P-04-100

Forsmark site investigation

Single-hole injection tests in borehole KFM02A

Josef Källgården, Jan-Erik Ludvigson, Janette Jönsson Geosigma AB

May 2004

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-04-100

Forsmark site investigation

Single-hole injection tests in borehole KFM02A

Josef Källgården, Jan-Erik Ludvigson, Janette Jönsson Geosigma AB

May 2004

Keywords: Forsmark, Hydrogeology, Hydraulic tests, Injection tests, Single-hole tests, Hydraulic parameters, Transmissivity, Hydraulic conductivity, AP PF 400-04-08, Field note no Forsmark 297.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Borehole KFM02A, which is the second cored borehole drilled within the site investigations in the Forsmark area, is of SKB hydrochemistry type. It designed as is a so called telescopic borehole which makes it possible to install certain borehole equipment in the upper about 100 m with larger diameter than the rest of the borehole. The borehole is sub-vertical, about 1000 m deep and cased to about 100 m depth. The borehole diameter is about 77 mm in the interval 100–1000 m.

This report presents the injection tests performed with the pipe string system PSS3 in borehole KFM02A and the test results obtained.

The main aim of the injection tests in KFM02A was to characterize the rock aquifer adjacent to the borehole on different measurement scales (100 m, 20 m and 5 m) regarding hydrogeological properties. Hydraulic parameters like transmissivity, conductivity, dominating flow regime and possible outer hydraulic boundaries were determined using analysis methods for stationary as well as transient conditions.

In addition, a comparison with the results of previously performed difference flow logging was made.

The injection tests gave consistent results on the different measurement scales regarding transmissivity. During most of the tests, some period with pseudo-radial flow could be identified from the flow period, making a standard transient evaluation possible. However, the recovery period for many tests was strongly affected by wellbore storage effects, making a unique transient evaluation of this period more difficult. In addition, the recovery periods from several borehole sections indicated pseudo-spherical or even pseudo-stationary flow regimes.

The injection test results were consistent with results from the previous difference flow logging in KFM02A although some discrepancies between the methods were found for estimated transmissivities in the 5 m sections.

The injection tests provide a database for statistical analysis of the hydraulic conductivity distribution along the borehole on the different measurement scales. Basic statistical parameters are presented in this report.

Sammanfattning

Borrhål KFM02A, som var det andra kärnborrhålet som borrades inom platsundersökningarna i Forsmarksområdet, är av SKB kemityp. Det är utfört som ett så kallat teleskopborrhål för att göra det möjligt att installera viss borrhålsutrustning i de övre, ca 100 m med större diameter än resten av borrhålet. Borrhålet är sub-vertikalt, ca 1000 m djupt och försett med foderrör till ca 100 m djup. Borrhålsdiametern är ca 77 mm i intervallet 100–1000 m.

Föreliggande rapport beskriver genomförda injektionstester med rörgångssystemet PSS3 i borrhål KFM02A samt resultaten från desamma.

Huvudsyftet med injektionstesterna var att karaktärisera berggrundsakvifären runt borrhålet i olika mätskalor (100 m, 20 m och 5 m) med avseende på hydrogeologiska egenskaper. Hydrauliska parametrar såsom transmissivitet, konduktivitet, dominerande flödesregim och eventuella yttre hydrauliska randvillkor bestämdes med hjälp av analysmetoder för såväl stationära som transienta förhållanden.

En jämförelse med resultaten av den tidigare utförda differensflödesloggningen i KFM02A gjordes också.

Injektionstesterna gav samstämmiga resultat beträffande transmissivitet för de olika mät-skalorna. Under de flesta tester kunde en viss period med pseudo-radiellt flöde identifieras från flödesperioden, vilket möjliggjorde en standardmässig transient utvärdering. Återhämtningsperioden för många tester var däremot starkt påverkad av brunnsmagasinseffekter, vilket gjorde en unik transient utvärdering av denna period svårare. Dessutom uppvisade flera av testernas återhämtningsperioder tecken på pseudo-sfäriskt och ibland pseudo-stationärt flöde.

Injektionstesterna gav även samstämmiga resultat med den tidigare differensflödesloggningen i KFM02A, även om vissa avvikelser inträffade för beräknade transmissiviteter i samma 5 m sektioner.

Resultaten från injektionstesterna utgör en databas för statistisk analys av den hydrauliska konduktivitetens fördelning längs borrhålet i de olika mätskalorna. Viss statistisk analys har utförts inom ramen för denna aktivitet och grundläggande statistiska parametrar presenteras i rapporten.

Contents

1	Introduction	7
2	Objectives	9
3	Scope	11
3.1	Boreholes	11
3.2	Tests performed	12
3.3	Control of equipment	14
4	Description of equipment	15
4.1	Overview	15
	4.1.1 Measurement container	15
	4.1.2 Down-hole equipment	16
4.2	Measurement sensors	17
4.3	Data acquisition system	18
5	Excecution	19
5.1	Preparations	19
	5.1.1 Calibration	19
	5.1.2 Functional inspections	19
5.2	Test performance	19
	5.2.1 Test principle	19
	5.2.2 Test procedure	19
5.0	5.2.3 Test strategy	20
5.3	Data handling	20
5.4	Analyses and interpretation	21
5.5	Nonconformities	23
6	Results	25
6.1	Nomenclature and symbols	25
6.2	Routine evaluation of the single-hole injection tests	25
	6.2.1 General test data together with pressure and flow data	25
	6.2.2 Measurement limit	25
	6.2.4 Concret regults	20
	6.2.5 Comments on the tests	21
	6.2.6 Elow regimes	24 40
63	Comparison of transmissivities on different scales	49 50
6.4	Comparison with results from difference flow logging	53
6.5	Basic statistics of hydraulic conductivity distributions	56
6.6	Comparison of results from different hydraulic tests in KFM02A	56
7	References	57

All appendices are included on the attached CD.

Appendix 1	endix 1 File description table			
Appendix 2.1 Appendix 2.2	General test data Pressure and flow data	63 66		
Appendix 3	Test diagrams	69		
Appendix 4	Borehole technical data	359		
Appendix 5	Sicada tables	361		

1 Introduction

The injection tests in borehole KFM02A at Forsmark, Sweden, were carried out during March 2004. The commission was conducted by GEOSIGMA AB. Borehole KFM02A was the second deep cored borehole within the on-going site investigation in the Forsmark area. The borehole is a so called telescopic borehole in order to make it possible to install certain borehole equipment in the upper c 100 m where the diameter is larger than in the rest of the borehole. The borehole is sub-vertical, c1000 m deep and cased to c 100 m depth. The borehole diameter is c 77 mm in the interval 102–1002.4 m. The location of the borehole is shown in Figure 1-1.

In KFM02A, difference flow logging was previously performed, in April and May, 2003. According to the results of the latter investigation, 125 conductive fractures were detected and the most conductive ones were found at 110.7 m, 114.2 m, 118.3 m and 120.9 m (with transmissivities ranging from c $1 \cdot 10^{-5}$ m²/s to c $5 \cdot 10^{-5}$ m²/s) (Rouhainen and Pöllänen, 2003 /1/).

Figure 1-1. The investigation area at Forsmark including the candidate area selected for more detailed investigations. Borehole KFM02A is situated at drilling site BP2.

This document reports the results obtained by the injection tests in borehole KFM02A. The activity is performed within the Forsmark site investigation. The work was carried out in compliance with the SKB internal controlling documents, presented in Table 1-1. Data and results were delivered to the SKB site characterization database SICADA under field note no Forsmark 297.

Table 1-1.	SKB internal	controlling	documents for the	performance	of the activity.
	•••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••

Activity Plan	Number	Version
Hydraulic injection tests in borehole KFM02A with PSS3	AP PF 400-04-08	1.0
Method descriptions	Number	Version
Mätsystembeskrivning (MSB) – Allmän del. Pipe String System (PSS3).	SKB MD 345.100	1.0
Mätsystembeskrivning för: Kalibrering, PSS3.	SKB MD 345.122	1.0
Mätsystembeskrivning för: Skötsel, service, serviceprotokoll, PSS3.	SKB MD 345.124	1.0
Metodbeskrivning för hydrauliska injektionstester	SKB MD 323.001	1.0
Instruktion för analys av injektions- och enhålspumptester	SKB MD 320.004	1.0

2 Objectives

The main aim of the injection tests in borehole KFM02A was to characterize the rock aquifer adjacent to the borehole on different measurement scales (100 m, 20 m and 5 m) regarding hydrogeological properties. The primary parameter to be determined was hydraulic transmissivity from which hydraulic conductivity can be derived. The results of the injection tests provide a database for statistical analyses of the hydraulic conductivity distribution along the borehole on different measurement scales. Basic statistical analyses are presented in this report.

Other hydraulic parameters of interest were flow regimes and outer hydraulic boundaries, which were determined by applying transient evaluation on the test responses during the flow- and recovery periods.

A comparison with the results of the previously performed difference flow logging in KFM02A was also included in the activity, to be used as a check of the plausibility of the test results obtained. The comparison also aimed at a deepened overall analysis of the hydraulic conditions of borehole KFM02A.

3 Scope

3.1 Boreholes

Technical data of the tested borehole are shown in Table 3-1 and in Appendix 4. The reference point in the boreholes is always the centre of top of casing (ToC), given as "Elevation" in the table below. The Swedish National coordinate system (RT90) is used in the x-y-direction together with RHB70 in the z-direction. "Northing" and "Easting" refer to the top of the boreholes.

Table 3-1. Technical data of the borehole KFM02A (printout from SKB database, SICADA).

Borehole length (m):	1002.440				
Drilling Period(s):	From Date 2002-11-20 2003-01-08	To Date 2002-11-26 2003-03-12	Secup(m) 0.000 100.420	Seclow(m) 100.400 1002.440	Drilling Type Percussion drilling Core drilling
Starting point coordinate:	Length(m) 0.000	Northing(m) 6698712.501	Easting(m) 1633182.863	Elevation 7.353	Coord System RT90–RHB70
Angles:	Length(m) 0.000	Bearing 275.764	Inclination (– = down) –85.385		
Borehole diameter:	Secup(m) 0.000 2.390 11.800 100.420 102.000	Seclow(m) 2.390 11.800 100.400 102.000 1002.440	Hole Diam(m) 0.440 0.358 0.251 0.086 0.077		
Core diameter:	Secup(m) 100.420 102.000	Seclow(m) 102.000 1002.440	Core Diam(m) 0.072 0.051		
Casing diameter:	Secup(m) 0.000 0.100	Seclow(m) 100.140 11.800	Case In(m) 0.200 0.265	Case Out(m 0.280 0.273)

3.2 Tests performed

The injection tests in borehole KFM02A performed according to Activity Plan AP PF 400-04-08 (SKB internal controlling document) are listed in Table 3-2. The injection tests were carried out with the Pipe String System, PSS3. The performance of the tests, together with the equipment, are described in the description of the measurement system for PSS (SKB MD 345.100–01, SKB internal document) and in the corresponding methodology descriptions for hydraulic injection tests (SKB MD 323.001 Metodbeskrivning för Hydrauliska injektionstester, SKB internal document). In some test sections, the test was not performed as intended due to that the time for pressure stabilisation was too long or that malfunctions of equipment caused pressure and/or flow rate disturbances. Whenever such disturbances were expected to affect the possibility of evaluating the data, the test was repeated. Test number (Test no in Table 3-2) refers to the number of tests that have been performed in the actual section. For evaluation, data from the last test in each test section were used.

The upper and lower limits for the test sections were in most cases the same as the upper and lower section limits used during the previous sequential difference flow logging in KFM02A /2/. A few exceptions were made to avoid the risk of packer failure when expanding packers at borehole intervals with cavities. As a result, some sections overlap.

Borehole Test section		Section length (m)	Test type ¹⁾	Test no	Test start date, time	Test stop date, time	
Bh ID	secup	seclow		(1–6)		YYYYMMDD hh:mm	YYYYMMDD hh:mm
KFM02A	103.5	203.5	100	3	1	20040305 18:31	20040305 21:05
KFM02A	103.5	203.5	100	3	2	20040305 22:01	20040305 23:52
KFM02A	201	301	100	3	1	20040308 07:04	20040308 08:44
KFM02A	201	301	100	3	2	20040308 08:53	20040308 10:44
KFM02A	301	401	100	3	1	20040308 11:50	20040308 14:46
KFM02A	401	501	100	3	1	20040308 17:01	20040308 18:57
KFM02A	501	601	100	3	1	20040308 20:48	20040308 23:26
KFM02A	501	601	100	3	2	20040308 22:06	20040308 23:26
KFM02A	601	701	100	3	1	20040309 07:29	20040309 09:38
KFM02A	701	801	100	3	1	20040309 11:39	20040309 14:55
KFM02A	801	901	100	3	1	20040309 18:54	20040309 20:17
KFM02A	801	901	100	3	2	20040309 20:22	20040309 23:07
KFM02A							
KFM02A	103.5	123.5	20	3	1	20040315 10:27	20040315 12:46
KFM02A	103.5	123.5	20	3	2	20040315 12:49	20040315 13:57
KFM02A	103.5	123.5	20	3	3	20040318 14:48	20040318 16:09
KFM02A	121	141	20	3	1	20040315 14:41	20040315 18:10
KFM02A	141	161	20	3	1	20040315 19:23	20040315 21:45
KFM02A	161	181	20	3	1	20040315 22:08	20040315 23:06
KFM02A	161	181	20	3	2	20040315 23:23	20040316 00:30
KFM02A	181	201	20	3	1	20040316 06:51	20040316 08:13
KFM02A	201	221	20	3	1	20040316 08:45	20040316 10:04
KFM02A	221	241	20	3	1	20040316 10:27	20040316 11:43
KFM02A	241	261	20	3	1	20040316 12:30	20040316 13:47
KFM02A	261	281	20	3	1	20040316 14:04	20040316 15:19
KFM02A	281	301	20	3	1	20040316 15:55	20040316 17:24
KFM02A	281	301	20	3	2	20040318 08:13	20040318 09:19
KFM02A	281	301	20	3	3	20040318 11:34	20040318 12:24
KFM02A	300	320	20	3	1	20040316 19:37	20040316 21:15
KFM02A	301	321	20	3	1	20040316 17:50	20040316 19:16
KFM02A	401	421	20	3	1	20040316 22:41	20040317 00:09
KFM02A	421	441	20	3	1	20040317 06:18	20040317 07:35

Table 3-2.	Single-hole	injection	tests	performed	in	borehole	KFM02A
------------	-------------	-----------	-------	-----------	----	----------	--------

Borehole	Test sect	ion	Section length (m)	Test type ¹⁾	Test no	Test start date, time	Test stop date, time
Bh ID	secup	seclow		(1–6)		YYYYMMDD hh:mm	YYYYMMDD hh:mm
KFM02A	441	461	20	3	1	20040317 08:11	20040317 09:26
KFM02A	461	481	20	3	1	20040317 09:47	20040317 11:02
KFM02A	481	501	20	3	1	20040317 11:15	20040317 13:13
KFM02A	501	521	20	3	1	20040317 14:00	20040317 15:44
KFM02A	521	541	20	3	1	20040317 16:22	20040317 17:52
KFM02A	541	561	20	3	1	20040317 18:21	20040317 19:44
KFM02A	561	581	20	3	1	20040317 20:11	20040317 21:47
KFM02A	581	601	20	3	1	20040317 22:18	20040317 23:34
KFM02A							
KFM02A	103.5	108.5	5	3	1	20040319 07:54	20040319 09:26
KFM02A	106	111	5	3	1	20040319 09:38	20040319 10:57
KFM02A	111	116	5	3	1	20040319 11:09	20040319 14:15
KFM02A	116	121	5	3	1	20040319 14:35	20040319 16:26
KFM02A	121	126	5	3	1	20040319 16:37	20040319 18:03
KFM02A	126	131	5	3	1	20040319 18:21	20040319 19:49
KFM02A	131	136	5	3	1	20040319 20:03	20040319 21:34
KFM02A	136	141	5	3	1	20040319 21:44	20040319 23:08
KFM02A	141	146	5	3	1	20040319 23:21	20040320 08:32
KFM02A	141	146	5	3	2	20040320 08:41	20040320 09:51
KFM02A	141	146	5	3	3	20040320 10:36	20040320 11:33
KFM02A	146	151	5	3	1	20040320 13:03	20040320 14:04
KFM02A	151	156	5	3	1	20040320 14:16	20040320 15:14
KFM02A	156	161	5	3	1	20040320 17:19	20040320 18:08
KFM02A	161	166	5	3	1	20040321 08:36	20040321 09:59
KFM02A	166	171	5	3	1	20040321 10:21	20040321 11:40
KFM02A	171	176	5	3	1	20040321 11:55	20040321 12:56
KFM02A	171	176	5	3	2	20040321 12:59	20040321 13:59
KFM02A	176	181	5	3	1	20040321 14:13	20040321 15:31
KFM02A	181	186	5	3	1	20040321 15:39	20040321 16:53
KFM02A	186	191	5	3	1	20040322 06:30	20040322 07:58
KFM02A	191	196	5	3	1	20040322 08:15	20040322 09:38
KFM02A	196	201	5	3	1	20040322 09:57	20040322 11:22
KFM02A	201	206	5	3	1	20040322 12:41	20040322 13:49
KFM02A	206	211	5	3	1	20040322 14:03	20040322 15:03
KFM02A	211	216	5	3	1	20040322 15:34	20040322 16:33
KFM02A	216	221	5	3	1	20040322 16:55	20040322 18:11
KFM02A	221	226	5	3	1	20040322 18:23	20040322 19:14
KFM02A	225	230	5	3	1	20040322 19:23	20040322 20:52
KFM02A	226	231	5	3	1	20040322 21:01	20040322 22:17
KFM02A	231	236	5	3	1	20040322 22:26	20040322 23:17
KFM02A	236	241	5	3	1	20040322 23:28	20040323 00:45
KFM02A	241	246	5	3	1	20040323 06:26	20040323 07:55
KFM02A	246	251	5	3	1	20040323 08:13	20040323 09:43
KFM02A	251	256	5	3	1	20040323 09:59	20040323 11:38
KFM02A	256	261	5	3	1	20040323 12:31	20040323 14:04
KFM02A	259.5	264.5	5	3	1	20040328 13:43	20040328 15:00
KFM02A	264.5	269.5	5	3	1	20040328 11:02	20040328 12:18
KFM02A	269.5	274.5	5	3	1	20040328 09:39	20040328 10:53
KFM02A	271	276	5	3	1	20040328 08:15	20040328 09:30
KFM02A	276	281	5	3	1	20040324 06:55	20040324 08:31
KFM02A	281	286	5	3	1	20040324 08:44	20040324 10:12
KFM02A	286	291	5	3	1	20040324 10:28	20040324 11:56
KFM02A	291	296	5	3	1	20040324 12:56	20040324 14:16
KFM02A	296	301	5	3	1	20040324 14:28	20040322 15:46
KFM02A	301	306	5	3	1	20040324 15:59	20040324 17:16
KFM02A	306	311	5	3	1	20040324 17:31	20040324 18:48
KFM02A	311	316	5	3	1	20040324 18:58	20040324 20:34
KFM02A	316	321	5	3	1	20040324 20:41	20040324 21:20
KFM02A	401	406	5	3	1	20040324 22:12	20040324 23:01

Borehole Test section		Section length (m)	Test type ¹⁾	Test no	Test start date, time	Test stop date, time	
Bh ID	secup	seclow		(1–6)		YYYYMMDD hh:mm	YYYYMMDD hh:mm
KFM02A	406	411	5	3	1	20040324 23:09	20040324 23:52
KFM02A	411	416	5	3	1	20040325 07:35	20040325 08:25
KFM02A	416	421	5	3	1	20040325 08:43	20040325 10:04
KFM02A	421	426	5	3	1	20040325 10:23	20040325 11:43
KFM02A	426	431	5	3	1	20040325 13:03	20040325 14:21
KFM02A	431	436	5	3	1	20040325 14:33	20040325 15:50
KFM02A	436	441	5	3	1	20040325 15:59	20040325 17:13
KFM02A	441	446	5	3	1	20040325 17:25	20040325 18:42
KFM02A	446	451	5	3	1	20040325 18:54	20040325 20:11
KFM02A	451	456	5	3	1	20040325 20:22	20040325 21:37
KFM02A	456	461	5	3	1	20040325 21:56	20040325 22:34
KFM02A	456	461	5	3	2	20040325 22:43	20040326 00:02
KFM02A	461	466	5	3	1	20040326 06:46	20040326 08:07
KFM02A	466	471	5	3	1	20040326 08:23	20040326 09:42
KFM02A	471	476	5	3	1	20040326 10:01	20040326 10:46
KFM02A	476	481	5	3	1	20040326 11:04	20040326 12:26
KFM02A	481	486	5	3	1	20040326 13:41	20040326 14:59
KFM02A	486	491	5	3	1	20040326 15:37	20040326 16:54
KFM02A	491	496	5	3	1	20040326 17:04	20040326 18:19
KFM02A	496	501	5	3	1	20040326 18:30	20040326 19:48
KFM02A	501	506	5	3	1	20040326 20:01	20040326 21:19
KFM02A	506	511	5	3	1	20040326 21:33	20040326 22:50
KFM02A	511	516	5	3	1	20040326 23:47	20040327 08:48
KFM02A	511	516	5	3	2	20040327 09:44	20040327 10:37
KFM02A	516	521	5	3	1	20040327 10:49	20040327 11:43
KFM02A	541	546	5	3	1	20040327 12:44	20040327 13:35
KFM02A	546	551	5	3	1	20040327 13:48	20040327 14:33
KFM02A	551	556	5	3	1	20040327 14:40	20040327 15:25
KFM02A	556	561	5	3	1	20040327 15:32	20040327 16:51

¹⁾ 3: Injection test

3.3 Control of equipment

The PSS3 equipment was fully maintained according to SKB internal controlling documents (SKB MD 345.124, service and SKB MD 345.122, calibration) in February 2004.

Functioning checks of the equipment were performed during the establishment of PSS at the test site. In order to check the function of the pressure sensors, the air pressure was recorded and found to be as expected. Submerged in water while lowering, the sensors showed good agreement with the total head of water $(p/\rho g)$. The temperature sensor showed expected values in both air and water.

Simple functioning checks of down-hole sensors were done at every change of test section interval. Checks were also done continuously while lowering the pipe string along the borehole.

4 Description of equipment

4.1 Overview

4.1.1 Measurement container

All of the equipment needed to perform the injection tests is located in a steel container (Figure 4-1). The container is divided into a data-room and workshop compartment. The container is placed on pallets to get a suitable working level in relation to the borehole casing.

The hoisting rig is of a hydraulically chain-feed type. The jaws, holding the pipe string, are opened hydraulically and closed mechanically by springs. The rig is equipped with a load transmitter, and a limit value for the load may be adjusted. The maximum load is 22 kN.

The packers and the test valve are operated hydraulically by water filled pressure vessels. Expansion and release of packers as well as opening and closing of the test valve is executed by magnetic valves controlled by the software in the data acquisition system.

The injection system consists of a tank, a pump and a flow meter unit at the surface. The injection flow rate may be manually or automatically controlled. At small flow rates, a water filled pressure vessel connected to a nitrogen gas regulator is used instead of the pump.

Figure 4-1. Outline of the PSS3 container with equipment.

4.1.2 Down-hole equipment

A schematic drawing of the down-hole equipment is shown in Figure 4-2. The pipe string consists of aluminium pipes of 3 m length, connected by stainless steel taps sealed with double o-rings. Pressure is measured above (Pa), within (P) and below (Pb) the test section, which is isolated by two packers. The groundwater temperature in the test section is also measured. The hydraulic connection between the pipe string and the test section can be closed or opened by a test valve operated by the measurement system.

At the lower end of the borehole equipment, a level indicator (caliper type) gives a signal when the reference depth marks along the borehole are passed.

The length of the test section may be varied (5, 20 or 100 m).

Figure 4-2. Schematic drawing of the down-hole equipment in the PSS3 system.

4.2 Measurement sensors

Technical data for the measurement sensors in the PSS system together with corresponding data of the system are shown in Table 4-1.

The sensor positions are fixed relative to the top of the test section, given a specific length of the test section. In Table 4-2, the position of the sensors is given with top of test section as reference (Figure 4-2).

Technical specification	on				
Parameter		Unit	Sensor	PSS	Comments
Absolute pressure	Output signal	mA	4–20		
	Meas. range	MPa	0–13.5		
	Resolution	kPa	<1.0		
	Accuracy ¹⁾	% F.S	0.1		
Differential pressure, 200 kPa	Accuracy	kPa		<±5	Estimated value
Temperature	Output signal	mA	4–20		
	Meas. range	°C	0–32		
	Resolution	°C	< 0.01		
	Accuracy	°C	±0.1		
Flow Qbig	Output signal	mA	4–20		
	Meas. range	m³/s	1.67·10 ⁻⁵ –1.67·10 ⁻³		
	Resolution	m³/s	6.7·10 ⁻⁸		
	Accuracy ²⁾	% O.R	0.15–3	0.2–1	The specific accuracy is depending on actual flow
Flow Qsmall	Output signal	mA	4–20		
	Meas. range	m³/s	1.67.10-8-1.67.10-5		
	Resolution	m³/s	6.7·10 ⁻¹⁰		
	Accuracy ²⁾	% O.R	0.4–10	0.4–20	The specific accuracy is depending on actual flow

Table 4-1. Technical data for sensors together with estimated data of the PSS system (based on current experience).

¹⁾ 0.1% of Full Scale. Includes hysteresis, linearity and repeatability.

²⁾ Maximum error in % of actual reading (% o.r.). The higher numbers correspond to the lower flow.

Table 4-2. Position of sensors in the borehole and displacement volume of equipment in the test section.

Parameter	Length of test section (m)			
	5	20	100	
Equipment displacement volume in test section ¹⁾	4	18	92	
Total volume of test section ²⁾	23	93	466	
Position for sensor Pa, pressure above test section, (m above secup) 3)	1.89	1.89	1.82	
Position for sensor P, pressure in testsection, (m above secup) ³⁾	-1.01	-0.99	-1.00	
Position for sensor Tsec, Temperature in test section, (m above secup) ³⁾	-1.59	-1.58	-1.59	
Position for sensor Pb, pressure below test section, (m above secup) ³⁾	-7.00	-22.00	-102.00	

¹⁾ Displacement volume in test section due to pipe string, signal cable and packer ends (in litre).

²⁾ Total volume of test section (V= section length* π *d²/4).

³⁾ Position of sensor relative top of test section. A negative value indicates a position below top of test section, (secup).

4.3 Data acquisition system

The data acquisition system in PSS contains a standard office PC connected to an I/O-unit (Datascan 7320). With the software Orchestrator, pumping- and injection tests are monitored and borehole sensor data collected. In addition to the borehole parameters, packer and atmospheric pressure, container air temperature and water temperature are logged. Test evaluation can be performed on-site after a conducted test. An external display enables monitor of test parameters.

The data acquisition system can start and stop the automatic control system (computer and servo motors). These are connected as shown in Figure 4-3. The control system monitors the flow regulator and uses differential pressure over the regulating valve, together with pressure in test section as input signals.

Figure 4-3. Schematic drawing of the data acquisition system and the automatic control system in PSS.

5 Excecution

5.1 Preparations

5.1.1 Calibration

All sensors included in PSS are calibrated at GEOSIGMA engineering service station in Uppsala. Calibration is generally performed prior to each measurement campaign. Results from calibration, e.g. calibration constants, of all sensors are kept in a document folder in PSS. If a sensor is replaced at the test site, calibration constants are changed. If a new, an un-calibrated sensor has to be used, calibration can be performed afterwards and data re-calculated.

5.1.2 Functional inspections

Functioning checks of equipment were performed during the establishment of PSS at the test site. Simple function checks of down-hole sensors were done at every change of test section length, as well as while lowering the pipe string along the borehole.

5.2 Test performance

5.2.1 Test principle

The injection tests in KFM02A were generally carried out with a constant head of 200 kPa (20 m) in the test section. Before start of the flow period, approximately steady-state pressure conditions prevailed in the test section. After the flow period, the pressure recovery was measured.

For injection tests with 20 m and 5 m section length, the injection phase was interrupted if the injection flow was apparently below the measurement limit. Thereafter, the recovery was measured for at least 5 minutes to verify the low conductivity of the section.

5.2.2 Test procedure

Generally, the tests were performed according to the Activity Plan (SKB internal controlling document). Exceptions are presented in Section 5.2.4.

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section, 2) Packer inflation, 3) Pressure stabilisation, 4) Injection, 5) Pressure recovery and 6) Packer deflation.

The estimated time for each phase is presented in Table 5-1. Regarding the packer inflation times and actual injection and recovery times, slightly different procedures were used for the tests in 100 m sections compared to the tests in 20 m and 5 m sections according to the Activity Plan (SKB internal controlling document) Furthermore, slightly longer test times were used for these tests, cf Table 5-1.

Test section length (m)	Packer inflation time (min)	Time for pressure stabilisation (min)	Injection phase (min)	Recovery phase(min)	Total time/test (min) ¹⁾
100	30	15	30	30	105
20	25	5	20	20	70
5	25	5	20	20	70

Table 5-1. Packer inflation times, pressure stabilisation times and test times used forthe injection tests in KFM02A.

¹⁾ Exclusive of trip times in the borehole

5.2.3 Test strategy

Firstly, injection tests in 100 m sections were performed in the entire interval 100–1000 m. The limits of the test sections were, as far as possible, the same as was used by the difference flow logging to facilitate comparison of the results.

Secondly, injection tests in 20 m sections were carried out in tested 100 m sections with a measurable flow (above the measurement limit) and in sections with inconsistent results. Selected 100 m sections were measured in five successive injection tests with 20 m section length.

Finally, injection tests with 5 m section length were conducted in all tested 20 m sections with a measurable flow (above the measurement limit). I.e. four tests with 5 m section length were performed within the actual 20 m intervals. The total number of injection tests were, accordingly, dependent on the results of the previous tests.

Since the results of the tests in 100 m sections would have a strong effect on the continued test program, it was particularly important to ensure reliable results of these tests, including sections close to the lower measurement limit. Regarding the tests in 20 m and 5 m sections, shorter packer inflation times and test times were applied.

5.3 Data handling

With the PSS system, primary data are handled with the software Orchestrator (Version 2.3.8). During a test, data are continuously logged in *.odl-files. After the test is finished, a report file (*.ht2) with space separated data is generated. The *.ht2-file (mio-format) contains logged parameters as well as test-specific information, such as calibration constants and background data. The parameters are presented as percentage of sensor measurement range and not in engineering units. The report file in ascii-format is the raw data file delivered to the data base SICADA.

The *.ht2-files are automatically named with borehole id, top of test section and data and time of test start (as for example ___KFM02A_0103.5_200403051831.ht2). The name differs slightly from the convention stated in Instructions for analysis of injection and single-borehole pump test, SKB MD 320.004 (SKB internal document).

With the software IPPLOT (Version 2.0), the *.ht2-files are converted to parameter files, suitable for plotting with the code SKB-plot and analysis with the software AQTESOLV.

A backup of data files was created on a regular basis by CD-storage and by sending the files to the Geosigma office in Uppsala by a file transfer protocol. A file description table is presented in Appendix 1.

5.4 Analyses and interpretation

As discussed in Section 5.2.1, the injection tests in KFM02A were performed as transient constant head tests followed by a pressure recovery period. The routine data processing of the measured data was done according to the Instruction for analysis of injection- and single-hole pumping tests (SKB MD 320.004, SKB internal document). From the flow period, the (reciprocal) flow rate versus time was plotted in log-log and lin-log diagrams together with the corresponding derivative. From the recovery period the pressure and pressure change were plotted versus Agarwal equivalent time in lin-log and log-log diagrams, respectively, together with the corresponding derivatives.

Initially, a qualitative evaluation of actual flow regimes, e.g. wellbore storage (WBS), pseudo-radial flow (PRF), pseudo-spherical flow (PSF) and pseudo-stationary flow (PSS), respectively, was performed. In addition, indications of outer boundary conditions during the tests were identified. The qualitative evaluation was mainly made from the log-log diagrams of the responses during the flow and recovery periods. In particular, time intervals with pseudo-radial flow, reflected by a constant (horizontal) derivative in the test diagrams, were identified. Apparent no-flow (NFB) and constant head boundaries (CHB) or equivalent boundary conditions of fractures are reflected by an increase/decrease of the derivative. In addition, a preliminary steady-state analysis of transmissivity according to Moye's formula (denoted T_M) was made for the flow period for all tests.

From the results of the qualitative evaluation, appropriate interpretation methods for the quantitative evaluation of the tests were selected. If possible, transient analysis was made on both the flow and recovery periods of the tests. Several of the responses during the recovery period were strongly influenced by wellbore storage effects. Thus, pseudo-radial flow was seldom reached during this period. On the other hand, during the flow period, a certain time interval with pseudo-radial flow could, in most tests, be identified. Consequently, standard methods for single-hole tests with wellbore storage and skin effects were used for routine evaluation of the tests.

The transient analysis was performed using a special version of the test analysis software AQTESOLV which enables both visual and automatic type curve matching. The quantitative transient evaluation is generally carried out as an iterative process of manual type curve matching and automatic matching. For the injection period, a model presented by Hurst, Clark and Brauer (1969) /2/ is used for estimating transmissivity and skin factor for an assumed value on the storativity. The storativity was assumed to be 10⁻⁶ according to the instruction SKB MD 320.004 (SKB internal document). The model uses the effective wellbore radius concept to account for non-zero skin factors.

For evaluating transient recovery data, the Dougherty-Babu (1984) /3/ model was applied. Also, this model uses the effective wellbore radius concept to account for non-zero skin factors. The wellbore storage is treated as the water level change in a fictive stand pipe connected to the section. The wellbore storage can be calculated from the fictive radius of this pipe, denoted casing radius in the software AQTESOLV, see below. The nomenclature used in AQTESOLV is listed in Appendix 3. The model was used to estimate values of transmissivity, skin factor and the wellbore storage coefficient (represented by the fictive casing radius r(c)), cf Equation 5-2.

Some tests showed fracture responses (slope 0.5 in a log-log plot) and fracture models were then also used for the transient analysis. Both the models by Gringarten-Witherspoon (1972) /4/ and Ozkan-Raghavan (1991a) /5/ and (1991b) /6/ for a vertical fracture and Gringarten-Ramey (1974) /7/ for a horizontal fracture were employed. In these cases, the test section length was used to convert K and S_s to T and S, respectively, after analysis by

fracture models. The quote K_x/K_y of the hydraulic conductivity in the x and the y-direction, respectively, was assumed to be 1.0 (one). Type curve matching provided values of K_x and L_f , where L_f is the theoretical length of the fracture.

The different transient estimates of transmissivity for the tests were checked, in general from the pseudo-radial flow regimes during flow and recovery period, respectively. One of these was chosen as the best representative value of transient transmissivity of the formation adjacent to the test section. This value is denoted T_T . In cases with more than one pseudo-radial flow regime during the flow- or recovery period, the first one was judged as the most representative for the hydraulic conditions in the rock close to the tested section. In most cases, the transient estimates of transmissivity from the flow period were considered as more representative than those from the recovery period. The recovery responses were often strongly affected by wellbore storage and no pseudo-radial flow regime was reached. In addition, pseudo-spherical and pseudo-stationary flow often occurred during the recovery period.

Finally, a representative value of transmissivity of the section, T_R , was chosen from T_T and T_M . For tests approaching a pseudo-spherical or pseudo-stationary flow by the end of the test, the steady-state evaluation (T_M) was in most cases considered the best estimate of transmissivity, (i.e. $T_R = T_M$). Whenever the flow rate by the end of the flow period (Q_p) was not defined, and thus neither T_T nor T_M could be estimated, the judged best representative value of transmissivity for the test section is considered to be the lower measurement limit for Q/s (i.e. $T_R = Q/s$ -measl-L).

Estimated values of the borehole storage coefficient C, based on actual borehole geometrical data and assumed fluid properties (net values) are shown in Table 5-2. The net water volume in the test section, V_w , has in Table 5-2 been calculated by subtracting the volume of equipment in the test section (pipes and thin hoses) from the total volume of the test section. For an isolated test section, the wellbore storage coefficient, C, may be calculated as /8/:

$$\mathbf{C} = \mathbf{V}_{\mathbf{w}} \cdot \mathbf{c}_{\mathbf{w}} = \mathbf{L}_{\mathbf{w}} \cdot \boldsymbol{\pi} \cdot \mathbf{r}_{\mathbf{w}}^{2} \cdot \mathbf{c}_{\mathbf{w}}$$

(5-1)

 V_w = water volume in test section (m³)

 r_w = nominal borehole radius (m)

 L_w = section length (m)

 c_w = compressibility of water (Pa⁻¹)

Table 5-2.	Calculated net values of the wellbore storage coefficient C for injection
tests with	different section length, based on the actual geometrical properties of the
borehole a	and equipment configuration in the test section.

Borehole	r _w (m)	L _w (m)	Volume of test section (m³)	Volume of equipment in section (m³)	V _w (m³)	C (m³/Pa)
KFM02A	0.038	100	0.453	0.092	0.361	1.7·10 ⁻¹⁰
KFM02A	0.038	20	0.091	0.018	0.073	3.4·10 ⁻¹¹
KFM02A	0.038	5	0.023	0.004	0.019	8.7·10 ⁻¹²

When appropriate, estimation of the actual borehole storage coefficient C in the test sections was also made from the recovery period, based on the early borehole response with 1:1 slope in the log-log diagrams. The coefficient C was calculated only for tests with a well-defined line of slope 1:1 in the beginning of the recovery period. In the most conductive sections, this period occurred during very short periods at early test times. The latter values may be compared with the net values of C based on geometry (Table 5-2).

Furthermore, when using the model by Dougherty-Babu (1984), a fictive casing radius, r(c), is obtained from the parameter estimation. This value can then be used for calculating C as /8/:

$$\mathsf{C} = \frac{\pi \cdot \mathsf{r}(\mathsf{c})^2}{\rho \cdot \mathsf{g}} \tag{5-2}$$

Although this calculation was not done regularly and the results are not presented in this report, the calculations corresponded in most cases well to the value of C obtained from the line of slope 1:1 in the beginning of recovery period.

The estimated values of C from the tests may differ from the net values in Table 5-2 based on geometry. For example, the effective compressibility for an isolated test section may sometimes be higher than the water compressibility due to e.g. packer compliance, resulting in increased C-values.

5.5 Nonconformities

The test program in KFM02A was carried out according to the Activity Plan (AP PF 400-04-08, SKB internal controlling document) with the following exceptions (decided by the activity- and investigation leader):

- When lowering the 100 m section to the lower part of the borehole, the packers tended to self-expand due to a combination of worn packer rubber and low transmissivity of the lower part of the borehole. To avoid the risk of packer jamming, the planned test in section 895–995 m was not performed. Instead, a rough estimate of the transmissivity for the section 902–1002.44 m was obtained by analysis of the pressure recovery in this section from packer expansion in test section 801–901 m.
- To avoid the risk of packer jamming (due to self-expansion), no injection tests with 20 m section length were performed in the interval 801–901 m. This was considered reasonable since the transmissivity in the section 801–901 m was low (although above measurement limit) and the results from the previous difference flow logging gave information on the location of inflow sections (c 894 m).

6 Results

6.1 Nomenclature and symbols

The nomenclature and symbols used for the results of the injection tests in KFM02A are in accordance with the Instruction for analysis of injection- and single-hole-pumping tests (SKB MD 320.004, SKB internal document). Additional symbols used are explained in the text. Symbols used by the software AQTESOLV are explained in Appendix 3.

6.2 Routine evaluation of the single-hole injection tests

6.2.1 General test data together with pressure and flow data

General test data together with selected pressure and flow data from all tests are listed in Appendix 2.1 and 2.2, respectively.

6.2.2 Measurement limit

The estimated standard lower measurement limit of the flow rate for the injection tests in KFM02A is c 1 mL/min ($1.7 \cdot 10^{-8}$ m³/s). However, for some tests, a lower flow rate could be deduced by careful evaluation. In such cases also the transmissivity was estimated. The lower measurement limit is defined in terms of the specific flow rate (Q/s, flow rate divided by drawdown).

The minimal flow rate corresponds to different values of specific flow depending on the actual injection pressure during the test, see Table 6-1. The intention during this test campaign was to use a standard injection pressure of 200 kPa (20 m water column). However, for some test sections, the injection pressure was considerably different. A higher injection pressure is often a result of the test section being of low hydraulic conductivity, and a low injection pressure is often a result of the test section being high conductive. For three of the tests, the injection pressure exceeded 300 kPa and for nine of the tests, the injection pressure was below 100 kPa.

The lower measurement limit for flow rate also corresponds to different values of steady-state transmissivity, T_M, depending on the section lengths used in the factor C in Moye's formula in compliance with the Instruction for analysis of injection- and single-hole pumping tests (SKB MD 320.004, SKB internal document), see Table 6-1.

The practical upper measurement limit for the system is estimated at a flow rate of c 30 L/min $(5 \cdot 10^{-4} \text{ m}^3/\text{s})$ and an injection pressure of c 1 m. Thus, the upper measurement limit for specific flow rate is $5 \cdot 10^{-4} \text{ m}^2/\text{s}$. Still, the practical upper measurement limit may vary depending on e.g. borehole length to test section (friction losses in the pipe string).

Borehole	r _w (m)	L _w (m)	Q–measl–L (m³/s)	Injection pressure (kPa)	Q/s-measI-L (m²/s)	Factor C in Moye's formula	T _M –measI–L (m²/s)
KFM02A	0.038	100	1.7·10 ⁻⁸	100	1.6·10 ⁻⁹	1.30	2.1·10 ⁻⁹
KFM02A	0.038	100	1.7·10 ⁻⁸	200	8.2·10 ⁻¹⁰	1.30	1.1·10 ⁻⁹
KFM02A	0.038	100	1.7·10 ⁻⁸	300	5.5·10 ⁻¹⁰	1.30	7.1·10 ⁻¹⁰
KFM02A	0.038	20	1.7·10 ⁻⁸	100	1.6·10 ⁻⁹	1.05	1.7·10 ⁻⁹
KFM02A	0.038	20	1.7·10 ⁻⁸	200	8.2·10 ⁻¹⁰	1.05	8.6·10 ⁻¹⁰
KFM02A	0.038	20	1.7·10 ⁻⁸	300	5.5·10 ⁻¹⁰	1.05	5.7·10 ⁻¹⁰
KFM02A	0.038	5	1.7·10 ⁻⁸	100	1.6·10 ⁻⁹	0.83	1.4·10 ⁻⁹
KFM02A	0.038	5	1.7·10 ⁻⁸	200	8.2·10 ⁻¹⁰	0.83	6.8·10 ⁻¹⁰
KFM02A	0.038	5	1.7·10 ⁻⁸	300	5.5·10 ⁻¹⁰	0.83	4.5·10 ⁻¹⁰

Table 6-1. Estimated lower measurement limit for flow rate, specific capacity Q/s, and for steady-state transmissivity for different injection pressures and different measurement scales.

6.2.3 Length corrections

The down-hole equipment contains a level indicator located c 3 m below the lower packer in the test section, see Figure 4-3. The level indicator transmits a signal every time a reference mark in the borehole is passed. In KFM02A, reference marks were milled in the borehole wall at every 50 m. However, the reference mark at 900 m could not be detected by the subsequent caliper logging by SKB.

During the injection tests in KFM02A with PSS, length reference marks were detected as presented in Table 6-2.

Borehole length (m)	Detected during the injection tests in 100 m sections	Detected during the injection tests in 20 m sections	Detected during the injection tests in 5 m sections
110	yes	yes	yes
150	yes	yes	yes
200	yes	yes	yes
250	yes	yes	yes
300	yes	yes	no
350	yes	yes	no
400	yes	yes	no
450	yes	yes	no
500	yes	yes	no
550	yes	yes	no
600	yes	yes	-
650	yes	-	-
700	yes	-	-
750	yes	-	-
800	yes	-	-
850	yes	-	-
900	no	-	-

Table 6-2. Detected reference mark	s during the injection tests in KFM02A.
------------------------------------	---

As seen from Table 6-2, during the injection tests in 5 m sections, length marks were only detected down to 250 m. After detecting the length mark at 250 m with the 5 m section test setup, the level indicator stopped working properly due to deposition from the borehole water clogging the moving parts in the level indicator. At each mark, the length scale for the injection tests was adjusted according to the reported length to the reference mark.

The largest total difference between the reported and measured lengths at the reference marks during the injection tests was 0.18 m, at the 850 m reference mark. The difference between two consecutive measurements over a 100 m borehole interval was less than 0.07 m in all cases. Comparing the measurements performed with different section lengths results in a maximum difference of 0.05 m.

Since the length scale was directly adjusted in the field every time a reference mark was passed, and since the difference between consecutive marks was small, it was not found worthwhile to make any further adjustments after the measurements, e.g. by linear interpolation between reference marks.

6.2.4 General results

A summary of the results of the routine evaluation of the injection tests in different scales in KFM02A is presented, test by test, in Table 6-3. Selected test diagrams are presented in Appendix 3. In general, one linear diagram showing the entire test sequence together with lin-log and log-log diagrams from the flow- and recovery phases, respectively, are presented. The quantitative analysis was performed from such diagrams by the software AQTESOLV. From tests with flow rate below the measurement limit, only the linear diagram is presented. The planned test in section 895–995 m could not be performed due to problems with self-expanding packers (cf Section 5.2.2). Instead, the pressure recovery in section 902–1002.44 m (after expanding packers for the injection test in section 801–901 m) was evaluated as a pressure-pulse test, using a model derived for a pulse test with a stand-pipe (Bredehoeff and Papadopulos, 1980 /11/). The evaluated transmissivity for section 902–1002.44 m is considered as uncertain and is not presented in the result tables for SICADA but in the tables and figures presented below.

The dominating transient flow regimes during the flow- and recovery periods, respectively, as deduced from the qualitative test evaluation, are listed in Table 6-3 and further commented in Section 6.2.5.

For some tests, particularly from the recovery period, a type curve fit is displayed in the diagrams in Appendix 3, although the parameters from the fit are judged as not representative and are thus neither shown in Table 6-3 nor in the result tables for SICADA. For these tests, the type curve fit is presented only to illustrate that an assumption of pseudo-radial flow regime is not justified, indicated by the high, apparent value on the skin factor. Rather, a pseudo-spherical flow regime is likely to dominate for these tests as commented in the diagrams. For tests showing only a wellbore storage and tests approaching a pseudo-stationary flow, no unique transient evaluation is possible. In such cases no type curve matching was done.

In the quantitative evaluation, the steady-state transmissivity (T_M) was calculated by Moye's formula. Transient evaluation was conducted, whenever possible, both on the flow- and recovery periods (T_f and T_s , respectively). However, for the most low-conductive sections, no unique transient evaluation could be made from the recovery period (only wellbore storage response). Transient evaluation was performed for all tests for which a significant flow rate, Q_p , could be identified, even if Q_p was slightly below the measurement limit shown in Table 6-1. This means that a few transmissivity values in Table 6-3 fall below the measurement limit in Table 6-1.

The value judged as the most reliable from the transient evaluation of the tests was selected as T_T . The associated value for the skin factor is listed in Table 6-3. Since a rather well-defined time interval with pseudo-radial flow in most cases could be identified, the transmissivity calculated from the flow period is in most cases considered as the most reliable transient analysis for the injection tests in KFM02A. In addition, the transient evaluation of transmissivity from the flow period was for most of the tests also judged to be the most representative estimate of transmissivity, T_R . The approximate start and stop times used for the transient evaluation are also listed in Table 6-3. For those tests where transient evaluation was not possible, T_M was chosen as the representative transmissivity value, T_R . If Q_p was not detectable (significantly lower than the measurement limit), the representative transmissivity value, T_R , was assumed less than Q/s-measl-L (see Table 6-1).

In some cases, two transmissivity values could be calculated from the diagrams, at early and at later times, respectively. It is then assumed that the first transmissivity value represents the near-region of the borehole, whereas the later value may represent a larger volume of the rock. In such cases, the first transmissivity value was selected as the representative one. This value is considered as the most suitable for statistical analyses of borehole data.

The results of the routine evaluation of the injection tests in borehole KFM02A are also compiled in appropriate tables in Appendix 5, to be stored in the SICADA database.

For the evaluation of the test data, no corrections of the measured flow rate and pressure data, e.g. for changes of the barometric pressure or tidal fluctuations, have been made. For short-time single-hole tests, such corrections are generally not needed, unless very small pressure changes are applied. No subtractions of the barometric pressure from the measured absolute pressure have been made since the length of the test periods are short relative to the time scale for barometric pressure changes. In addition, pressure changes rather than the absolute pressure are used by the evaluation.

Drilling records were checked in order to identify possible interference with test data from drilling in nearby boreholes. These records showed that drilling of KFM05A (at drilling site BP1, see Figure 1-1) was in progress during the entire period for the injection tests in KFM02A. While drilling in KFM05A, flushing-water was pumped from the percussion-drilled borehole HFM13. However, the injection tests in KFM02A are assumed to be unaffected by these activities due to the long distance between these boreholes.

In Figure 6-1, a comparison of calculated transmissivities in 5 m sections from steady-state evaluation (T_M) and the representative transmissivity value from the transient evaluation (T_T) is shown. The agreement between the two populations is considered good. The estimated lower measurement limit of transmissivity in 5 m sections for an injection pressure of 200 kPa is also demonstrated in the figure. Values below this limit are considered uncertain.

The wellbore storage coefficient C for each test was calculated from the straight line with a unit slope in the log-log diagrams from the recovery period, see Table 6-3. The coefficient C was only calculated for tests with a well-defined line of unit slope in the beginning of the recovery period. In the most conductive sections this period occurred during very short intervals at very early times. In sections with very low transmissivity, the estimates of C are uncertain due to difficulties in defining an accurate time for the end of flow period. Furthermore, the limited resolution of pressure sensors causes the recovery to be quite scattered. The values of C presented in Table 6-3 may be compared with the net values of C in Table 5-2 (based on geometry).

Figure 6-1. Estimated transmissivities in 5 m sections from steady-state (T_M) and transient (T_T) evaluation.

The number of tests with a well defined line of unit slope for which it was possible to calculate C was as follows, 100 m tests; 4 out of 8, 20 m tests; 5 out of 22 and 5 m tests; 20 out of 74. Table 6-3 shows that there is, in general, good agreement between the calculated C-values from the tests and those listed in Table 5-2, although the calculated values from the tests tend to be higher. When constructing 95% confidence-intervals (by t-distribution) from calculated values of C from the tests, the values of C listed in Table 5-2 are within these confidence intervals.

		•			,)										
Secup	Seclow	Test start	q	Flow regime ²⁾	Q/s	Τ _M	T,	٦	T _T	T _R	w	dt,	dt_2	с	
(m)	(m)	үүүүммрр hh:mm	(m)	injection	recovery	(m²/s)	(m²/ s)	(m²/ s)	(m²/ s)	(m²/s)	(m²/ s)	(-)	(s)	(s)	(m³/Pa)
103.50	203.50	2004-03-05 22:01	100	PRF	PRF	4.64E–04	6.04E04	4.42E04	4.37E04	4.42E04	4.42E04	-4.6	500	1800	
201.00	301.00	2004-03-08 08:53	100	PRF	PSF>NFB	9.49E–06	1.24E-05	7.87E-06		7.87E-06	7.87E-06	-3.4	400	1800	
301.00	401.00	2004-03-08 11:50	100	PRF?	WBS	2.86E–09	3.72E-09	5.42E-10		5.42E-10	3.72E–09	-2.8	400	1800	2.04E-10
401.00	501.00	2004-03-08 17:01	100	PRF	PSF	2.15E–06	2.80E-06	1.31E-06		1.31E-06	1.31E-06	-3.4	80	1800	
501.00	601.00	2004-03-08 22:06	100	PSF	WBS>PSF	2.09E06	2.73E-06				2.73E-06				
601.00	701.00	2004-03-09 07:29	100		WBS	1.42E–10	1.85E–10	2.90E-11		2.90E–11	<4.73E-10		006	1800	5.09E-10
701.00	801.00	2004-03-09 11:39	100		WBS	2.36E-10	3.08E-10	2.14E–11		2.14E–11	<6.76E-10		006	1800	5.94E-10
801.00	901.00	2004-03-09 20:22	100	PRF	WBS	3.87E-09	5.04E-09	3.65E-09		3.65E-09	3.65E-09	1.0	30	1800	1.96E-10
902.001)	1002.44	2004-03-09 20:22	100.44	4						1.15E-10	1.15E–10		0	7000	
103.50	123.50	2004-03-18 14:48	20	PRF	PSF	4.74E–04	4.96E-04	3.43E04	3.53E-04	3.43E04	3.43E-04	-5.7	300	006	
121.00	141.00	2004-03-15 14:41	20	PSF	PSF	8.81E-05	9.22E-05	2.42E04		2.42E04	2.42E04	6.9	300	1300	
141.00	161.00	2004-03-15 19:23	20	PRF	WBS>PSS	6.58E-09	6.88E-09	5.37E-09		5.37E-09	5.37E-09	-1.4	100	1000	4.49E–11
161.00	181.00	2004-03-15 23:23	20	PRF1->PRF2	PSF>NFB	1.88E–06	1.97E-06	3.63E-06		3.63E-06	3.63E-06	3.3	50	500	
181.00	201.00	2004-03-16 06:51	20	PRF	PSF	3.25E-07	3.40E-07	3.49E–07		3.49E–07	3.40E-07	0.1	30	1200	
201.00	221.00	2004-03-16 08:45	20	PRF	PSF	3.31E-07	3.46E-07	5.85E-07		5.85E-07	5.85E-07	4.0	40	1200	
221.00	241.00	2004-03-16 10:27	20	PRF->PSF	PRF1->PRF2->PSF	1.98E–07	2.08E-07	1.04E-07	2.10E-07	1.04E07	1.04E-07	-2.9	80	400	
241.00	261.00	2004-03-16 12:30	20	PRF	WBS>PRF?	9.62E-09	1.01E08	9.36E-09	9.64E09	9.36E09	9.36E–09	1.3	100	1200	7.53E–11
261.00	281.00	2004-03-16 14:04	20	PRF1>PRF2	PSF>NFB	2.11E-06	2.21E-06	1.45E–06		1.45E–06	1.45E–06	-3.6	60	300	
281.00	301.00	2004-03-18 11:34	20	PRF	PSF>NFB	8.09E-06	8.47E-06	5.36E-06		5.36E-06	5.36E-06	-4.0	50	1200	
300.00	320.00	2004-03-16 19:37	20	PSF>NFB?	WBS>PSF	2.61E-09	2.73E–09	9.61E-08		9.61E-08	9.61E-08	6.8	40	300	6.63E-11
301.00	321.00	2004-03-16 17:50	20	PRF>PSS	PSS?	3.82E-08	4.00E-08	6.07E-08		6.07E-08	6.07E-08	-0.2	70	130	6.66E-11
401.00	421.00	2004-03-16 22:41	20	PSF/PRF?	PLF->PSF	7.78E–07	8.14E07	8.51E-07		8.51E-07	8.51E-07	-0.3	300	1000	
421.00	441.00	2004-03-17 06:18	20	PRF	PSS	9.70E-07	1.02E-06	1.39E-06		1.39E-06	1.39E–06	1.6	30	1200	
441.00	461.00	2004-03-17 08:11	20	PRF	PSF>NFB	9.69E–08	1.01E-07	7.35E-08		7.35E-08	7.35E-08	-2.2	60	300	
461.00	481.00	2004-03-17 09:47	20	PRF/PSF?	PSF	1.53E-07	1.60E-07	2.85E-07		2.85E-07	2.85E-07	5.0	100	1200	

Table 6-3. Summary of the routine evaluation of the single-hole injection tests in borehole KFM02A.

Secup	Seclow	Test start	q	Flow regime ²⁾	Q/s	Τ _M	T,	۲	T,	T _R	sr.	dt,	dt_2	с	
481.00	501.00	2004-03-17 11:15	20	PRF1->PRF2	PSS	1.89E–07	1.98E–07	2.61E-07		2.61E-07	2.61E-07	1.2	20	200	
501.00	521.00	2004-03-17 14:00	20	PSF	WBS>PSF	2.55E-06	2.66E-06		1.88E-06	2.66E-06	1.88E-06	-1.4	7	100	
521.00	541.00	2004-03-17 16:22	20		WBS						<8.33E-10				
541.00	561.00	2004-03-17 18:21	20	PRF->PLF	PRF>PLF	1.69E09	1.77E-09	1.83E-09	1.38E–09	1.38E–09	1.38E–09	-1.5	7	100	
561.00	581.00	2004-03-17 20:11	20		WBS	2.32E-10	2.43E-10	2.64E-11		2.64E–11	2.43E–10				1.72E–11
581.00	601.00	2004-03-17 22:18	20		WBS						<8.33E-10				
103.50	108.50	2004-03-19 07:54	5	PRF1->PRF2	WBS>PSS	4.09E-09	3.38E-09	2.25E–09		2.25E–09	2.25E–09	-1.7	100	500	1.82E–11
106.00	111.00	2004-03-19 09:38	5	PRF/PSF	PSS	1.74E-05	1.43E-05	3.88E-05		3.88E-05	3.88E-05	5.0	200	1200	
111.00	116.00	2004-03-19 11:09	5	PRF->PSF	PSS	5.38E-05	4.44E05	6.04E-05		6.04E-05	6.04E-05	-2.0	60	200	
116.00	121.00	2004-03-19 14:35	5	PRF/PSF?	PSF	1.59E04	1.31E-04	3.98E-04		3.98E–04	1.31E-04	5.5	20	1300	
121.00	126.00	2004-03-19 16:37	5	PRF/PSF?	PSF	8.35E-05	6.90E-05	1.95E–04		1.95E–04	6.90E-05	4.7	20	600	
126.00	131.00	2004-03-19 18:21	5	PRF>NFB	PSF>NFB	2.53E-08	2.09E–08	2.20E-08	1.42E-07	2.20E-08	2.20E-08	-2.2	10	100	
131.00	136.00	2004-03-19 20:03	5		WBS						<8.33E-10				
136.00	141.00	2004-03-19 21:44	5	PRF	PSF	1.01E-08	8.32E-09	7.71E-09		7.71E-09	7.71E-09	0.1	30	1500	
141.00	146.00	2004-03-20 10:36	5		WBS						<8.33E-10				
146.00	151.00	2004-03-20 13:03	5								<8.33E-10				
151.00	156.00	2004-03-20 14:16	5								<8.33E-10				
156.00	161.00	2004-03-20 17:19	5	PRF	WBS>PSF	1.11E-09	9.17E-10	1.63E-09		1.63E–09	1.63E-09	4.4	200	1200	1.58E–11
161.00	166.00	2004-03-21 08:36	5	PRF	PSF	7.08E-07	5.84E-07	4.11E-07	-	4.11E07	4.11E-07	-2.6	20	600	
166.00	171.00	2004-03-21 10:21	5	PRF	PSF	3.17E-07	2.62E-07	4.27E-07		4.27E–07	4.27E07	1.7	10	1000	
171.00	176.00	2004-03-21 12:59	5	PRF/PSF?	PSF	1.26E-06	1.04E-06	3.35E-06		3.35E-06	3.35E-06	6.5	100	1000	
176.00	181.00	2004-03-21 14:13	5	PRF	PSS	3.34E08	2.76E–08	3.31E-08		3.31E-08	3.31E-08	0.2	30	200	
181.00	186.00	2004-03-21 15:39	5	PRF	PSF	3.40E-07	2.81E-07	5.37E-07		5.37E-07	5.37E-07	2.9	20	1000	
186.00	191.00	2004-03-22 06:30	5		WBS						<8.33E-10				
191.00	196.00	2004-03-22 08:15	5		WBS						<8.33E-10				
196.00	201.00	2004-03-22 09:57	5		WBS	1.75E-10	1.44E–10	9.38E-12		9.38E–12	<8.10E-10		I	I	9.17E–11
201.00	206.00	2004-03-22 12:41	5		WBS						<8.33E-10				
206.00	211.00	2004-03-22 14:03	5		WBS						<8.33E-10				

Secup	Seclow	Test start	q	Flow regime ²⁾	Q/s	T™	T,	Ts	T _T	T _R	ž	dt,	dt₂	С	
211.00	216.00	2004-03-22 15:34	5								<8.33E-10				
216.00	221.00	2004-03-22 16:55	5	PRF	PSF->NFB	3.72E-07	3.07E-07	2.01E-07		2.01E-07	2.01E-07	-3.2	150	1200	
221.00	226.00	2004-03-22 18:23	5		WBS						<8.33E-10				
225.00	230.00	2004-03-22 19:23	5	PLF->PRF->PSF	PLF->PRF->PSF	2.08E07	1.72E–07	9.38E-08	8.33E-08	9.38E-08	9.38E-08	-3.2	100	700	
226.00	231.00	2004-03-22 21:01	5	PRF>PSF	PLF->PRF->PSF	2.02E-07	1.67E–07	1.11E-07	1.05E-07	1.11E07	1.11E-07	-2.8	80	400	
231.00	236.00	2004-03-22 22:26	5		WBS	3.21E-10	2.65E-10	3.41E11		3.41E–11	<6.69E-10		I	I	3.67E–11
236.00	241.00	2004-03-22 23:28	5	PRF?->PSF	WBS	3.11E-10	2.57E-10	6.58E-11		6.58E–11	<6.48E-10		100	500	1.38E–11
241.00	246.00	2004-03-23 06:26	5	PRF	WBS>PRF>PSF	4.82E-09	3.98E-09	2.30E-09	3.13E-09	2.30E-09	2.30E-09	-1.3	50	1200	2.56E–11
246.00	251.00	2004-03-23 08:13	5	PRF	WBS>PSF	1.66E-09	1.37E-09	1.15E–09	5.00E-09	1.15E–09	1.15E-09	0.3	700	1200	1.85E–11
251.00	256.00	2004-03-23 09:59	5	PRF	WBS>PSF	1.14E09	9.42E–10	9.13E-10		9.13E–10	9.13E-10	1.1	80	700	1.92E–11
256.00	261.00	2004-03-23 12:31	5	PRF	WBS>PSF	8.23E-10	6.79E-10	7.27E-10		7.27E–10	7.27E-10	1.4	50	1000	1.52E–11
259.50	264.50	2004-03-28 13:43	5		WBS>PSF/PSS?	3.17E-09	2.62E-09	2.76E–09		2.76E–09	2.76E-09	1.1	300	1200	1.65E–11
264.50	269.50	2004-03-28 11:02	5	PRF/PSF?	PSS	5.81E-07	4.80E-07	1.13E-06		1.13E-06	1.13E-06	5.0	100	1200	
269.50	274.50	2004-03-28 09:39	5	PRF	PSS	1.55E-07	1.28E–07	1.54E-07		1.54E-07	1.54E-07	-0.1	30	1200	
271.00	276.00	2004-03-28 08:15	5	PRF>NFB?>PSF?	PSS	7.59E-07	6.26E-07	1.13E-06		1.13E–06	1.13E-06	-2.0	30	100	
276.00	281.00	2004-03-24 06:55	5	PLF->PRF?	PSS	6.08E-07	5.02E-07	2.78E-07		2.78E–07	2.78E-07	-4.7	100	300	
281.00	286.00	2004-03-24 08:44	5	PRF->PLF	PSS	1.36E-06	1.12E-06	2.58E-06		2.58E-06	2.58E-06	-2.9	20	70	
286.00	291.00	2004-03-24 10:28	5	PRF1->PLF->PRF2	PSS	2.73E-06	2.25E-06	1.82E-06		1.82E-06	1.82E-06	-4.3	20	80	
291.00	296.00	2004-03-24 12:56	5	PRF	PSS	2.70E-06	2.23E-06	3.64E-06		3.64E-06	3.64E-06	0.4	50	1200	
296.00	301.00	2004-03-24 14:28	5	PRF	PSS	1.44E06	1.19E–06	2.05E-06		2.05E-06	2.05E-06	1.4	40	1200	
301.00	306.00	2004-03-24 15:59	5	PSF>NFB	WBS>PSF	2.03E-08	1.67E–08	6.24E-08	3.72E-08	6.24E08	6.24E-08	5.0	40	400	2.57E-10
306.00	311.00	2004-03-24 17:31	5	PRF->PSF	WBS>PSF	1.07E-09	8.79E–10	6.08E-10		6.08E-10	6.08E-10	0.8	10	300	1.18E–11
311.00	316.00	2004-03-24 18:58	5	PRF?	WBS	2.69E-10	2.22E-10	3.92E-11		3.92E–11	<4.23E-10		200	1200	1.54E–11
316.00	321.00	2004-03-24 20:41	5								<8.33E-10				
401.00	406.00	2004-03-24 22:12	5								<8.33E-10				
406.00	411.00	2004-03-24 23:09	5								<8.33E-10				
411.00	416.00	2004-03-25 07:35	5	PRF	PRF>PSF	4.70E-08	3.88E-08	4.58E-08	3.84E-08	4.58E–08	4.58E-08	0.3	60	1200	
416.00	421.00	2004-03-25 08:43	5	PRF>PSF	PSF	1.13E-06	9.34E-07	9.15E-07	1.41E06	9.15E-07	9.15E-07	-1.9	100	300	

Secup	Seclow	Test start	q	Flow regime ²⁾	Q/s	T _M	T,	Тs	т, т	. ×	ŵ	dt_1	dt_2	с	
421.00	426.00	2004-03-25 10:23	5	PRF>NFB?	PSS	1.72E-07	1.42E07	2.30E-07	7	.30E-07	2.30E-07	1.8	50	400	
426.00	431.00	2004-03-25 13:03	5	PRF	PSS	1.09E06	9.00E-07	1.15E-06	-	.15E-06	1.15E-06	2.6	100	1200	
431.00	436.00	2004-03-25 14:33	5	PRF?	WBS>PSS	5.40E-09	4.46E–09	3.56E-09	က	.56E-09	3.56E-09	-0.2	100	1000	
436.00	441.00	2004-03-25 15:59	5	PRF	PSS	7.23E-08	5.96E-08	1.06E-07	-	.06E-07	1.06E-07	2.9	30	1000	
441.00	446.00	2004-03-25 17:25	5	PRF	WBS>PSF	1.26E-09	1.04E-09	7.27E-10	7	.27E-10	7.27E-10	-0.3	200	1200	1.28E–11
446.00	451.00	2004-03-25 18:54	5	PRF>NFB	WBS>PSS	9.67E-09	7.99E–09	9.15E-09	6	.15E-09	9.15E-09	-0.4	60	400	2.50E-11
451.00	456.00	2004-03-25 20:22	5	PRF	PSS->NFB	4.24E08	3.50E-08	2.05E-08	2	.05E-08	2.05E-08	-2.6	110	1200	
456.00	461.00	2004-03-25 22:43	5	PSF	WBS>PSF	2.34E09	1.93E-09	5.14E-09	5.16E-09 5	.14E-09	1.93E-09		100	1200	1.62E11
461.00	466.00	2004-03-26 06:46	5	PRF?	WBS>PSF	3.91E09	3.23E-09	2.58E-09	2	58E-09	2.58E-09	0.1	100	1200	1.70E–11
466.00	471.00	2004-03-26 08:23	5	PRF->PSS	WBS>PSF	2.42E09	1.99E–09	2.05E-09	3.46E-09 2	05E-09	2.05E-09	1.1	30	600	1.62E11
471.00	476.00	2004-03-26 10:01	5								<8.33E-10				
476.00	481.00	2004-03-26 11:04	5	PRF	PSF	1.03E-07	8.49E–08	2.58E-07	2	58E-07	2.58E-07	9.0	10	1200	
481.00	486.00	2004-03-26 13:41	5	PRF	PSF	1.60E-08	1.32E-08	1.03E-08	-	.03E-08	1.03E-08	-1.0	200	1200	
486.00	491.00	2004-03-26 15:37	5	PSF->PRF	PSS	8.78E-08	7.25E–08	8.14E-08	œ	.14E-08	8.14E–08	0.1	30	1200	
491.00	496.00	2004-03-26 17:04	5	PRF	WBS>PSF>NFB	7.13E-09	5.88E-09	6.47E-09	9	.47E-09	6.47E-09	1.6	170	1200	2.46E–11
496.00	501.00	2004-03-26 18:30	5	PSF->PRF	PSS	2.90E-08	2.39E–08	1.63E-08	~	.63E-08	1.63E-08	-2.0	30	200	
501.00	506.00	2004-03-26 20:01	5	PRF	WBS>PSF	1.82E-09	1.50E-09	1.03E-09	-	.03E-09	1.03E-09	-0.5	200	1200	2.94E11
506.00	511.00	2004-03-26 21:33	5	PSF	WBS	3.51E-08	2.90E-08				2.90E-08				
511.00	516.00	2004-03-27 09:44	5	PSF	WBS>PSS	2.47E-06	2.03E-06				2.03E-06				
516.00	521.00	2004-03-27 10:49	5								<8.33E-10				
541.00	546.00	2004-03-27 12:44	5								<8.33E-10				
546.00	551.00	2004-03-27 13:48	5								<8.33E-10				
551.00	556.00	2004-03-27 14:40	5								<8.33E-10				
556.00	561.00	2004-03-27 15:32	5	PRF->PLF	PRF->PLF	1.86E–09	1.54E09	2.04E-09	2.68E–09 2	68E-09	2.68E–09	-1.0	10	100	
¹⁾ Press	ure recove	ery from packer expan	sion in (section 801–901 m, e	valuated as a pressure	-pulse test									
F	-	113	-			2	Ĺ		Ĺ	_				c	
no-flo	cronyms li v boundar	n the column "Flow req rv (NFB). The flow req	gime" ai ime defi	re as tollow: wellbore initions are further dis	storage (WBS), pseudo cussed in Section 6.2.5	5 below	(PLF), pseu	do-radial flo	w (РКF), pse	udo-spheri	cal tiow (PSF), pseudo	-station	ary tiow (PSS) and

6.2.5 Comments on the tests

Short comments on each test follow below. Flow regimes and hydraulic boundaries are in the text referred to as:

- WBS = Wellbore storage
- PRF = Pseudo-radial flow regime
- PLF = Pseudo-linear flow regime
- PSF = Pseudo-spherical flow regime
- PSS = Pseudo-stationary flow regime
- NFB = No-flow boundary

As discussed in Section 5.4, the flow regimes were mainly interpreted from the log-log plots of flow rate and pressure together with the corresponding derivatives. WBS is identified as a straight line of unit slope. PRF corresponds to a certain period of a horizontal derivative. PLF may at the beginning of the tests be reflected by a straight line of slope 0.5 or less in the log-log diagrams, both for the measured parameter (flow rate or pressure) and the derivative. A true PSF is reflected by a straight line with a slope of -0.5 for the derivative. However, other slopes may indicate transitions to PSF or PSS. The latter flow regime corresponds to almost stationary conditions with a derivative approaching zero. Due to the limited resolution of the flow meter and pressure sensor, the derivative may at some times indicate a false horizontal line by the end of periods with PSS.

103.5–203.5 m

Two tests were performed in this section. The first test was interrupted since it failed due to malfunction of a solenoid valve in the control system. The section is of very high conductivity and, as a result, time for building up sufficient injection pressure in the test section was long. Furthermore, the system capacity was insufficient for a constant head of 200 kPa (instead c 15 kPa). The limited capacity also caused a low flow rate during the initial phase of the flow period. Still, a PRF is indicated for both periods even if the small pressure change in combination with the limitations in pressure sensor resolution causes the recovery derivative to approach zero.

201–301 m

Two tests were performed. The first test was interrupted since the automatic control system failed to create a stable injection pressure. A PRF is indicated by the end of the flow period. The recovery period indicates a PSF followed by NFB effects by the end of the period.

301–401 m

Due to the low conductivity, the automatic control system failed to keep the injection pressure perfectly stable during the flow period. As a result, the pressure in the test section was oscillating (the oscillations decreased from c +/-10 kPa to c +/-2.5 kPa). The oscillations cause the plots from the flow period to be very scattered. Still, a possible PRF is assumed during the flow period. The recovery period only indicates WBS.

401–501 m

During the flow period, a PRF is indicated and during the recovery period, a PSF is observed. The type curve fit shown for the recovery period is not for the purpose of estimating hydraulic parameters but rather to illustrate that an assumption of PRF is not reasonable for the recovery period.

501–601 m

Two tests were performed. The first test was interrupted because the automatic control system failed to create a stable injection pressure. A PSF is indicated during the flow period. The type curve fit in the plots is shown only for the purpose of showing that an assumption of PRF is not suitable (strong positive skin). The recovery period indicates WBS followed by a PSF (type curve fit indicates large positive skin) and thus no reliable transient evaluation of T is possible.

601–701 m

Due to the very low conductivity, the automatic control system did not succeed in maintaining a stable pressure in the test section. The pressure was oscillating c +/-4 kPa during the test. The oscillations make the plots from the flow period to be very scattered. The low, oscillating flow rate causes both the steady-state evaluation and transient analysis of transmissivity to be quite uncertain. The recovery period only shows WBS effects.

701–801 m

Due to a drifting gas pressure regulator, the pressure in the test section increased c 8 kPa during the flow period. The section is below the measurement limit and an attempt to perform a transient evaluation of the flow period did not result in a reliable estimate of the transmissivity. The recovery period only shows WBS effects.

801–901 m

Two tests were performed in this section. The first test was interrupted since an attempt to compensate for a drifting pressure regulator failed and, as a result, the pressure in the test section was not stable. The second test succeeded and a PRF is indicated during the flow period. For the recovery period, only WBS and a transition to some other regime or boundary is indicated.

902–1002.44 m

In this section, a pressure-pulse test was performed. During expansion of packers for section 801–901 m, the pressure in the section below (i.e. this section, 902–1002.44 m) increased by 9.75 m (see Figure A3–41). The pressure recovery after packer expansion was evaluated as an equivalent slug test with a stand-pipe. The plot used for this evaluation is shown in Figure A3–42. After c 5000 s, a small pressure increase is seen as a result of the injection start in section 801–901 m. Similarly, a small pressure decrease is observed at c 6800 s which coincides with the end of the flow period in section 801–901 m. For evaluation, the theoretical wellbore storage coefficient $(1.7 \cdot 10^{-10} \text{ m}^3/\text{Pa})$ was used in combination with Equation 5-2 to assign a value of the fictive stand-pipe radius (0.732 mm).

103.5–123.5 m

Three tests were performed. The first two tests were interrupted because of malfunction of one solenoid valve in the control system. Due to the very high transmissivity and limited flow capacity of the injection system, it was not possible to create a constant head higher than c 16 kPa. Thus, both the flow and recovery periods are of low test quality. The flow period indicates a PRF towards the end, whereas the recovery period indicates a PSF. No WBS effects are seen in the plots.

121–141 m

A PSF is indicated during both the flow and the recovery period.

141–161 m

A PRF is indicated throughout the flow period. For the recovery period, WBS is indicated with a transition to a PSS at later times.

161–181 m

Two tests were performed in this section. The first test failed due to malfunction of a solenoid valve. During the flow period, two separate PRF are indicated. The recovery period only shows a PSF (apparent large positive skin) with a transition to a NFB. Type curve fits were performed for both the first and the last PRF during the flow period, although the first one is judged to be the most representative.

181–201 m

For the flow period, a PRF is indicated from c 30 s and persists throughout the period. The recovery period does not indicate any WBS effects, only a PSF throughout the period.

201–221 m

For the flow period, a PRF is indicated from c 30 s and persists throughout the period. The recovery period does not indicate any WBS effects, only a PSF throughout the period.

221–241 m

For the flow period, a PRF regime is indicated from c 80 s until c 400 s followed by a transition to a PSF regime. The recovery period shows no WBS effects, but one early and one late PRF followed by a transition to a PSF by the end of the recovery period. The early and late PRF are indicated between c 8–25 s and c 200–400 s, respectively.

241–261 m

Since the test section is of low transmissivity, resulting in a low flow rate, flow rate data and flow rate derivative are quite scattered. Still, a PRF regime is indicated throughout the flow period. The recovery period is dominated by WBS effects followed by a transition to a possible PRF regime by the end of the recovery period.

261–281 m

The pressure in the section below the test section increased by c 7 kPa during the flow period and recovered by c 3 kPa during the recovery period. For the flow period, one early and one late PRF regime are indicated from c 80 to c 300 s and after c 400 s, respectively. Throughout the recovery period, a PSF approaching a NFB by the end is indicated.

281–301 m

Three tests were performed. The first two attempts failed due to malfunction of a solenoid valve. Although some scattered data, a clear PRF is indicated during the flow period. Throughout the recovery period, a PSF approaching a NFB by the end is indicated.

300–320 m

By the end of the flow period, the pressure in the test section is not perfectly stable. The pressure oscillations are caused by two effects that usually cause problems for the automatic control system. Firstly, the low conductivity makes it difficult to maintain a stable pressure. Secondly, the test section demands a considerable flow rate decrease to keep the pressure constant, which is difficult to achieve without causing pressure oscillations. From c 1195 to c 1205 s during the flow period, the flow rate is close to, and sometimes below, the measurement limit. The flow rate values during this period are not considered representative and affected by problems maintaining a constant pressure. During the initial phase of the flow period, a PSF is indicated transitioning to an apparent NFB towards the end of the period. During the recovery period, WBS with transition to a possible PSF is indicated.

301–321 m

For the flow period, a PRF is indicated from c 70–130 s followed by a transition to PSS. For the recovery period, short possible initial WBS effects are followed by indications of a PSS.

401–421 m

A PRF transitioning to a PSF during the flow period. For the recovery period, a PLF with a transition to a PSF is indicated.

421–441 m

A clear PRF is indicated during the flow period from c 30 s to c 300 s. During the recovery period, PSS is indicated from c 10 s and remains throughout the period.

441–461 m

During the flow period, a PRF regime is indicated from c 60 s. For unknown reasons, a pressure disturbance occurs at c 300 to c 900 s. During the recovery period, a PSF is indicated from c 30 s and later with a transition to a NFB. No indications of leakage around packers are seen from the pressure above and below the test section.

461–481 m

During the flow period, a PRF (or possibly a PSF) is indicated from c 10 s and remains throughout the period. A type curve fit results in large positive skin which indicates a PSF but the reciprocal flow rate derivative clearly indicates a PRF. For the recovery period, a PSF is indicated.

481–501 m

During the flow period, one early and one late PRF is indicated from c 20–200 s and c 300–1200 s, respectively. The first PRF is judged to be the most representative. Type curve fits to both PRF are shown in Appendix 3. The recovery period is dominated by a PSS. No WBS effects are seen.

501–521 m

During the flow period, a PSF is indicated and the type curve fit illustrated in the test plots shows that a model assuming PRF is not appropriate for this section. For the recovery period, WBS with a transitioning to a PSF is indicated.

521–541 m

No transient evaluation is possible since the flow rate was below the measurement limit during the flow period. The recovery period indicates only WBS. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the transmissivity value judged most representative for this section is Q/s-measl-L.

541–561 m

PRF followed by an apparent PLF is indicated during both the flow- and recovery period.

561–581 m

No unique transient evaluation is possible due to high scatter in the data during the flow period and only WBS indications during the recovery period.

581–601 m

No transient evaluation is possible since the flow rate was below the measurement limit during the flow period. The recovery period indicates only WBS. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the transmissivity value judged most representative for this section is Q/s-measl-L.

103.5-108.5 m

The low transmissivity and flow rate cause the reciprocal flow rate and derivative to be quite scattered. Still, two separate PRF are weakly indicated during the flow period. Type curve fits are shown for both PRF in Appendix 3. The first PRF is judged to be the most representative. The initial phase of the recovery period is dominated by WBS effects. After the WBS effects, a PSS is indicated.
106–111 m

Due to the relatively high transmissivity of this section, the time for pressure stabilisation was quite long. For the flow period, a PRF (or possibly PSF) is indicated from c 200 s and throughout the period. The recovery period indicates PSS, and no WBS effects are indicated.

111–116 m

During the beginning of the flow period, a PRF is indicated transitioning to a PSF regime indicated from c 200 s and throughout the period. The recovery plots indicate only a PSS.

116–121 m

During the flow period, a PRF (or possibly a PSF as indicated by large positive skin) is indicated. During the recovery period, a PSF is indicated.

121–126 m

During the flow period, a PRF (or possibly a PSF) is indicated and during the recovery period, a PSF is indicated.

126–131 m

Initial PRF is indicated during the flow period transitioning to a NFB towards the end of the period. Initial PSF is indicated during the recovery period with a transition to a NFB by the end of the period.

131–136 m

No transient evaluation is possible since the flow rate was below the measurement limit during the flow period. The recovery period indicates only WBS. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the transmissivity value judged most representative for this section is Q/s-measl-L.

136–141 m

During the flow period, a PRF is indicated and during the recovery period, a PSF is indicated.

141–146 m

Three tests were performed in this test section. The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The short period of measured recovery only shows WBS effects.

146–151 m

Three tests were performed in this test section. The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The short period of measured recovery only showed a pressure increase indicating that the section is of such low conductivity that packer expansion effects still were affecting the section.

151–156 m

Three tests were performed in this test section. The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The short period of measured recovery only showed a pressure increase indicating that the section is of such low conductivity that packer expansion effects still were affecting the section.

156–161 m

A sudden increase in flow rate appears, for unknown reasons, at about 100 s after injection start. During the flow period, a PRF is indicated and during the recovery period, WBS with a transition to a PSF is indicated.

161–166 m

An unfortunate switch between controller valves performed by the automatic control system caused a discontinuity (increase) in flow rate towards the end of the flow period. Still, the flow period indicates a PRF and the recovery period indicates a PSF.

166–171 m

The flow period indicates a PRF. No unique transient evaluation can be made from the recovery period due to PSF.

171–176 m

The automatic control system failed to maintain a stable pressure during the first attempt to perform a test in this section. Therefore, another test was performed, this time successful. During the flow period, a PRF (or possibly a PSF) is indicated and during the recovery period, a PSF is indicated. The type curve fit to recovery data in Appendix 3 is shown only to demonstrate that PRF is not a justified assumption for the recovery period.

176–181 m

During the flow period, a PRF is indicated and during the recovery period, a PSS is indicated. By the end of the recovery period, an apparent NFB is indicated from unknown disturbances.

181–186 m

During the flow period, a PRF is indicated and during the recovery period, a PSF is indicated.

186–191 m

The flow rate towards the end of the test was not detectable and clearly below Q-measl-L. As a result, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

191–196 m

The flow rate towards the end of the test was not detectable and clearly below Q-measl-L. As a result, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

196–201 m

The flow rate is very low and the flow rate data is very scattered. Still, a transient evaluation of flow period data was performed, although the results should be considered very uncertain. The recovery period is dominated by WBS. The judged most representative transmissivity value for this test section is Q/s-measl-L.

201–206 m

The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Since no flow rate was detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

206–211 m

The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Because no flow rate was detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

211–216 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. The pressure stabilisation time was prolonged to c 20 min but the pressure was still not stable. When injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery period, pressure increased slightly indicating a very tight section still affected by packer expansion.

216–221 m

For the flow period, a PRF regime is indicated from c 150 s and throughout the period. For the recovery period, a PSF regime is indicated from c 10 s transitioning to an apparent NFB towards the end.

221–226 m

The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. Because the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

225–230 m

For the flow period, a short initial PLF is indicated transitioning to a PRF from c 100 s to c 500 s. After c 500 s, a transition to PSF is indicated. Also during the recovery period, an initial PLF was indicated. After c 150 s, a transition to a PRF is indicated with a transition to a PSF by the end. A type curve fit with Ozkan-Raghavan /4/ for the flow period resulted in a (fictive) vertical fracture length of c 4.4 m. A type curve fit with Gringarten-Witherspoon /5/ for the recovery period resulted in a (fictive) vertical fracture length of c 4.6 m. Transmissivity values from type curve fitting with models assuming PLF were in good agreement with transmissivity values obtained from the models assuming PRF.

226–231 m

For the flow period, a PRF is indicated from c 80 s to c 400 s. After c 400 s, a possible transition to a PSF is indicated. During the recovery period, an initial possible PLF regime is indicated transitioning to a PRF from c 200 s to c 500 s. After c 500 s, a transition to a PSF indicated. A type curve fit with Gringarten-Witherspoon for the recovery period resulted in a (fictive) vertical fracture length of c 4.3 m. However, plausible type curve fits were also obtained with models assuming PRF for both the flow and the recovery period.

231–236 m

The test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document) since the flow rate was below Q-measl-L. However, the flow rate was detectable and thereby estimations of (both steady-state and transient) transmissivity were possible, although very uncertain. Since the detected flow rate was below Q-measl-L and the estimations of transmissivity very uncertain, the judged most representative transmissivity value for this section is Q/s-measl-L. The recovery period shows only WBS effects.

236–241 m

A possible PRF is indicated during the flow period, transitioning to a PSF. The recovery period shows only WBS effects.

241–246 m

Due to a drifting pressure regulator, a compensation of the drift was needed during the flow period. As a result, the pressure in the test section was not perfectly stable during the flow period. Still, a PRF is indicated during the flow period, although the derivative is clearly affected by the regulator compensation. The recovery period indicates WBS with a transitioning to a PRF and finally to a PSF towards the end of the recovery period.

246–251 m

Due to the low conductivity of this section, an oscillation in pressure and flow rate develops, which dampens out but not completely, throughout the flow period. For transient evaluation of the flow period, a PRF is assumed. The recovery period indicates WBS with a transitioning to a PSF.

251–256 m

During the flow period, a PRF is indicated from c80 to c 700 s and during the recovery period, WBS transitioning to a PSF is indicated.

256–261 m

The low transmissivity, and thus low flow rate, causes reciprocal flow rate data and derivative to be quite scattered. Still, a PRF is indicated from c 50 to c 1000 s during the flow period. WBS transitioning to a PSF is indicated during the recovery period.

259.5-264.5 m

The low transmissivity, and thus low flow rate, causes the reciprocal flow rate data and derivative to be quite scattered. Furthermore, stable pressure was not achieved; a decreasing oscillation continued throughout the flow period. Still, an approximate type curve fit of the flow period data was possible. The initial phase of the recovery period is dominated by WBS effects followed by a PSF (or possibly a PSS).

264.5–269.5 m

For the flow period, a PRF is indicated from c 100 s and throughout the period. The type curve fit results in a relatively large positive skin factor indicating that the flow regime might be close to a PSF. The recovery period indicates a PSS flow regime from c 10 s and throughout the period.

269.5–274.5 m

For the flow period, a well-defined PRF is indicated from c 30 s and throughout the period. For the recovery period, a PSS is indicated from c 10 s.

271–276 m

A small disturbance is seen at c 1000 s during the flow period due to an unfortunate switch between controller valves performed by the automatic control system. For the flow period, a PRF regime is indicated from c 30 to c 100 s. After c 100 s, effects of an apparent NFB are indicated transitioning to a possible PSF. For the recovery period, only a PSS is indicated; no WBS effects are seen from the plots.

276–281 m

For the flow period, a PLF is indicated from c 100 s to c 300 s, possibly transitioning to a PRF. The flow period is followed by an instantaneous pressure recovery; PSS is indicated. The sudden increase in the flow rate towards the end of the flow period is a result of the automatic control system switching from the bigger to the smaller flow meter.

281–286 m

From c 240 s to c 300 s, the automatic control system was temporarily turned off due to a mistake during operation. A short PRF is indicated from c 20 to c 70 s transitioning to a PLF towards the end of the flow period. A type curve fit of the late data from flow period using a model assuming PRF results in a large negative skin which is an indication of PLF (fracture response). The pressure recovery was almost instantaneous; PSS is indicated.

286–291 m

For the flow period, a short PRF is indicated from c 20 to c 80 s transitioning to a PLF and then to a second PRF towards the end of the period. Type curve fits for both PRF are shown in Appendix 3, although the first is judged to be the most representative one. The pressure recovery is almost instantaneous; PSS is indicated.

291–296 m

A well-defined PRF is indicated during the flow period. The pressure recovery is almost instantaneous; PSS is indicated.

296–301 m

For the flow period, a PRF regime is indicated from c 40 s and throughout the period. For the recovery period, a PSS flow regime is indicated from c 10 s and throughout the period. No WBS effects are seen in the plots.

301–306 m

For the flow period, a PSF is indicated from c 40 s to c 400 s. After c 400 s, a transition to an apparent NFB (closed boundary) is indicated. Towards the end of the flow period (the last c 150 s), a disturbance is seen which is caused by an unfortunate switch of controller valves performed by the automatic control system. The initial phase of the recovery period is dominated of WBS effects. Towards the end of the recovery period, a PSF (or close to PSF) is indicated.

306–311 m

Since the flow rate is very low, the reciprocal flow rate and derivative plots are very scattered. However, a PRF is indicated during the flow period from c 10 s to c 300 s transitioning to a PSF. The packer expansion caused a pressure increase in the test section which was not fully recovered before the start of flow period. As a result, the flow rate increased towards the end of the flow period when the effect from the packer expansion decreased. For the recovery period, WBS effects dominate the initial c 40 s. After c 40 s, a transition stage is indicated followed by a PSF.

311-316 m

Since the flow rate is very low, the reciprocal flow rate and derivative plots are very scattered. However, a PRF is weakly indicated from c 500 s and throughout the flow period. The packer expansion caused a pressure increase in the test section which was not fully recovered before start of the flow period. For the recovery period, only WBS effects are indicated.

316-321 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

401–406 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

406–411 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When injection began, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

411–416 m

A well-defined PRF is indicated throughout the entire flow period. A PRF with transition to a PSF is indicated during the recovery period.

416–421 m

A PRF transitioning to a PSF is indicated during the flow period. PSF is indicated during the recovery period.

421–426 m

A PRF is indicated during the flow period. Weak indications of a possible NFB are seen towards the end of the flow period. A PSS is indicated during the recovery period.

426–431 m

A PRF is indicated during the flow period. The recovery period indicates PSS.

431–436 m

Although the data is very scattered, a PRF is weakly indicated during the flow period. The recovery period indicates WBS effects followed by a PSS.

436–441 m

During the flow period, a PRF is indicated and during the recovery period, PSS is indicated.

441–446 m

During the flow period, a PRF is indicated and during the recovery period, WBS transitioning to a PSF is indicated.

446–451 m

A PRF is indicated during the first phase of the flow period transitioning to a NFB towards the end of the period. During the recovery period, WBS transitioning to a PSS is indicated.

451–456 m

During the flow period, a PRF is indicated and during the recovery period, a PSS with a transition to a NFB is indicated.

456–461 m

Two tests were performed in this test section due to a closed valve during the first attempt. During the flow period, a PSF is indicated. During the recovery period, WBS transitioning to a PSF is indicated.

461–466 m

The flow period is affected by variations in pressure. A possible PRF is weakly indicated during the flow period. WBS transitioning to a PSF is indicated during the recovery period.

466–471 m

During the flow period, a PRF transitioning to a PSS is indicated and during the recovery period, WBS transitioning to a PSF is indicated.

471–476 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When the injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery period, pressure increased slightly indicating a very tight section still affected by packer expansion.

476–481 m

During the flow period, a PRF is indicated and during the recovery period, a PSF is indicated. A type curve fit of the data from the flow period resulted in a large positive skin factor. Still, the derivative of the reciprocal flow rate clearly indicates a PRF. A possible explanation is that the skin zone in fact is strongly positive (e.g. clogging of debris from drilling). Another explanation may be that the apparently large skin factor does not reflect the skin zone, but rather is an effect of the assumed storativity $(1 \cdot 10^{-6})$ being too large for this section.

481–486 m

A PRF is indicated from c 150 s and throughout the flow period. During the recovery period, a PSF is indicated.

486–491 m

During the flow period, a PSF transitioning to a PRF is indicated and during the recovery period, a PSS is indicated.

491–496 m

For the flow period, a PRF is indicated from c 170 s and throughout the entire period. During the recovery period, a short initial WBS with a transition to a PSF is indicated. Towards the end of recovery period, a NFB is indicated.

496–501 m

During the flow period, a PSF transitioning to a PRF is indicated and during the recovery period, a PSS is indicated.

501–506 m

A PRF is indicated towards the end of the flow period. During the recovery period, WBS transitioning to a PSF is indicated.

506–511 m

During the flow period, a PSF regime is indicated from c 100 s and throughout the period. During the recovery period, only WBS effects are indicated.

511–516 m

A first attempt to perform this test was interrupted due to leakage through a solenoid valve. The leakage was repaired and the second attempt to perform the test was successful. For the flow period, a PSF is indicated from c 50 s and throughout the flow period. For the recovery period, WBS effects are indicated during the initial phase and PSS from c 100 s throughout the period.

516–521 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When the injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

541–546 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When the injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

546–551 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When the injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

551–556 m

The pressure in the test section was increasing during the pressure stabilisation period before start of injection. When the injection was started, the flow rate instantly fell below Q-measl-L and therefore the test time was shortened (in accordance with the Activity Plan AP PF 400-04-08, SKB internal controlling document). Since the flow rate was not detectable, neither steady-state nor transient evaluation of transmissivity was possible. As a result, the judged most representative transmissivity value for this section is Q/s-measl-L. During the recovery, the pressure increased slightly indicating a very tight section still affected by packer expansion.

556–561 m

Due to a drifting gas regulator, the pressure in the test section decreased c 5 kPa during the flow period. Still, for the first c 100 s of the flow period, the pressure was relatively stable. For the flow period, a short PRF regime is indicated from c 20 s to c 60 s followed by a PLF regime from c 150 s and throughout the flow period. For the recovery period, a PRF regime is indicated from c 10 s to c 100 s. After c 300 s a PLF regime is indicated. The results from the flow and recovery periods are consistent. Type curve fits on early data with models assuming PRF results in similar estimates of transmissivity (c $2 \cdot 10^{-9}$ m²/s) and skin factor for both periods. In addition, type curve fitting on later data with models assuming PLF results in similar estimates of transmissivity (c $2 \cdot 10^{-9}$ m²/s) and fictive fracture lengths (c 3-4 m) for both periods.

6.2.6 Flow regimes

As discussed in the Section 6.2.5, several recovery tests were dominated by wellbore storage effects and no pseudo-radial flow period was reached. On the other hand, a certain time interval of pseudo-radial flow could in most cases be identified from the flow period. A summary of the frequency of identified flow regimes on different scales is presented in Table 6-4. Table 6-4 shows all identified flow regimes, i.e. if one flow period indicates a pseudo-radial flow regime transitioning to a pseudo-spherical flow regime, this flow period contributes to one observation of pseudo-radial and one observation of pseudo-spherical in Table 6-4 below. Numbers within brackets denote the number of tests where the actual flow regime is the only one present.

It should be observed that the interpretation of flow regime is tentative only and based on visual inspection of the data curves. The number of tests with a pseudo-linear flow regime may be underestimated for the flow period due to a certain pressure stabilisation time in beginning of test.

Section length (m)	Number of tests	Number of tests with defineable	Flow p	low period Recovery period									
()		Qp	PLF	PRF	PSF	PSS	NFB	WBS	PLF	PRF	PSF	PSS	NFB
5	74	56	5 (1)	51 (40)	13 (7)	1 (1)	5	30	3 (0)	5 (0)	29 (25)	22 (21)	4
20	22	20	1 (0)	18 (9)	5 (3)	1 (0)	1	7	2 (0)	4 (1)	13 (11)	4 (4)	4
100	8	8	-	5 (5)	1 (1)	-	0	5	-	1 (1)	3 (3)	-	1

Table 6-4.	Interpreted t	flow regimes	during the in	njection tests	in KFM02A.

For a minor part of the tests more than one flow regime could be identified, usually with a transition from pseudo-radial to pseudo-spherical flow.

During the recovery periods, pseudo-radial flow was interpreted only in a few tests, mainly depending on a dominating influence of wellbore storage. When the effect of wellbore storage has ceased, the flow regime often transits to pseudo-spherical or pseudo-stationary. This result is more typical for the 5 m sections than for the longer sections.

Another observation is that the number of tests with a pseudo-stationary flow regime was significantly higher for the recovery period of the tests. The reason for this is not clear.

6.3 Comparison of transmissivities on different scales

The judged most representative transmissivity values, T_R , from the injection tests in the tested sections of 100 m, 20 m and 5 m length, respectively, are shown in Figure 6.2. The figure demonstrates a good agreement between results on different scales. A consistency check of the transmissivity values on the different scales was also made by summation of calculated values from smaller scales (20 m and 5 m) and comparing with the estimated values in longer sections (100 m and 20 m).

In Table 6-5, estimated transmissivity values in 100 m and 20 m test sections according to steady-state (T_M) and judged most representative evaluation (T_R) are listed together with summed transmissivities in 20 m and 5 m sections over the corresponding 100 m and 20 m sections, respectively. Besides, the corresponding sum of transmissivities from the difference flow logging in 5 m sections (SUM T_D) is displayed for each section.

In Table 6-5, all judged best representative values of transmissivity (T_R) below the measurement limit (Q_p could not be detected) have been assigned the estimated lower measurement value of Q/s according to Q/s-measl-L in Section 5.4. Furthermore, in Table 6-5, all values of transmissivity from the steady-state evaluation (T_M), below the measurement limit (Q_p not detected) have been assigned the estimated lower measurement value based on a pressure difference of 200 kPa and a flow rate of 1 mL/min ($1.7 \cdot 10^{-8}$ m³/s). The measurement limit values are included in the summed values in Table 6-5. This leads to an overestimation of the summed transmissivities. No 20 m tests were carried out in the interval 321–401 m and below 601 m in KFM02A. No 5 m tests were performed in the intervals 321–401 m, 521–541 m and below 561 m.

In Figure 6-3, judged best representative transmissivity values for 100 m and 20 m sections (T_R -100 m and T_R -20 m, respectively) are plotted versus the sum of judged best representative transmissivity values in 5 m sections in the corresponding intervals (SUM T_{MR} -5 m). The lower measurement limit of T_M for the different section lengths (and an assumed pressure difference of 200 kPa) together with the cumulative measurement limit for the sum of 5 m sections are also shown in the figure.

Figure 6-3 indicates a very good agreement between measured transmissivity values in longer sections and summed transmissivity values in corresponding 5 m sections for the injection tests. The deviation towards the lower limit is caused by the fact that values at the measurement limit (Q/s-measl-L) are accumulated in the summation process which most likely leads to an overestimation of SUM T_R –5 m in this range.

Injection tests with PSS3 in KFM02A

Figure 6-2. Estimated best representative transmissivity values (T_R) for sections of 100 m, 20 m and 5 m length in borehole KFM02A. Estimated transmissivity values for the lower measurement limit from stationary evaluation $(T_M$ -measl-L) (flow rate $1.7 \cdot 10^{-8}$ m³/s and injection pressure 200 kPa) are also shown. The section 902.0–1002.44 m is evaluated as a pressure pulse test after packer expansion in the test section 801–901 m.

Table 6-5. Estimated transmissivity values in 100 m and 20 m test sections together with summed up transmissivity values in 20 m and 5 m sections in the corresponding borehole intervals from the injection tests in KFM02A. In addition, the corresponding sum of transmissivity values from the difference flow logging in 5 m sections is shown.

Bore-hole	Secup	Seclow	L _w ini te	T _M sts	T _R ini tests	SUM T _M (20m) ini_tests	SUM T _R (20m)	SUM T _M (5m) ini_tests	SUM T _R (5m) ini_tests	SUM-T₀(5m) diff-flow log
idcode	(m)	(m)	(m)	(m²/ s)	(m²/s)	(m²/s)	(m²/s)	(m²/s)	(m²/s)	(m²/s)
KFM02A	103.50 ¹⁾	203.50	100	6.04E-04	4.42E-04	5.91E-04	5.88E-04	2.61E-04	3.04E-04	1.21E-04
KFM02A	201.001)	301.00	100	1.24E–05	7.87E-06	1.12E-05	7.51E–06	9.02E-06	1.31E–05	1.21E–05
KFM02A	301.00	401.00	100	3.72E-09	3.72E-09	n.m. 20 m	n.m. 20 m	n.m. 5 m	n.m. 5 m	7.28E-08
KFM02A	401.00	501.00	100	2.80E-06	1.31E-06	2.29E-06	2.86E-06	2.33E-06	2.86E-06	4.13E-06
KFM02A	501.00	601.00	100	2.73E-06	2.73E-06	2.67E-06	1.89E–06	n.m. 5 m	n.m. 5 m	4.80E-06
KFM02A	601.00	701.00	100	1.85E-10	4.73E-10	n.m. 20 m	n.m. 20 m	n.m. 5 m	n.m. 5 m	5.64E-09
KFM02A	701.00	801.00	100	3.08E-10	6.76E-10	n.m. 20 m	n.m. 20 m	n.m. 5 m	n.m. 5 m	5.68E-09
KFM02A	801.00	901.00	100	5.04E-09	3.65E-09	n.m. 20 m	n.m. 20 m	n.m. 5 m	n.m. 5 m	6.57E-09
KFM02A	902.002)	1002.44	100		1.15E–10	n.m. 20 m	n.m. 20 m	n.m. 5 m	n.m. 5 m	5.43E-09
KFM02A	103.501)	123.50	20	4.96E-04	3.43E-04			1.90E-04	2.30E-04	1.14E–04
KFM02A	121.00 ¹⁾	141.00	20	9.22E-05	2.42E-04			6.90E-05	6.90E-05	3.19E-06
KFM02A	141.00	161.00	20	6.88E–09	5.37E-09			2.94E-09	4.13E-09	2.36E-08
KFM02A	161.00	181.00	20	1.97E-06	3.63E-06			1.91E–06	4.22E-06	3.43E-06
KFM02A	181.00	201.00	20	3.40E-07	3.40E-07			2.82E-07	5.39E-07	3.44E-07
KFM02A	201.00	221.00	20	3.46E-07	5.85E-07			3.09E-07	2.04E-07	8.31E-07
KFM02A	221.00	241.00	20	2.08E-07	1.04E-07			1.68E–07	1.13E–07	9.33E08
KFM02A	241.00	261.00	20	1.01E–08	9.36E-09			6.97E-09	5.09E-09	1.13E–09
KFM02A	261.00	281.00	20	2.21E-06	1.45E-06			1.74E–06	2.69E-06	1.31E–06
KFM02A	281.00	301.00	20	8.47E-06	5.36E-06			6.80E-06	1.01E–05	9.89E-06
KFM02A	300.001)	320.00	20	2.73E-09	9.61E-08			1.85E-08	6.42E08	6.83E-08
KFM02A	301.001)	321.00	20	4.00E-08	6.07E-08			1.85E–08	6.42E08	6.83E-08
KFM02A	401.00	421.00	20	8.14E–07	8.51E–07			9.74E-07	9.62E-07	1.24E–06
KFM02A	421.00	441.00	20	1.02E-06	1.39E-06			1.11E–06	1.49E–06	1.89E–06
KFM02A	441.00	461.00	20	1.01E–07	7.35E-08			4.60E-08	3.23E-08	1.66E–07
KFM02A	461.00	481.00	20	1.60E-07	2.85E-07			9.08E-08	2.63E-07	5.24E-07
KFM02A	481.00	501.00	20	1.98E-07	2.61E-07			1.15E–07	1.14E–07	3.11E–07
KFM02A	501.00	521.00	20	2.66E-06	1.88E-06			2.07E-06	2.07E-06	4.79E-06
KFM02A	521.00	541.00	20	8.55E-10	8.33E-10			n.m. 5 m	n.m. 5 m	1.13E–09
KFM02A	541.00	561.00	20	1.77E–09	1.38E-09			3.56E-09	5.18E–09	1.50E–09
KFM02A	561.00	581.00	20	2.43E-10	2.43E-10			n.m. 5 m	n.m. 5 m	1.13E–09
KFM02A	581.00	601.00	20	8.55E-10	8.33E-10			n.m. 5 m	n.m. 5 m	1.14E–09
Sum of T i	n 103.5–30	01.0 m		6.16E–04	4.50E-04	6.02E-04	4.50E-04	6.02E-04	5.96E-04	1.33E-04
Sum of T i	n 401.0–60	01.0 m		5.53E-06	4.04E-06	4.95E-06	4.04E-06	4.96E-06	4.75E-06	8.93E-06

¹⁾ partly overlapping sections

²⁾ pressure recovery after packer expansion in test section 801–901 m, evaluated as a pressure pulse test

n.m.=not measured

bold values are below measurement limit and T_M is calculated under assumption of a minimal flow rate of 1 mL/min and an injection pressure of 200 kPa.

Figure 6-3. Judged most representative transmissivity values (T_R) for 100 m and 20 m sections versus the sum of most representative transmissivity values (T_R) in 5 m sections in the corresponding borehole intervals from the injection tests in KFM02A.

6.4 Comparison with results from difference flow logging

In Figure 6-4, a direct comparison is made of calculated steady-state and judged best transmissivity values from the injection tests in 5 m sections with the calculated transmissivity values in the corresponding 5 m sections from the previously performed sequential difference flow logging in KFM02A /1/. The difference flow logging was performed at a drawdown of c 6 m in the borehole (and at a pumping rate of c 75–80 L/min). The presented measurement limit for the difference flow logging is a theoretical value; the practical lower measurement limit has earlier been interpreted as at least 10 times higher (varying along the borehole) /1/.

Figure 6-4 indicates a good consistency between the estimated transmissivity values from the injection tests and difference flow logging, respectively. It should, however, be remembered that the two methods differ regarding assumptions and uncertainties. Potential uncertainties for difference flow logging results are discussed in /9/ and for injection tests in /10/.

In Figure 6-5, a comparison is made of estimated steady-state transmissivity values from the injection tests in 100 m and 20 m test sections with summed transmissivity values for 5 m sections from the difference flow logging (SUM $T_D(5 \text{ m})$) in the corresponding intervals in borehole KFM02A. The latter sums are shown in Table 6-5. Figure 6-5 may be compared with Figure 6-3 for the injection tests solely.

Figure 6-5 shows that the estimated transmissivity values from the injection tests in 100 m and 20 m sections are distributed over a wider range than the sum of transmissivity values from the difference flow logging. This is partly a result of the lower measurement limit being included in the sum for the difference flow logging. These results are consistent with the results in Figure 6-4.

Figure 6-4. Comparison of estimated steady-state (T_M) and judged most representative (T_R) transmissivity values from the injection tests in 5 m sections with estimated transmissivity values in the corresponding 5 m sections from the previous difference flow logging (T_D) in KFM02A.

Figure 6-5. Comparison of estimated steady-state transmissivity values from injection tests in 20 m and 100 m sections with summed transmissivity values in 5 m sections in the corresponding borehole intervals from difference flow logging in KFM02A.

Table 6-6. Basic statistical parameters for steady-state hydraulic conductivity (K_M) and lower measurement limit for specific capacity (Q/s-measI-L) in different measurement scales in borehole KFM02A. L_w=section length, m=arithmetic mean, s=standard deviation.

Borehole	Parameter	Unit	L _w =100 m	L _w =20 m	L _w =20 m	L _w =5 m	L _w =5 m
KFM02A	Measured borehole interval	m	103.5–901 ²⁾	103.5–321 ³⁾	401–601	103.5–321 4)	401–601
	Number of tests	-	8	12	10	46	28
	N:o of tests below L.M.L. ¹⁾	-	0	0	2	11	7
	m (Log ₁₀ (K _M))	Log₁₀(m/s)	-8.90	-7.59	-8.37	-7.91	-8.37
	s (Log ₁₀ (K _M))	-	2.40	1.63	1.41	1.71	0.98
	m (Log ₁₀ (Q/s-measl-L/L _w))	Log₁₀(m/s)	-11.01	-10.26	-10.40	-9.78	-9.77
	s (Log ₁₀ (Q/s-measl-L/L _w))	Log ₁₀ (m/s)	0.43	0.34	0.02	0.13	0.10

1) Number of tests where Qp could not be defined

2) Sections 103.50-203.50 and 201.00-301.00 partly overlapping

3) Sections 103.50-123.50, 121.00-141.00 and 300.00-320.00, 301.00-321.00 partly overlapping

4) Sections 103.50–108.50, 106.00–111.00 and 256.00–261.00, 259.50–264.50 and 269.50–274.50, 271.00–276.00 partly overlapping

6.5 Basic statistics of hydraulic conductivity distributions

Some basic statistical parameters were derived for the calculated steady-state hydraulic conductivity distributions in different scales (100 m, 20 m and 5 m) from the injection tests in borehole KFM02A. In addition, the same basic statistical parameters were derived for the corresponding sets of the lower measurement limit for specific capacity (Q/s-measl-L). In the statistical analysis, the logarithm (base 10) of the hydraulic conductivity values (K_M) and lower measurement limit for specific capacity (Q/s-measl-L) were used. The hydraulic conductivity is derived from dividing the hydraulic transmissivity by section length. Selected results are shown in Table 6-6. Results from tests where Q_p was below the measurement limit were not included in the statistical analyses of K_M . It should be observed that the statistics for the different section lengths is based on different borehole intervals.

6.6 Comparison of results from different hydraulic tests in KFM02A

At the bottom of Table 6-5, the sums of calculated transmissivity values are presented from different methods of analysis; from the injection tests and difference flow logging, respectively, in the intervals 103.5–301.0 and 401.0–601.0 m. In Table 6-7, a comparison of estimated transmissivity values from different hydraulic tests in KFM02A is presented.

Table 6-7 shows that the results of the different hydraulic test methods performed in borehole KFM02A are consistent. The total transmissivity of the borehole is dominated by the interval 103.50–141.00 m.

Hydraulic test method	Sum of T (m ² /s)	Borehole interva	al and length of in 401 00–601 00	terval (m) 103 50–901 00	101 00-996 63
Injection tests	∑T _м (100 m)	6.16.10-⁴	5.53.10-	6.22.10-4	
	∑T _R (100 m)	4.50.10-4	4.04·10 ⁻⁶	4.54·10 ⁻⁴	
	∑T _м (20 m)	6.02·10 ⁻⁴	4.95·10 ⁻⁶	n.m.	
	∑T _R (20 m)	5.96.10-4	4.75·10 ⁻⁶	n.m.	
	∑T _м (5 m)	2.70.10-4	4.40.10-6	n.m.	
	∑T _R (5 m)	3.17.10-4	4.93·10 ⁻⁶	n.m.	
Difference flow logging	∑T _D (5 m)				1.42.10-₄
	$\sum T_{Df}$ (flow anoma	alies)			1.32·10 ^{-4 1)}
Pumping test during difference flow logging	T _M				3.44·10 ^{-4 2)}

Table 6-7. Comparison of calculated transmissivity values from different hydraulic tests in borehole KFM02A (n.m. = not measured).

1) From overlapping difference flow logging in the intervals 100.00-566.21 m and 886.49-900.62 m

2) From approximate drawdown 6 m and flow rate 75 L/min

7 References

- /1/ Rouhainen P, Pöllänen J, 2003. Forsmark site investigation. Difference flow logging of borehole KFM02A.SKB P-03-XX. Svensk Kärnbränslehantering AB. (In Prep.)
- /2/ Hurst W, Clark J D, Brauer E B, 1969. The skin effect in producing wells. J. Pet. Tech, Nov.1969, pp1483–1489.
- /3/ Dougherty D E, Babu D K, 1984. Flow to a partially penetrating well in a doubleporosity reservoir. Water Resour. Res, 20 (8), 1116–1122.
- /4/ Gringarten A C, Witherspoon P A, 1972. A method of analyzing pump test data from fractured aquifers. Int. Soc. Rock Mechanics and Int. Assoc. Eng. Geol, Proc. Symp. Rock Mechanics, Stuttgart, vol. 3-B, pp 1–9.
- **/5/** Ozkan E, Raghavan R, 1991a. New solutions for well test analysis; Part 1, Analytical considerations. SPE Formation Evaluation vol 6, no 3, pp 359–368.
- /6/ Ozkan E, Raghavan R, 1991b. New solutions for well test analysis; Part 2, Computational considerations and applications. SPE Formation Evaluation vol 6, no 3, pp 369–378.
- /7/ Gringarten A C, Ramey H J, 1974. Unsteady state pressure distributions created by a well with a single horizontal fracture, partial penetration or restricted entry. Soc. Petrol. Engrs. J, pp 413–426.
- /8/ Almén K-E, Andersson J-E, Carlsson L, Hansson K, Larsson N-Å, 1986. Hydraulic testing in crystalline rock. A comparative study of single-hole test methods. Technical Report 86-27, Svensk Kärnbränslehantering AB.
- /9/ Ludvigson J-E, Hansson K, Rouhiainen P, 2002. Methodology study of Posiva difference flow meter in borehole KLX02 at Laxemar. SKB R-01-52. Svensk Kärnbränslehantering AB.
- /10/ Andersson P, Andersson J-E, Gustafsson E, Nordqvist R, Voss C, 1993. Site characterization in fractured crystalline rock – A critical review of geohydrologic measurement methods. Site-94. SKI Technical report 93:23. Statens Kärnkraftsinspektion.
- /11/ Bredehoeft J D, Papadopulos S S, 1980. A method for determining the hydraulic properties of tight formations. Water Resources Research, vol. 16, no 1, pp 233–238.

Appendix 1

File description table

Bh id	Testse	ction	Test type	Test no	Test start	Test stop	Data files of raw and primary data	Parameters in file	Comments
					Date, time	Date, time			
idcode	secup (m)	seclow (m)	(1-6) ¹⁾		YYYYMMDD hh:mm	YYYYMMDD hh:mm	Borehole id_secup_date and time of test start		
KFM02A	103.5	203.5	3	1	20040305 18:31	20040305 21:05	KFM02A 0103.50 200403051831.ht2	P.Q.Te	
KFM02A	103.5	203.5	3	2	20040305 22:01	20040305 23:52	KFM02A_0103.50_200403052201.ht2	P,Q,Te	
KFM02A	201	301	3	1	20040308 07:04	20040308 08:44	KFM02A_0201.00_200403080704.ht2	P,Q,Te	
KFM02A	201	301	3	2	20040308 08:53	20040308 10:44	KFM02A_0201.00_200403080853.ht2	P,Q,Te	
KFM02A	301	401	3	1	20040308 11:50	20040308 14:46	KFM02A_0301.00_200403081150.ht2	P,Q,Te	
KFM02A	401	501	3	1	20040308 17:01	20040308 18:57	KFM02A_0401.00_200403081701.ht2	P,Q,Te	
KFM02A	501	601	3	1	20040308 20:48	20040308 23:26	KFM02A_0501.00_200403082048.ht2	P,Q,Te	
KFM02A	501	601	3	2	20040308 22:06	20040308 23:26	KFM02A_0501.00_200403082206.ht2	P,Q,Te	
KFM02A	601	701	3	1	20040309 07:29	20040309 09:38	KFM02A_0601.00_200403090729.ht2	P,Q,Te	
KFM02A	701	801	3	1	20040309 11:39	20040309 14:55	KFM02A_0701.00_200403091139.ht2	P,Q,Te	
KFM02A	801	901	3	1	20040309 18:54	20040309 20:17	KFM02A_0801.00_200403091854.ht2	P,Q,Te	
KFM02A	801	901	3	2	20040309 20:22	20040309 23:07	KFM02A_0801.00_200403092022.ht2	P,Q,Te	
KFM02A	103.5	123.5	3	1	20040315 10:27	20040315 12:46	KFM02A 0103.50 200403151027.ht2	P.Q.Te	
KFM02A	103.5	123.5	3	2	20040315 12:49	20040315 13:57	KFM02A 0103.50 200403151249.ht2	P,Q,Te	
KFM02A	103.5	123.5	3	3	20040318 14:48	20040318 16:09	KFM02A_0103.50_200403181448.ht2	P,Q,Te	
KFM02A	121	141	3	1	20040315 14:41	20040315 18:10	KFM02A_0121.00_200403151441.ht2	P,Q,Te	
KFM02A	141	161	3	1	20040315 19:23	20040315 21:45	KFM02A_0141.00_200403151923.ht2	P,Q,Te	
KFM02A	161	181	3	1	20040315 22:08	20040315 23:06	KFM02A_0161.00_200403152208.ht2	P,Q,Te	
KFM02A	161	181	3	2	20040315 23:23	20040316 00:30	KFM02A_0161.00_200403152323.ht2	P,Q,Te	
KFM02A	181	201	3	1	20040316 06:51	20040316 08:13	KFM02A_0181.00_200403160651.ht2	P,Q,Te	
KFM02A	201	221	3	1	20040316 08:45	20040316 10:04	KFM02A_0201.00_200403160845.ht2	P,Q,Te	
KFM02A	221	241	3	1	20040316 10:27	20040316 11:43	KFM02A_0221.00_200403161027.ht2	P,Q,Te	
KFM02A	241	261	3	1	20040316 12:30	20040316 13:47	KFM02A_0241.00_200403161230.ht2	P,Q,Te	
KFM02A	261	281	3	1	20040316 14:04	20040316 15:19	KFM02A_0261.00_200403161404.ht2	P,Q,Te	
KFM02A	281	301	3	1	20040316 15:55	20040316 17:24	KFM02A_0281.00_200403161555.ht2	P,Q,Te	
KFM02A	281	301	3	2	20040318 08:13	20040318 09:19	KFM02A_0281.00_200403180813.ht2	P,Q,Te	
KFM02A	281	301	3	3	20040318 11:34	20040318 12:24	KFM02A_0281.00_200403181134.ht2	P,Q,Te	
KFM02A	300	320	3	1	20040316 19:37	20040316 21:15	KFM02A_0300.00_200403161937.ht2	P,Q,Te	
KFM02A	301	321	3	1	20040316 17:50	20040316 19:16	KFM02A_0301.00_200403161750.ht2	P,Q,Te	
KFM02A	401	421	3	1	20040316 22:41	20040317 00:09	KFM02A_0401.00_200403162241.ht2	P,Q,Te	

Bh id	Testsec	tion	Test type	Test no	Test start	Test stop	Data files of raw and primary data	Parameters in file	Comments
					Date, time	Date, time			
idcode	secup	seclow	(1-6) ¹⁾		YYYYMMDD	YYYYMMDD	Borehole id_secup_date and time of test		
KEM02A	421	441	3	1	20040317 06.18	20040317 07:35	KEM020 0421 00 200403170618 bt2	ΡΟΤο	
	421 1/1	461	3	1	20040317 00.10	20040317 01:35	KEM02A_0421.00_200403170811.ht2		
	461	481	3	1	20040317 00.11	20040317 09.20	KEM02A_0441.00_200403170947.ht2		
KFM02A	481	501	3	1	20040317 00:47	20040317 13:13	KFM02A_0481_00_200403171115_ht2	P Q Te	
KFM02A	501	521	3	1	20040317 14:00	20040317 15:44	KEM02A_0501_00_200403171400_ht2	P Q Te	
KFM02A	521	541	3	1	20040317 16:22	20040317 17:52	KEM02A_0521_00_200403171622_bt2	P Q Te	
KFM02A	541	561	3	1	20040317 18:21	20040317 19:44	KFM02A_0541_00_200403171821_ht2	P Q Te	
KFM02A	561	581	3	1	20040317 20.11	20040317 21.47	KFM02A_0561_00_200403172011_ht2	P Q Te	
KFM02A	581	301	3	1	20040317 22:18	20040317 23:34	KFM02A_0581.00_200403172218.ht2	P,Q,Te	
KFM02A	103.5	108.5	3	1	20040319 07:54	20040319 09:26	KFM02A_0103.50_200403190754.ht2	P,Q,Te	
KFM02A	106	111	3	1	20040319 09:38	20040319 10:57	KFM02A_0106.00_200403190938.ht2	P,Q,Te	
KFM02A	111	116	3	1	20040319 11:09	20040319 14:15	KFM02A_0111.00_200403191109.ht2	P,Q,Te	
KFM02A	116	121	3	1	20040319 14:35	20040319 16:26	KFM02A_0116.00_200403191435.ht2	P,Q,Te	
KFM02A	121	126	3	1	20040319 16:37	20040319 18:03	KFM02A_0121.00_200403191637.ht2	P,Q,Te	
KFM02A	126	131	3	1	20040319 18:21	20040319 19:49	KFM02A_0126.00_200403191821.ht2	P,Q,Te	
KFM02A	131	136	3	1	20040319 20:03	20040319 21:34	KFM02A_0131.00_200403192003.ht2	P,Q,Te	
KFM02A	136	141	3	1	20040319 21:44	20040319 23:08	KFM02A_0136.00_200403192144.ht2	P,Q,Te	
KFM02A	141	146	3	1	20040319 23:21	20040320 08:32	KFM02A_0141.00_200403192321.ht2	P,Q,Te	
KFM02A	141	146	3	2	20040320 08:41	20040320 09:51	KFM02A_0141.00_200403200841.ht2	P,Q,Te	
KFM02A	141	146	3	3	20040320 10:36	20040320 11:33	KFM02A_0141.00_200403201036.ht2	P,Q,Te	
KFM02A	146	151	3	1	20040320 13:03	20040320 14:04	KFM02A_0146.00_200403201303.ht2	P,Q,Te	
KFM02A	151	156	3	1	20040320 14:16	20040320 15:14	KFM02A_0151.00_200403201416.ht2	P,Q,Te	
KFM02A	156	161	3	1	20040320 17:19	20040320 18:08	KFM02A_0156.00_200403201719.ht2	P,Q,Te	
KFM02A	161	166	3	1	20040321 08:36	20040321 09:59	KFM02A_0161.00_200403210836.ht2	P,Q,Te	
KFM02A	166	171	3	1	20040321 10:21	20040321 11:40	_KFM02A_0166.00_200403211021.ht2	P,Q,Te	
KFM02A	171	176	3	1	20040321 11:55	20040321 12:56	KFM02A_0171.00_200403211155.ht2	P,Q,Te	
KFM02A	171	176	3	2	20040321 12:59	20040321 13:59	KFM02A_0171.00_200403211259.ht2	P,Q,Te	
KFM02A	176	181	3	1	20040321 14:13	20040321 15:31	KFM02A_0176.00_200403211413.ht2	P,Q,Te	
KFM02A	181	186	3	1	20040321 15:39	20040321 16:53	KFM02A_0181.00_200403211539.ht2	P,Q,Te	
KFM02A	186	191	3	1	20040322 06:30	20040322 07:58	KFM02A_0186.00_200403220630.ht2	P,Q,Te	
KFM02A	191	196	3	1	20040322 08:15	20040322 09:38	KFM02A_0191.00_200403220815.ht2	P,Q,Te	
KFM02A	196	201	3	1	20040322 09:57	20040322 11:22	KFM02A_0196.00_200403220957.ht2	P,Q,Te	
KFM02A	201	206	3	1	20040322 12:41	20040322 13:49	KFM02A_0201.00_200403221241.ht2	P,Q,Te	
KFM02A	206	211	3	1	20040322 14:03	20040322 15:03	KFM02A_0206.00_200403221403.ht2	P,Q,Te	

Bh id	Testsec	tion	Test type	Test no	Test start	Test stop	Data files of raw and primary data	Parameters in file	Comments
					Date, time	Date, time			
	secup	seclow	1)		YYYYMMDD	YYYYMMDD	Borehole id_secup_date and time of test		
idcode	(m)	(m)	(1-6)		hh:mm	hh:mm	start		
KFM02A	211	216	3	1	20040322 15:34	20040322 16:33	KFM02A_0211.00_200403221534.ht2	P,Q,Te	
KFM02A	216	221	3	1	20040322 16:55	20040322 18:11	KFM02A_0216.00_200403221655.ht2	P,Q,Te	
KFM02A	221	226	3	1	20040322 18:23	20040322 19:14	KFM02A_0221.00_200403221823.ht2	P,Q,Te	
KFM02A	225	230	3	1	20040322 19:23	20040322 20:52	KFM02A_0225.00_200403221923.ht2	P,Q,Te	
KFM02A	226	231	3	1	20040322 21:01	20040322 22:17	KFM02A_0226.00_200403222101.ht2	P,Q,Te	
KFM02A	231	236	3	1	20040322 22:26	20040322 23:17	KFM02A_0231.00_200403222226.ht2	P,Q,Te	
KFM02A	236	241	3	1	20040322 23:28	20040323 00:45	KFM02A_0236.00_200403222328.ht2	P,Q,Te	
KFM02A	241	246	3	1	20040323 06:26	20040323 07:55	KFM02A_0241.00_200403230626.ht2	P,Q,Te	
KFM02A	246	251	3	1	20040323 08:13	20040323 09:43	KFM02A_0246.00_200403230813.ht2	P,Q,Te	
KFM02A	251	256	3	1	20040323 09:59	20040323 11:38	KFM02A_0251.00_200403230959.ht2	P,Q,Te	
KFM02A	256	261	3	1	20040323 12:31	20040323 14:04	KFM02A_0256.00_200403231231.ht2	P,Q,Te	
KFM02A	259.5	264.5	3	1	20040328 13:43	20040328 15:00	KFM02A_0259.50_200403281343.ht2	P,Q,Te	
KFM02A	264.5	269.5	3	1	20040328 11:02	20040328 12:18	KFM02A_0264.50_200403281102.ht2	P,Q,Te	
KFM02A	269.5	274.5	3	1	20040328 09:39	20040328 10:53	KFM02A_0269.50_200403280939.ht2	P,Q,Te	
KFM02A	271	276	3	1	20040328 08:15	20040328 09:30	KFM02A_0271.00_200403280815.ht2	P,Q,Te	
KFM02A	276	281	3	1	20040324 06:55	20040324 08:31	KFM02A_0276.00_200403240655.ht2	P,Q,Te	
KFM02A	281	286	3	1	20040324 08:44	20040324 10:12	KFM02A_0281.00_200403240844.ht2	P,Q,Te	
KFM02A	286	291	3	1	20040324 10:28	20040324 11:56	KFM02A_0286.00_200403241028.ht2	P,Q,Te	
KFM02A	291	296	3	1	20040324 12:56	20040324 14:16	KFM02A_0291.00_200403241256.ht2	P,Q,Te	
KFM02A	296	301	3	1	20040324 14:28	20040322 15:46	KFM02A_0296.00_200403241428.ht2	P,Q,Te	
KFM02A	301	306	3	1	20040324 15:59	20040324 17:16	KFM02A_0301.00_200403241559.ht2	P,Q,Te	
KFM02A	306	311	3	1	20040324 17:31	20040324 18:48	KFM02A_0306.00_200403241731.ht2	P,Q,Te	
KFM02A	311	316	3	1	20040324 18:58	20040324 20:34	KFM02A_0311.00_200403241858.ht2	P,Q,Te	
KFM02A	316	321	3	1	20040324 20:41	20040324 21:20	KFM02A_0316.00_200403242041.ht2	P,Q,Te	
KFM02A	401	406	3	1	20040324 22:12	20040324 23:01	KFM02A_0401.00_200403242212.ht2	P,Q,Te	
KFM02A	406	411	3	1	20040324 23:09	20040324 23:52	KFM02A 0406.00 200403242309.ht2	P,Q,Te	
KFM02A	411	416	3	1	20040325 07:35	20040325 08:25	KFM02A_0411.00_200403250735.ht2	P,Q,Te	
KFM02A	416	421	3	1	20040325 08:43	20040325 10:04	KFM02A_0416.00_200403250843.ht2	P,Q,Te	
KFM02A	421	426	3	1	20040325 10:23	20040325 11:43	KFM02A_0421.00_200403251023.ht2	P,Q,Te	
KFM02A	426	431	3	1	20040325 13:03	20040325 14:21	KFM02A 0426.00 200403251303.ht2	P,Q,Te	
KFM02A	431	436	3	1	20040325 14:33	20040325 15:50	KFM02A_0431.00_200403251433.ht2	P,Q,Te	
KFM02A	436	441	3	1	20040325 15:59	20040325 17:13	KFM02A_0436.00_200403251559.ht2	P,Q,Te	
KFM02A	441	446	3	1	20040325 17:25	20040325 18:42	KFM02A_0441.00_200403251725.ht2	P,Q,Te	
KFM02A	446	451	3	1	20040325 18:54	20040325 20:11	KFM02A_0446.00_200403251854.ht2	P,Q,Te	
KFM02A	451	456	3	1	20040325 20:22	20040325 21:37	KFM02A_0451.00_200403252022.ht2	P,Q,Te	

Bh id	Testsec	tion	Test type	Test no	Test start	Test stop	Data files of raw and primary data	Parameters in file	Comments
					Date, time	Date, time			
	secup	seclow	(1 0) 1)		YYYYMMDD	YYYYMMDD	Borehole id_secup_date and time of test		
Idcode	(m)	(m)	(1-6)		nn:mm	nn:mm	start		
KFM02A	456	461	3	1	20040325 21:56	20040325 22:34	KFM02A_0456.00_200403252156.ht2	P,Q,Te	
KFM02A	456	461	3	2	20040325 22:43	20040326 00:02	KFM02A_0456.00_200403252243.ht2	P,Q,Te	
KFM02A	461	466	3	1	20040326 06:46	20040326 08:07	KFM02A_0461.00_200403260646.ht2	P,Q,Te	
KFM02A	466	471	3	1	20040326 08:23	20040326 09:42	KFM02A_0466.00_200403260823.ht2	P,Q,Te	
KFM02A	471	476	3	1	20040326 10:01	20040326 10:46	KFM02A_0471.00_200403261001.ht2	P,Q,Te	
KFM02A	476	481	3	1	20040326 11:04	20040326 12:26	KFM02A_0476.00_200403261104.ht2	P,Q,Te	
KFM02A	481	486	3	1	20040326 13:41	20040326 14:59	KFM02A_0481.00_200403261341.ht2	P,Q,Te	
KFM02A	486	491	3	1	20040326 15:37	20040326 16:54	KFM02A_0486.00_200403261537.ht2	P,Q,Te	
KFM02A	491	496	3	1	20040326 17:04	20040326 18:19	KFM02A_0491.00_200403261704.ht2	P,Q,Te	
KFM02A	496	501	3	1	20040326 18:30	20040326 19:48	KFM02A_0496.00_200403261830.ht2	P,Q,Te	
KFM02A	501	506	3	1	20040326 20:01	20040326 21:19	KFM02A_0501.00_200403262001.ht2	P,Q,Te	
KFM02A	506	511	3	1	20040326 21:33	20040326 22:50	KFM02A_0506.00_200403262133.ht2	P,Q,Te	
KFM02A	511	516	3	1	20040326 23:47	20040327 08:48	KFM02A_0511.00_200403262347.ht2	P,Q,Te	
KFM02A	511	516	3	2	20040327 09:44	20040327 10:37	KFM02A_0511.00_200403270944.ht2	P,Q,Te	
KFM02A	516	521	3	1	20040327 10:49	20040327 11:43	KFM02A_0516.00_200403271049.ht2	P,Q,Te	
KFM02A	541	546	3	1	20040327 12:44	20040327 13:35	KFM02A_0541.00_200403271244.ht2	P,Q,Te	
KFM02A	546	551	3	1	20040327 13:48	20040327 14:33	KFM02A_0546.00_200403271348.ht2	P,Q,Te	
KFM02A	551	556	3	1	20040327 14:40	20040327 15:25	KFM02A_0551.00_200403271440.ht2	P,Q,Te	
KFM02A	556	561	3	1	20040327 15:32	20040327 16:51	KFM02A 0556.00 200403271532.ht2	P,Q,Te	

¹⁾ Test type 3 equals to injection test

Appendix 2.1

General test data

Borehole:KFM02ATesttype:CHir (Constant Head injection and recovery)Field crew:K. Gokall-Norman, M. Holmqvist, C. Hjerne, J. Jönsson, S. Jönsson, J. Källgården and T. SvenssonGeneral comment:

Test section	Test section	Test start	Start of flow period	Stop of flow period	Test stop	Total flow time	Total recovery time
secup	seclow					t _p	t _F
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm	(min)	(min)
103.50	203.50	20040305 22:01	20040305 22:49:53	20040305 23:20:10	20040305 23:52	30	30
201.00	301.00	20040308 08:53	20040308 09:41:48	20040308 10:12:06	20040308 10:44	30	30
301.00	401.00	20040308 11:50	20040308 13:44:05	20040308 14:14:32	20040308 14:46	30	30
401.00	501.00	20040308 17:01	20040308 17:55:28	20040308 18:25:43	20040308 18:57	30	30
501.00	601.00	20040308 22:06	20040308 22:24:06	20040308 22:54:30	20040308 23:26	30	30
601.00	701.00	20040309 07:29	20040309 08:36:04	20040309 09:06:39	20040309 09:38	31	30
701.00	801.00	20040309 11:39	20040309 13:52:30	20040309 14:22:49	20040309 14:55	30	30
801.00	901.00	20040309 20:22	20040309 22:04:57	20040309 22:35:35	20040309 23:07	31	30
103.50	123.50	20040318 14:48	20040318 15:26:27	20040318 15:46:42	20040318 16:09	20	20
121.00	141.00	20040315 14:41	20040315 17:07:26	20040315 17:37:43	20040315 18:10	30	30
141.00	161.00	20040315 19:23	20040315 20:43:03	20040315 21:13:25	20040315 21:45	30	30
161.00	181.00	20040315 23:23	20040315 23:27:42	20040315 23:58:00	20040316 00:30	30	30
181.00	201.00	20040316 06:51	20040316 07:31:06	20040316 07:51:25	20040316 08:13	20	20
201.00	221.00	20040316 08:45	20040316 09:21:27	20040316 09:41:46	20040316 10:04	20	20
221.00	241.00	20040316 10:27	20040316 11:00:46	20040316 11:21:06	20040316 11:43	20	20
241.00	261.00	20040316 12:30	20040316 13:05:17	20040316 13:25:38	20040316 13:47	20	20
261.00	281.00	20040316 14:04	20040316 14:37:08	20040316 14:57:27	20040316 15:19	20	20
281.00	301.00	20040318 11:34	20040318 11:42:10	20040318 12:02:26	20040318 12:24	20	20
300.00	320.00	20040316 19:37	20040316 20:32:33	20040316 20:53:01	20040316 21:15	20	20
301.00	321.00	20040316 17:50	20040316 18:33:52	20040316 18:54:14	20040316 19:16	20	20
401.00	421.00	20040316 22:41	20040316 23:26:55	20040316 23:47:14	20040317 00:09	20	20
421.00	441.00	20040317 06:18	20040317 06:53:20	20040317 07:13:39	20040317 07:35	20	20
441.00	461.00	20040317 08:11	20040317 08:43:59	20040317 09:04:18	20040317 09:26	20	20
461.00	481.00	20040317 09:47	20040317 10:19:51	20040317 10:40:10	20040317 11:02	20	20
481.00	501.00	20040317 11:15	20040317 12:31:10	20040317 12:51:28	20040317 13:13	20	20
501.00	521.00	20040317 14:00	20040317 15:01:40	20040317 15:21:57	20040317 15:44	20	20
521.00	541.00	20040317 16:22	20040317 17:10:02	20040317 17:30:50	20040317 17:52	21	20
541.00	561.00	20040317 18:21	20040317 19:01:37	20040317 19:22:02	20040317 19:44	20	20
561.00	581.00	20040317 20:11	20040417 21:05:06	20040417 21:25:28	20040317 21:47	20	20
581.00	601.00	20040317 22:18	20040317 22:52:07	20040317 23:12:21	20040317 23:34	20	20
103.50	108.50	20040319 07:54	20040319 08:43:40	20040319 09:04:01	20040319 09:26	20	20
106.00	111.00	20040319 09:38	20040319 10:15:07	20040319 10:35:22	20040319 10:57	20	20
111.00	116.00	20040319 11:09	20040319 13:32:50	20040319 13:53:04	20040319 14:15	20	20
116.00	121.00	20040319 14:35	20040319 15:44:03	20040319 16:04:17	20040319 16:26	20	20
121.00	126.00	20040319 16:37	20040319 17:20:35	20040319 17:40:49	20040319 18:03	20	20

Test section	Test section	Test start	Start of flow period	Stop of flow period	Test stop	Total flow time	Total recovery time
secup	seclow					t _p	t _F
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm	(min)	(min)
126.00	131.00	20040319 18:21	20040319 19:06:52	20040319 19:27:11	20040319 19:49	20	20
131.00	136.00	20040319 20:03	20040319 20:51:28	20040319 21:11:59	20040319 21:34	21	20
136.00	141.00	20040319 21:44	20040319 22:25:49	20040319 22:46:08	20040319 23:08	20	20
141.00	146.00	20040320 10:36	20040320 11:22:26	20040320 11:25:55	20040320 11:33	3	5
146.00	151.00	20040320 13:03	20040320 13:51:51	20040320 13:56:00	20040320 14:04	4	6
151.00	156.00	20040320 14:16	20040320 15:02:05	20040320 15:05:08	20040320 15:14	3	7
156.00	161.00	20040320 17:19	20040321 17:26:04	20040321 17:46:23	20040320 18:08	20	20
161.00	166.00	20040321 08:36	20040321 09:17:16	20040321 09:37:32	20040321 09:59	20	20
166.00	171.00	20040321 10:21	20040321 10:57:39	20040321 11:17:55	20040321 11:40	20	20
171.00	176.00	20040321 12:59	20040321 13:16:37	20040321 13:36:55	20040321 13:59	20	20
176.00	181.00	20040321 14:13	20040321 14:48:42	20040321 15:08:58	20040321 15:31	20	20
181.00	186.00	20040321 15:39	20040321 16:11:16	20040321 16:31:33	20040321 16:53	20	20
186.00	191.00	20040322 06:30	20040322 07:15:53	20040322 07:36:38	20040322 07:58	21	20
191.00	196.00	20040322 08:15	20040322 08:55:47	20040322 09:17:18	20040322 09:38	22	19
196.00	201.00	20040322 09:57	20040322 10:40:15	20040322 11:01:01	20040322 11:22	21	20
201.00	206.00	20040322 12:41	20040322 13:28:55	20040322 13:35:42	20040322 13:49	7	11
206.00	211.00	20040322 14:03	20040322 14:46:28	20040322 14:53:54	20040322 15:03	7	7
211.00	216.00	20040322 15:34	20040322 16:23:36	20040322 16:25:34	20040322 16:33	2	6
216.00	221.00	20040322 16:55	20040322 17:28:46	20040322 17:49:03	20040322 18:11	20	20
221.00	226.00	20040322 18:23	20040322 19:03:36	20040322 19:06:14	20040322 19:14	3	6
225.00	230.00	20040322 19:23	20040322 20:09:25	20040322 20:29:43	20040322 20:52	20	20
226.00	231.00	20040322 21:01	20040322 21:34:29	20040322 21:54:46	20040322 22:17	20	20
231.00	236.00	20040322 22:26	20040322 23:04:46	20040322 23:09:52	20040322 23:17	5	5
236.00	241.00	20040322 23:28	20040323 00:45:55	20040323 01:06:01	20040323 00:45	20	20
241.00	246.00	20040323 06:26	20040323 07:13:10	20040323 07:33:22	20040323 07:55	20	20
246.00	251.00	20040323 08:13	20040323 09:00:31	20040323 09:20:53	20040323 09:43	20	20
251.00	256.00	20040323 09:59	20040323 10:55:35	20040323 11.15.56	20040323 11.38	20	20
256.00	261.00	20040323 12:31	20040323 13:21:33	20040323 13:41:55	20040323 14:04	20	20
259 50	264 50	20040328 13.43	20040328 14.17.48	20040328 14:38:18	20040328 15:00	21	20
264 50	269.50	20040328 11.02	20040328 11:35:39	20040328 11:55:58	20040328 12.18	20	20
269.50	274 50	20040328 09:39	20040328 10:11:16	20040328 10:31:37	20040328 10:53	20	20
271.00	276.00	20040328 08:15	20040328 08:48:13	20040328 09:08:31	20040328 09:30	20	20
276.00	281.00	20040324 06:55	20040324 07:48:37	20040324 08:08:56	20040324 08:31	20	20
281.00	286.00	20040324 08:44	20040324 09:29:55	20040324 09:50:00	20040324 10:12	20	20
286.00	200.00	20040324 10:28	20040324 11:13:53	20040324 11:34:08	20040324 10:12	20	20
200.00	296.00	20040324 12:56	20040324 13:33:35	20040324 13:53:52	20040324 11:50	20	20
296.00	301.00	20040324 12:30	20040322 15:03:30	20040322 15:23:40	20040322 14.10	20	20
200.00	306.00	20070324 14.20	20070322 13.03.29	20040324 10.20.49	20040322 13.40	20	20
306.00	311.00	200-0324 13.39	20070324 10.33.43	20070324 10.04.05	20070324 17.10	20	20
311 00	316.00	20040324 17.31	20040324 10.03.32	20040324 10.23.30	20040324 10.40	20	20
316.00	321 00	20040324 10.08	20040324 19.32.03	20040324 20.12.21	20040324 20.34	20 1	20
401.00	JZ 1.00	20040324 20.41	20040324 21.14.00	20040324 21.10.21	20040324 21.20	י ס	2
406.00	400.00	20040324 22:12	20040324 22:51:07	20040324 22:53:13	20040324 23:01	2	U C
400.00	411.00	20040324 23:09	20040324 23:41:45	20040324 23:44:39	20040324 23:52	3	o

Test section secup	Test section seclow	Test start	Start of flow period	Stop of flow period	Test stop	Total flow time t _p	Total recovery time t _F
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm:ss	YYYYMMDD hh:mm	(min)	(min)
411.00	416.00	20040325 07:35	20040325 07:43:22	20040325 08:03:45	20040325 08:25	20	20
416.00	421.00	20040325 08:43	20040325 09:22:13	20040325 09:42:34	20040325 10:04	20	20
421.00	426.00	20040325 10:23	20040325 11:01:20	20040325 11:21:41	20040325 11:43	20	20
426.00	431.00	20040325 13:03	20040325 13:38:53	20040325 13:59:14	20040325 14:21	20	20
431.00	436.00	20040325 14:33	20040325 15:07:41	20040325 15:28:03	20040325 15:50	20	20
436.00	441.00	20040325 15:59	20040325 16:30:36	20040325 16:50:53	20040325 17:13	20	20
441.00	446.00	20040325 17:25	20040325 18:00:16	20040325 18:20:39	20040325 18:42	20	20
446.00	451.00	20040325 18:54	20040325 19:28:25	20040325 19:48:44	20040325 20:11	20	20
451.00	456.00	20040325 20:22	20040325 20:55:07	20040325 21:15:27	20040325 21:37	20	20
456.00	461.00	20040325 22:43	20040325 23:19:51	20040325 23:40:16	20040326 00:02	20	20
461.00	466.00	20040326 06:46	20040326 07:25:20	20040326 07:45:45	20040326 08:07	20	20
466.00	471.00	20040326 08:23	20040326 09:00:05	20040326 09:20:33	20040326 09:42	20	20
471.00	476.00	20040326 10:01	20040326 10:33:27	20040326 10:38:46	20040326 10:46	5	6
476.00	481.00	20040326 11:04	20040326 11:43:40	20040326 12:04:01	20040326 12:26	20	20
481.00	486.00	20040326 13:41	20040326 14:17:19	20040326 14:37:44	20040326 14:59	20	20
486.00	491.00	20040326 15:37	20040326 16:11:39	20040326 16:32:01	20040326 16:54	20	20
491.00	496.00	20040326 17:04	20040326 17:37:19	20040326 17:57:41	20040326 18:19	20	20
496.00	501.00	20040326 18:30	20040326 19:06:19	20040326 19:26:41	20040326 19:48	20	20
501.00	506.00	20040326 20:01	20040326 20:36:35	20040326 20:57:04	20040326 21:19	20	20
506.00	511.00	20040326 21:33	20040326 22:07:46	20040326 22:28:12	20040326 22:50	20	20
511.00	516.00	20040327 09:44	20040327 09:54:45	20040327 10:15:07	20040327 10:37	20	20
516.00	521.00	20040327 10:49	20040327 11:28:50	20040327 11:49:18	20040327 11:43	20	6
541.00	546.00	20040327 12:44	20040327 13:21:29	20040327 13:41:47	20040327 13:35	20	6
546.00	551.00	20040327 13:48	20040327 14:19:55	20040327 14:25:11	20040327 14:33	5	6
551.00	556.00	20040327 14:40	20040327 15:12:34	20040327 15:18:08	20040327 15:25	6	6
556.00	561.00	20040327 15:32	20040327 16:08:42	20040327 16:29:10	20040327 16:51	20	20

Appendix 2.2

Pressure and flow data

Test section Pressure Flow $\mathbf{Q}_{p}^{(1)}$ $\mathbf{Q}_{m}^{2)}$ V_{p}^{2} secup seclow \mathbf{p}_{p} p_F (m³/s) (m³) (kPa) (kPa) (kPa) (m³/s) (m) (m) 103.50 203.50 1050.09 1065.13 1049 7.11E-04 7.44E-04 1.35E+00 201.00 301.00 2022.73 2222.92 2039 1.94E-04 2 14F-04 3.89E-01 301.00 401.00 2996.63 3202.62 3024 6.00E-08 1.27E-07 2.33E-04 401.00 501.00 4014.98 4239.18 3986 4.91E-05 5.54E-05 1.01E-01 501.00 601.00 4973.27 5257.26 4973 6.06E-05 6.47E-05 1.18E-01 601.00 701.00 5975.60 6321.72 6304 5.00E-09 701.00 801.00 6950.74 7192.75 7172 5.83E-09 801.00 901.00 7940.51 8136.00 7965 7.71E-08 1.14E-07 2.10E-04 103.50 123.50 1050.23 1065.69 1050 7.47E-04 8.12E-04 9.86E-01 121.00 141.00 1221.29 1296.39 1220 6.74E-04 7.02E-04 1.28E+00 141.00 161.00 1419.14 1616.56 1420 1.32E-07 2.20E-07 4.00E-04 161.00 181.00 1616.70 1825.59 1620 4.01E-05 4.33E-05 7.88E-02 181.00 201.00 1812.89 2036.55 1817 7.40E-06 7.90E-06 9.63E-03 201.00 221.00 2009.91 2210.64 2014 6.77E-06 7.17E-06 8.74E-03 221.00 241.00 2206.78 2407.25 2215 4.05E-06 4.69E-06 5.73E-03 241.00 261.00 2405.31 2556.08 2410 1.48E-07 1.67E-07 2.04E-04 261.00 281.00 2600.39 2856.92 2604 5.52E-05 6.61E-05 8.06E-02 281.00 301.00 2802.38 3003.54 2811 1.66E-04 1.87E-04 2.28E-01 300.00 320.00 2985.32 3180.95 2989 5.21E-08 4.10E-07 5.04E-04 301.00 321.00 3010.72 3195.31 2995 7.19E-07 9.74E-07 1.19E-03 401.00 421.00 3981.02 4209.10 3983 1.81E-05 2.01E-05 2.46E-02 421.00 441.00 4178.72 4379.06 4179 1.98E-05 2.13E-05 2.60E-02 441.00 461.00 4376.71 4575.80 4379 1.97E-06 2.55E-06 3.11E-03 4774.88 461.00 481.00 4573.45 4574 3.15E-06 3.30E-06 4.02E-03 481.00 501.00 4771.29 4971.89 4772 3.87E-06 4.38E-06 5.33E-03 501.00 521.00 4969.55 5183.27 4969 5.54E-05 5.87E-05 7.14E-02 5195.97 521.00 541.00 5378.21 5347 541.00 561.00 5379.32 5595.66 5485 3.72E-08 9.09E-08 1.11E-04 561.00 581.00 5572.60 5784.12 5711 5.00E-09 601.00 5783.15 6010.12 6007 581.00 103.50 108.50 1055.24 1269.09 1054 8.92E-08 1.33E-07 1.62E-04 106.00 1275.99 1075 111.00 1074.84 3.56E-04 3.72E-04 4.52E-01 111.00 116.00 1123.71 1238.17 1123 6.28E-04 6.45E-04 7.83E-01 116.00 121.00 1172.59 1221.33 1174 7.88E-04 8.05E-04 9.77E-01 6.82E-04 121.00 126.00 1221.74 1301.81 8.32E-01 1223 6.85E-04 126.00 131.00 1274.20 1517.89 1371 6.29E-07 9.99E-07 1.22E-03 131.00 136.00 1407.84 1579.04 1559 136.00 141.00 1371.40 1576.14 1384 2.10E-07 2.36E-07 2.87E-04 141.00 146.00 1497.45 1634.54 1587

Summary of pressure and flow data for all tests in KFM02A

Test section		Pressure			Flow	Flow			
secup	seclow	p _i	p _P	p _F	$\mathbf{Q}_{p}^{(1)}$	$\mathbf{Q}_{m}^{(2)}$	V _p ²⁾		
(m)	(m)	(kPa)	(kPa)	(kPa)	(m³/s)	(m³/s)	(m ³)		
146.00	151.00	1540.94	1665.19	1672					
151.00	156.00	1678.17	1716.56	1738					
156.00	161.00	1568.00	1801.60	1569	2.64E-08	3.36E-08	4.09E-05		
161.00	166.00	1615.49	1814.86	1617	1.44E-05	1.48E-05	1.80E-02		
166.00	171.00	1664.91	1865.39	1666	6.48E-06	6.83E-06	8.31E-03		
171.00	176.00	1714.90	1931.38	1717	2.78E-05	2.91E-05	3.54E-02		
176.00	181.00	1765.15	1965.34	1765	6.82E-07	7.73E-07	9.40E-04		
181.00	186.00	1813.20	2014.08	1817	6.96E-06	7.41E-06	9.02E-03		
186.00	191.00	2019.75	2100.64	1985					
191.00	196.00	1938.28	2164.98	2155					
196.00	201.00	1983.15	2185.00	2163	3.60E-09				
201.00	206.00	2022.91	2239.39	2209					
206.00	211.00	2080.76	2294.21	2285					
211.00	216.00	2308.70	2428.95	2432					
216.00	221.00	2158.49	2359.10	2164	7.61E-06	8.86E-06	1.08E-02		
221.00	226.00	2221.72	2447.45	2433					
225.00	230.00	2247.81	2448.14	2257	4.25E-06	4.84E-06	5.89E-03		
226.00	231.00	2259.41	2459.19	2267	4.12E-06	4.71E-06	5.74E-03		
231.00	236.00	2321.41	2565.91	2522	8.00E-09				
236.00	241.00	2364.21	2616.45	2457	8.00E-09				
241.00	246.00	2413.08	2632.74	2420	1.08E-07	1.30E-07	1.58E-04		
246.00	251.00	2463.61	2677.88	2466	3.63E-08	5.39E-08	6.58E-05		
251.00	256.00	2504.89	2748.57	2508	2.83E-08	3.66E-08	4.47E-05		
256.00	261.00	2554.59	2786.67	2557	1.95E-08	2.75E-08	3.37E-05		
259.50	264.50	2587.87	2788.47	2588	6.48E-08	9.07E-08	1.12E-04		
264.50	269.50	2637.02	2838.59	2638	1.19E-05	1.23E-05	1.50E-02		
269.50	274.50	2686.30	2886.64	2686	3.17E-06	3.44E-06	4.20E-03		
271.00	276.00	2701.07	2901.82	2702	1.55E-05	2.16E-05	2.63E-02		
276.00	281.00	2751.46	2959.94	2752	1.29E-05	1.60E-05	1.95E-02		
281.00	286.00	2801.17	3003.02	2803	2.80E-05	4.54E-05	5.50E-02		
286.00	291.00	2851 15	3028 42	2853	4 93E-05	6 65E-05	8 08F-02		
291.00	296.00	2898 92	3111 81	2900	5 86E-05	6 31E-05	7 67E-02		
296.00	301.00	2948.62	3150.19	2949	2.97E-05	3.12E-05	3.81E-02		
301.00	306.00	2998.32	3201 46	3001	4 20E-07	6.52E-07	7.97E-04		
306.00	311.00	3094 27	3261 74	3061	2.33E-08	2 81E-08	3 44E-05		
311.00	316.00	3143.85	3482 64	3172	1.06E-08	2.012.00	0.112.00		
316.00	321.00	3272 10	3356 19	3375					
401.00	406.00	4097 99	4228 04	4278					
406.00	411 00	4055.06	4281 89	4322					
411 00	416.00	4083.00	4283 06	4022	0 58F-07	1.075-06	1.31E-03		
416.00	421 00	4188 56	4334 08	4133	1 68E-05	1.82E-05	2 23=-02		
421.00	426.00	1207 62	1381 16	-100 /181	1 475 06	1.020-00	1 03E 03		
426.00	420.00	4231.03	4001.10	4020		1.500-00	1.950-03		
420.00	431.00	4290.04	4430.80	4230		1.37E-03	1.910-02		
431.00	430.00	4280.10	4479.40	4201	1.10E-07	1.2/E-U/	1.55E-04		
436.00	441.00	4329.25	4529.71	4329	1.48E-06	1.57E-06	1.91E-03		

Test section		Pressure			Flow	Flow		
secup	seclow	p i	p _p	p _F	Q _p ¹⁾	Q _m ²⁾	V _p ²⁾	
(m)	(m)	(kPa)	(kPa)	(kPa)	(m³/s)	(m³/s)	(m ³)	
441.00	446.00	4399.94	4741.50	4387	4.39E-08	1.72E-07	2.10E-04	
446.00	451.00	4428.65	4627.46	4430	1.96E-07	2.79E-07	3.40E-04	
451.00	456.00	4478.08	4677.02	4478	8.60E-07	1.02E-06	1.25E-03	
456.00	461.00	4543.66	4743.84	4533	4.77E-08	5.73E-08	7.01E-05	
461.00	466.00	4576.52	4743.71	4578	6.67E-08	7.76E-08	9.50E-05	
466.00	471.00	4630.78	4824.48	4630	4.77E-08	5.56E-08	6.82E-05	
471.00	476.00	4764.42	4885.78	4890				
476.00	481.00	4724.66	4925.81	4725	2.11E-06	2.18E-06	2.66E-03	
481.00	486.00	4773.81	4973.31	4774	3.24E-07	3.67E-07	4.49E-04	
486.00	491.00	4823.10	5019.83	4823	1.76E-06	1.86E-06	2.28E-03	
491.00	496.00	4874.59	5074.09	4874	1.45E-07	1.55E-07	1.90E-04	
496.00	501.00	4921.95	5121.17	4922	5.88E-07	7.77E-07	9.49E-04	
501.00	506.00	4972.06	5174.74	4973	3.75E-08	5.25E-08	6.46E-05	
506.00	511.00	5021.77	5261.16	5074	8.56E-07	1.35E-06	1.66E-03	
511.00	516.00	5071.05	5271.25	5071	5.03E-05	5.27E-05	6.44E-02	
516.00	521.00	5143.40	5323.30	5327		1.27E-09	1.56E-06	
541.00	546.00	5454.04	5572.50	5608		2.78E-09	3.39E-06	
546.00	551.00	5490.76	5621.51	5681		7.45E-09	2.35E-06	
551.00	556.00	5494.08	5672.32	5690		1.64E-08	5.48E-06	
556.00	561.00	5525.28	5718.02	5618	3.66E-08	7.56E-08	9.28E-05	

¹⁾ No value indicates a flow below measurement limit (less then 1.67 E-8 m³/s). ²⁾ No value indicates that the parameter could not be calculated due to low and uncertain flow rates during a major part of flow period

p _i Pressure in test section before start of flo	w period
---	----------

Pressure in test section before start of flow period Pressure in test section before stop of flow period Pressure in test section at the end of recovery period Flow rate just before stop of flow period Mean (arithmetic) flow rate during flow period Total volume injected during the flow period

- $\begin{array}{c} p_p \\ p_F \\ Q_p \\ Q_m \\ V_p \end{array}$

Test diagrams

In the following pages is diagrams presented for all test sections. A linear diagram of pressure and flow rate is presented for each test. For most tests are lin-log and log-log diagrams presented, from injection and recovery period respectively.

Nomenclature for Aqtesolv:

transmissivity (m²/s) Т = S = storativity (-) K_Z/K_r = ratio of hydraulic conductivities in the vertical and radial direction (set to 1) skin factor Sw = = borehole radius (m) r(w) effective casing radius (m) r(c) = С = well loss constant (set to 0)

Figure A3-1. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 103.5-203.5 m in borehole KFM02A.

Figure A3-2. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-203.5 m in *KFM02A*.

Figure A3-3. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-203.5 m in *KFM02A*.

Figure A3-4. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-203.5 m in KFM02A.

Figure A3-5. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-203.5 m in KFM02A.

Figure A3-6. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 201-301 m in borehole KFM02A.

Figure A3-7. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 201-301 m in *KFM02A*.

Figure A3-8. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 201-301 m in *KFM02A*.

Figure A3-9. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-301 m in KFM02A.

Figure A3-10. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-301 m in KFM02A.

Figure A3-11. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 301-401 m in borehole KFM02A.

Figure A3-12. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-401 m in *KFM02A*.

Figure A3-13. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-401 m in *KFM02A*.

Figure A3-14. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-401 m in KFM02A.

Figure A3-15. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-401 m in KFM02A.

Figure A3-16. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 401-501 m in borehole KFM02A.

Figure A3-17. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 401-501 m in *KFM02A*.

Figure A3-18. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 401-501 m in *KFM02A*.

Figure A3-19. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 401-501 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-20. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 401-501 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-21. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section501-601 m in borehole KFM02A.

Figure A3-22. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable, from the injection test in section 501-601 m in KFM02A.

Figure A3-23. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable, from the injection test in section 501-601 m in KFM02A.

Figure A3-24. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-601 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-25. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-601 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-26. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 601-701 m in borehole KFM02A.

Figure A3-27. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 601-701 m in *KFM02A*.

Figure A3-28. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 601-701 m in *KFM02A*

Figure A3-29. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 601-701 m in KFM02A.

Figure A3-30. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 601-701 m in KFM02A.

Figure A3-31. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 701-801 m in borehole KFM02A.

Figure A3-32. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 701-801 m in *KFM02A*.

Figure A3-33. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 701-801 m in *KFM02A*.

Figure A3-34. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 701-801 m in KFM02A.

Figure A3-35. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 701-801 m in KFM02A.

Figure A3-36. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 801-901 m in borehole KFM02A.

Figure A3-37. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 801-901 m in *KFM02A*.

Figure A3-38. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 801-901 m in *KFM02A*.

Figure A3-39. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 801-901 m in KFM02A.

Figure A3-40. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 801-901 m in KFM02A.

Figure A3-41. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 801.0-901.0 m in borehole KFM02A. Pb in this diagram is pressure in the section 902.00-1002.44 m, evaluated as a pressure-pulse test.

Figure A3-42. Lin-log plot of normalized head (\Box) and derivative (+) versus time, showing fit to Cooper-Bredehoeft-Papadopulos solution (solid line), from the injection test in section 902-1002.44 m in KFM02A

Figure A3-43. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 103.5-123.5 m in borehole KFM02A

Figure A3-44. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-123.5 m in *KFM02A*

Figure A3-45. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-123.5 m in *KFM02A*

Figure A3-46. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-123.5 m in KFM02A.

Figure A3-47. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-123.5 m in KFM02A.

Figure A3-48. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 121-141 m in borehole KFM02A.

Figure A3-49. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 121-141 m in *KFM02A*.

Figure A3-50. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 121-141 m in *KFM02A*.

Figure A3-51. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 121-141 m in KFM02A.

Figure A3-52. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 121-141 m in KFM02A.

Figure A3-53. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 141-161 m in borehole KFM02A.

Figure A3-54. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 141-161 m in *KFM02A*.

Figure A3-55. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 141-161 m in *KFM02A*.

Figure A3-56. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 141-161 m in KFM02A.

Figure A3-57. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 141-161 m in KFM02A.

Figure A3-58. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 161-181 m in borehole KFM02A.

Figure A3-59. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-181 m in *KFM02A*. First pseudo-radial flow regime.

Figure A3-60. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-181 m in *KFM02A*. First pseudo-radial flow regime.

Figure A3-61. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-181 m in *KFM02A*. Showing alternative type curve fit to the second pseudo-radial flow regime.

Figure A3-62. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-181 m in *KFM02A*. Showing alternative type curve fit to the second pseudo-radial flow regime.

Figure A3-63. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 161-181 m in KFM02A.

Figure A3-64. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 161-181 m in KFM02A.

Figure A3-65. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 181-201 m in borehole KFM02A.

Figure A3-66. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 181-201 m in *KFM02A*.

Figure A3-67. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 181-201 m in *KFM02A*.

Figure A3-68. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 181-201 m in KFM02A.

Figure A3-69. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 181-201 m in KFM02A.

Figure A3-70. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 201-221 m in borehole KFM02A.

Figure A3-71. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 201-221 m in *KFM02A*.

Figure A3-72. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 201-221 m in *KFM02A*.

Figure A3-73. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-221 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-74. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-221 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-75. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 221-241 m in borehole KFM02A.

Figure A3-76. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 221-241 m in *KFM02A*.

Figure A3-77. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 221-241 m in *KFM02A*.

Figure A3-78. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 221-241 m in KFM02A.

Figure A3-79. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 221-241 m in KFM02A.

Figure A3-80. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 241-261 m in borehole KFM02A.

Figure A3-81. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 241-261 m in *KFM02A*.

Figure A3-82. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 241-261 m in *KFM02A*.

Figure A3-83. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 241-261 m in KFM02A.

Figure A3-84. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 241-261 m in KFM02A.

Figure A3-85. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 261-281 m in borehole KFM02A.

Figure A3-86. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 261-281 m in *KFM02A*.

Figure A3-87. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 261-281 m in *KFM02A*.

Figure A3-88. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 261-281 m in KFM02A.

Figure A3-89. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 261-281 m in KFM02A.

Figure A3-90. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 281-301 m in borehole KFM02A.

Figure A3-91. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 281-301 m in *KFM02A*.

Figure A3-92. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 281-301 m in *KFM02A*.

Figure A3-93. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 281-301 m in KFM02A.

Figure A3-94. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 281-301 m in KFM02A.

Figure A3-95. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 300-320 m in borehole KFM02A.

Figure A3-96. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 300-320 m in *KFM02A*.

Figure A3-97. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 300-320 m in *KFM02A*.

Figure A3-98. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 300-320 m in KFM02A.

Figure A3-99. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 300-320 m in KFM02A.

Figure A3-100. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 301-321 m in borehole KFM02A.

Figure A3-101. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-321 m in *KFM02A*.

Figure A3-102. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-321 m in *KFM02A*.

Figure A3-103. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-321 m in KFM02A.

Figure A3-104. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-321 m in KFM02A.

Figure A3-105. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 401-421 m in borehole KFM02A.

Figure A3-106. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 401-421 m in *KFM02A*.

Figure A3-107. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 401-421 m in *KFM02A*.

Figure A3-108. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 401-421 m in KFM02A.

Figure A3-109. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 401-421 m in KFM02A.

Figure A3-110. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 421-441 m in borehole KFM02A.

Figure A3-111. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 421-441 m in *KFM02A*.

Figure A3-112. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 421-441 m in *KFM02A*.

Figure A3-113. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 421-441 m in KFM02A.

Figure A3-114. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 421-441 m in KFM02A.

Figure A3-115. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 441-461 m in borehole KFM02A.

Figure A3-116. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 441-461 m in *KFM02A*.

Figure A3-117. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 441-461 m in *KFM02A*.

Figure A3-118. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 441-461 m in KFM02A.

Figure A3-119. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 441-461 m in KFM02A.

Figure A3-120. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 461-481 m in borehole KFM02A.

Figure A3-121. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 461-481 m in *KFM02A*.

Figure A3-122. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 461-481 m in *KFM02A*.

Figure A3-123. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 461-481 m in KFM02A.

Figure A3-124. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 461-481 m in KFM02A.

Figure A3-125. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 481-501 m in borehole KFM02A.

Figure A3-126. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-501 m in *KFM02A*. Showing fit to first pseudo-radial flow regime.

Figure A3-127. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-501 m in *KFM02A*. Showing fit to first pseudo-radial flow regime.

Figure A3-128. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-501 m in *KFM02A*. Showing alternative fit to second pseudo-radial flow regime.

Figure A3-129. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-501 m in *KFM02A*. Showing alternative fit to second pseudo-radial flow regime.

Figure A3-130. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 481-501 m in KFM02A.

Figure A3-131. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 481-501 m in KFM02A.

Figure A3-132. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 501-521 m in borehole KFM02A.

Figure A3-133. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 501-521 m in *KFM02A*. Showing non-representative type curve fit to illustrate that an assumption of *PRF* is not reasonable.

Figure A3-134. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 501-521 m in *KFM02A*. Showing non-representative type curve fit to illustrate that an assumption of *PRF* is not reasonable.

Figure A3-135. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-521 m in KFM02A.

Figure A3-136. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-521 m in KFM02A.

Figure A3-137. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 521-541 m in borehole KFM02A.

Figure A3-138. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 521-541 m in KFM02A.

Figure A3-139. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 521-541 m in KFM02A.

Figure A3-140. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 541-561 m in borehole KFM02A.

Figure A3-141. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 541-561 m in *KFM02A*.

Figure A3-142. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 541-561 m in *KFM02A*.

Figure A3-143. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 541-561 m in KFM02A.

Figure A3-144. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 541-561 m in KFM02A.

Figure A3-145. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 561-581 m in borehole KFM02A.

Figure A3-146. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 561-581 m in *KFM02A*.

Figure A3-147. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 561-581 m in *KFM02A*.

Figure A3-148. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 561-581 m in KFM02A.

Figure A3-149. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 561-581 m in KFM02A.

Figure A3-150. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 581-601 m in borehole KFM02A.

Figure A3-151. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 581-601 m in KFM02A.

Figure A3-152. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 581-601 m in KFM02A.

Figure A3-153. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 103.5-108.5 m in borehole KFM02A.

Figure A3-154. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-108.5 m in KFM02A. Showing type curve fit to the first pseudo-radial flow regime.

Figure A3-155. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-108.5 m in *KFM02A*. Showing type curve fit to the first pseudo-radial flow regime.

Figure A3-156. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-108.5 m in KFM02A. Showing type curve fit to the second pseudo-radial flow regime.

Figure A3-157. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 103.5-108.5 m in *KFM02A*. Showing type curve fit to the second pseudo-radial flow regime.

Figure A3-158. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-108.5 m in KFM02A.

Figure A3-159. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 103.5-108.5 m in KFM02A.

Figure A3-160. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 106-111 m in borehole KFM02A.

Figure A3-161. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 106-111 m in *KFM02A*.

Figure A3-162. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 106-111 m in *KFM02A*.

Figure A3-163. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 106-111 m in KFM02A.

Figure A3-164. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 106-111 m in KFM02A.

Figure A3-165. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 111-116 m in borehole KFM02A.

Figure A3-166. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 111-116 m in *KFM02A*.

Figure A3-167. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 111-116 m in *KFM02A*.

Figure A3-168. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 111-116 m in KFM02A.

Figure A3-169. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 111-116 m in KFM02A.

Figure A3-170. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 116-121 m in borehole KFM02A.

Figure A3-171. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 116-121 m in *KFM02A*.

Figure A3-172. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 116-121 m in *KFM02A*.

Figure A3-173. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 116-121 m in KFM02A.

Figure A3-174. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 116-121 m in KFM02A.

Figure A3-175. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 121-126 m in borehole KFM02A.

Figure A3-176. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 121-126 m in *KFM02A*.

Figure A3-177. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 121-126 m in *KFM02A*.

Figure A3-178. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 121-126 m in KFM02A.

Figure A3-179. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 121-126 m in KFM02A.

Figure A3-180. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 126-131 m in borehole KFM02A.

Figure A3-181. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 126-131 m in *KFM02A*.

Figure A3-182. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 126-131 m in *KFM02A*.

Figure A3-183. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 126-131 m in KFM02A.

Figure A3-184. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 126-131 m in KFM02A.

Figure A3-185. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 131-136 m in borehole KFM02A.

Figure A3-186. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 131-136 m in KFM02A.

Figure A3-187. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 131-136 m in KFM02A.

Figure A3-188. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 136-141 m in borehole KFM02A.

Figure A3-189. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 136-141 m in *KFM02A*.

Figure A3-190. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 136-141 m in *KFM02A*.

Figure A3-191. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 136-141 m in KFM02A. Showing type curve fit only to illustrate that an assumption of PRF is not reasonable.

Figure A3-192. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 136-141 m in KFM02A. Showing type curve fit only to illustrate that an assumption of PRF is not reasonable.

Figure A3-193. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 301-401 m in borehole KFM02A.

Figure A3-194. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-401 m in KFM02A.

Figure A3-195. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-401 m in KFM02A.

Figure A3-196. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 146-151 m in borehole KFM02A.

Figure A3-197. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 151-156 m in borehole KFM02A.

Figure A3-198. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 156-161 m in borehole KFM02A.

Figure A3-199. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 156-161 m in *KFM02A*.

Figure A3-200. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 156-161 m in *KFM02A*.

Figure A3-201. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 156-161 m in KFM02A.

Figure A3-202. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 156-161 m in KFM02A.

Figure A3-203. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 161-166 m in borehole KFM02A.

Figure A3-204. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-166 m in *KFM02A*.

Figure A3-205. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 161-166 m in *KFM02A*.

Figure A3-206. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 161-166 m in KFM02A.

Figure A3-207. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 161-166 m in KFM02A.

Figure A3-208. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 166-171 m in borehole KFM02A.

Figure A3-209. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 166-171 m in *KFM02A*.

Figure A3-210. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 166-171 m in *KFM02A*.

Figure A3-211. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 166-171 m in KFM02A.

Figure A3-212. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 166-171 m in KFM02A.

Figure A3-213. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 171-176 m in borehole KFM02A.

Figure A3-214. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 171-176 m in *KFM02A*.

Figure A3-215. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 171-176 m in *KFM02A*.

Figure A3-216. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 171-176 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-217. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 171-176 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-218. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 176-181 m in borehole KFM02A.

Figure A3-219. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 176-181 m in *KFM02A*.

Figure A3-220. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 176-181 m in *KFM02A*.

Figure A3-221. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 176-181 m in KFM02A.

Figure A3-222. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 176-181 m in KFM02A.

Figure A3-223. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 181-186 m in borehole KFM02A.

Figure A3-224. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 181-186 m in *KFM02A*.

Figure A3-225. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 181-186 m in *KFM02A*.

Figure A3-226. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 181-186 m in KFM02A.

Figure A3-227. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 181-186 m in KFM02A.

Figure A3-228. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 186-191 m in borehole KFM02A.

Figure A3-229. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 186-191 m in KFM02A.

Figure A3-230. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 186-191 m in KFM02A.

Figure A3-231. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 191-196 m in borehole KFM02A.

Figure A3-232. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 191-196 m in KFM02A.

Figure A3-233. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 191-196 m in KFM02A.

Figure A3-234. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 196-201 m in borehole KFM02A.

Figure A3-235. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 196-201 m in *KFM02A*.

Figure A3-236. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 196-201 m in *KFM02A*.

Figure A3-237. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 196-201 m in KFM02A.

Figure A3-238. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 196-201 m in KFM02A.

Figure A3-239. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 201-206 m in borehole KFM02A.

Figure A3-240. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-206 m in KFM02A.

Figure A3-241. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 201-206 m in KFM02A.

Figure A3-242. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 206-211 m in borehole KFM02A.

Figure A3-243. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 206-211 m in KFM02A.

Figure A3-244. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 206-211 m in KFM02A.

Figure A3-245. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 211-216 m in borehole KFM02A.

Figure A3-246. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 216-221 m in borehole KFM02A.

Figure A3-247. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 216-221 m in *KFM02A*.

Figure A3-248. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 216-221 m in *KFM02A*.

Figure A3-249. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 216-221 m in KFM02A.

Figure A3-250. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 216-221 m in KFM02A.

Figure A3-251. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 221-226 m in borehole KFM02A.

Figure A3-252. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 221-226 m in KFM02A.

Figure A3-253. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 221-226 m in KFM02A.

Figure A3-254. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 225-230 m in borehole KFM02A.

Figure A3-255. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 225-230 m in *KFM02A*.

Figure A3-256. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 225-230 m in *KFM02A*.

Figure A3-257. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 225-230 m in KFM02A.

Figure A3-258. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 225-230 m in KFM02A.

Figure A3-259. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 226-231 m in borehole KFM02A.

Figure A3-260. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 226-231 m in *KFM02A*.

Figure A3-261. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 226-231 m in *KFM02A*.

Figure A3-262. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 226-231 m in KFM02A.

Figure A3-263. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 226-231 m in KFM02A.

Figure A3-264. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 231-236 m in borehole KFM02A.

Figure A3-265. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 231-236 m in *KFM02A*.

Figure A3-266. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 231-236 m in *KFM02A*.

Figure A3-267. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 231-236 m in KFM02A.

Figure A3-268. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 231-236 m in KFM02A.

Figure A3-269. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 236-241 m in borehole KFM02A.

Figure A3-270. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 236-241 m in *KFM02A*.

Figure A3-271. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 236-241 m in *KFM02A*.

Figure A3-272. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 236-241 m in KFM02A.

Figure A3-273. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 236-241 m in KFM02A.

Figure A3-274. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 241-246 m in borehole KFM02A.

Figure A3-275. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 241-246 m in *KFM02A*.

Figure A3-276. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 241-246 m in *KFM02A*.

Figure A3-277. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 241-246 m in KFM02A.

Figure A3-278. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 241-246 m in KFM02A.

Figure A3-279. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 246-251 m in borehole KFM02A.

Figure A3-280. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 246-251 m in *KFM02A*.

Figure A3-281. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 246-251 m in *KFM02A*.

Figure A3-282. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 246-251 m in KFM02A.

Figure A3-283. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 246-251 m in KFM02A.

Figure A3-284. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 251-256 m in borehole KFM02A.

Figure A3-285. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 251-256 m in *KFM02A*.

Figure A3-286. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 251-256 m in *KFM02A*.

Figure A3-287. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 251-256 m in KFM02A.

Figure A3-288. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 251-256 m in KFM02A.

Figure A3-289. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 256-261 m in borehole KFM02A.

Figure A3-290. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 256-261 m in *KFM02A*.

Figure A3-291. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 256-261 m in *KFM02A*.

Figure A3-292. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 256-261 m in KFM02A.

Figure A3-293. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 256-261 m in KFM02A.

Figure A3-294. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 259.5-264.5 m in borehole KFM02A.

Figure A3-295. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 259.5-264.5 m in *KFM02A*.

Figure A3-296. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 259.5-264.5 m in *KFM02A*.

Figure A3-297. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 259.5-264.5 m in KFM02A.

Figure A3-298. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 259.5-264.5 m in KFM02A.

Figure A3-299. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 264.5-269.5 m in borehole KFM02A.

Figure A3-300. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section264.5-269.5 m in *KFM02A*.

Figure A3-301. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 264.5-269.5 m in *KFM02A*.

Figure A3-302. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 264.5-269.5 m in KFM02A.

Figure A3-303. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 264.5-269.5 m in KFM02A.

Figure A3-304. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 269.5-274.5 m in borehole KFM02A.

Figure A3-305. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 269.5-274.5 m in *KFM02A*.

Figure A3-306. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 269.5-274.5 m in *KFM02A*.

Figure A3-307. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 269.5-274.5 m in KFM02A.

Figure A3-308. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 269.5-274.5 m in KFM02A.

Figure A3-309. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 271-276 m in borehole KFM02A.

Figure A3-310. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 271-276 m in *KFM02A*.

Figure A3-311. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 271-276 m in *KFM02A*.

Figure A3-312. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 271-276 m in KFM02A.

Figure A3-313. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 271-276 m in KFM02A.

Figure A3-314. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 276-281 m in borehole KFM02A.

Figure A3-315. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 276-281 m in *KFM02A*.

Figure A3-316. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 276-281 m in *KFM02A*.

Figure A3-317. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 276-281 m in KFM02A.

Figure A3-318. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 276-281 m in KFM02A.

Figure A3-319. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 281-286 m in borehole KFM02A.

Figure A3-320. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 281-286 m in *KFM02A*. Showing fit to the first pseudo-radial flow regime.

Figure A3-321. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 281-286 m in *KFM02A*. Showing fit to the first pseudo-radial flow regime.

Figure A3-322. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 281-286 m in KFM02A.

Figure A3-323. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 281-286 m in KFM02A.

Figure A3-324. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 286-291 m in borehole KFM02A.

Figure A3-325. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 286-291 m in *KFM02A*. Showing fit to the first pseudo-radial flow regime.

Figure A3-326. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 286-291 m in *KFM02A*. Showing fit to the first pseudo-radial flow regime.

Figure A3-327. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 286-291 m in *KFM02A*. Showing fit to the second pseudo-radial flow regime.

Figure A3-328. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 286-291 m in *KFM02A*. Showing fit to the second pseudo-radial flow regime.

Figure A3-329. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 286-291 m in KFM02A.

Figure A3-330. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 286-291 m in KFM02A.

Figure A3-331. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 291-296 m in borehole KFM02A.

Figure A3-332. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 291-296 m in *KFM02A*.

Figure A3-333. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 291-296 m in *KFM02A*.

Figure A3-334. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 291-296 m in KFM02A.

Figure A3-335. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 291-296 m in KFM02A.

Figure A3-336. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 296-301 m in borehole KFM02A.

Figure A3-337. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 296-301 m in *KFM02A*.

Figure A3-338. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 296-301 m in *KFM02A*.

Figure A3-339. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 296-301 m in KFM02A.

Figure A3-340. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 296-301 m in KFM02A.

Figure A3-341. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 301-306 m in borehole KFM02A.

Figure A3-342. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-306 m in *KFM02A*.

Figure A3-343. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 301-306 m in *KFM02A*.

Figure A3-344. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-306 m in KFM02A.

Figure A3-345. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 301-306 m in KFM02A.

Figure A3-346. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 306-311 m in borehole KFM02A.

Figure A3-347. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 306-311 m in *KFM02A*.

Figure A3-348. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 306-311 m in *KFM02A*.

Figure A3-349. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 306-311 m in KFM02A.

Figure A3-350. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 306-311 m in KFM02A.

Figure A3-351. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 311-316 m in borehole KFM02A.

Figure A3-352. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 311-316 m in *KFM02A*.

Figure A3-353. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 311-316 m in *KFM02A*.

Figure A3-354. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 311-316 m in KFM02A.

Figure A3-355. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 311-316 m in KFM02A.

Figure A3-356. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 316-321 m in borehole KFM02A.

Figure A3-357. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 401-406 m in borehole KFM02A.

Figure A3-358. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 406-411 m in borehole KFM02A.

Figure A3-359. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 411-416 m in borehole KFM02A.

Figure A3-360. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 411-416 m in *KFM02A*.

Figure A3-361. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 411-416 m in *KFM02A*.

Figure A3-362. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 411-416 m in KFM02A.

Figure A3-363. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 411-416 m in KFM02A.

Figure A3-364. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 416-421 m in borehole KFM02A.

Figure A3-365. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 416-421 m in *KFM02A*.

Figure A3-366. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 416-421 m in *KFM02A*.

Figure A3-367. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 416-421 m in KFM02A.

Figure A3-368. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 416-421 m in KFM02A.

Figure A3-369. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 421-426 m in borehole KFM02A.

Figure A3-370. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 421-426 m in *KFM02A*.

Figure A3-371. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 421-426 m in *KFM02A*.

Figure A3-372. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 421-426 m in KFM02A.

Figure A3-373. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 421-426 m in KFM02A.

Figure A3-374. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 426-431 m in borehole KFM02A.

Figure A3-375. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 426-431 m in *KFM02A*.

Figure A3-376. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 426-431 m in *KFM02A*.

Figure A3-377. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 426-431 m in KFM02A.

Figure A3-378. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 426-431 m in KFM02A.

Figure A3-379. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 431-436 m in borehole KFM02A.

Figure A3-380. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 431-436 m in *KFM02A*.

Figure A3-381. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 431-436 m in *KFM02A*.

Figure A3-382. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 431-436 m in KFM02A.

Figure A3-383. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 431-436 m in KFM02A.

Figure A3-384. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 436-441 m in borehole KFM02A.

Figure A3-385. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 436-441 m in *KFM02A*.

Figure A3-386. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 436-441 m in *KFM02A*.

Figure A3-387. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 436-441 m in KFM02A.

Figure A3-388. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 436-441 m in KFM02A.

Figure A3-389. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 441-446 m in borehole KFM02A.

Figure A3-390. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 441-446 m in *KFM02A*.

Figure A3-391. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 441-446 m in *KFM02A*.

Figure A3-392. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 441-446 m in KFM02A.

Figure A3-393. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 441-446 m in KFM02A.

Figure A3-394. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 446-451 m in borehole KFM02A.

Figure A3-395. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 446-451 m in *KFM02A*.

Figure A3-396. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 446-451 m in *KFM02A*.

Figure A3-397. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 446-451 m in KFM02A.

Figure A3-398. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 446-451 m in KFM02A.

Figure A3-399. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 451-456 m in borehole KFM02A.

Figure A3-400. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 451-456 m in *KFM02A*.

Figure A3-401. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 451-456 m in *KFM02A*.

Figure A3-402. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 451-456 m in KFM02A.

Figure A3-403. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 451-456 m in KFM02A.

Figure A3-404. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 456-461 m in borehole KFM02A.

Figure A3-405. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 456-461 m in *KFM02A*. Showing non-representative type-curve fit to illustrate that an assumption of *PRF* is not reasonable.

Figure A3-406. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 456-461 m in *KFM02A*. Showing non-representative type-curve fit to illustrate that an assumption of *PRF* is not reasonable.

Figure A3-407. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 456-461 m in KFM02A. Showing non-representative type-curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-408. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 456-461 m in KFM02A. Showing non-representative type-curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-409. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 461-466 m in borehole KFM02A.

Figure A3-410. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 461-466 m in *KFM02A*.

Figure A3-411. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 461-466 m in *KFM02A*.

Figure A3-412. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 461-466 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-413. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 461-466 m in KFM02A. Showing non-representative type curve fit to illustrate that an assumption of PRF is not reasonable.

Figure A3-414. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 466-471 m in borehole KFM02A.

Figure A3-415. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 466-471 m in *KFM02A*.

Figure A3-416. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 466-471 m in *KFM02A*.

Figure A3-417. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 466-471 m in KFM02A.

Figure A3-418. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 466-471 m in KFM02A.

Figure A3-419. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 471-476 m in borehole KFM02A.

Figure A3-420. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 476-481 m in borehole KFM02A.

Figure A3-421. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 476-481 m in *KFM02A*.

Figure A3-422. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 476-481 m in *KFM02A*.

Figure A3-423. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 476-481 m in KFM02A.

Figure A3-424. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 476-481 m in KFM02A.

Figure A3-425. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 481-486 m in borehole KFM02A.

Figure A3-426. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-486 m in *KFM02A*.

Figure A3-427. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 481-486 m in *KFM02A*.

Figure A3-428. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 481-486 m in KFM02A.

Figure A3-429. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 481-486 m in KFM02A.

Figure A3-430. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 486-491 m in borehole KFM02A.

Figure A3-431. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 486-491 m in *KFM02A*

Figure A3-432. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 486-491 m in *KFM02A*.

Figure A3-433. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 486-491 m in KFM02A.

Figure A3-434. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 486-491 m in KFM02A.

Figure A3-435. Linear plot of flow rate (*Q*), pressure (*P*), pressure above section (*Pa*) and pressure below section (*Pb*) versus time from the injection test in section 491-496 m in borehole KFM02A.

Figure A3-436. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 491-496 m in *KFM02A*.

Figure A3-437. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 491-496 m in *KFM02A*.

Figure A3-438. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 491-496 m in KFM02A.

Figure A3-439. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 491-496 m in KFM02A.

Figure A3-440. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 496-501 m in borehole KFM02A.

Figure A3-441. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 496-501 m in *KFM02A*.

Figure A3-442. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 496-501 m in *KFM02A*.

Figure A3-443. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 496-501 m in KFM02A.

Figure A3-444. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 496-501 m in KFM02A.

Figure A3-445. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 501-506 m in borehole KFM02A.

Figure A3-446. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 501-506 m in *KFM02A*.

Figure A3-447. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 501-506 m in *KFM02A*.

Figure A3-448. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-506 m in KFM02A.

Figure A3-449. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 501-506 m in KFM02A.

Figure A3-450. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 506-511 m in borehole KFM02A.

Figure A3-451. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 506-511 m in *KFM02A*.

Figure A3-452. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 506-511 m in *KFM02A*.

Figure A3-453. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 506-511 m in KFM02A.

Figure A3-454. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 506-511 m in KFM02A.

Figure A3-455. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 511-516 m in borehole KFM02A.

Figure A3-456. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 511-516 m in *KFM02A*.

Figure A3-457. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 511-516 m in *KFM02A*.

Figure A3-458. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 511-516 m in KFM02A.

Figure A3-459. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 511-516 m in KFM02A.

Figure A3-460. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 516-521 m in borehole KFM02A.

Figure A3-461. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 541-546 m in borehole KFM02A.

Figure A3-462. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 546-551 m in borehole KFM02A.

Figure A3-463. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 551-556m in borehole KFM02A.

Figure A3-464. Linear plot of flow rate (Q), pressure (P), pressure above section (Pa) and pressure below section (Pb) versus time from the injection test in section 556-561 m in borehole KFM02A.

Figure A3-465. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 556-561 m in *KFM02A*.

Figure A3-466. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Hurst-Clark-Brauer solution (solid line), from the injection test in section 556-561 m in *KFM02A*.

Figure A3-467. Lin-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Ozkan-Raghavan solution for vertical fractures (solid line), from the injection test in section 556-561 m in KFM02A.

Figure A3-468. Log-log plot of head/flow rate (\Box) and derivative (+) versus time, showing fit to Ozkan-Raghavan solution for vertical fractures (solid line), from the injection test in section 556-561 m in KFM02A.

Figure A3-469. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 556-561 m in KFM02A according to the Dougherty-Babu solution.

Figure A3-470. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 556-561 m in KFM02A according to the Dougherty-Babu solution.

Figure A3-471. Lin-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 556-561 m in KFM02A according to the Gringarten-Witherspoon solution for vertical fractures.

Figure A3-472. Log-log plot of recovery (\Box) and derivative (+) versus equivalent time from the injection test in section 556-561 m in KFM02A according to the Gringarten-Witherspoon solution for vertical fractures.

Appendix 5

Sicada tables

Nomenclature plu_s_hole_test_d

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
mean_flow_rate_qm	FLOAT	m³/s	Arithmetic mean flow rate of the pumping/injection
flow_rate_end_qp	FLOAT	m³/s	Flow rate at the end of the flowing oeriod
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
q_measll	FLOAT	m³/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m³/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m³	Total volume of pumped(positive) or injected(negative) water
dur_flow_phase_tp	FLOAT	s	Time for the flowing phase of the test
dur_rec_phase_tf	FLOAT	s	Time for the recovery phase of the test
initial_head_hi	FLOAT	m	Initial formation head, see table description
head_at_flow_end_hp	FLOAT	m	Hydraulic head at end of flow phase, see table description
final_head_hf	FLOAT	m	Hydraulic head at end of recovery phase, see table descript.
initial_press_pi	FLOAT	kPa	Initial formation pressure. Actual formation pressure
press_at_flow_end_pp	FLOAT	kPa	Pressure at the end of flow phase, see table description.
final_press_pf	FLOAT	kPa	Fimal pressure at the end of the recovery, see table descr.
fluid_temp_tew	FLOAT	°C	Section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Section fluid el. conduvtivity, see table description
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC, see table descr.

Column	Datatype	Unit	Column Description
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application

Nomenclature plu_s_hole_test_ed1

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
lp	FLOAT	m	Hydraulic point of application
seclen_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m²/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m²/s	Tranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>
bc_tq	CHAR		Best choice code. 1 means TQ is best choice of T, else 0
transmissivity_moye	FLOAT	m²/s	Transmissivity,TM, based on Moye (1967)
bc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m²/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Interpreted formation thickness repr. for evaluated T/TB
width_of_channel_b	FLOAT	m	B:Interpreted width of formation with evaluated TB
tb	FLOAT	m³/s	TB:T=transmissivity,B=width of formation,see description
I_measl_tb	FLOAT	m³/s	Estimated lower meas. limit for evaluated TB,see description
u_measl_tb	FLOAT	m³/s	Estimated upper meas. limit of evaluated TB,see description

Column	Datatype	Unit	Column Description
sb	FLOAT	m	SB:S=storativity,B=width of formation,1Dmodel,see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m²/s	T=transmissivity, 2D model, see table description
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
I_measl_q_s	FLOAT	m²/s	Estimated lower meas. limit for evaluated T, see table descr.
u_measl_q_s	FLOAT	m²/s	Estimated upper meas. limit for evaluated T, see description
storativity_s	FLOAT		2D model for evaluation of S=storativity,see table descript.
assumed_s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
leakage_koeff	FLOAT	1/s	K'/b':2Dmodel evaluation of leakage coefficient, see desc.
hydr_cond_ks	FLOAT	m²/s	Ks:3D model evaluation of hydraulic conductivity, see desc.
value_type_ks	CHAR		0:true value,-1:Ks <lower meas.limit,1:ks="">upper meas.limit,</lower>
I_meas_limit_ks	FLOAT	m²/s	Estimated lower meas.limit for evaluated Ks, see table desc.
u_meas_limit_ks	FLOAT	m²/s	Estimated upper meas limit for evaluated Ks, see table descr.
spec_storage_ss	FLOAT	1/m	Ss:Specific storage,3Dmodel evaluation,see table descr.
assumed_ss	FLOAT	1/m	Assumed Spec.storage,3D model evaluation,see table des.
с	FLOAT	m³/pa	C: Wellbore storage coefficient
cd	FLOAT		CD: Dimensionless wellbore storage constant
skin	FLOAT		Skin factor
stor_ratio	FLOAT		Storativity ratio
interflow_coeff	FLOAT		Interporosity flow coefficient
dt1	FLOAT	S	Estimated start time of evaluation, see table description
dt2	FLOAT	S	Estimated stop time of evaluation. see table description
transmissivity_t_ilr	FLOAT	m²/s	T_ILR Transmissivity based on None Linear Regression
storativity_s_ilr	FLOAT		S_ILR=storativity based on None Linear Regression, see
value_type_t_ilr	CHAR		0:true value,-1:T_ILR <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_ilr	CHAR		Best choice code. 1 means T_ILR is best choice of T, else 0
c_ilr	FLOAT	m³/pa	Wellbore storage coefficient, based on ILR, see descr.
cd_ilr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
skin_ilr	FLOAT		Skin factor based on Non Linear Regression, see desc.
stor_ratio_ilr	FLOAT		Storativity ratio based on Non Linear Regression, see descr.
interflow_coeff_ilr	FLOAT		Interporosity flow coefficient based on Non Linear Regr
transmissivity_t_grf	FLOAT	m²/s	T_GRF:Transmissivity based on Gen.Rad. Flow,see
value_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_grf	CHAR		Best choice code. 1 means T_GRF is best choice of T, else 0
storativity_s_grf	FLOAT		S_GRF:Storativity basd on Gen. Rad.Flow, see table descri.
flow_dim_grf	FLOAT		Flow dimesion based on Gen. Rad. Flow. interpretation model
Column	Datatype Unit	Column Description	
------------	-----------------	--	
comment	VARCHAR no_unit	Short comment to the evaluated parameters	
error_flag	CHAR	If error_flag = "*" then an error occured and an error	
in_use	CHAR	If in_use = "*" then the activity has been selected as	
sign	CHAR	Signature for QA data accknowledge (QA - OK)	

Nomenclature plu_s_hole_test_obs

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper section of observation section
obs_seclow	FLOAT	m	Lower section of observation section
pi_above	FLOAT	kPa	Initial pressure of section above test section
pp_above	FLOAT	kPa	Pressure at flow end of section above test section
pf_above	FLOAT	kPa	Final pressure of section above test section
pi_below	FLOAT	kPa	Initial pressure of section below test section
pp_below	FLOAT	kPa	Pressure at flow end of section below test section
pf_below	FLOAT	kPa	Final pressure of section below test section

KFM02A plu_s_hole_test_d. Left

idcode	start_date	stop_date	secup	seclow	section_no tes	t_type	formation_type	e start_flow_period	stop_flow_period	mean_flow_rate_q	m flow_rate_end_q	p value_type_qp
KFM02A	20040305 22:01	20040305 23:52	103.5	203.5	3		1	20040305 22:49:53	20040305 23:20:10	7.44E-04	7.11E-04	0
KFM02A	20040308 08:53	20040308 10:44	201	301	3		1	20040308 09:41:48	20040308 10:12:06	2.14E-04	1.94E-04	0
KFM02A	20040308 11:50	20040308 14:46	301	401	3		1	20040308 13:44:05	20040308 14:14:32	1.27E-07	6.00E-08	0
KFM02A	20040308 17:01	20040308 18:57	401	501	3		1	20040308 17:55:28	20040308 18:25:43	5.54E-05	4.91E-05	0
KFM02A	20040308 22:06	20040308 23:26	501	601	3		1	20040308 22:24:06	20040308 22:54:30	6.47E-05	6.06E-05	0
KFM02A	20040309 07:29	20040309 09:38	601	701	3		1	20040309 08:36:04	20040309 09:06:39		5.00E-09	0
KFM02A	20040309 11:39	20040309 14:55	701	801	3		1	20040309 13:52:30	20040309 14:22:49		5.83E-09	0
KFM02A	20040309 20:22	20040309 23:07	801	901	3		1	20040309 22:04:57	20040309 22:35:35	1.14E-07	7.71E-08	0
KFM02A	20040318 14:48	20040318 16:09	103.5	123.5	3		1	20040318 15:26:27	20040318 15:46:42	8.12E-04	7.47E-04	0
KFM02A	20040315 14:41	20040315 18:10	121	141	3		1	20040315 17:07:26	20040315 17:37:43	7.02E-04	6.74E-04	0
KFM02A	20040315 19:23	20040315 21:45	141	161	3		1	20040315 20:43:03	20040315 21:13:25	2 20E-07	1.32E-07	0
KFM02A	20040315 23:23	20040316 00:30	161	181	3		1	20040315 23:27:42	20040315 23:58:00	4.33E-05	4.01E-05	0
KFM02A	20040316 06:51	20040316 08:13	181	201	3		1	20040316 07:31:06	20040316 07:51:25	7.90E-06	7.40E-06	0
KFM02A	20040316 08:45	20040316 10:04	201	221	3		1	20040316 09:21:27	20040316 09:41:46	7.17E-06	6.77E-06	0
KFM02A	20040316 10:27	20040316 11:43	221	241	3		1	20040316 11:00:46	20040316 11:21:06	4.69E-06	4.05E-06	0
KFM02A	20040316 12:30	20040316 13:47	241	261	3		1	20040316 13:05:17	20040316 13:25:38	1.67E-07	1.48E-07	0
KFM02A	20040316 14:04	20040316 15:19	261	281	3		1	20040316 14:37:08	20040316 14:57:27	6.61E-05	5.52E-05	0
KFM02A	20040318 11:34	20040318 12:24	281	301	3		1	20040318 11:42:10	20040318 12:02:26	1.87E-04	1.66E-04	0
KFM02A	20040316 19:37	20040316 21:15	300	320	3		1	20040316 20:32:33	20040316 20:53:01	4.10E-07	5.21E-08	0
KFM02A	20040316 17:50	20040316 19:16	301	321	3		1	20040316 18:33:52	20040316 18:54:14	9.74E-07	7.19E-07	0
KFM02A	20040316 22:41	20040317 00:09	401	421	3		1	20040316 23:26:55	20040316 23:47:14	2.01E-05	1.81E-05	0
KFM02A	20040317 06:18	20040317 07:35	421	441	3		1	20040317 06:53:20	20040317 07:13:39	2.13E-05	1.98E-05	0
KFM02A	20040317 08:11	20040317 09:26	441	461	3		1	20040317 08:43:59	20040317 09:04:18	2.55E-06	1.97E-06	0
KFM02A	20040317 09:47	20040317 11:02	461	481	3		1	20040317 10:19:51	20040317 10:40:10	3.30E-06	3.15E-06	0
KFM02A	20040317 11:15	20040317 13:13	481	501	3		1	20040317 12:31:10	20040317 12:51:28	4.38E-06	3.87E-06	0
KFM02A	20040317 14:00	20040317 15:44	501	521	3		1	20040317 15:01:40	20040317 15:21:57	5.87E-05	5.54E-05	0
KFM02A	20040317 16:22	20040317 17:52	521	541	3		1	20040317 17:10:02	20040317 17:30:50			-1
KFM02A	20040317 18:21	20040317 19:44	541	561	3		1	20040317 19:01:37	20040317 19:22:02	9.09E-08	3.72E-08	0
KFM02A	20040317 20:11	20040317 21:47	561	581	3		1	20040417 21:05:06	20040417 21:25:28		5.00E-09	0
KFM02A	20040317 22:18	20040317 23:34	581	601	3		1	20040317 22:52:07	20040317 23:12:21			-1
KFM02A	20040319 07:54	20040319 09:26	103.5	108.5	3		1	20040319 08:43:40	20040319 09:04:01	1.33E-07	8.92E-08	0
KFM02A	20040319 09:38	20040319 10:57	106	111	3		1	20040319 10:15:07	20040319 10:35:22	3.72E-04	3.56E-04	0
KFM02A	20040319 11:09	20040319 14:15	111	116	3		1	20040319 13:32:50	20040319 13:53:04	6.45E-04	6.28E-04	0

idcode	start_date	stop_date	secup	seclow	section_no	test_type	formation_type	start_flow_period	stop_flow_period	mean_flow_rate_qm	flow_rate_end_qp	value_type_qp
KFM02A	20040319 14:35	20040319 16:26	116	121		3	1	20040319 15:44:03	20040319 16:04:17	8.05E-04	7.88E-04	0
KFM02A	20040319 16:37	20040319 18:03	121	126		3	1	20040319 17:20:35	20040319 17:40:49	6.85E-04	6.82E-04	0
KFM02A	20040319 18:21	20040319 19:49	126	131		3	1	20040319 19:06:52	20040319 19:27:11	9.99E-07	6.29E-07	0
KFM02A	20040319 20:03	20040319 21:34	131	136		3	1	20040319 20:51:28	20040319 21:11:59			-1
KFM02A	20040319 21:44	20040319 23:08	136	141		3	1	20040319 22:25:49	20040319 22:46:08	2.36E-07	2.10E-07	0
KFM02A	20040320 10:36	20040320 11:33	141	146		3	1	20040320 11:22:26	20040320 11:25:55			-1
KFM02A	20040320 13:03	20040320 14:04	146	151		3	1	20040320 13:51:51	20040320 13:56:00			-1
KFM02A	20040320 14:16	20040320 15:14	151	156		3	1	20040320 15:02:05	20040320 15:05:08			-1
KFM02A	20040320 17:19	20040320 18:08	156	161		3	1	20040321 17:26:04	20040321 17:46:23	3.36E-08	2.64E-08	0
KFM02A	20040321 08:36	20040321 09:59	161	166		3	1	20040321 09:17:16	20040321 09:37:32	1.48E-05	1.44E-05	0
KFM02A	20040321 10:21	20040321 11:40	166	171		3	1	20040321 10:57:39	20040321 11:17:55	6.83E-06	6.48E-06	0
KFM02A	20040321 12:59	20040321 13:59	171	176		3	1	20040321 13:16:37	20040321 13:36:55	2.91E-05	2.78E-05	0
KFM02A	20040321 14:13	20040321 15:31	176	181		3	1	20040321 14:48:42	20040321 15:08:58	7.73E-07	6.82E-07	0
KFM02A	20040321 15:39	20040321 16:53	181	186		3	1	20040321 16:11:16	20040321 16:31:33	7.41E-06	6.96E-06	0
KFM02A	20040322 06:30	20040322 07:58	186	191		3	1	20040322 07:15:53	20040322 07:36:38			-1
KFM02A	20040322 08:15	20040322 09:38	191	196		3	1	20040322 08:55:47	20040322 09:17:18			-1
KFM02A	20040322 09:57	20040322 11:22	196	201		3	1	20040322 10:40:15	20040322 11:01:01		3.60E-09	0
KFM02A	20040322 12:41	20040322 13:49	201	206		3	1	20040322 13:28:55	20040322 13:35:42			-1
KFM02A	20040322 14:03	20040322 15:03	206	211		3	1	20040322 14:46:28	20040322 14:53:54			-1
KFM02A	20040322 15:34	20040322 16:33	211	216		3	1	20040322 16:23:36	20040322 16:25:34			-1
KFM02A	20040322 16:55	20040322 18:11	216	221		3	1	20040322 17:28:46	20040322 17:49:03	8.86E-06	7.61E-06	0
KFM02A	20040322 18:23	20040322 19:14	221	226		3	1	20040322 19:03:36	20040322 19:06:14			-1
KFM02A	20040322 19:23	20040322 20:52	225	230		3	1	20040322 20:09:25	20040322 20:29:43	4.84E-06	4.25E-06	0
KFM02A	20040322 21:01	20040322 22:17	226	231		3	1	20040322 21:34:29	20040322 21:54:46	4.71E-06	4.12E-06	0
KFM02A	20040322 22:26	20040322 23:17	231	236		3	1	20040322 23:04:46	20040322 23:09:52		8.00E-09	0
KFM02A	20040322 23:28	20040323 00:45	236	241		3	1	20040323 00:45:55	20040323 01:06:01		8.00E-09	0
KFM02A	20040323 06:26	20040323 07:55	241	246		3	1	20040323 07:13:10	20040323 07:33:22	1.30E-07	1.08E-07	0
KFM02A	20040323 08:13	20040323 09:43	246	251		3	1	20040323 09:00:31	20040323 09:20:53	5.39E-08	3.63E-08	0
KFM02A	20040323 09:59	20040323 11:38	251	256		3	1	20040323 10:55:35	20040323 11:15:56	3.66E-08	2.83E-08	0
KFM02A	20040323 12:31	20040323 14:04	256	261		3	1	20040323 13:21:33	20040323 13:41:55	2.75E-08	1.95E-08	0
KFM02A	20040328 13:43	20040328 15:00	259.5	264.5		3	1	20040328 14:17:48	20040328 14:38:18	9.07E-08	6.48E-08	0
KFM02A	20040328 11:02	20040328 12:18	264.5	269.5		3	1	20040328 11:35:39	20040328 11:55:58	1.23E-05	1.19E-05	0
KFM02A	20040328 09:39	20040328 10:53	269.5	274.5		3	1	20040328 10:11:16	20040328 10:31:37	3.44E-06	3.17E-06	0
KFM02A	20040328 08:15	20040328 09:30	271	276		3	1	20040328 08:48:13	20040328 09:08:31	2.16E-05	1.55E-05	0
KFM02A	20040324 06:55	20040324 08:31	276	281		3	1	20040324 07:48:37	20040324 08:08:56	1.60E-05	1.29E-05	0
KFM02A	20040324 08:44	20040324 10:12	281	286		3	1	20040324 09:29:55	20040324 09:50:06	4.54E-05	2.80E-05	0
KFM02A	20040324 10:28	20040324 11:56	286	291		3	1	20040324 11:13:53	20040324 11:34:08	6.65E-05	4.93E-05	0
KFM02A	20040324 12:56	20040324 14:16	291	296		3	1	20040324 13:33:35	20040324 13:53:52	6.31E-05	5.86E-05	0

idcode	start_date	stop_date	secup	seclow	section_no test_type	formation_typ	e start_flow_period	stop_flow_period	mean_flow	_rate_qm flow_rate_end_	_qp_value_type_qp
KFM02A	20040324 14:28	20040322 15:46	296	301	3	1	20040322 15:03:29	20040322 15:23:49	3.12E-05	2.97E-05	0
KFM02A	20040324 15:59	20040324 17:16	301	306	3	1	20040324 16:33:43	20040324 16:54:05	6.52E-07	4.20E-07	0
KFM02A	20040324 17:31	20040324 18:48	306	311	3	1	20040324 18:05:32	20040324 18:25:56	2.81E-08	2.33E-08	0
KFM02A	20040324 18:58	20040324 20:34	311	316	3	1	20040324 19:52:05	20040324 20:12:27		1.06E-08	0
KFM02A	20040324 20:41	20040324 21:20	316	321	3	1	20040324 21:14:55	20040324 21:16:21			-1
KFM02A	20040324 22:12	20040324 23:01	401	406	3	1	20040324 22:51:07	20040324 22:53:13			-1
KFM02A	20040324 23:09	20040324 23:52	406	411	3	1	20040324 23:41:45	20040324 23:44:39			-1
KFM02A	20040325 07:35	20040325 08:25	411	416	3	1	20040325 07:43:22	20040325 08:03:45	1.07E-06	9.58E-07	0
KFM02A	20040325 08:43	20040325 10:04	416	421	3	1	20040325 09:22:13	20040325 09:42:34	1.82E-05	1.68E-05	0
KFM02A	20040325 10:23	20040325 11:43	421	426	3	1	20040325 11:01:20	20040325 11:21:41	1.58E-06	1.47E-06	0
KFM02A	20040325 13:03	20040325 14:21	426	431	3	1	20040325 13:38:53	20040325 13:59:14	1.57E-05	1.48E-05	0
KFM02A	20040325 14:33	20040325 15:50	431	436	3	1	20040325 15:07:41	20040325 15:28:03	1.27E-07	1.10E-07	0
KFM02A	20040325 15:59	20040325 17:13	436	441	3	1	20040325 16:30:36	20040325 16:50:53	1.57E-06	1.48E-06	0
KFM02A	20040325 17:25	20040325 18:42	441	446	3	1	20040325 18:00:16	20040325 18:20:39	1.72E-07	4.39E-08	0
KFM02A	20040325 18:54	20040325 20:11	446	451	3	1	20040325 19:28:25	20040325 19:48:44	2.79E-07	1.96E-07	0
KFM02A	20040325 20:22	20040325 21:37	451	456	3	1	20040325 20:55:07	20040325 21:15:27	1.02E-06	8.60E-07	0
KFM02A	20040325 22:43	20040326 00:02	456	461	3	1	20040325 23:19:51	20040325 23:40:16	5.73E-08	4.77E-08	0
KFM02A	20040326 06:46	20040326 08:07	461	466	3	1	20040326 07:25:20	20040326 07:45:45	7.76E-08	6.67E-08	0
KFM02A	20040326 08:23	20040326 09:42	466	471	3	1	20040326 09:00:05	20040326 09:20:33	5.56E-08	4.77E-08	0
KFM02A	20040326 10:01	20040326 10:46	471	476	3	1	20040326 10:33:27	20040326 10:38:46			-1
KFM02A	20040326 11:04	20040326 12:26	476	481	3	1	20040326 11:43:40	20040326 12:04:01	2.18E-06	2.11E-06	0
KFM02A	20040326 13:41	20040326 14:59	481	486	3	1	20040326 14:17:19	20040326 14:37:44	3.67E-07	3.24E-07	0
KFM02A	20040326 15:37	20040326 16:54	486	491	3	1	20040326 16:11:39	20040326 16:32:01	1.86E-06	1.76E-06	0
KFM02A	20040326 17:04	20040326 18:19	491	496	3	1	20040326 17:37:19	20040326 17:57:41	1.55E-07	1.45E-07	0
KFM02A	20040326 18:30	20040326 19:48	496	501	3	1	20040326 19:06:19	20040326 19:26:41	7.77E-07	5.88E-07	0
KFM02A	20040326 20:01	20040326 21:19	501	506	3	1	20040326 20:36:35	20040326 20:57:04	5.25E-08	3.75E-08	0
KFM02A	20040326 21:33	20040326 22:50	506	511	3	1	20040326 22:07:46	20040326 22:28:12	1.35E-06	8.56E-07	0
KFM02A	20040327 09:44	20040327 10:37	511	516	3	1	20040327 09:54:45	20040327 10:15:07	5.27E-05	5.03E-05	0
KFM02A	20040327 10:49	20040327 11:43	516	521	3	1	20040327 11:28:50	20040327 11:49:18	1.27E-09		-1
KFM02A	20040327 12:44	20040327 13:35	541	546	3	1	20040327 13:21:29	20040327 13:41:47	2.78E-09		-1
KFM02A	20040327 13:48	20040327 14:33	546	551	3	1	20040327 14:19:55	20040327 14:25:11	7.45E-09		-1
KFM02A	20040327 14:40	20040327 15:25	551	556	3	1	20040327 15:12:34	20040327 15:18:08	1.64E-08		-1
KFM02A	20040327 15:32	20040327 16:51	556	561	3	1	20040327 16:08:42	20040327 16:29:10	7.56E-08	3.66E-08	0

KFM02A	plu_	_s_ho	le_test	_d.	Right
--------	------	-------	---------	-----	-------

			-		-												_		
		seclo	q_measl	q_measl	tot_volum	dur_fl ow_p hase_	dur_r ec_ph	initi al_h ead	head_ at_flo w_en	fina I_he ad_	initial_ press_	press_at _flow_en	final_pr	flui d_t em p_t	flui d_el con d_e	flui d_s alini ty_t	flui d_s alini ty_t dsw	refe renc	
lacode	secup	w	I	u	e_vp	τp	ase_tr	_ni	a_np	nf	рі	a_pp	ess_pr	ew	cw	asw	m	е	comments
KFM02A	103.5	203.5	1.67E-08	1.00E-03	1.35E+00	1817	1807				1050.09	1065.13	1048.98						
KFM02A	201	301	1.67E-08	1.00E-03	3.89E-01	1818	1808				2022.73	2222.92	2038.61						
KFM02A	301	401	1.67E-08	1.00E-03	2.33E-04	1827	1797				2996.63	3202.62	3024.37						
KFM02A	401	501	1.67E-08	1.00E-03	1.01E-01	1815	1802				4014.98	4239.18	3986.4						
KFM02A	501	601	1.67E-08	1.00E-03	1.18E-01	1824	1801				4973.27	5257.26	4973.27						
KFM02A	601	701	1.67E-08	1.00E-03		1835	1822				5975.6	6321.72	6304.19						
KFM02A	701	801	1.67E-08	1.00E-03		1819	1807				6950.74	7192.75	7171.77						
KFM02A	801	901	1.67E-08	1.00E-03	2.10E-04	1838	1786				7940.51	8136	7965.36						
KFM02A	103.5	123.5	1.67E-08	1.00E-03	9.86E-01	1215	1210				1050.23	1065.69	1049.67						
KFM02A	121	141	1.67E-08	1.00E-03	1.28E+00	1817	1808				1221.29	1296.39	1219.78						
KFM02A	141	161	1.67E-08	1.00E-03	4.00E-04	1822	1804				1419.14	1616.56	1419.69						
KFM02A	161	181	1.67E-08	1.00E-03	7.88E-02	1818	1808				1616.7	1825.59	1620.15						
KFM02A	181	201	1.67E-08	1.00E-03	9.63E-03	1219	1209				1812.89	2036.55	1816.76						
KFM02A	201	221	1.67E-08	1.00E-03	8.74E-03	1219	1206				2009.91	2210.64	2014.47						
KFM02A	221	241	1.67E-08	1.00E-03	5.73E-03	1220	1206				2206.78	2407.25	2215.47						
KFM02A	241	261	1.67E-08	1.00E-03	2.04E-04	1221	1205				2405.31	2556.08	2409.87						
																			Pressure in section below
KFM02A	261	281	1.67E-08	1.00E-03	8.06E-02	1219	1206				2600.39	2856.92	2604.27						kPa during the flow period.
KFM02A	281	301	1.67E-08	1.00E-03	2.28E-01	1216	1217				2802.38	3003.54	2810.8						···· • • • • ···· · · · · · · · · · · ·
KFM02A	300	320	1.67E-08	1.00E-03	5.04E-04	1227	1202				2985.32	3180.95	2988.63						
KFM02A	301	321	1.67E-08	1.00E-03	1.19E-03	1222	1202				3010.72	3195.31	2995.25						
KFM02A	401	421	1.67E-08	1.00E-03	2.46E-02	1219	1207				3981.02	4209.1	3983.23						
KFM02A	421	441	1.67E-08	1.00E-03	2.60E-02	1219	1206				4178.72	4379.06	4179.28						
KFM02A	441	461	1.67E-08	1.00E-03	3.11E-03	1219	1208				4376.71	4575.8	4378.64						
KFM02A	461	481	1.67E-08	1.00E-03	4.02E-03	1219	1208				4573.45	4774.88	4573.59						
KFM02A	481	501	1.67E-08	1.00E-03	5.33E-03	1218	1209				4771.29	4971.89	4771.84						
KFM02A	501	521	1.67E-08	1.00E-03	7.14E-02	1217	1208				4969.55	5183.27	4968.99						
KFM02A	521	541	1.67E-08	1.00E-03		1248	1179				5195.97	5378.21	5347.28						
KFM02A	541	561	1.67E-08	1.00E-03	1.11E-04	1225	1202				5379.32	5595.66	5485.35						
KFM02A	561	581	1.67E-08	1.00E-03		1222	1204				5572.6	5784 12	5710 67						
			1.075.00	1.005 00			4040				5700 45	0040.40	0000.07						

																	flui		
						dum fi		1	hand	fine				flui	flui	flui	d_s		
						ow p	dur r	al h	at flo	l he	initial	press at		a_t em	a_ei con	alini	ty t	refe	
		seclo	q_measl	q_measl	tot_volum	hase_	ec_ph	ead	w_en	ad_	press_	_flow_en	final_pr	p_t	d_e	ty_t	dsw	renc	
Idcode	secup	w	I	u	e_vp	tp	ase_tf	hi	d_hp	hf	рі	d_pp	ess_pf	ew	CW	dsw	m	е	comments
KFM02A	103.5	108.5	1.67E-08	1.00E-03	1.62E-04	1221	1206				1055.24	1269.09	1054.41						Due to the relatively high
																			transmissivity of this section.
	100		4.075.00			1045	4047				407404	4075 00	407404						time for pressure
KFM02A	106	111	1.67E-08	1.00E-03	4.52E-01	1215	1217				10/4.84	12/5.99	1074.84						stabilisation was quite long.
KFM02A	111	116	1.67E-08	1.00E-03	7.83E-01	1214	1211				1123.71	1238.17	1123.43						
KEM02A	116	121	1.67E-08	1.00E-03	9.//E-01	1214	1212				11/2.59	1221.33	11/3./						
KEM02A	121	126	1.67E-08	1.00E-03	8.32E-01	1214	1212				1221.74	1301.81	1222.84						
KEM02A	126	131	1.67E-08	1.00E-03	1.22E-03	1219	1207				12/4.2	1517.89	13/1.4						
KEM02A	131	136	1.67E-08	1.00E-03	2.075.04	1231	1195				1407.84	15/9.04	1558.61						
KFIVIUZA	130	141	1.07E-08	1.00E-03	2.8/E-04	1219	1207				1371.4	15/0.14	1383.55						Shortened test time since
																			flow rate was below Q-
KEM02A	141	146	1.67E-08	1.00E-03		209	310				1497.45	1634.54	1587.33						measi-L. Shortened test time since
																			flow rate was below Q-
KFM02A	146	151	1.67E-08	1.00E-03		249	361				1540.94	1665.19	1672.37						measI-L. Shortened test time since
																			flow rate was below Q-
KFM02A	151	156	1.67E-08	1.00E-03		183	406				1678.17	1716.56	1738.1						measl-L.
KFM02A	156	161	1.67E-08	1.00E-03	4.09E-05	1219	1207				1568	1801.6	1569.1						
KFM02A	161	166	1.67E-08	1.00E-03	1.80E-02	1216	1210				1615.49	1814.86	1616.59						
KFM02A	166	171	1.67E-08	1.00E-03	8.31E-03	1216	1210				1664.91	1865.39	1665.74						
KFM02A	171	176	1.67E-08	1.00E-03	3.54E-02	1218	1208				1714.9	1931.38	1717.11						
KFM02A	176	181	1.67E-08	1.00E-03	9.40E-04	1216	1210				1765.15	1965.34	1764.6						
KFM02A	181	186	1.67E-08	1.00E-03	9.02E-03	1217	1209				1813.2	2014.08	1816.51						
KFM02A	186	191	1.67E-08	1.00E-03		1245	1181				2019.75	2100.64	1984.95						
KFM02A	191	196	1.67E-08	1.00E-03		1291	1135				1938.28	2164.98	2155.03						
KFM02A	196	201	1.67E-08	1.00E-03		1240	1179				1983.15	2185	2162.77						Shortened test time since
																			flow rate was below Q-
KFM02A	201	206	1.67E-08	1.00E-03		407	675				2022.91	2239.39	2208.61						measl-L.
																			flow rate was below Q-
KFM02A	206	211	1.67E-08	1.00E-03		446	449				2080.76	2294.21	2285.37						measl-L.
																			Snortened test time since flow rate was below Q-
KFM02A	211	216	1.67E-08	1.00E-03		118	342				2308.7	2428.95	2431.72						measl-L.
KFM02A	216	221	1.67E-08	1.00E-03	1.08E-02	1217	1209				2158.49	2359.1	2163.87						
KFM02A	221	226	1.67F-08	1.00E-03		158	350				2221 72	2447 45	2432 83						Shortened test time since flow rate was below Q-

idcode	secup	seclo w	q_measi l	q_measl u	tot_volum e_vp	dur_fl ow_p hase_ tp	dur_r ec_ph ase_tf	initi al_h ead _hi	head_ at_flo w_en d_hp	fina I_he ad_ hf	initial_ press_ pi	press_at _flow_en d_pp	final_pr ess_pf	flui d_t em p_t ew	flui d_el con d_e cw	flui d_s alini ty_t dsw	flui d_s alini ty_t dsw m	refe renc e	comments
																			measl-L.
KFM02A	225	230	1.67E-08	1.00E-03	5.89E-03	1218	1208				2247.81	2448.14	2256.65						
KFM02A	226	231	1.67E-08	1.00E-03	5.74E-03	1217	1209				2259.41	2459.19	2267.15						
																			Shortened test time since
KFM02A	231	236	1.67E-08	1.00E-03		306	321				2321.41	2565.91	2522.29						tiow rate was below Q- measl-L.
KFM02A	236	241	1.67E-08	1.00E-03		1206	1221				2364.21	2616.45	2456.57						
KFM02A	241	246	1.67E-08	1.00E-03	1.58E-04	1212	1203				2413.08	2632.74	2419.57						
KFM02A	246	251	1.67E-08	1.00E-03	6.58E-05	1222	1200				2463.61	2677.88	2465.96						
KFM02A	251	256	1.67E-08	1.00E-03	4.47E-05	1221	1200				2504.89	2748.57	2507.93						
KFM02A	256	261	1.67E-08	1.00E-03	3.37E-05	1222	1200				2554.59	2786.67	2557.08						
KFM02A	259.5	264.5	1.67E-08	1.00E-03	1.12E-04	1230	1197				2587.87	2788.47	2588.01						
KFM02A	264.5	269.5	1.67E-08	1.00E-03	1.50E-02	1219	1205				2637.02	2838.59	2637.71						
KFM02A	269.5	274.5	1.67E-08	1.00E-03	4.20E-03	1221	1206				2686.3	2886.64	2686.3						
KFM02A	271	276	1.67E-08	1.00E-03	2.63E-02	1218	1206				2701.07	2901.82	2701.76						
KFM02A	276	281	1.67E-08	1.00E-03	1.95E-02	1219	1206				2751.46	2959.94	2752.02						
KFM02A	281	286	1.67E-08	1.00E-03	5.50E-02	1211	1205				2801.17	3003.02	2802.83						
KFM02A	286	291	1.67E-08	1.00E-03	8.08E-02	1215	1202				2851.15	3028.42	2852.53						
KFM02A	291	296	1.67E-08	1.00E-03	7.67E-02	1217	1205				2898.92	3111.81	2900.02						
KFM02A	296	301	1.67E-08	1.00E-03	3.81E-02	1220	1206				2948.62	3150.19	2949.17						
KFM02A	301	306	1.67E-08	1.00E-03	7.97E-04	1222	1221				2998.32	3201.46	3001.08						
KFM02A	306	311	1.67E-08	1.00E-03	3.44E-05	1224	1203				3094.27	3261.74	3060.72						
KFM02A	311	316	1.67E-08	1.00E-03		1222	1221				3143.85	3482.64	3171.73						
KFM02A KFM02A	316 401	321 406	1.67E-08 1.67E-08	1.00E-03		86 126	106 370				3272.1 4097.99	3356.19 4228.04	3374.96 4278.44						flow rate was below Q- measI-L. Shortened test time since flow rate was below Q- measI-L.
	-																		Shortened test time since flow rate was below Q-
KFM02A	406	411	1.67E-08	1.00E-03		174	346				4055.06	4281.89	4322.07						measl-L.
KFM02A	411	416	1.67E-08	1.00E-03	1.31E-03	1223	1202				4083.77	4283.96	4084.05						
KFM02A	416	421	1.67E-08	1.00E-03	2.23E-02	1221	1202				4188.56	4334.08	4133.19						
KFM02A	421	426	1.67E-08	1.00E-03	1.93E-03	1221	1202				4297.63	4381.16	4181.25						
KFM02A	426	431	1.67E-08	1.00E-03	1.91E-02	1221	1202				4298.04	4430.86	4230.39						
KFM02A	431	436	1.67E-08	1.00E-03	1.55E-04	1222	1204				4280.1	4479.46	4280.65						
KFM02A	436	441	1.67E-08	1.00E-03	1.91E-03	1217	1210				4329.25	4529.71	4329.25						

idcode	secup	seclo w	q_measi i	q_measl	tot_volum e_vp	dur_fl ow_p hase_ tp	dur_r ec_ph ase_tf	initi al_h ead _hi	head_ at_flo w_en d_hp	fina l_he ad_ hf	initial_ press_ pi	press_at _flow_en d_pp	final_pr ess_pf	flui d_t em p_t ew	flui d_el con d_e cw	flui d_s alini ty_t dsw	flui d_s alini ty_t dsw m	refe renc e	comments
KFM02A	441	446	1.67E-08	1.00E-03	2.10E-04	1223	1203				4399.94	4741.5	4386.68						
KFM02A	446	451	1.67E-08	1.00E-03	3.40E-04	1219	1203				4428.65	4627.46	4429.76						
KFM02A	451	456	1.67E-08	1.00E-03	1.25E-03	1220	1202				4478.08	4677.02	4478.35						
KFM02A	456	461	1.67E-08	1.00E-03	7.01E-05	1225	1200				4543.66	4743.84	4533.02						
KFM02A	461	466	1.67E-08	1.00E-03	9.50E-05	1225	1202				4576.52	4743.71	4577.76						
KFM02A	466	471	1.67E-08	1.00E-03	6.82E-05	1228	1200				4630.78	4824.48	4629.68						
																			Shortened test time since
KFM02A	471	476	1.67E-08	1.00E-03		319	347				4764.42	4885.78	4889.77						measl-L.
KFM02A	476	481	1.67E-08	1.00E-03	2.66E-03	1221	1205				4724.66	4925.81	4724.66						
KFM02A	481	486	1.67E-08	1.00E-03	4.49E-04	1225	1202				4773.81	4973.31	4773.8						
KFM02A	486	491	1.67E-08	1.00E-03	2.28E-03	1222	1198				4823.1	5019.83	4822.96						
KFM02A	491	496	1.67E-08	1.00E-03	1.90E-04	1222	1203				4874.59	5074.09	4873.77						
KFM02A	496	501	1.67E-08	1.00E-03	9.49E-04	1222	1202				4921.95	5121.17	4921.81						
KFM02A	501	506	1.67E-08	1.00E-03	6.46E-05	1229	1199				4972.06	5174.74	4972.62						
KFM02A	506	511	1.67E-08	1.00E-03	1.66E-03	1226	1200				5021.77	5261.16	5073.68						
KFM02A	511	516	1.67E-08	1.00E-03	6.44E-02	1222	1205				5071.05	5271.25	5070.92						
KFM02A	516	521	1.67E-08	1.00E-03	1.56E-06	1228	330				5143.4	5323.3	5327.16						
KFM02A	541	546	1.67E-08	1.00E-03	3.39E-06	1218	385				5454.04	5572.5	5607.7						
KFM02A	546	551	1.67E-08	1.00E-03	2.35E-06	316	358				5490.76	5621.51	5681.16						Shortened test time since flow rate was below Q- measI-L. Shortened test time since flow rate was below Q-
KFM02A	551	556	1.67E-08	1.00E-03	5.48E-06	334	330				5494.08	5672.32	5689.99						measI-L.
KFM02A	556	561	1.67E-08	1.00E-03	9.28E-05	1228	1197				5525.28	5718.02	5617.64						

KFM02A	plu s	hole	test	ed1.	Left

					sect	len	2000 0000	value	trans missi	value	bc	transmiss	bc	valu e_ty	bydr oop	formatio	width _of_c	I_m	u_ mea		
idcode	start_date	stop_date	secup	seclow	_no	p ass	spec_capa city_q_s	_type _q_s	q	_type _tq	_' q	e	_1 m	pe_t m	d_moye	_b	l_b	b l_tb	b b	b ed	l_sb
KFM02A	20040305 22:01	20040305 23:52	103.50	203.50			4.64E-04	0				6.04E-04	0	0	6.04E-06	100.00					
KFM02A	20040308 08:53	20040308 10:44	201.00	301.00			9.49E-06	0				1.24E-05	0	0	1.24E-07	100.00					
KFM02A	20040308 11:50	20040308 14:46	301.00	401.00			2.86E-09	0				3.72E-09	1	0	3.72E-11	100.00					
KFM02A	20040308 17:01	20040308 18:57	401.00	501.00			2.15E-06	0				2.80E-06	0	0	2.80E-08	100.00					
KFM02A	20040308 22:06	20040308 23:26	501.00	601.00			2.09E-06	0				2.73E-06	1	0	2.73E-08	100.00					
KFM02A	20040309 07:29	20040309 09:38	601.00	701.00			1.42E-10	-1				1.85E-10	0	-1	1.85E-12	100.00					
KFM02A	20040309 11:39	20040309 14:55	701.00	801.00			2.36E-10	-1				3.08E-10	0	-1	3.08E-12	100.00					
KFM02A	20040309 20:22	20040309 23:07	801.00	901.00			3.87E-09	0				5.04E-09	0	0	5.04E-11	100.00					
KFM02A	20040318 14:48	20040318 16:09	103.50	123.50			4.74E-04	0				4.96E-04	0	0	2.48E-05	20.00					
KFM02A	20040315 14:41	20040315 18:10	121.00	141.00			8.81E-05	0				9.22E-05	0	0	4.61E-06	20.00					
KFM02A	20040315 19:23	20040315 21:45	141.00	161.00			6.58E-09	0				6.88E-09	0	0	3.44E-10	20.00					
KFM02A	20040315 23:23	20040316 00:30	161.00	181.00			1.88E-06	0				1.97E-06	0	0	9.84E-08	20.00					
KFM02A	20040316 06:51	20040316 08:13	181.00	201.00			3.25E-07	0				3.40E-07	1	0	1.70E-08	20.00					
KFM02A	20040316 08:45	20040316 10:04	201.00	221.00			3.31E-07	0				3.46E-07	0	0	1.73E-08	20.00					
KFM02A	20040316 10:27	20040316 11:43	221.00	241.00			1.98E-07	0				2.08E-07	0	0	1.04E-08	20.00					
KFM02A	20040316 12:30	20040316 13:47	241.00	261.00			9.62E-09	0				1.01E-08	0	0	5.03E-10	20.00					
KFM02A	20040316 14:04	20040316 15:19	261.00	281.00			2.11E-06	0				2.21E-06	0	0	1.11E-07	20.00					
KFM02A	20040318 11:34	20040318 12:24	281.00	301.00			8.09E-06	0				8.47E-06	0	0	4.23E-07	20.00					
KFM02A	20040316 19:37	20040316 21:15	300.00	320.00			2.61E-09	0				2.73E-09	0	0	1.37E-10	20.00					
KFM02A	20040316 17:50	20040316 19:16	301.00	321.00			3.82E-08	0				4.00E-08	0	0	2.00E-09	20.00					
KFM02A	20040316 22:41	20040317 00:09	401.00	421.00			7.78E-07	0				8.14E-07	0	0	4.07E-08	20.00					
KFM02A	20040317 06:18	20040317 07:35	421.00	441.00			9.70E-07	0				1.02E-06	0	0	5.08E-08	20.00					
KFM02A	20040317 08:11	20040317 09:26	441.00	461.00			9.69E-08	0				1.01E-07	0	0	5.07E-09	20.00					
KFM02A	20040317 09:47	20040317 11:02	461.00	481.00			1.53E-07	0				1.60E-07	0	0	8.02E-09	20.00					
KFM02A	20040317 11:15	20040317 13:13	481.00	501.00			1.89E-07	0				1.98E-07	0	0	9.91E-09	20.00					
KFM02A	20040317 14:00	20040317 15:44	501.00	521.00			2.55E-06	0				2.66E-06	0	0	1.33E-07	20.00					
KFM02A	20040317 16:22	20040317 17:52	521.00	541.00				-1					0	-1		20.00					
KFM02A	20040317 18:21	20040317 19:44	541.00	561.00			1.69E-09	0				1.77E-09	0	0	8.83E-11	20.00					
KFM02A	20040317 20:11	20040317 21:47	561.00	581.00			2.32E-10	-1				2.43E-10	1	-1	1.21E-11	20.00					
KFM02A	20040317 22:18	20040317 23:34	581.00	601.00				-1					0	-1		20.00					
KFM02A	20040319 07:54	20040319 09:26	103.50	108.50			4.09E-09	0				3.38E-09	0	0	6.76E-10	5.00					

					sect	sec	:	value	trans missi	value	bc	transmiss	bc	valu e tv		formatio	width	l m	u_ mea	
ideada	start data	stop data	socup	sociow	ion		spec_capa	_type	vity_t	_type	_t	ivity_moy	_t	pe_t	hydr_con	n_width	hanne	t eas	sl_t	s assum
KEM02A	20040319 09:38	20040319 10:57	106.00	111 00	_10	µ ass	1 74F-05	0	Ч	_'4	Ч	1 43E-05	0	0	2.87E-06	5.00	11_0		b	b eu_sb
KFM02A	20040319 11:09	20040319 14:15	111 00	116.00			5.38E-05	0				4 44E-05	0	0	8.88E-06	5.00				
	20040319 14:35	20040319 16:26	116.00	121.00			1 59E-04	0				1 31E-04	1	0	2.62E-05	5.00				
KFM02A	20040319 16:37	20040319 18:03	121.00	126.00			8.35E-05	0				6.90E-05	1	0	1.38E-05	5.00				
KFM02A	20040319 18:21	20040319 19:49	126.00	131.00			2.53E-08	0				2.09E-08	0	0	4 18E-09	5.00				
KEM02A	20040319 20:03	20040319 21:34	131.00	136.00			2.002.00	-1				2.002.00	0	-1		5.00				
KFM02A	20040319 21:44	20040319 23:08	136.00	141 00			1 01E-08	0				8 32E-09	0	0	1 66F-09	5.00				
KFM02A	20040320 10:36	20040320 11:33	141 00	146.00				-1				0.012 00	0	-1		5.00				
KFM02A	20040320 13:03	20040320 14:04	146.00	151.00				-1					0	-1		5.00				
KFM02A	20040320 14:16	20040320 15:14	151.00	156.00				-1					0	-1		5.00				
KFM02A	20040320 17:19	20040320 18:08	156.00	161.00			1.11E-09	0				9.17E-10	0	0	1.83E-10	5.00				
KFM02A	20040321 08:36	20040321 09:59	161.00	166.00			7.08E-07	0				5.84E-07	0	0	1.17E-07	5.00				
KFM02A	20040321 10:21	20040321 11:40	166.00	171.00			3.17E-07	0				2.62E-07	0	0	5.24E-08	5.00				
KFM02A	20040321 12:59	20040321 13:59	171.00	176.00			1.26E-06	0				1.04E-06	0	0	2.08E-07	5.00				
KFM02A	20040321 14:13	20040321 15:31	176.00	181.00			3.34E-08	0				2.76E-08	0	0	5.52E-09	5.00				
KFM02A	20040321 15:39	20040321 16:53	181.00	186.00			3.40E-07	0				2.81E-07	0	0	5.61E-08	5.00				
KFM02A	20040322 06:30	20040322 07:58	186.00	191.00				-1					0	-1		5.00				
KFM02A	20040322 08:15	20040322 09:38	191.00	196.00				-1					0	-1		5.00				
KFM02A	20040322 09:57	20040322 11:22	196.00	201.00			1.75E-10	-1				1.44E-10	0	-1	2.89E-11	5.00				
KFM02A	20040322 12:41	20040322 13:49	201.00	206.00				-1					0	-1		5.00				
KFM02A	20040322 14:03	20040322 15:03	206.00	211.00				-1					0	-1		5.00				
KFM02A	20040322 15:34	20040322 16:33	211.00	216.00				-1					0	-1		5.00				
KFM02A	20040322 16:55	20040322 18:11	216.00	221.00			3.72E-07	0				3.07E-07	0	0	6.14E-08	5.00				
KFM02A	20040322 18:23	20040322 19:14	221.00	226.00				-1					0	-1		5.00				
KFM02A	20040322 19:23	20040322 20:52	225.00	230.00			2.08E-07	0				1.72E-07	0	0	3.44E-08	5.00				
KFM02A	20040322 21:01	20040322 22:17	226.00	231.00			2.02E-07	0				1.67E-07	0	0	3.34E-08	5.00				
KFM02A	20040322 22:26	20040322 23:17	231.00	236.00			3.21E-10	-1				2.65E-10	0	-1	5.30E-11	5.00				
KFM02A	20040322 23:28	20040323 00:45	236.00	241.00			3.11E-10	-1				2.57E-10	0	-1	5.14E-11	5.00				
KFM02A	20040323 06:26	20040323 07:55	241.00	246.00			4.82E-09	0				3.98E-09	0	0	7.96E-10	5.00				
KFM02A	20040323 08:13	20040323 09:43	246.00	251.00			1.66E-09	0				1.37E-09	0	0	2.74E-10	5.00				
KFM02A	20040323 09:59	20040323 11:38	251.00	256.00			1.14E-09	0				9.42E-10	0	0	1.88E-10	5.00				
KFM02A	20040323 12:31	20040323 14:04	256.00	261.00			8.23E-10	0				6.79E-10	0	0	1.36E-10	5.00				
KFM02A	20040328 13:43	20040328 15:00	259.50	264.50			3.17E-09	0				2.62E-09	0	0	5.23E-10	5.00				
KFM02A	20040328 11:02	20040328 12:18	264.50	269.50			5.81E-07	0				4.80E-07	0	0	9.60E-08	5.00				
KFM02A	20040328 09:39	20040328 10:53	269.50	274.50			1.55E-07	0				1.28E-07	0	0	2.56E-08	5.00				
KFM02A	20040328 08:15	20040328 09:30	271.00	276.00			7.59E-07	0				6.26E-07	0	0	1.25E-07	5.00				

					soct	sec	:	valuo	trans	valuo	he	transmiss	he	valu		formatio	width	Lm	u_ moa	
					ion	I _cl	spec_capa	_type	vity_t	_type	_t	ivity_moy	_t	pe_t	hydr_con	n_width	hanne	t eas	sl_t	s assum
Idcode	start_date	stop_date	secup	seciow	_no	p ass		_q_s	q	_tq	q	e	m o	_ m		_D	0_I	מז_ו מ	D	b ea_sb
	20040324 06:55	20040324 08:31	276.00	281.00			6.08E-07	0				5.02E-07	0	0	1.00E-07	5.00				
	20040324 06.44	20040324 10.12	201.00	200.00			1.30E-00	0				1.12E-00	0	0	2.24E-07	5.00				
KFM02A	20040324 10:28	20040324 11:56	286.00	291.00			2.73E-06	0				2.25E-06	0	0	4.51E-07	5.00				
KFM02A	20040324 12:56	20040324 14:16	291.00	296.00			2.70E-06	0				2.23E-06	0	0	4.46E-07	5.00				
KFM02A	20040324 14:28	20040322 15:46	296.00	301.00			1.44E-06	0				1.19E-06	0	0	2.38E-07	5.00				
KFM02A	20040324 15:59	20040324 17:16	301.00	306.00			2.03E-08	0				1.67E-08	0	0	3.35E-09	5.00				
KFM02A	20040324 17:31	20040324 18:48	306.00	311.00			1.07E-09	0				8.79E-10	0	0	1.76E-10	5.00				
KFM02A	20040324 18:58	20040324 20:34	311.00	316.00			2.69E-10	-1				2.22E-10	0	-1	4.43E-11	5.00				
KFM02A	20040324 20:41	20040324 21:20	316.00	321.00				-1					0	-1		5.00				
KFM02A	20040324 22:12	20040324 23:01	401.00	406.00				-1					0	-1		5.00				
KFM02A	20040324 23:09	20040324 23:52	406.00	411.00				-1					0	-1		5.00				
KFM02A	20040325 07:35	20040325 08:25	411.00	416.00			4.70E-08	0				3.88E-08	0	0	7.75E-09	5.00				
KFM02A	20040325 08:43	20040325 10:04	416.00	421.00			1.13E-06	0				9.34E-07	0	0	1.87E-07	5.00				
KFM02A	20040325 10:23	20040325 11:43	421.00	426.00			1.72E-07	0				1.42E-07	0	0	2.85E-08	5.00				
KFM02A	20040325 13:03	20040325 14:21	426.00	431.00			1.09E-06	0				9.00E-07	0	0	1.80E-07	5.00				
KFM02A	20040325 14:33	20040325 15:50	431.00	436.00			5.40E-09	0				4.46E-09	0	0	8.92E-10	5.00				
KFM02A	20040325 15:59	20040325 17:13	436.00	441.00			7.23E-08	0				5.96E-08	0	0	1.19E-08	5.00				
KFM02A	20040325 17:25	20040325 18:42	441.00	446.00			1.26E-09	0				1.04E-09	0	0	2.08E-10	5.00				
KFM02A	20040325 18:54	20040325 20:11	446.00	451.00			9.67E-09	0				7.99E-09	0	0	1.60E-09	5.00				
KFM02A	20040325 20:22	20040325 21:37	451.00	456.00			4.24E-08	0				3.50E-08	0	0	7.00E-09	5.00				
KFM02A	20040325 22:43	20040326 00:02	456.00	461.00			2.34E-09	0				1.93E-09	1	0	3.86E-10	5.00				
KFM02A	20040326 06:46	20040326 08:07	461.00	466.00			3.91E-09	0				3.23E-09	0	0	6.46E-10	5.00				
KFM02A	20040326 08:23	20040326 09:42	466.00	471.00			2.42E-09	0				1.99E-09	0	0	3.99E-10	5.00				
KFM02A	20040326 10:01	20040326 10:46	471.00	476.00				-1					0	-1		5.00				
KFM02A	20040326 11:04	20040326 12:26	476.00	481.00			1.03E-07	0				8.49E-08	0	0	1.70E-08	5.00				
KFM02A	20040326 13:41	20040326 14:59	481.00	486.00			1.60E-08	0				1.32E-08	0	0	2.63E-09	5.00				
KFM02A	20040326 15:37	20040326 16:54	486.00	491.00			8.78E-08	0				7.25E-08	0	0	1.45E-08	5.00				
KFM02A	20040326 17:04	20040326 18:19	491.00	496.00			7.13E-09	0				5.88E-09	0	0	1.18E-09	5.00				
KFM02A	20040326 18:30	20040326 19:48	496.00	501.00			2.90E-08	0				2.39E-08	0	0	4.78E-09	5.00				
KFM02A	20040326 20:01	20040326 21:19	501.00	506.00			1.82E-09	0				1.50E-09	0	0	3.00E-10	5.00				
KFM02A	20040326 21:33	20040326 22:50	506.00	511.00			3.51E-08	0				2.90E-08	1	0	5.80E-09	5.00				
KFM02A	20040327 09:44	20040327 10:37	511.00	516.00			2.47E-06	0				2.03E-06	1	0	4.07E-07	5.00				
KFM02A	20040327 10:49	20040327 11:43	516.00	521.00				-1					0	-1		5.00				
KFM02A	20040327 12:44	20040327 13:35	541.00	546.00				-1					0	-1		5.00				
KFM02A	20040327 13:48	20040327 14:33	546.00	551.00				-1					0	-1		5.00				
KFM02A	20040327 14:40	20040327 15:25	551.00	556.00				-1					0	-1		5.00				

idcode	start_date	stop_date	secup	seclow	sect ion _no	sec len l _cl p ass	spec_capa city_q_s	value _type _q_s	trans missi vity_t q	value _type _tq	bc _t q	transmiss ivity_moy e	bc _t m	valu e_ty pe_t m	hydr_con d_moye	formatio n_width _b	width _of_c hanne I_b	I_m t eas b I_tb	u_ mea sl_t b	s assum b ed_sb
KFM02A	20040327 15:32	20040327 16:51	556.00	561.00			1.86E-09	0				1.54E-09	0	0	3.07E-10	5.00				

KFM02A plu_s_hole_test_ed1. Right (This result table to SICADA includes more columns which are empty, these columns are not presented here.)

			leakag e_fact	transmissi	valu e_ty	bc	I_measl	u_meas	stora tivity	assumed	leak age _ko	hydr _co nd_	valu e_ty pe_	l_mea s_limit	u_me as_lim	spec_ storag	ass ume d_s		с	stor _rati	inter flow _co		
idcode	secup	seclow	or_lf	vity_tt	pe_tt	_tt	_q_s	l_q_s	_s	_s	eff	ks	ks	_ks	it_ks	e_ss	S	С	d skin	0	eff	dt1	dt2
KFM02A	103.50	203.50		4.42E-04	0	1	1.1E-08	6.5E-04		1.00E-06									-4.55			500	1800
KFM02A	201.00	301.00		7.87E-06	0	1	8.2E-10	4.9E-05		1.00E-06									-3.35			400	1800
KFM02A	301.00	401.00		5.42E-10	0	0	8.0E-10	4.8E-05		1.00E-06								2.04E-10	-2.80			400	1800
KFM02A	401.00	501.00		1.31E-06	0	1	7.3E-10	4.4E-05		1.00E-06									-3.36			80	1800
KFM02A	501.00	601.00			0	0	5.8E-10	3.5E-05		1.00E-06													
KFM02A	601.00	701.00		2.90E-11	-1	0	4.7E-10	2.8E-05		1.00E-06								5.09E-10				900	1800
KFM02A	701.00	801.00		2.14E-11	-1	0	6.8E-10	4.1E-05		1.00E-06								5.94E-10				900	1800
KFM02A	801.00	901.00		3.65E-09	0	1	8.4E-10	5.0E-05		1.00E-06								1.96E-10	0.98			30	1800
KFM02A	103.50	123.50		3.43E-04	0	1	1.1E-08	6.3E-04		1.00E-06									-5.70			300	900
KFM02A	121.00	141.00		2.42E-04	0	1	2.2E-09	1.3E-04		1.00E-06									6.90			300	1300
KFM02A	141.00	161.00		5.37E-09	0	1	8.3E-10	5.0E-05		1.00E-06								4.49E-11	-1.43			100	1000
KFM02A	161.00	181.00		3.63E-06	0	1	7.8E-10	4.7E-05		1.00E-06									3.30			50	500
KFM02A	181.00	201.00		3.49E-07	0	0	7.3E-10	4.4E-05		1.00E-06									0.05			30	1200
KFM02A	201.00	221.00		5.85E-07	0	1	8.1E-10	4.9E-05		1.00E-06									4.00			40	1200
KFM02A	221.00	241.00		1.04E-07	0	1	8.2E-10	4.9E-05		1.00E-06									-2.85			80	400
KFM02A	241.00	261.00		9.36E-09	0	1	1.1E-09	6.5E-05		1.00E-06								7.53E-11	1.25			100	1200
KFM02A	261.00	281.00		1.45E-06	0	1	6.4E-10	3.8E-05		1.00E-06									-3.55			60	300
KFM02A	281.00	301.00		5.36E-06	0	1	8.1E-10	4.9E-05		1.00E-06									-4.03			50	1200
KFM02A	300.00	320.00		9.61E-08	0	1	8.4E-10	5.0E-05		1.00E-06								6.63E-11	6.75			40	300
KFM02A	301.00	321.00		6.07E-08	0	1	8.9E-10	5.3E-05		1.00E-06								6.66E-11	-0.23			70	130
KFM02A	401.00	421.00		8.51E-07	0	1	7.2E-10	4.3E-05		1.00E-06									-0.30			300	1000
KFM02A	421.00	441.00		1.39E-06	0	1	8.2E-10	4.9E-05		1.00E-06									1.55			30	1200
KFM02A	441.00	461.00		7.35E-08	0	1	8.2E-10	4.9E-05		1.00E-06									-2.20			60	300
KFM02A	461.00	481.00		2.85E-07	0	1	8.1E-10	4.9E-05		1.00E-06									5.00			100	1200
KFM02A	481.00	501.00		2.61E-07	0	1	8.2E-10	4.9E-05		1.00E-06									1.15			20	200

			leakag		valu				stora		leak age	hydr _co	valu e_ty	I_mea	u_me	spec_	ass ume			stor	inter flow		
idcode	SACUD	seclow	e_fact	transmissi	e_ty	bc #t	I_measl	u_meas	tivity	assumed	_ko	nd_	pe_	s_limit	as_lim	storag	d_s	c	C d skin	_rati	_CO	dt1	dt2
KEM02A	501.00	521.00	01_11	1.88E-06	0	1	7.7E-10	1 6E-05	_0	1.00E-06	CII	NO	N3	_10	11_10	0_00	3	0	-1 /3	U	CII	2	100
KFM02A	521.00	541.00		1.002 00	-1	0	8.3E-10	4.0E 00		1.00E-06									1.40			2	100
KFM02A	541.00	561.00		1 38F-09	0	1	7 6F-10	4 5E-05		1.00E-06									-1 46			2	100
KFM02A	561.00	581.00		2.64E-11	-1	0	7.7E-10	4.6E-05		1.00E-06								1.72E-11				-	
KFM02A	581.00	601.00		2.0.2	-1	0	8.3E-10	4.3E-05		1.00E-06													
KFM02A	103.50	108.50		2.25E-09	0	1	7.6E-10	4.6E-05		1.00E-06								1.82E-11	-1.70			100	500
KFM02A	106.00	111.00		3.88E-05	0	1	8.1E-10	4.9E-05		1.00E-06									5.00			200	1200
KFM02A	111.00	116.00		6.04E-05	0	1	1.4E-09	8.6E-05		1.00E-06									-2.00			60	200
KFM02A	116.00	121.00		3.98E-04	0	0	3.4E-09	2.0E-04		1.00E-06									5.50			20	1300
KFM02A	121.00	126.00		1.95E-04	0	0	2.0E-09	1.2E-04		1.00E-06									4.70			20	600
KFM02A	126.00	131.00		2.20E-08	0	1	6.7E-10	4.0E-05		1.00E-06									-2.20			10	100
KFM02A	131.00	136.00			-1	0	8.3E-10	5.7E-05		1.00E-06													
KFM02A	136.00	141.00		7.71E-09	0	1	8.0E-10	4.8E-05		1.00E-06									0.08			30	1500
KFM02A	141.00	146.00			-1	0	8.3E-10	7.2E-05		1.00E-06													
KFM02A	146.00	151.00			-1	0	8.3E-10	7.9E-05		1.00E-06													
KFM02A	151.00	156.00			-1	0	8.3E-10	2.6E-04		1.00E-06													
KFM02A	156.00	161.00		1.63E-09	0	1	7.0E-10	4.2E-05		1.00E-06								1.58E-11	4.44			200	1200
KFM02A	161.00	166.00		4.11E-07	0	1	8.2E-10	4.9E-05		1.00E-06									-2.55			20	600
KFM02A	166.00	171.00		4.27E-07	0	1	8.2E-10	4.9E-05		1.00E-06									1.65			10	1000
KFM02A	171.00	176.00		3.35E-06	0	1	7.6E-10	4.5E-05		1.00E-06									6.45			100	1000
KFM02A	176.00	181.00		3.31E-08	0	1	8.2E-10	4.9E-05		1.00E-06									0.15			30	200
KFM02A	181.00	186.00		5.37E-07	0	1	8.1E-10	4.9E-05		1.00E-06									2.85			20	1000
KFM02A	186.00	191.00			-1	0	8.3E-10	1.2E-04		1.00E-06													
KFM02A	191.00	196.00			-1	0	8.3E-10	4.3E-05		1.00E-06													
KFM02A	196.00	201.00		9.38E-12	-1	0	8.1E-10	4.9E-05		1.00E-06								9.17E-11				-	-
KFM02A	201.00	206.00			-1	0	8.3E-10	4.5E-05		1.00E-06													
KFM02A	206.00	211.00			-1	0	8.3E-10	4.6E-05		1.00E-06													
KFM02A	211.00	216.00			-1	0	8.3E-10	8.2E-05		1.00E-06													
KFM02A	216.00	221.00		2.01E-07	0	1	8.2E-10	4.9E-05		1.00E-06									-3.20			150	1200
KFM02A	221.00	226.00			-1	0	8.3E-10	4.3E-05		1.00E-06													
KFM02A	225.00	230.00		9.38E-08	0	1	8.2E-10	4.9E-05		1.00E-06									-3.20			100	700
KFM02A	226.00	231.00		1.11E-07	0	1	8.2E-10	4.9E-05		1.00E-06									-2.77			80	400
KFM02A	231.00	236.00		3.41E-11	-1	0	6.7E-10	4.0E-05		1.00E-06								3.67E-11				-	-
KFM02A	236.00	241.00		6.58E-11	-1	0	6.5E-10	3.9E-05		1.00E-06								1.38E-11				100	500
KFM02A	241.00	246.00		2.30E-09	0	1	7.4E-10	4.5E-05		1.00E-06								2.56E-11	-1.32			50	1200

			lashan								leak	hydr	valu	1			ass			-	inter		
			e_fact	transmissi	e_ty	bc	I_measl	u_meas	tivity	assumed	age _ko	_co nd_	e_ty pe_	s_limit	u_me as_lim	spec_ storag	ume d_s		с	_rati	_CO		
idcode	secup	seclow	or_lf	vity_tt	pe_tt	_tt	_q_s	l_q_s	_s	_s	eff	ks	ks	_ks	it_ks	e_ss	S	С	d skin	0	eff	dt1	dt2
KFM02A	246.00	251.00		1.15E-09	0	1	7.6E-10	4.6E-05		1.00E-06								1.85E-11	0.25			700	1200
KFM02A	251.00	256.00		9.13E-10	0	1	6.7E-10	4.0E-05		1.00E-06								1.92E-11	1.09			80	700
KFM02A	256.00	261.00		7.27E-10	0	1	7.0E-10	4.2E-05		1.00E-06								1.52E-11	1.38			50	1000
KFM02A	259.50	264.50		2.76E-09	0	1	8.2E-10	4.9E-05		1.00E-06								1.65E-11	1.10			300	1200
KFM02A	264.50	269.50		1.13E-06	0	1	8.1E-10	4.9E-05		1.00E-06									5.00			100	1200
KFM02A	269.50	274.50		1.54E-07	0	1	8.2E-10	4.9E-05		1.00E-06									-0.10			30	1200
KFM02A	271.00	276.00		1.13E-06	0	1	8.1E-10	4.9E-05		1.00E-06									-1.95			30	100
KFM02A	276.00	281.00		2.78E-07	0	1	7.8E-10	4.7E-05		1.00E-06									-4.70			100	300
KFM02A	281.00	286.00		2.58E-06	0	1	8.1E-10	4.9E-05		1.00E-06									-2.86			20	70
KFM02A	286.00	291.00		1.82E-06	0	1	9.2E-10	5.5E-05		1.00E-06									-4.32			20	80
KFM02A	291.00	296.00		3.64E-06	0	1	7.7E-10	4.6E-05		1.00E-06									0.40			50	1200
KFM02A	296.00	301.00		2.05E-06	0	1	8.1E-10	4.9E-05		1.00E-06									1.35			40	1200
KFM02A	301.00	306.00		6.24E-08	0	1	8.1E-10	4.8E-05		1.00E-06								2.57E-10	5.00			40	400
KFM02A	306.00	311.00		6.08E-10	0	1	7.6E-10	4.6E-05		1.00E-06								1.18E-11	0.77			10	300
KFM02A	311.00	316.00		3.92E-11	-1	0	4.2E-10	2.5E-05		1.00E-06								1.54E-11				200	1200
KFM02A	316.00	321.00			-1	0	8.3E-10	1.2E-04		1.00E-06													
KFM02A	401.00	406.00			-1	0	8.3E-10	7.5E-05		1.00E-06													
KFM02A	406.00	411.00			-1	0	8.3E-10	4.3E-05		1.00E-06													
KFM02A	411.00	416.00		4.58E-08	0	1	8.2E-10	4.9E-05		1.00E-06									0.25			60	1200
KFM02A	416.00	421.00		9.15E-07	0	1	1.1E-09	6.7E-05		1.00E-06									-1.93			100	300
KFM02A	421.00	426.00		2.30E-07	0	1	2.0E-09	1.2E-04		1.00E-06									1.75			50	400
KFM02A	426.00	431.00		1.15E-06	0	1	1.2E-09	7.4E-05		1.00E-06									2.58			100	1200
KFM02A	431.00	436.00		3.56E-09	0	1	8.2E-10	4.9E-05		1.00E-06									-0.20			100	1000
KFM02A	436.00	441.00		1.06E-07	0	1	8.2E-10	4.9E-05		1.00E-06									2.90			30	1000
KFM02A	441.00	446.00		7.27E-10	0	1	4.8E-10	2.9E-05		1.00E-06								1.28E-11	-0.28			200	1200
KFM02A	446.00	451.00		9.15E-09	0	1	8.2E-10	4.9E-05		1.00E-06								2.50E-11	-0.43			60	400
KFM02A	451.00	456.00		2.05E-08	0	1	8.2E-10	4.9E-05		1.00E-06									-2.57			110	1200
KFM02A	456.00	461.00		5.14E-09	0	0	8.2E-10	4.9E-05		1.00E-06								1.62E-11					
KFM02A	461.00	466.00		2.58E-09	0	1	9.8E-10	5.9E-05		1.00E-06								1.70E-11	0.05			100	1200
KFM02A	466.00	471.00		2.05E-09	0	1	8.4E-10	5.1E-05		1.00E-06								1.62E-11	1.10			30	600
KFM02A	471.00	476.00			-1	0	8.3E-10	8.1E-05		1.00E-06													
KFM02A	476.00	481.00		2.58E-07	0	1	8.1E-10	4.9E-05		1.00E-06									8.98			10	1200
KFM02A	481.00	486.00		1.03E-08	0	1	8.2E-10	4.9E-05		1.00E-06									-1.00			200	1200
KFM02A	486.00	491.00		8.14E-08	0	1	8.3E-10	5.0E-05		1.00E-06									0.05			30	1200
KFM02A	491.00	496.00		6.47E-09	0	1	8.2E-10	4.9E-05		1.00E-06								2.46E-11	1.63			170	1200
KFM02A	496.00	501.00		1.63E-08	0	1	8.2E-10	4.9E-05		1.00E-06									-2.05			30	200

idcode	secup	seclow	leakag e_fact or_lf	transmissi vity_tt	valu e_ty pe_tt	bc _tt	l_measl _q_s	u_meas I_q_s	stora tivity _s	assumed _s	leak age _ko eff	hydr _co nd_ ks	valu e_ty pe_ ks	l_mea s_limit _ks	u_me as_lim it_ks	spec_ storag e_ss	ass ume d_s s	с	c d skin	stor _rati o	inter flow _co eff	dt1	dt2
KFM02A	501.00	506.00		1.03E-09	0	1	8.1E-10	4.8E-05		1.00E-06								2.94E-11	-0.47			200	1200
KFM02A	506.00	511.00			0	0	6.8E-10	4.1E-05		1.00E-06													
KFM02A	511.00	516.00			0	0	8.2E-10	4.9E-05		1.00E-06													
KFM02A	516.00	521.00			-1	0	8.3E-10	5.5E-05		1.00E-06													
KFM02A	541.00	546.00			-1	0	8.3E-10	8.3E-05		1.00E-06													
KFM02A	546.00	551.00			-1	0	8.3E-10	7.5E-05		1.00E-06													
KFM02A	551.00	556.00			-1	0	8.3E-10	5.5E-05		1.00E-06													
KFM02A	556.00	561.00		2.68E-09	0	1	8.5E-10	5.1E-05		1.00E-06									-0.95			10	100

KFM02A plu_s_hole_test_obs

idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below
KFM02A	20040305 22:01	20040305 23:52	103.50	203.50		100.14	102.50	1029.47	1029.47	1029.47			
KFM02A	20040305 22:01	20040305 23:52	103.50	203.50		204.50	1002.44				2045.99	2046.13	2046.13
KFM02A	20040308 08:53	20040308 10:44	201.00	301.00		100.14	200.00	1988.47	1988.19	1988.75			
KFM02A	20040308 08:53	20040308 10:44	201.00	301.00		302.00	1002.44				3006.23	3006.64	3006.78
KFM02A	20040308 11:50	20040308 14:46	301.00	401.00		100.14	300.00	2976.73	2976.73	2977.29			
KFM02A	20040308 11:50	20040308 14:46	301.00	401.00		402.00	1002.44				3996.71	3997.12	3997.25
KFM02A	20040308 17:01	20040308 18:57	401.00	501.00		100.14	400.00	3965.27	3965.13	3965.27			
KFM02A	20040308 17:01	20040308 18:57	401.00	501.00		502.00	1002.44				4985.10	4985.38	4985.52
KFM02A	20040308 22:06	20040308 23:26	501.00	601.00		100.14	500.00	4954.37	4954.37	4954.37			
KFM02A	20040308 22:06	20040308 23:26	501.00	601.00		602.00	1002.44				5979.30	5978.75	5978.20
KFM02A	20040309 07:29	20040309 09:38	601.00	701.00		100.14	600.00	5941.25	5941.25	5941.25			
KFM02A	20040309 07:29	20040309 09:38	601.00	701.00		702.00	1002.44				6967.02	6965.91	6964.81
KFM02A	20040309 11:39	20040309 14:55	701.00	801.00		100.14	700.00	6926.48	6926.48	6926.48			
KFM02A	20040309 11:39	20040309 14:55	701.00	801.00		802.00	1002.44				7947.27	7947.00	7947.00
KFM02A	20040309 20:22	20040309 23:07	801.00	901.00		100.14	800.00	7909.22	7909.22	7909.50			
KFM02A	20040309 20:22	20040309 23:07	801.00	901.00		902.00	1002.44				9047.88	9040.71	9030.77
_													
KFM02A	20040318 14:48	20040318 16:09	103.50	123.50		100.14	102.50	1029.47	1029.47	1030.02			
KFM02A	20040318 14:48	20040318 16:09	103.50	123.50		124.50	1002.44				1255.54	1255.68	1255.54
KFM02A	20040315 14:41	20040315 18:10	121.00	141.00		100.14	120.00	1201.37	1207.30	1200.13			
KFM02A	20040315 14:41	20040315 18:10	121.00	141.00		142.00	1002.44				1427.26	1427.26	1427.26
KFM02A	20040315 19:23	20040315 21:45	141.00	161.00		100.14	140.00	1397.82	1397.82	1397.82			

	KFM02A	20040315 19:23	20040315 21:45	141.00	161.00	162.00	1002.44				1624.07	1623.93	1624.34
	KFM02A	20040315 23:23	20040316 00:30	161.00	181.00	100.14	160.00	1594.99	1594.99	1594.99			
	KFM02A	20040315 23:23	20040316 00:30	161.00	181.00	182.00	1002.44				1820.90	1821.45	1820.90
	KFM02A	20040316 06:51	20040316 08:13	181.00	201.00	100.14	180.00	1791.73	1791.59	1791.59			
	KFM02A	20040316 06:51	20040316 08:13	181.00	201.00	202.00	1002.44				2017.72	2018.00	2018.00
	KFM02A	20040316 08:45	20040316 10:04	201.00	221.00	100.14	200.00	1988.75	1988.61	1988.75			
	KFM02A	20040316 08:45	20040316 10:04	201.00	221.00	222.00	1002.44				2215.09	2215.09	2215.09
	KFM02A	20040316 10:27	20040316 11:43	221.00	241.00	100.14	220.00	2186.04	2185.90	2185.90			
	KFM02A	20040316 10:27	20040316 11:43	221.00	241.00	242.00	1002.44				2412.06	2412.20	2412.20
	KFM02A	20040316 12:30	20040316 13:47	241.00	261.00	100.14	240.00	2383.06	2383.06	2383.06			
	KFM02A	20040316 12:30	20040316 13:47	241.00	261.00	262.00	1002.44				2609.29	2609.29	2608.75
	KFM02A	20040316 14:04	20040316 15:19	261.00	281.00	100.14	260.00	2580.08	2579.94	2580.21			
	KFM02A	20040316 14:04	20040316 15:19	261.00	281.00	282.00	1002.44				2806.40	2813.57	2809.71
	KFM02A	20040318 11:34	20040318 12:24	281.00	301.00	100.14	280.00	2776.95	2777.64	2777.37			
	KFM02A	20040318 11:34	20040318 12:24	281.00	301.00	302.00	1002.44				3004.05	3004.33	3004.60
	KFM02A	20040316 19:37	20040316 21:15	300.00	320.00	100.14	299.00	2965.14	2965.28	2965.14			
	KFM02A	20040316 19:37	20040316 21:15	300.00	320.00	321.00	1002.44				3191.22	3191.22	3191.22
	KFM02A	20040316 17:50	20040316 19:16	301.00	321.00	100.14	300.00	2975.22	2975.08	2975.08			
	KFM02A	20040316 17:50	20040316 19:16	301.00	321.00	322.00	1002.44				3201.15	3201.01	3201.15
	KFM02A	20040316 22:41	20040317 00:09	401.00	421.00	100.14	400.00	3962.51	3962.51	3962.51			
	KFM02A	20040316 22:41	20040317 00:09	401.00	421.00	422.00	1002.44				4188.31	4188.86	4188.86
	KFM02A	20040317 06:18	20040317 07:35	421.00	441.00	100.14	420.00	4160.78	4160.64	4160.78			
	KFM02A	20040317 06:18	20040317 07:35	421.00	441.00	442.00	1002.44				4386.52	4386.52	4386.52
	KFM02A	20040317 08:11	20040317 09:26	441.00	461.00	100.14	440.00	4357.94	4357.94	4357.94			
	KFM02A	20040317 08:11	20040317 09:26	441.00	461.00	462.00	1002.44				4584.17	4583.89	4584.17
	KFM02A	20040319 07:54	20040319 09:26	103.50	108.50	100.14	102.50	1028.37	1028.37	1028.37			
	KFM02A	20040319 07:54	20040319 09:26	103.50	108.50	109.50	1002.44				1106.47	1106.47	1106.47
	KFM02A	20040319 09:38	20040319 10:57	106.00	111.00	100.14	105.00	1053.08	1053.22	1053.22			
	KFM02A	20040319 09:38	20040319 10:57	106.00	111.00	112.00	1002.44				1131.18	1132.70	1131.32
	KFM02A	20040319 11:09	20040319 14:15	111.00	116.00	100.14	110.00	1102.36	1102.36	1102.92			
	KFM02A	20040319 11:09	20040319 14:15	111.00	116.00	117.00	1002.44				1180.46	1182.66	1180.46
	KFM02A	20040319 14:35	20040319 16:26	116.00	121.00	100.14	115.00	1151.53	1155.81	1152.07			
	KFM02A	20040319 14:35	20040319 16:26	116.00	121.00	122.00	1002.44				1230.14	1230.14	1230.14
	KFM02A	20040319 16:37	20040319 18:03	121.00	126.00	100.14	120.00	1200.26	1207.30	1201.23			
ļ	KFM02A	20040319 16:37	20040319 18:03	121.00	126.00	127.00	1002.44				1279.29	1279.56	1279.83
ļ	KFM02A	20040319 18:21	20040319 19:49	126.00	131.00	100.14	125.00	1249.97	1249.97	1249.83			
ļ	KFM02A	20040319 18:21	20040319 19:49	126.00	131.00	132.00	1002.44				1328.69	1328.69	1328.97
ļ	KFM02A	20040319 20:03	20040319 21:34	131.00	136.00	100.14	130.00	1298.97	1298.97	1298.97			

KFM02A	20040319 20:03	20040319 21:34	131.00	136.00	137.00	1002.44				1377.97	1378.10	1378.10
KFM02A	20040319 21:44	20040319 23:08	136.00	141.00	100.14	135.00	1348.12	1348.12	1348.12			
KFM02A	20040319 21:44	20040319 23:08	136.00	141.00	142.00	1002.44				1427.26	1426.83	1427.26
KFM02A	20040320 10:36	20040320 11:33	141.00	146.00	100.14	140.00	1395.75	1395.62	1395.62			
KFM02A	20040320 10:36	20040320 11:33	141.00	146.00	147.00	1002.44				1475.28	1475.42	1475.28
KFM02A	20040320 13:03	20040320 14:04	146.00	151.00	100.14	145.00	1445.33	1445.33	1445.33			
KFM02A	20040320 13:03	20040320 14:04	146.00	151.00	152.00	1002.44				1524.97	1524.97	1524.97
KFM02A	20040320 14:16	20040320 15:14	151.00	156.00	100.14	150.00	1494.62	1494.62	1494.48			
KFM02A	20040320 14:16	20040320 15:14	151.00	156.00	157.00	1002.44				1574.11	1574.11	1574.11
KFM02A	20040320 17:19	20040320 18:08	156.00	161.00	100.14	155.00	1544.18	1544.18	1544.18			
KFM02A	20040320 17:19	20040320 18:08	156.00	161.00	162.00	1002.44				1623.79	1623.79	1623.79
KFM02A	20040321 08:36	20040321 09:59	161.00	166.00	100.14	160.00	1593.47	1593.61	1593.33			
KFM02A	20040321 08:36	20040321 09:59	161.00	166.00	167.00	1002.44				1672.38	1672.38	1672.38
KFM02A	20040321 10:21	20040321 11:40	166.00	171.00	100.14	165.00	1642.76	1642.62	1642.48			
KFM02A	20040321 10:21	20040321 11:40	166.00	171.00	172.00	1002.44				1721.52	1721.52	1722.07
KFM02A	20040321 12:59	20040321 13:59	171.00	176.00	100.14	170.00	1692.18	1692.18	1692.18			
KFM02A	20040321 12:59	20040321 13:59	171.00	176.00	177.00	1002.44				1771.07	1771.62	1771.76
KFM02A	20040321 14:13	20040321 15:31	176.00	181.00	100.14	175.00	1741.61	1741.48	1741.34			
KFM02A	20040321 14:13	20040321 15:31	176.00	181.00	182.00	1002.44				1821.17	1820.90	1820.90
KFM02A	20040321 15:39	20040321 16:53	181.00	186.00	100.14	180.00	1791.04	1791.04	1791.04			
KFM02A	20040321 15:39	20040321 16:53	181.00	186.00	187.00	1002.44				1870.03	1870.03	1870.59
KFM02A	20040322 06:30	20040322 07:58	186.00	191.00	100.14	185.00	1841.29	1841.29	1841.29			
KFM02A	20040322 06:30	20040322 07:58	186.00	191.00	192.00	1002.44				1920.83	1920.83	1920.83
KFM02A	20040322 08:15	20040322 09:38	191.00	196.00	100.14	190.00	1890.45	1890.72	1890.99			
KFM02A	20040322 08:15	20040322 09:38	191.00	196.00	197.00	1002.44				1969.95	1969.95	1970.51
KFM02A	20040322 09:57	20040322 11:22	196.00	201.00	100.14	195.00	1940.69	1940.69	1940.69			
KFM02A	20040322 09:57	20040322 11:22	196.00	201.00	202.00	1002.44				2020.21	2020.21	2020.76
KFM02A	20040322 12:41	20040322 13:49	201.00	206.00	100.14	200.00	1989.71	1989.57	1989.85			
KFM02A	20040322 12:41	20040322 13:49	201.00	206.00	207.00	1002.44				2069.07	2068.93	2068.80
KFM02A	20040322 14:03	20040322 15:03	206.00	211.00	100.14	205.00	2039.00	2038.86	2039.00			
KFM02A	20040322 14:03	20040322 15:03	206.00	211.00	212.00	1002.44				2118.20	2118.48	2118.48
KFM02A	20040322 15:34	20040322 16:33	211.00	216.00	100.14	210.00	2088.15	2088.29	2088.15			
KFM02A	20040322 15:34	20040322 16:33	211.00	216.00	217.00	1002.44				2167.61	2167.61	2167.61
KFM02A	20040322 16:55	20040322 18:11	216.00	221.00	100.14	215.00	2137.44	2137.30	2137.30			
KFM02A	20040322 16:55	20040322 18:11	216.00	221.00	222.00	1002.44				2216.76	2216.76	2216.76
KFM02A	20040322 18:23	20040322 19:14	221.00	226.00	100.14	220.00	2187.01	2186.59	2186.45			
KFM02A	20040322 18:23	20040322 19:14	221.00	226.00	227.00	1002.44				2266.02	2266.30	2265.88
KFM02A	20040322 19:23	20040322 20:52	225.00	230.00	100.14	224.00	2226.21	2226.21	2226.77			
KFM02A	20040322 19:23	20040322 20:52	225.00	230.00	231.00	1002.44				2305.64	2305.78	2305.64

...

KFM02A	20040322 21:01	20040322 22:17	226.00	231.00	100.14	225.00	2236.43	2236.29	2236.71			
KFM02A	20040322 21:01	20040322 22:17	226.00	231.00	232.00	1002.44				2315.58	2315.58	2315.58
KFM02A	20040322 22:26	20040322 23:17	231.00	236.00	100.14	230.00	2285.87	2285.73	2285.87			
KFM02A	20040322 22:26	20040322 23:17	231.00	236.00	237.00	1002.44				2364.86	2364.72	2364.72
KFM02A	20040322 23:28	20040323 00:45	236.00	241.00	100.14	235.00	2334.74	2335.01	2335.01			
KFM02A	20040322 23:28	20040323 00:45	236.00	241.00	242.00	1002.44				2413.85	2413.85	2413.85
KFM02A	20040323 06:26	20040323 07:55	241.00	246.00	100.14	240.00	2384.71	2384.57	2384.71			
KFM02A	20040323 06:26	20040323 07:55	241.00	246.00	247.00	1002.44				2463.13	2463.27	2462.99
KFM02A	20040323 08:13	20040323 09:43	246.00	251.00	100.14	245.00	2433.87	2433.87	2433.87			
KFM02A	20040323 08:13	20040323 09:43	246.00	251.00	252.00	1002.44				2512.26	2512.26	2512.68
KFM02A	20040323 09:59	20040323 11:38	251.00	256.00	100.14	250.00	2483.15	2483.15	2483.01			
KFM02A	20040323 09:59	20040323 11:38	251.00	256.00	257.00	1002.44				2561.81	2561.41	2561.27
KFM02A	20040323 12:31	20040323 14:04	256.00	261.00	100.14	255.00	2532.71	2532.85	2532.71			
KFM02A	20040323 12:31	20040323 14:04	256.00	261.00	262.00	1002.44				2611.23	2611.10	2611.50
KFM02A	20040328 13:43	20040328 15:00	259.50	264.50	100.14	258.50	2566.55	2566.82	2566.41			
KFM02A	20040328 13:43	20040328 15:00	259.50	264.50	265.50	1002.44				2645.19	2644.63	2644.63
KFM02A	20040328 11:02	20040328 12:18	264.50	269.50	100.14	263.50	2615.98	2615.98	2615.56			
KFM02A	20040328 11:02	20040328 12:18	264.50	269.50	270.50	1002.44				2694.46	2695.57	2695.43
KFM02A	20040328 09:39	20040328 10:53	269.50	274.50	100.14	268.50	2665.26	2665.12	2665.26			
KFM02A	20040328 09:39	20040328 10:53	269.50	274.50	275.50	1002.44				2744.01	2744.01	2744.01
KFM02A	20040328 08:15	20040328 09:30	271.00	276.00	100.14	270.00	2680.17	2679.76	2679.62			
KFM02A	20040328 08:15	20040328 09:30	271.00	276.00	277.00	1002.44				2758.36	2760.57	2759.47
KFM02A	20040324 06:55	20040324 08:31	276.00	281.00	100.14	275.00	2730.84	2730.98	2730.98			
KFM02A	20040324 06:55	20040324 08:31	276.00	281.00	282.00	1002.44				2810.82	2814.27	2812.47
KFM02A	20040324 08:44	20040324 10:12	281.00	286.00	100.14	280.00	2780.13	2780.54	2780.68			
KFM02A	20040324 08:44	20040324 10:12	281.00	286.00	287.00	1002.44				2859.40	2865.61	2862.16
KFM02A	20040324 10:28	20040324 11:56	286.00	291.00	100.14	285.00	2829.97	2829.97	2829.83			
KFM02A	20040324 10:28	20040324 11:56	286.00	291.00	292.00	1002.44				2911.30	2913.51	2909.64
KFM02A	20040324 12:56	20040324 14:16	291.00	296.00	100.14	290.00	2877.89	2878.71	2878.44			
KFM02A	20040324 12:56	20040324 14:16	291.00	296.00	297.00	1002.44				2956.98	2958.23	2957.12
KFM02A	20040324 14:28	20040322 15:46	296.00	301.00	100.14	295.00	2928.00	2928.00	2927.59			
KFM02A	20040324 14:28	20040322 15:46	296.00	301.00	302.00	1002.44				3005.98	3005.84	3005.71
KFM02A	20040324 15:59	20040324 17:16	301.00	306.00	100.14	300.00	2977.29	2977.29	2976.73			
KFM02A	20040324 15:59	20040324 17:16	301.00	306.00	307.00	1002.44				3054.84	3054.84	3054.84
KFM02A	20040324 17:31	20040324 18:48	306.00	311.00	100.14	305.00	3026.43	3026.16	3025.89			
KFM02A	20040324 17:31	20040324 18:48	306.00	311.00	312.00	1002.44				3103.98	3103.98	3103.98
KFM02A	20040324 18:58	20040324 20:34	311.00	316.00	100.14	310.00	3075.59	3075.45	3075.59			
KFM02A	20040324 18:58	20040324 20:34	311.00	316.00	317.00	1002.44				3153.67	3153.12	3153.67
KFM02A	20040324 20:41	20040324 21:20	316.00	321.00	100.14	315.00	3124.74	3124.74	3124.74			

KFM02A	20040324 20:41	20040324 21:20	316.00	321.00	322.00	1002.44				3202.53	3202.39	3202.25
KFM02A	20040324 22:12	20040324 23:01	401.00	406.00	100.14	400.00	3964.31	3964.17	3964.17			
KFM02A	20040324 22:12	20040324 23:01	401.00	406.00	407.00	1002.44				4041.45	4041.45	4042.01
KFM02A	20040324 23:09	20040324 23:52	406.00	411.00	100.14	405.00	4013.88	4013.46	4013.88			
KFM02A	20040324 23:09	20040324 23:52	406.00	411.00	412.00	1002.44				4091.14	4091.14	4091.14
KFM02A	20040325 07:35	20040325 08:25	411.00	416.00	100.14	410.00	4063.03	4062.89	4063.03			
KFM02A	20040325 07:35	20040325 08:25	411.00	416.00	417.00	1002.44				4140.56	4141.11	4140.83
KFM02A	20040325 08:43	20040325 10:04	416.00	421.00	100.14	415.00	4112.45	4112.32	4112.18			
KFM02A	20040325 08:43	20040325 10:04	416.00	421.00	422.00	1002.44				4189.96	4190.79	4189.96
KFM02A	20040325 10:23	20040325 11:43	421.00	426.00	100.14	420.00	4162.29	4161.74	4161.88			
KFM02A	20040325 10:23	20040325 11:43	421.00	426.00	427.00	1002.44				4239.65	4239.51	4239.10
KFM02A	20040325 13:03	20040325 14:21	426.00	431.00	100.14	425.00	4210.89	4211.03	4211.03			
KFM02A	20040325 13:03	20040325 14:21	426.00	431.00	432.00	1002.44				4288.80	4288.80	4288.80
KFM02A	20040325 14:33	20040325 15:50	431.00	436.00	100.14	430.00	4260.18	4260.60	4260.74			
KFM02A	20040325 14:33	20040325 15:50	431.00	436.00	437.00	1002.44				4338.21	4337.93	4337.93
KFM02A	20040325 15:59	20040325 17:13	436.00	441.00	100.14	435.00	4309.88	4309.75	4309.88			
KFM02A	20040325 15:59	20040325 17:13	436.00	441.00	442.00	1002.44				4387.76	4388.31	4388.72
KFM02A	20040325 17:25	20040325 18:42	441.00	446.00	100.14	440.00	4359.18	4359.18	4359.04			
KFM02A	20040325 17:25	20040325 18:42	441.00	446.00	447.00	1002.44				4439.38	4438.41	4438.41
KFM02A	20040325 18:54	20040325 20:11	446.00	451.00	100.14	445.00	4408.74	4408.60	4408.18			
KFM02A	20040325 18:54	20040325 20:11	446.00	451.00	452.00	1002.44				4487.54	4487.54	4487.54
KFM02A	20040325 20:22	20040325 21:37	451.00	456.00	100.14	450.00	4458.45	4458.17	4457.89			
KFM02A	20040325 20:22	20040325 21:37	451.00	456.00	457.00	1002.44				4537.10	4536.83	4536.69
KFM02A	20040325 22:43	20040326 00:02	456.00	461.00	100.14	455.00	4507.59	4507.59	4507.59			
KFM02A	20040325 22:43	20040326 00:02	456.00	461.00	462.00	1002.44				4586.38	4586.38	4585.82
KFM02A	20040326 06:46	20040326 08:07	461.00	466.00	100.14	460.00	4556.75	4556.19	4556.19			
KFM02A	20040326 06:46	20040326 08:07	461.00	466.00	467.00	1002.44				4635.65	4635.65	4635.51
KFM02A	20040326 08:23	20040326 09:42	466.00	471.00	100.14	465.00	4605.34	4605.34	4605.34			
KFM02A	20040326 08:23	20040326 09:42	466.00	471.00	472.00	1002.44				4684.66	4684.79	4685.20
KFM02A	20040326 10:01	20040326 10:46	471.00	476.00	100.14	470.00	4655.18	4655.05	4655.05			
KFM02A	20040326 10:01	20040326 10:46	471.00	476.00	477.00	1002.44				4734.34	4734.34	4734.34
KFM02A	20040326 11:04	20040326 12:26	476.00	481.00	100.14	475.00	4704.20	4704.47	4704.20			
KFM02A	20040326 11:04	20040326 12:26	476.00	481.00	482.00	1002.44				4783.20	4783.47	4783.47
KFM02A	20040326 13:41	20040326 14:59	481.00	486.00	100.14	480.00	4754.17	4753.76	4753.90			
KFM02A	20040326 13:41	20040326 14:59	481.00	486.00	487.00	1002.44				4832.48	4832.62	4832.62
KFM02A	20040326 15:37	20040326 16:54	486.00	491.00	100.14	485.00	4803.05	4802.63	4802.50			
KFM02A	20040326 15:37	20040326 16:54	486.00	491.00	492.00	1002.44				4881.89	4881.75	4881.20
KFM02A	20040326 17:04	20040326 18:19	491.00	496.00	100.14	490.00	4852.76	4852.20	4852.20			
KFM02A	20040326 17:04	20040326 18:19	491.00	496.00	497.00	1002.44				4931.03	4931.30	4931.99

11												1
KFM02A	20040326 18:30	20040326 19:48	496.00	501.00	100.14	495.00	4901.90	4901.77	4901.90			
KFM02A	20040326 18:30	20040326 19:48	496.00	501.00	502.00	1002.44				4980.58	4980.58	4980.58
KFM02A	20040326 20:01	20040326 21:19	501.00	506.00	100.14	500.00	4951.74	4951.60	4951.60			
KFM02A	20040326 20:01	20040326 21:19	501.00	506.00	507.00	1002.44				5030.27	5029.99	5030.27
KFM02A	20040326 21:33	20040326 22:50	506.00	511.00	100.14	505.00	5001.31	5001.17	5000.76			
KFM02A	20040326 21:33	20040326 22:50	506.00	511.00	512.00	1002.44				5079.68	5079.40	5079.40
KFM02A	20040327 09:44	20040327 10:37	511.00	516.00	100.14	510.00	5049.77	5049.77	5049.90			
KFM02A	20040327 09:44	20040327 10:37	511.00	516.00	517.00	1002.44				5137.38	5136.28	5137.38
KFM02A	20040327 10:49	20040327 11:43	516.00	521.00	100.14	515.00	5099.06	5098.64	5098.50			
KFM02A	20040327 10:49	20040327 11:43	516.00	521.00	522.00	1002.44				5195.35	5193.69	5192.59
KFM02A	20040327 12:44	20040327 13:35	541.00	546.00	100.14	540.00	5345.50	5345.37	5345.37			
KFM02A	20040327 12:44	20040327 13:35	541.00	546.00	547.00	1002.44				5440.62	5439.38	5438.27
KFM02A	20040327 13:48	20040327 14:33	546.00	551.00	100.14	545.00	5394.94	5394.52	5394.52			
KFM02A	20040327 13:48	20040327 14:33	546.00	551.00	552.00	1002.44				5494.17	5492.37	5490.72
KFM02A	20040327 14:40	20040327 15:25	551.00	556.00	100.14	550.00	5444.09	5443.95	5443.67			
KFM02A	20040327 14:40	20040327 15:25	551.00	556.00	557.00	1002.44				5549.66	5546.90	5544.83
KFM02A	20040327 15:32	20040327 16:51	556.00	561.00	100.14	555.00	5493.37	5493.24	5492.82			
KFM02A	20040327 15:32	20040327 16:51	556.00	561.00	562.00	1002.44				5602.93	5593.96	5590.10