P-04-34

Forsmark site investigation

Stratigraphical investigation of till in machine cut trenches

Martin Sundh, Gustav Sohlenius, Anna Hedenström
Geological survey of Sweden (SGU)

March 2004

Svensk Kärnbränslehantering AB
Swedish Nuclear Fuel
and Waste Management Co
Box 5864
SE-102 40 Stockholm Sweden
Tel 08-459 8400
+46 84598400
Fax 08-6615719
+4686615719

Forsmark site investigation

Stratigraphical investigation of till in machine cut trenches

Martin Sundh, Gustav Sohlenius, Anna Hedenström
Geological survey of Sweden (SGU)

March 2004

Keywords: Till stratigraphy, Till fabric, Grain size, CaCO_{3}-content, Forsmark, AP PF 400-02-12, Field note: Forsmark 153.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Contents

1 Introduction 5
2 Objective and scope 7
3 Equipment 9
3.1 Description of equipment 9
4 Execution 11
4.1 Preparations 11
4.2 Data handling 11
4.3 Analyses 12
5 Results 15
5.1 Introduction 15
5.2 Stratigraphy and physical properties of the till 15
5.3 Clast fabric analysis and glacial striae 22
5.4 Summary 23
6 References 25
Appendix 1 Stratigraphic sequences documented in sketches 27
Appendix 2 Clast fabric analysis in till presented in diagrams 51

1 Introduction

SKB performs site investigations for location of a deep repository for high level radioactive waste. The site investigations are performed at two sites: Forsmark and Oskarshamn. This document report the data gained in "Forsmark site investigation - Stratigraphical investigations of till in machine cut trenches", see Figure 1-1. The activities were performed according to the Activity Plan PF 400-02-12. The methods used are described in SKB MD 131.001.

Figure 1-1. Map over the investigation area at Forsmark. Black line marks the candidate area for repository site investigations. Green dots marks investigated sites in machine cut trenches. Background map is simplified after the new revised map of unconsolidated Quaternary deposits at Forsmark /11/.

2 Objective and scope

The study aims to get information of the stratigraphy, distribution and physical properties of the till, especially to get information of the distribution and stratigraphic relation between till of sandy- and clayey composition. The investigations were carried out during the dry summer period of August 2003. Trenches to a maximum depth of some 5 m were excavated at 21 localities (Figure 1-1). The stratigraphic sequence was documented at each site and clast fabric analyses were conducted on selected till layers in order to evaluate ice transport directions.

Laboratory analyses were carried out on selected samples in order to characterise the physical properties of the till.

In this report we present information on stratigraphical data, analysis of grain size, CaCO_{3}-content and clast fabric.

3 Equipment

3.1 Description of equipment

An excavator capable to reach depths of c 5 m was used for trenching during the stratigraphical work (Figure 3-1). Trench walls were cleaned manually by using shovels, scrapers etc and were then documented in sketches and photographs (Figure 3-2).

GPS (hand held) was used for positioning in the terrain. A mirror compass was used to measure the directions of encountered glacial striae on outcrops. A special made compass with a libel was used for clast fabric measurement.

Analyses of grain size and CaCO_{3}-content were carried out according to $/ 14,15,16 /$.

Figure 3-1. Excavator capable to reach depths of c 5 m was used for trenching.

Figure 3-2. Trench walls were manually cleaned before examination and documentation of the stratigraphical sequence.

4 Execution

The methods used are described in detail in SKB MD 131.001. The results from mapping of unconsolidated Quaternary deposits at Forsmark /13/, has been a guideline in choosing sites for the stratigraphical investigations.

Machine cut trenches was excavated at 21 locations. Trench walls were cleaned manually by using shovels, scrapers etc and afterwards documented in sketches and photographs. Clast fabric analyses were performed in glacial till at 10 investigation sites including one performed at an earlier available pit (PFM004761), altogether 13 fabric samples. Grain size distribution and CaCO_{3}-content was analysed on 32 selected samples.

4.1 Preparations

The handheld GPS was controlled every day at a point with a known position (6699539 N, 1631321 E). This control defined a precision better than $\pm 5 \mathrm{~m}$.

4.2 Data handling

The position of stratigraphical observations was measured with GPS. The dates of the observations were recorded and all were given unique id-numbers (PFM- or LFM-series). All points and dates were later stored in SICADA database. The geological information connected to the id-numbers was stored in SGU's database (Jorddagboken version 5.4.3). Data from the SGU database were exported to Excel files, which were delivered to SKB (see CD) and stored under Field note Forsmark 153.

The deliverables to SKB for the stratigraphical investigations of till in machine cut trenches during 2003 includes:

- Stratigraphical data of till deposits (SICADA).
- Data from clast fabric measurements (SICADA).
- Results of grain size- and CaCO_{3}-analyses (SICADA).
- Grain size analyses presented in diagrams, 32 analyses (File archive/Field note Forsmark 153).
- Digital sketches and photographs, 23 sketches and 22 photographs (File archive/Field note Forsmark 153, sketches are also presented in Appendix 1).
- Clast fabric analysis presented in diagrams, 13 diagrams (File archive/Field note Forsmark 153, also presented in Appendix 2).

4.3 Analyses

Grain size analyses on material < 20 mm , was carried out on 32 samples at SWECO, Geolab in Stockholm. The grain size distribution of coarse material ($20-0.063 \mathrm{~mm}$) was determined by sieving and finer material $(<0.063 \mathrm{~mm})$ by using a hydrometer. The content of CaCO_{3} was determined (SWECO, Geolab) on the same 32 samples (grain size $<0.063 \mathrm{~mm}$) using Passons apparatus $/ 16 /$. Colour of the samples were determined according to $/ 6 /$. The analytical data is stored in the SKB SICADA database. Grain size distribution diagrams are stored in the SKB file archive under Field note Forsmark 153.

Clast fabric analyses were performed on glacial till at 10 investigation sites, altogether 13 fabric samples (see Table 4-1), according to /1/. A horizontal surface was first prepared in a suitable till layer, clasts were then exposed systematically by gentle scraping. Elongated particles up to 60 mm in length were measured. The relationship between the a axis ($=$ long axis) and b axis ($=$ intermediate axis) was always larger than $3 / 2$. The direction and dip of the a axis was measured on at least 50 particles in each fabric sample except for one fabric sample, i.e. (PFM002583), which was stopped after 21 measured particles when showing a random orientation. The data is stored in the SKB SICADA database. Clast fabric data presented in diagrams and tables are stored in the SKB file archive under Field note Forsmark 153 and also presented in Appendix 2.

Three-dimensional vector analysis was used to extract the eigenvectors (V1, V2 and V3) and normalized eigenvalues (S1, S2 and S3) in the diagrams presented in Appendix 2. Eigenvector V1 refers to the direction of maximum clustering, and V3 to that of minimum clustering. The eigenvector V1 are regarded as significant when the S3-values are lower than 0.227 . Values within brackets, i.e. statistical proposed directions of vector V1, are reconsidered to transport-directions shown without brackets.

The eigenvalues summarize fabric strength or degree of clustering. S1 measures the strength of clustering about the mean axis V1. S1-values >0.7 is regarded as strong orientation, values <0.5 is regarded as random orientation.

Table 4-1. Summary of the statistic values from fabric measurement.

Id-code	Depth (\mathbf{m})	V1 $\left({ }^{\circ}\right)$	S1	S3	\mathbf{C}	\mathbf{N}
PFM004761	0.5	353	0.722	0.098	1.993	57
PFM002578	2.5	313	0.797	$0 ., 047$	2.839	51
PFM002581	2.4	2	0.613	0.060	2.321	50
PFM002583	1.0	277	0.574	0.064	2.196	21
PFM002586	1.1	329	0.688	0.043	2.773	50
PFM002588	2.1	337	0.800	0.060	2.586	50
PFM002589	1.3	331	0.824	0.060	2.615	50
PFM002589	2.4	$339(159)$	0.783	0.039	2.990	50
PFM002590	2.3	322	0.795	0.059	2.598	50
PFM002592	1.2	318	0.839	0.035	3.167	50
PFM002592	2.8	327	0.796	0.064	2.525	50
PFM002594	0.6	3	0.918	0.017	3.986	50
PFM002594	1.4	$332(152)$	0.852	0.047	2.888	50

The strength parameter $\mathrm{C}, \ln (\mathrm{S} 1 / \mathrm{S} 3)$, expresses the "strength" of the preferred orientation in the data sample. A high C-value indicates that the clustering/girdling is strong. A value over 1.9 denotes a confidence level of 90% if N is 50 or more /17/.

The shape parameter $\mathrm{K}, \ln \mathrm{S} 1 / \mathrm{S} 2) / \ln (\mathrm{S} 2 / \mathrm{S} 3)$, expresses the gradient of a line joining the graph origin to the point representing the sample. K ranges from zero (uniaxial girdles) to infinite (uniaxial clusters). High K-values indicate a clustered distribution (see Appendix 2).

N is the number of measured particles in each sample.

5 Results

5.1 Introduction

The investigated area at Forsmark (Figure 1-1) is mainly a flat slightly undulating terrain with a maximum elevation of c 20 m above sea level. The most common Quaternary deposit is glacial till. The detailed mapping of the Quaternary deposits in the Forsmark area has shown that the grain size composition of the till-cover varies over the area. Sandy till is the most common type but a clayey till is also present and covers large areas, mainly in the eastern part of the investigation area $/ 8,9,11 /$.

Machine dug trenches were carried out at 21 sites (Figure 1-1) to investigate the composition and stratigraphical distribution of the till and, where possible, the stratigraphic relation between till beds. The stratigraphic sequence at each site was documented in a sketch, see Appendix 1.

5.2 Stratigraphy and physical properties of the till

The investigated area can in a broad sense be divided in two separate areas of different till types, see Figure 1-1. The western part is characterised by till of sandy or sandy-silty composition, while the eastern part is characterised by till of clayey composition. Analysed samples from this investigation show that the CaCO_{3}-content is generally high in both till types, varying between $16-28 \%$ in till of a sandy to sandy-silty composition and between $9-32 \%$ in till of a clayey composition. The CaCO_{3}-content emanates from Palaeozoic limestone, which is known from the sea floor north of the investigation area. According to earlier investigations the clayey till has a north south distribution, covering large parts of the coastal region from northern Gräsö down to Norrtälje /10/.

Results from the documentation of stratigraphy, till composition, fabric and striae measurements are summarised in Table 5-1, sketches from each site are presented in Appendix1.

The map of Quaternary deposits (Figure 1-1) gives a rather accurate picture of the distribution of the two till types, at least in the uppermost part of the till. The excavation results support the outlined picture with sandy till dominating in the western part and clayey till in the eastern part. But a clayey till was also encountered in the western part at site (PFM002581), where a clayey till was revealed deeper down in the stratigraphy under a sandy-silty till, (see Figure 5-1). In the eastern part, the till composition is commonly clayey even at the uppermost part of the till (Figure 5-2). The average thickness of the till also seems to be greater in the eastern part; depths of more than 7 m respectively 9 m were reported from drillings in the area around Storskäret (PFM002572, PFM002464) /5, 4/.

Figure 5-1. Sandy till overlaying till of clayey composition, the till beds are separated by an erosive, sharp contact (PFM002581).

Figure 5-2. The clayey till often constitutes of compact, homogeneous boulder clay in the area around Storskäret (PFM002592).

Table 5-1. Documentation of stratigraphy, till composition, fabric and striae bearing measurements summarised from each investigation site.

Id-number	Description of till unit	Depth (m)	Fabric (${ }^{\circ}$)	Striae (${ }^{\circ}$) / bedrock
PFM004761	Sandy	0-1.6	353	/ not reached
PFM002576	Sandy-silty, boulder rich surface	0.4-5.2		/ not reached
PFM002577	Sandy-silty, wave-washed surface, resting on bedrock	0.3-0.9		$\begin{aligned} & \text { younger } 350 \\ & \text { older } 310 \end{aligned}$
PFM002578	1 Sandy-silty, stone-enriched surface	0-0.5		
	2 Clayey sandy-silty, the layer ceases in a vertical contact towards sandy-silty till	0.5-1.9		
	3 Sandy-silty, resting on bedrock	1.9-4.2	313	300
PFM002579	1 Sandy-silty, gravel on clay in surface	0.4-0.7		
	2 Sandy, resting on bedrock	0.7-1.4		younger 350 older 320
PFM002580	Sandy, gravel on clay in surface	0.6-5.0		/ not reached
PFM002581	1 Sandy with erosive contact against unit 2, gravel on clay in surface	0.4-0.9		
	2 Clayey sandy-silty - boulder clay	0.9-5.0	2	/ not reached
PFM002582	1 Sandy-slided mtrl? Gravel in surface, glacial clay beneath.	0.4-0.7		
	2 Clayey - stonerich, sandy layer beneath	1.0-1.3		
	3 Sandy, resting on bedrock	1.6-2.6		no striaes /
PFM002583	Sandy, stonerich with stone-enriched surface	0.2-2.1	random	345
PFM002584	Sandy, resting on bedrock	0.2-0.9		355
PFM002585	Sandy, resting on bedrock	0.4-1.2		355
PFM002586	Sandy, stonerich with stone-enriched surface	0.2-1.8	329	320
PFM002587	1 Sandy, local or ablation till	0.2-2.8		
	2 Sandy, resting on bedrock	2.8-3.3		no striaes /
PFM002588	1 Sandy-silty, stonerich	0.4-1.2		
	2 Clayey sandy-silty	1.2-1.9		
	3 Boulder clay	1.9-2.9	337	
	4 Sandy-silty, resting on bedrock	2.9-3.1		younger 350 older 320
PFM002589	1 Clayey sandy-silty	0-2.0	331	
	2 Boulder clay	2.0-4.3	339	
	3 Sandy	4.3-5.0		/ not reached
PFM002590	1 Sandy-silty	0.2-1.2		
	2 Clayey sandy-silty, resting on fragmented rock	1.2-4.6	322	no striaes /
PFM002591	1 Clayey gravelly, not consistent layer	0-1.3		
	2 Clayey sandy silty	1.3-3.5		/ not reached
PFM002592	1 Clayey sandy silty	0.2-1.6	318	
	2 Boulder clay	1.6-4.1	327	/ not reached
PFM002593	1 Clayey sandy silty	0.4-1.4		
	2 Boulder clay	1.4-3.6		/ not reached
PFM002594	1 Clayey sandy-silty	0-1.2	3	
	2 Clayey and sandy-silty layers builds up the till	1.2-4.0	332	/ not reached
PFM002595	Clayey sandy-silty, resting on an uneven bedrock-surface	0-1.2		younger 360-20 older 285
PFM004514	1 Clayey sandy-silty	0-1.2		
	2 Sandy, steep contact against unit 1, underlain by glacial clay	1.2-1.4		
	3 Boulder clay	1.4-2.4		
	4 clayey sandy-silty	2.4-3.0		/ not reached

Complex stratigraphical sequences were revealed at some places. At investigation site PFM002578 a clayey till layer (clay content 13.5%) was found incorporated in a dominantly sandy-silty till, (see sketch Appendix 1). A similar stratigraphic sequence has also been reported from a percussion borehole adjacent to PFM002578, i.e. HFM005 close to KFM02 $/ 12 /$, which could imply that these two sites are situated on a transition zone between the sandy and clayey till types. This is also implied in the Map of unconsolidated Quaternary deposits /11/.

Another complex stratigraphical sequence was revealed at site PFM004514, in the south east, where a layer of glacial varved clay was found beneath one metre of clayey till. The clayey till had a diagonal erosive contact against a sandy till (Figure 5-3).

The varved clay is eroded and folded in the contact against the overlaying till sequence and is consolidated like ordinary varved clay. Analyses of the varved clay show a clay content of 66.5% and a calcareous content of 12%. This is comparable for the properties of varved glacial clay observed in several lakes within the area $/ 2,3 /$. The varved clay is

Figure 5-3. The layer of varved clay is up to 0.5 m in thickness, eroded and folded in its upper part (PFM004514).
deposited on top of boulder clay with a non-erosive contact; deeper down is the boulder clay followed by a till with dominating sandy composition. This till sequence in the surface is clearly dislocated to its present position, but the nature behind this process is not clearly understood. Till transported by an oscillating ice could be an option but there is no other information in support for this scenario. A more likely explanation, is that the till material slid down on the glacial clay from the existing small hillocks nearby.

The till with a clayey composition has, as previous mentioned, also been encountered in the western part of the investigation area, i.e. at investigation site PFM002581 (see sketch Appendix 1). A clayey till was revealed under a sandy-silty till at a depth of 1.9 m . Grain size analyses of a sample from the upper part of the clayey till have a clay content of 11%, at greater depth it transforms into boulder clay with a clay content of 19%. The CaCO_{3}-content in the upper part is 24% and diminishes with depth to 18%. The most striking physical property of the clayey till at (PFM002581) is it's extreme degree of consolidation to the extent that it even resisted ordinary machine digging methods (Figure 5-4). An excavator ripper had to be used to be able to cut in to the hard till.

Figure 5-4. The attachment to the excavator bucket broke under the attempts to cut into the extremely hard clayey till (PFM002581).

The contact between the two till beds is sharp and erosive with, in some places, sharp edged lumps of hard clayey till incorporated into the base of the overlaying sandy-silty till (Figure 5-5). The high consolidation degree of the clayey till was apparently already existent before deposition of the overlaying sandy-silty till.

Occurrence of clayey till under sandy till was also encountered at Eckarfjärden (probing borehole SFM0016) during drillings in the western part, carried out within the hydrogeological program during the winter and spring 2003 /4/.

An ice transport direction from north seems to be logical for the deposition of the clayey till. This assumption is based on the high CaCO_{3}-content emanating from Palaeozoic limestone, which is present at the sea bottom north of the area, and the high clay content in the till.
The high clay content in the boulder clay is most likely derived from redeposit sedimentary clay; e.g. investigation sites PFM002578 and PFM002592 (see Appendix 1). On both sites small lumps of sedimentary clay was detected in the till matrix and analysis of a sample from PFM002592 holds a clay content of 32.2%. Furthermore, the high content of well rounded stones, a high percentage of limestone, and the massive, homogeneous texture of the boulder clay gives an impression of a fairly long transported material. Considering these circumstances, the most likely area for the ice to pick up ingredients to form the clayey till, is situated at the bottom of the sea, north of the investigated area.

Figure 5-5. The erosive contact between the two till beds, sharp edged lumps of clayey till intercalate into the base of overlaying sandy-silty till (PFM002581).

The sandy till is totally dominated by Precambrian bedrock material but has, in spite of that, also a high CaCO_{3}-content. The dominating Precambrian bedrock material in the sandy till speaks in favour of a transport direction from approx. north-west. A north-west to south-east trend is also detected in the geochemical anomalies of the element distribution in till at Forsmark /7/. Stones and small boulders of Ordovician limestone occur locally in the sandy till and are, according to earlier investigations $/ 10 /$, also found in various amounts in the fine gravel fraction with steadily diminishing amounts westwards. The CaCO_{3}-content in the sandy till is a bit puzzling, but could possibly have been inherited from erosion of the clayey till. Occurrences of sandy till covering clayey till was, as earlier mentioned, revealed within the investigated area and is also reported from other parts of north eastern Uppland /10/.

5.3 Clast fabric analysis and glacial striae

The performed clast fabric analyses does not however support the transport scenario mentioned above, (see Table 4-1 and diagrams in Appendix 2). The dominating transport direction is from north-west according to fabric analyses, regardless whether it is a sandy, sandy-silty or a clayey till. The only exceptions from this trend are two fabric analysis performed around 0.5 m below the surface (PFM004761, PFM002594) and one fabric analysis performed at 2.4 m below the surface (the hard clayey till at PFM002581), which all indicates a dominating transport direction from north. Fabric results indicating a deposition from north respectively north east has also been reported earlier for the uppermost part of the till, (i.e. PFM002801 and PFM002802), just north of PFM004761/12/.

The till at site PFM004761 is however of a sandy composition, while the till sequence at site PFM002594 is of a clayey composition. A fabric analysis performed deeper down at PFM002594, at a depth of 1.4 m , inferred however a transport direction from north-west. The hard, durable clayey till at site PFM002581 is the only one that lives up to the expectations of an ice transport direction from north for the deposition of the clayey till.

Polished bedrock with glacial striae was found at the bottom at nine of the trenches, (see Table 5-1). Glacial striae formed from north-west ($300-320^{\circ}$) were found at five of these localities, whilst glacial striae with more northerly directions (345-20) were found at seven localities. At three localities, where both glacial striae system were found together (PFM002577, PFM002579 and PFM002588), it could be determined that the glacial striae formed from north-west is the oldest.

The younger striae from the north were mostly found at shallow depths, less than 1.5 m , and most likely has the younger ice flows from north only influenced the upper parts of the till deposits in the area. A pronounced stone enrichment resembling reworked material was also noticed in the upper most meter of the till, at many sites. Fabric analysis performed in till at shallow depth, (i.e. sites PFM004761, PFM002594) and as earlier mentioned also reported from sites PFM002801 and PFM002802, show an inferred transport direction from north and at the latter site from north east.

The older striae from north-west coincide with the inferred transport direction according to fabric analysis performed in deeper till layers. The complex stratigraphical sequence at site PFM002578, where a clayey till layer abruptly ceases in a vertical contact against surrounding sandy-silty till, is most likely explained by the redeposit of clayey till. The sandy-silty till has, according to a fabric analysis beneath the clayey till, an inferred transport direction from north-west. Ice flows from north-west seems to be responsible for most of the transportation and deposition of sandy and clayey till in the area.

The hard, durable clayey till at site PFM002581 has, compared to most of the clayey till deposits, a diverging transport direction from the north. The hard clayey till is homogeneous in texture and seems to have escaped erosion from younger ice flows due to an existent high degree of consolidation, but perhaps also due to a sheltered location. Occurrence of clayey till beneath a dominantly sandy till is also reported from drillings in the western part, as earlier mentioned. This can imply that an old clayey till already was existent in the area before the ice flows from north-west commenced. Erosion and redeposit of an older clayey till by ice flows from north-west could be the explanation for the dominating north-west fabric of the clayey till.

If this is the case we have to anticipate that the region has been affected by both older and younger ice flows from the north. It seems that younger ice flows from north have had little effect on the till deposits in the area which is in contrast to the abundance of northerly glacial striae found on the bedrock outcrops in the area. The combined effect of older as well as younger ice flows from north could in this context be the explanation for the dominantly northerly glacial striae found on the bedrock outcrops in the region. Younger striae from north and north-east are most likely to have been formed under the deglaciation phase. The age of a possibly older ice flow from north is uncertain. According to fabric analysis it must have been succeeded by ice flows from north-west and finally from north, and could possibly even be older than the old striae systems from north-west found on outcrops in the region.

5.4 Summary

- The till in the western part of the investigated area is dominantly of a sandy to sandysilty composition, while till in the eastern part is dominantly of a clayey composition.
- Till with a clayey composition has also been found at some locations in the western part, but deeper down in the stratigraphy, disguised and overlain by sandy till.
- The CaCO_{3}-content is generally high in both types of till. The clayey till has often a clay content of 10% or more in its upper parts, but transcends often with depth into boulder clay (clay content over 15%).
- Both the sandy and the clayey till types have according to fabric analysis a dominating transport direction from north-west. This is a somewhat surprisingly transport direction regarding the clayey till, with its high calcareous and clay content. The explanation could be re-deposited clayey till, by ice flows from north-west.
- A transport direction from north has been detected at some locations for the uppermost part of the sandy and the clayey till.
- The hard, clayey till found deeper down in the stratigraphy in the western part has, according to fabric, a transport direction from the north.
- This raises the possibility of an old ice flow from north, which originally could have transported and deposited the clayey till in the area.
- The till stratigraphy in the western part is, according to this investigation, dominated by a sandy till. The sandy till is often continuing down to the bedrock, or down to the limit for the excavations at c 4-5 m, but is also found in places where it is overlaying the clayey till.
- The till stratigraphy in the eastern part constitutes dominated by clayey till. The clayey till often transcend with depth into boulder clay. The stratigraphy seems to be consistent down to depths of c 4-5 m . The depth down to the bedrock seems to be considerably greater in this part and the stratigraphy further down is consequently more uncertain.
- There seem to be a transition zone between the two areas of dominantly sandy respectively clayey types of till. The till stratigraphy is more complicated with probably, redeposit strata of clayey till, incorporated in sandy till.

6 References

/1/ Dowdeswell J A, Sharp M, 1986. Characterization of pebble fabrics in modern terrestial glacigenic sediments. Sedimentology 33, 699-710.
/2/ Hedenström A, 2003. Forsmark site investigation, Investigation of marine and lacustrine sediment in lakes. Field data. SKB P-03-24, Svensk Kärnbränslehantering AB.

13/ Hedenström A, 2004. Forsmark site investigation, Investigation of marine and lacustrine sediment in lakes. Stratigraphical and field data. SKB P-04-86, Svensk Kärnbränslehantering AB.
/4/ Hedenström A, Sohlenius G, Albrecht J, 2004. Forsmark site investigation Stratigraphical and analytical data from auger drillings and pits. SKB P-04-111, Svensk Kärnbränslehantering AB.
/5/ Johansson P-O, 2003. Forsmark site investigation, Drilling and sampling in soil. Installation of groundwater monitoring wells and surface water level gauges. SKB P-03-64. Svensk Kärnbränslehantering AB.
/6/ Munsell Soil Color Charts, 1994. Macbeth Division of Kollmorgan Instruments Corporation, New Widsor.

17/ Nilsson B, 2003. Forsmark site investigation, Element Distribution in Till at Forsmark - a Geochemical Study. SKB P-03-118, Svensk Kärnbränslehantering AB.
/8/ Persson Ch, 1985. The Quaternary map Östhammar NO. Geological Survey of Sweden, Ae 73.

19/ Persson Ch, 1986. The Quaternary map Österlövsta SO/Grundkallen SV. Geological Survey of Sweden, Ae 76.
/10/ Persson Ch, 1992. The latest ice recession and till deposits in northern Uppland, eastern central Sweden. SGU Ca 81, 217-224.
/11/ Sohlenius G, Hedenström A, Rudmark L, 2004. Investigations at Forsmark, Mapping of unconsolidated Quaternary deposits 2002-2003. SKB R-04-39, Svensk Kärnbränslehantering AB.
/12/ Sohlenius G, Rudmark L, 2003. Forsmark site investigation, Mapping of unconsolidated Quaternary deposits. Stratigraphical and analytical data. SKB P-03-14, Svensk Kärnbränslehantering AB.
/13/ Sohlenius G, Rudmark L, Hedenström A, 2003. Forsmark, Mapping of unconsolidated Quaternary deposits. Field data 2002. SKB P-03-11, Svensk Kärnbränslehantering AB.
/14/ Standardiseringskommissionen i Sverige (SIS), 1992a. Geotekniska provtagningsmetoder - Kornfördelning - Siktning. Svensk Standard, SS 0271 23, 4 pp .
/15/ Standardiseringskommissionen i Sverige (SIS), 1992b. Geotekniska provtagningsmetoder - Kornfördelning - Sedimentering, hydrometermetoden. Svensk Standard, SS 0271 24, 7 pp.
/16/ Talme O, Almén K-E, 1975. Jordartsanalys. Laboratorieanvisningar, del 1. Department of Quaternary Research, Stockholm University, 133 pp.
/17/ Woodcock N H, Naylor M A, 1983. Randomness testing in three dimensional orientation data. Journal of Structural Geology, Vol 5, 539-548.
Stratigraphic sequences documented in sketches
Sveriges geelogiska undersoknning - Jordlagerföljd
${ }_{75128}$ Uppsala

Jordlagerföljd

igser med
narkytan.
Enstaka

$$
91
$$

Jordlagerföljd

$$
\begin{array}{r}
\text { Lallera. Sopinamn } \\
8 / 82
\end{array}
$$

PFMOO2580_S1

Rödbrun varvig gleciallera
Gränsen mellin glacilleran och det diamiktuna
lagret utgörs av eft tunt (2mm) siltskikt.
 ngsaxeln parallell med
Enstaka "kilformade" strukturer med högre stenhalt och ngt. groure sammansättning (mellansandig) förehommer ned till. calmis diup a bacben. Delilun

毫

Jordlagerföljd
Sveriges
Box 670
75128 Uppsala

Flack morany fa, svagt sluttande mot duster.
$\left.\right|^{\text {Andan }}$

massan, aven ovittrad
finsten fraktionen.
Vatten sipprar fram i

remes
Privaraz

Jordlagerföljd \quad U

PFMO02587S

Mank ind ove
bom moll
$\frac{\text { arovesensumumi) }}{1}$
Droppat bleck i glacialleran der
PFM002588_S1
 2
$\left.\left.\right|^{\text {sthathatantor }}\right|^{\text {Dom. mul }}$
$\xrightarrow{\text { Tak } n \text { I }}$

ふ§ Kan utgöra en on

- kallusten och Kalkstensfragnent Gott on Vertikala axiderade sprichori in moránen. Vertikala axiderade st ned till underlagrande oupp-
Zigger som en indistinkt kappa
óver berggrunden.
Rotdjup 0,3m
$P_{0}=$ partikelorientering

Jordlagerföljd

 Grundvyta Flack moränytaSveriges geologiska undersolkning
${ }_{75128}$ Uppsala

$$
8
$$

N

1113
-

L-si

点

siltig

Jordlagerföljd

Appendix 2

Clast fabric analysis in till presented in diagrams

Clast-fabric analysis in till presented in diagrams with tables showing the statistic values

Data obtain from clast-fabric is plotted as three-dimensional orientation data (StereoNet for Windows, version 3.01). The principal eigenvector V1, marked as a star, is also presented in the StereoNet Graphical circles.

The plot-statistics over Eigenvectors and Eigenvalues are presented in a table beneath each diagram.

Clast-fabric analysis plotted as three-dimensional orientation data is presented from the following investigated sites:

Id -code	Depth (m)
PFM004761	0.5
PFM002578	2.5
PFM002581	2.4
PFM002583	1,0
PFM002586	1.1
PFM002588	2.1
PFM002589	1.3
PFM002589	2.4
PFM002590	2.3
PFM002592	1.2
PFM002592	2.8
PFM002594	0.6
PFM002594	1.4

EIGENVECTORS

$1 \mathrm{~m} \quad \mathrm{n}$ Strike Dip
$\mathrm{V} 1=\begin{array}{llllll}0.991 & -0.122 & 0.054 & 352.977 & 3.104\end{array}$
$\mathrm{V} 2=\begin{array}{llllll} & 0.120 & 0.992 & 0.035 & 83.085 & 2.003\end{array}$
$\mathrm{V} 3=-0.058-0.028 \quad 0.998 \quad 205.87386 .305$

EIGENVALUES

Lambda1 $=41.154 \mathrm{~S} 1=0.722$
Lambda2 $=10.239$ S2 $=0.180$
Lambda3 $=5.608 \mathrm{~S} 3=0.098$
S1/S2= 4.020
$\mathrm{S} 2 / \mathrm{S} 3=1.826$
$\mathrm{S} 1 / \mathrm{S} 3=7.339$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.391 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.602$
$\mathrm{C}=1.993$
$\mathrm{K}=2.311$
$\mathrm{N}=57$


```
    EIGENVECTORS
    l m n Strike Dip
V1= 0.676-0.734 0.057 312.648 3.263
V2=-0.723-0.648 0.240 221.839 13.892
V3= 0.139 0.204 0.969 55.588 75.714
EIGENVALUES
Lambdal=40.635 S1= 0.797
Lambda2 \(=7.988 \mathrm{~S} 2=0.157\)
Lambda3 \(=2.377\) S3 \(=0.047\)
S1/S2 \(=5.087\)
S2/S3 \(=3.360\)
S1/S3= 17.095
\(\mathrm{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.627 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.212\)
\(\mathrm{C}=2.839\)
\(\mathrm{K}=1.342\)
\(\mathrm{N}=51\)
```


EIGENVECTORS

1 m n Strike Dip
$\mathrm{V} 1=0.997 \quad 0.032 \quad 0.074 \quad 1.8254 .248$
$\mathrm{V} 2=-0.032 \quad 0.999 \quad 0.00491 .840 \quad 0.204$
$\mathrm{V} 3=-0.074-0.006 \quad 0.997184 .57885 .747$

EIGENVALUES

Lambda1 $=30.659 \mathrm{~S} 1=0.613$
Lambda2 $=16.331$ S2 $=0.327$
Lambda3 $=3.011 \mathrm{~S} 3=0.060$
S1/S2 $=1.877$
$\mathrm{S} 2 / \mathrm{S} 3=5.424$
S1/S3 $=10.184$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=0.630 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.691$
$\mathrm{C}=2.321$
$K=0.372$
$\mathrm{N}=50$

Lower hemisphere - Lagerföljd PFM002583, lager 2, djup 1m u my, Fabric

EIGENVECTORS

1	m	n	Strike	Dip
$\mathrm{V} 1=$	0.124	-0.986	0.113	277.155
6.490				
$\mathrm{~V} 2=$	0.986	0.135	0.100	7.807
5.711				
$\mathrm{~V} 3=-0.113$	0.099	0.989	138.846	81.339

EIGENVALUES
Lambda1 $=12.055 \mathrm{~S} 1=0.574$
Lambda2 $=7.604 \mathrm{~S} 2=0.362$
Lambda3 $=1.341 \mathrm{~S} 3=0.064$
S1/S2 $=1.585$
S2/S3 $=5.671$
S1/S3= 8.990
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=0.461 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.735$
$\mathrm{C}=2.196$
$\mathrm{K}=0.265$
$\mathrm{N}=21$

EIGENVECTORS

1 m n Strike Dip
V1 $=0.853-0.520 \quad 0.049328 .650 \quad 2.815$
$\mathrm{V} 2=-0.520-0.840 \quad 0.156 \quad 238.2078 .949$
$\mathrm{V} 3=\begin{array}{lllll}0.040 & 0.158 & 0.987 & 75.948 & 80.612\end{array}$
EIGENVALUES
Lambda $=34.402 \mathrm{~S} 1=0.688$
Lambda2 $=13.449$ S2 $=0.269$
Lambda3 $=2.149 \mathrm{~S} 3=0.043$
S1/S2 $=2.558$
$\mathrm{S} 2 / \mathrm{S} 3=6.260$
$\mathrm{S} 1 / \mathrm{S} 3=16.012$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=0.939 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.834$
$\mathrm{C}=2.773$
$\mathrm{K}=0.512$
$\mathrm{N}=50$

EIGENVECTORS

1 m n Strike Dip
$\mathrm{V} 1=0.923-0.3830 .046337 .483 \quad 2.625$
$\mathrm{V} 2=0.342 \quad 0.868 \quad 0.360 \quad 68.49621 .076$
$\mathrm{V} 3=-0.177-0.316 \quad 0.932 \quad 240.71368 .745$
EIGENVALUES
Lambdal $=40.014 \mathrm{~S} 1=0.800$
Lambda2 $=6.973 \mathrm{~S} 2=0.139$
Lambda3 $=3.013 \mathrm{~S} 3=0.060$
S1/S2= 5.739
$\mathrm{S} 2 / \mathrm{S} 3=2.314$
$\mathrm{S} 1 / \mathrm{S} 3=13.280$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.747 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.839$
$\mathrm{C}=2.586$
$\mathrm{K}=2.082$
$\mathrm{N}=50$

EIGENVECTORS				
1	m	n	Strike	Dip
V1 $=0.871$	-0.491	0.016	330.557	0.941
V2 $=-0.486$	-0.856	0.177	240.388	10.218
V3 $=0.073$	0.162	0.984	65.765	79.738

EIGENVALUES

Lambda1=41.186 S1= 0.824
Lambda2 $=5.800 \mathrm{~S} 2=0.116$
Lambda3 $=3.014 \mathrm{~S} 3=0.060$
S1/S2= 7.102
S2/S3= 1.924
S1/S3= 13.665
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.960 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.654$
$\mathrm{C}=2.615$
$\mathrm{K}=2.995$
$\mathrm{N}=50$

> | EIGENVECTORS | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 1 | m | n | Strike | Dip |
| $\mathrm{V} 1=-0.929$ | 0.364 | 0.067 | 158.603 | 3.847 |
| $\mathrm{~V} 2=0.367$ | 0.882 | 0.295 | 67.415 | 17.144 |
| $\mathrm{~V} 3=-0.048$ | -0.298 | 0.953 | 260.846 | 72.404 |

EIGENVALUES
Lambdal $=39.163$ S1 $=0.783$
Lambda2 $=8.868 \mathrm{~S} 2=0.177$
Lambda3 $=1.969 \mathrm{~S} 3=0.039$
$\mathrm{S} 1 / \mathrm{S} 2=4.416$
S2/S3 $=4.503$
$\mathrm{S} 1 / \mathrm{S} 3=19.886$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.485 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.505$
$\mathrm{C}=2.990$
$\mathrm{K}=0.987$
$\mathrm{N}=50$

EIGENVECTORS

1 m n Strike Dip
$\mathrm{V} 1=0.793-0.609 \quad 0.007322 .449 \quad 0.378$
$\mathrm{V} 2=-0.609-0.7930 .006 \quad 232.447 \quad 0.350$
$\mathrm{V} 3=-0.002 \quad 0.0091 .000 \quad 99.67589 .485$

EIGENVALUES

Lambda1 $=39.760 \mathrm{~S} 1=0.795$
Lambda2 $=7.282 \mathrm{~S} 2=0.146$
Lambda3 $=2.958 \mathrm{~S} 3=0.059$
S1/S2 $=5.460$
$\mathrm{S} 2 / \mathrm{S} 3=2.462$
$\mathrm{S} 1 / \mathrm{S} 3=13.440$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.697 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.901$
$\mathrm{C}=2.598$
$\mathrm{K}=1.884$
$\mathrm{N}=50$

>	EIGENVECTORS				
1	m	n	Strike	Dip	
V1 $=0.737$	-0.669	0.093	317.792	5.356	
V2= $=-0.673$	-0.740	0.015	227.710	0.876	
V3= $=-0.059$	0.074	0.996	128.449	84.573	

EIGENVALUES

Lambda1 $=41.948$ S1 $=0.839$
Lambda2 $=6.284 \mathrm{~S} 2=0.126$
Lambda3 $=1.768 \mathrm{~S} 3=0.035$
S1/S2 $=6.676$
$\mathrm{S} 2 / \mathrm{S} 3=3.555$
S1/S3=23.730
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.898 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.268$
$\mathrm{C}=3.167$
$\mathrm{K}=1.497$
$\mathrm{N}=50$

EIGENVECTORS

1 m n Strike Dip
$\mathrm{V} 1=0.837-0.5380 .103327 .2445 .894$
$\mathrm{V} 2=\begin{array}{llllll}0.534 & 0.843 & 0.068 & 57.647 & 3.902\end{array}$
$\mathrm{V} 3=-0.123-0.002 \quad 0.992 \quad 180.97582 .924$
EIGENVALUES
Lambdal=39.808 S1= 0.796
Lambda2 $=7.005 \mathrm{~S} 2=0.140$
Lambda3 $=3.187 \mathrm{~S} 3=0.064$
S1/S2= 5.683
S2/S3 $=2.198$
$\mathrm{S} 1 / \mathrm{S} 3=12.491$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=1.738 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.787$
$\mathrm{C}=2.525$
$\mathrm{K}=2.206$
$\mathrm{N}=50$

EIGENVECTORS				
1	m	n	Strike	Dip
V1 $=0.999$	0.054	0.008	3.107	0.441
V2= $=0.054$	0.969	0.239	93.216	13.844
V3 $=0.006$	-0.239	0.971	271.317	76.149

EIGENVALUES

Lambda $1=45.892 \mathrm{~S} 1=0.918$
Lambda2 $=3.256 \mathrm{~S} 2=0.065$
Lambda3 $=0.852 \mathrm{~S} 3=0.017$
S1/S2= 14.093
$\mathrm{S} 2 / \mathrm{S} 3=3.822$
$\mathrm{S} 1 / \mathrm{S} 3=53.863$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=2.646 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=1.341$
$\mathrm{C}=3.986$
$\mathrm{K}=1.973$
$\mathrm{N}=50$


```
    EIGENVECTORS
    l m n Strike Dip
V1=-0.880}00.4740.023 151.729 1.332
V2=-0.473-0.881 0.013 241.747 0.768
V3= 0.027 0.001 1.000 1.69888.462
```


EIGENVALUES

Lambda1 $=42.614$ S1 $=0.852$
Lambda2 $=5.014 \mathrm{~S} 2=0.100$
Lambda3 $=2.372 \mathrm{~S} 3=0.047$
S1/S2 $=8.498$
$\mathrm{S} 2 / \mathrm{S} 3=2.114$
$\mathrm{S} 1 / \mathrm{S} 3=17.966$
$\operatorname{Ln}(\mathrm{S} 1 / \mathrm{S} 2)=2.140 \operatorname{Ln}(\mathrm{~S} 2 / \mathrm{S} 3)=0.749$
$\mathrm{C}=2.888$
$\mathrm{K}=2.858$
$\mathrm{N}=50$

