File:	D:\DATA\2020\EVA\STONE3.SMP		

Started:	2010-08-18	9:26:17	Analysis Adsorptive:	N2
Completed:	2010-08-18	14:45:14	Analysis Bath:	77.395 K
Report Time:	2010-12-22	11:55:20	Thermal Correction:	No
Sample Mass:	13.6461 g		Equil. Interval:	10 s
Warm Freespace:	22.4610 cm	3	Cold Freespace:	65.3565 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Total	Volume Volume	in in	Pores Pores	< <=	14.83 931.26	Å	:	0.00002	cm ³ /g cm ³ /q
	Area	in	Pores	>	931.26	Å	:	0.094	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.131	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 8
Sar Opera Submit	mple: STONE3 ator: :ter:		
Source H	File: D:\DATA\2020\EVA	\STONE3.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-18 9:26:17 2010-08-18 14:45:14 2010-12-22 11:55:20 13.6461 g 22.4610 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.395 K No 10 s 65.3565 cm ³
Poros	ity Distribution by Or Model: N2 0 77K	riginal Density Functio	onal Theory

Model: N2 @ 7/K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00002 cm³/g Total Volume in Pores <= 931.26 Å : 0.00050 cm³/g

Total

lume	in	Pores	<=	931.26	Å	:	0.00050	cm³/g	
Area	in	Pores	>	931.26	Å	:	0.094	m²/g	
Area	in	Pores	>=	14.83	Å	:	0.131	m²/g	

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Sample: STONE3 Operator: Submitter:

Submitter: Source File: D:\DATA\2020\EVA\STONE3.SMP

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-12-22 11:55:20 Sample Mass: 13.6461 g Warm Freespace: 22.4610 cm³

Analysis Adsorptive: N2 Analysis Bath: 77.395 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 65.3565 cm³

Unit 1

Page 9

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00002	cm³/g
Total	Volume	in	Pores	<=	931.26	Å	:	0.00050	cm³/g
	Area	in	Pores	>	931.26	Å	:	0.094	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.131	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page10 Sample: STONE3 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE3.SMP Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Analysis Adsorptive: N2 Analysis Bath: 77.395 K Report Time: 2010-02-22 11:55:20 Sample Mass: 13.6461 g Warm Freespace: 22.4610 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 65.3565 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00002	cm³/g
Total	Volume	in	Pores	<=	931.26	Å	:	0.00050	cm³/g
	Area	in	Pores	>	931.26	Å	:	0.094	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.131	m²/q

182

DFT Plus(R) V3.00 (AS	AP 2020 V1.05)	Unit 1	Page11
Sample: Operator: Submitter: Source File:	STONE3 D:\DATA\2020	\EVA\STONE3.SM	P	
Started: 2010 Completed: 2010 Report Time: 2010 Sample Mass: 13.6 Warm Freespace: 22.4 Porosity D Metho	-08-18 9:26:1 -08-18 14:45: -12-22 11:55: 461 g 610 cm ³ distribution b Model: N2 0 d: Non-negativ	7 Analysis 14 Ana 20 Thermal Equil Cold y Original Den 77K on Carbon, ve Regularizat	Adsorptive: lysis Bath: Correction: . Interval: Freespace: sity Functi Slit Pores ion; No Smo	N2 77.395 K No 10 s 65.3565 cm ³ onal Theory othing
Volume in 1 Total Volume in 1 Area in 1 Total Area in 1	Pores < Pores <= Pores > Pores >=	14.83 Å : 931.26 Å : 931.26 Å : 14.83 Å :	0.00002 c 0.00050 c 0.094 n 0.131 n	cm ³ /g cm ³ /g n ² /g n ² /g

Micromeritics Instrument Corporation

Unit 1	Page12
/A\STONE3.SMP	
Analysis Adsorptive:	N2
Analysis Bath:	77.395 K
Thermal Correction:	No
Equil. Interval:	10 s
Cold Freespace:	65.3565 cm ³
Original Density Functic	nal Theory
	Unit 1 /A\STONE3.SMP Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace: Original Density Functic (on Carbon, Slit Pores

Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	А	:	0.00002	Cm 3 / 0
Total	Volume	in	Pores	<=	931.26	Å	:	0.00050	cm ³ /c
	Area	in	Pores	>	931.26	Å	:	0.094	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.131	m²/g

Started: 2010-08-18 9:26:17 Completed: 2010-08-18 14:45:14 Report Time: 2010-12-22 11:55:20 Sample Mass: 13.6461 g Warm Freespace: 22.4610 cm³

Analysis Adsorptive: N2 Analysis Bath: 77.395 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 65.3565 cm³

Page13

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

A2.13 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the HV sample size fraction 0.5–1 mm (duplicate)

Micromeritics Instrument Corporation						Microme	ritics Instrumer	nt Corporation	
DFT Plus(R) V3.(00 (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.0	0 (ASAP 2020 V	/1.05)	Unit 1	Page 2
Op Sub Sourc	Sample: S0.5-1 erator: mitter: e File: D:\DATA\	2020\EVA\S0.5-1			S Ope Subm Source	ample: S0.5-1 rator: iitter: File: D:\DATA	\2020\EVA\S0.5-1	L	
Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-10-29 11 d: 2010-10-29 15 e: 2010-12-22 11 s: 13.2809 g e: 22.6921 cm ³	1:05:26 Analysi 5:48:56 A 1:54:11 Therma Equ Cc	s Adsorptive: N malysis Bath: 7 1 Correction: N 11. Interval: 1 10 Freespace: 6	12 7.429 K 10 0 s 6.0676 cm ³	Started Completec Report Time Sample Mass Warm Freespace	1: 2010-10-29 1 1: 2010-10-29 1 2: 2010-12-22 1 2: 13.2809 g 2: 22.6921 cm ³	1:05:26 Analy: 5:48:56 1:54:11 Therr E(sis Adsorptive: Analysis Bath: mal Correction: quil. Interval: Cold Freespace:	N2 77.429 K No 10 s 66.0676 cm ³
Por	osity Distributi Model: N Method: Non-ne	on by Original D 12 @ 77K on Carbo gative Regulariz	ensity Function on, Slit Pores ation; No Smoot	al Theory hing	Porc	osity Distribut Model: Model: Method: Non-n	ion by Original N2 @ 77K on Carb egative Regulari	Density Function oon, Slit Pores ization; No Smoot	nal Theory thing
Volu Total Volu An Total An	ume in Pores < ume in Pores <= rea in Pores > rea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00000 cm ² : 0.00047 cm ² : 0.090 m ² : 0.135 m ²	a , , a , a	Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å = 862.45 Å 862.45 Å = 14.83 Å	: 0.00000 cm : 0.00047 cm : 0.090 m ² : 0.135 m ²	\d \d '3\d '3\d
		Pore Size Tab	ole				Pore Size Ta	able	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
$14.83 \\ 15.91 \\ 17.16 \\ 18.59 \\ 20.02 \\ 21.62 \\ 23.41 \\ 25.20 \\ 27.34 \\ 29.49 \\ 31.81 \\ 34.31 \\ 36.99 \\ 40.03 \\ 43.25 \\ 46.64 \\ 50.40 \\ 54.33 \\ 58.80 \\ 63.44 \\ 68.45 \\ 73.99 \\ 79.88 \\ 79.88 \\ 73.99 \\ 79.88 \\ 79.88 \\ 73.99 \\ 79.88 \\ 73.99 \\ 79.88 \\ 79.88 \\ 73.99 \\ 79.88 \\ 79.8$	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00003 0.00003 0.00004	0.00000 0.000000 0.00000 0.00000 0.00000 0.00000000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.004 0.004 0.004 0.005 0.006 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.005 0.006 0.000 0.005 0.008 0.001 0.012 0.012 0.014 0.012 0.012 0.012 0.014	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.	$\begin{array}{c} 200.69\\ 216.60\\ 233.93\\ 252.52\\ 272.71\\ 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\\ 466.79\\ 503.96\\ 544.17\\ 587.60\\ 634.42\\ 684.99\\ 739.68\\ 798.65\\ 862.45 \end{array}$	$\begin{array}{c} 0.00013\\ 0.00013\\ 0.00013\\ 0.00013\\ 0.00015\\ 0.00015\\ 0.00019\\ 0.00023\\ 0.00023\\ 0.00032\\ 0.00032\\ 0.00034\\ 0.00037\\ 0.00034\\ 0.00037\\ 0.00034\\ 0.00034\\ 0.00034\\ 0.00044\\ 0.00045\\ 0.00045\\ 0.00047\\ \end{array}$	0.0000 0.0000 0.0000 0.00002 0.00002 0.00002 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001	$\begin{array}{c} 0.028\\ 0.028\\ 0.028\\ 0.029\\ 0.030\\ 0.031\\ 0.033\\ 0.035\\ 0.035\\ 0.037\\ 0.038\\ 0.040\\ 0.040\\ 0.042\\ 0.042\\ 0.042\\ 0.043\\ 0.043\\ 0.044\\ 0.044\\ 0.044\\ 0.044\\ 0.045\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.$
86.32 93.11 100.61 108.66 117.23 126.53 136.71 147.61 159.41 172.10 185.86	0.00005 0.00005 0.00006 0.00007 0.00007 0.00007 0.00008 0.00009 0.00010 0.00011 0.00012 0.00012	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.016 0.018 0.019 0.020 0.021 0.022 0.023 0.025 0.026 0.028	0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001					
Unit 1

Page 3

Sample: S0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\S0.5-1

 Started:
 2010-10-29
 11:05:26
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-10-29
 15:48:56
 Analysis
 Bath:
 77.429 K

 Report Time:
 2010-12-22
 11:54:10
 Thermal Correction:
 No

 Sample Mass:
 13.2809 g
 Equil. Interval:
 10 s

 Warm Freespace:
 22.6921 cm³
 Cold Freespace:
 66.0676 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00180, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Flessule	(cm ³ /c STP)	(cm ³ /c STP)	(cm ³ /a STD)	Residual
	(Chi /g SIF)	(cm/g Sir)	(Cill /g SIF)	
0.011783670	0.0282	0.0291	-0.0009	-0.031372
0.014515520	0.0291	0.0297	-0.0006	-0.021082
0.017706521	0.0302	0.0304	-0.0002	-0.007838
0.021398440	0.0313	0.0311	0.0002	0.006935
0.025631230	0.0325	0.0318	0.0007	0.021406
0.030442240	0.0338	0.0327	0.0011	0.033252
0.035865448	0.0350	0.0335	0.0014	0.041311
0.041930798	0.0362	0.0345	0.0016	0.044684
0.048663601	0.0373	0.0357	0.0017	0.044780
0.056084011	0.0385	0.0369	0.0016	0.040434
0.064206667	0.0397	0.0384	0.0013	0.032961
0.073040441	0.0410	0.0400	0.0009	0.022766
0.082588248	0.0422	0.0418	0.0004	0.009038
0.092847057	0.0435	0.0437	-0.0002	-0.005183
0.103808001	0.0448	0.0455	-0.0008	-0.016992
0.115456402	0.0461	0.0473	-0.0012	-0.026192
0.127772301	0.0475	0.0490	-0.0015	-0.032084
0.140730694	0.0488	0.0505	-0.0017	-0.034963
0.154301897	0.0502	0.0520	-0.0018	-0.035584
0.168452203	0.0516	0.0534	-0.0018	-0.034391
0.183144197	0.0530	0.0547	-0.0017	-0.031161
0.198337302	0.0545	0.0559	-0.0014	-0.026459
0.213988706	0.0560	0.0572	-0.0012	-0.020816
0.230053306	0.0576	0.0584	-0.0008	-0.014579
0.246484801	0.0592	0.0596	-0.0005	-0.008109
0.263235897	0.0608	0.0609	-0.0001	-0.001766
0.280259013	0.0624	0.0624	0.0001	0.000868
0.297506303	0.0641	0.0637	0.0004	0.006057
0.314930797	0.0658	0.0663	-0.0005	-0.007430
0.332486212	0.0679	0.0677	0.0002	0.002333
0.350127310	0.0700	0.0693	0.0007	0.010117
0.367810607	0.0717	0.0716	0.0001	0.001346
0.385494202	0.0734	0.0733	0.0001	0.001932
0.403138310	0.0752	0.0750	0.0001	0.001798
0.420704991	0.0769	0.0768	0.0001	0.001450
0.438158900	0.0786	0.0785	0.0001	0.001084
0.455466807	0.0803	0.0803	0.0000	-0.000333

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 4

Sample: S0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\S0.5-1

Started:	2010-10-29 11:05:26	Analysis Adsorptive:	NZ
Completed:	2010-10-29 15:48:56	Analysis Bath:	77.429 K
Report Time:	2010-12-22 11:54:11	Thermal Correction:	No
Sample Mass:	13.2809 g	Equil. Interval:	10 s
Warm Freespace:	22.6921 cm ³	Cold Freespace:	66.0676 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00180, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm ³ /g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.472598106	0.0820	0.0820	0.0001	0.000612
0.489524394	0.0838	0.0836	0.0002	0.002472
0.506219923	0.0856	0.0856	0.0000	-0.000444
0.522661209	0.0874	0.0871	0.0002	0.002643
0.538827300	0.0892	0.0895	-0.0003	-0.003400
0.554699600	0.0910	0.0909	0.0000	0.000452
0.570261598	0.0928	0.0924	0.0004	0.004703
0.585499227	0.0948	0.0949	-0.0002	-0.001600
0.600400090	0.0967	0.0964	0.0003	0.003045
0.614954293	0.0986	0.0991	-0.0005	-0.004991
0.629153311	0.1007	0.1007	0.0000	0.000455
0.642990828	0.1029	0.1023	0.0006	0.005667
0.656461716	0.1050	0.1052	-0.0002	-0.002240
0.669562697	0.1073	0.1069	0.0003	0.003207
0.682291925	0.1097	0.1104	-0.0007	-0.006301
0.694648683	0.1121	0.1121	0.0000	0.000186
0.706633508	0.1146	0.1139	0.0008	0.006753
0.718248010	0.1173	0.1178	-0.0005	-0.004066
0.729494929	0.1200	0.1194	0.0006	0.004688
0.740377605	0.1228	0.1233	-0.0006	-0.004490
0.750900388	0.1256	0.1249	0.0006	0.004979
0.761068285	0.1283	0.1289	-0.0006	-0.004338
0.770887017	0.1310	0.1304	0.0006	0.004745
0.780362606	0.1339	0.1353	-0.0014	-0.010543
0.789501607	0.1368	0.1368	0.0000	0.000133
0.798311174	0.1398	0.1383	0.0015	0.010443
0.806798697	0.1427	0.1433	-0.0006	-0.004343
0.814971626	0.1456	0.1449	0.0007	0.004598
0.822837889	0.1485	0.1492	-0.0007	-0.004973
0.830405474	0.1517	0.1509	0.0008	0.005158
0.837682605	0.1550	0.1558	-0.0008	-0.005195
0.844677329	0.1584	0.1575	0.0008	0.005329
0.851397991	0.161/	0.1625	-0.0007	-0.004629
0.85/852995	0.1650	U.1642	0.0008	0.004/45
0.864050388	0.1712	U.1688	-0.0008	-0.004511
0.8699985/4	0.1/13	0.1705	0.0008	0.004605
0.8/5/05481	0.1750	U.1762	-0.0012	-0.007000

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 6
Sam Opera Submit Source F	mple: S0.5-1 ator: ster: File: D:\DATA\2020\EVA	\s0.5-1	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-10-29 11:05:26 2010-10-29 15:48:56 2010-12-22 11:54:11 13.2809 g 22.6921 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.429 K No 10 s 66.0676 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00180, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.4305	0.4280	0.0025	0.005825
0.979859591	0.4371	0.4393	-0.0022	-0.005120
0.980795979	0.4434	0.4412	0.0022	0.005052
0.981689274	0.4494	0.4494	0.0000	0.000001
0.982541502	0.4552	0.4570	-0.0018	-0.003991
0.983354270	0.4607	0.4588	0.0018	0.003947
0.984129488	0.4659	0.4674	-0.0015	-0.003192
0.984869003	0.4709	0.4694	0.0015	0.003160

Micromeritics Instrument Corporation

Page 5

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: S0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\S0.5-1

 Started:
 2010-10-29
 11:05:26
 Analysis Adsorptive:
 N2

 Completed:
 2010-10-29
 15:48:56
 Analysis Bath:
 77.429 K

 Report Time:
 2010-12-22
 11:54:11
 Thermal Correction: No

 Sample Mass:
 13.2809 g
 Equil. Interval: 10 s

 Warm Freespace:
 22.6921 cm³
 Cold Freespace: 66.0676 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00180, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.881179392	0.1790	0.1778	0.0013	0.006999
0.886428118	0.1833	0.1847	-0.0014	-0.007587
0.891459525	0.1876	0.1862	0.0014	0.007546
0.896281302	0.1920	0.1933	-0.0013	-0.006963
0.900900900	0.1962	0.1948	0.0014	0.006926
0.905325770	0.2003	0.2014	-0.0011	-0.005672
0.909563184	0.2042	0.2030	0.0012	0.005659
0.913620114	0.2079	0.2084	-0.0005	-0.002639
0.917503417	0.2107	0.2101	0.0006	0.002679
0.921219707	0.2125	0.2119	0.0005	0.002561
0.924775481	0.2138	0.2137	0.0001	0.000501
0.928177178	0.2151	0.2154	-0.0003	-0.001440
0.931430817	0.2169	0.2172	-0.0003	-0.001477
0.934542298	0.2192	0.2200	-0.0008	-0.003477
0.937517405	0.2224	0.2217	0.0008	0.003482
0.940361619	0.2266	0.2284	-0.0018	-0.007869
0.943080306	0.2318	0.2300	0.0018	0.007748
0.945678592	0.2381	0.2409	-0.0028	-0.011962
0.948161721	0.2454	0.2426	0.0029	0.011658
0.950534225	0.2538	0.2538	0.0000	0.000029
0.952800930	0.2632	0.2675	-0.0043	-0.016266
0.954966187	0.2735	0.2692	0.0043	0.015700
0.957034409	0.2847	0.2898	-0.0051	-0.017830
0.959009588	0.2967	0.2916	0.0051	0.017153
0.960896015	0.3093	0.3144	-0.0052	-0.016683
0.962697208	0.3214	0.3163	0.0052	0.016088
0.964416981	0.3330	0.3377	-0.0047	-0.014036
0.966058910	0.3441	0.3394	0.0047	0.013611
0.967626274	0.3546	0.3546	0.0000	0.000007
0.969122529	0.3647	0.3687	-0.0040	-0.010932
0.970550597	0.3744	0.3704	0.0040	0.010667
0.971913695	0.3835	0.3871	-0.0035	-0.009184
0.973214507	0.3923	0.3888	0.0035	0.008992
0.974455774	0.4007	0.4037	-0.0031	-0.007631
0.975640416	0.4087	0.4056	0.0031	0.007493
0.976770699	0.4163	0.4163	0.0000	0.000002
0.977849126	0.4236	0.4261	-0.0025	-0.005913

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Sample: S0.5-1 Operator: Submitter:

Source File: D:\DATA\2020\EVA\S0.5-1

Started: 2010-10-29 11:05:26 Analysis Adsorptive: N2 Completed: 2010-10-29 15:48:56 Report Time: 2010-12-22 11:54:11 Sample Mass: 13.2809 g Warm Freespace: 22.6921 cm³ Cold Freespace: 66.0

Analysis Bath: 77.429 K Equil. Interval: 10 s Cold Freespace: 66.0676 cm³

Unit 1

Page 7

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Å	:	0.00000 cm³/g
Total	Volume	in	Pores	<=	862.45 Å	:	0.00047 cm³/g
	Area	in	Pores	>	862.45 Å	:	0.090 m²/g
Tota	al Area	in	Pores	>=	14.83 Å	:	0.135 m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 8 Sample: S0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\S0.5-1 Started: 2010-10-29 11:05:26 Analysis Adsorptive: N2 Completed: 2010-10-29 15:48:56 Analysis Bath: 77 Analysis Bath: 77.429 K Report Time: 2010-12-22 11:54:11 Thermal Correction: No Sample Mass: 13.2809 g Warm Freespace: 22.6921 cm³ Equil. Interval: 10 s Cold Freespace: 66.0676 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00000 cm³/g 862.45 Å : 0.00047 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.090 m²/g : Total Area in Pores >= 14.83 Å : 0.135 m²/q

188

DFT Plus(R) V	3.00 (ASA	AP 2020 V1.05)		Unit 1		Page	9
S	Sample: Operator: Submitter:	s0.5-1					
Sou	rce File:	D:\DATA\2020\B	:VA\S0.5−1				
Star	ted: 2010	-10-29 11:05:20	5 Analysis	Adsorptive:	N2		

ocar coa.	2010 10 20 11.00.20	marysrs maserperve.	142
Completed:	2010-10-29 15:48:56	Analysis Bath:	77.429 K
Report Time:	2010-12-22 11:54:11	Thermal Correction:	No
Sample Mass:	13.2809 g	Equil. Interval:	10 s
Warm Freespace:	22.6921 cm ³	Cold Freespace:	66.0676 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Å	:	0.00000 cm³/g
Total	Volume	in	Pores	<=	862.45 Ă	:	0.00047 cm³/g
	Area	in	Pores	>	862.45 Å	:	0.090 m²/g
Tota	al Area	in	Pores	$\geq =$	14.83 Å	:	0.135 m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00 (ASAP 2020 V1.05)	Unit 1	Page10
Sample: S0.5-1		
Operator:		
Submitter:		
Source File: D:\DATA\2020\EVA	\S0.5-1	
Started: 2010-10-29 11:05:26	Analysis Adsorptive:	N2
Completed: 2010-10-29 15:48:56	Analysis Bath:	77.429 K
Report Time: 2010-12-22 11:54:11	Thermal Correction:	No
Sample Mass: 13.2809 g	Equil. Interval:	10 s
Warm Freespace: 22.6921 cm ³	Cold Freespace:	66.0676 cm ³
Porosity Distribution by Or	iginal Density Functio	onal Theory
		-

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00000	Cm ³ /d
Total	Volume	in	Pores	<=	862.45	Å	:	0.00047	Cm ³ /
	Area	in	Pores	>	862.45	Å	:	0.090	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.135	m²/q

Page11

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Provide a second stress of the second stress of th

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Ă	:	0.00000 cm3/g	
Total	Volume	in	Pores	<=	862.45 Å	:	0.00047 cm3/g	
	Area	in	Pores	>	862.45 Å	:	0.090 m²/g	
Tota	al Area	in	Pores	>=	14.83 Å	:	0.135 m²/g	

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page12 Sample: S0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\S0.5-1 Started: 2010-10-29 11:05:26 Analysis Adsorptive: N2 Completed: 2010-10-29 15:48:56 Analysis Bath: 77 Analysis Bath: 77.429 K Report Time: 2010-12-22 11:54:11 Thermal Correction: No Sample Mass: 13.2809 g Warm Freespace: 22.6921 cm³ Equil. Interval: 10 s Cold Freespace: 66.0676 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00000 cm³/g 862.45 Å : 0.00047 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.090 m²/g : Total Area in Pores >= 14.83 Å : 0.135 m²/q Differential Pore Volume vs. Pore Width + Differential Pore Volume 0.0011

Micromeritics Instrument Corporation

0.00-

0.0

0.1

0.2

0.3

0.4

0.5

Relative Pressure (P/Po)

0.6

0.7

0.8

0.9

1.0

A2.14 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the HV sample size fraction 1-2 mm

Micromeritics Instrument Corporation

0.00001 0.00001

0.028

0.001

0.00012

185.86

Micromeritics Instrument Corporation

DFT Plus(R) V3.0	00 (ASAP 2020 V	L.05)	Unit 1	Page 1	DFT Plus(R) V3.()0 (ASAP 2020 V	71.05)	Unit 1	Page 2
Ope Subi Source	Sample: STONE1 erator: mitter: e File: D:\DATA\	2020\EVA\STONE1.	SMP		Op Subi Source	Sample: STONE1 erator: nitter: e File: D:\DATA'	\2020\EVA\STONE1	.SMP	
Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-06-30 9: d: 2010-06-30 17 e: 2010-12-22 11 s: 15.0799 g e: 22.9868 cm ³	46:22 Analysi :43:41 A :54:40 Therma Equ Co	s Adsorptive: 1 nalysis Bath: 1 Correction: 1 il. Interval: 1d Freespace:	N2 77.454 K No 10 s 59.1966 cm ³	Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-06-30 9 d: 2010-06-30 1 e: 2010-12-22 1 s: 15.0799 g e: 22.9868 cm ³	:46:22 Analys 7:43:41 1:54:40 Therm Eq C	is Adsorptive: Analysis Bath: al Correction: uil. Interval: old Freespace:	N2 77.454 K No 10 s 69.1966 cm³
Por	osity Distributi Model: N Method: Non-ne	on by Original D 2 @ 77K on Carbo gative Regulariz	ensity Functior n, Slit Pores ation; No Smoot	al Theory hing	Por	osity Distribut Model: M Method: Non-ne	ion by Original N2 @ 77K on Carb egative Regulari	Density Function on, Slit Pores zation; No Smoot	nal Theory Thing
Volu Total Volu An Total An	ume in Pores < ume in Pores <= rea in Pores > rea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00003 cm : 0.00053 cm : 0.036 m ² : 0.083 m ²	³/g ³/g /g	Volu Total Volu An Total An	ume in Pores < ume in Pores <= rea in Pores > rea in Pores >=	14.83 Å = 862.45 Å 862.45 Å = 14.83 Å	: 0.00003 cm : 0.00053 cm : 0.036 m ² : 0.083 m ²	\d ₃\d ₃\d
		Pore Size Tab	le				Pore Size Ta	ble	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
$\begin{array}{c} 14.83\\ 15.91\\ 17.16\\ 18.59\\ 20.02\\ 21.62\\ 23.41\\ 25.20\\ 27.34\\ 29.49\\ 31.81\\ 34.31\\ 36.99\\ 40.03\\ 43.25\\ 46.64\\ 50.40\\ 54.33\\ 58.80\\ 63.44\\ 68.45\\ 73.99\end{array}$	$\begin{array}{c} 0.00000\\ 0.0001\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.00001\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.00001\\ 0.00001\\ 0.00002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.00001\\ 0.00002\\ 0.0002\\ 0.0002\\ 0.0002\\ 0.0001\\ 0.0002\\ $	0.00000 0.00000	0.005 0.007	0.005 0.002 0.000 0.001 0.001 0.001 0.001	$\begin{array}{c} 200.69\\ 216.60\\ 233.93\\ 252.52\\ 272.71\\ 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\\ 466.79\\ 503.96\\ 544.17\\ 587.60\\ 634.42\\ 664.99\\ 739.68\\ 798.65\\ 862.45 \end{array}$	$\begin{array}{c} 0.00013\\ 0.00014\\ 0.00015\\ 0.00017\\ 0.00019\\ 0.00022\\ 0.00022\\ 0.00025\\ 0.00025\\ 0.00035\\ 0.00035\\ 0.00037\\ 0.00037\\ 0.00032\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00043\\ 0.00045\\ 0.00049\\ 0.00049\\ 0.00048\\ 0.00049\\ 0.00048\\ 0.00049\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.00050\\ 0.0005\\ 0.0$	0.00000 0.00001 0.00001 0.00002 0.00002 0.00004 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001	0.028 0.029 0.029 0.030 0.032 0.035 0.037 0.039 0.040 0.041 0.042 0.043 0.044 0.045 0.045 0.046 0.046 0.047	$\begin{array}{c} 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.$
73.99 79.88 86.32 93.11 100.61 108.66 117.23 126.53 136.71 147.61 159.41 172.10	$\begin{array}{c} 0.00002\\ 0.00002\\ 0.00003\\ 0.00004\\ 0.00005\\ 0.00005\\ 0.00005\\ 0.00006\\ 0.00007\\ 0.00008\\ 0.00009\\ 0.00009\\ 0.00012\\ \end{array}$	0.00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.011 0.012 0.014 0.015 0.017 0.018 0.020 0.021 0.022 0.024 0.026 0.027	0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002					

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 4
Sa Oper Submi Source	mple: STONE1 ator: tter: File: D:\DATA\2020\EVA	\STONE1.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-06-30 9:46:22 2010-06-30 17:43:41 2010-12-22 11:54:40 15.0799 g 22.9868 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.454 K No 10 s 69.1966 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00187, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0 472598106	0 0713	0 0717	-0 0005	-0 006502
0 489524394	0 0722	0 0727	-0.0005	-0.006258
0 506219923	0 0732	0 0736	-0.0004	-0.005684
0.522661209	0.0741	0.0745	-0.0004	-0.004822
0.538827300	0.0751	0.0754	-0.0003	-0.003820
0.554699600	0.0760	0.0762	-0.0002	-0.002884
0.570261598	0.0769	0.0771	-0.0001	-0.001785
0.585499227	0.0779	0.0779	0.0000	-0.000531
0.600400090	0.0789	0.0788	0.0000	0.000580
0.614954293	0.0799	0.0801	-0.0002	-0.002545
0.629153311	0.0811	0.0810	0.0000	0.000492
0.642990828	0.0823	0.0820	0.0003	0.003811
0.656461716	0.0835	0.0836	-0.0001	-0.001319
0.669562697	0.0849	0.0846	0.0002	0.002747
0.682291925	0.0863	0.0867	-0.0004	-0.004729
0.694648683	0.0878	0.0878	0.0000	0.000402
0.706633508	0.0893	0.0888	0.0005	0.005439
0.718248010	0.0909	0.0912	-0.0003	-0.003491
0.729494929	0.0927	0.0923	0.0004	0.004471
0.740377605	0.0945	0.0949	-0.0004	-0.004387
0.750900388	0.0963	0.0958	0.0005	0.005169
0.761068285	0.0982	0.0987	-0.0005	-0.004779
0.770887017	0.1002	0.0996	0.0005	0.005425
0.780362606	0.1024	0.1039	-0.0015	-0.014967
0.789501607	0.1048	0.1048	0.0000	-0.000059
0.798311174	0.1073	0.1057	0.0016	0.015043
0.806798697	0.1098	0.1106	-0.0007	-0.006807
0.814971626	0.1123	0.1115	0.0008	0.007167
0.822837889	0.1148	0.1157	-0.0009	-0.007692
0.830405474	0.1176	0.1166	0.0009	0.007942
0.837682605	0.1205	0.1215	-0.0010	-0.008055
0.844677329	0.1235	0.1224	0.0010	0.008224
0.851397991	0.1264	0.1273	-0.0009	-0.007381
0.857852995	0.1293	0.1283	0.0010	0.007523
0.864050388	0.1320	0.1330	-0.0010	-0.007289
0.869998574	0.1349	0.1339	0.0010	0.007396
0.875705481	0.1383	0.1398	-0.0014	-0.010330

Micromeritics Instrument Corporation

Page 3

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE1 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE1.SMP

Started:	2010-06-30	9:46:22	Analysis	Adsorptive:	N2	
Completed:	2010-06-30	17:43:41	Ana	lysis Bath:	77.454	K
Report Time:	2010-12-22	11:54:40	Thermal	Correction:	No	
Sample Mass:	15.0799 g		Equil	. Interval:	10 s	
Warm Freespace:	22.9868 cm 3		Cold	l Freespace:	69.1966	CM 3

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00187, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm ³ /g STP)	(cm³/g STP)	(cm³/g STP)	
0.011/836/0	0.0392	0.0398	-0.0006	-0.016112
0.014515520	0.0400	0.0403	-0.0003	-0.006320
0.017706521	0.0410	0.0417	-0.0007	-0.017374
0.021398440	0.0421	0.0423	-0.0002	-0.004268
0.025631230	0.0432	0.0428	0.0004	0.008674
0.030442240	0.0442	0.0438	0.0004	0.009489
0.035865448	0.0452	0.0444	0.0008	0.017671
0.041930798	0.0462	0.0451	0.0011	0.024207
0.048663601	0.0472	0.0458	0.0014	0.029828
0.056084011	0.0482	0.0466	0.0016	0.032965
0.064206667	0.0490	0.0475	0.0016	0.031930
0.073040441	0.0499	0.0485	0.0014	0.028354
0.082588248	0.0507	0.0495	0.0012	0.023653
0.092847057	0.0516	0.0506	0.0009	0.018039
0.103808001	0.0523	0.0517	0.0005	0.010412
0.115456402	0.0529	0.0528	0.0001	0.001702
0.127772301	0.0534	0.0538	-0.0003	-0.005985
0.140730694	0.0540	0.0547	-0.0006	-0.011940
0.154301897	0.0547	0.0555	-0.0009	-0.015608
0.168452203	0.0554	0.0564	-0.0009	-0.016698
0.183144197	0.0562	0.0571	-0.0009	-0.016232
0.198337302	0.0570	0.0579	-0.0009	-0.014908
0.213988706	0.0578	0.0586	-0.0008	-0.013367
0.230053306	0.0586	0.0593	-0.0007	-0.011645
0.246484801	0.0595	0.0600	-0.0006	-0.009650
0.263235897	0.0603	0.0608	-0.0004	-0.007344
0.280259013	0.0612	0.0615	-0.0003	-0.004951
0.297506303	0.0621	0.0623	-0.0002	-0.002722
0.314930797	0.0630	0.0631	0.0000	-0.000772
0.332486212	0.0640	0.0639	0.0001	0.001056
0.350127310	0.0649	0.0648	0.0001	0.002138
0.367810607	0.0659	0.0657	0.0001	0.001701
0.385494202	0.0667	0.0667	0.0000	-0.000256
0.403138310	0.0676	0.0677	-0.0002	-0.002433
0.420704991	0.0685	0.0687	-0.0003	-0.004114
0.438158900	0.0694	0.0698	-0.0004	-0.005505
0.455466807	0.0703	0.0708	-0.0004	-0.006303

Unit 1

Sample: STONE1 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE1.SMP

 Started:
 2010-06-30
 9:46:22
 Analysis Adsorptive:
 N2

 Completed:
 2010-06-30
 17:43:41
 Analysis Bath:
 77.454 K

 Report Time:
 2010-12-22
 11:54:40
 Thermal Correction: No

 Sample Mass:
 15.0799 g
 Equil. Interval:
 10 s

 Warm Freespace:
 22.9868 cm³
 Cold Freespace:
 69.1966 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00187, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0 881179392	0 1421	0 1406	0 0015	0 010284
0 886428118	0 1461	0 1477	-0.0016	-0.010976
0 891459525	0 1501	0 1485	0.0016	0 010872
0.896281302	0.1542	0.1558	-0.0016	-0.010194
0.900900900	0.1582	0.1566	0.0016	0.010098
0.905325770	0.1621	0.1635	-0.0014	-0.008683
0.909563184	0.1658	0.1643	0.0014	0.008626
0.913620114	0.1692	0.1701	-0.0009	-0.005160
0.917503417	0.1719	0.1710	0.0009	0.005190
0.921219707	0.1738	0.1741	-0.0003	-0.001903
0.924775481	0.1754	0.1750	0.0003	0.001975
0.928177178	0.1771	0.1777	-0.0006	-0.003440
0.931430817	0.1792	0.1786	0.0006	0.003481
0.934542298	0.1820	0.1833	-0.0013	-0.007408
0.937517405	0.1855	0.1842	0.0014	0.007343
0.940361619	0.1900	0.1923	-0.0023	-0.012045
0.943080306	0.1954	0.1931	0.0023	0.011786
0.945678592	0.2018	0.2051	-0.0033	-0.016172
0.948161721	0.2092	0.2059	0.0033	0.015673
0.950534225	0.2174	0.2174	0.0000	0.000036
0.952800930	0.2266	0.2312	-0.0046	-0.020218
0.954966187	0.2367	0.2321	0.0046	0.019421
0.957034409	0.2475	0.2528	-0.0053	-0.021458
0.959009588	0.2590	0.2536	0.0053	0.020558
0.960896015	0.2706	0.2758	-0.0051	-0.019012
0.962697208	0.2818	0.2766	0.0052	0.018303
0.964416981	0.2924	0.2971	-0.0047	-0.016022
0.966058910	0.3025	0.2979	0.0047	0.015516
0.967626274	0.3122	0.3122	0.0000	0.00008
0.969122529	0.3215	0.3255	-0.0040	-0.012595
0.970550597	0.3303	0.3263	0.0041	0.012278
0.971913695	0.3387	0.3424	-0.0036	-0.010764
0.973214507	0.3468	0.3431	0.0037	0.010531
0.974455774	0.3545	0.3577	-0.0033	-0.009202
0.975640416	0.3618	0.3585	0.0033	0.009029
0.976770699	0.3688	0.3688	0.0000	0.000002
0.977849126	0.3755	0.3782	-0.0028	-0.007393

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 6

Sample: STONE1 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE1.SMP Started: 2010-06-30 9:46:22 Analysis Adsorptive: N2

ocar cou.	2010 00 30 3.40.22	marysrs masorperve.	142
Completed:	2010-06-30 17:43:41	Analysis Bath:	77.454 K
Report Time:	2010-12-22 11:54:40	Thermal Correction:	No
Sample Mass:	15.0799 g	Equil. Interval:	10 s
Warm Freespace:	22.9868 cm3	Cold Freespace:	69.1966 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00187, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.3818	0.3790	0.0028	0.007279
0.979859591	0.3879	0.3904	-0.0025	-0.006477
0.980795979	0.3937	0.3912	0.0025	0.006388
0.981689274	0.3992	0.3992	0.0000	0.000001
0.982541502	0.4045	0.4066	-0.0021	-0.005274
0.983354270	0.4095	0.4074	0.0021	0.005213
0.984129488	0.4143	0.4162	-0.0019	-0.004528
0.984869003	0.4189	0.4170	0.0019	0.004482

DFT Plus(R) V3.00 (ASAP 2020)	V1.05) Unit 1	Page	. 7
Sample: STONE1 Operator: Submitter:			
Source File: D:\DATA	\2020\EVA\STONE1.SMP		
Started: 2010-06-30 9	:46:22 Analysis Adsorptive:	N2	

Completed:	2010-06-30 17:43:41	Analysis Bath:	77.454 K
Report Time:	2010-12-22 11:54:41	Thermal Correction:	No
Sample Mass:	15.0799 g	Equil. Interval:	10 s
Warm Freespace:	22.9868 cm3	Cold Freespace:	69.1966 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

T-+-1	Vo	lume	in	Pores	<	14.83	Å	:	0.00003	cm ³ /c
lotal	vo	⊥ume	ın	Pores	<=	862.45	A	:	0.00053	cm - / c
		Area	in	Pores	>	862.45	Å	:	0.036	m²/g
Tota	al	Area	in	Pores	>=	14.83	Å	:	0.083	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 8
San Opera Submit	nple: STONE1 ator: tter:	\ CTONE1_ CMD	
Source i	IIE: D:\DAIA\2020\EVA	\SIONEL.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-06-30 9:46:22 2010-06-30 17:43:41 2010-12-22 11:54:41 15.0799 g 22.9868 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.454 K No 10 s 69.1966 cm ³
Poros	ity Distribution by Or Model: N2 @ 77K Method: Non-negative R	iginal Density Functio on Carbon, Slit Pores eqularization; No Smoo	onal Theory othing

Volume	in	Pores	<	14.83	Å	:	0.00003	cm³/c
Total Volume	in	Pores	<=	862.45	Å	:	0.00053	cm ³ /c
Area	in	Pores	>	862.45	Å	:	0.036	m²/g
Total Area	in	Pores	>=	14.83	Å	:	0.083	m²/g

Sample: STONE1 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE1.SMP

Completed: 2010-06-30 17:43:41 Report Time: 2010-12-22 11:54:41 Thermal Correction: No Sample Mass: 15.0799 g Equil. Interval: 10 s Warm Freespace: 22.9868 cm³ Cold Freespace: 69.1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Started: 2010-06-30 9:46:22 Analysis Adsorptive: N2 Analysis Bath: 77.454 K Equil. Interval: 10 s Cold Freespace: 69.1966 cm³

Unit 1

Page 9

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Å	: .	0.00003	cm³/g
Total	Volume	in	Pores	<=	862.45 Å	: 1	0.00053	cm³/g
	Area	in	Pores	>	862.45 Å	: 1	0.036	m²/g
Tota	al Area	in	Pores	>=	14.83 Å	: /	0.083	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page10 Sample: STONE1 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE1.SMP Started: 2010-06-30 9:46:22 Analysis Adsorptive: N2 Completed: 2010-06-30 17:43:41 Analysis Bath: 77.454 K Report Time: 2010-12-22 11:54:41 Thermal Correction: No Sample Mass: 15.0799 g Warm Freespace: 22.9868 cm³ Equil. Interval: 10 s Cold Freespace: 69.1966 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00003 cm³/g 862.45 Å : 0.00053 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.036 m²/g : Total Area in Pores >= 14.83 Å : 0.083 m²/q

196

	Micromeritics 1	Instrument Corpora	tion	
DFT Plus(R) V3.00 (AS	AP 2020 V1.05)	Unit	1	Page11
Sample: Operator: Submitter: Source File:	STONE1 D:\DATA\2020\EV	VA\STONE1.SMP		
Started: 201 Completed: 2010 Report Time: 2010 Sample Mass: 15. Warm Freespace: 22.9	D-06-30 9:46:22 D-06-30 17:43:41 D-12-22 11:54:41 D799 g B868 cm ³	Analysis Adsorp Analysis Thermal Correc Equil. Inte Cold Frees	tive: N2 Bath: 77.454 tion: No rval: 10 s pace: 69.1966	K Cm ³
Porosity I Metho	Distribution by C Model: N2 @ 77F od: Non-negative	Driginal Density F (on Carbon, Slit Regularization; N	unctional The Pores o Smoothing	ory
Volume in Total Volume in Area in Total Area in	Pores < 1 Pores <= 86 Pores > 86 Pores >= 1	4.83 Å : 0.00 2.45 Å : 0.00 2.45 Å : 0 4.83 Å : 0)003 cm³/g)053 cm³/g .036 m²/g .083 m²/g	
0.000040 + Increme	Increme ental Pore Volume	ental Pore Volume vs. P	ore Width	
0.000035-			+	
0.000030- දුන				
ළ මූ 0.000025-				\uparrow
a.0.000020			\/\/ \/	
E 0.000015-				Ψ.
Incre		/ /**	1	₩¥

1e+02

Pore Width (Angstroms)

1e+03

Micromeritics Instrument Corporation

DFT Plus(R) V3.00 (ASAP 2020 V1.05)	Unit 1	Page12
Sample: STONE1 Operator: Submitter:		
Source File: D:\DATA\2020\EVA	\STONE1.SMP	
Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-12-22 11:54:41 Sample Mass: 15.0799 g Warm Freespace: 22.9868 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.454 K No 10 s 69.1966 cm ³
Porosity Distribution by Or Model: N2 @ 77K Method: Non-negative R	iginal Density Functic on Carbon, Slit Pores egularization; No Smoo	onal Theory othing

	Volume	in	Pores	<	14.83	Ă	:	0.00003	cm ³ /q
Total	Volume	in	Pores	<=	862.45	Å	:	0.00053	cm ³ /q
	Area	in	Pores	>	862.45	Å	:	0.036	m²/g
Tota	l Area	in	Pores	>=	14.83	Å	:	0.083	m²/q

0.000010-

0.000005-

0.000000-

t

Started: 2010-06-30 9:46:22 Completed: 2010-06-30 17:43:41 Report Time: 2010-12-22 11:54:41 Thermal Correction: No Sample Mass: 15.0799 g Equil. Interval: 10 s Warm Freespace: 22.9868 cm³ Cold Freespace: 69.1

Analysis Adsorptive: N2 Analysis Bath: 77.454 K Equil. Interval: 10 s Cold Freespace: 69.1966 cm³

Page13

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

A2.15 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the HV sample size fraction 2–3 mm

	Micromeritics Instrument Corporation			Micromeritics Instrument Corporation					
DFT Plus(R) V3.0	00 (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.0	0 (ASAP 2020 V	1.05)	Unit 1	Page 2
Op Sub Source	Sample: STONE5_2 erator: mitter: e File: D:\DATA\	2 \2020\EVA\STONE5_:	2.SMP		S Ope Subm Source	ample: STONE5_2 rator: itter: File: D:\DATA\	2 \2020\EVA\STONE	5_2.SMP	
Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-08-19 9 d: 2010-08-19 1 e: 2010-12-22 1 s: 13.4041 g e: 22.5588 cm ³	:30:17 Analysi 4:59:06 A 1:55:55 Therma Equ Co	s Adsorptive: Ni nalysis Bath: 7 l Correction: No il. Interval: 1 ld Freespace: 6	2 7.434 K 0 s 5.2999 cm ³	Started Completec Report Time Sample Mass Warm Freespace	: 2010-08-19 9: : 2010-08-19 14 : 2010-12-22 11 : 13.4041 g : 22.5588 cm ³	:30:17 Analy 4:59:06 1:55:55 Thern E	sis Adsorptive: Analysis Bath: mal Correction: quil. Interval: Cold Freespace:	N2 77.434 K No 10 s 65.2999 cm ³
Por	osity Distribut Model: N Method: Non-ne	ion by Original D 12 @ 77K on Carbo egative Regulariz	ensity Functiona n, Slit Pores ation; No Smooth	al Theory hing	Porc	osity Distributi Model: M Method: Non-ne	ion by Original N2 @ 77K on Carl egative Regular	Density Function bon, Slit Pores ization; No Smoo	nal Theory thing
Volu Total Volu An Total An	ume in Pores < ume in Pores <= rea in Pores > rea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00001 cm ³ : 0.00042 cm ³ : 0.104 m ² / : 0.135 m ² /	a a \d	Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00001 cm : 0.00042 cm : 0.104 m ² : 0.135 m ²	ı³/g ı³/g ¦∕g
		Pore Size Tab	le				Pore Size T	able	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
$14.83 \\ 15.91 \\ 17.16 \\ 18.59 \\ 20.02 \\ 21.62 \\ 23.41 \\ 25.20 \\ 27.34 \\ 29.49 \\ 31.81 \\ 34.31 \\ 36.99 \\ 40.03 \\ 43.25 \\ 46.64 \\ 50.40 \\ 54.33 \\ 58.80 \\ 63.44 \\ 68.45 \\ 73.99 \\ 79.88 \\ 86.32 \\ 93.11 \\ 100.61 \\ 100.61 \\ 100.61 \\ 100.02 \\$	(cm / g) 0.00000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002	(cm / g) 0.000000 0.00000000	(m*/g) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.005 0.005 0.003 0.005 0.007 0.005 0.05	(m-7g) 0.000 0.001 0.001 0.001 0.001 0.001	$\begin{array}{c} 200.69\\ 216.60\\ 233.93\\ 252.52\\ 272.71\\ 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\\ 466.79\\ 503.96\\ 544.17\\ 587.60\\ 634.42\\ 684.99\\ 739.68\\ 798.65\\ 862.45 \end{array}$	0.00008 0.00008 0.00008 0.00011 0.00013 0.00015 0.00015 0.00022 0.00025 0.00027 0.00027 0.00027 0.00027 0.00032 0.00032 0.00034 0.00035 0.00035 0.00039 0.00039 0.00040 0.00041	(cm)/g) 0.00000 0.00000 0.00001 0.00002 0.00002 0.00003 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001	(m / g) 0.015 0.015 0.016 0.017 0.018 0.020 0.022 0.024 0.025 0.026 0.027 0.028 0.029 0.029 0.029 0.029 0.029 0.030 0.030 0.031 0.031	(m-79) 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
108.66 117.23 126.53 136.71 147.61 159.41 172.10 185.86	0.00003 0.00004 0.00004 0.00005 0.00006 0.00007 0.00008 0.00008	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.008 0.009 0.010 0.011 0.012 0.014 0.015 0.015	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001					

Unit 1

Analysis Bath: 77.434 K

Equil. Interval: 10 s Cold Freespace: 65.2999 cm³

Page 3

Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP

Started: 2010-08-19 9:30:17 Analysis Adsorptive: N2 Completed: 2010-08-19 14:59:06 Analysis Bath: 77. Report Time: 2010-12-22 11:55:55 Thermal Correction: No Sample Mass: 13.4041 g Equil. Interval: 10 s Warm Freespace: 22.5588 cm³ Cold Freespace: 65.2

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00172, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(Cm ³ /g SIP)	(Cm ³ /g SIP)	(cm³/g SIP)	
0.011783670	0.0397	0.0405	-0.0008	-0.019891
0.014515520	0.0407	0.0412	-0.0005	-0.011919
0.017706521	0.0418	0.0419	-0.0001	-0.002804
0.021398440	0.0431	0.0427	0.0004	0.008917
0.025631230	0.0443	0.0434	0.0009	0.020073
0.030442240	0.0456	0.0443	0.0013	0.028084
0.035865448	0.0467	0.0452	0.0015	0.032966
0.041930798	0.0479	0.0462	0.0017	0.035865
0.048663601	0.0492	0.0473	0.0018	0.037488
0.056084011	0.0505	0.0486	0.0019	0.037002
0.064206667	0.0518	0.0501	0.0017	0.031892
0.073040441	0.0530	0.0518	0.0012	0.023002
0.082588248	0.0542	0.0536	0.0007	0.012237
0.092847057	0.0555	0.0554	0.0001	0.001909
0.103808001	0.0569	0.0573	-0.0004	-0.006490
0.115456402	0.0582	0.0591	-0.0008	-0.014073
0.127772301	0.0595	0.0607	-0.0012	-0.020231
0.140730694	0.0608	0.0623	-0.0015	-0.024550
0.154301897	0.0621	0.0638	-0.0017	-0.026936
0.168452203	0.0634	0.0651	-0.0017	-0.027298
0.183144197	0.0648	0.0665	-0.0017	-0.025919
0.198337302	0.0662	0.0677	-0.0015	-0.023160
0.213988706	0.0677	0.0690	-0.0013	-0.019340
0.230053306	0.0692	0.0702	-0.0010	-0.014892
0.246484801	0.0707	0.0714	-0.0007	-0.010158
0.263235897	0.0723	0.0727	-0.0004	-0.005415
0.280259013	0.0739	0.0740	-0.0001	-0.000928
0.297506303	0.0755	0.0753	0.0002	0.003058
0.314930797	0.0772	0.0772	0.0000	-0.000473
0.332486212	0.0788	0.0786	0.0002	0.001916
0.350127310	0.0805	0.0802	0.0003	0.003453
0.367810607	0.0821	0.0818	0.0004	0.004314
0.385494202	0.0838	0.0835	0.0004	0.004328
0.403138310	0.0855	0.0852	0.0003	0.003641
0.420704991	0.0872	0.0870	0.0002	0.002565
0.438158900	0.0889	0.0888	0.0001	0.001460
0.455466807	0.0906	0.0905	0.0001	0.000560

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 4

Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP Started: 2010-08-19 9:30:17 Analysis Adsorptive: N2

Juar Leu.	2010-00-19 9.30.17	Analysis Ausorpeive.	112
Completed:	2010-08-19 14:59:06	Analysis Bath:	77.434 K
Report Time:	2010-12-22 11:55:55	Thermal Correction:	No
Sample Mass:	13.4041 g	Equil. Interval:	10 s
Warm Freespace:	22.5588 cm ³	Cold Freespace:	65.2999 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00172, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.472598106	0.0922	0.0922	0.0000	-0.000453
0.489524394	0.0937	0.0938	-0.0001	-0.001426
0.506219923	0.0953	0.0954	-0.0002	-0.001868
0.522661209	0.0968	0.0970	-0.0002	-0.001686
0.538827300	0.0984	0.0985	-0.0001	-0.001208
0.554699600	0.0999	0.1000	-0.0001	-0.000744
0.570261598	0.1015	0.1015	0.0000	-0.000060
0.585499227	0.1031	0.1031	0.0000	0.000074
0.600400090	0.1047	0.1046	0.0001	0.001057
0.614954293	0.1064	0.1066	-0.0002	-0.001686
0.629153311	0.1082	0.1082	0.0000	0.000384
0.642990828	0.1101	0.1099	0.0002	0.002256
0.656461716	0.1120	0.1120	0.0000	-0.000187
0.669562697	0.1139	0.1138	0.0001	0.000974
0.682291925	0.1158	0.1159	-0.0001	-0.000653
0.694648683	0.1178	0.1177	0.0000	0.000252
0.706633508	0.1197	0.1196	0.0001	0.001050
0.718248010	0.1218	0.1219	-0.0001	-0.001198
0.729494929	0.1239	0.1237	0.0002	0.001753
0.740377605	0.1261	0.1264	-0.0002	-0.001805
0.750900388	0.1284	0.1281	0.0003	0.002255
0.761068285	0.1306	0.1308	-0.0003	-0.001977
0.770887017	0.1328	0.1325	0.0003	0.002356
0.780362606	0.1353	0.1363	-0.0010	-0.007705
0.789501607	0.1379	0.1379	0.0000	-0.000046
0.798311174	0.1407	0.1396	0.0011	0.007848
0.806798697	0.1435	0.1439	-0.0005	-0.003328
0.814971626	0.1462	0.1457	0.0005	0.003557
0.822837889	0.1490	0.1496	-0.0006	-0.004134
0.830405474	0.1521	0.1514	0.0007	0.004299
0.837682605	0.1553	0.1560	-0.0007	-0.004430
0.844677329	0.1586	0.1579	0.0007	0.004549
0.851397991	0.1619	0.1625	-0.0006	-0.003912
0.857852995	0.1650	0.1644	0.0007	0.004015
0.864050388	0.1681	0.1687	-0.0007	-0.003916
0.869998574	0.1712	0.1706	0.0007	0.003999
0.875705481	0.1749	0.1760	-0.0011	-0.006309

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 6
Sar Opera Submit Source I	mple: STONE5_2 ator: .ter: Tile: D:\DATA\2020\EVA	STONE5 2.SMP	
bour co i	110. D. (Billin (2020 (2011	(bronzo_z.on	
Started:	2010-08-19 9:30:17	Analysis Adsorptive:	N2
Completed:	2010-08-19 14:59:06	Analysis Bath:	77.434 K
Report Time:	2010-12-22 11:55:55	Thermal Correction:	No
Sample Mass:	13.4041 g	Equil. Interval:	10 s
Warm Freespace:	22.5588 cm3	Cold Freespace:	65.2999 cm³
		_	

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00172, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.4294	0.4271	0.0023	0.005386
0.979859591	0.4360	0.4380	-0.0021	-0.004712
0.980795979	0.4422	0.4401	0.0021	0.004650
0.981689274	0.4481	0.4481	0.0000	0.00000
0.982541502	0.4537	0.4554	-0.0016	-0.003609
0.983354270	0.4591	0.4575	0.0016	0.003570
0.984129488	0.4643	0.4643	0.0000	0.00000

Micromeritics Instrument Corporation

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 5

Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP

Started:	2010-08-19	9:30:17	Analysis Adsorptive:	N2
Completed:	2010-08-19	14:59:06	Analysis Bath:	77.434 K
Report Time:	2010-12-22	11:55:55	Thermal Correction:	No
Sample Mass:	13.4041 g		Equil. Interval:	10 s
Warm Freespace:	22.5588 cm3		Cold Freespace:	65.2999 cm3

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00172, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm ³ /g STP)	(cm³/g STP)	(cm³/g STP)	
0.881179392	0.1789	0.1777	0.0011	0.006305
0.886428118	0.1830	0.1843	-0.0013	-0.006871
0.891459525	0.1872	0.1860	0.0013	0.006833
0.896281302	0.1915	0.1927	-0.0012	-0.006266
0.900900900	0.1956	0.1944	0.0012	0.006233
0.905325770	0.1996	0.2006	-0.0010	-0.005006
0.909563184	0.2034	0.2024	0.0010	0.004995
0.913620114	0.2070	0.2070	-0.0001	-0.000382
0.917503417	0.2097	0.2089	0.0008	0.003588
0.921219707	0.2115	0.2109	0.0006	0.002678
0.924775481	0.2128	0.2129	0.0000	-0.000119
0.928177178	0.2143	0.2148	-0.0006	-0.002576
0.931430817	0.2161	0.2168	-0.0006	-0.002944
0.934542298	0.2187	0.2194	-0.0007	-0.003424
0.937517405	0.2220	0.2213	0.0008	0.003423
0.940361619	0.2264	0.2281	-0.0018	-0.007853
0.943080306	0.2317	0.2300	0.0018	0.007723
0.945678592	0.2382	0.2410	-0.0028	-0.011916
0.948161721	0.2457	0.2429	0.0029	0.011603
0.950534225	0.2543	0.2542	0.0000	0.000026
0.952800930	0.2638	0.2680	-0.0042	-0.016106
0.954966187	0.2743	0.2700	0.0043	0.015537
0.957034409	0.2856	0.2907	-0.0050	-0.017597
0.959009588	0.2978	0.2927	0.0050	0.016922
0.960896015	0.3102	0.3152	-0.0049	-0.015934
0.962697208	0.3222	0.3172	0.0050	0.015377
0.964416981	0.3336	0.3380	-0.0045	-0.013402
0.966058910	0.3445	0.3400	0.0045	0.013003
0.967626274	0.3548	0.3548	0.0000	0.00006
0.969122529	0.3648	0.3686	-0.0038	-0.010408
0.970550597	0.3742	0.3704	0.0038	0.010160
0.971913695	0.3833	0.3866	-0.0033	-0.008694
0.973214507	0.3919	0.3886	0.0033	0.008514
0.974455774	0.4001	0.4030	-0.0029	-0.007151
0.975640416	0.4080	0.4051	0.0029	0.007023
0.976770699	0.4155	0.4155	0.0000	0.000001
0.977849126	0.4226	0.4249	-0.0023	-0.005467

Sample: STONE5_2 Operator: Submitter:

Source File: D:\DATA\2020\EVA\STONE5_2.SMP

 Started:
 2010-08-19
 9:30:17
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-19
 14:59:06
 Analysis
 Bath:
 77
 Report Time: 2010-02-22 11:55:55 Sample Mass: 13.4041 g Warm Freespace: 22.5588 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.434 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 65.2999 cm³

Unit 1

Page 7

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Å	:	0.00001 cm³/g	
Total	Volume	in	Pores	<=	862.45 Å	:	0.00042 cm3/g	
	Area	in	Pores	>	862.45 Å	:	0.104 m²/g	
Tota	al Area	in	Pores	>=	14.83 Å	:	0.135 m²/g	

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 8 Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP Started: 2010-08-19 9:30:17 Analysis Adsorptive: N2 Completed: 2010-08-19 14:59:06 Analysis Bath: 77 Analysis Bath: 77.434 K Report Time: 2010-12-22 11:55:55 Thermal Correction: No Sample Mass: 13.4041 g Warm Freespace: 22.5588 cm³ Equil. Interval: 10 s Cold Freespace: 65.2999 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00001 cm³/g 862.45 Å : 0.00042 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.104 m²/g : Total Area in Pores >= 14.83 Å : 0.135 m²/q

202

DFT Plus(H	R) V3.00 (AS#	AP 2020 V1.05)	Unit 1	P	age 9
	Sample: Operator: Submitter:	STONE5_2			
	Source File:	D:\DATA\2020\EVA	\STONE5_2.SMP		
	Started: 2010	-08-19 9.30.17	Analysis Adsorptive:	N2	

ocur ceu.	2010 00 10 0.00.17	marysrs masorperve.	142
Completed:	2010-08-19 14:59:06	Analysis Bath:	77.434 K
Report Time:	2010-12-22 11:55:55	Thermal Correction:	No
Sample Mass:	13.4041 g	Equil. Interval:	10 s
Warm Freespace:	22.5588 cm ³	Cold Freespace:	65.2999 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Total	Volum	e in e in	Pores	<	14.83 862 45	Å	:	0.00001	cm ³ /g
IUCAI	Are	a in	Pores	>	862.45	Å	:	0.104	m²/q
Tota	al Are	a in	Pores	>=	14.83	Å	:	0.135	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page10
Sar Opera	nple: STONE5_2 ator:		
Submit	ter:		
Source H	File: D:\DATA\2020\EVA	\STONE5_2.SMP	
Started:	2010-08-19 9:30:17	Analysis Adsorptive:	N2
Completed:	2010-08-19 14:59:06	Analysis Bath:	77.434 K
Report Time:	2010-12-22 11:55:55	Thermal Correction:	No
Sample Mass:	13.4041 g	Equil. Interval:	10 s
Warm Freespace:	22.5588 cm3	Cold Freespace:	65.2999 cm³
Poros	ity Distribution by Or	iginal Density Functio	onal Theory
	Model, NO 0 77K	on Carbon Clit Dorog	

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Volume	in	Pores	<	14.83	Å	:	0.00001	Cm 3 / 0
Total Volume	in	Pores	<=	862.45	Å	:	0.00042	Cm ³ /
Area	in	Pores	>	862.45	Å	:	0.104	m²/g
Total Area	in	Pores	>=	14.83	Å	:	0.135	m²/g

Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP

 Started:
 2010-08-19
 9:30:17
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-19
 14:59:06
 Analysis
 Bath:
 77
 Report Time: 2010-02-22 11:55:55 Sample Mass: 13.4041 g Warm Freespace: 22.5588 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.434 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 65.2999 cm³

Unit 1

Page11

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Ă	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	862.45	Å	:	0.00042	cm³/g
	Area	in	Pores	>	862.45	Å	:	0.104	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.135	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page12 Sample: STONE5_2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE5_2.SMP Started: 2010-08-19 9:30:17 Completed: 2010-08-19 14:59:06 Analysis Adsorptive: N2 Analysis Bath: 77.434 K Report Time: 2010-12-22 11:55:55 Thermal Correction: No Sample Mass: 13.4041 g Warm Freespace: 22.5588 cm³ Equil. Interval: 10 s Cold Freespace: 65.2999 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00001 cm³/g 862.45 Å : 0.00042 cm3/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.104 m²/g : Total Area in Pores >= 14.83 Å : 0.135 m²/q Differential Pore Volume vs. Pore Width + Differential Pore Volume 0.0011-

Micromeritics Instrument Corporation

Relative Pressure (P/Po)

SKB TR-14-18

205

A2.16 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the M sample size fraction 0.25–0.5 mm

Micromeritics Instrument Corporation					Micromeritics Instrument Corporation				
DFT Plus(R) V3.0	0 (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.0	0 (ASAP 2020 V1	.05)	Unit 1	Page 2
S Ope Subm Source	Gample: STONE7 rrator: hitter: File: D:\DATA\	2020\EVA\STONE7.	SMP		S Ope Subn Source	ample: STONE7 rator: itter: File: D:\DATA\2	2020\EVA\STONE7	'.SMP	
Startec Completec Report Time Sample Mass Warm Freespace	d: 2010-08-26 16 d: 2010-08-27 12 e: 2010-12-22 12 s: 11.1358 g e: 23.5373 cm ³	6:10:34 Analysi 1:57:51 A 1:56:29 Therma Equ Co	a Adsorptive: N Malysis Bath: 7 M Correction: N Mil. Interval: 1 Md Freespace: 6	12 17.458 K Io 0 s 58.4897 cm ³	Started Completed Report Time Sample Mas: Warm Freespace	: 2010-08-26 16 : 2010-08-27 11 : 2010-12-22 11 : 11.1358 g : 23.5373 cm ³	:10:34 Analys :57:51 :56:29 Therm Ec	ais Adsorptive: Analysis Bath: mal Correction: quil. Interval: Cold Freespace:	N2 77.458 K No 10 s 68.4897 cm ³
Porc	osity Distributi Model: N Method: Non-ne	ion by Original D N2 @ 77K on Carbo egative Regulariz	ensity Function on, Slit Pores ation; No Smoot	al Theory hing	Porc	osity Distributio Model: Ni Method: Non-neo	on by Original 2 @ 77K on Cark gative Regulari	Density Function oon, Slit Pores zation; No Smoot	nal Theory thing
Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å 798.65 Å 798.65 Å 14.83 Å	: 0.00001 cm : 0.00049 cm : 0.164 m ² : 0.210 m ²	∖d γd ₃∖d ₃∖d	Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å 798.65 Å 798.65 Å 14.83 Å	: 0.00001 cm : 0.00049 cm : 0.164 m ² : 0.210 m ²	\d \d ' ₃ \d
		Pore Size Tab	ole				Pore Size Ta	able	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
$\begin{array}{c} 14.83\\ 15.91\\ 17.16\\ 18.59\\ 20.02\\ 21.62\\ 23.41\\ 25.20\\ 27.34\\ 29.49\\ 31.81\\ 34.31\\ 36.99\\ 40.03\\ 43.25\\ 46.64\\ 50.40\\ 54.33\\ 58.80\\ 63.44\\ 68.45\\ 73.99\\ 79.88\\ 86.32\\ 93.11\\ 100.61 \end{array}$	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	0.00001 0.000000	0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.015 0.017 0.018 0.019	0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.001 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000000	$\begin{array}{c} 200.69\\ 216.60\\ 233.93\\ 252.52\\ 272.71\\ 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\\ 466.79\\ 503.96\\ 544.17\\ 587.60\\ 634.42\\ 684.99\\ 739.68\\ 798.65 \end{array}$	0.00010 0.00010 0.00011 0.00013 0.00015 0.00018 0.00022 0.00026 0.00030 0.00033 0.00033 0.00033 0.00033 0.00045 0.00045 0.00045 0.00045 0.00045 0.00045	0.0000 0.0000 0.0000 0.00002 0.00002 0.00002 0.00003 0.00004 0.00003 0.00003 0.00003 0.00003 0.00003 0.00002 0.00001 0.00001	$\begin{array}{c} 0.028\\ 0.028\\ 0.028\\ 0.028\\ 0.030\\ 0.031\\ 0.033\\ 0.035\\ 0.038\\ 0.040\\ 0.041\\ 0.042\\ 0.043\\ 0.044\\ 0.045\\ 0.045\\ 0.046\\ 0.046\\ 0.046\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
108.66 117.23 126.53 136.71 147.61 159.41 172.10 185.86	0.00004 0.00005 0.00005 0.00006 0.00007 0.00009 0.00010 0.00010	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000	0.020 0.021 0.022 0.023 0.025 0.026 0.027 0.028	0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.000					

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 4
Saı Oper Submi Source	mple: STONE7 ator: tter: File: D:\DATA\2020\EVA	\STONE7.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-26 16:10:34 2010-08-27 11:57:51 2010-12-22 11:56:29 11.1358 g 23.5373 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.458 K No 10 s 68.4897 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00214, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
FIESSULE	(cm ³ /g STP)	(cm ³ /g STP)	(cm ³ /g STP)	Residual
	-			
0.4/259810	0.1324	0.1327	-0.0003	-0.002157
0.48952439	0.1348	0.1351	-0.0004	-0.002836
0.50621992	23 0.1371	0.1375	-0.0004	-0.003086
0.52266120	0.1395	0.1398	-0.0004	-0.002564
0.53882730	0.1419	0.1421	-0.0002	-0.001479
0.55469960	0.1443	0.1443	0.0000	-0.000295
0.57026159	0.1467	0.1465	0.0002	0.001067
0.58549922	27 0.1491	0.1492	0.0000	-0.000294
0.60040009	0.1516	0.1514	0.0001	0.000920
0.61495429	0.1540	0.1541	-0.0001	-0.000636
0.62915331	0.1566	0.1565	0.0001	0.000334
0.64299082	28 0.1591	0.1590	0.0001	0.000840
0.65646171	16 0.1616	0.1616	0.0000	0.000179
0.66956269	0.1643	0.1642	0.0000	0.000263
0.68229192	25 0.1670	0.1670	0.0000	0.000050
0.69464868	33 0.1698	0.1697	0.0000	0.000144
0.70663350	0.1725	0.1725	0.0000	0.000176
0.71824801	0.1754	0.1756	-0.0002	-0.000871
0.72949492	0.1784	0.1782	0.0002	0.001180
0.74037760	0.1815	0.1818	-0.0003	-0.001421
0.75090038	38 0.1847	0.1843	0.0003	0.001669
0.76106828	0.1877	0.1880	-0.0003	-0.001538
0.77088701	0.1908	0.1905	0.0003	0.001746
0.78036260	0.1942	0.1953	-0.0011	-0.005895
0.78950160	0.1978	0.1978	0.0000	-0.000028
0.79831117	0.2014	0.2002	0.0012	0.005947
0.80679869	0.2051	0.2056	-0.0005	-0.002372
0.81497162	0.2087	0.2081	0.0005	0.002496
0.82283788	0.2124	0.2130	-0.0006	-0.003044
0.83040547	0.2164	0.2157	0.0007	0.003129
0.83768260	0.2206	0.2214	-0.0007	-0.003282
0.84467732	0.2249	0.2242	0.0008	0.003340
0.85139799	0.2292	0.2299	-0.0007	-0.002839
0.85785299	0.2334	0.2327	0.0007	0.002890
0.86405038	0.2374	0.2381	-0.0007	-0.002988
0.86999857	0.2416	0.2408	0.0007	0.003025
0.87570548	0.2464	0.2477	-0.0013	-0.005375

Micromeritics Instrument Corporation

Page 3

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP

 Started:
 2010-08-26
 16:10:34
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-27
 11:57:51
 Analysis
 Bath:
 77.458 K

 Report Time:
 2010-12-22
 11:56:29
 Thermal Correction:
 No

 Sample Mass:
 11.1358 g
 Equil. Interval:
 10 s

 Warm Freespace:
 23.5373 cm³
 Cold Freespace:
 68.4897 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00214, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0 011702670	0.0500	0 0515	0.0000	0.010000
0.011/836/0	0.0509	0.0515	-0.0006	-0.012006
0.014515520	0.0524	0.0526	-0.0002	-0.003538
0.01//06521	0.0541	0.0550	-0.0009	-0.016525
0.021398440	0.0559	0.0561	-0.0002	-0.003549
0.025631230	0.0579	0.0574	0.0005	0.009477
0.030442240	0.0599	0.0590	0.0009	0.015255
0.035865448	0.0618	0.0604	0.0014	0.023207
0.041930798	0.0637	0.0619	0.0018	0.027647
0.048663601	0.0656	0.0637	0.0020	0.029998
0.056084011	0.0677	0.0657	0.0021	0.030345
0.064206667	0.0698	0.0679	0.0019	0.026796
0.073040441	0.0718	0.0704	0.0014	0.018977
0.082588248	0.0738	0.0731	0.0006	0.008704
0.092847057	0.0758	0.0759	-0.0001	-0.001305
0.103808001	0.0780	0.0788	-0.0007	-0.009444
0.115456402	0.0802	0.0814	-0.0013	-0.015939
0.127772301	0.0823	0.0840	-0.0017	-0.020109
0.140730694	0.0845	0.0863	-0.0019	-0.021987
0.154301897	0.0866	0.0885	-0.0019	-0.021966
0.168452203	0.0888	0.0906	-0.0018	-0.020241
0.183144197	0.0911	0.0926	-0.0015	-0.016806
0.198337302	0.0934	0.0945	-0.0011	-0.012246
0.213988706	0.0957	0.0964	-0.0007	-0.007078
0.230053306	0.0981	0.0986	-0.0005	-0.004802
0.246484801	0.1006	0.1005	0.0001	0.001015
0.263235897	0.1030	0.1024	0.0007	0.006385
0.280259013	0.1055	0.1056	-0.0001	-0.001129
0.297506303	0.1079	0.1076	0.0004	0.003329
0.314930797	0.1104	0.1104	0.0000	-0.000064
0.332486212	0.1128	0.1125	0.0003	0.002670
0.350127310	0.1153	0.1148	0.0005	0.004298
0.367810607	0.1178	0.1172	0.0006	0.004768
0.385494202	0.1202	0.1197	0.0005	0.004243
0.403138310	0.1227	0.1223	0.0004	0.003034
0.420704991	0.1252	0.1250	0.0002	0.001536
0.438158900	0.1276	0.1276	0.0000	0.000067
0.455466807	0.1300	0.1302	-0.0002	-0.001163

Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP

 Started:
 2010-08-26
 16:10:34
 Analysis Adsorptive:
 N2

 Completed:
 2010-08-27
 11:57:51
 Analysis Bath:
 77.458 K

 Report Time:
 2010-12-22
 11:56:29
 Thermal Correction: No

 Sample Mass:
 11:1358 g
 Equil. Interval: 10 s

 Warm Freespace:
 23:5373 cm³
 Cold Freespace: 68:4897 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00214, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.881179392	0.2517	0.2504	0.0013	0.005344
0.886428118	0.2573	0.2588	-0.0015	-0.005959
0.891459525	0.2629	0.2614	0.0016	0.005901
0.896281302	0.2685	0.2700	-0.0014	-0.005379
0.900900900	0.2740	0.2726	0.0015	0.005330
0.905325770	0.2793	0.2805	-0.0012	-0.004135
0.909563184	0.2844	0.2832	0.0012	0.004109
0.913620114	0.2891	0.2873	0.0018	0.006395
0.917503417	0.2925	0.2902	0.0023	0.008001
0.921219707	0.2946	0.2931	0.0015	0.004951
0.924775481	0.2962	0.2961	0.0000	0.000098
0.928177178	0.2978	0.2992	-0.0013	-0.004413
0.931430817	0.3001	0.3021	-0.0021	-0.006864
0.934542298	0.3032	0.3050	-0.0019	-0.006135
0.937517405	0.3074	0.3079	-0.0005	-0.001494
0.940361619	0.3130	0.3150	-0.0021	-0.006629
0.943080306	0.3199	0.3178	0.0021	0.006531
0.945678592	0.3283	0.3318	-0.0035	-0.010640
0.948161721	0.3381	0.3346	0.0035	0.010377
0.950534225	0.3493	0.3493	0.0000	0.000023
0.952800930	0.3618	0.3672	-0.0054	-0.014830
0.954966187	0.3756	0.3702	0.0054	0.014328
0.957034409	0.3905	0.3969	-0.0064	-0.016377
0.959009588	0.4066	0.4001	0.0064	0.015771
0.960896015	0.4229	0.4292	-0.0062	-0.014746
0.962697208	0.4386	0.4323	0.0063	0.014251
0.964416981	0.4535	0.4592	-0.0056	-0.012405
0.966058910	0.4678	0.4622	0.0056	0.012048
0.967626274	0.4814	0.4814	0.0000	0.000005
0.969122529	0.4944	0.4992	-0.0047	-0.009597
0.970550597	0.5069	0.5021	0.0048	0.009376
0.971913695	0.5187	0.5228	-0.0041	-0.007947
0.973214507	0.5300	0.5259	0.0041	0.007788
0.974455774	0.5408	0.5443	-0.0035	-0.006435
0.975640416	0.5511	0.5476	0.0035	0.006323
0.976770699	0.5609	0.5609	0.0000	0.000001
0.977849126	0.5703	0.5730	-0.0027	-0.004813

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 6

Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2

Completed:	2010-08-27 11:57:51	Analysis Bath:	77.458 K
Report Time:	2010-12-22 11:56:29	Thermal Correction:	No
Sample Mass:	11.1358 g	Equil. Interval:	10 s
Warm Freespace:	23.5373 cm ³	Cold Freespace:	68.4897 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00214, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.5792	0.5765	0.0027	0.004744
0.979859591	0.5878	0.5902	-0.0024	-0.004117
0.980795979	0.5959	0.5935	0.0024	0.004065
0.981689274	0.6037	0.6037	0.0000	0.00000
0.982541502	0.6111	0.6130	-0.0019	-0.003059
0.983354270	0.6182	0.6163	0.0019	0.003027

	(,		(,		
DFT	Plus(R)	V3.00	(AS	AP 2020 V1.05) Unit	1 Page	7

Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP

Started:	2010-08-26 16:10:34	Analysis Adsorptive:	N2
Completed:	2010-08-27 11:57:51	Analysis Bath:	77.458 K
Report Time:	2010-12-22 11:56:30	Thermal Correction:	No
Sample Mass:	11.1358 g	Equil. Interval:	10 s
Warm Freespace:	23.5373 cm ³	Cold Freespace:	68.4897 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm ³ /g
Total	Volume	in	Pores	<=	798.65	Å	:	0.00049	cm ³ /g
	Area	in	Pores	>	798.65	Å	:	0.164	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.210	m²/q

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 8
San	nple: STONE7		
Opera	ator:		
Submit	ter:		
Source H	Tile: D:\DATA\2020\EVA	\STONE7.SMP	
Started:	2010-08-26 16:10:34	Analysis Adsorptive:	N2
Completed:	2010-08-27 11:57:51	Analysis Bath:	77.458 K
Report Time:	2010-12-22 11:56:30	Thermal Correction:	No
Sample Mass:	11.1358 g	Equil. Interval:	10 s
Warm Freespace:	23.5373 cm3	Cold Freespace:	68.4897 cm ³
Poros	ity Distribution by Or	iginal Density Functio	onal Theory

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	vorume	±11	rores		14.03	м		0.00001	CIII-/Q
Total	Volume	in	Pores	<=	798.65	Å	:	0.00049	cm ³ /c
	Area	in	Pores	>	798.65	Å	:	0.164	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.210	m²/g

Sample: STONE7 Operator: Submitter:

Source File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2 Completed: 2010-08-27 11:57:51 Analysis Bath: 77. Report Time: 2010-12-22 11:56:30 Sample Mass: 11.1358 g Warm Freespace: 23.5373 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.458 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4897 cm³

Unit 1

Page 9

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Å	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	798.65 Å	:	0.00049	cm ³ /g
	Area	in	Pores	>	798.65 Å	:	0.164	m²/g
Tota	al Area	in	Pores	>=	14.83 Å	:	0.210	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Page10 Unit 1 Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2 Completed: 2010-08-27 11:57:51 Analysis Bath: 77. Analysis Bath: 77.458 K Report Time: 2010-02-22 11:56:30 Sample Mass: 11.1358 g Warm Freespace: 23.5373 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4897 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Ă	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	798.65	Å	:	0.00049	cm³/g
	Area	in	Pores	>	798.65	Å	:	0.164	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.210	m²/g

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page11
San	nple: STONE7		
Opera	ator:		
Submit	ter:		
Source H	ile: D:\DATA\2020\EVA	STONE7.SMP	
Started:	2010-08-26 16:10:34	Analysis Adsorptive:	N2
Completed:	2010-08-27 11:57:51	Analysis Bath:	77.458 K
Report Time:	2010-12-22 11:56:30	Thermal Correction:	No
Sample Mass:	11.1358 g	Equil. Interval:	10 s
Warm Freespace:	23.5373 cm ³	Cold Freespace:	68.4897 cm3

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	Cm ³ /
Total	Volume	in	Pores	<=	798.65	Å	:	0.00049	Cm 3 /
	Area	in	Pores	>	798.65	Å	:	0.164	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.210	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page12
Sa	nple: STONE7		
Oper	ator:		
Submi	tter:		
Source	File: D:\DATA\2020\EVA	\STONE7.SMP	
Started:	2010-08-26 16:10:34	Analysis Adsorptive:	N2
Completed:	2010-08-27 11:57:51	Analysis Bath:	77.458 K
Report Time:	2010-12-22 11:56:30	Thermal Correction:	No
Sample Mass:	11.1358 g	Equil. Interval:	10 s
Warm Freespace:	23.5373 cm3	Cold Freespace:	68.4897 cm ³
			11
Poros	ity Distribution by Or	iginal Density Functio	onal ineory
	Modol • N2 4 //K	on Carbon Slit Doroc	

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Volume	e in	Pores	<	14.83	Å	:	0.00001	Cm 3 / 0
Total Volume	e in	Pores	<=	798.65	Å	:	0.00049	Cm ³ /
Area	i in	Pores	>	798.65	Å	:	0.164	m²/g
Total Area	i in	Pores	>=	14.83	Å	:	0.210	m²/q

Sample: STONE7 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE7.SMP

Started: 2010-08-26 16:10:34 Analysis Adsorptive: N2 Completed: 2010-08-27 11:57:51 Analysis Bath: 77. Report Time: 2010-12-22 11:56:30 Sample Mass: 11.1358 g Warm Freespace: 23.5373 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.458 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4897 cm³

Unit 1

Page13

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Relative Pressure (P/Po)

212

A2.17 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the M sample size fraction 0.5–1 mm

	Micromeritics Instrument Corporation			Micromeritics Instrument Corporation					
DFT Plus(R) V3.00) (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.(00 (ASAP 2020 V	1.05)	Unit 1	Page 2
Sa Oper Subm: Source	ample: STONE4 rator: itter: File: D:\DATA\	2020\EVA\STONE4.	SMP		op Op Subi Source	Sample: STONE4 erator: nitter: e File: D:\DATA\	2020\EVA\STONE4	.SMP	
Started Completed Report Time Sample Mass Warm Freespace	: 2010-08-18 15 : 2010-08-18 20 : 2010-12-22 11 : 11.8628 g : 23.4907 cm ³	5:10:05 Analysi 1:57:59 A 1:55:40 Therma Equ Co	s Adsorptive: N nalysis Bath: 7 1 Correction: N il. Interval: 1 1d Freespace: 6	12 7.395 K 10 0 s 8.4359 cm ³	Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-08-18 15 d: 2010-08-18 20 e: 2010-12-22 11 s: 11.8628 g e: 23.4907 cm ³	5:10:05 Analys 0:57:59 1:55:40 Therm Eq C	is Adsorptive: 1 Analysis Bath: 7 al Correction: 1 uil. Interval: 7 old Freespace: 6	42 77.395 K No 10 s 68.4359 cm ³
Poro	sity Distributi Model: N Method: Non-ne	on by Original D 12 @ 77K on Carbo gative Regulariz	ensity Function n, Slit Pores ation; No Smoot	al Theory hing	Por	osity Distributi Model: N Method: Non-ne	on by Original 1 12 @ 77K on Carbo egative Regulari:	Density Function on, Slit Pores zation; No Smoot	al Theory
Volum Total Volum Are Total Are	ne in Pores < ne in Pores <= ea in Pores > ea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00000 cm ² : 0.00037 cm ² : 0.099 m ² : 0.129 m ²	/g /g	Volu Total Volu An Total An	ume in Pores < ume in Pores <= cea in Pores > cea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00000 cm : 0.00037 cm : 0.099 m ² : 0.129 m ²	³/g ³/g /g
		Pore Size Tab	le				Pore Size Tal	ble	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
14.83 15.91 17.16 18.59 20.02 21.62 23.41 25.20 27.34 29.49 31.81 34.31	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001	200.69 216.60 233.93 252.52 272.71 294.51 317.92 343.30 370.64 400.31 432.30 466.79	0.00008 0.00008 0.00008 0.00009 0.00010 0.00011 0.00013 0.00016 0.00019 0.00025 0.00025 0.00027	0.00000 0.00000 0.00001 0.00001 0.00001 0.00002 0.00003 0.00003 0.00003 0.00002	$\begin{array}{c} 0.017\\ 0.017\\ 0.017\\ 0.018\\ 0.019\\ 0.020\\ 0.022\\ 0.024\\ 0.025\\ 0.026\\ 0.027\\ \end{array}$	0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002
36.99 40.03 43.25 46.64 50.40 54.33 58.80 63.44 68.45	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 0.003\\ 0.003\\ 0.003\\ 0.004\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.006\end{array}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	503.96 544.17 587.60 634.42 684.99 739.68 798.65 862.45	0.00029 0.00031 0.00032 0.00033 0.00035 0.00036 0.00036 0.00037	0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.028 0.029 0.029 0.030 0.030 0.030 0.030 0.030 0.031	$\begin{array}{c} 0.001 \\ 0.001 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$
73.99 79.88 86.32 93.11 100.61 108.66 117.23 126.53 136.71 147.61	0.0001 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004 0.0004 0.0004 0.0005	0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001	0.006 0.007 0.008 0.009 0.010 0.011 0.011 0.012 0.012 0.013	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001					
147.01 159.41 172.10 185.86	0.00007 0.00008 0.00008	0.00001 0.00001 0.00000	0.014 0.015 0.016 0.017	0.001 0.001 0.001 0.000					

Page 3

Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP

 Started:
 2010-08-18
 15:10:05
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-18
 20:57:59
 Analysis
 Bath:
 77.395 K

 Report Time:
 2010-12-22
 11:55:40
 Thermal Correction:
 No

 Sample Mass:
 11.8628 g
 Equil.
 Interval:
 10 s

 Warm Freespace:
 23.4907 cm³
 Cold Freespace:
 68.4359 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00159, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.014515520	0.0285	0.0288	-0.0003	-0.010066
0.017706521	0.0295	0.0294	0.0001	0.002199
0.021398440	0.0306	0.0301	0.0005	0.015945
0.025631230	0.0317	0.0308	0.0009	0.029342
0.030442240	0.0329	0.0316	0.0013	0.040032
0.035865448	0.0340	0.0324	0.0016	0.046987
0.041930798	0.0351	0.0334	0.0017	0.049115
0.048663601	0.0362	0.0345	0.0017	0.048154
0.056084011	0.0374	0.0357	0.0017	0.044889
0.064206667	0.0384	0.0371	0.0013	0.034283
0.073040441	0.0393	0.0387	0.0006	0.015728
0.082588248	0.0404	0.0404	0.0000	0.000734
0.092847057	0.0417	0.0422	-0.0005	-0.012396
0.103808001	0.0430	0.0440	-0.0010	-0.023022
0.115456402	0.0443	0.0457	-0.0013	-0.030405
0.127772301	0.0457	0.0473	-0.0016	-0.034606
0.140730694	0.0471	0.0488	-0.0017	-0.035959
0.154301897	0.0485	0.0502	-0.0017	-0.035038
0.168452203	0.0499	0.0515	-0.0016	-0.032230
0.183144197	0.0513	0.0527	-0.0014	-0.027640
0.198337302	0.0528	0.0540	-0.0012	-0.021951
0.213988706	0.0543	0.0552	-0.0009	-0.015764
0.230053306	0.0558	0.0563	-0.0005	-0.009159
0.246484801	0.0574	0.0575	-0.0001	-0.002332
0.263235897	0.0590	0.0587	0.0003	0.004488
0.280259013	0.0606	0.0607	0.0000	-0.000737
0.297506303	0.0623	0.0619	0.0003	0.005493
0.314930797	0.0639	0.0641	-0.0001	-0.002344
0.332486212	0.0655	0.0654	0.0001	0.001621
0.350127310	0.0672	0.0669	0.0003	0.004337
0.367810607	0.0688	0.0687	0.0001	0.001452
0.385494202	0.0705	0.0703	0.0002	0.002297
0.403138310	0.0722	0.0720	0.0002	0.002232
0.420704991	0.0738	0.0737	0.0001	0.001437
0.438158900	0.0754	0.0754	0.0000	0.000404
0.455466807	0.0770	0.0770	0.0000	-0.000222
0.472598106	0.0786	0.0786	0.0000	-0.000288

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 4

Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP Started: 2010-08-18 15:10:05 Analysis Adsorptive: N2

Starteu.	2010-00-10 10.10.00	Analysis Ausoiptive.	112
Completed:	2010-08-18 20:57:59	Analysis Bath:	77.395 K
Report Time:	2010-12-22 11:55:40	Thermal Correction:	No
Sample Mass:	11.8628 g	Equil. Interval:	10 s
Warm Freespace:	23.4907 cm ³	Cold Freespace:	68.4359 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00159, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.489524394	0.0802	0.0802	0.0000	0.000048
0.506219923	0.0817	0.0817	0.0000	0.000367
0.522661209	0.0833	0.0832	0.0001	0.001192
0.538827300	0.0848	0.0848	-0.0001	-0.000691
0.554699600	0.0863	0.0862	0.0000	0.000141
0.570261598	0.0878	0.0877	0.0002	0.001842
0.585499227	0.0895	0.0895	-0.0001	-0.000614
0.600400090	0.0911	0.0909	0.0002	0.001655
0.614954293	0.0927	0.0929	-0.0001	-0.001436
0.629153311	0.0944	0.0944	0.0000	0.000419
0.642990828	0.0961	0.0959	0.0002	0.001899
0.656461716	0.0978	0.0979	0.0000	-0.000477
0.669562697	0.0997	0.0996	0.0001	0.001199
0.682291925	0.1016	0.1018	-0.0002	-0.001641
0.694648683	0.1035	0.1035	0.0000	0.000286
0.706633508	0.1054	0.1052	0.0002	0.001925
0.718248010	0.1074	0.1076	-0.0002	-0.001403
0.729494929	0.1095	0.1092	0.0002	0.001903
0.740377605	0.1115	0.1117	-0.0002	-0.001904
0.750900388	0.1136	0.1133	0.0003	0.002307
0.761068285	0.1157	0.1159	-0.0002	-0.002052
0.770887017	0.1177	0.1175	0.0003	0.002391
0.780362606	0.1200	0.1210	-0.0009	-0.007760
0.789501607	0.1225	0.1225	0.0000	-0.000036
0.798311174	0.1250	0.1241	0.0010	0.007849
0.806798697	0.1276	0.1280	-0.0004	-0.003235
0.814971626	0.1300	0.1296	0.0004	0.003436
0.822837889	0.1326	0.1331	-0.0005	-0.003976
0.830405474	0.1354	0.1348	0.0006	0.004119
0.837682605	0.1383	0.1389	-0.0006	-0.004241
0.844677329	0.1413	0.1407	0.0006	0.004342
0.851397991	0.1442	0.1448	-0.0005	-0.003726
0.857852995	0.1471	0.1465	0.0006	0.003815
0.864050388	0.1498	0.1504	-0.0006	-0.003821
0.869998574	0.1527	0.1521	0.0006	0.003889
0.8/5/05481	0.1561	0.1571	-0.0010	-0.006446
0.881179392	0.1597	0.1587	0.0010	0.006423

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 6
Sar Opera Submit Source 1	mple: STONE4 ator: :ter: File: D:\DATA\2020\EVA	\STONE4.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-18 15:10:05 2010-08-18 20:57:59 2010-12-22 11:55:40 11.8628 g 23.4907 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.395 K No 10 s 68.4359 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00159, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.979859591	0.3941	0.3960	-0.0019	-0.004855
0.980795979	0.3999	0.3980	0.0019	0.004789
0.981689274	0.4055	0.4055	0.0000	0.000001
0.982541502	0.4108	0.4123	-0.0015	-0.003706
0.983354270	0.4158	0.4143	0.0015	0.003664
0.984129488	0.4206	0.4218	-0.0012	-0.002859
0.984869003	0.4252	0.4240	0.0012	0.002830

Micromeritics Instrument Corporation

Page 5

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP

 Started:
 2010-08-18
 15:10:05
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-18
 20:57:59
 Analysis
 Bath:
 77.395 K

 Report Time:
 2010-12-22
 11:55:40
 Thermal Correction:
 No

 Sample Mass:
 11.8628 g
 Cold Freespace:
 68.4359 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00159, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.886428118	0.1636	0.1648	-0.0012	-0.007076
0.891459525	0.1675	0.1663	0.0012	0.007017
0.896281302	0.1714	0.1725	-0.0011	-0.006440
0.900900900	0.1753	0.1742	0.0011	0.006389
0.905325770	0.1790	0.1799	-0.0009	-0.005101
0.909563184	0.1825	0.1816	0.0009	0.005077
0.913620114	0.1858	0.1854	0.0005	0.002494
0.917503417	0.1883	0.1872	0.0012	0.006228
0.921219707	0.1898	0.1890	0.0009	0.004486
0.924775481	0.1909	0.1908	0.0001	0.000429
0.928177178	0.1920	0.1927	-0.0007	-0.003577
0.931430817	0.1934	0.1945	-0.0011	-0.005651
0.934542298	0.1955	0.1963	-0.0009	-0.004544
0.937517405	0.1982	0.1981	0.0001	0.000570
0.940361619	0.2018	0.2033	-0.0014	-0.007075
0.943080306	0.2064	0.2050	0.0014	0.006972
0.945678592	0.2120	0.2144	-0.0024	-0.011323
0.948161721	0.2185	0.2161	0.0024	0.011036
0.950534225	0.2260	0.2260	0.0000	0.000028
0.952800930	0.2344	0.2381	-0.0037	-0.015795
0.954966187	0.2437	0.2400	0.0037	0.015240
0.957034409	0.2538	0.2582	-0.0044	-0.017437
0.959009588	0.2646	0.2602	0.0044	0.016768
0.960896015	0.2761	0.2807	-0.0046	-0.016757
0.962697208	0.2873	0.2827	0.0046	0.016139
0.964416981	0.2980	0.3022	-0.0042	-0.014038
0.966058910	0.3082	0.3040	0.0042	0.013599
0.967626274	0.3180	0.3180	0.0000	0.000006
0.969122529	0.3273	0.3308	-0.0036	-0.010850
0.970550597	0.3362	0.3326	0.0036	0.010579
0.971913695	0.3446	0.3478	-0.0031	-0.009036
0.973214507	0.3527	0.3496	0.0031	0.008841
0.974455774	0.3605	0.3631	-0.0027	-0.007410
0.975640416	0.3678	0.3652	0.0027	0.007272
0.976770699	0.3749	0.3749	0.0000	0.000002
0.977849126	0.3816	0.3837	-0.0022	-0.005643
0.978878021	0 3880	0 3858	0 0022	0 005557

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Sample: STONE4 Operator: Submitter:

Source File: D:\DATA\2020\EVA\STONE4.SMP

Started: 2010-08-18 15:10:05 Analysis Adsorptive: N2 Completed: 2010-08-18 20:57:59 Analysis Bath: 77. Report Time: 2010-12-22 11:55:40 Sample Mass: 11.8628 g Warm Freespace: 23.4907 cm³

Analysis Bath: 77.395 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4359 cm³

Unit 1

Page 7

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Ă	:	0.00000 cm ³ /g	
Total	Volume	in	Pores	<=	862.45 Å	:	0.00037 cm³/g	
	Area	in	Pores	>	862.45 Å	:	0.099 m²/g	
Tota	al Area	in	Pores	>=	14.83 Å	:	0.129 m²/g	

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 8 Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP Started: 2010-08-18 15:10:05 Analysis Adsorptive: N2 Completed: 2010-08-18 20:57:59 Analysis Bath: 77. Analysis Bath: 77.395 K Report Time: 2010-12-22 11:55:40 Thermal Correction: No Sample Mass: 11.8628 g Warm Freespace: 23.4907 cm³ Equil. Interval: 10 s Cold Freespace: 68.4359 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing 14.83 Å : 0.00000 cm³/g 862.45 Å : 0.00037 cm³/g Volume in Pores < Total Volume in Pores <= Area in Pores > 862.45 Å 0.099 m²/g :

216

OFT Plus(R)	V3.00 (ASAP	2020 V1.05)	Unit	1 Page 9
	0	TONEA		

Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP

Started:	2010-08-18 15:10:05	Analysis Adsorptive:	N2
Completed:	2010-08-18 20:57:59	Analysis Bath:	77.395 K
Report Time:	2010-12-22 11:55:40	Thermal Correction:	No
Sample Mass:	11.8628 g	Equil. Interval:	10 s
Warm Freespace:	23.4907 cm ³	Cold Freespace:	68.4359 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Vol	ume	in	Pores	<	14.8	ЗÅ	:	0.00000	cm³/g
Total	Vol	ume	in	Pores	<=	862.4	5 Å	:	0.00037	cm³/g
	A	rea	in	Pores	>	862.4	5 Å	:	0.099	m²/g
Tota	al A	rea	in	Pores	$\geq =$	14.8	3 Å	. :	0.129	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page10
Sar Opera	mple: STONE4 ator:		
Submit	tter:		
Source 1	File: D:\DATA\2020\EVA	A\STONE4.SMP	
Started:	2010-08-18 15:10:05	Analysis Adsorptive:	N2 77 395 K
Report Time: Sample Mass:	2010-12-22 11:55:40 11.8628 g	Thermal Correction: Equil. Interval:	No 10 s
Warm Freespace:	23.4907 cm3	Cold Freespace:	68.4359 cm ³
Poros	ity Distribution by On Model: N2 @ 77K	riginal Density Functio	onal Theory

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Α	:	0.00000	Cm 3 / 0
Total	Volume	in	Pores	<=	862.45	Å	:	0.00037	cm ³ /c
	Area	in	Pores	>	862.45	Å	:	0.099	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.129	m²/g

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP

Started: 2010-08-18 15:10:05 Analysis Adsorptive: N2 Completed: 2010-08-18 20:57:59 Analysis Bath: 77. Report Time: 2010-02-22 11:55:40 Sample Mass: 11.8628 g Warm Freespace: 23.4907 cm³

Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4359 cm³

Analysis Bath: 77.395 K

Page11

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Ă	:	0.00000	cm³/g
Total	Volume	in	Pores	<=	862.45	Å	:	0.00037	cm³/g
	Area	in	Pores	>	862.45	Å	:	0.099	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.129	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Page12 Unit 1 Sample: STONE4 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE4.SMP Started: 2010-08-18 15:10:05 Analysis Adsorptive: N2 Completed: 2010-08-18 20:57:59 Analysis Bath: 77.395 K Report Time: 2010-12-22 11:55:40 Thermal Correction: No Sample Mass: 11.8628 g Warm Freespace: 23.4907 cm³ Equil. Interval: 10 s Cold Freespace: 68.4359 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00000 cm³/g 862.45 Å : 0.00037 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.099 m²/g : Total Area in Pores >= 14.83 Å : 0.129 m²/q Differential Pore Volume vs. Pore Width + Differential Pore Volume

Micromeritics Instrument Corporation

0.00-

0.0

0.1

0.2

0.3

0.4

0.5

Relative Pressure (P/Po)

0.6

0.7

0.8

0.9

1.0

A2.18 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the M sample size fraction 0.5–1 mm (duplicate)

Micromeritics Instrument Corporation					Micromeritics Instrument Corporation					
DFT Plus(R) V3.00) (ASAP 2020 V1	.05)	Unit 1	Page 1	DFT	Plus(R) V3.00	(ASAP 2020 V1	.05)	Unit 1	Page 2
S Ope: Subm Source	ample: AG0.5-1 rator: itter: File: D:\DATA\2	020\EVA\AG0.5-1				Sa Oper Submi Source	mple: AG0.5-1 ator: tter: File: D:\DATA\2	2020\EVA\AG0.5-1	L	
Started Completed Report Time Sample Mass Warm Freespace	: 2010-10-27 16: : 2010-10-27 22: : 2010-12-22 11: : 12.4026 g : 22.9376 cm ³	:44:56 Analysis :42:00 Ar :53:03 Thermal Equi Col	Adsorptive: N halysis Bath: 7 Correction: N l. Interval: 1 d Freespace: 6	12 7.420 K To 0 s 7.4384 cm ³	Wa	Started: Completed: Report Time: Sample Mass: arm Freespace:	2010-10-27 16 2010-10-27 22 2010-12-22 11 12.4026 g 22.9376 cm ³	:44:56 Analys: :42:00	is Adsorptive: M Analysis Bath: al Correction: M uil. Interval: 1 old Freespace: 6	N2 77.420 K No 10 s 67.4384 cm ³
Poro	sity Distributio Model: N2 Method: Non-neg	on by Original De 2 @ 77K on Carbor gative Regulariza	ensity Function 1, Slit Pores 1tion; No Smoot	al Theory hing		Poros	ity Distributio Model: N2 Method: Non-neg	on by Original I 2 @ 77K on Carbo gative Regulari:	Density Function on, Slit Pores zation; No Smoot	al Theory
Volur Total Volur Are Total Are	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å : 931.26 Å : 931.26 Å : 14.83 Å :	0.00001 cm ³ 0.00036 cm ³ 0.091 m ² / 0.122 m ² /	9/g /g /g		Volum Total Volum Are Total Are	e in Pores < e in Pores <= a in Pores > a in Pores >=	14.83 Å 931.26 Å 931.26 Å 14.83 Å	: 0.00001 cm : 0.00036 cm : 0.091 m ² : 0.122 m ²	3/g /g /g
		Pore Size Tabl	.e					Pore Size Tal	ole	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	P	ore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
$14.83 \\ 15.91 \\ 17.16 \\ 18.59 \\ 20.02 \\ 21.62 \\ 23.41 \\ 25.20 \\ 27.34 \\ 29.49 \\ 31.81 \\ 34.31 \\ 36.99 \\ 40.03 \\ 43.25 \\ 46.64 \\ 50.40 \\ 54.33 \\ 58.80 \\ 63.44 \\ 68.45 \\ 73.99 \\ 79.88 \\ 86.32 \\ 93.11 \\ 100.61 \\ 108.66 \\ 117.23 \\ 126.53 \\ 126.53 \\ 126.51 \\ 108.67 \\ 11.23 \\ 126.53 \\ 126.51 \\ 108.67 \\ 11.23 \\ 126.53 \\ 126.51 \\ 108.67 \\ 11.23 \\ 126.53 \\ 126.51 \\ 108.67 \\ 11.23 \\ 126.53 \\ 126.51 \\ 108.67 \\ 11.23 \\ 126.53 \\ 126.51 \\ 126.$	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00002 0.00003 0.00003 0.00003 0.00004 0.00004 0.00005	0.00000 0.000000 0.000000 0.00000000	0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.005 0.006 0.006 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014	0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001		200.69 216.60 233.93 252.52 272.71 294.51 317.92 343.30 370.64 400.31 432.30 466.79 503.96 544.17 587.60 634.42 684.99 739.68 798.65 862.45 931.26	0.00008 0.00008 0.00008 0.00010 0.00011 0.00012 0.00015 0.00013 0.00023 0.00023 0.00025 0.00027 0.00029 0.00030 0.00031 0.00033 0.00034 0.00034 0.00035 0.00036	0.00000 0.00000 0.00001 0.00001 0.00002 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	$\begin{array}{c} 0.018\\ 0.018\\ 0.018\\ 0.019\\ 0.020\\ 0.021\\ 0.022\\ 0.024\\ 0.025\\ 0.026\\ 0.027\\ 0.026\\ 0.027\\ 0.028\\ 0.029\\ 0.029\\ 0.029\\ 0.030\\ 0.030\\ 0.030\\ 0.030\\ 0.031\\ 0.031\\ 0.031\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.$
147.61 159.41 172.10 185.86	0.00006 0.00007 0.00008 0.00008	0.00001 0.00001 0.00001 0.00001 0.00000	0.014 0.015 0.017 0.017 0.018	0.001 0.001 0.001 0.001						

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 4
Sar Opera Submit Source 1	mple: AG0.5-1 ator: :ter: File: D:\DATA\2020\EVA	\AG0.5-1	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-10-27 16:44:56 2010-10-27 22:42:00 2010-12-22 11:53:03 12.4026 g 22.9376 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.420 K No 10 s 67.4384 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00146, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	(cm ³ /a STP)	(cm ³ /g STP)	(cm ³ /g STD)	Residual
	(cm /g SIE)	(cm/g SIF)	(Cm /g Sir)	
0.489524394	0.0779	0.0783	-0.0004	-0.005069
0.506219923	0.0793	0.0797	-0.0005	-0.005822
0.522661209	0.0807	0.0811	-0.0004	-0.005512
0.538827300	0.0821	0.0825	-0.0004	-0.004301
0.554699600	0.0836	0.0838	-0.0002	-0.002838
0.570261598	0.0850	0.0851	-0.0001	-0.000885
0.585499227	0.0866	0.0866	-0.0001	-0.000607
0.600400090	0.0881	0.0880	0.0001	0.001544
0.614954293	0.0897	0.0899	-0.0002	-0.002021
0.629153311	0.0913	0.0913	0.0000	0.000301
0.642990828	0.0930	0.0927	0.0002	0.002495
0.656461716	0.0947	0.0948	-0.0001	-0.001182
0.669562697	0.0965	0.0964	0.0002	0.001817
0.682291925	0.0985	0.0989	-0.0004	-0.003937
0.694648683	0.1005	0.1005	0.0000	0.000175
0.706633508	0.1026	0.1022	0.0004	0.004198
0.718248010	0.1047	0.1050	-0.0003	-0.002617
0.729494929	0.1069	0.1065	0.0003	0.003031
0.740377605	0.1091	0.1094	-0.0003	-0.003000
0.750900388	0.1113	0.1109	0.0004	0.003328
0.761068285	0.1134	0.1138	-0.0003	-0.002934
0.770887017	0.1156	0.1152	0.0004	0.003208
0.780362606	0.1179	0.1188	-0.0010	-0.008084
0.789501607	0.1202	0.1202	0.0000	0.000039
0.798311174	0.1227	0.1217	0.0010	0.008054
0.806798697	0.1251	0.1255	-0.0004	-0.003329
0.814971626	0.1274	0.1270	0.0004	0.003494
0.822837889	0.1298	0.1304	-0.0005	-0.003983
0.830405474	0.1325	0.1319	0.0005	0.004098
0.837682605	0.1353	0.1358	-0.0006	-0.004325
0.844677329	0.1381	0.1375	0.0006	0.004402
0.851397991	0.1409	0.1415	-0.0005	-0.003852
0.857852995	0.1437	0.1431	0.0006	0.003918
0.864050388	0.1463	0.1468	-0.0005	-0.003622
0.869998574	0.1490	0.1484	0.0005	0.003677
0.875705481	0.1521	0.1530	-0.0009	-0.006127
0.881179392	0.1555	0.1545	0.0009	0.006101

Micromeritics Instrument Corporation

Page 3

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1

Started:	2010-10-27 16:44:5	6 Analysis Adsorptive:	N2
Completed:	2010-10-27 22:42:0	0 Analysis Bath:	77.420 K
Report Time:	2010-12-22 11:53:0	3 Thermal Correction:	No
Sample Mass:	12.4026 g	Equil. Interval:	10 s
Warm Freespace:	22.9376 cm ³	Cold Freespace:	67.4384 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00146, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.014515520	0.0305	0.0310	-0.0006	-0.018794
0.017706521	0.0315	0.0321	-0.0006	-0.019286
0.021398440	0.0327	0.0328	-0.0001	-0.003813
0.025631230	0.0339	0.0335	0.0004	0.010861
0.030442240	0.0350	0.0344	0.0006	0.018015
0.035865448	0.0361	0.0352	0.0009	0.024909
0.041930798	0.0372	0.0361	0.0011	0.030076
0.048663601	0.0384	0.0371	0.0013	0.033877
0.056084011	0.0396	0.0383	0.0013	0.033510
0.064206667	0.0407	0.0396	0.0012	0.028416
0.073040441	0.0419	0.0410	0.0009	0.020703
0.082588248	0.0431	0.0426	0.0005	0.011380
0.092847057	0.0444	0.0443	0.0001	0.002105
0.103808001	0.0457	0.0459	-0.0003	-0.006308
0.115456402	0.0469	0.0475	-0.0007	-0.014436
0.127772301	0.0480	0.0490	-0.0010	-0.020027
0.140730694	0.0493	0.0504	-0.0011	-0.022961
0.154301897	0.0505	0.0517	-0.0012	-0.023758
0.168452203	0.0517	0.0529	-0.0012	-0.022759
0.183144197	0.0530	0.0541	-0.0011	-0.019964
0.198337302	0.0544	0.0552	-0.0009	-0.015977
0.213988706	0.0557	0.0563	-0.0006	-0.011357
0.230053306	0.0571	0.0574	-0.0004	-0.006270
0.246484801	0.0584	0.0585	-0.0001	-0.001137
0.263235897	0.0598	0.0596	0.0002	0.003583
0.280259013	0.0612	0.0612	0.0000	0.000475
0.297506303	0.0626	0.0624	0.0003	0.004004
0.314930797	0.0640	0.0636	0.0004	0.006429
0.332486212	0.0654	0.0649	0.0005	0.007804
0.350127310	0.0668	0.0662	0.0005	0.008166
0.367810607	0.0682	0.0677	0.0005	0.007555
0.385494202	0.0696	0.0691	0.0004	0.006018
0.403138310	0.0710	0.0707	0.0003	0.003893
0.420704991	0.0724	0.0723	0.0001	0.001631
0.438158900	0.0738	0.0738	0.0000	-0.000476
0.455466807	0.0752	0.0754	-0.0002	-0.002320
0.472598106	0.0766	0.0769	-0.0003	-0.003882
Analysis Bath: 77.420 K

Page 5

Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1

 Started:
 2010-10-27
 16:44:56
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-10-27
 22:42:00
 Analysis
 Bath:
 77.
 Report Time: 2010-10-2/22:42:00Analysis Balth: 77.420 KReport Time: 2010-12-22 11:53:03Thermal Correction: NoSample Mass: 12.4026 gEquil. Interval: 10 sWarm Freespace: 22.9376 cm³Cold Freespace: 67.4384 cm³

> Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

> > Standard Deviation of Fit: 0.00146, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.886428118	0.1590	0.1601	-0.0011	-0.006800
0.891459525	0.1627	0.1616	0.0011	0.006741
0.896281302	0.1663	0.1674	-0.0010	-0.006247
0.900900900	0.1699	0.1689	0.0011	0.006193
0.905325770	0.1734	0.1743	-0.0009	-0.005002
0.909563184	0.1767	0.1758	0.0009	0.004973
0.913620114	0.1798	0.1794	0.0004	0.002461
0.917503417	0.1824	0.1810	0.0013	0.007279
0.921219707	0.1839	0.1827	0.0011	0.006091
0.924775481	0.1848	0.1845	0.0004	0.001977
0.928177178	0.1857	0.1862	-0.0005	-0.002629
0.931430817	0.1868	0.1879	-0.0011	-0.005780
0.934542298	0.1884	0.1895	-0.0012	-0.006138
0.937517405	0.1906	0.1912	-0.0005	-0.002780
0.940361619	0.1937	0.1948	-0.0012	-0.005978
0.943080306	0.1976	0.1964	0.0012	0.005910
0.945678592	0.2024	0.2045	-0.0021	-0.010189
0.948161721	0.2082	0.2061	0.0021	0.009958
0.950534225	0.2148	0.2148	0.0000	0.00028
0.952800930	0.2223	0.2256	-0.0033	-0.014819
0.954966187	0.2306	0.2273	0.0033	0.014329
0.957034409	0.2397	0.2437	-0.0040	-0.016628
0.959009588	0.2496	0.2456	0.0040	0.016017
0.960896015	0.2600	0.2644	-0.0044	-0.017083
0.962697208	0.2707	0.2663	0.0045	0.016444
0.964416981	0.2809	0.2850	-0.0040	-0.014341
0.966058910	0.2907	0.2867	0.0040	0.013885
0.967626274	0.3000	0.3000	0.0000	0.00007
0.969122529	0.3090	0.3124	-0.0034	-0.011080
0.970550597	0.3175	0.3140	0.0034	0.010800
0.971913695	0.3256	0.3286	-0.0030	-0.009235
0.973214507	0.3333	0.3303	0.0030	0.009034
0.974455774	0.3407	0.3433	-0.0026	-0.007589
0.975640416	0.3478	0.3452	0.0026	0.007445
0.976770699	0.3545	0.3545	0.0000	0.00002
0.977849126	0.3609	0.3630	-0.0021	-0.005795
0.978878021	0.3670	0.3649	0.0021	0.005705

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 6

Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1 Started: 2010-10-27 16:44:56 Analysis Adsorptive: N2

Starteu.	2010-10-27 10.44.50	Analysis Ausorperve.	
Completed:	2010-10-27 22:42:00	Analysis Bath:	77.420 K
Report Time:	2010-12-22 11:53:03	Thermal Correction:	No
Sample Mass:	12.4026 g	Equil. Interval:	10 s
Warm Freespace:	22.9376 cm ³	Cold Freespace:	67.4384 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00146, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.979859591	0.3729	0.3747	-0.0019	-0.004990
0.980795979	0.3784	0.3766	0.0019	0.004921
0.981689274	0.3838	0.3838	0.0000	0.000001
0.982541502	0.3888	0.3903	-0.0015	-0.003824
0.983354270	0.3937	0.3922	0.0015	0.003780
0.984129488	0.3983	0.3995	-0.0012	-0.002973
0.984869003	0.4027	0.4015	0.0012	0.002942
0.985574186	0.4069	0.4069	0.0000	0.00000

DFT	Plus(R) V3.00 (ASAP 2020 V1.05)	Unit 1	Page 7
	Sample: AG0.5-1 Operator: Submitter:		
	Source File: D:\DATA\2020\EVA	\AG0.5-1	
	Started: 2010-10-27 16:44:56	Analysis Adsorptive:	N2

ocur ceu.	2010 10 27 10.44.50	marysrs masorperve.	142
Completed:	2010-10-27 22:42:00	Analysis Bath:	77.420 K
Report Time:	2010-12-22 11:53:03	Thermal Correction:	No
Sample Mass:	12.4026 g	Equil. Interval:	10 s
Warm Freespace:	22.9376 cm ³	Cold Freespace:	67.4384 cm3

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	931.26	Å	:	0.00036	cm³/g
	Area	in	Pores	>	931.26	Å	:	0.091	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.122	m²/q

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 8
Sar	nple: AG0.5-1		
Opera	ator:		
Submit	ter:		
Source H	File: D:\DATA\2020\EVA	\AG0.5-1	
Started:	2010-10-27 16:44:56	Analysis Adsorptive:	N2
Completed:	2010-10-27 22:42:00	Analysis Bath:	77.420 K
Report Time:	2010-12-22 11:53:03	Thermal Correction:	No
Sample Mass:	12.4026 g	Equil. Interval:	10 s
Warm Freespace:	22.9376 cm3	Cold Freespace:	67.4384 cm ³
Devee	itu Distuibutise bu ou		The
POLOS	ILY DISCRIDUCION BY OF	Iginal Density Functio	Shai ineory

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Volume	in	Pores	<	14.83	å :	0.00001	cm ³ /c
Total Volume	in	Pores	<=	931.26	å :	0.00036	cm ³ /c
Area	in	Pores	>	931.26 i	å :	0.091	m²/g
Total Area	in	Pores	>=	14.83 1	å :	0.122	m²/q

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1

 Started:
 2010-10-27
 16:44:56
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-10-27
 22:42:00
 Analysis
 Bath:
 77.
 Report Time: 2010-12-2 11:53:03 Sample Mass: 12.4026 g Warm Freespace: 22.9376 cm³ Cold Freespace: 67.4

Analysis Bath: 77.420 K Equil. Interval: 10 s Cold Freespace: 67.4384 cm³

Page 9

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	931.26	Å	:	0.00036	cm³/g
	Area	in	Pores	>	931.26	Å	:	0.091	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.122	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page10 Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1 Started: 2010-10-27 16:44:56 Analysis Adsorptive: N2 Completed: 2010-10-27 22:42:00 Analysis Bath: 77 Analysis Bath: 77.420 K Report Time: 2010-12-22 11:53:03 Sample Mass: 12.4026 g Warm Freespace: 22.9376 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.4384 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing 14.83 Å : 0.00001 cm³/g 931.26 Å : 0.00036 cm³/g 931.26 Å : 0.091 m²/g Volume in Pores < Total Volume in Pores <= Area in Pores >

14.83 Å :

0.122 m²/q

Total Area in Pores >=

	+ Cumu	lative Po	re Vol	Cu ume	ımul	ative	e Po	re V	olume	vs. P	ore Wid	th					
																	_
0.00035-															*	**'	
0.00030-						_		_						*	*		
ⁿ³ /g)													7	t			
ຍ ຍັງ ຍັງ													Ŧ				
0.00020-												ļ	÷		-		
												4			_		
											*	ł					
0.00010									¥	ҝ≁	+++*						
0.00005-						***	, Ar	te de tra	***						+		
0.00000-		╪┿┿┿┷╸	+++			-	1		>					_		16	+03
						Po	re W	/idth	- 1 (Anas	trom	s)						

DFT Plus(R) V3.00 (ASAP 202	0 V1.05)		Unit 1	Page11				
Sample: AGO.5 Operator: Submitter: Source File: D:\DA	5-1 MTA\2020\EVA\	AG0.5-1						
Started: 2010-10-2 Completed: 2010-10-2 Report Time: 2010-12-2 Sample Mass 12.4026 g Warm Freespace: 22.9376 cr Porosity Distril Model	7 16:44:56 7 22:42:00 2 11:53:03 m ³ pution by Ori : N2 @ 77K c	Analysis F Anal Thermal C Equil. Cold ginal Dens on Carbon,	Adsorptive lysis Bath Correction . Interval Freespace sity Functi Slit Pores	: N2 : 77.420 K : No : 10 s : 67.4384 cm ³ Lonal Theory				
Method: Nor	n-negative Re	egularizati	lon; No Smo	oothing				
Volume in Pores Total Volume in Pores Area in Pores Total Area in Pores	< 14. <= 931. > 931. >= 14.	83Å: 26Å: 26Å: 83Å:	0.00001 0.00036 0.091 0.122	cm³/g cm³/g m²/g m²/g				
Incremental Pore Volume vs. Pore Width + Incremental Pore Volume								

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page12
San Opera Submit	mple: AG0.5-1 ator: ater:		
Source F	ile: D:\DATA\2020\EVA	\AG0.5-1	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-10-27 16:44:56 2010-10-27 22:42:00 2010-12-22 11:53:03 12.4026 g 22.9376 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.420 K No 10 s 67.4384 cm ³
Poros	ity Distribution by Or: Model: N2 @ 77K @ Method: Non-negative R	iginal Density Functio on Carbon, Slit Pores egularization; No Smoo	onal Theory

Volume	in	Pores	<	14.83	Å	:	0.00001	cm ³ /c
Total Volume	in	Pores	<=	931.26	Å		0.00036	cm ³ /c
Area	in	Pores	>	931.26	Å	:	0.091	m²/q
Total Area	in	Pores	>=	14.83	Å	:	0.122	m²/q

Page13

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page14 Sample: AG0.5-1 Operator: Submitter: Source File: D:\DATA\2020\EVA\AG0.5-1
 Started:
 2010-10-27
 16:44:56
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-10-27
 22:42:00
 Analysis
 Bath:
 77
 Analysis Bath: 77.420 K Report Time: 2010-10-2-22 11:53:03 Sample Mass: 12.4026 g Warm Freespace: 22.9376 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 67.4384 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Standard Deviation of Fit: 0.00146, cm³/g Goodness of Fit 0.40-0.35-(3.30-(cm₃/d STP) 0.25-0.20-Ouantity 0.15-0.10-0.05-

0.5

Relative Pressure (P/Po)

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

A2.19 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the M sample size fraction 1–2 mm

Micromeritics Instrument Corporation			Micromeritics Instrument Corporation						
DFT Plus(R) V3.0	00 (ASAP 2020 V1	1.05)	Unit 1	Page 1	DFT Plus(R) V3.0	0 (ASAP 2020 V1	L.05)	Unit 1	Page 2
Ope Subn Source	Gample: STONE2 erator: nitter: e File: D:\DATA\:	2020\EVA\STONE2.	SMP		Subr Subr Source	Gample: STONE2 erator: hitter: e File: D:\DATA\	2020\EVA\STONE2	P.SMP	
Started Completed Report Time Sample Mass Warm Freespace	d: 2010-07-01 9: d: 2010-07-01 14 e: 2010-12-22 11 s: 12.5394 g e: 23.3411 cm ³	54:31 Analysi :50:49 A :55:01 Therma Equ Co	Adsorptive: Manalysis Bath: Correction: Mail. Interval: 1 Did Freespace: 6	12 17.492 K Io 0 s 18.4296 cm³	Started Completed Report Time Sample Mas: Warm Freespace	d: 2010-07-01 9: d: 2010-07-01 14 e: 2010-12-22 11 s: 12.5394 g e: 23.3411 cm ³	54:31 Analys :50:49 :55:01 Therm Ec	ais Adsorptive: Analysis Bath: mal Correction: quil. Interval: Cold Freespace:	N2 77.492 K No 10 s 68.4296 cm ³
Pore	osity Distributi Model: N Method: Non-ne	on by Original E 2 @ 77K on Carbo gative Regulariz	ensity Function on, Slit Pores ation; No Smoot	al Theory hing	Por	osity Distributi Model: N Method: Non-ne	on by Original 2 @ 77K on Cark gative Regulari	Density Function Don, Slit Pores Zation; No Smoo	nal Theory thing
Volume in Pores < 14.83 Å : 0.00001 cm³/g Total Volume in Pores <= 862.45 Å : 0.00034 cm³/g Area in Pores > 862.45 Å : 0.101 m²/g Total Area in Pores >= 14.83 Å : 0.130 m²/g					Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= ea in Pores > ea in Pores >=	14.83 Å 862.45 Å 862.45 Å 14.83 Å	: 0.00001 cm : 0.00034 cm : 0.101 m ² : 0.130 m ²	13/g 13/g /g
		Pore Size Tab	ole				Pore Size Ta	able	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
14.8315.9117.1618.5920.0221.6223.4125.2027.3429.4931.8134.3136.9940.0343.2546.64	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	$\begin{array}{c} 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.004\\ 0.005\\ 0.007\\ 0.$	0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c} 200.69\\ 216.60\\ 233.93\\ 252.52\\ 272.71\\ 294.51\\ 317.92\\ 343.30\\ 370.64\\ 400.31\\ 432.30\\ 466.79\\ 503.96\\ 544.17\\ 587.60\\ 634.42\end{array}$	0.00006 0.00006 0.00007 0.00009 0.00011 0.00014 0.00017 0.00022 0.00022 0.00022 0.00023 0.00022 0.00022 0.00022 0.00027 0.00029 0.00029	0.00000 0.00000 0.00000 0.00001 0.00001 0.00002 0.00003 0.00003 0.00003 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	$\begin{array}{c} 0.016\\ 0.016\\ 0.016\\ 0.017\\ 0.018\\ 0.019\\ 0.021\\ 0.022\\ 0.024\\ 0.025\\ 0.025\\ 0.025\\ 0.025\\ 0.026\\ 0.027\\ 0.027\\ 0.027\\ 0.027\\ 0.027\\ 0.027\\ 0.028\\ 0.$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.001\\ 0.001\\ 0.002\\ 0.002\\ 0.002\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.001\\ 0.000\\ 0.$
$\begin{array}{c} 46.64\\ 50.40\\ 54.33\\ 58.80\\ 63.44\\ 68.45\\ 73.99\\ 79.88\\ 86.32\\ 93.11\\ 100.66\\ 117.23\\ 126.53\\ 136.71\\ \end{array}$	0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.00004	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	0.007 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.009 0.010 0.010 0.011 0.012 0.012 0.013	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	634.42 684.99 739.68 798.65 862.45	0.00030 0.00031 0.00032 0.00032 0.00033	0.00001 0.00001 0.00001 0.00001 0.00001	0.028 0.028 0.028 0.029 0.029	0.000 0.000 0.000 0.000 0.000
147.61 159.41 172.10 185.86	0.00005 0.00005 0.00006 0.00006	0.00001 0.00001 0.00001 0.00000	0.014 0.015 0.016 0.016	0.001 0.001 0.001 0.000					

Page 3

Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP

 Started:
 2010-07-01
 9:54:31
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-07-01
 14:50:49
 Analysis
 Bath:
 77.492 K

 Report Time:
 2010-12-22
 11:55:01
 Thermal Correction: No
 Sample Mass:
 12.5394 g
 Equil. Interval:
 10 s

 Warm Freespace:
 23.3411 cm³
 Cold Freespace:
 68.4296 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00145, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed	Fitted Quantity Adsorbed	Absolute Residual	Relative Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.011783670	0.0347	0.0351	-0.0004	-0.011638
0.014515520	0.0356	0.0358	-0.0002	-0.004922
0.017706521	0.0367	0.0372	-0.0005	-0.014938
0.021398440	0.0378	0.0379	-0.0001	-0.003896
0.025631230	0.0390	0.0387	0.0003	0.007849
0.030442240	0.0402	0.0395	0.0007	0.017658
0.035865448	0.0415	0.0404	0.0011	0.026188
0.041930798	0.0427	0.0414	0.0013	0.030183
0.048663601	0.0438	0.0425	0.0014	0.031233
0.056084011	0.0450	0.0437	0.0013	0.029559
0.064206667	0.0463	0.0451	0.0012	0.025347
0.073040441	0.0475	0.0466	0.0009	0.018670
0.082588248	0.0488	0.0483	0.0005	0.009662
0.092847057	0.0501	0.0501	0.0000	-0.000004
0.103808001	0.0514	0.0518	-0.0004	-0.008390
0.115456402	0.0527	0.0535	-0.0008	-0.015659
0.127772301	0.0540	0.0551	-0.0011	-0.020394
0.140730694	0.0553	0.0566	-0.0013	-0.022610
0.154301897	0.0567	0.0580	-0.0013	-0.022844
0.168452203	0.0580	0.0593	-0.0012	-0.021431
0.183144197	0.0594	0.0605	-0.0011	-0.018347
0.198337302	0.0608	0.0617	-0.0009	-0.014229
0.213988706	0.0623	0.0629	-0.0006	-0.009659
0.230053306	0.0637	0.0640	-0.0003	-0.004631
0.246484801	0.0652	0.0652	0.0000	0.000600
0.263235897	0.0667	0.0664	0.0004	0.005703
0.280259013	0.0683	0.0684	-0.0001	-0.001065
0.297506303	0.0698	0.0696	0.0002	0.003512
0.314930797	0.0714	0.0715	-0.0001	-0.000996
0.332486212	0.0730	0.0728	0.0001	0.001989
0.350127310	0.0745	0.0743	0.0003	0.003921
0.367810607	0.0761	0.0758	0.0004	0.004799
0.385494202	0.0777	0.0773	0.0004	0.004701
0.403138310	0.0793	0.0790	0.0003	0.003855
0.420704991	0.0808	0.0806	0.0002	0.002506
0.438158900	0.0823	0.0822	0.0001	0.000955
0.455466807	0.0838	0.0839	0.0000	-0.000402

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 4

Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Apalusis Adsorptive: N2

2010-07-01 9:54:3	Analysis Adsorptive:	NZ
2010-07-01 14:50:	49 Analysis Bath:	77.492 K
2010-12-22 11:55:	01 Thermal Correction:	No
12.5394 g	Equil. Interval:	10 s
23.3411 cm³	Cold Freespace:	68.4296 cm
	2010-07-01 9:54:3 2010-07-01 14:50: 2010-12-22 11:55: 12.5394 g 23.3411 cm ³	2010-07-01 14:55:01 Analysis Backsorptive: 2010-07-01 14:55:04 Analysis Bath: 2010-12-22 11:55:01 Thermal Correction: 12.5394 g Cold Freespace:

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00145, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.472598106	0.0853	0.0854	-0.0001	-0.001646
0.489524394	0.0867	0.0870	-0.0002	-0.002632
0.506219923	0.0882	0.0884	-0.0003	-0.002970
0.522661209	0.0897	0.0899	-0.0002	-0.002499
0.538827300	0.0911	0.0913	-0.0001	-0.001630
0.554699600	0.0926	0.0927	-0.0001	-0.000853
0.570261598	0.0941	0.0941	0.0000	-0.000236
0.585499227	0.0955	0.0955	0.0000	0.000213
0.600400090	0.0969	0.0969	0.0000	0.000321
0.614954293	0.0984	0.0985	-0.0001	-0.000793
0.629153311	0.1000	0.1000	0.0000	0.000227
0.642990828	0.1016	0.1015	0.0001	0.001165
0.656461716	0.1033	0.1033	0.0000	-0.000027
0.669562697	0.1050	0.1049	0.0001	0.000518
0.682291925	0.1067	0.1068	0.0000	-0.000380
0.694648683	0.1085	0.1085	0.0000	0.000175
0.706633508	0.1103	0.1102	0.0001	0.000610
0.718248010	0.1121	0.1122	-0.0001	-0.000897
0.729494929	0.1140	0.1139	0.0001	0.001241
0.740377605	0.1160	0.1161	-0.0002	-0.001393
0.750900388	0.1179	0.1177	0.0002	0.001672
0.761068285	0.1199	0.1200	-0.0002	-0.001502
0.770887017	0.1218	0.1216	0.0002	0.001736
0.780362606	0.1239	0.1247	-0.0007	-0.006047
0.789501607	0.1262	0.1262	0.0000	-0.000048
0.798311174	0.1285	0.1277	0.0008	0.006136
0.806798697	0.1309	0.1312	-0.0003	-0.002508
0.814971626	0.1331	0.1328	0.0004	0.002648
0.822837889	0.1355	0.1359	-0.0004	-0.003165
0.830405474	0.1381	0.1376	0.0005	0.003264
0.837682605	0.1408	0.1413	-0.0005	-0.003440
0.844677329	0.1435	0.1430	0.0005	0.003508
0.851397991	0.1463	0.1467	-0.0004	-0.002986
0.857852995	0.1489	0.1485	0.0005	0.003046
0.864050388	0.1515	0.1519	-0.0004	-0.002917
0.869998574	0.1541	0.1536	0.0005	0.002966
0.875705481	0.1571	0.1580	-0.0008	-0.005317

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 6
Sar Opera Submit Source F	mple: STONE2 ator: :ter: File: D:\DATA\2020\EVA	\STONE2.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-07-01 9:54:31 2010-07-01 14:50:49 2010-12-22 11:55:01 12.5394 g 23.3411 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.492 K No 10 s 68.4296 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00145, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.3757	0.3737	0.0020	0.005316
0.979859591	0.3816	0.3834	-0.0018	-0.004633
0.980795979	0.3872	0.3854	0.0018	0.004571
0.981689274	0.3925	0.3925	0.0000	0.000000
0.982541502	0.3976	0.3990	-0.0014	-0.003501
0.983354270	0.4024	0.4010	0.0014	0.003462
0.984129488	0.4070	0.4081	-0.0011	-0.002652
0.984869003	0.4114	0.4104	0.0011	0.002626

Micromeritics Instrument Corporation

Page 5

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP

Started:	2010-07-01	9:54:31	Analysis Adsorptive	: N2
Completed:	2010-07-01	14:50:49	Analysis Bath	: 77.492 K
Report Time:	2010-12-22	11:55:01	Thermal Correction	: No
Sample Mass:	12.5394 g		Equil. Interval	: 10 s
Warm Freespace:	23.3411 cm	3	Cold Freespace	: 68.4296 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00145, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.881179392	0.1605	0.1596	0.0008	0.005296
0.886428118	0.1640	0.1649	-0.0010	-0.005961
0.891459525	0.1675	0.1665	0.0010	0.005911
0.896281302	0.1711	0.1720	-0.0009	-0.005440
0.900900900	0.1746	0.1737	0.0009	0.005396
0.905325770	0.1780	0.1787	-0.0008	-0.004250
0.909563184	0.1812	0.1804	0.0008	0.004228
0.913620114	0.1842	0.1832	0.0010	0.005504
0.917503417	0.1866	0.1850	0.0016	0.008459
0.921219707	0.1880	0.1869	0.0011	0.005997
0.924775481	0.1890	0.1888	0.0002	0.001163
0.928177178	0.1899	0.1906	-0.0007	-0.003733
0.931430817	0.1912	0.1925	-0.0013	-0.006836
0.934542298	0.1930	0.1943	-0.0013	-0.006900
0.937517405	0.1955	0.1961	-0.0006	-0.003083
0.940361619	0.1988	0.2001	-0.0012	-0.006266
0.943080306	0.2031	0.2018	0.0013	0.006185
0.945678592	0.2082	0.2104	-0.0022	-0.010432
0.948161721	0.2143	0.2121	0.0022	0.010184
0.950534225	0.2214	0.2213	0.0000	0.000027
0.952800930	0.2293	0.2327	-0.0034	-0.014890
0.954966187	0.2380	0.2346	0.0034	0.014389
0.957034409	0.2475	0.2516	-0.0041	-0.016582
0.959009588	0.2577	0.2536	0.0041	0.015966
0.960896015	0.2686	0.2729	-0.0044	-0.016288
0.962697208	0.2793	0.2749	0.0044	0.015696
0.964416981	0.2895	0.2935	-0.0040	-0.013648
0.966058910	0.2993	0.2954	0.0040	0.013227
0.967626274	0.3087	0.3087	0.0000	0.00006
0.969122529	0.3176	0.3209	-0.0033	-0.010537
0.970550597	0.3261	0.3228	0.0034	0.010278
0.971913695	0.3342	0.3372	-0.0029	-0.008750
0.973214507	0.3420	0.3391	0.0029	0.008565
0.974455774	0.3494	0.3519	-0.0025	-0.007139
0.975640416	0.3564	0.3539	0.0025	0.007007
0.976770699	0.3632	0.3632	0.0000	0.00002
0.977849126	0.3696	0.3716	-0.0020	-0.005398

Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP

Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.492 K Report Time: 2010-12-22 11:55:01 Thermal Correction: No Sample Mass: 12.5394 g Equil. Interval: 10 s Warm Freespace: 23.3411 cm³ Cold Freespace: 68.4 Equil. Interval: 10 s Cold Freespace: 68.4296 cm³

Unit 1

Page 7

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Ă	. :	0.00001	cm³/g
Total	Volume	in	Pores	<=	862.45 Å	:	0.00034	cm³/g
	Area	in	Pores	>	862.45 Å	:	0.101	m²/g
Tota	al Area	in	Pores	>=	14.83 Å	:	0.130	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page 8 Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49 Analysis Bath: 77.492 K Report Time: 2010-12-22 11:55:02 Sample Mass: 12.5394 g Warm Freespace: 23.3411 cm³ Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.4296 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00001 cm³/g 862.45 Å : 0.00034 cm³/g Total Volume in Pores <= Area in Pores > 862.45 Å 0.101 m²/g : Total Area in Pores >= 14.83 Å : 0.130 m²/q Incremental Surface Area vs. Pore Width + Incremental Surface Area 0.0035-0.0030-Area (m²/g) 0.0025-

DFT Plus(R) V3.00 (ASAP 2020 V1.	05) Unit	1 Page 9
Sample: STONE2 Operator:		

Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP

Started:	2010-07-01 9:54:31	Analysis Adsorptive:	N2
Completed:	2010-07-01 14:50:49	Analysis Bath:	77.492 K
Report Time:	2010-12-22 11:55:02	Thermal Correction:	No
Sample Mass:	12.5394 g	Equil. Interval:	10 s
Warm Freespace:	23.3411 cm ³	Cold Freespace:	68.4296 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	862.45	Å	:	0.00034	cm³/g
	Area	in	Pores	>	862.45	Å	:	0.101	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.130	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page10
Sar Opera Submit Source F	mple: STONE2 ator: tter: rile: D:\DATA\2020\EVA	\STONE2.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-07-01 9:54:31 2010-07-01 14:50:49 2010-12-22 11:55:02 12.5394 g 23.3411 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.492 K No 10 s 68.4296 cm ³
Poros	ity Distribution by Or Model: N2 @ 77K Method: Non-negative R	iginal Density Functio on Carbon, Slit Pores Regularization; No Smoo	onal Theory othing

	17-1	÷	D	,	14 02	rfi l		0 00001	3 / -
	vorume	ΤU	Pores	<	14.83	А	:	0.00001	CIII ² /0
Total	Volume	in	Pores	<=	862.45	Å	:	0.00034	CM 3/0
	Area	in	Pores	>	862.45	Å	:	0.101	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.130	m²/g

Page11

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49 Analysis Bath: 77.

 Completed:
 2010-07-01
 14:50:49
 Analysis
 Bath:
 77.492 K

 Report Time:
 2010-12-22
 11:55:02
 Thermal Correction: No

 Sample Mass:
 12.5394 g
 Equil. Interval: 10 s

 Warm Freespace:
 23.3411 cm³
 Cold Freespace: 68.4296 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Ă	:	0.00001	cm³/g
Total	Volume	in	Pores	<=	862.45 Å	:	0.00034	cm³/g
	Area	in	Pores	>	862.45 Å	:	0.101	m²/g
Tota	al Area	in	Pores	>=	14.83 Å	:	0.130	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Page12 Unit 1 Sample: STONE2 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE2.SMP Started: 2010-07-01 9:54:31 Analysis Adsorptive: N2 Completed: 2010-07-01 14:50:49 Analysis Bath: 77.492 K Report Time: 2010-12-22 11:55:02 Thermal Correction: No Sample Mass: 12.5394 g Warm Freespace: 23.3411 cm³ Equil. Interval: 10 s Cold Freespace: 68.4296 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing 14.83 Å : 0.00001 cm³/g 862.45 Å : 0.00034 cm³/g Volume in Pores < Total Volume in Pores <= Area in Pores > 862.45 Å 0.101 m²/q : Total Area in Pores >= 14.83 Å : 0.130 m²/q Differential Pore Volume vs. Pore Width + Differential Pore Volume 0.0009 0.0008 0.0007 0.0007-(cm^{3/d}) 0.0006-Volume 0.0005 Differential Pore 0.0004 0.0003 0.0002 0.0001

1e+02

Pore Width (Angstroms)

1e+03

0.0000-

Micromeritics Instrument Corporation

Relative Pressure (P/Po)

SKB TR-14-18

A2.20 Pore size distributions (PSD) according to the density functional theory (DFT) (as referenced to in Section 3.2.2) for the M sample size fraction 2–3 mm

Micromeritics Instrument Corporation

Micromeritics Instrument Corporation

DFT Plus(R) V3.0	0 (ASAP 2020 V	1.05)	Unit 1	Page 1	DFT Plus(R) V3.(00 (ASAP 2020 V	71.05)	Unit 1	Page 2
S Ope Subm Source	Gample: STONE6 erator: nitter: e File: D:\DATA\	2020\EVA\STONE6.	SMP		Op Sub Source	Sample: STONE6 erator: nitter: e File: D:\DATA	\2020\EVA\STONE6	.SMP	
Startec Completec Report Time Sample Mass Warm Freespace	d: 2010-08-26 9: d: 2010-08-26 13 e: 2010-12-22 11 s: 13.0402 g e: 23.1536 cm ³	13:17 Analys: :13:33 i :56:14 Therma Equ	is Adsorptive: 1 Analysis Bath: 7 al Correction: 1 uil. Interval: 1 old Freespace: 6	12 77.409 K Io .0 s 58.7163 cm ³	Starte Complete Report Tim Sample Mas Warm Freespac	d: 2010-08-26 9 d: 2010-08-26 1 e: 2010-12-22 1 s: 13.0402 g e: 23.1536 cm ³	:13:17 Analys 3:13:33 1:56:14 Therm Ec	sis Adsorptive: 1 Analysis Bath: mal Correction: 1 quil. Interval: 1 Cold Freespace: 0	N2 77.409 K No 10 s 58.7163 cm ³
Pore	osity Distributi Model: N Method: Non-ne	on by Original I 2 @ 77K on Carbo gative Regulariz	Density Function on, Slit Pores zation; No Smoot	al Theory hing	Por	osity Distribut Model: Method: Non-n	ion by Original N2 @ 77K on Cark egative Regulari	Density Functior oon, Slit Pores zation; No Smoot	hal Theory Thing
Volu Total Volu Ar Total Ar	me in Pores < me in Pores <= rea in Pores > rea in Pores >=	14.83 Å 931.26 Å 931.26 Å 14.83 Å	: 0.00003 cm : 0.00044 cm : 0.000 m ² : 0.039 m ²	³/g /g /g	Volı Total Volu An Total An	ame in Pores < ame in Pores <= cea in Pores >= cea in Pores >=	14.83 Å = 931.26 Å 931.26 Å = 14.83 Å	: 0.00003 cm : 0.00044 cm : 0.000 m ² : 0.039 m ²	,\d 3\d 3\d
		Pore Size Tak	ole				Pore Size Ta	able	
Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)	Pore Width (Å)	Cumulative Volume (cm³/g)	Incremental Volume (cm³/g)	Cumulative Area (m²/g)	Incremental Area (m²/g)
14.83 15.91 17.16 18.59	0.00000 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000	0.004 0.008 0.010 0.010	0.004 0.005 0.002 0.000	200.69 216.60 233.93 252.52	0.00010 0.00010 0.00010 0.00011	0.00000 0.00000 0.00000 0.00001	0.024 0.025 0.025 0.026	0.000 0.000 0.000 0.001
20.02 21.62 23.41 25.20	0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000	0.010 0.010 0.010 0.010	0.000 0.000 0.000 0.000	272.71 294.51 317.92 343.30 370.64	0.00013 0.00014 0.00016 0.00018	0.00001 0.00001 0.00002 0.00003	0.027 0.028 0.029 0.030 0.032	0.001 0.001 0.001 0.002 0.002
29.49 31.81 34.31 36.99	0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000	0.010 0.010 0.010 0.010 0.010	0.000 0.000 0.000 0.000 0.000	400.31 432.30 466.79 503.96	0.00024 0.00026 0.00028 0.00030	0.00003 0.00002 0.00002 0.00002	0.032 0.033 0.034 0.035 0.036	0.001 0.001 0.001 0.001
40.03 43.25 46.64 50.40 54.33	0.00001 0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000 0.00000	0.010 0.010 0.010 0.010 0.010	0.000 0.000 0.000 0.000 0.000	544.17 587.60 634.42 684.99 739.68	0.00032 0.00034 0.00035 0.00037 0.00038	0.00002 0.00001 0.00001 0.00002 0.00001	0.037 0.037 0.037 0.038 0.038	0.001 0.000 0.000 0.000 0.000
58.80 63.44 68.45 73.99 79.88	0.00001 0.00001 0.00001 0.00001	0.00000 0.00000 0.00000 0.00000	0.010 0.010 0.010 0.011	0.000 0.000 0.000 0.000	798.65 862.45 931.26	0.00039 0.00040 0.00041	0.00001 0.00001 0.00001	0.038 0.039 0.039	0.000 0.000 0.000
86.32 93.11 100.61 108.66	0.00002 0.00002 0.00003 0.00004	0.00001 0.00001 0.00001 0.00001	0.011 0.013 0.014 0.015 0.016	0.001 0.001 0.001 0.001 0.001					
117.23 126.53 136.71 147.61 159.41	0.00004 0.00005 0.00006 0.00007 0.00008	0.00001 0.00001 0.00001 0.00001	0.017 0.018 0.020 0.021 0.022	0.001 0.001 0.001 0.001					
172.10	0.00009	0.00001 0.00001	0.023 0.024	0.001 0.001					

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 4
Sai Oper Submi Source	mple: STONE6 ator: tter: File: D:\DATA\2020\EVA	\STONE6.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-26 9:13:17 2010-08-26 13:13:33 2010-12-22 11:56:14 13.0402 g 23.1536 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.409 K No 10 s 68.7163 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00165, cm³/g

Isotherm Table

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.472598106	0.0477	0.0486	-0.0009	-0.017989
0.489524394	0.0478	0.0489	-0.0011	-0.023235
0.506219923	0.0480	0.0493	-0.0013	-0.027694
0.522661209	0.0482	0.0496	-0.0015	-0.030826
0.538827300	0.0484	0.0500	-0.0016	-0.033039
0.554699600	0.0486	0.0503	-0.0017	-0.034873
0.570261598	0.0489	0.0507	-0.0018	-0.036157
0.585499227	0.0492	0.0510	-0.0018	-0.036845
0.600400090	0.0495	0.0513	-0.0018	-0.037298
0.614954293	0.0498	0.0517	-0.0019	-0.037200
0.629153311	0.0502	0.0520	-0.0018	-0.035858
0.642990828	0.0507	0.0524	-0.0017	-0.033724
0.656461716	0.0512	0.0528	-0.0016	-0.031029
0.669562697	0.0518	0.0532	-0.0014	-0.026478
0.682291925	0.0525	0.0536	-0.0011	-0.020748
0.694648683	0.0532	0.0540	-0.0008	-0.014904
0.706633508	0.0539	0.0544	-0.0005	-0.009507
0.718248010	0.0546	0.0548	-0.0002	-0.003278
0.729494929	0.0554	0.0552	0.0002	0.003866
0.740377605	0.0562	0.0563	-0.0001	-0.001084
0.750900388	0.0571	0.0567	0.0004	0.007408
0.761068285	0.0580	0.0581	-0.0001	-0.002081
0.770887017	0.0589	0.0584	0.0004	0.007484
0.780362606	0.0601	0.0611	-0.0010	-0.017268
0.789501607	0.0615	0.0614	0.0001	0.000880
0.798311174	0.0631	0.0618	0.0013	0.020108
0.806798697	0.0647	0.0651	-0.0005	-0.007458
0.814971626	0.0662	0.0655	0.0007	0.011052
0.822837889	0.0678	0.0684	-0.0006	-0.009012
0.830405474	0.0696	0.0688	0.0008	0.011930
0.837682605	0.0715	0.0722	-0.0007	-0.009933
0.844677329	0.0735	0.0726	0.0009	0.012289
0.851397991	0.0754	0.0762	-0.0007	-0.009351
0.857852995	0.0774	0.0765	0.0009	0.011342
0.864050388	0.0792	0.0799	-0.0007	-0.008962
0.869998574	0.0811	0.0802	0.0009	0.010667
0.875705481	0.0834	0.0844	-0.0011	-0.012736

Micromeritics Instrument Corporation

Page 3

DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1

Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP

Started:	2010-08-26 9:13:17	Analysis Adsorptive:	N2
Completed:	2010-08-26 13:13:33	Analysis Bath:	77.409 K
Report Time:	2010-12-22 11:56:14	Thermal Correction:	No
Sample Mass:	13.0402 g	Equil. Interval:	10 s
Warm Freespace:	23.1536 cm ³	Cold Freespace:	68.7163 cm ³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00165, cm³/g

Relative	Experimental	Fitted Quantity	Absolute	Relative
Pressure	Quantity Adsorbed	Adsorbed	Residual	Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.011783670	0.0321	0.0330	-0.0009	-0.028583
0.014515520	0.0328	0.0333	-0.0005	-0.016223
0.017706521	0.0335	0.0343	-0.0007	-0.022295
0.021398440	0.0343	0.0346	-0.0002	-0.006940
0.025631230	0.0352	0.0349	0.0003	0.008423
0.030442240	0.0360	0.0362	-0.0001	-0.003856
0.035865448	0.0368	0.0365	0.0003	0.008680
0.041930798	0.0376	0.0374	0.0002	0.005253
0.048663601	0.0384	0.0378	0.0006	0.015455
0.056084011	0.0390	0.0382	0.0008	0.021142
0.064206667	0.0396	0.0386	0.0010	0.025114
0.073040441	0.0402	0.0390	0.0011	0.028538
0.082588248	0.0407	0.0395	0.0012	0.029667
0.092847057	0.0412	0.0400	0.0013	0.030385
0.103808001	0.0418	0.0404	0.0013	0.031831
0.115456402	0.0422	0.0409	0.0014	0.032400
0.127772301	0.0426	0.0413	0.0013	0.031659
0.140730694	0.0430	0.0417	0.0013	0.030030
0.154301897	0.0432	0.0420	0.0012	0.027992
0.168452203	0.0435	0.0424	0.0011	0.026226
0.183144197	0.0438	0.0427	0.0011	0.024998
0.198337302	0.0441	0.0430	0.0011	0.023953
0.213988706	0.0443	0.0433	0.0010	0.022746
0.230053306	0.0446	0.0436	0.0010	0.021670
0.246484801	0.0449	0.0439	0.0009	0.020739
0.263235897	0.0451	0.0442	0.0009	0.019830
0.280259013	0.0454	0.0445	0.0009	0.018881
0.297506303	0.0457	0.0448	0.0008	0.017786
0.314930797	0.0459	0.0452	0.0008	0.016379
0.332486212	0.0462	0.0455	0.0007	0.014359
0.350127310	0.0464	0.0459	0.0005	0.011756
0.367810607	0.0466	0.0462	0.0004	0.008639
0.385494202	0.0468	0.0466	0.0002	0.004973
0.403138310	0.0470	0.0470	0.0000	0.000881
0.420704991	0.0472	0.0474	-0.0002	-0.003549
0.438158900	0.0474	0.0478	-0.0004	-0.008219
0.455466807	0.0476	0.0482	-0.0006	-0.012893

Page 5

Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP

 Started:
 2010-08-26
 9:13:17
 Analysis
 Adsorptive:
 N2

 Completed:
 2010-08-26
 13:13:33
 Analysis
 Bath:
 77.409 K

 Report Time:
 2010-12-22
 11:56:14
 Thermal Correction: No
 Sample Mass:
 13.0402 g

 Warm Freespace:
 23.1536 cm³
 Cold Freespace:
 68.7163 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00165, cm³/g

Isotherm Table

Relative Pressure	Experimental Quantity Adsorbed	Fitted Quantity Adsorbed	Absolute Residual	Relative Residual
	(cm³/g STP)	(cm³/g STP)	(cm³/g STP)	
0.881179392	0.0859	0.0847	0.0012	0.013963
0.886428118	0.0886	0.0899	-0.0012	-0.013624
0.891459525	0.0915	0.0901	0.0013	0.014558
0.896281302	0.0943	0.0955	-0.0012	-0.012791
0.900900900	0.0971	0.0957	0.0013	0.013562
0.905325770	0.0997	0.1009	-0.0011	-0.011123
0.909563184	0.1023	0.1011	0.0012	0.011813
0.913620114	0.1047	0.1056	-0.0008	-0.007842
0.917503417	0.1067	0.1058	0.0009	0.008523
0.921219707	0.1079	0.1081	-0.0002	-0.001915
0.924775481	0.1086	0.1083	0.0003	0.002615
0.928177178	0.1093	0.1096	-0.0003	-0.002629
0.931430817	0.1102	0.1099	0.0004	0.003251
0.934542298	0.1115	0.1123	-0.0008	-0.007010
0.937517405	0.1134	0.1125	0.0008	0.007464
0.940361619	0.1159	0.1174	-0.0015	-0.012757
0.943080306	0.1191	0.1176	0.0015	0.012913
0.945678592	0.1231	0.1254	-0.0022	-0.018185
0.948161721	0.1279	0.1256	0.0023	0.017943
0.950534225	0.1333	0.1333	0.0000	0.000346
0.952800930	0.1395	0.1429	-0.0033	-0.023774
0.954966187	0.1464	0.1430	0.0034	0.022980
0.957034409	0.1539	0.1579	-0.0039	-0.025539
0.959009588	0.1620	0.1580	0.0040	0.024535
0.960896015	0.1706	0.1749	-0.0043	-0.025326
0.962697208	0.1795	0.1751	0.0044	0.024303
0.964416981	0.1879	0.1919	-0.0040	-0.021074
0.966058910	0.1960	0.1920	0.0040	0.020386
0.967626274	0.2037	0.2037	0.0000	0.000133
0.969122529	0.2111	0.2145	-0.0035	-0.016361
0.970550597	0.2181	0.2146	0.0035	0.015964
0.971913695	0.2248	0.2279	-0.0031	-0.014003
0.973214507	0.2312	0.2280	0.0032	0.013726
0.974455774	0.2373	0.2402	-0.0029	-0.012087
0.975640416	0.2431	0.2402	0.0029	0.011893
0.976770699	0.2487	0.2487	0.0000	0.000073
0.977849126	0.2540	0.2565	-0.0025	-0.009827

Micromeritics Instrument Corporation

Unit 1

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Page 6

Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP Started: 2010-08-26 9:13:17 Analysis Adsorptive: N2

ocar cou.	2010 00 20 9.19.17	marysrs masorperve.	142
Completed:	2010-08-26 13:13:33	Analysis Bath:	77.409 K
Report Time:	2010-12-22 11:56:14	Thermal Correction:	No
Sample Mass:	13.0402 g	Equil. Interval:	10 s
Warm Freespace:	23.1536 cm ³	Cold Freespace:	68.7163 cm³

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Standard Deviation of Fit: 0.00165, cm³/g

Relative Pressure	Experimental Quantity Adsorbed (cm³/g STP)	Fitted Quantity Adsorbed (cm³/g STP)	Absolute Residual (cm³/g STP)	Relative Residual
0.978878021	0.2591	0.2565	0.0025	0.009709
0.979859591	0.2639	0.2662	-0.0023	-0.008623
0.980795979	0.2685	0.2662	0.0023	0.008538
0.981689274	0.2729	0.2729	0.0000	0.000050
0.982541502	0.2771	0.2791	-0.0020	-0.007142
0.983354270	0.2811	0.2791	0.0020	0.007090
0.984129488	0.2849	0.2867	-0.0018	-0.006327
0.984869003	0.2885	0.2867	0.0018	0.006292
0.985574186	0.2920	0.2936	-0.0016	-0.005416
0.986246824	0.2953	0.2936	0.0017	0.005803

DFT Plus(R) V3.00 (ASA	AP 2020 V1.05)	Unit 1	Page 7
Sample:	STONE6		

Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP

2010-08-26	9:13:17	Analysis Adsorptive:	N2
2010-08-26	13:13:33	Analysis Bath:	77.409 K
2010-12-22	11:56:14	Thermal Correction:	No
13.0402 g		Equil. Interval:	10 s
23.1536 cm	3	Cold Freespace:	68.7163 cm ³
	2010-08-26 2010-08-26 2010-12-22 13.0402 g 23.1536 cm	2010-08-26 9:13:17 2010-08-26 13:13:33 2010-12-22 11:56:14 13.0402 g 23.1536 cm ³	2010-08-26 9:13:17 Analysis Adsorptive: 2010-08-26 13:13:33 Analysis Bath: 2010-12-22 11:56:14 Thermal Correction: 13.0402 g Equil. Interval: 23.1536 cm ³ Cold Freespace:

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83	Å	:	0.00003	cm ³ /g
Total	Volume	in	Pores	<=	931.26	Å	:	0.00044	cm ³ /g
	Area	in	Pores	>	931.26	Å	:	0.000	m²/g
Tota	al Area	in	Pores	>=	14.83	Å	:	0.039	m²/g

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page 8
Sar Opera Submit	nple: STONE6 ator: tter:		
Source 1	File: D:\DATA\2020\EVA	A\STONE6.SMP	
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-26 9:13:17 2010-08-26 13:13:33 2010-12-22 11:56:14 13.0402 g 23.1536 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.409 K No 10 s 68.7163 cm ³
Poros	ity Distribution by Or Model: N2 0 77K	riginal Density Functio	onal Theory

Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

Volum	e in	Pores	<	14.83	Å	:	0.00003	Cm 3 / 0
Total Volum	e in	Pores	<=	931.26	Å	:	0.00044	Cm ³ /
Are	a in	Pores	>	931.26	Å	:	0.000	m²/g
Total Are	a in	Pores	>=	14.83	Å	:	0.039	m²/g

Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP

Started: 2010-08-26 9:13:17 Analysis Adsorptive: N2 Completed: 2010-08-26 13:13:33 Report Time: 2010-12-22 11:56:14 Sample Mass: 13.0402 g Warm Freespace: 23.1536 cm³

DFT Plus(R) V3.00 (ASAP 2020 V1.05)

Analysis Bath: 77.409 K Thermal Correction: No Equil. Interval: 10 s Cold Freespace: 68.7163 cm³

Unit 1

Page 9

Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing

	Volume	in	Pores	<	14.83 Ă	:	0.00003	cm³/g
Total	Volume	in	Pores	<=	931.26 Å	:	0.00044	cm³/g
	Area	in	Pores	>	931.26 Å	:	0.000	m²/g
Tota	al Area	in	Pores	>=	14.83 Å	:	0.039	m²/g

Micromeritics Instrument Corporation DFT Plus(R) V3.00 (ASAP 2020 V1.05) Unit 1 Page10 Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP Started: 2010-08-26 9:13:17 Analysis Adsorptive: N2 Completed: 2010-08-26 13:13:33 Analysis Bath: 77. Analysis Bath: 77.409 K Report Time: 2010-12-22 11:56:14 Thermal Correction: No Sample Mass: 13.0402 g Warm Freespace: 23.1536 cm³ Equil. Interval: 10 s Cold Freespace: 68.7163 cm³ Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing Volume in Pores < 14.83 Å : 0.00003 cm³/g 931.26 Å : 0.00044 cm3/g Total Volume in Pores <= Area in Pores > 931.26 Å 0.000 m²/g : Total Area in Pores >= 14.83 Å : 0.039 m²/q

		MICL	omeric.	LCS II	istrum	ent co.	rporai	LION					
DFT Plus(R) V3	8.00 (A	SAP 202	0 V1.0	5)			Unit	1			Pa	ge11	
Sour Sour	Sample Operator Ibmitter Sce File	: STON	E6 ATA\202	20\EV#	A\STON	E6.SMP							
Star Comple Report T Sample M Warm Freesp	ted: 201 ted: 201 ime: 201 ass: 13. ace: 23.	L0-08-2 L0-08-2 L0-12-2 .0402 g .1536 c	6 9:13 6 13:13 2 11:5 m ³	:17 3:33 5:14	Anal The	ysis A Anal rmal C Equil. Cold	dsorpt ysis l orrect Inte: Freesp	tive: Bath: tion: rval: pace:	N2 77.40 No 10 s 68.73)9 К 163 с	m ³		
P	Porosity Distribution by Original Density Functional Theory Model: N2 @ 77K on Carbon, Slit Pores Method: Non-negative Regularization; No Smoothing												
Vo Total Vo Total	olume in olume in Area in Area in	Pores Pores Pores Pores	< <= > >=	14 931 931 14	.83 Å .26 Å .26 Å .83 Å	: : :	0.00 0.00 0.	003 c 044 c 000 m 039 m	m³/g m³/g ²/g ²/g				
	+ Increm	iental Po	In re Volum	cremen e	ital Pore	Volume	vs. Po	ore Wid	th				
0.000030-									71				
0.000025-									+				
(g) ^e r										\wedge			

Micromeritics Instrument Corporation

DFT Plus(R) V3.00	(ASAP 2020 V1.05)	Unit 1	Page12							
Sample: STONE6 Operator: Submitter: Source File: D:\DATA\2020\EVA\STONE6.SMP										
Started: Completed: Report Time: Sample Mass: Warm Freespace:	2010-08-26 9:13:17 2010-08-26 13:13:33 2010-12-22 11:56:14 13.0402 g 23.1536 cm ³	Analysis Adsorptive: Analysis Bath: Thermal Correction: Equil. Interval: Cold Freespace:	N2 77.409 K No 10 s 68.7163 cm ³							
Porosity Distribution by Original Density Functional Theory Model: N2 0 77K on Carbon, Slit Pores										

Method: Non-negative Regularization; No Smoothing

		volume	ın	Pores	<	14.83	А	:	0.00003	Cm ² /9
1	ſotal	Volume	in	Pores	<=	931.26	Å	:	0.00044	Cm ³ /g
		Area	in	Pores	>	931.26	Å	:	0.000	m²/g
	Tota	l Area	in	Pores	>=	14.83	Å	:	0.039	m²/g

Total Area in Pores >= 14.83 Å : 0.039 m²/g Incremental Pore Volume vs. Pore Width + Incremental Pore Volume 0.000025 0.000025 0.000020 0.000015 0.000015 0.000015 0.000015 0.000005 0.00005 0.0005

Relative Pressure (P/Po)

