P-03-87

Oskarshamn site investigation

Hydrochemical logging in KSH01A

Pia Wacker, Geosigma AB

April 2003

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-03-87

Oskarshamn site investigation Hydrochemical logging in KSH01A

Pia Wacker, Geosigma AB

April 2003

Keywords: borehole, groundwater, water sampling, chemical analyses, WC 080.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Contents

1	Introduction	5
2	Objective and scope	6
3	Equipment 3.1 Description of equipment	7 8
4	Performance	9
5	Results 5.1 Analyse results	10 11
6	Conclusion	17
Ap	opendix 1 Water composition	18

1 Introduction

This document reports the chemical data obtained by Hydrochemical logging in the core drilled borehole KSH01A within the site investigation in Oskarshamn. The logging was performed 29:th of January 2003 according to the activity plan AP PS 400-02-032 (SKB internal controlling document). The data is reported to SICADA in field note number 37.

2 Objective and scope

The activity is performed in order to obtain a fast overview of the ground water composition along the borehole.

3 Equipment

The equipment used is illustrated in Figure 3-1: Equipment for Hydrochemical logging. The method and equipment is described in the method description SKB MD 422.001, version 1 (SKB internal controlling document).

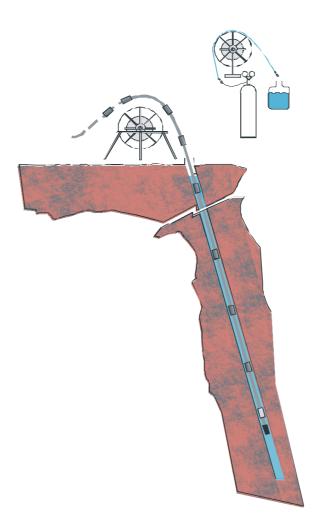


Figure 3-1. Equipment for hydrochemical logging in boreholes.

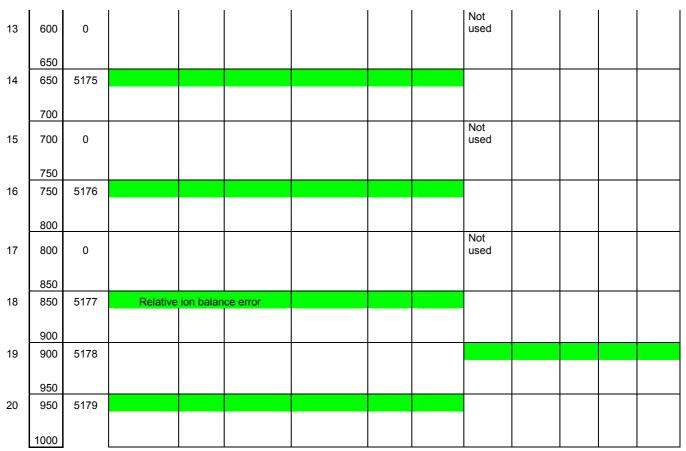
3.1 Description of equipment

The hydrochemical logging was performed using a 1000 meter long tube divided into 50 meter units connected to each other with couplings. A weight is placed at the end of the tube array. The length of the tube units is given in Table 3-1.

	-
Unit	Length [m]
1	49.9
2	49.6
3	49.6
4	49.3
5	49.2
6	49.2
7	49.7
8	50.6
9	50.3
10	49.7
11	49.7
12	49.6
13	49.9
14	49.9
15	50.0
16	50.0
17	49.3
18	50.0
19	50.1
20	49.7
Sum:	994.9
Coupling	2.8
Weight	0.82
Total tube length:	998.5

Table 3-1. Tube length.

4 Performance


The logging was performed the 29:th of January a cloudy, windy day with temperature minus 2°C. The ground water level was measured at 09:15 to a level of 5.12 meter. The first tube unit was descending at 09:35. The uptake started at 13:40 and all tube units were lifted at 17:15. The ground water level was measured once again after the logging now to a level of 5.59 meter. The water samples from the tubes were portioned/ collected into bottles the same evening. Sample preparation and consulted laboratories are listed in the activity plan.

5 Results

Sample bottles were filled according to Table 5-1. The dashed line symbolises filled sample portions. No control samples were collected from tube units with even numbers, counting from the top of the borehole, due to lack of water. Tube unit number 11, 13, 15 and 17 were not used.

	Tube				Sampling fron	n even tubes			9	Sampling	from od	d tubes	
Tube	[m]	SKB:nr	pH,alk,cond	Anions	Headcomp.	Deut, O-18, Sr	Tr 37, Cl	C-13, PMC	S-34		Arch		
		_	250ml	250ml	100ml	100ml	1000ml	100ml	1000ml	250ml	100ml	250ml	100ml
1	1	5164								100ml			
-	50												
2	50	5165											
	100												
3	100	5166											
	150												
4	150	5167											
5	200 200	5168							·				
5	200	5100											
	250												
6	250	5169											
	300												
7	300	5170											
	350												
8	350	5171											
	400												
9	400	5172											
	450												
10	450 450	5173			1								
10	400	5175											
	500												
11	500	0							Not used				
	500	0							4000				
	550												
12	550	5174	Relative	ion balan	ce error								
	600												

Table 5-1. Sampling.

No control samples from even tube units, because of the lack of water.

One 50 m tube unit can contain 2.5 dm³ water. The total volume water in each tube unit was less than expected. See Table 5-1, above. Tube unit 11, 13, 15 and 17 was not used and the water volume was not measured. A small grain of gravel in the back valve, placed in the end of the deepest tube, could have affected the volume of water in all the tube units when the units were lifted. The water in the two tubes units from the deepest part of the borehole showed the same colour as drilling debris. Precipitation or suspended material occurred in most of the sample bottles. The hydrochemical data from the logging are stored in the database SICADA in field note number 37. The SKB sample numbers are 5164 to 5179.

5.1 Analyse results

Results from the different analyses are shown in Figure 5-1 to 10 below. Analysis results have been plotted at the mean length of each tube. For example; tube number one with the length of 1 to 50 meter is plotted at 25 meter and so on. The results from analyses performed by the University of Waterloo are not reported yet and the present data compilation will be completed with these data later on.

Flushing water

The analysis of uranin was made the 24:th of February, almost one month after the performance of the Hydrochemical logging.

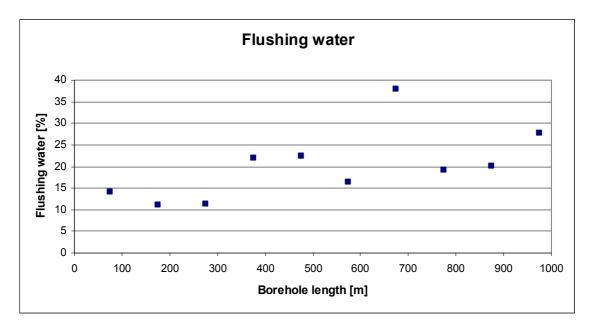


Figure 5-1. Flushing water.

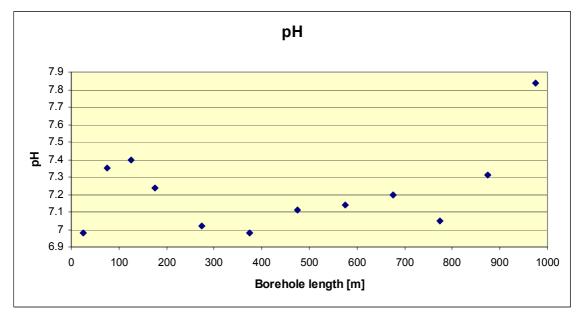


Figure 5-2. pH.

Electric conductivity

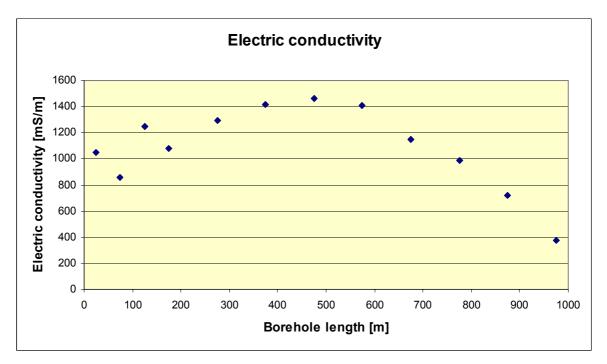
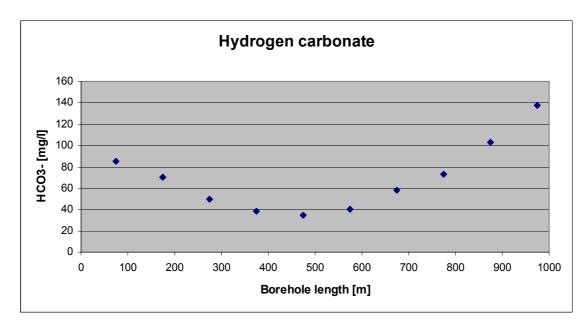



Figure 5-3. Conductivity.

Alkalinity

Figure 5-4. Hydrogen carbonate.

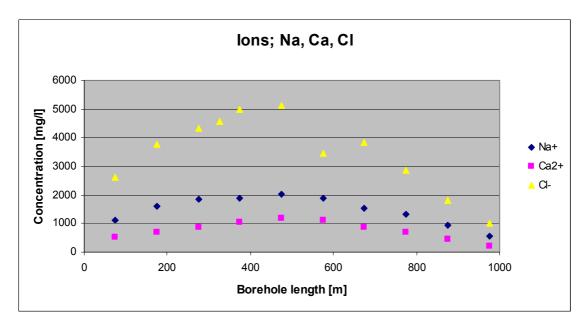


Figure 5-5. Na, Ca and Cl.

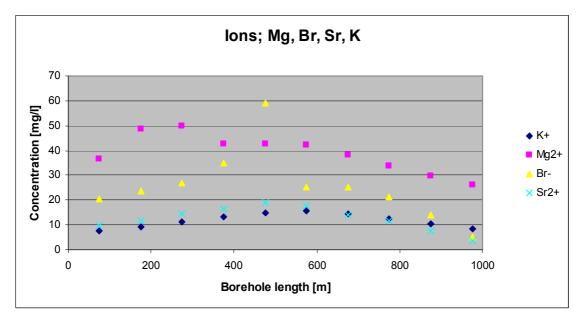


Figure 5-6. Mg, Br, Sr and K.

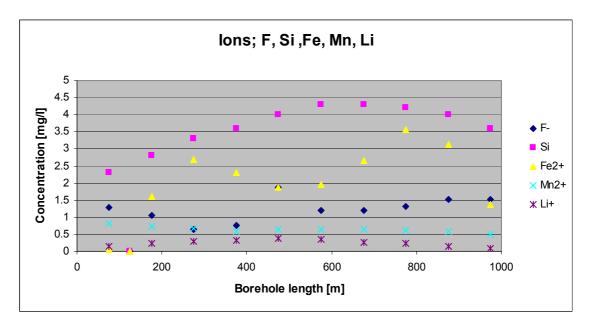
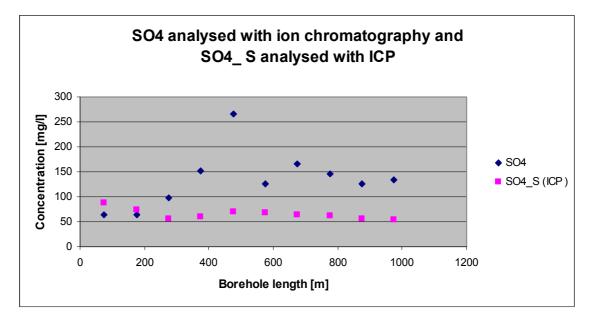



Figure 5-7. F, Si, Fe, Mn and Li.

Sulphur

The agreement between sulphate measured by ion chromatography and total sulphur determined by ICP AES (Inductively Coupled Plasma Atomic Emission Spectrometry) is doubtful. Three times the total sulphur value should correspond to the sulphate concentration if sulphate is the only sulphur containing component.

Figure 5-8. SO₄ analysed with ion chromatography and SO₄_S analysed with ICP.

O-18, Deuterium

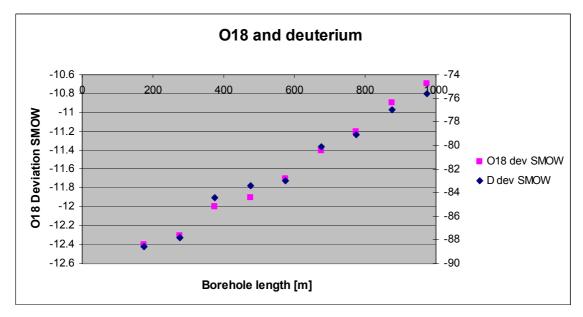


Figure 5-9. O18 and deuterium.

Atomic B10/B11, S34 CDT, Sr87/Sr86

Analysis results show constant B10/B11 and Sr87/Sr86 along the borehole and S34 differ only slightly. The S34 is given as the standard Cañon Diablo Triolite, CDT.

Table 5-2. B10/B11, S34 and Sr87/Sr86.

Mean			
length	B10/B11	S34 dev CDT	Sr87/Sr86
25		20.8	
75	0.2357		
125		20.9	
175	0.2373		0.715039
225		21.1	
275	0.2393		0.715184
325		19.6	
375	0.2401		0.715366
425		19.5	
475	0.2409		0.715431
575	0.2408		0.715467
675	0.2414		0.715529
775	0.2405		0.715532
875	0.2409		0.715525
925		21.2	
975	0.2407		0.715467

6 Conclusion

The relative charge balance errors of sample number 5174 and 5177 from tube number 12 and 18 are higher than acceptable. This is probably due to that the concentrations of chloride are erroneous. The values seam to be to low especially considering the electric conductivity.

The analysis of uranin was, due to a misunderstanding at SKB, made the 24:th of February, almost one month after the performance of the Hydrochemical logging. The delay could have affected the analysis results of uranin, the volume of flushing water in the borehole.

Appendix 1

Water composition

	5164 5165 5166 5167				mg/L	mg/L	mg/L	mg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L
	5165 5166 5167													
	5166 5167	1130	7,56	535	36,5	85	2613,9	63,78	88,9	20,41	1,29	2,3	0,068	0,81
	5167													
		1610	9,13	692	48,5	20	3781,9	63,5	74,5	23,82	1,06	2,8	1,6	0,72
	5168													
KSH01A	5169	1850	11,1	881	49,9	50	4311,1	98,94	55,7	26,83	0,64	3,3	2,69	0,66
KSH01A	5170						4559,3							
	5171	1890	13,1	1030	42,6	38	4986,5	151,26	60,6	35,2	0,75	3,6	2,3	0,59
KSH01A	5172													
KSH01A (5173	2010	14,8	1180	42,7	35	5138	265,12	70,2	59,23	1,88	4	1,87	0,63
	5174	1880	15,6	1100	42,2	40	3445,3	125,08	68,9	25,47	1,2	4,3	1,96	0,65
	5175	1530	14,4	858	38,4	58	3826,3	165,1	64,4	25,52	1,2	4,3	2,65	0,64
	5176	1310	12,5	705	33,9	73	2865,7	145,19	62,1	21,43	1,32	4,2	3,58	0,62
	5177	938	10,4	451	29,8	103	1830,1	126,11	56	14,09	1,53	4	3,12	0,58
KSH01A	5178													
KSH01A	5179	558	8,5	206	26	138	1028,1	134,8	53,4	5,43	1,52	3,6	1,36	0,51

B10/B11 S34 dev SR87/ CDT SR86
20,8 0.24
0,2,
14.09
ma/L