Äspö Hard Rock Laboratory

Influences of the tunnel construction on the grounwater chemistry at Äspö

Hydrochemical initial and boundary conditions: WP D1, WP D2

Ioana Gurban Marcus Laaksoharju Cecilia Andersson INTERA KB

June 1998

International Progress Report

IPR-02-58

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel +46 8 459 84 00 Fax +46 8 661 57 19

Aspö Hard Rock Laboratory

Report no.	^{No.}
IPR-02-58	F65K
^{Author} Ioana Gurban Marcus Laaksoharju	Date June 1998
Cecilia Andersson Checked by	Date
Approved	Date
Christer Svemar	2003-05-22

Äspö Hard Rock Laboratory

Influences of the tunnel construction on the grounwater chemistry at Äspö

Hydrochemical initial and boundary conditions: WP D1, WP D2

Ioana Gurban Marcus Laaksoharju Cecilia Andersson INTERA KB

June 1998

Keywords: Äspö HRL, Task 5, hydrochemical data

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

ABSTRACT

This report evaluates the groundwater influences of the tunnel construction at the Äspö Hard Rock Laboratory and is part of the Task 5 exercise. This information is used to support the integration between groundwater chemistry and hydrogeological modelling within Task 5. The report consists of groundwater modelling based on existing data around the Äspö site.

The groundwater chemical descriptions generally concentrate on reactions taking place in the bedrock. However, in this work a new approach has been used to extract information comprising the origin, mixing processes and reactions taking place in the bedrock.

The approach used is a new concept code named M3 developed for SKB. The measured groundwater composition and M3 results are visualised using the Voxel Analyst code.

The result of the modelling shows that the processes considered to have a dominating impact on the present Äspö groundwater chemistry are the mixing of Meteoric, Marine, Glacial and Brine water in various proportions, both prior to and after the tunnel construction, calcite dissolution and precipitation, redox reactions and biological processes.

ii

Sammanfattning

Huvudsyftet med Äspö Task 5 modelleringen har varit att jämföra och integrera hydrogeokemi och hydrogeologi genom att använda data från förundersöknings- och konstruktionsfaserna av Äspö berglaboratorium. Huvudsyftena var:

- att bedöma konsistensen mellan grundvattenflödesmodellerna och hydrogeokemiska blandningsmodeller genom integrering och jämförelse av hydrogeologiska och hydrogeokemiska data samlade före och under byggandet av laboratorietunnel och
- att utveckla en procedur för integrering av hydrogeologi och hydrogeokemisk information vilket skulle kunna nyttjas vid bedömning av en plats för ett djupförvar.

Lika betydelsefullt har varit att Task 5 gett möjligheten att sammanföra två vetenskapliga discipliner vilka traditionellt vanligen arbetat parallellt istället för tillsammans. Det projektet har varit ett första steg. Denna process för förståelse, interagerande och integrerande har nu startats och, med mer tid och resurser, skulle den vetenskapliga integreringen ha blivit större. Det är idag en mycket större förståelse att användandet av hydrogeokemi kan medföra en större förståelse av hydrogeologi och viceversa.

Denna rapport behandlar grundvattenpåverkan orsakad av tunneldrivningen vid Äspö Hard Rock Laboratory och är en del av Task 5 modellstudien. Denna information används till att stödja integrationen mellan grundvattenkemi och hydrogeologisk modellering inom Task 5. Rapporten baseras på modellering av existerande data från Äspö området.

Beskrivningen av grundvattenkemi brukar i allmänhet fokuseras på rekationer i själva bergmassan. I föreliggande arbete har ett nytt angreppssätt använts som har syftat till att lyfta fram både ursprunget, blandningsprocesserna samt de reaktioner som sker i bergmassan. Förståelsen av grundvattnets ursprung och sammansättning har ändrats från att ha varit fokuserat på reaktioner med berget (endoterma processer) till att även inkludera inflöde av vattentyper utanför berget (exoterma processer). Den nya beskrivning är bättre överensstämmande med de hydrokemiska observationerna och den hydrogeologiska förtsåelsen av området.

I arbetet har en ny modellkonceptprogramvara använts betecknad M3 som är framtagen för SKB's räkning. Både mätta hydrogeokemiska data samt M3 resultat visualiseras med hjälp av programvaran Voxel Analyst.

Resultatet av modelleringen visar att de processer som bedöms att ha en dominerande effekt på kemin hos det nuvarande grundvattnet vid Äspö är en blandning av meteoriskt, marint, glacialt samt brine-vatten i varierande proportioner (både före och efter tunneldrivningen). Reaktioner som kalcitut-fällning/upplösning, redoxprocesser samt biologiska processer påverkar grundvatten sammansättningen.

Table of Contents

ABSTRACTi
Table of Contentsiii
List of Figuresv
1 INTRODUCTION TO THE TASK 1
2 SITE AND OVERALL GROUNDWATER DESCRIPTION
3 STRATEGY AND TOOLS FOR MODELLING AND VISUALISATION
3.1 M3 DESCRIPTION
3.2 VOXEL ANALYST
4 M3 MODELLING AND VISUALISATION9
4.1 SELECTION OF THE END-MEMBERS FOR THE M3 MODELLING
4.2 3D VISUALISATION OF THE M3 CALCULATIONS 11
5 CONCLUSIONS OF THE M3 MODELLING 44
ACKNOWLEDGEMENTS 45
References
APPENDIX 1: Data used
APPENDIX 2: Boreholes with a time serie
Appendix 3: Boreholes associated with major fracture zones
Appendix 4: Visualisation of the modern Baltic Sea water
Appendix 5: Grid data prior to tunnel construction
Appendix 6: Grid data after the tunnel construction

Appendix 7: Boundary conditions and initial conditions prior to tunnel construction.....

Appendix 8: Boundary conditions and initial conditions after the tunnel construction.....

List of Figures

Figure 2.1 A conceptual postglacial scenario at the Äspö site and the mainland of Laxemar.

Figure 3.1 The overview of the modelled area with the limits of the modelled box.

Figure 4.1 PCA plot used as a basis for the M3 calculations.

Figure 4.2 a) Visualisation of the Cl(mg/l) and the location of the sampling points prior to tunnel construction

Figure 4.2 b) Visualisation of the Cl (mg/l) and the location of the sampling points after the tunnel construction

Figure 4.3 a) Visualisation of the HCO₃ prior to tunnel construction.

Figure 4.3 b) Visualisation of the HCO₃ after the tunnel construction.

Figure 4.4 a) Visualisation of the Na (mg/l) prior to tunnel construction

Figure 4.4 b) Visualisation of the Na (mg/l) after the tunnel construction.

Figure 4.5a) Visualisation of the Ca (mg/l) prior to tunnel construction

Figure 4.5 b) Visualisation of the Ca (mg/l) after the tunnel construction.

Figure 4.6 a) Visualisation of the SO₄ (mg/l) prior to tunnel construction

Figure 4.6 b) Visualisation of the SO₄ (mg/l) after the tunnel construction.

Figure 4.7 a) Visualisation of the Tritium prior to tunnel construction.

Figure 4.7 b) Visualisation of the Tritium after the tunnel construction.

Figure 4.8 a) Visualisation of the O^{18} prior to tunnel construction.

Figure 4.8 b) Visualisation of the O^{18} after the tunnel construction.

Figure 4.9 a) Result of the M3 modelling of the rain water (%) prior to tunnel construction.

Figure 4.9 b) Result of the M3 modelling of the rain water (%) after the tunnel construction

Figure 4.10 a) Result of the M3 modelling of the old marine (Litorina) water (%) prior to tunnel construction.

Figure 4.10 b) Result of the M3 modelling of the old marine (Litorina) water after the tunnel construction.

Figure 4.11 a) Result of the M3 modelling of the glacial water (%) prior to tunnel construction.

Figure 4.11 b) Result of the M3 modelling of the glacial water (%) after the tunnel construction

Figure 4.12 a) Result of the M3 modelling of the brine water (%) prior to tunnel construction.

Figure 4.12 b) Result of the M3 modelling of the brine water (%) after tunnel construction

Figure 4.13 a) Result of the M3 modelling of the HCO_3 deviation in mg/l prior to tunnel construction.

Figure 4.13 b) Result of the M3 modelling of the HCO_3 deviation in mg/l after the tunnel construction

Figure 4.14 a) Result of the M3 modelling of the Na deviation in mg/l prior to tunnel construction.

Figure 4.14 b) Result of the M3 modelling of the Na deviation in mg/ after the tunnel construction

Figure 4.15 a) Result of the M3 modelling of the Ca deviation in mg/l prior to tunnel construction.

Figure 4.15 b) Result of the M3 modelling of the Ca deviation in mg/ after the tunnel construction.

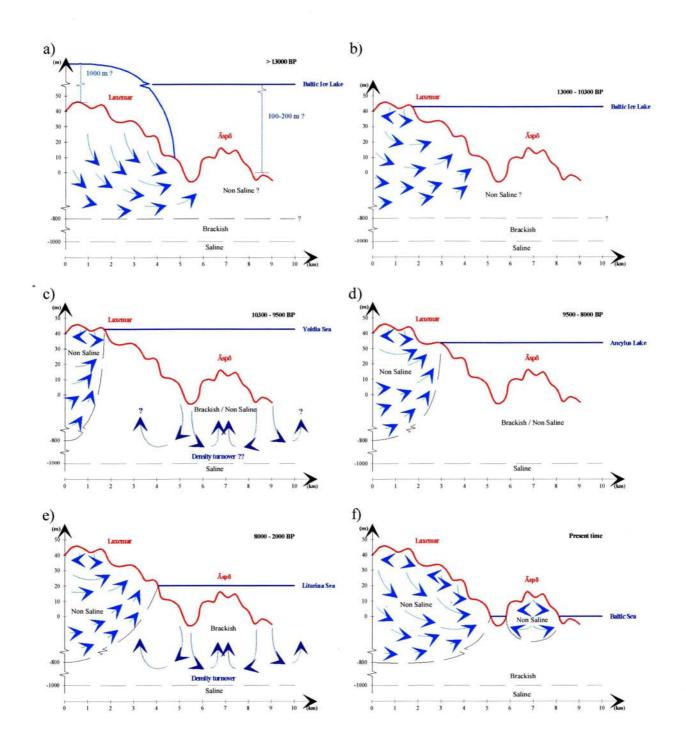
Figure 4.16 a) Result of the M3 modelling of the SO_4 deviation in mg/l prior to tunnel construction.

Figure 4.16 b) Result of the M3 modelling of the SO_4 deviation in mg/l after the tunnel construction.

1 INTRODUCTION TO THE TASK

Swedish Nuclear Fuel and Waste Management Company (SKB) is responsible for the safe handling and disposal of nuclear wastes in Sweden. This responsibility includes conducting studies into the siting of a deep repository for high-level nuclear waste. This report describes the changes in groundwater composition associated with the tunnel construction at Äspö Hard Rock Laboratory and is part of the Task 5 exercise. The objective of Task 5 is the integration of the hydrogeology with the geochemistry as part of a performance assessment (PA) study of the long-term safety of a nuclear waste disposal. The work presented in this study concerns groundwater modelling based on existing data around the Äspö site.

The aim of the work is to show general major groundwater changes which can be useful as background information for the hydrochemistry and groundwater modelling performed within Task#5. Thus, the modelling in this report helps to evaluate groundwater mixing and reactions, which can be helpful as guidance for all the modelling efforts.


2 SITE AND OVERALL GROUNDWATER DESCRIPTION

The underground experimental Äspö Hard Rock Laboratory (HRL), in south east Sweden was initiated by the Swedish Nuclear Fuel and Waste Management company (SKB). This site is an important test and research facility which is used as part of the Swedish programme to dispose of spent nuclear fuel in crystalline bedrock.

The boreholes at the Äspö site have been used for almost 10 years for various measurements, investigations and descriptions such as: hydrogeochemical (Smellie and Laaksoharju, 1992; Banwart et al. 1993; Banwart ed., 1995; Nilsson, 1995; Laaksoharju et al. 1995; Laaksoharju and Skårman, 1995; Laaksoharju and Wallin (eds.), 1997), hydrogeological (Rhén et al., 1993; 1994; Rhén and Stanfors, 1993; Stanfors et al., 1997 in this issue) and geological (Stanfors et al., 1992; 1993 a,b; 1994).

The boreholes drilled from the surface at the Äspö site consist of percussion drilled boreholes to a depth around 100m and deep core drilled boreholes with an approximate depth of 1000m. One of the core boreholes (KLX02) reaches a depth of around 1700m. The probe boreholes drilled along and into the bedrock from the HRL tunnel wall generally have a length of 20m. The total length of the tunnel is approximately 3600m and the tunnel spiral reaches a maximum depth of 450m.

The historical events which affected the present groundwater composition and distribution at Äspö are presented Laaksoharju and Wallin (eds., 1997), where is shown how the different preand postglacial events have affected the groundwater composition at Äspö. A conceptual model showing these events is presented in the Figure 2.1.

Figure 2.1 A conceptual postglacial scenario at the Äspö site and the mainland of Laxemar. These events have affected the present day groundwater composition and distribution. Possible flow lines, density driven turnover, non-saline, brackish and saline water interfaces are shown a) Injection of Glacial meltwater into the basement. B) Baltic Ice Lake, c) Yoldia Sea, d) Ancylus Lake, e) Litorina Sea and f) present day situation. The orientation of the cutting plane is N-S.

The present day conditions at Äspö are: A thin lens of meteoric fresh water to a depth of 250m. A saline water consisting of proportions of present and ancient Baltic Sea water and glacial melt water to a depth of 400-600 metres. Below this level the saline water still contains proportions of glacial water which could represent even older glaciations and brine water of which a large portion has not been in contact with the atmosphere for a very long time, millions of year. During the HRL tunnel construction there were changes in the composition of the water flowing into the tunnel at different locations. The variation in e.g. salinity was however relatively small, while the variations in the mixing proportions of the different reference waters varied considerably.

3 STRATEGY AND TOOLS FOR MODELLING AND VISUALISATION

The layout, orientation of the cross-sections used for visualisation of the modelling results and boreholes at the Äspö site are shown in Figure 3.1.

The model domain corresponds to a 3D volume with the coordinates at the surface as following: (-300; 5600), (-300; 8121), (3450.44; 5600), (3450.44; 8121) covering from West to East Laxamar, Äspö, Ävrö and Mjälen. The depth of the box is 1500m.

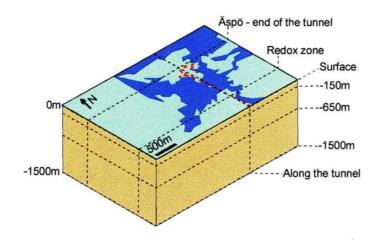


Figure 3.1 The overview of the modelled area with the limits of the modelled box.

Traditionally, the groundwater chemical descriptions generally concentrate on reactions taking place in the bedrock. In this report a new approach has been used to extract information comprising the origin, mixing processes and reactions taking place in the bedrock. The approach used is a new concept code named M3 developed for SKB. The M3 results are visualised using the Voxel Analyst code.

This information is used in supporting hydrogeological modelling within Task 5.

The purpose of the study is to describe:

• The overall hydrogeochemical conditions at the Äspö site which can be used as a background information for the other modelling teams within Task#5.

• A new modelling technique (M3) which was employed where the major groundwater chemistry and isotopes were integrated to decode the information from groundwater data to achieve an enhanced understanding.

• The dynamics of the groundwater at the site by tracing and quantifying postglacial and present day flow effects on the measured groundwater chemistry.

- The impact of tunnel construction on undisturbed hydrogeochemical conditions.
- Identify major reactions taking place in the system.

3.1 M3 DESCRIPTION

Many variables and different sampling campaigns are important for the understanding of the natural system. The information gathered in many variables can be handled using multivariate techniques.

The origin and evolution of the groundwater can be described if the effect from mixing and reactions can be examined separately. In order to do this separation a new method named Multivariate Mixing and Mass balance calculations (abbreviated to M3) was constructed (Laaksoharju *et. al.*, 1997 and 1998). The model consists of 3 steps where the first step is a standard principal component analysis, followed by mixing, and finally by mass balance calculations according to:

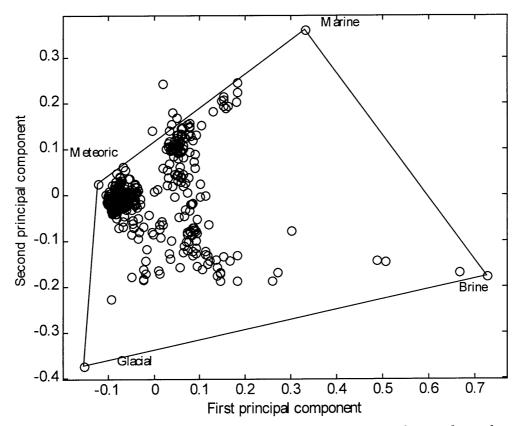
1. A standard multivariate technique called Principal Component Analysis (PCA) which is used for the clustering of the data using the major components Cl, Ca, Na, Mg, K, SO₄ and HCO₃ in combination with the isotopes δ^2 H, δ^{18} O and ³H. PCA aims to describe as much of the information from the ten variables in the first equation (called the first principal component) as possible. As much as possible of the remaining information is described by the second principal component. The principal components are equations of linear combinations that describe most of the information in the data. The weights for the different variables in the equations are calculated automatically by the PCA. For the Äspö data set the first two principal components can be used to describe 70% of the information in the data set. The third or fourth principal components generally do not contain useful information but this is dependent on the complexity of the examined data and the chosen variables. If the first two principal components contain most of the information, an x, y scatter plot can be drawn. The x is the equation for the first principal component and y the equation for the second principal component. The plot is named the M3 plot and is used to visualise the clustering of the data as well as to identify extreme waters. Extreme waters can be an end-member composition such as rain water or deep water. Lines are drawn between the extreme waters so a polygon is formed. The polygon defines the observations, which can be described by the selected extreme waters. By definition the selected extreme waters can describe the observations inside the polygon. The groundwater composition of an observation inside the polygon is compared to the chosen extreme water compositions.

2. <u>Mixing calculations are used to calculate the mixing portions.</u> The mixing portions describe the contribution of the end-member to the observed water. The calculated mixing portion can be used to describe the origin of the groundwater. The mixing portions are equal to the distance to the selected reference waters or end-members in the M3 plot. From a two-dimensional surface, mixing portions containing a maximum of three reference waters can be calculated so that a mathematically unique solution is obtained. To avoid this shortcoming and to be able to use more than three reference waters in the model a control point with a known mixing portion was added to the calculations. A polygon containing say five reference waters contains a portion of 25% of each reference water in the centre point. By using this addition a mathematically unique solution can be achieved from a two dimensional plane with more than three reference waters (Laaksoharju et al., 1998). A mixing portion calculation of less than 10% is regarded as under the detection limit for the M3-method and is therefore uncertain.

3. <u>Mass balance calculations are used to define the sources and sinks for different elements</u> which deviate from the ideal mixing model used in the mixing calculations. The mixing portions are used to predict new values for the elements. No deviation from the measured value indicates that mixing can explain the element behaviour. A source or sink is due to mass balance reactions. The evolution of the groundwater can thus be described.

The M3 model can describe the origin and evolution of the groundwater chemistry by means of the major mixing processes and mass balance reactions. It is important to note that the modelling is always relative to the selected reference waters or end-members. The modelling constraints can be changed depending on the selection of extreme waters. It is important to note that the M3 model deals only with chemical information; no space or time constraints are included in the model. The steps in the calculation are described in detail by Laaksoharju and Wallin (eds., 1997).

3.2 VOXEL ANALYST


In order to interpolate and visualise the measured values and the M3 results, the Voxel Analyst computer code was used. Voxel Analyst is a general-purpose data visualisation and analysis

tool that helps to understand the relationship between different attributes within a 3dimensional volume data set.

4 M3 MODELLING AND VISUALISATION

4.1 SELECTION OF THE END-MEMBERS FOR THE M3 MODELLING

The PCA plot is a useful tool to choose the end-members in relation to the hydrodynamic conceptual model (figure 4.1) and is the platform for the M3 calculations. The variables Na, K, Ca, Mg, Cl, HCO₃, SO₄, ²H, ³H and ¹⁸O are included in the PCA analysis. The end-members identified are Brine, Glacial, Meteoric and Marine. The variance are 0.402898; 0.709035; 0.811352 for the First; Second and Thrid Principal Component respectively. This means that 70% of the groundwater information are described by the first and second principal components. The selected end-members for the current modelling are shown in figure 4.1 in relation to the sampled groundwaters at Äspö.

Figure 4.1 PCA plot used as a basis for the M3 calculations. The end-members for the groundwater modelling are shown. The polygon defines the observations that can be modelled by the selected end-members.

The end-members were selected so that most of the samples are inside the polygon and can be described. The criteria are by definition that a sample inside the polygon can be described by the selected end-members. The closer to the end-member a groundwater observation plots in PCA the more of that end-member the water contains. The reason for modelling all the observations simultaneously by using the same end-members is that we can obtain information about the whole system and compare the changes of the groundwater associated with the tunnel construction.

The analytical data for the end-members are listed in Appendix 1. The selected end-members for M3 modelling are:

• Meteoric: corresponding to the precipitation in 1960 and infiltration water (see table in Appendix 1, row 4);

- Old Marine water: represented by Litorina see water (see table in Appendix 1, row 3);
- Brine water: represented by KLX02, Laxemar (see table in Appendix 1, row 1);
- Glacial water (see table in Appendix 1, row 2).

The latest findings (Pedersen and Karlsson, 1995 and Gurban et.al, 1998) indicate that biological processes play an important role in mediating most of the reactions in groundwater. To include modelling of biological processes, the following reactions were modelled using M3:

Table 1: Important reactions associated with biologic processes:

- ♦ Oxygen consumption through oxidation of organic matter $O_2 + (CH_2O) \rightarrow CO_2 + H_2O$
- ★ Reduction of iron(III) minerals through oxidation of organic matter $4Fe(III) + (CH_2O) + H_2O \rightarrow 4Fe^{2+} + 4H^+ + CO_2$
- ♦ Reduction of sulphate through oxidation of organic matter $SO_4^{2^-} + 2(CH_2O) + H^+ \rightarrow HS^- + 2H_2O + 2CO_2$

4.2 3D VISUALISATION OF THE M3 CALCULATIONS

In order to visualise the distribution of Cl, HCO₃, Na, Ca, SO₄, ³H, ¹⁸O, the results of the mixing portion calculations of precipitation, marine, glacial and brine water, as well as the deviation calculeted with M3 for carbonate, sodium, calcium and sulphate, a 3D interpolation was performed using Voxel Analyst by INTERGRAPH.

Vertical cross-sections:

- 1. Along the tunnel
- 2. Perpendicular to the redox zone
- 3. Perpendicular to the end of the tunnel
- 4. The walls of the 3D volume modelled

Horizontal cross-sections:

- 1. Surface
- 2. 150 m depth
- 3. 650 m depth
- 4. 1500 m depth

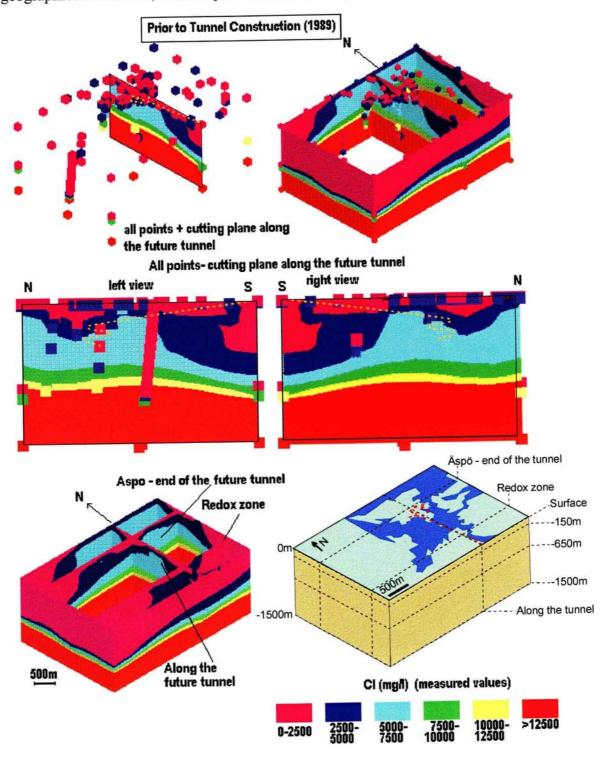
The modelling is based solely on chemical information which can be used to support the 3-D understanding of groundwater flow through the site area. The interpolation was made with the multiquadric method. The geographical distances for the interpolation and in some areas the sparsity or lack of information, bias the outcome of the interpolation. The results should therefore be regarded as an overall summary of the major processes taking place in the bedrock. The calculated mixing portions are always relative to the selected end-members. The distribution of the chosen major elements, salinity and deviation of the chosen major elements in portions of precipitation, deep and intermediate water are shown in figures 4.2 to 4.16 as follows:

- The location of the sampling points prior and after the tunnel construction: figure 4.2;
- The measured values: figures 4.3 to 4.8;
- The mixing portions for the different water types: figures 4.9 to 4.12;
- The deviation from the measured values: the figures 4.13 to 4.16.

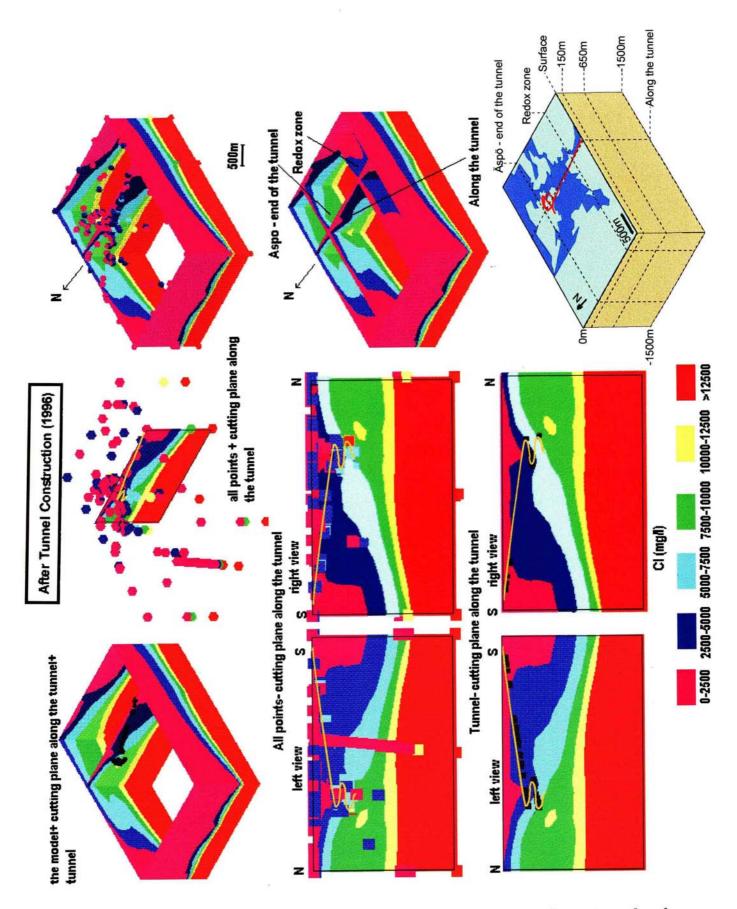
The deviations can be positive or negative, showing a gain or a loss in the system, due to calcite precipitation, ion exchange reactions or biological processes.

Two data sets were used: prior to tunnel construction and after tunnel construction. The numerical results of the mixing calculations for all observations are shown in Appendix 1 (Appendix 1: Complete table used in the modelling).

In Appendix 2 the boreholes with a time series are listed and in Appendix 3 the boreholes associated with major fracture zone are shown.


In Appendix 5 and 6 are presented the grid data, prior and after tunnel construction, extracted from the interpolation grid.

Appendix 7 and 8 show the boundary and initial conditions used for interpolation purposes for the modelling before and after tunnel construction


The system of co-ordinates used in this report is the local Äspö co-ordinates system.

Measured values

The measured values obtained before and after the tunnel construction are presented in the following figures (figures 4.2 to 4.8). The visualisation is made in Voxel Analyst. The long geographical distances, lack or spare information may bias the results.

Figure 4.2 a) Visualisation of the Cl(mg/l) and the location of the sampling points prior to tunnel construction. (Notice: Some of the points at the surface and in the corners of the model were added for interpolation purpose)

Figure 4.2 b) Visualisation of the Cl (mg/l) and the location of the sampling points after the tunnel construction. An increase of the salinity is observed after the tunnel construction, along the tunnel. (Notice: Some of the points at the surface and in the corners of the model were added for interpolation purpose)

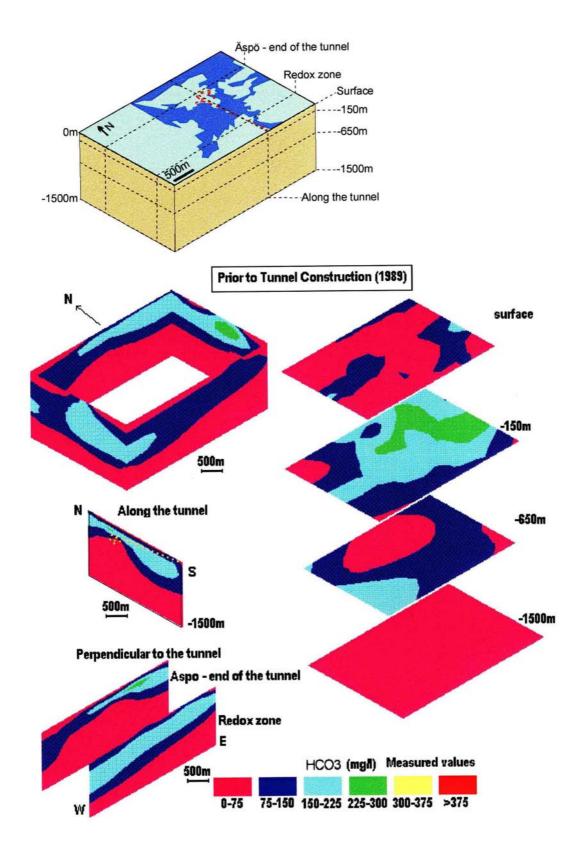
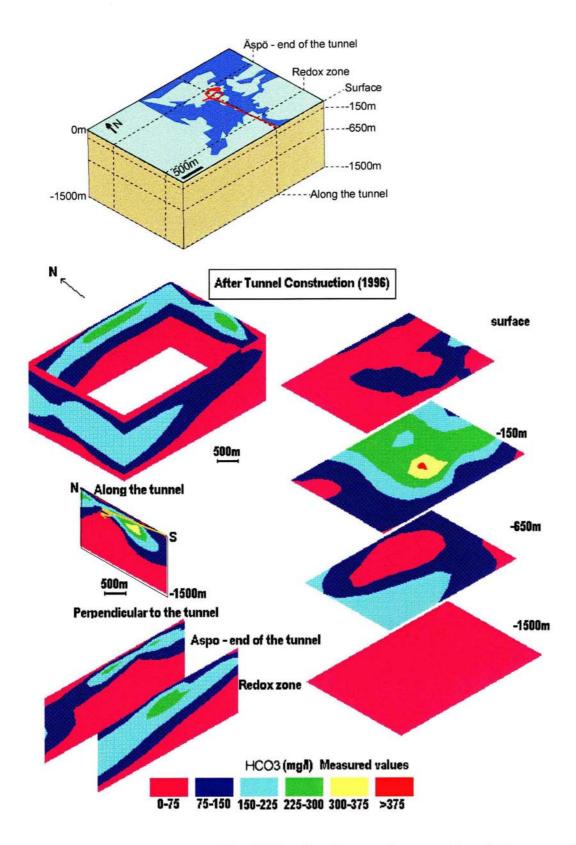



Figure 4.3 a) Visualisation of the HCO₃ prior to tunnel construction.

Figure 4.3 b) Visualisation of the HCO_3 after the tunnel construction. An increase of the HCO_3 along the tunnel is observed after the tunnel construction. The increase of the alkalinity can be produced by the microbial degradation of the organic matter which add reducing capacity to the groundwater (see Table 1).

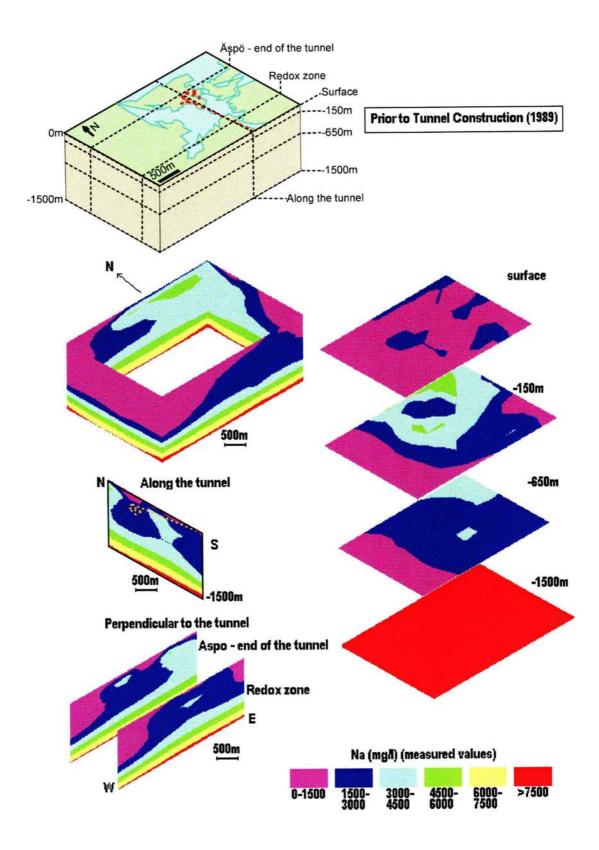
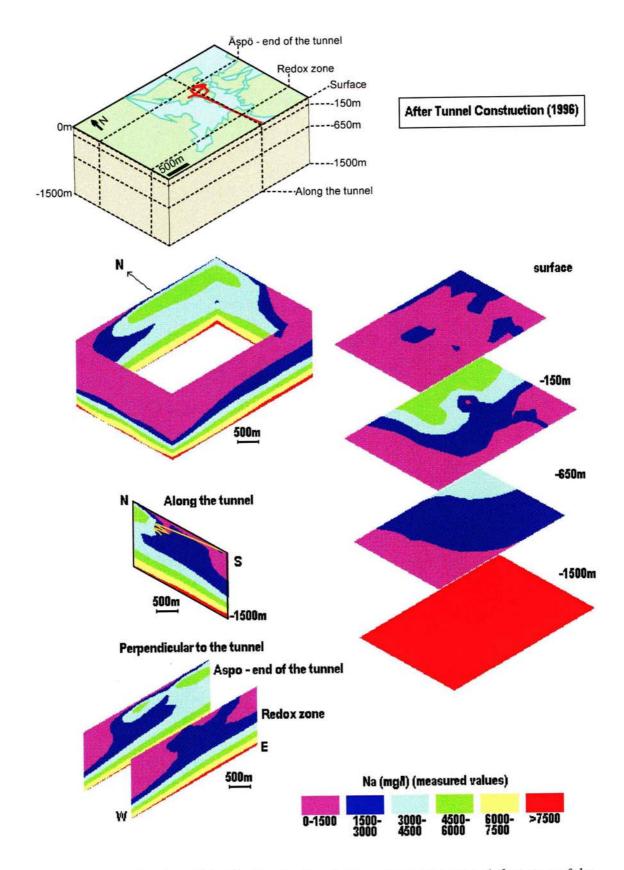



Figure 4.4 a) Visualisation of the Na (mg/l) prior to tunnel construction

Figure4.4 b) Visualisation of the Na (mg/l) after the tunnel construction. A decrease of the measured Na under Äspö, but an increase of the Na measured values around the Redox zone are observed after the tunnel construction.

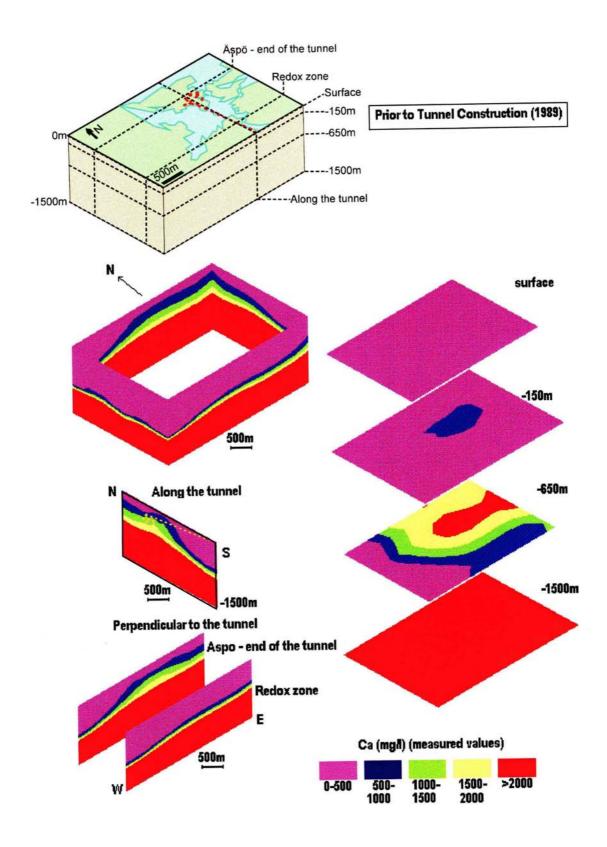
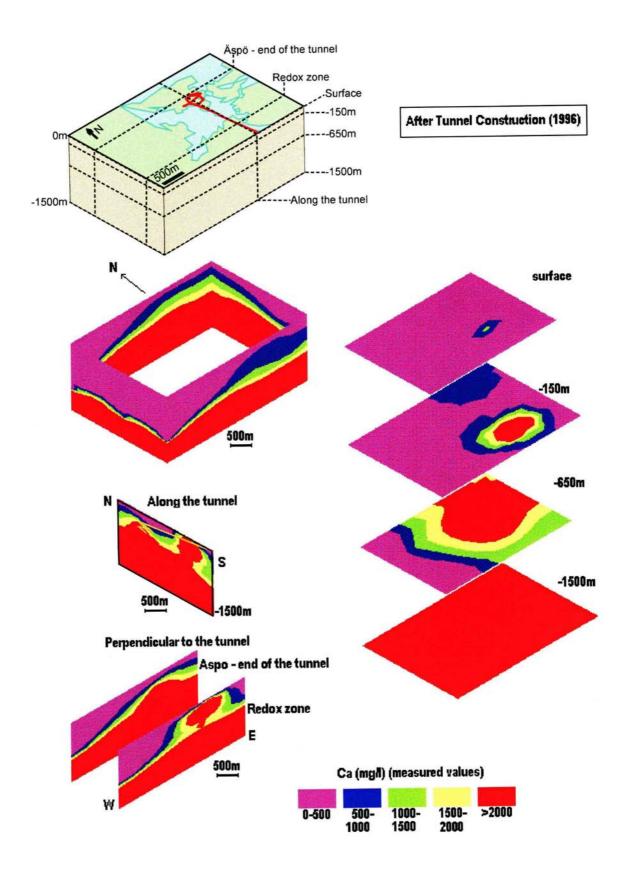



Figure 4.5a) Visualisation of the Ca (mg/l) prior to tunnel construction.

Figure 4.5 b) Visualisation of the Ca (mg/l) after the tunnel construction. An increase of the measured Ca along the tunnel is observed after the tunnel construction.

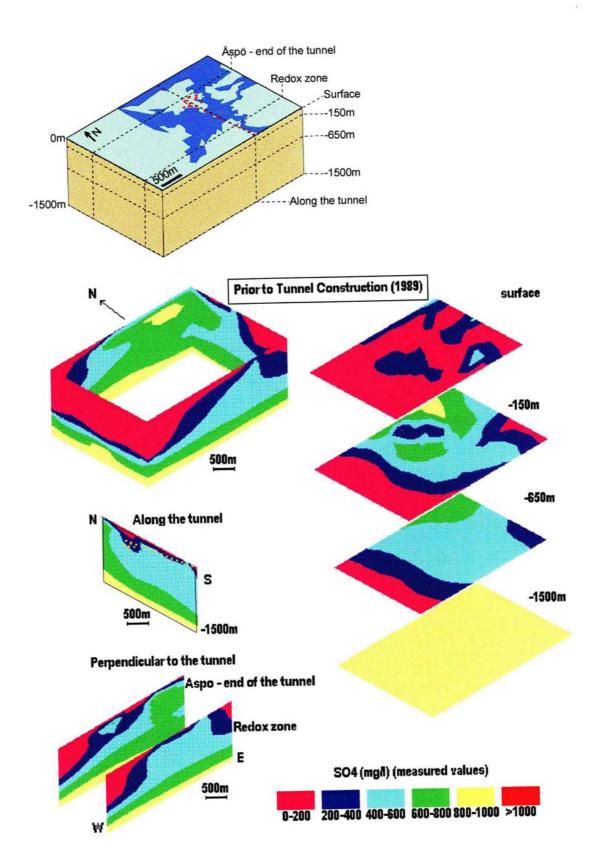
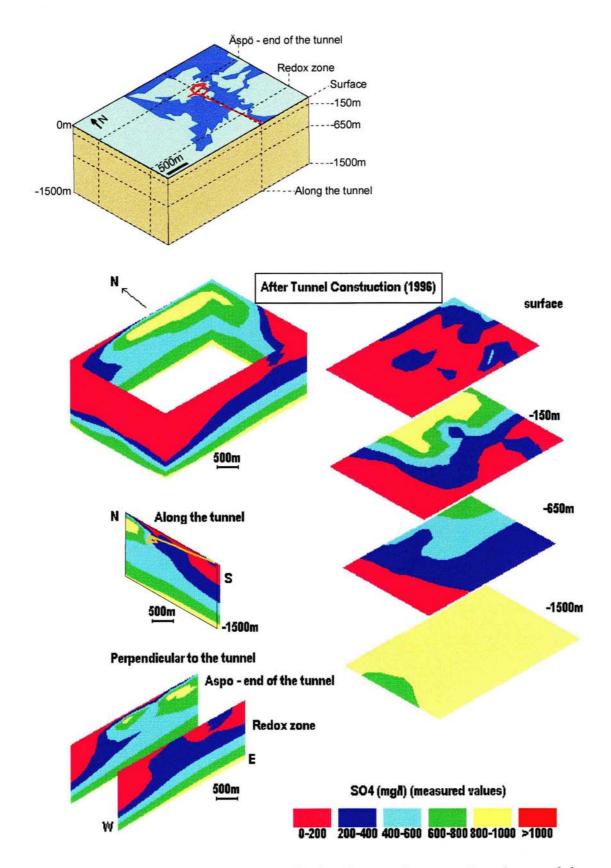



Figure4.6 a) Visualisation of the SO4 (mg/l) prior to tunnel construction

Figure 4.6 b) Visualisation of the SO_4 (mg/l) after the tunnel construction. A general decrease of the sulphate is observed after the tunnel construction in the whole model, except from the North where an increase is observed.

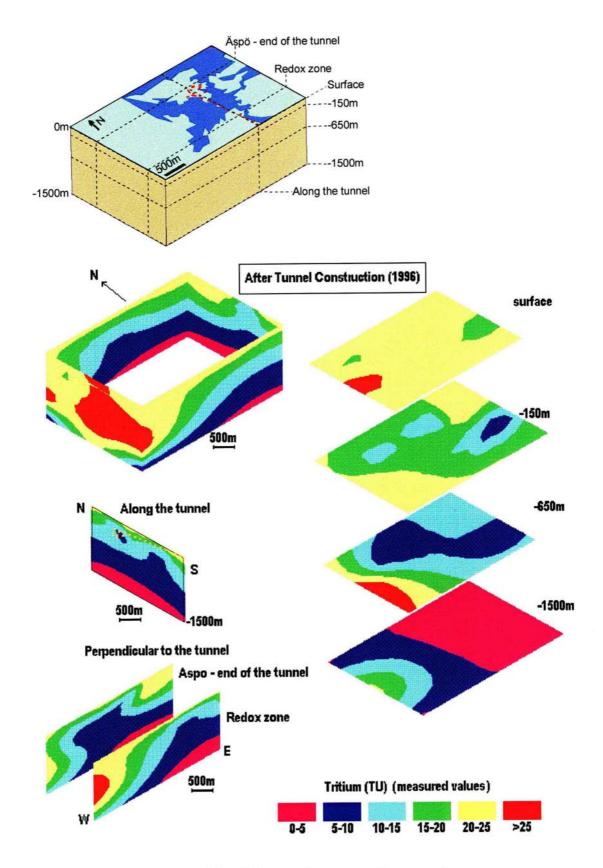
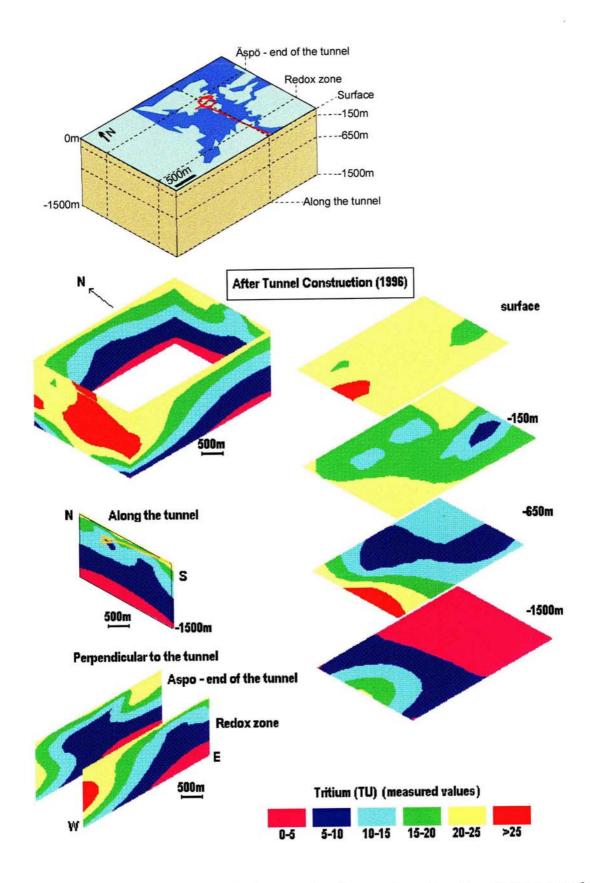



Figure 4.7 a) Visualisation of the Tritium prior to tunnel construction.

Figure 4.7 b) Visualisation of the Tritium after the tunnel construction. An increase of the Tritium values is observed after the tunnel construction. The tritium analyses in the West part of the model are uncertain.

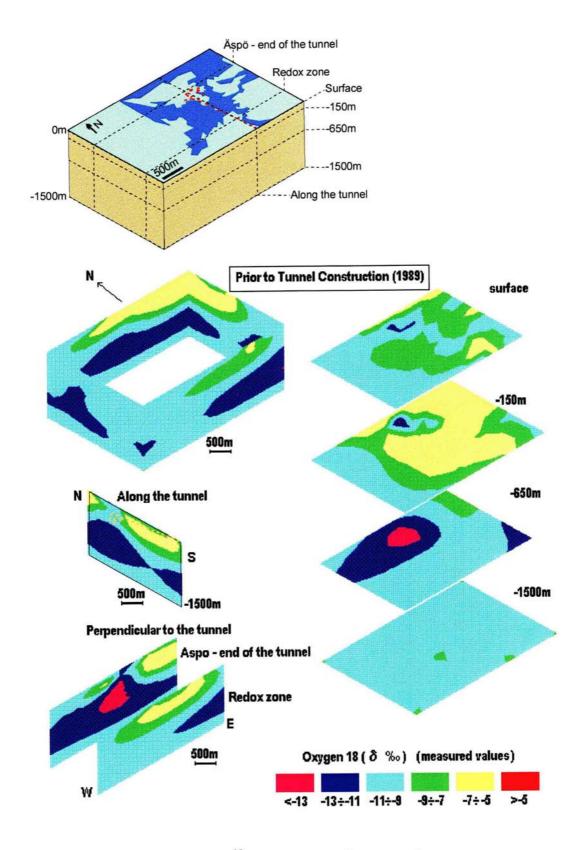
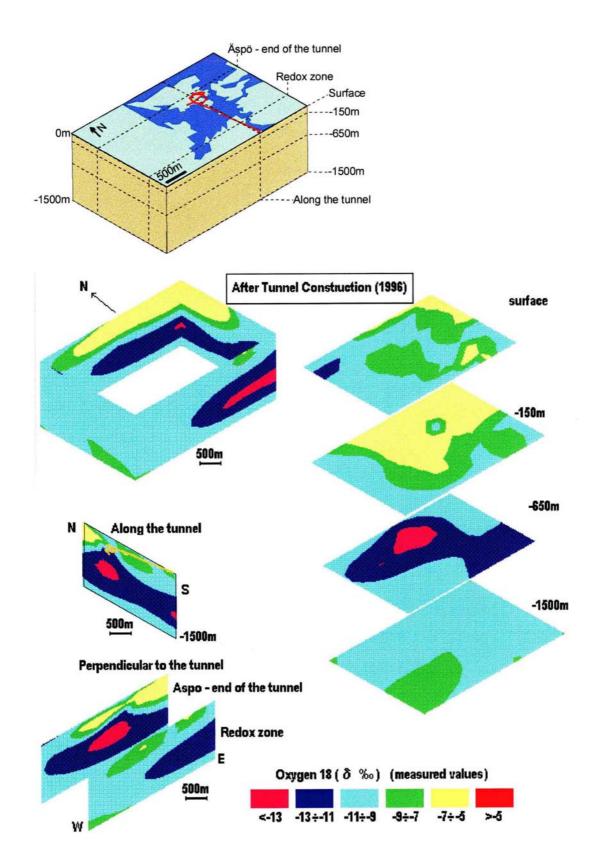



Figure 4.8 a) Visualisation of the ¹⁸O prior to tunnel construction.

Figure 4.8 b) Visualisation of the ${}^{18}O$ after the tunnel construction. A decrease of the ${}^{18}O$ measured values along the tunnel is observed after the tunnel construction.

Mixing portions

The mixing portions for the meteoric, glacial, old marine and brine waters obtained before and after the tunnel construction are presented in the following figures (figures 4.9 to 4.12). The results are based on M3 calculations and the visualisation is made in Voxel Analyst. The long geographical distances , lack or spare information may bias the results.

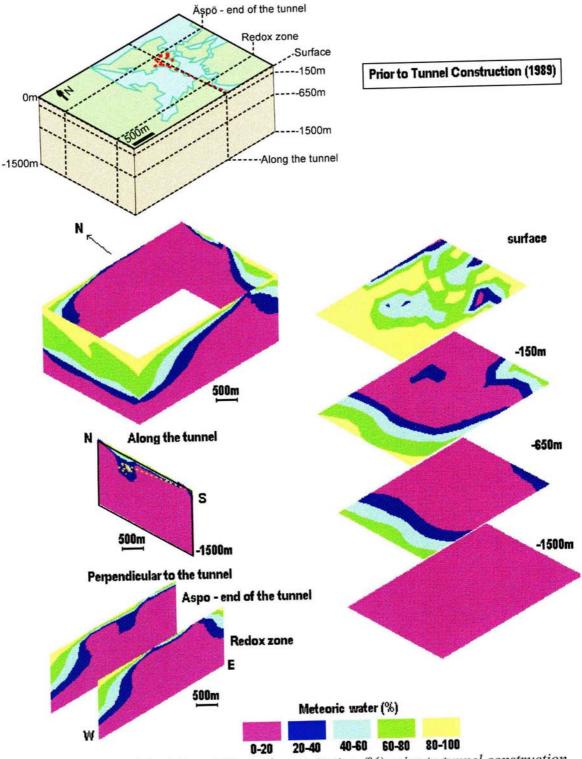
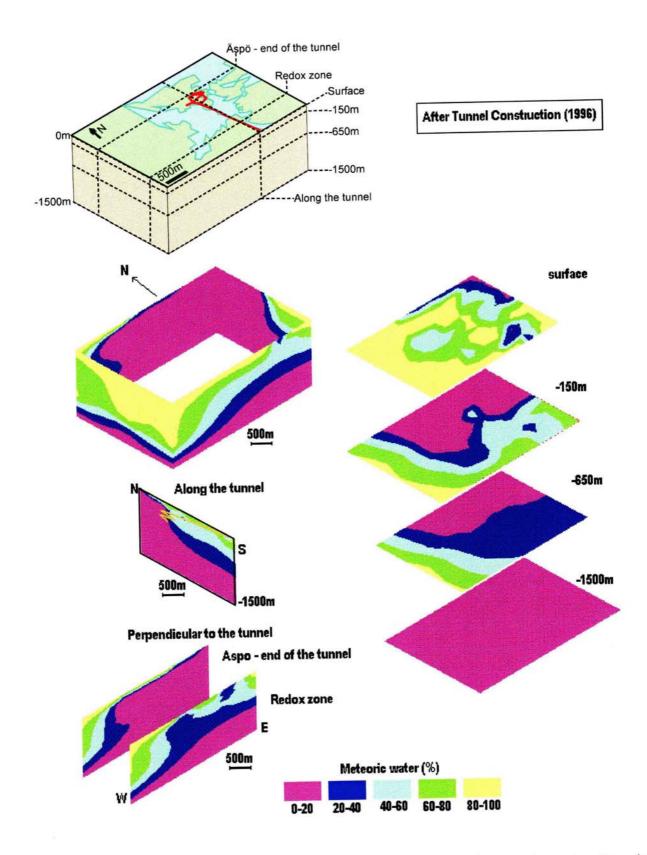



Figure 4.9 a) Result of the M3 modelling of precipitation (%) prior to tunnel construction.

Figure 4.9 b) Result of the M3 modelling of precipitation (%)after the tunnel construction. An increase of the meteoric water is observed along the tunnel, after the tunnel construction.

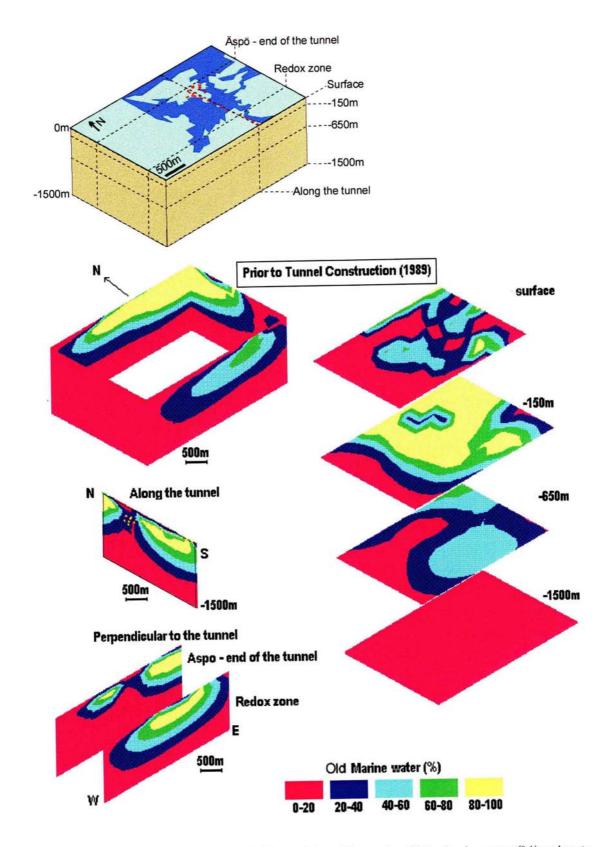
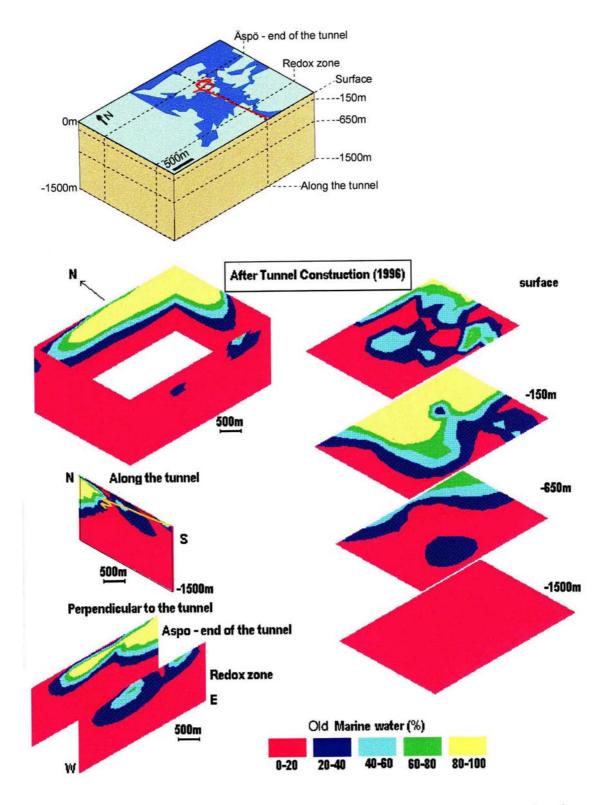



Figure 4.10 a) Result of the M3 modelling of the old marine (Litorina) water (%) prior to tunnel construction.

Figure 4.10 b) Result of the M3 modelling of the old marine (Litorina) water after the tunnel construction. Unchanged marine water portion is observed in the North part of the model. After the tunnel construction, along the tunnel, the old marine water (Litorina) is replaced by modern sea water.

Notice: A new model having the modern Baltic sea water as end member was tested. No major changes were observed (see Appendix 4).

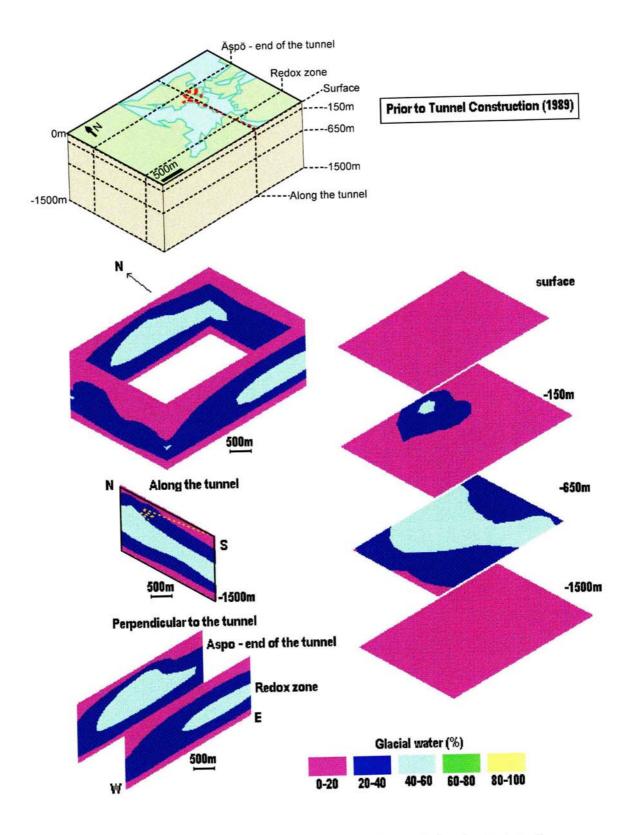
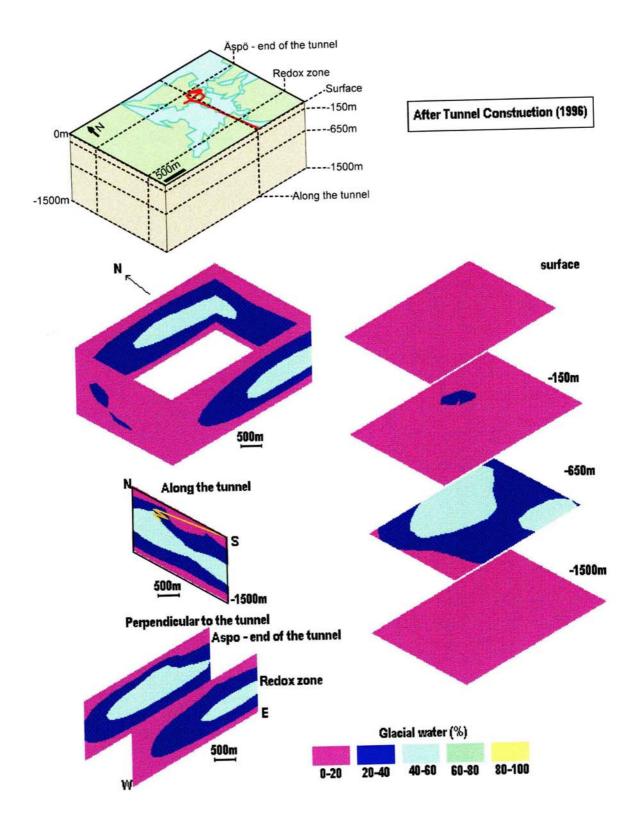
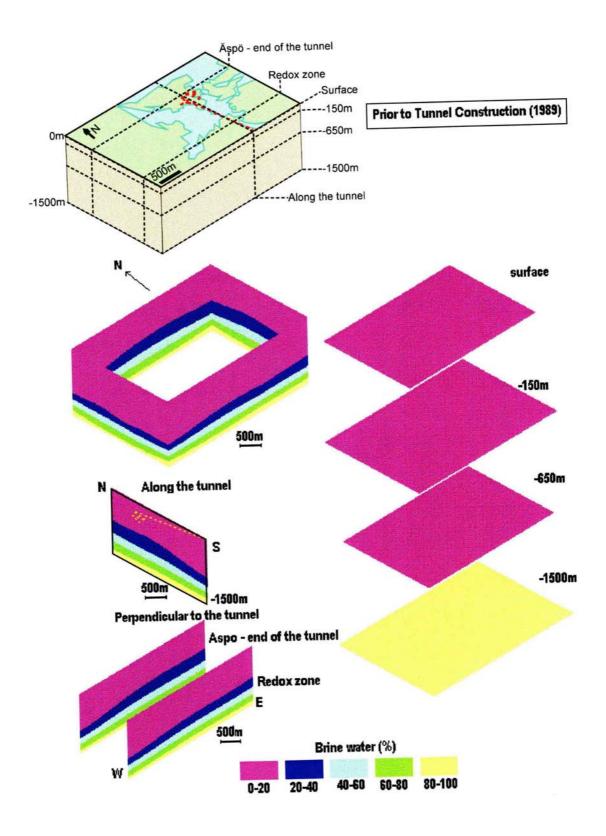
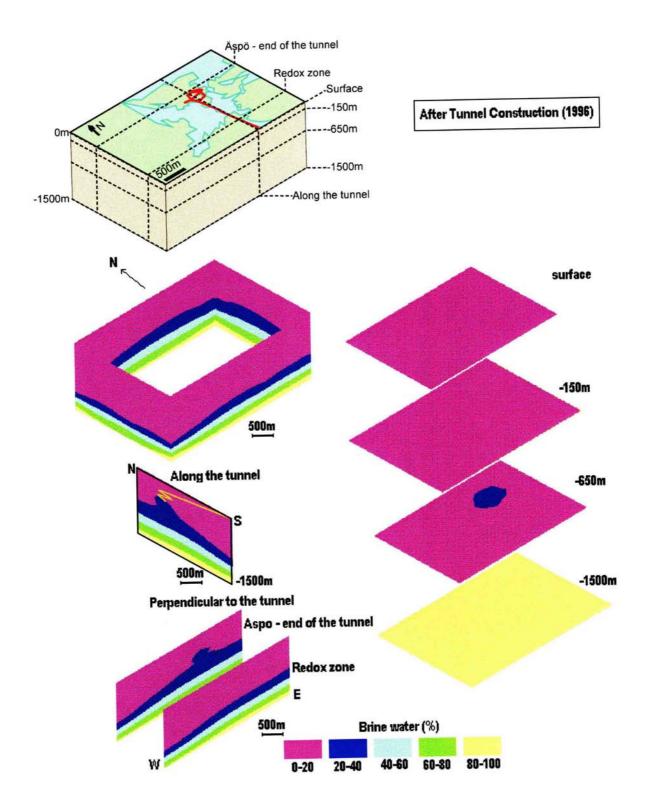
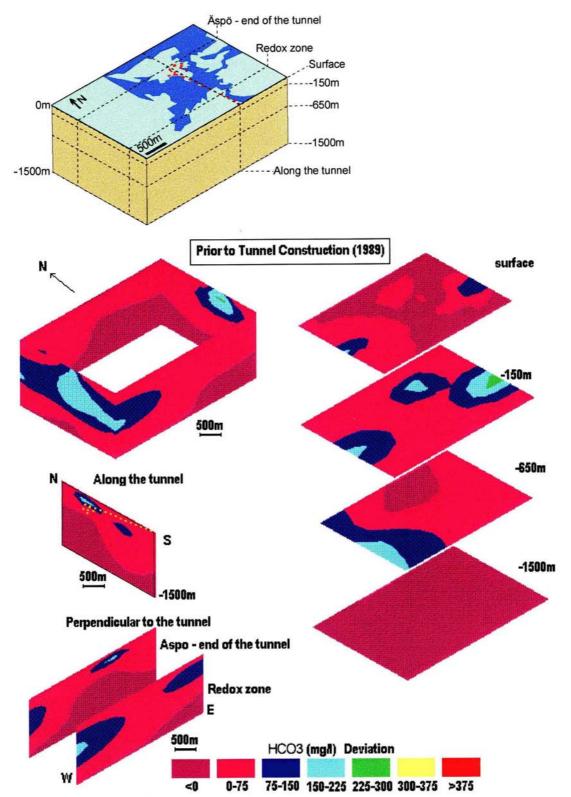
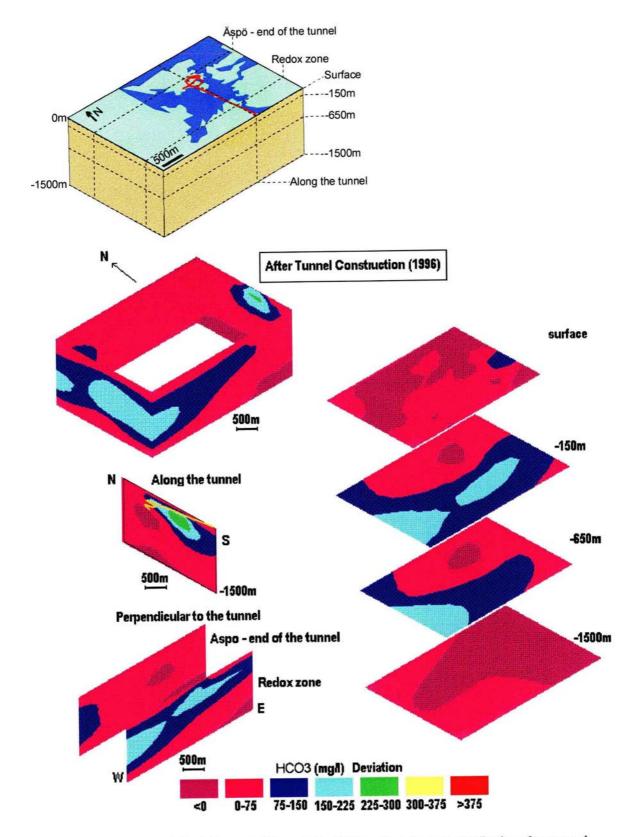



Figure 4.11 a) Result of the M3 modelling of the glacial water (%) prior to tunnel construction.

Figure 4.11 b) Result of the M3 modelling of the glacial water (%) after the tunnel construction. A decrease portion of the glacial water is observed after the tunnel construction.

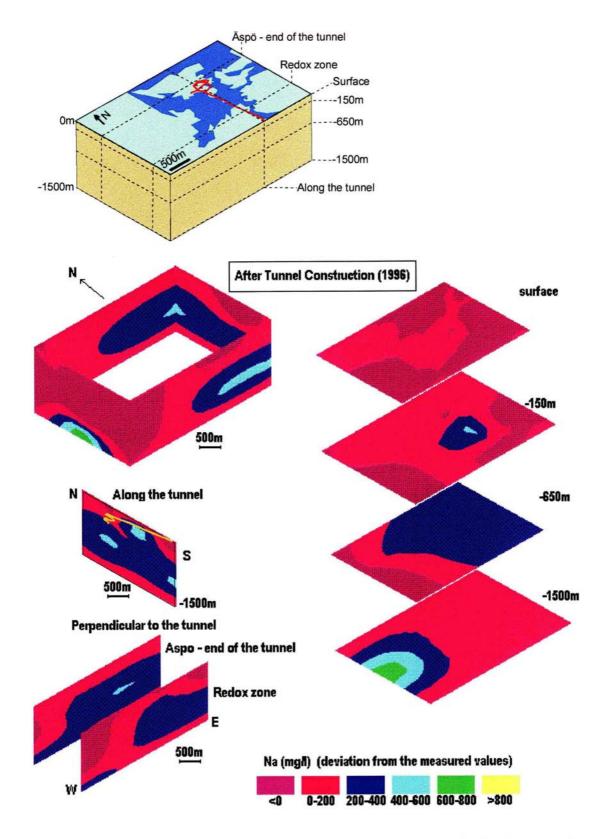



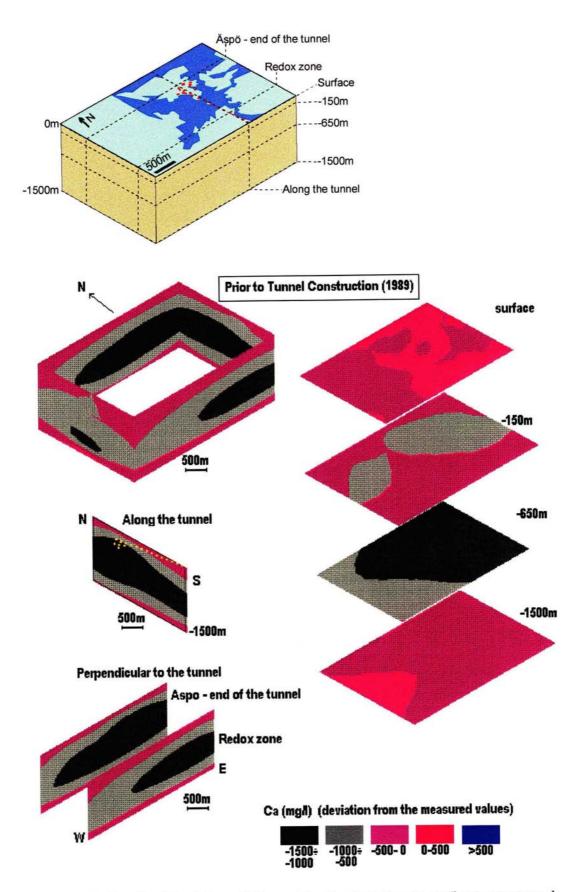

Figure 4.12 a) Result of the M3 modelling of the brine water (%) prior to tunnel construction.


Figure 4.12 b) Result of the M3 modelling of the brine water (%) after tunnel construction. An increase of the brine water portion is observed along the tunnel, after the tunnel construction.

Deviation

The deviation calculated with M3 from measured values, prior to and after tunnel construction are presented in the following figures (figures 4.13 to 4.16). The deviation can be used to indicate possible reactions taking place that cannot be described by mixing. The calculations are based on M3 modelling. The visualisation of the results is based on Voxel Analyst interpolation. The long geographical distances, the lack or sparsity of observations may bias the results.


Figure 4.13 a) Result of the M3 modelling of the HCO_3 deviation in mg/l prior to tunnel construction.


Figure 4.13 b) Result of the M3 modelling of the HCO_3 deviation in mg/l after the tunnel construction. A gain of HCO_3 perhaps due to biogenic activity, is observed after the tunnel construction. The biogenic activity adds reducing capacity to the groundwater.

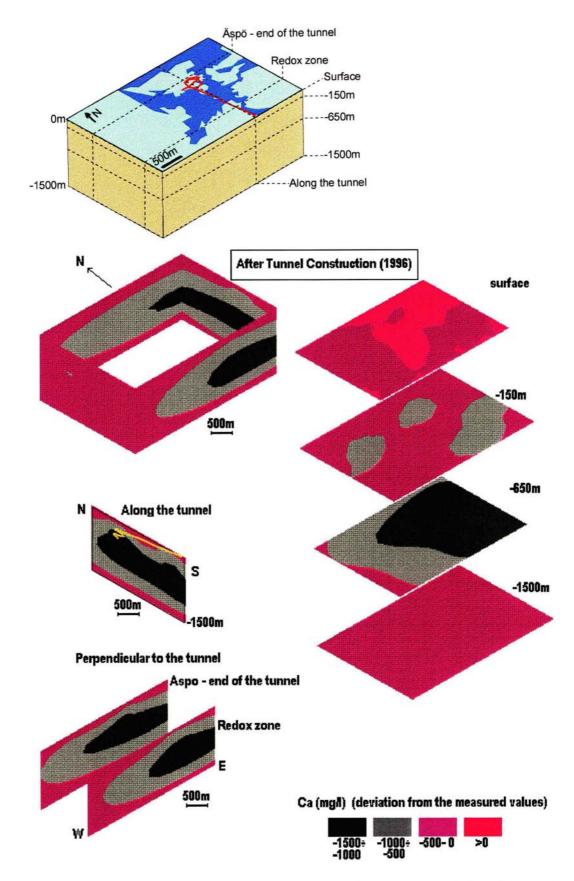

Figure 4.14 a) Result of the M3 modelling of the Na deviation in mg/l prior to tunnel construction.

Figure 4.14 b) Result of the M3 modelling of the Na deviation in mg/L after the tunnel construction. A gain of sodium, perhaps due to the influences from the outwash of the marine water, is observed after the tunnel construction.

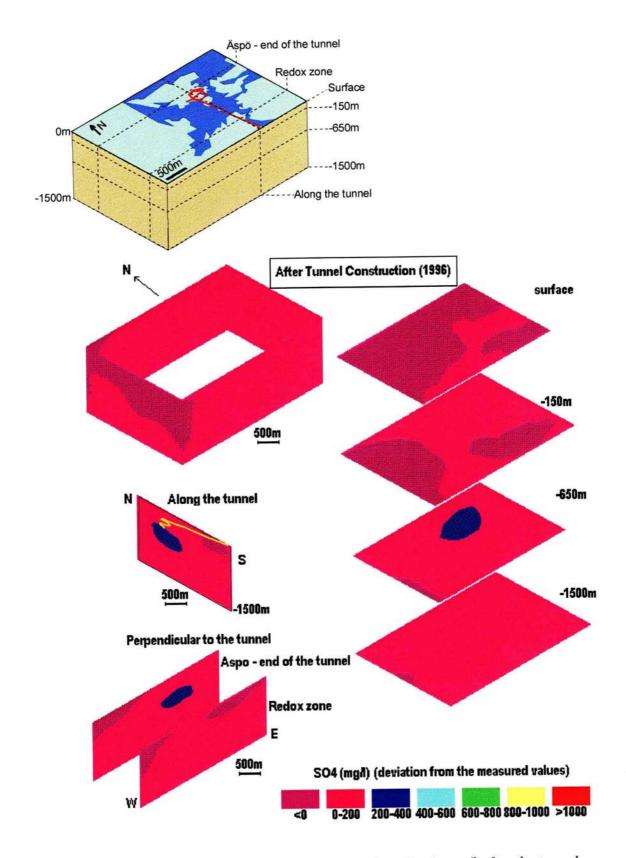

Figure 4.15 a) Result of the M3 modelling of the Ca deviation in mg/l prior to tunnel construction.

Figure 4.15 b) Result of the M3 modelling of the Ca deviation in mg/lafter the tunnel construction. A loss of the calcium, perhaps due to calcite precipitation, is observed after the tunnel construction.

Figure 4.16 a) Result of the M3 modelling of the SO_4 deviation in mg/l prior to tunnel construction.

Figure 4.16 b) Result of the M3 modelling of the SO_4 deviation in mg/l after the tunnel construction. Unchanged conditions are observed prior and after the tunnel construction. Gains can be associated with oxydation of the pyrite. Losses can be associated with sulphate reduction.

5 CONCLUSIONS OF THE M3 MODELLING

M3 can relatively easily be used to calculate mixing portions and to identify the sinks or the sources that may exist in a geochemical system. This can help to identify the flow system and to address the reactions in the standard codes used by the other modelling teams. The long geographical distances and the lack of observations made the interpolation uncertain. The results should therefore be used as a background information rather then as a final result. The modelling showed the following trends for the groundwater chemistry associated with the tunnel construction:

- 1. An increase of the salinity is observed after the tunnel construction, along the tunnel.
- 2. M3 shows an increase of the alkalinity along the tunnel after the tunnel construction (see figure 5.3). The increase of the alkalinity could be produced by the biological process generated by decomposition of the organic matter (see Table 1). M3 shows a gain of HCO₃ perhaps due to biogenic activity, observed after the tunnel construction.
- 3. A decrease of the Na under Äspö, but an increase of the Na measured values around the Redox zone are observed after the tunnel construction. M3 modelling shows a gain of sodium, perhaps due to the influences from the outwash of the marine water, observed after the tunnel construction.
- 4. An increase in measured values of the Ca along the tunnel is observed after the tunnel construction. The M3 modelling shows a loss of the calcium, perhaps due to calcite precipitation, after the tunnel construction.
- 5. A general decrease in the measured values of the sulphate is observed after the tunnel construction. The M3 modelling shows more or less unchanged conditions prior and after the tunnel construction. Gains are associated with pyrite oxidation and losses with sulphate reduction.
- 6. Concerning the environmental isotopes, a decrease of the O¹⁸ but an increase of the tritium measured values along the tunnel are observed after the tunnel construction.
- 7. Concerning the mixing portions, an increase of the meteoric water is observed along the tunnel, after the tunnel construction. At the same time, a decrease of the portion of the glacial water is observed, due to the consumtion of this water. After tunnel construction, along the tunnel, the old marine water (Litorina) is replaced by modern sea water. An increase of the brine water portion is observed along the tunnel, after the tunnel construction.

The result of the modelling shows that the processes considered to have a dominating impact on the present Äspö groundwater chemistry are mixing both in disturbed and undisturbed systems, calcite dissolution and precipitation, redox reactions and biological processes.

ACKNOWLEDGEMENTS

This study has been supported and financed by the Swedish Nuclear and Waste Management Company (SKB). The helpful suggestions from Peter Wikberg (SKB), John Smellie (Conterra AB) and Ingvar Rhen (VBB Viak) are acknowledged. Izabella Halberg (Hallberg Translations) corrected the language.

References

Banwart S (ed), Laaksoharju M, Skårman C, Gustafsson E, Pitkänen P, Snellman M, Landström O, Aggeryd I, Mathiasson L, Sundblad B, Tullborg E-L, Wallin B, Pettersson C, Pedersen K, Arlinger J, Jahromi N, Ekendahl S, Hallbeck L, Degueldre C, Malmström M, 1995. Äspö Hard Rock Laboratory. The Redox Experiment in Block Scale. Final reporting of results from the three year project. SKB Progress Report PR 25-95-06, Stockholm, Sweden.

Banwart S, Gustafsson E, Laaksoharju M, Nilsson A-C, Tullborg E-L, Wallin B, 1993. The large scale Redox experiment: Redox processes in a Granitic coastal aquifer. SKB Progress Report PR 25-93-03, Stockholm, Sweden.

GURBAN, I. (1996) Caractérisation et modélisation de l'écoulement et du transport de matière au voisinage des réacteurs nucléaires naturels d'Oklo, Gabon, *Thése de doctorat, Ecoles des Mines de Paris*, Mémoires des Sciences de la Terre, Nr. 25, 194p. Gurban I, Ledoux E, Made B, Salignac A-L, Winberg A, Smellie J, Louvat D, Toulhoat P, (1996). Oklo, analogue naturel de stockage de déchets radioactifs (phase 1). Volume 3. Caractérisation et modélisation des migrations à distance des zones de réaction (sites d'Okélobondo et de Bangombé), Nuclear Science and Technology, Commision of the European Communities, Rapport Final.EUR Rep. 16857/3 FR, 177p. Gurban I, Laaksoharju M, Ledoux E, Made B, Salignac A-L, (1998). Indications of uranium transport around the reactor zone at Bangombé (Oklo).

Laaksoharju M, Skårman C, Skårman E, 1998. Multivariate Mixing and Mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Submitted to Applied Geochemistry.

Laaksoharju M, Wallin B (eds), 1997. Evolution of the groundwater chemistry at the Swedish Äspö Hardrock Laboratory site. Proceedings of the second Äspö international geochemistry workshop. SKB International Cooperation Report 97-04, Stockholm, Sweden.

Laaksoharju M (ed), Gustafson G, Pedersen K, Rhén I, Skårman C, Tullborg E-L, Wallin B, Wikberg P, 1995. Sulphate reduction in the Äspö HRL tunnel. SKB Technical Report 95-25, Stockholm, Sweden.

Laaksoharju M, Skårman C, 1995. Groundwater sampling and chemical characterisation of the HRL tunnel at Äspö, Sweden. SKB-Progress report 25-95-29, Stockholm, Sweden.

Laaksoharju M, Smellie J, Nilsson A-C, Skårman C, 1995. Groundwater sampling and chemical characterisation of the Laxemar deep borehole KLX02. SKB Technical Report TR 95-05, Stockholm, Sweden.

Nilsson A-C, 1995. Compilation of groundwater chemistry data from Äspö 1990-1994. SKB Progress Report PR 25-95-02, Stockholm, Sweden.

PEDERSEN, K. and KARLSSON, F. (1995) Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal. SKB report 95-10, p. 222.

Rhén I (ed), Gustafson G, Stanfors R, Wikberg P, 1997. Äspö HRL Geoscientific evaluation 1997/5. Models based on site characterization 1986-1995. SKB Technical Report (in preparation).

Smellie J, Laaksoharju M, 1992. The Äspö hard rock laboratory: Final evaluation of the hydrogeochemical pre-investigations in relation to existing geological and hydraulic conditions. SKB Technical Report TR 92-31, Stockholm, Sweden.

Smellie J, Laaksoharju M, Wikberg P, 1995. Äspö, SE Sweden: A natural groundwater flow model derived from hydrogeochemical observations. Journal of Hydrogeology 172 (1995) 147-169.

APPENDIX 1: Data used

Table 1: List of data used for the present modelling including the chemical composition and the calculated mixing portions.

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SGKLX02	Laxemar	930803	1631	1681						8500	45.5	19300
Glacial	Glacial									0.17	0.4	0.18
Litorina	Sea									3180	154	152
Rain'60	Rain									0.4	0.29	0.24
HAS03	Äspö prior to tunnel	870804	48	100	74.00	7416.683	1816.715	-60.169	1	335	14.0	80
HAS03	Äspö prior to tunnel	870805	48	100	74.00	7416.683	1816.715	-60.169	2	336	12.0	87
HAS05	Äspö prior to tunnel	870807	45	100	72.50	7312.145	2120.557	-56.285	2	237	4.0	25
HAS06	Äspö prior to tunnel	870807	40	100	70.00	7419.49	2333.787	-65.134	1	254	3.0	44
HAS06	Äspö prior to tunnel	870808	40	100	70.00	7419.49	2333.787	-65.134	2	900	12.0	297
HAS13	Äspö prior to tunnel	890703	0	100	50.00	7044.306	2127.345	-42.013	1622	1880	32.8	1040
KAS02	Äspö prior to tunnel	890111	202	214.5	208.25	7277.847	2118.089	-199.84	1548	1300	6.6	990
KAS02	Äspö prior to tunnel	880927	308	344	326.00	7287.086	2114.861	-317.182	1474	1710	8.8	1480
KAS02	Äspö prior to tunnel	880411	314	319	316.50	7286.336	2115.088	-307.714	1418	1700	9.0	1540
KAS02	Äspö prior to tunnel	880425	463	468	465.50	7298.307	2111.442	-456.186	1428	1800	8.1	1580
KAS02	Äspö prior to tunnel	880505	530	535	532.50	7303.482	2110.634	-522.981	1433	2200	8.1	1890
KAS02	Äspö prior to tunnel	880920	802	924.04	863.02	7330.525	2112.894	-852.366	1470	2850	11.5	3690
KAS02	Äspö prior to tunnel	890131	860	924.04	892.02	7333.019	2113.516	-881.252	1560	3000	10.9	3830
KAS03	Äspö prior to tunnel	890221	129	134	131.50	7772.286	1799.072	-121.81	1569	613	2.4	162
KAS03	Äspö prior to tunnel	880810	196	222	209.00	7780.839	1795.573	-198.757	1437	1200	6.3	472
KAS03	Äspö prior to tunnel	880828	248	251	249.50	7785.529	1793.943	-238.951	1448	1290	6.5	490
KAS03	Äspö prior to tunnel	880816	347	373	360.00	7798.728	1790.137	-348.592	1441	1770	5.9	1400
KAS03	Äspö prior to tunnel	880822	453	480	466.50	7811.349	1786.428	-454.275	1445	1550	6.2	1190
KAS03	Äspö prior to tunnel	880903	609	623	616.00	7830.037	1780.283	-602.474	1452	1920	6.2	1740
KAS03	Äspö prior to tunnel	880908	690	1002.06	846.03	7862.398	1771.773	-830.051	1455	2130	6.6	2670
KAS03	Äspö prior to tunnel	890315	860	1002.06	931.03	7875.057	1769.287	-914.066	1582	3020	7.3	4380
KAS04	Äspö prior to tunnel	890417	226	235	230.50	7535.235	2018.363	-185.174	1596	382	2.4	91
KAS04	Äspö prior to tunnel	890427	334	343	338.50	7482.905	2045.558	-275.643	1603	1180	6.1	740
KAS04	Äspö prior to tunnel	890403	440	480.98	460.49	7422.114	2076.438	-376.789	1588	1890	7.8	1660
KAS06	Äspö prior to tunnel	890531	204	277	240.50	7191.254	2196.499	-200.067	1606	1230	7.4	893
KAS06	Äspö prior to tunnel	890607	304	377	340.50	7243.495	2209.035	-284.403	1610	1820	9.1	1490
KAS06	Äspö prior to tunnel	890614	389	406	397.50	7273.95	2217.275	-331.873	1614	2070	11.7	1410
KAS06	Äspö prior to tunnel	890621	439	602.17	520.59	7341.272	2235.546	-433.277	1618	2200	11.1	1570
KLX01	Laxemar prior to tunnel	881208	272	277	274.50	7284.474	594.99	-257.015	1537	1040	6.2	243

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
SGKLX02	Laxemar	930803	2.12	14.1	47200	906	-44.9	4.2	-8.9	100.0%	0.0%
Glacial	Glacial		0.1	0.12	0.5	0.5	-158	0	-21	0.0%	100.0%
Litorina	Sea		380	146	6100	527	-35	0	-5	0.0%	0.0%
Rain'60	Rain		0.1	12.2	0.23	1.4	-80	100	-10.5	0.0%	0.0%
HAS03	Äspö prior to tunnel	870804	36.0	235	574	98.0	-76.4	33.0	-10.8	4.5%	7.3%
HAS03	Äspö prior to tunnel	870805	39.0	235	608	104.0	-80.5	35.0	-10.9	4.3%	9.3%
HAS05	Äspö prior to tunnel	870807	6.0	370	119	118.0	-73.8	2	-9.9	3.7%	12.5%
HAS06	Äspö prior to tunnel	870807	11.0	271	280	96.0	-73.3	24.0	-10.2	3.3%	9.8%
HAS06	Äspö prior to tunnel	870808	56.0	155	1760	283.0	-66.6	11	-9.4	9.5%	9.5%
HAS13	Äspö prior to tunnel	890703	219.0	132	5070	136.0	-69.3	1.2	-7.2	8.3%	8.3%
KAS02	Äspö prior to tunnel	890111	65.0	71	3820	106.0	-108.9	0.3	-13.9	8.9%	51.1%
KAS02	Äspö prior to tunnel	880927	75.0	33	5360	291.0	-99.8	8	-12.7	12.9%	44.7%
KAS02	Äspö prior to tunnel	880411	72.0	27	5340	270.0	-100.6	8.0	-12.3	12.8%	43.8%
KAS02	Äspö prior to tunnel	880425	66.0	25	5440	290.0	-99.9	8.0	-12.8	13.0%	46.5%
KAS02	Äspö prior to tunnel	880505	42.0	10	6330	550.0	-97.2	8.0	-12.3	16.6%	50.2%
KAS02	Äspö prior to tunnel	880920	31.0	7	11100	522.0	-96.8	8.0	-13.0	25.1%	49.6%
KAS02	Äspö prior to tunnel	890131	31.0	11	11100	519.0	-96.8	0.2	-13.1	26.6%	50.6%
KAS03	Äspö prior to tunnel	890221	21.0	61	1220	31.1	-125.0	0.1	-15.8	3.7%	65.1%
KAS03	Äspö prior to tunnel	880810	61.0	54	2850	31.0	-115.3	8.0	-14.6	6.7%	52.7%
KAS03	Äspö prior to tunnel	880828	58.0	53	2950	39.0	-118.1	8.0	-14.5	6.9%	54.1%
KAS03	Äspö prior to tunnel	880816	40.0	12	5180	370.0	-104.9	8	-13.3	12.8%	53.8%
KAS03	Äspö prior to tunnel	880822	40.0	27	4600	300.0	-109.6	8	-13.6	11.1%	54.7%
KAS03	Äspö prior to tunnel	880903	38.0	11	5880	470.0	-103.4	8	-13.3	14.5%	55.5%
KAS03	Äspö prior to tunnel	880908	45.0	11	8080	680.0	-99.7	8	-13.0	21.5%	51.7%
KAS03	Äspö prior to tunnel	890315	49.5	11	12300	709.0	-96.4	0.4	-12.7	31.5%	48.0%
KAS04	Äspö prior to tunnel	890417	6.2	222	508	180.0	-84.8	4.3	-11.0	4.8%	26.5%
KAS04	Äspö prior to tunnel	890427	30.0	69	3030	220.0	-99.6	0.5	-13.0	9.0%	46.7%
KAS04	Äspö prior to tunnel	890403	61.0	21	5840	407.0	-92.3	0.03	-11.9	15.0%	44.5%
KAS06	Äspö prior to tunnel	890531	82.0	89	3630	150.0	-94.3	3.8	-10.9	9.9%	31.1%
KAS06	Äspö prior to tunnel	890607	119.0	49	5680	283.0	-77.8	0.3	-9.2	15.1%	21.1%
KAS06	Äspö prior to tunnel	890614	153.0	64	5970	362.0	-69.2	0.6	-7.4	14.5%	14.5%
KAS06	Äspö prior to tunnel	890621	130.0	50	6150	459.0	-70.8	3.5	-8.2	17.1%	17.1%
KLX01	Laxemar prior to tunnel	881208	28.0	83	2050	48.0	-89.9	8	-11.5	6.5%	31.2%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
SGKLX02	Laxemar	930803	0.0%	0.0%	0.00	0.00	0.00	0.00	0.00	0.00
Glacial	Glacial		0.0%	0.0%	0.00	0.00	0.00	0.00	0.00	0.00
Litorina	Sea		0.0%	100.0%	0.00	0.00	0.00	0.00	0.00	0.00
Rain'60	Rain		100.0%	0.0%	0.00	0.00	0.00	0.00	0.00	0.00
HAS03	Äspö prior to tunnel	870804	83.7%	4.5%	-194.52	4.69	-801.51	18.60	217.53	-1841.05
HAS03	Äspö prior to tunnel	870805	82.0%	4.3%	-169.17	3.10	-753.95	22.39	218.06	-1695.93
HAS05	Äspö prior to tunnel	870807	80.2%	3.7%	-193.49	-3.63	-691.58	-8.17	354.31	-1844.16
HAS06	Äspö prior to tunnel	870807	83.6%	3.3%	-132.92	-3.88	-600.01	-1.74	255.49	-1484.29
HAS06	Äspö prior to tunnel	870808	71.2%	9.8%	-217.45	-7.63	-1547.86	18.52	130.67	-3312.27
HAS13	Äspö prior to tunnel	890703	51.2%	32.2%	148.41	-20.77	-614.44	96.36	77.55	-821.15
KAS02	Äspö prior to tunnel	890111	31.2%	8.9%	263.52	-11.39	-735.98	31.02	52.93	-909.19
KAS02	Äspö prior to tunnel	880927	29.5%	12.9%	199.64	-17.26	-1035.20	25.52	8.65	-1531.71
KAS02	Äspö prior to tunnel	880411	30.6%	12.8%	204.76	-16.80	-950.01	23.01	2.72	-1482.70
KAS02	Äspö prior to tunnel	880425	27.5%	13.0%	278.29	-18.15	-954.11	16.15	0.74	-1503.53
KAS02	Äspö prior to tunnel	880505	16.7%	16.6%	266.62	-25.17	-1329.74	-21.31	-18.60	-2492.28
KAS02	Äspö prior to tunnel	880920	12.7%	12.7%	313.15	-19.66	-1175.05	-17.70	-16.63	-1523.16
KAS02	Äspö prior to tunnel	890131	11.4%	11.4%	375.80	-19.02	-1321.17	-13.02	-10.88	-2151.77
KAS03	Äspö prior to tunnel	890221	27.5%	3.7%	182.73	-5.29	-554.38	6.84	51.67	-742.83
KAS03	Äspö prior to tunnel	880810	33.9%	6.7%	419.12	-7.34	-828.28	35.37	39.09	-712.73
KAS03	Äspö prior to tunnel	880828	32.2%	6.9%	485.27	-7.55	-850.01	31.59	37.98	-721.61
KAS03	Äspö prior to tunnel	880816	20.7%	12.8%	279.95	-19.82	-1081.40	-8.82	-11.01	-1619.15
KAS03	Äspö prior to tunnel	880822	23.1%	11.1%	251.12	-16.27	-973.02	-2.57	6.31	-1326.74
KAS03	Äspö prior to tunnel	880903	15.5%	14.5%	223.50	-23.04	-1085.25	-17.57	-14.20	-1861.34
KAS03	Äspö prior to tunnel	880908	13.4%	13.4%	-127.21	-24.07	-1508.28	-6.42	-13.29	-2905.58
KAS03	Äspö prior to tunnel	890315	10.3%	10.3%	18.91	-23.08	-1707.01	9.69	-9.77	-3175.56
KAS04	Äspö prior to tunnel	890417	63.9%	4.8%	-181.04	-7.50	-846.39	-12.30	206.46	-2060.25
KAS04	Äspö prior to tunnel	890427	35.3%	9.0%	131.83	-12.09	-1005.43	-4.37	50.27	-1752.47
KAS04	Äspö prior to tunnel	890403	25.6%	15.0%	140.50	-22.33	-1253.49	3.70	-6.15	-2143.07
KAS06	Äspö prior to tunnel	890531	49.1%	9.9%	73.21	-12.62	-1033.30	44.08	67.12	-1647.99
KAS06	Äspö prior to tunnel	890607	48.7%	15.1%	55.49	-21.26	-1448.40	61.21	18.85	-2371.25
KAS06	Äspö prior to tunnel	890614	48.1%	22.9%	109.56	-30.36	-1422.18	65.60		-2268.11
KAS06	Äspö prior to tunnel	890621	45.7%	20.1%	105.16	-27.80	-1767.95	53.33		-3162.47
KLX01	Laxemar prior to tunnel	881208		6.5%	284.66	-6.98	-1014.68	3.21		-1395.91

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SGKLX02	Laxemar	930803	0.00	0.00	0.00	0.00	Brine
Glacial	Glacial		0.00	0.00	0.00	0.00	Glacial
Litorina	Sea		0.00	0.00	0.00	0.00	Marine
Rain'60	Rain		0.00	0.00	0.00	0.00	Meteoric
HAS03	Äspö prior to tunnel	870804	31.87	5.63	-50.88	0.14	
HAS03	Äspö prior to tunnel	870805	40.87	3.30	-47.23	0.27	
HAS05	Äspö prior to tunnel	870807	64.04	12.98	-78.32	1.65	
HAS06	Äspö prior to tunnel	870807	47.35	11.70	-59.71	1.10	
HAS06	Äspö prior to tunnel	870808	144.47	13.06	-60.65	1.41	
HAS13	Äspö prior to tunnel	890703	-109.88	-0.23	-50.30	2.27	
KAS02	Äspö prior to tunnel	890111	-21.83	3.82	-31.27	1.33	
KAS02	Äspö prior to tunnel	880927	105.08	4.67	-22.03	1.57	
KAS02	Äspö prior to tunnel	880411	85.93	3.29	-23.17	1.89	
KAS02	Äspö prior to tunnel	880425	102.71	5.91	-20.03	1.65	
KAS02	Äspö prior to tunnel	880505	312.33	8.67	-9.43	2.29	
KAS02	Äspö prior to tunnel	880920	227.38	7.36	-5.72	1.61	
KAS02	Äspö prior to tunnel	890131	217.42	8.16	-12.34	1.66	
KAS03	Äspö prior to tunnel	890221	-22.37	2.84	-27.57	1.28	
KAS03	Äspö prior to tunnel	880810	-65.52	0.44	-26.23	0.96	
KAS03	Äspö prior to tunnel	880828	-60.42	-1.45	-24.45	1.19	
KAS03	Äspö prior to tunnel	880816	186.65	6.82	-13.26	1.94	
KAS03	Äspö prior to tunnel	880822	140.07	4.12	-15.58	1.85	
KAS03	Äspö prior to tunnel	880903	261.38	8.25	-8.07	2.00	
KAS03	Äspö prior to tunnel	880908	413.79	7.01	-6.30	1.84	
KAS03	Äspö prior to tunnel	890315	369.41	5.35	-11.21	1.77	
KAS04	Äspö prior to tunnel	890417	109.93	11.99	-59.79	1.94	
KAS04	Äspö prior to tunnel	890427	90.70	9.66	-35.21	1.77	
KAS04	Äspö prior to tunnel	890403	191.80	10.39	-26.17	2.21	
KAS06	Äspö prior to tunnel	890531	7.26	2.03	-45.71	2.16	
KAS06	Aspö prior to tunnel	890607	65.76	6.54	-49.05	2.44	
KAS06	Äspö prior to tunnel	890614	109.25	6.71	-48.12	3.13	
KAS06	Äspö prior to tunnel	890621	197.28	7.52	-42.88	2.72	
KLX01	Laxemar prior to tunnel	881208	-45.58	9.26	-48.14	1.82	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
KLX01	Laxemar prior to tunnel	881123	456	461	458.50	7295.323	594.993	-440.693	1528	860	6.1	223
KLX01	Laxemar prior to tunnel	881103	680	702.11	691.06	7307.837	595.69	-672.907	1516	1680	7.1	1400
KLX01	Laxemar prior to tunnel	891101	680	702.11	691.06	7307.837	595.69	-672.907	1633	1610	7.3	1330
KLX02	Laxemar prior to tunnel	930803	9	31	20.00	6708.741	-234.664	-1.614	-1	137	3.9	54
KLX02	Laxemar prior to tunnel	930803	31	81	56.00	6711.901	-234.157	-37.471	-1	134	3.9	46
KLX02	Laxemar prior to tunnel	930803	81	131	106.00	6716.531	-233.413	-87.251	-1	130	3.8	43
KLX02	Laxemar prior to tunnel	930803	131	181	156.00	6720.97	-232.701	-137.048	-1	120	3.7	39
KLX02	Laxemar prior to tunnel	930803	181	231	206.00	6725.365	-231.995	-186.85	-1	110	4.3	39
KLX02	Laxemar prior to tunnel	930803	231	281	256.00	6729.747	-231.341	-236.653	-1	97	3.5	34
KLX02	Laxemar prior to tunnel	930803	281	331	306.00	6734.13	-230.633	-286.455	-1	87	3.5	32
KLX02	Laxemar prior to tunnel	940210	315	321.5	318.25	6735.217	-230.468	-298.656	2738	111	3.1	24
KLX02	Laxemar prior to tunnel	930803	331	381	356.00	6738.713	-229.925	-336.24	-1	77	3.5	29
KLX02	Laxemar prior to tunnel	931108	335	340.8	337.90	6737.007	-230.197	-318.222	2705	206	3.1	36
KLX02	Laxemar prior to tunnel	930803	381	431	406.00	6743.764	-229.043	-385.976	-1	73	3.4	27
KLX02	Laxemar prior to tunnel	930803	431	481	456.00	6748.995	-228.028	-435.691	-1	70	3.4	26
KLX02	Laxemar prior to tunnel	930803	481	531	506.00	6754.439	-227.029	-485.384	-1	68	3.5	26
KLX02	Laxemar prior to tunnel	930803	531	581	556.00	6760.05	-225.995	-535.057	-1	67	3.5	25
KLX02	Laxemar prior to tunnel	930803	581	631	606.00	6765.677	-224.795	-584.725	-1	68	3.4	26
KLX02	Laxemar prior to tunnel	930803	631	681	656.00	6771.296	-223.588	-634.393	-1	67	3.4	25
KLX02	Laxemar prior to tunnel	930803	681	731	706.00	6777.138	-222.34	-684.035	-1	68	3.5	26
KLX02	Laxemar prior to tunnel	930803	731	781	756.00	6782.979	-221.122	-733.678	-1	68	3.4	26
KLX02	Laxemar prior to tunnel	931123	798	803.8	800.90	6788.109	-220.022	-778.27	2712	288	4.5	123
KLX02	Laxemar prior to tunnel	930803	831	881	856.00	6794.595	-218.705	-832.971	-1	73	3.4	39
KLX02	Laxemar prior to tunnel	930803	881	931	906.00	6800.52	-217.701	-882.609	-1	103	3.4	83
KLX02	Laxemar prior to tunnel	930803	931	981	956.00	6806.423	-216.865	-932.252	-1	327	3.7	397
KLX02	Laxemar prior to tunnel	930803	981	1031	1006.00	6812.381	-215.848	-981.885	-1	1000	5.1	1340
KLX02	Laxemar prior to tunnel	930803	1031	1081	1056.00	6818.341	-214.582	-1031.513	-1	2460	8.5	3590
KLX02	Laxemar prior to tunnel	931216	1090	1096.2	1093.10	6822.773	-213.502	-1068.331	2722	3800	10.4	5620
KLX02	Laxemar prior to tunnel	930803	1131	1181	1156.00	6830.553	-211.67	-1130.721	-1	3780	10.5	5720
KLX02	Laxemar prior to tunnel	940117	1420	1705	1562.50	6885.396	-198.676	-1533.293	2731	8030	29.0	18600
KLX02	Laxemar after tunnel	970925	0	50	25.00	6709.17	-234.60	-6.60	2406	61.0	4.1	29.2
KLX02	Laxemar after tunnel	970925	100	150	125.00	6718.20	-233.15	-106.18	2413	62.6	3.8	33.6
KLX02	Laxemar after tunnel	970925	200	250	225.00	6727.00	-231.74	-205.78	2422	58.0	3.8	32.1

•

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
KLX01	Laxemar prior to tunnel	881123	18.0	78	1700	106.0	-94.5	8	-12.2	6.2%	36.8%
KLX01	Laxemar prior to tunnel	881103	23.0	24	4870	351.0	-102.1	8	-13.3	12.1%	52.6%
KLX01	Laxemar prior to tunnel	891101	24.0	24	4680	390.0	-98.8	0.6	-11.8	12.8%	47.9%
KLX02	Laxemar prior to tunnel	930803	4.4	220	149	61.2	-74.4	8.4	-9.9	3.5%	14.7%
KLX02	Laxemar prior to tunnel	930803	4.3	202	146	58.2	-75.1	5.9	-10.5	3.5%	18.3%
KLX02	Laxemar prior to tunnel	930803	4.3	200	140	56.7	-74.6	4.2	-10.7	3.5%	19.3%
KLX02	Laxemar prior to tunnel	930803	4.3	200	123	52.5	-76.3	11.8	-10.3	3.2%	16.5%
KLX02	Laxemar prior to tunnel	930803	4.3	202	109	48.9	-76.1	15.2	-10.4	3.1%	15.5%
KLX02	Laxemar prior to tunnel	930803	4.3	202	83	43.8	-76.3	12.7	-10.5	3.0%	16.8%
KLX02	Laxemar prior to tunnel	930803	4.3	205	64	40.2	-75.9	5.1	-10.5	3.2%	18.5%
KLX02	Laxemar prior to tunnel	940210	4.6	223	73	43.0	-73.4	5.9	-10.3	3.2%	16.1%
KLX02	Laxemar prior to tunnel	930803	4.3	205	45	36.6	-75.4	7.6	-10.7	3.0%	18.3%
KLX02	Laxemar prior to tunnel	931108	5.9	201	235	84.0	-75.7	13.0	-10.6	3.6%	17.5%
KLX02	Laxemar prior to tunnel	930803	4.5	205	35	33.6	-76.4	7.6	-10.7	3.0%	18.7%
KLX02	Laxemar prior to tunnel	930803	4.6	204	28	32.1	-75.5	8.4	-10.6	3.0%	17.7%
KLX02	Laxemar prior to tunnel	930803	4.7	202	27	31.2	-76.2	12.7	-10.6	2.8%	16.8%
KLX02	Laxemar prior to tunnel	930803	4.7	198	26	30.6	-75.3	16.1	-10.6	2.7%	15.6%
KLX02	Laxemar prior to tunnel	930803	4.5	201	26	29.8	-76.5	8.4	-10.4	3.0%	17.5%
KLX02	Laxemar prior to tunnel	930803	4.5	200	28	29.8	-75.5	8.4	-10.4	3.0%	17.1%
KLX02	Laxemar prior to tunnel	930803	4.5	200	28	29.9	-76.0	17.7	-10.4	2.7%	14.7%
KLX02	Laxemar prior to tunnel	930803	4.5	209	28	30.0	-76.6	19.4	-10.5	2.5%	14.6%
KLX02	Laxemar prior to tunnel	931123	10.6	111	548	105.0	-78.7	8.4	-10.9	4.8%	23.6%
KLX02	Laxemar prior to tunnel	930803	4.3	205	60	35.4	-75.1	12.7	-10.7	2.9%	16.7%
KLX02	Laxemar prior to tunnel	930803	4.5	202	175	48.3	-76.1	11.0	-10.4	3.2%	17.0%
KLX02	Laxemar prior to tunnel	930803	4.6	181	1080	125.7	-77.8	13.5	-10.7	4.9%	20.8%
KLX02	Laxemar prior to tunnel	930803	4.7	126	3780	303.0	-81.5	11.0	-11.3	9.8%	32.4%
KLX02	Laxemar prior to tunnel	930803	4.0	53	9910	645.0	-84.5	10.1	-11.9	22.5%	45.6%
KLX02	Laxemar prior to tunnel	931216	2.1	8	15800	1010.0	-78.6	7.6	-11.7	41.3%	38.4%
KLX02	Laxemar prior to tunnel	930803	2.5	13	16000	900.0	-83.7	0.23	-12.0	40.8%	41.9%
KLX02	Laxemar prior to tunnel	940117	2.7	9	45500	832.0	-47.4	26.0	-8.9	91.6%	4.0%
KLX02	Laxemar after tunnel	970925	5.9	0	150	6.0	-76.5	38	-9.5	3.0%	11.3%
KLX02	Laxemar after tunnel	970925	6.0	51	120	6.6	-77.4	24	-9.7	3.1%	14.9%
KLX02	Laxemar after tunnel	970925	6.5	139	66	8.1	-77.0	25	-9.9	2.6%	12.6%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
KLX01	Laxemar prior to tunnel	881123	50.8%	6.2%	138.12	-6.52	-978.97	-5.70	61.87	-1593.28
KLX01	Laxemar prior to tunnel	881103	23.1%	12.1%	261.63	-17.40	-962.01	-23.47	1.68	-1601.99
KLX01	Laxemar prior to tunnel	891101	26.5%	12.8%	112.54	-18.54	-1163.72	-25.06	0.19	-2152.88
KLX02	Laxemar prior to tunnel	930803	78.3%	3.5%	-272.18	-3.37	-627.10	-9.07	204.82	-1716.94
KLX02	Laxemar prior to tunnel	930803	74.7%	3.5%	-278.32	-3.43	-640.35	-9.27	187.22	-1734.33
KLX02	Laxemar prior to tunnel	930803	73.6%	3.5%	-284.35	-3.56	-646.72	-9.34	185.32	-1749.59
KLX02	Laxemar prior to tunnel	930803	77.1%	3.2%	-257.84	-3.04	-589.92	-8.14	185.40	-1599.96
KLX02	Laxemar prior to tunnel	930803	78.3%	3.1%	-250.94	-2.15	-561.76	-7.59	187.48	-1536.79
KLX02	Laxemar prior to tunnel	930803	77.2%	3.0%	-254.77	-2.79	-551.50	-7.29	187.74	-1520.99
KLX02	Laxemar prior to tunnel	930803	75.1%	3.2%	-287.05	-3.18	-590.62	-8.02	190.70	-1641.70
KLX02	Laxemar prior to tunnel	940210	77.4%	3.2%	-264.66	-3.60	-601.28	-7.77	208.39	-1639.98
KLX02	Laxemar prior to tunnel	930803	75.7%	3.0%	-278.28	-2.86	-562.34	-7.41	190.88	-1575.00
KLX02	Laxemar prior to tunnel	931108	75.3%	3.6%	-216.91	-4.41	-667.98	-8.02	186.00	-1693.65
KLX02	Laxemar prior to tunnel	930803	75.4%	3.0%	-274.25	-2.82	-550.97	-6.94	191.02	-1548.35
KLX02	Laxemar prior to tunnel	930803	76.4%	3.0%	-276.49	-2.80	-550.70	-6.82	189.91	-1551.89
KLX02	Laxemar prior to tunnel	930803	77.6%	2.8%	-260.41	-2.40	-520.59	-6.13	188.02	-1470.37
KLX02	Laxemar prior to tunnel	930803	79.0%	2.7%	-251.96	-2.23	-505.85	-5.82	183.98	-1428.22
KLX02	Laxemar prior to tunnel	930803	76.6%	3.0%	-277.58	-2.79	-549.19	-6.89	186.90	-1549.75
KLX02	Laxemar prior to tunnel	930803	77.0%	3.0%	-281.80	-2.84	-555.54	-6.99	185.81	-1562.40
KLX02	Laxemar prior to tunnel	930803	80.0%	2.7%	-244.18	-2.12	-493.55	-5.80	185.95	-1395.26
KLX02	Laxemar prior to tunnel	930803	80.3%	2.5%	-228.17	-1.94	-466.89	-5.27	195.13	-1322.21
KLX02	Laxemar prior to tunnel	931123	66.8%	4.8%	-273.62	-5.38	-812.02	-7.85	95.13	-2013.74
KLX02	Laxemar prior to tunnel	930803	77.5%	2.9%	-261.82	-2.60	-518.26	-6.74	190.94	-1466.61
KLX02	Laxemar prior to tunnel	930803	76.6%	3.2%	-272.18	-3.29	-541.49	-7.86	187.50	-1535.83
KLX02	Laxemar prior to tunnel	930803	69.4%	4.9%	-243.38	-6.32	-552.61	-14.14	164.69	-1521.70
KLX02	Laxemar prior to tunnel	930803	48.0%	9.8%	-144.61	-14.72	-566.00	-32.82	104.42	-1442.39
KLX02	Laxemar prior to tunnel	930803	16.0%	16.0%	42.58	-26.56	-769.31	-57.26	24.50	-1666.38
KLX02	Laxemar prior to tunnel	931216	10.2%	10.2%	-30.66	-24.19	-2360.23	-37.40	-13.92	-4297.86
KLX02	Laxemar prior to tunnel	930803	8.7%	8.7%	35.06	-21.60	-2171.02	-31.32	-6.50	-3794.23
KLX02	Laxemar prior to tunnel	940117	2.2%	2.2%	176.36	-16.12	925.27	-7.72	-7.44	2147.02
KLX02	Laxemar after tunnel	970925	82.8%	3.0%	-286.84	-2.12	-549.73	-5.56	-14.88	-1435.95
KLX02	Laxemar after tunnel	970925	78.9%	3.1%	-302.53	-2.72	-574.13	-6.03	36.36	-1544.90
KLX02	Laxemar after tunnel	970925	82.2%	2.6%	-249.37	-1.73	-479.43	-3.64	124.75	-1335.27

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KLX01	Laxemar prior to tunnel	881123	16.57	9.29	-43.06	1.73	
KLX01	Laxemar prior to tunnel	881103	176.42	9.20	-15.62	1.86	
KLX01	Laxemar prior to tunnel	891101	205.69	8.27	-26.43	2.82	
KLX02	Laxemar prior to tunnel	930803	9.87	14.23	-70.08	1.89	
KLX02	Laxemar prior to tunnel	930803	6.52	16.32	-68.93	1.67	
KLX02	Laxemar prior to tunnel	930803	4.78	17.60	-69.58	1.57	
KLX02	Laxemar prior to tunnel	930803	5.02	13.94	-65.42	1.70	
KLX02	Laxemar prior to tunnel	930803	3.48	13.51	-63.27	1.51	
KLX02	Laxemar prior to tunnel	930803	-0.48	14.36	-64.66	1.55	
KLX02	Laxemar prior to tunnel	930803	-6.80	15.99	-70.10	1.72	
KLX02	Laxemar prior to tunnel	940210	-4.21	16.60	-71.68	1.66	
KLX02	Laxemar prior to tunnel	930803	-8.10	16.41	-68.19	1.50	
KLX02	Laxemar prior to tunnel	931108	31.01	15.02	-62.46	1.48	
KLX02	Laxemar prior to tunnel	930803	-10.11	15.78	-67.92	1.55	
KLX02	Laxemar prior to tunnel	930803	-11.53	15.92	-68.11	1.55	
KLX02	Laxemar prior to tunnel	930803	-10.22	14.66	-64.99	1.47	
KLX02	Laxemar prior to tunnel	930803	-9.67	14.66	-62.99	1.34	
KLX02	Laxemar prior to tunnel	930803	-13.72	14.77	-68.33	1.73	
KLX02	Laxemar prior to tunnel	930803	-14.11	15.42	-68.69	1.68	
KLX02	Laxemar prior to tunnel	930803	-9.55	13.31	-62.40	1.45	
KLX02	Laxemar prior to tunnel	930803	-7.49	12.76	-61.04	1.35	· · · · · · · · · · · · · · · · · · ·
KLX02	Laxemar prior to tunnel	931123	35.08	15.87	-58.57	1.74	
KLX02	Laxemar prior to tunnel	930803	-6.81	15.66	-64.95	1.35	
KLX02	Laxemar prior to tunnel	930803	1.15	14.58	-65.73	1.66	
KLX02	Laxemar prior to tunnel	930803	54.68	14.53	-56.12	1.64	· · · · · · · · · · · · · · · · · · ·
KLX02	Laxemar prior to tunnel	930803	161.77	15.95	-37.39	1.91	
KLX02	Laxemar prior to tunnel	930803	356.85	15.98	-6.82	2.15	
KLX02	Laxemar prior to tunnel	931216	582.29	12.32	-4.28	1.62	
KLX02	Laxemar prior to tunnel	930803	484.23	10.73	-10.14	1.77	
KLX02	Laxemar prior to tunnel	940117	-9.35	2.56	19.92	0.43	
KLX02	Laxemar after tunnel	970925	-37.85	9.90	-44.91	1.97	
KLX02	Laxemar after tunnel	970925	-39.33	11.72	-54.99	2.14	
KLX02	Laxemar after tunnel	970925	-30.78	10.72	-57.26	1.74	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
KLX02	Laxemar after tunnel	970925	300	350	325.00	6735.83	-230.38	-305.38	2416	53.6	3.3	34.4
KLX02	Laxemar after tunnel	970925	400	450	425.00	6745.74	-228.67	-404.87	2421	50.8	4.9	37.2
KLX02	Laxemar after tunnel	970925	500	550	525.00	6756.56	-226.65	-504.26	2424	52.0	3.1	39.6
KLX02	Laxemar after tunnel	970925	600	650	625.00	6767.78	-224.34	-603.60	2420	51.2	4.3	39.4
KLX02	Laxemar after tunnel	970925	700	750	725.00	6779.36	-221.88	-702.90	2427	51.6	3.1	40.1
KLX02	Laxemar after tunnel	970925	800	850	825.00	6790.92	-219.44	-802.20	2419	50.4	4.8	39.1
KLX02	Laxemar after tunnel	970925	900	950	925.00	6802.77	-217.37	-901.47	2418	50.3	3.2	38.1
KLX02	Laxemar after tunnel	970925	1000	1050	1025.00	6814.65	-215.39	-1000.74	2412	57.5	3.2	53.4
KLX02	Laxemar after tunnel	970925	1100	1150	1125.00	6826.66	-212.56	-1099.98	2411	2277	9.2	3929
KLX02	Laxemar after tunnel	970925	1200	1250	1225.00	6839.59	-209.77	-1199.10	2410	4286	18	7733
KLX02	Laxemar after tunnel	970925	1300	1350	1325.00	6852.99	-206.56	-1298.15	2409	6762	28	12550
KLX02	Laxemar after tunnel	970925	1400	1450	1425.00	6866.62	-203.38	-1397.16	2407	6941	26	12800
KAS02	Äspö after tunnel	920819	309	345	327.00	7287.165	2114.836	-318.178	1990	1150	7.5	671
KAS02	Äspö after tunnel	920819	800	854	827.00	7327.454	2112.166	-816.485	1989	2850	13.7	3310
KAS03	Äspö after tunnel	920819	533	626	579.50	7825.385	1781.814	-566.304	1986	1340	5.8	659
KAS03	Äspö after tunnel	930207	533	626	579.50	7825.385	1781.814	-566.304	2073	1340	5.8	800
KAS03	Äspö after tunnel	930516	533	626	579.50	7825.385	1781.814	-566.304	2097	1370	5.5	872
KAS03	Äspö after tunnel	930816	533	626	579.50	7825.385	1781.814	-566.304	2146	1626.8	7.1	1263.8
KAS03	Äspö after tunnel	930907	533	626	579.50	7825.385	1781.814	-566.304	2162	1450	6.9	964
KAS03	Äspö after tunnel	940412	533	626	579.50	7825.385	1781.814	-566.304	2234	1564	6.7	1162
KAS04	Äspö after tunnel	920831	332	392	362.00	7471.36	2051.669	-295.177	1999	1060	8.0	597
KAS05	Äspö after tunnel	920901	320	380	350.00	7213.598	2069.746	-339.473	2001	1490	8.6	1070
KAS05	Äspö after tunnel	920901	440	549.6	494.80	7197.769	2074.653	-483.321	2000	2270	7.7	2020
KAS05	Äspö after tunnel	940412	440	549.6	494.80	7197.769	2074.653	-483.321	2235	2450	10.0	2560
KAS06	Äspö after tunnel	920819	191	249	220.00	7180.554	2194.583	-182.686	1988	945	5.5	484
KAS06	Äspö after tunnel	920819	431	500	465.50	7310.861	2227.495	-388.06	1987	2000	11.0	1280
KAS07	Äspö after tunnel	920831	191	290	240.50	7131.309	2139.342	-201.271	1996	971	8.1	522
KAS07	Äspö after tunnel	940406	191	290	240.50	7131.309	2139.342	-201.271	2228	1479	10.2	559
KAS07	Äspö after tunnel	920831	501	604	552.50	6995.844	2042.233	-464.993	1995	1940	9.8	1650
KAS07	Äspö after tunnel	930906	501	604	552.50	6995.844	2042.233	-464.993	2158	1980	10.2	1600
KAS07	Äspö after tunnel	940412	501	604	552.50	6995.844	2042.233	-464.993	2236	1924	9.8	1633
KAS07	Äspö after tunnel	940906	501	604	552.50	6995.844	2042.233	-464.993	2273	1890	9.5	1610
KAS08	Äspö after tunnel	920831	140	200	170.00	7375.268	2200.704	-135.882	1998	450	4.0	164

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
KLX02	Laxemar after tunnel	970925	6.9	182	46	10.5	-77.4	30	-10.0	2.2%	10.6%
KLX02	Laxemar after tunnel	970925	7.4	205	36.1	12.6	-77.7	26	-10.0	2.4%	10.8%
KLX02	Laxemar after tunnel	970925	7.7	209	35.4	13.5	-77.8	26	-10.0	2.2%	11.2%
KLX02	Laxemar after tunnel	970925	7.6	212	35.4	13.7	-78.1	32	-10.0	2.1%	9.2%
KLX02	Laxemar after tunnel	970925	7.8	212	35.4	13.8	-81.2	32	-10.1	1.9%	11.3%
KLX02	Laxemar after tunnel	970925	7.6	213	34.7	13.8	-79.3	32	-10.0	2.1%	9.6%
KLX02	Laxemar after tunnel	970925	7.4	215	35.4	13.3	-82.2	27	-10.0	2.0%	12.7%
KLX02	Laxemar after tunnel	970925	7.4	217	83.4	14.8	-79.3	28	-10.0	2.1%	11.1%
KLX02	Laxemar after tunnel	970925	4.4	97	10387	489	-76.2	30	-9.5	18.6%	30.0%
KLX02	Laxemar after tunnel	970925	2.4	47	19908	707	-66.0	25	-8.2	39.9%	22.7%
KLX02	Laxemar after tunnel	970925	2.0	38	32882	862	-63.4	19	-9.1	69.7%	14.6%
KLX02	Laxemar after tunnel	970925	2.1	32	34341	646	-62.8	25	-9.3	67.4%	15.3%
KAS02	Äspö after tunnel	920819	48.5	138	3250	249.0	-94.9	8.0	-13.3	9.1%	40.2%
KAS02	Äspö after tunnel	920819	30.1	25	10200	480.0	-99.7	8.0	-13.6	23.4%	51.5%
KAS03	Äspö after tunnel	920819	47.8	48	3360	176.0	-116.0	8.0	-14.9	8.3%	57.8%
KAS03	Äspö after tunnel	930207	42.8	49	3530	176.0	-111.2	5.1	-14.6	8.7%	56.1%
KAS03	Äspö after tunnel	930516	45.7	42	3840	198.0	-108.3	4.2	-14.4	9.3%	55.0%
KAS03	Äspö after tunnel	930816	44.3	33	4701	275.0	-105.8	5.0	-13.9	11.4%	54.1%
KAS03	Äspö after tunnel	930907	48.4	38	4230	213.0	-108.5	4.2	-14.3	10.0%	54.9%
KAS03	Äspö after tunnel	940412	48.4	38	4637	270.0	-106.3	6.8	-13.6	11.1%	52.1%
KAS04	Äspö after tunnel	920831	24.9	69	2760	207.0	-103.4	8	-13.6	8.0%	47.6%
KAS05	Äspö after tunnel	920901	53.5	97	4500	227.0	-100.3	8	-13.3	10.5%	44.6%
KAS05	Äspö after tunnel	920901	42.7	12	7290	576.0	-95.6	8.0	-12.9	18.3%	50.7%
KAS05	Äspö after tunnel	940412	42.1	5	8402	534.0	-96.8	8.4	-13.0	20.1%	50.4%
KAS06	Äspö after tunnel	920819	48.8	135	2450	164.0	-94.0	8.0	-12.0	7.6%	33.8%
KAS06	Äspö after tunnel	920819	126.0	52	5670	357.0	-77.7	8.0	-9.2	15.9%	18.4%
KAS07	Äspö after tunnel	920831	39.3	167	2460	205.0	-87.1	8.0	-11.2	8.2%	27.5%
KAS07	Äspö after tunnel	940406	125.0	335	3744	74.4	-65.4	22.0	-8.0	3.6%	3.6%
KAS07	Äspö after tunnel	920831	50.1	18	6060	486.0	-94.2	25.0	-12.1	14.9%	40.5%
KAS07	Äspö after tunnel	930906	51.2	52	6120	453.0	-89.1	9.0	-11.3	15.3%	38.3%
KAS07	Äspö after tunnel	940412	56.5	13	6077	472.0	-86.5	4.2	-11.6	15.9%	40.5%
KAS07	Äspö after tunnel	940906	59.6	13	5960	446.0	-80.4	12.7	-11.2	15.4%	33.5%
KAS08	Äspö after tunnel	920831	18.9	237	918	87.0	-89.4	8.0	-11.5	4.2%	26.8%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
KLX02	Laxemar after tunnel	970925	85.0%	2.2%	-203.97	-1.38	-394.19	-1.61	168.10	-1128.01
KLX02	Laxemar after tunnel	970925	84.5%	2.4%	-224.67	-0.09	-421.20	-1.70	190.90	-1219.59
KLX02	Laxemar after tunnel	970925	84.4%	2.2%	-207.22	-1.61	-391.74	-0.86	195.14	-1146.14
KLX02	Laxemar after tunnel	970925	86.6%	2.1%	-192.17	-0.14	-365.53	-0.45	198.09	-1073.77
KLX02	Laxemar after tunnel	970925	84.9%	1.9%	-171.44	-0.99	-330.98	0.42	198.58	-981.02
KLX02	Laxemar after tunnel	970925	86.2%	2.1%	-193.19	0.36	-366.19	-0.45	199.13	-1075.47
KLX02	Laxemar after tunnel	970925	83.2%	2.0%	-188.58	-1.17	-359.37	-0.50	201.56	-1053.33
KLX02	Laxemar after tunnel	970925	84.6%	2.1%	-191.31	-1.33	-360.60	-0.82	203.26	-1050.64
KLX02	Laxemar after tunnel	970925	32.7%	18.6%	98.58	-28.22	301.20	-66.93	63.11	446.68
KLX02	Laxemar after tunnel	970925	18.7%	18.7%	303.68	-29.08	13.17	-69.57	11.76	-43.04
KLX02	Laxemar after tunnel	970925	7.9%	7.9%	587.55	-15.89	-914.27	-29.35	15.73	-496.14
KLX02	Laxemar after tunnel	970925	8.6%	8.6%	937.71	-18.04	-220.83	-32.15	8.82	2002.93
KAS02	Äspö after tunnel	920819	41.7%	9.1%	89.53	-10.89	-1094.90	13.73	118.34	-1588.54
KAS02	Äspö after tunnel	920819	12.6%	12.6%	460.89	-16.54	-1226.48	-18.20	1.76	-1614.03
KAS03	Äspö after tunnel	920819	25.6%	8.3%	366.08	-11.14	-962.81	15.86	31.47	-1083.77
KAS03	Äspö after tunnel	930207	26.5%	8.7%	323.96	-11.85	-891.95	9.48	31.77	-1105.98
KAS03	Äspö after tunnel	930516	26.4%	9.3%	281.65	-13.38	-940.38	10.02	23.80	-1125.95
KAS03	Äspö after tunnel	930816	23.1%	11.4%	297.18	-15.89	-950.41	0.73	11.89	-1366.00
KAS03	Äspö after tunnel	930907	25.1%	10.0%	282.40	-13.33	-980.37	10.13	18.86	-1097.63
KAS03	Äspö after tunnel	940412	25.7%	11.1%	268.13	-15.71	-995.99	5.93	17.04	-1275.95
KAS04	Äspö after tunnel	920831	36.3%	8.0%	119.81	-8.35	-968.60	-5.94	51.63	-1529.73
KAS05	Äspö after tunnel	920901	34.3%	10.5%	261.38	-12.66	-975.97	13.23	75.92	-1105.97
KAS05	Äspö after tunnel	920901	15.5%	15.5%	224.32	-24.75	-1527.90	-16.72	-15.18	-2275.54
KAS05	Äspö after tunnel	940412	14.7%	14.7%	269.26	-22.07	-1351.27	-14.31	-21.18	-2006.24
KAS06	Äspö after tunnel	920819		7.6%	62.02	-9.86	-986.28	19.84	116.63	-1578.47
KAS06	Äspö after tunnel	920819	49.8%	15.9%	143.35	-20.93	-1811.85	65.20	20.46	-2801.71
KAS07	Äspö after tunnel	920831	56.1%	8.2%	14.49	-8.51	-1070.71	7.93	147.02	-1903.92
KAS07	Äspö after tunnel	940406	72.0%	20.9%	512.02	-23.80	-159.95	45.49	295.22	789.71
KAS07	Äspö after tunnel	920831	29.7%	14.9%	194.61	-20.26	-1256.63	-7.07	-9.59	-1904.26
KAS07	Äspö after tunnel	930906	31.0%	15.3%	187.41	-20.66	-1385.23	-7.51	23.60	-2059.63
KAS07	Äspö after tunnel	940412	27.8%	15.9%	71.39	-22.08	-1452.19	-4.17	-15.83	-2376.55
KAS07	Äspö after tunnel	940906	35.7%	15.4%	85.77	-21.55	-1394.60	0.51	-16.12	-2272.69
KAS08	Äspö after tunnel	920831	64.7%	4.2%	-45.12	-4.75	-660.28	2.62		-1340.30

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KLX02	Laxemar after tunnel	970925	-22.30	9.13	-55.05	1.46	
KLX02	Laxemar after tunnel	970925	-22.39	8.81	-58.63	1.46	
KLX02	Laxemar after tunnel	970925	-19.50	9.15	-58.47	1.52	
KLX02	Laxemar after tunnel	970925	-17.37	7.44	-54.69	1.32	
KLX02	Laxemar after tunnel	970925	-14.77	6.08	-52.97	1.45	
KLX02	Laxemar after tunnel	970925	-17.30	6.52	-54.32	1.36	
KLX02	Laxemar after tunnel	970925	-17.19	6.06	-56.32	1.69	
KLX02	Laxemar after tunnel	970925	-16.92	7.68	-56.70	1.52	
KLX02	Laxemar after tunnel	970925	221.15	12.23	-3.52	2.82	
KLX02	Laxemar after tunnel	970925	246.99	9.33	4.62	3.02	
KLX02	Laxemar after tunnel	970925	188.93	-0.02	8.22	1.38	
KLX02	Laxemar after tunnel	970925	-10.30	1.63	13.54	1.26	
KAS02	Äspö after tunnel	920819	118.14	9.17	-34.05	0.77	
KAS02	Äspö after tunnel	920819	201.31	6.58	-5.55	1.24	
KAS03	Äspö after tunnel	920819	55.89	2.38	-17.91	1.07	· · · · · · · · · · · · · · · · · · ·
KAS03	Äspö after tunnel	930207	50.72	5.56	-21.81	1.17	
KAS03	Äspö after tunnel	930516	63.85	7.11	-22.60	1.21	
KAS03	Äspö after tunnel	930816	111.30	7.30	-18.59	1.47	
KAS03	Äspö after tunnel	930907	69.15	6.29	-21.37	1.25	
KAS03	Äspö after tunnel	940412	110.42	5.45	-19.38	1.58	· · · · · · · · · · · · · · · · · · ·
KAS04	Äspö after tunnel	920831	90.93	7.28	-28.65	1.33	
KAS05	Äspö after tunnel	920901	75.58	6.09	-26.78	1.14	
KAS05	Äspö after tunnel	920901	328.32	10.56	-8.28	1.78	· · · · · · · · · · · · · · · · · · ·
KAS05	Äspö after tunnel	940412	273.45	8.84	-7.16	1.66	
KAS06	Äspö after tunnel	920819	54.82	6.32	-43.39	1.51	
KAS06	Äspö after tunnel	920819	128.45	3.95	-42.44	2.11	
KAS07	Äspö after tunnel	920831	86.76	7.83	-48.43	1.61	
KAS07	Äspö after tunnel	940406	-68.93	6.73	-50.15	1.67	,,,,,,,
KAS07	Äspö after tunnel	920831	271.27	5.39	-5.28	1.59	
KAS07	Äspö after tunnel	930906	232.47	8.46	-22.68	2.13	
KAS07	Äspö after tunnel	940412	244.14	12.41	-24.22	2.03	
KAS07	Äspö after tunnel	940906	224.00	13.32	-23.61	1.72	
KAS08	Äspö after tunnel	920831	25.25	8.13	-56.88	1.52	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
KAS08	Äspö after tunnel	920831	503	601	552.00	7172.453	2307.591	-441.306	1997	2000	8.3	1670
KAS08	Äspö after tunnel	940406	503	601	552.00	7172.453	2307.591	-441.306	2229	2180	13.3	1522
KAS09	Äspö after tunnel	920901	116	150	133.00	6857.829	2089.529	-110.585	2002	1790	33.2	403
KAS09	Äspö after tunnel	930519	116	150	133.00	6857.829	2089.529	-110.585	2105	1770	40.0	291
KAS09	Äspö after tunnel	930906	116	150	133.00	6857.829	2089.529	-110.585	2160	1700	42.5	268
KAS09	Äspö after tunnel	940406	116	150	133.00	6857.829	2089.529	-110.585	2230	1628	38.0	219
KAS09	Äspö after tunnel	940906	116	150	133.00	6857.829	2089.529	-110.585	2274	1490	39.5	191
KAS09	Äspö after tunnel	951012	116	150	133.00	6857.829	2089.529	-110.585	2333	1465.1	33.9	199
KAS12	Äspö after tunnel	920901	234	277	255.50	7475.856	2182.879	-231.657	2003	1440	11.3	891
KAS12	Äspö after tunnel	930519	234	277	255.50	7475.856	2182.879	-231.657	2106	1460	12.0	880
KAS12	Äspö after tunnel	930907	234	277	255.50	7475.856	2182.879	-231.657	2161	1650	12.5	1070
KAS13	Äspö after tunnel	920901	151	190	170.50	7277.49	2089.359	-146.271	2005	350	4.6	83
KAS13	Äspö after tunnel	920901	191	220	205.50	7281.004	2072.72	-176.853	2004	894	10.9	408
KAS14	Äspö after tunnel	940407	131	138	134.50	6880.095	2162.321	-112.229	2232	1775	42.5	265
KAS14	Äspö after tunnel	940407	147	175	161.00	6868.364	2169.6	-134.849	2233	1766	41.1	271
HAV04	Ävrö prior to tunnel	870725	35	100	67.50	6565.709	3450.439	-51.714	1	215	4.0	14.0
HAV05	Ävrö prior to tunnel	870728	50	100	75.00	6667.185	3238.572	-55.818	1	117	3.0	14.0
HAV07	Ävrö prior to tunnel	870730	69	100	84.50	6553.768	2839.355	-70.937	2	139	2.0	21.0
KAV01	Ävrö prior to tunnel	870922	420	425	422.50	6388.190	3645.801	-408.588	1390	255	4.7	156
KAV01	Ävrö prior to tunnel	870825	522	531	526.50	6383.781	3648.026	-512.470	1383	750	7.4	440
KAV01	Ävrö prior to tunnel	870603	558	563	560.50	6382.225	3648.790	-546.426	1374	1500	6.0	1100
HBH01	RedoxZone after tunnel	911128	31	50.6	40.80	6183.527	2166.468	-30.879	-1	8.6	2.3	41.3
HBH01	RedoxZone after tunnel	920228	31	50.6	40.80	6183.527	2166.468	-30.879	-1	487.0	6.7	257.0
HBH01	RedoxZone after tunnel	920423	31	50.6	40.80	6183.527	2166.468	-30.879	1948	494.0	5.9	224.0
HBH01	RedoxZone after tunnel	920521	31	50.6	40.80	6183.527	2166.468	-30.879	-1	482.0	5.8	211.0
HBH01	RedoxZone after tunnel	920626	31	50.6	40.80	6183.527	2166.468	-30.879	1972	441.0	5.0	180.0
HBH01	RedoxZone after tunnel	920806	31	50.6	40.80	6183.527	2166.468	-30.879	1982	426.0	4.8	166.0
HBH01	RedoxZone after tunnel	920904	31	50.6	40.80	6183.527	2166.468	-30.879	2010	434.0	6.4	169.0
HBH01	RedoxZone after tunnel	921001	31	50.6	40.80	6183.527	2166.468	-30.879	2018	420.0	7.1	163.0
HBH01	RedoxZone after tunnel	921028	31	50.6	40.80	6183.527	2166.468	-30.879	2029	421.0	5.7	162.0
HBH01	RedoxZone after tunnel	921125	31	50.6	40.80	6183.527	2166.468	-30.879	2040	391.0	5.6	144.0
HBH01	RedoxZone after tunnel	921202	31	50.6	40.80	6183.527	2166.468	-30.879	2046	390.0	5.7	144.0
HBH01	RedoxZone after tunnel	930207	31	50.6	40.80	6183.527	2166.468	-30.879	2071	369.0	5.0	130.0

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
KAS08	Äspö after tunnel	920831	64.3	27	6300	413.0	-84.3	8.0	-10.8	15.6%	34.7%
KAS08	Äspö after tunnel	940406	144.8	63	6452	391.0	-73.8	13.0	-9.2	16.4%	16.4%
KAS09	Äspö after tunnel	920901	152.0	396	3820	228.0	-61.9	25.0	-7.4	2.0%	2.0%
KAS09	Äspö after tunnel	930519	148.0	264	3542	352.0	-56.2	35.0	-7.1	2.2%	2.2%
KAS09	Äspö after tunnel	930906	150.0	240	3390	363.0	-55.8	10.0	-6.7	4.6%	4.6%
KAS09	Äspö after tunnel	940406	144.8	206	3162	363.0	-58.8	30.0	-7.1	3.6%	3.6%
KAS09	Äspö after tunnel	940906	141.0	192	2930	364.0	-51.5	38.0	-6.9	1.4%	1.4%
KAS09	Äspö after tunnel	951012	139.7	175	2804	298.3	-56.7	33.8	-7.0	2.3%	2.3%
KAS12	Äspö after tunnel	920901	91.5	76	4220	171.0	-90.7	8.0	-11.4	11.1%	29.5%
KAS12	Äspö after tunnel	930519	84.4	103	4159	168.0	-86.1	5.1	-11.2	11.1%	27.1%
KAS12	Äspö after tunnel	930907	107.0	61	4860	233.0	-82.0	4.2	-10.5	13.3%	24.1%
KAS13	Äspö after tunnel	920901	11.4	294	543	112.0	-83.4	17.0	-11.1	3.6%	18.8%
KAS13	Äspö after tunnel	920901	44.2	188	2160	190.0	-92.2	8.0	-11.9	7.7%	29.9%
KAS14	Äspö after tunnel	940407	156.2	349	3404	350.0	-57.8	29.0	-6.8	1.4%	1.4%
KAS14	Äspö after tunnel	940407	154.8	328	3400	361.0	-56.6	29.0	-7.1	2.0%	2.0%
HAV04	Ävrö prior to tunnel	870725	3.0	300	108	76	-73.5	8	-10.1	3.3%	13.1%
HAV05	Ävrö prior to tunnel	870728	3.0	265	14	62	-71.8	11	-9.8	3.1%	11.3%
HAV07	Ävrö prior to tunnel	870730	2.0	257	73	69	-73.3	2	-10.2	3.4%	16.7%
KAV01	Ävrö prior to tunnel	870922	21	186	575	43	-78.6	19	-10.6	3.7%	15.9%
KAV01	Ävrö prior to tunnel	870825	42	81	1970	118	-80.3	13	-10.9	7.2%	22.8%
KAV01	Ävrö prior to tunnel	870603	60	42	4300	220	-86.2	8	-11.7	11.2%	34.4%
HBH01	RedoxZone after tunnel	911128	4.0	137	11.3	24.5	-67.3	34	-8.8	2.6%	2.6%
HBH01	RedoxZone after tunnel	920228	37.6	222	1200.0	130.0	-74.7	34	-10.0	5.1%	6.9%
HBH01	RedoxZone after tunnel	920423	34.8	237	1080.0	132.0	-74.7	42	-10.1	4.6%	4.9%
HBH01	RedoxZone after tunnel	920521	34.3	243	1056.0	126.0	-75.8	34	-10.3	4.7%	8.1%
HBH01	RedoxZone after tunnel	920626	30.2	260	932.0	130.0	-79.3	17	-10.7	4.8%	15.7%
HBH01	RedoxZone after tunnel	920806	26.1	270	869.0	133.0	-78.3	17	-10.3	4.7%	13.9%
HBH01	RedoxZone after tunnel	920904	26.8	280	843.0	142.0	-77.8	25	-10.2	4.7%	10.4%
HBH01	RedoxZone after tunnel	921001	26.5	280	833.0	138.0	-78.1	17	-9.7	5.0%	10.8%
HBH01	RedoxZone after tunnel	921028	27.0	286	812.0	134.0	-76.9	17	-9.8	4.8%	10.7%
HBH01	RedoxZone after tunnel	921125	23.7	288	737.0	136.0	-76.7	25	-9.6	4.5%	7.8%
HBH01	RedoxZone after tunnel	921202	22.8	291	739.0	138.0	-73.8	9.3	-9.7	5.0%	11.2%
HBH01	RedoxZone after tunnel	930207	21.4	294	654.0	140.0	-72.4	9.3	-9.7	4.9%	10.7%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
KAS08	Äspö after tunnel	920831	34.2%	15.6%	183.42	-22.96	-1355.17	4.81	-2.11	-1989.05
KAS08	Äspö after tunnel	940406	48.0%	19.1%	175.99	-23.84	-1675.67	71.69	26.87	-2463.91
KAS09	Äspö after tunnel	920901	61.4%	34.6%	520.13	-21.24	-31.05	20.24	337.65	774.14
KAS09	Äspö after tunnel	930519	56.1%	39.5%	326.39	-22.06	-191.49	-2.36	199.12	97.19
KAS09	Äspö after tunnel	930906	52.5%	38.3%	90.65	-18.72	-679.76	4.37	177.05	-1120.63
KAS09	Äspö after tunnel	940406	56.4%	36.5%	164.48	-20.00	-524.11	5.99	145.33	-745.61
KAS09	Äspö after tunnel	940906	57.5%	39.8%	108.50	-22.62	-130.34	-10.43	126.65	-137.01
KAS09	Äspö after tunnel	951012	60.3%	35.0%	154.36	-21.29	-300.09	6.44	116.15	-423.42
KAS12	Äspö after tunnel	920901	48.4%	11.1%	147.99	-11.02	-1260.50	49.16	52.36	-1675.07
KAS12	Äspö after tunnel	930519	50.8%	11.1%	165.30	-10.37	-1275.97	41.97	79.03	-1748.31
KAS12	Äspö after tunnel	930907	49.4%	13.3%	100.41	-14.20	-1510.47	56.24	33.71	-2210.47
KAS13	Äspö after tunnel	920901	73.9%	3.6%	-74.05	-2.93	-622.88	-2.56	279.15	-1390.85
KAS13	Äspö after tunnel	920901	54.8%	7.7%	-0.78	-4.66	-1081.92	14.85	169.02	-1922.27
KAS14	Äspö after tunnel	940407	56.1%	41.1%	350.34	-21.60	-63.86	-0.09	281.94	245.28
KAS14	Äspö after tunnel	940407	55.9%	40.1%	321.43	-21.78	-171.79	2.19	262.30	18.33
HAV04	Ävrö prior to tunnel	870725	80.3%	3.3%	-173.32	-2.91	-632.35	-9.79	284.87	-1662.70
HAV05	Ävrö prior to tunnel	870728	82.5%	3.1%	-241.64	-3.40	-582.92	-8.82	250.01	-1621.25
HAV07	Ävrö prior to tunnel	870730	76.6%	3.4%	-253.34	-4.98	-632.06	-10.92	242.26	-1716.10
KAV01	Ävrö prior to tunnel	870922	76.6%	3.7%	-179.22	-3.00	-566.81	6.71	170.68	-1405.24
KAV01	Ävrö prior to tunnel	870825	62.8%	7.2%	-91.54	-7.24	-961.22	14.39	61.78	-1869.18
KAV01	Ävrö prior to tunnel	870603	43.3%	11.2%	194.37	-16.56	-1074.19	17.22	18.79	-1657.27
HBH01	RedoxZone after tunnel	911128	92.1%	2.6%	-299.14	-3.23	-470.82	-6.15	121.55	-1391.55
HBH01	RedoxZone after tunnel	920228	82.8%	5.1%	-114.60	-3.84	-744.54	17.84	203.65	-1543.96
HBH01	RedoxZone after tunnel	920423	85.8%	4.6%	-48.92	-3.64	-679.81	16.96	219.09	-1396.14
HBH01	RedoxZone after tunnel	920521	82.4%	4.7%	-69.31	-3.88	-706.80	16.18	225.38	-1458.48
HBH01	RedoxZone after tunnel	920626		4.8%	-123.37	-4.91	-759.57	11.66	243.15	-1642.19
HBH01	RedoxZone after tunnel	920806	76.6%	4.7%	-128.97	-4.95	-757.92	7.86	253.04	-1662.28
HBH01	RedoxZone after tunnel	920904	80.2%	4.7%	-112.55	-3.20	-740.88	8.84	262.71	-1649.80
HBH01	RedoxZone after tunnel	921001	79.3%	5.0%	-162.80	-3.12	-807.25	7.35	262.33	-1825.21
HBH01	RedoxZone after tunnel	921028	79.6%	4.8%	-143.76	-4.21	-778.21	8.44	268.54	-1763.91
HBH01	RedoxZone after tunnel	921125	83.3%	4.5%	-129.18	-3.55	-721.95	6.60	270.70	-1635.41
HBH01	RedoxZone after tunnel	921202	78.7%	5.0%	-197.88	-4.61	-834.71	3.49	273.33	-1942.41
HBH01	RedoxZone after tunnel	930207	79.4%	4.9%	-205.23	-5.08	-825.98	2.53		-1965.11

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
KAS08	Äspö after tunnel	920831	189.50	10.33	-26.83	2.24	
KAS08	Äspö after tunnel	940406	140.69	4.63	-35.73	1.71	
KAS09	Äspö after tunnel	920901	26.65	3.36	-36.49	1.37	
KAS09	Äspö after tunnel	930519	123.00	6.94	-21.17	1.42	
KAS09	Äspö after tunnel	930906	118.73	8.95	-42.69	2.10	
KAS09	Äspö after tunnel	940406	137.60	6.31	-26.53	1.71	
KAS09	Äspö after tunnel	940906	141.07	11.16	-19.53	1.53	
KAS09	Äspö after tunnel	951012	91.87	8.52	-26.64	1.78	
KAS12	Äspö after tunnel	920901	11.69	3.45	-40.84	1.41	
KAS12	Äspö after tunnel	930519	8.34	6.13	-46.14	1.35	
KAS12	Äspö after tunnel	930907	42.10	6.16	-45.74	1.59	
KAS13	Äspö after tunnel	920901	58.89	8.37	-57.08	1.12	
KAS13	Äspö after tunnel	920901	79.34	5.00	-47.09	1.20	
KAS14	Äspö after tunnel	940407	120.08	4.29	-27.19	1.56	
KAS14	Äspö after tunnel	940407	130.79	6.19	-26.99	1.37	
HAV04	Ävrö prior to tunnel	870725	27.21	14.03	-72.44	1.54	
HAV05	Ävrö prior to tunnel	870728	16.83	14.59	-71.65	1.67	
HAV07	Ävrö prior to tunnel	870730	19.75	17.01	-74.76	1.81	
KAV01	Ävrö prior to tunnel	870922	-11.39	10.85	-57.79	1.31	
KAV01	Ävrö prior to tunnel	870825	13.80	11.74	-50.06	1.49	
KAV01	Ävrö prior to tunnel	870603	59.07	11.67	-35.73	1.62	
HBH01	RedoxZone after tunnel	911128	-14.51	12.66	-58.20	1.79	
HBH01	RedoxZone after tunnel	920228	55.04	6.55	-49.03	0.86	·
HBH01	RedoxZone after tunnel	920423	64.21	5.42	-43.98	0.59	
HBH01	RedoxZone after tunnel	920521	57.21	6.76	-48.64	0.72	
HBH01	RedoxZone after tunnel	920626	59.68	9.11	-57.80	1.11	
HBH01	RedoxZone after tunnel	920806	63.81	8.75	-59.79	1.32	
HBH01	RedoxZone after tunnel	920904	73.81	6.59	-55.41	1.06	1
HBH01	RedoxZone after tunnel	921001	65.38	6.30	-62.47	1.58	
HBH01	RedoxZone after tunnel	921028	63.58	7.59	-62.82	1.48	
HBH01	RedoxZone after tunnel	921125	71.02	5.83	-58.47	1.40	
HBH01	RedoxZone after tunnel	921202	64.76	10.93	-69.62	1.62	
HBH01	RedoxZone after tunnel	930207	68.42	12.04	-70.34	1.58	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
HBH01	RedoxZone after tunnel	930311	31	50.6	40.80	6183.527	2166.468	-30.879	2079	361.0	3.7	120.0
HBH01	RedoxZone after tunnel	930328	31	50.6	40.80	6183.527	2166.468	-30.879	2087	356.0	5.5	118.0
HBH01	RedoxZone after tunnel	930516	31	50.6	40.80	6183.527	2166.468	-30.879	2098	321.0	4.3	108.0
HBH01	RedoxZone after tunnel	930612	31	50.6	40.80	6183.527	2166.468	-30.879	2110	304.0	4.0	94.3
HBH01	RedoxZone after tunnel	930706	31	50.6	40.80	6183.527	2166.468	-30.879	2130	312.0	5.0	98.2
HBH01	RedoxZone after tunnel	930816	31	50.6	40.80	6183.527	2166.468	-30.879	2144	349.0	5.1	115.0
HBH01	RedoxZone after tunnel	930907	31	50.6	40.80	6183.527	2166.468	-30.879	2165	346.0	5.0	113.0
HBH01	RedoxZone after tunnel	930921	31	50.6	40.80	6183.527	2166.468	-30.879	2167	348.0	5.0	115.0
HBH01	RedoxZone after tunnel	931112	31	50.6	40.80	6183.527	2166.468	-30.879	2196	305.0	4.6	97.6
HBH01	RedoxZone after tunnel	940811	31	50.6	40.80	6183.527	2166.468	-30.879	2268	260.0	3.3	82.1
HBH01	RedoxZone after tunnel	940905	31	50.6	40.80	6183.527	2166.468	-30.879	2269	263.0	3.2	81.0
HBH01	RedoxZone after tunnel	950324	31	50.6	40.80	6183.527	2166.468	-30.879	2307	286.0	3.8	94.4
HBH02	RedoxZone after tunnel	910911	0	32.4	16.20	6184.311	2162.792	-7.345	1931	11.5	2.3	15.4
HBH02	RedoxZone after tunnel	910912	0	32.4	16.20	6184.311	2162.792	-7.345	-1	10.3	1.7	42.5
HBH02	RedoxZone after tunnel	911129	21	32.4	26.70	6190.937	2161.031	-15.296	-1	11.9	2.6	45.0
HBH02	RedoxZone after tunnel	920228	21	32.4	26.70	6190.937	2161.031	-15.296	-1	21.1	1.7	34.5
HBH02	RedoxZone after tunnel	920904	21	32.4	26.70	6190.937	2161.031	-15.296	2009	5.3	1.7	16.7
HBH02	RedoxZone after tunnel	921028	21	32.4	26.70	6190.937	2161.031	-15.296	2031	6.2	1.3	20.8
HBH02	RedoxZone after tunnel	921126	21	32.4	26.70	6190.937	2161.031	-15.296	2042	5.3	1.0	16.7
HBH02	RedoxZone after tunnel	921202	21	32.4	26.70	6190.937	2161.031	-15.296	2047	5.5	1.0	17.1
HBH02	RedoxZone after tunnel	930207	21	32.4	26.70	6190.937	2161.031	-15.296	2072	5.6	1.0	17.9
HBH02	RedoxZone after tunnel	930317	21	32.4	26.70	6190.937	2161.031	-15.296	2080	5.4	1.1	16.3
HBH02	RedoxZone after tunnel	930328	21	32.4	26.70	6190.937	2161.031	-15.296	2088	5.4	1.2	20.9
HBH02	RedoxZone after tunnel	930612	21	32.4	26.70	6190.937	2161.031	-15.296	2111	6.2	1.4	25.9
HBH02	RedoxZone after tunnel	930706	21	32.4	26.70	6190.937	2161.031	-15.296	2131	6.4	1.4	25.1
HBH02	RedoxZone after tunnel	930816	21	32.4	26.70	6190.937	2161.031	-15.296	2145	6.7	1.4	27.5
HBH02	RedoxZone after tunnel	930907	21	32.4	26.70	6190.937	2161.031	-15.296	2164	8.0	1.3	28.4
HBH02	RedoxZone after tunnel	931112	21	32.4	26.70	6190.937	2161.031	-15.296	2197	6.4	1.2	21.4
HBH02	RedoxZone after tunnel	950324	21	32.4	26.70	6190.937	2161.031	-15.296	2308	45.9	1.4	38.0
HBH05	RedoxZone after tunnel	921028	11	22	16.50	6185.414	2144.279	-8.697	2030	15.4	2.6	38.4
HBH05	RedoxZone after tunnel	921125	11	22	16.50	6185.414	2144.279	-8.697	2041	16.6	2.5	39.2
HBH05	RedoxZone after tunnel	930612	11	22	16.50	6185.414	2144.279	-8.697	2112	19.2	3.0	38.5
HBH05	RedoxZone after tunnel	930706	11	22	16.50	6185.414	2144.279	-8.697	2132	19.4	2.7	40.4

.....

.

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
HBH01	RedoxZone after tunnel	930311	19.9	291	610.0	128.0	-70.1	15	-9.9	4.5%	9.2%
HBH01	RedoxZone after tunnel	930328	19.7	292	598.0	129.0	-68.0	14	-10.0	4.7%	8.4%
HBH01	RedoxZone after tunnel	930516	21.3	299	519.0	129.0	-71.0	22	-9.9	4.2%	7.1%
HBH01	RedoxZone after tunnel	930612	15.8	305	476.0	123.0	-75.1	25	-9.9	3.7%	8.2%
HBH01	RedoxZone after tunnel	930706	16.8	311	484.0	125.0	-71.4	14	-9.8	4.3%	8.8%
HBH01	RedoxZone after tunnel	930816	19.1	309	461.0	105.0	-71.8	22	-9.7	4.0%	6.1%
HBH01	RedoxZone after tunnel	930907	20.2	310	515.0	125.0	-73.2	16	-9.5	4.4%	7.9%
HBH01	RedoxZone after tunnel	930921	20.5	311	529.0	126.0	-63.9	26	-9.5	3.2%	3.2%
HBH01	RedoxZone after tunnel	931112	17.8	315	450.0	114.0	-67.8	25	-9.5	3.6%	3.6%
HBH01	RedoxZone after tunnel	940811	14.3	311	352.0	105.0	-68.5	14	-9.8	3.8%	7.8%
HBH01	RedoxZone after tunnel	940905	14.3	319	348.0	104.0	-68.6	14	-9.8	3.8%	7.6%
HBH01	RedoxZone after tunnel	950324	16.2	290	550.0	103.0	-72.7	31	-9.8	3.5%	5.4%
HBH02	RedoxZone after tunnel	910911	1.9	63	5.0	13.2	-77.1	59	-10.2	1.6%	7.1%
HBH02	RedoxZone after tunnel	910912	3.3	114	6.0	19.2	-72.9	42	-9.7	2.1%	6.9%
HBH02	RedoxZone after tunnel	911129	3.6	142	19.1	19.9	-72.9	42	-9.7	2.1%	5.9%
HBH02	RedoxZone after tunnel	920228	3.2	137	13.5	24.3	-71.7	42	-10.0	2.0%	6.9%
HBH02	RedoxZone after tunnel	920904	2.4	40	8.3	17.5	-61.6	25	-8.5	3.4%	4.5%
HBH02	RedoxZone after tunnel	921028	3.4	70	10.4	18.4	-63.6	17	-7.9	3.6%	4.7%
HBH02	RedoxZone after tunnel	921126	4.0	65	9.6	15.4	-70.8	25	-8.9	3.0%	9.3%
HBH02	RedoxZone after tunnel	921202	3.1	53	10.6	16.2	-64.9	20	-8.0	3.5%	5.3%
HBH02	RedoxZone after tunnel	930207	5.6	65	9.2	15.1	-65.6	12	-9.1	3.5%	11.2%
HBH02	RedoxZone after tunnel	930317	2.2	64	10.3	15.2	-62.6	23	-9.9	3.1%	9.9%
HBH02	RedoxZone after tunnel	930328	3.7	63	12.4	15.7	-62.5	16	-9.5	3.4%	10.3%
HBH02	RedoxZone after tunnel	930612	3.2	74	12.8	20.9	-71.7	18	-9.4	3.2%	13.2%
HBH02	RedoxZone after tunnel	930706	3.3	70	9.9	20.6	-66.0	29	-9.2	3.0%	7.0%
HBH02	RedoxZone after tunnel	930816	3.3	77	7.8	18.7	-64.8	20	-8.6	3.3%	6.6%
HBH02	RedoxZone after tunnel	930907	4.9	79	17.7	18.3	-65.7	24	-8.5	3.2%	5.4%
HBH02	RedoxZone after tunnel	931112	2.8	55	12.1	17.8	-63.3	37	-9.1	2.8%	3.7%
HBH02	RedoxZone after tunnel	950324	3.8	170	100.0	13.8	-73.9	35	-9.9	2.0%	8.5%
HBH05	RedoxZone after tunnel	921028	4.0	137	11.2	23.0	-75.3	25	-9.6	2.6%	11.4%
HBH05	RedoxZone after tunnel	921125	4.3	143	11.7	22.3	-75.8	34	-9.5	2.3%	8.6%
HBH05	RedoxZone after tunnel	930612	3.8	162	12.0	21.5	-68.4	22	-9.9	2.8%	9.5%
HBH05	RedoxZone after tunnel	930706	4.5	165	19.9	16.6	-65.1	22	-8.8	2.9%	4.0%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
HBH01	RedoxZone after tunnel	930311	81.8%	4.5%	-164.41	-5.54	-754.67	2.63	273.81	-1786.30
HBH01	RedoxZone after tunnel	930328	82.2%	4.7%	-191.65	-4.12	-793.70	1.70	274.46	-1899.79
HBH01	RedoxZone after tunnel	930516	84.6%	4.2%	-165.17	-4.27	-701.30	5.31	282.01	-1698.19
HBH01	RedoxZone after tunnel	930612	84.4%	3.7%	-129.48	-3.68	-627.25	1.54	288.76	-1500.74
HBH01	RedoxZone after tunnel	930706	82.6%	4.3%	-188.44	-3.82	-734.87	0.35	294.05	-1798.33
HBH01	RedoxZone after tunnel	930816	86.0%	4.0%	-113.77	-3.07	-655.32	3.88	292.17	-1649.38
HBH01	RedoxZone after tunnel	930907	83.4%	4.4%	-163.10	-3.96	-734.50	3.46	292.84	-1806.86
HBH01	RedoxZone after tunnel	930921	87.3%	6.3%	-123.41	-6.41	-509.83	-3.58	290.70	-1359.36
HBH01	RedoxZone after tunnel	931112	88.4%	4.5%	-140.59	-4.22	-595.32	0.52	297.14	-1502.20
HBH01	RedoxZone after tunnel	940811	84.5%	3.8%	-189.96	-4.66	-666.90	-0.50	294.52	-1699.96
HBH01	RedoxZone after tunnel	940905	84.8%	3.8%	-180.46	-4.64	-657.18	-0.29	302.57	-1674.31
HBH01	RedoxZone after tunnel	950324	87.7%	3.5%	-118.25	-3.37	-578.46	2.89	273.76	-1293.31
HBH02	RedoxZone after tunnel	910911	89.8%	1.6%	-171.11	-1.10	-288.34	-4.16	49.54	-826.88
HBH02	RedoxZone after tunnel	910912	88.9%	2.1%	-236.29	-2.79	-367.79	-4.85	99.77	-1117.84
HBH02	RedoxZone after tunnel	911129	90.0%	2.1%	-228.82	-1.79	-355.51	-4.36	127.72	-1077.94
HBH02	RedoxZone after tunnel	920228	89.1%	2.0%	-217.65	-2.66	-362.72	-4.69	122.86	-1074.54
HBH02	RedoxZone after tunnel	920904	88.7%	3.4%	-396.04	-5.42	-651.32	-10.81	23.68	-1821.74
HBH02	RedoxZone after tunnel	921028	88.2%	3.6%	-413.60	-6.14	-677.96	-10.42	53.49	-1903.88
HBH02	RedoxZone after tunnel	921126	84.7%	3.0%	-343.27	-5.23	-563.45	-7.49	49.88	-1579.69
HBH02	RedoxZone after tunnel	921202	87.7%	3.5%	-400.92	-6.21	-659.38	-10.28	36.73	-1842.64
HBH02	RedoxZone after tunnel	930207	81.7%	3.5%	-408.20	-6.34	-670.89	-8.02	49.35	-1877.78
HBH02	RedoxZone after tunnel	930317	83.9%	3.1%	-355.62	-5.34	-584.57	-9.69	48.81	-1635.78
HBH02	RedoxZone after tunnel	930328	82.8%	3.4%	-395.33	-5.92	-646.12	-9.49	47.39	-1814.93
HBH02	RedoxZone after tunnel	930612	80.5%	3.2%	-362.82	-5.18	-588.31	-8.96	59.11	-1669.85
HBH02	RedoxZone after tunnel	930706	87.0%	3.0%	-341.13	-4.81	-553.30	-8.15	54.61	-1574.58
HBH02	RedoxZone after tunnel	930816	86.7%	3.3%	-383.79	-5.54	-622.44	-9.56	61.07	-1772.73
HBH02	RedoxZone after tunnel	930907	88.2%	3.2%	-367.15	-5.38	-596.00	-7.46	63.10	-1692.84
HBH02	RedoxZone after tunnel	931112	90.7%	2.8%	-321.87	-4.68	-524.92	-8.02	39.44	-1484.48
HBH02	RedoxZone after tunnel	950324	87.4%	2.0%	-193.18	-2.96	-359.79	-4.11	156.05	-989.61
HBH05	RedoxZone after tunnel	921028	83.3%	2.6%	-293.44	-2.96	-475.58	-6.19	122.60	-1396.80
HBH05	RedoxZone after tunnel	921125	86.8%	2.3%	-253.02	-2.39	-409.45	-4.60	128.72	-1217.28
HBH05	RedoxZone after tunnel	930612	85.0%	2.8%	-304.02	-2.80	-499.42	-6.86	147.19	-1461.58
HBH05	RedoxZone after tunnel	930706	90.1%	2.9%	-324.01	-3.44	-531.13	-6.82	149.30	-1545.76

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
HBH01	RedoxZone after tunnel	930311	62.39	13.49	-66.98	1.25	
HBH01	RedoxZone after tunnel	930328	60.66	14.79	-68.43	1.05	
HBH01	RedoxZone after tunnel	930516	68.18	11.18	-62.79	1.05	
HBH01	RedoxZone after tunnel	930612	68.64	8.35	-59.51	1.20	
HBH01	RedoxZone after tunnel	930706	62.44	12.04	-68.80	1.32	
HBH01	RedoxZone after tunnel	930816	47.03	9.79	-64.14	1.16	
HBH01	RedoxZone after tunnel	930907	61.37	9.44	-67.61	1.52	
HBH01	RedoxZone after tunnel	930921	62.71	14.63	-61.47	0.94	
HBH01	RedoxZone after tunnel	931112	56.82	11.70	-63.54	1.07	
HBH01	RedoxZone after tunnel	940811	48.62	14.50	-70.67	1.24	
HBH01	RedoxZone after tunnel	940905	48.41	14.31	-70.94	1.23	
HBH01	RedoxZone after tunnel	950324	52.19	8.73	-56.85	1.02	
HBH02	RedoxZone after tunnel	910911	-10.45	7.18	-30.85	0.93	
HBH02	RedoxZone after tunnel	910912	-12.29	10.81	-46.96	1.38	
HBH02	RedoxZone after tunnel	911129	-10.88	10.03	-48.10	1.27	
HBH02	RedoxZone after tunnel	920228	-6.23	12.02	-47.14	1.08	
HBH02	RedoxZone after tunnel	920904	-32.96	19.14	-63.80	2.23	
HBH02	RedoxZone after tunnel	921028	-34.32	17.16	-71.30	2.83	
HBH02	RedoxZone after tunnel	921126	-28.55	14.08	-59.84	2.37	
HBH02	RedoxZone after tunnel	921202	-34.87	16.47	-67.87	2.81	
HBH02	RedoxZone after tunnel	930207	-36.83	20.32	-69.85	2.33	
HBH02	RedoxZone after tunnel	930317	-30.27	22.66	-61.04	1.42	
HBH02	RedoxZone after tunnel	930328	-34.63	22.79	-66.99	1.84	
HBH02	RedoxZone after tunnel	930612	-25.53	16.08	-62.60	2.26	
HBH02	RedoxZone after tunnel	930706	-23.25	17.09	-58.17	1.83	
HBH02	RedoxZone after tunnel	930816	-30.41	17.70	-66.82	2.36	
HBH02	RedoxZone after tunnel	930907	-28.94	15.97	-64.29	2.34	
HBH02	RedoxZone after tunnel	931112	-23.72	17.35	-53.79	1.59	
HBH02	RedoxZone after tunnel	950324	-16.75	11.09	-52.50	1.35	
HBH05	RedoxZone after tunnel	921028	-16.07	11.51	-58.38	1.91	
HBH05	RedoxZone after tunnel	921125	-11.99	9.09	-52.85	1.74	
HBH05	RedoxZone after tunnel	930612	-19.35	16.76	-63.13	1.40	
HBH05	RedoxZone after tunnel	930706	-26.77	15.66	-68.26	1.91	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
HBH05	RedoxZone after tunnel	931112	11	22	16.50	6185.414	2144.279	-8.697	2198	25.4	2.6	42.6
KR0012B	RedoxZone after tunnel	910619	5	10.57	7.79	6167.254	2165.756	-69.196	1804	410.0	2.0	200.0
KR0012B	RedoxZone after tunnel	920408	5	10.57	7.79	6167.254	2165.756	-69.196	-1	629.0	5.0	280.0
KR0012B	RedoxZone after tunnel	920422	5	10.57	7.79	6167.254	2165.756	-69.196	1940	604.0	4.9	268.0
KR0012B	RedoxZone after tunnel	920506	5	10.57	7.79	6167.254	2165.756	-69.196	1953	597.0	5.1	255.0
KR0012B	RedoxZone after tunnel	920520	5	10.57	7.79	6167.254	2165.756	-69.196	-1	591.0	5.2	252.0
KR0012B	RedoxZone after tunnel	920603	5	10.57	7.79	6167.254	2165.756	-69.196	-1	572.0	4.9	235.0
KR0012B	RedoxZone after tunnel	920626	5	10.57	7.79	6167.254	2165.756	-69.196	1969	540.0	4.7	213.0
KR0012B	RedoxZone after tunnel	920708	5	10.57	7.79	6167.254	2165.756	-69.196	1973	539.0	4.9	206.0
KR0012B	RedoxZone after tunnel	920721	5	10.57	7.79	6167.254	2165.756	-69.196	1976	527.0	4.6	206.0
KR0012B	RedoxZone after tunnel	920806	5	10.57	7.79	6167.254	2165.756	-69.196	1979	526.0	4.5	200.0
KR0012B	RedoxZone after tunnel	920818	5	10.57	7.79	6167.254	2165.756	-69.196	1983	522.0	4.5	196.0
KR0012B	RedoxZone after tunnel	920903	5	10.57	7.79	6167.254	2165.756	-69.196	2008	516.0	5.5	195.0
KR0012B	RedoxZone after tunnel	920917	5	10.57	7.79	6167.254	2165.756	-69.196	2011	513.0	5.5	191.0
KR0012B	RedoxZone after tunnel	920930	5	10.57	7.79	6167.254	2165.756	-69.196	2014	510.0	7.0	187.0
KR0012B	RedoxZone after tunnel	921012	5	10.57	7.79	6167.254	2165.756	-69.196	2019	503.0	5.5	187.0
KR0012B	RedoxZone after tunnel	921028	5	10.57	7.79	6167.254	2165.756	-69.196	2026	497.0	5.0	186.0
KR0012B	RedoxZone after tunnel	921110	5	10.57	7.79	6167.254	2165.756	-69.196	2032	486.0	4.8	178.0
KR0012B	RedoxZone after tunnel	921124	5	10.57	7.79	6167.254	2165.756	-69.196	2037	478.0	5.3	171.0
KR0012B	RedoxZone after tunnel	921202	5	10.57	7.79	6167.254	2165.756	-69.196	2043	475.0	5.0	168.0
KR0012B	RedoxZone after tunnel	921210	5	10.57	7.79	6167.254	2165.756	-69.196	2055	471.0	5.0	159.0
KR0012B	RedoxZone after tunnel	921221	5	10.57	7.79	6167.254	2165.756	-69.196	2057	468.0	4.3	163.0
KR0012B	RedoxZone after tunnel	930104	5	10.57	7.79	6167.254	2165.756	-69.196	2060	452.0	5.2	155.0
KR0012B	RedoxZone after tunnel	930119	5	10.57	7.79	6167.254	2165.756	-69.196	2063	452.0	4.2	153.0
KR0012B	RedoxZone after tunnel	930207	5	10.57	7.79	6167.254	2165.756	-69.196	2068	461.0	4.5	156.0
KR0012B	RedoxZone after tunnel	930317	5	10.57	7.79	6167.254	2165.756	-69.196	2081	453.0	5.0	144.0
KR0012B	RedoxZone after tunnel	930324	5	10.57	7.79	6167.254	2165.756	-69.196	2084	445.0	5.1	146.0
KR0012B	RedoxZone after tunnel	930516	5	10.57	7.79	6167.254	2165.756	-69.196	2094	424.0	4.3	136.0
KR0012B	RedoxZone after tunnel	930611	5	10.57	7.79	6167.254	2165.756	-69.196	2107	406.0	4.5	118.0
KR0012B	RedoxZone after tunnel	930705	5	10.57	7.79	6167.254	2165.756	-69.196	2127	403.0	4.8	120.0
KR0012B	RedoxZone after tunnel	930816	5	10.57	7.79	6167.254	2165.756	-69.196	2141	411.0	4.5	126.0
KR0012B	RedoxZone after tunnel	931108	5	10.57	7.79	6167.254	2165.756	-69.196	2193	387.0	4.3	118.0
KR0012B	RedoxZone after tunnel	940810	5	10.57	7.79	6167.254	2165.756	-69.196	2270	346.6	3.4	100.0

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
HBH05	RedoxZone after tunnel	931112	8.8	172	27.6	36.6	-64.7	24	-9.4	3.0%	5.1%
KR0012B	RedoxZone after tunnel	910619	22.0	185	915.0	62.0	-83.2	25	-11.5	3.7%	20.9%
KR0012B	RedoxZone after tunnel	920408	37.8	243	1360.0	134.0	-76.4	25	-10.2	5.5%	11.1%
KR0012B	RedoxZone after tunnel	920422	37.7	245	1330.0	134.0	-77.3	25	-10.2	5.4%	11.4%
KR0012B	RedoxZone after tunnel	920506	36.9	248	1290.0	131.0	-80.5	34	-9.9	5.0%	9.1%
KR0012B	RedoxZone after tunnel	920520	37.2	250	1300.0	139.0	-77.6	51	-10.3	4.5%	4.5%
KR0012B	RedoxZone after tunnel	920603	34.9	250	1270.0	136.0	-76.8	34	-11.0	4.9%	11.4%
KR0012B	RedoxZone after tunnel	920626	31.9	260	1130.0	137.0	-77.5	25	-10.2	5.0%	11.3%
KR0012B	RedoxZone after tunnel	920708	31.1	260	1110.0	140.0	-81.1	17	-10.3	5.2%	15.5%
KR0012B	RedoxZone after tunnel	920721	31.1	270	1130.0	139.0	-79.7	17	-10.4	5.1%	15.0%
KR0012B	RedoxZone after tunnel	920806	29.5	280	1070.0	141.0	-80.2	8.4	-10.4	5.3%	17.4%
KR0012B	RedoxZone after tunnel	920818	29.6	280	1040.0	147.0	-80.5	17	-10.4	5.1%	15.2%
KR0012B	RedoxZone after tunnel	920903	28.5	280	1080.0	143.0	-78.3	17	-10.3	5.1%	13.6%
KR0012B	RedoxZone after tunnel	920917	29.1	280	1000.0	143.0	-80.3	17	-9.8	5.1%	12.7%
KR0012B	RedoxZone after tunnel	920930	28.0	280	1020.0	148.0	-79.4	17	-9.9	5.3%	12.3%
KR0012B	RedoxZone after tunnel	921012	28.3	292	1010.0	142.0	-81.1	17	-9.8	5.0%	12.7%
KR0012B	RedoxZone after tunnel	921028	27.9	292	970.0	141.0	-79.9	17	-9.9	5.0%	12.7%
KR0012B	RedoxZone after tunnel	921110	27.1	296	934.0	140.0	-78.5	25	-9.7	4.7%	9.0%
KR0012B	RedoxZone after tunnel	921124	25.7	301	918.0	142.0	-78.7	17	-9.8	4.9%	11.5%
KR0012B	RedoxZone after tunnel	921202	22.9	299	932.0	138.0	-72.4	10	-9.8	5.2%	11.0%
KR0012B	RedoxZone after tunnel	921210	21.7	302	888.0	139.0	-72.3	4.2	-9.1	5.4%	10.0%
KR0012B	RedoxZone after tunnel	921221	24.7	307	876.0	137.0	-72.4	18	-9.7	4.8%	8.2%
KR0012B	RedoxZone after tunnel	930104	23.8	306	823.0	136.0	-72.9	9.3	-9.8	5.1%	10.9%
KR0012B	RedoxZone after tunnel	930119	23.3	304	835.0	143.0	-72.9	20	-9.8	4.7%	8.4%
KR0012B	RedoxZone after tunnel	930207	23.7	311	840.0	142.0	-71.9	11	-9.8	5.0%	10.2%
KR0012B	RedoxZone after tunnel	930317	22.3	306	780.0	138.0	-68.1	12	-9.9	5.0%	8.6%
KR0012B	RedoxZone after tunnel	930324	22.7	306	789.0	139.0	-69.2	15	-9.7	5.0%	7.5%
KR0012B	RedoxZone after tunnel	930516	25.1	315	710.0	142.0	-72.0	17	-9.9	4.7%	8.6%
KR0012B	RedoxZone after tunnel	930611	18.6	307	662.0	143.0	-75.1	18	-9.9	4.5%	10.3%
KR0012B	RedoxZone after tunnel	930705	19.1	316	645.0	137.0	-74.1	27	-9.9	4.1%	6.9%
KR0012B	RedoxZone after tunnel	930816	20.1	317	665.0	137.0	-74.1	21	-9.6	4.4%	7.5%
KR0012B	RedoxZone after tunnel	931108	20.4	324	619.0	135.0	-69.6	34	-9.6	3.2%	3.2%
KR0012B	RedoxZone after tunnel	940810	17.4	325	500.0	126.0	-68.1	25	-9.8	3.9%	4.4%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
HBH05	RedoxZone after tunnel	931112	88.8%	3.0%	-327.29	-3.70	-544.40	-2.82	156.33	-1580.44
KR0012B	RedoxZone after tunnel	910619	71.7%	3.7%	-22.91	-5.68	-520.64	7.76	170.30	-1059.32
KR0012B	RedoxZone after tunnel	920408	77.9%	5.5%	-16.07	-6.28	-793.96	16.62	224.65	-1582.39
KR0012B	RedoxZone after tunnel	920422	77.8%	5.4%	-28.61	-6.17	-785.22	16.93	226.83	-1555.57
KR0012B	RedoxZone after tunnel	920506	80.9%	5.0%	12.93	-5.14	-717.36	17.71	230.11	-1374.01
KR0012B	RedoxZone after tunnel	920520	86.5%	4.5%	64.85	-4.11	-620.85	19.74	232.18	-1094.65
KR0012B	RedoxZone after tunnel	920603	78.8%	4.9%	5.07	-5.05	-708.82	16.27	232.60	-1315.80
KR0012B	RedoxZone after tunnel	920626	78.7%	5.0%	-46.89	-5.59	-764.06	12.62	242.35	-1546.88
KR0012B	RedoxZone after tunnel	920708	74.1%	5.2%	-69.00	-5.76	-806.24	11.13	242.61	-1663.30
KR0012B	RedoxZone after tunnel	920721	74.8%	5.1%	-72.28	-5.91	-791.71	11.42	252.65	-1603.48
KR0012B	RedoxZone after tunnel	920806	71.9%	5.3%	-94.77	-6.38	-833.50	9.11	262.70	-1761.58
KR0012B	RedoxZone after tunnel	920818	74.7%	5.1%	-68.24	-5.85	-786.66	10.21	262.78	-1652.25
KR0012B	RedoxZone after tunnel	920903	76.1%	5.1%	-85.01	-5.04	-805.60	8.76	262.47	-1661.39
KR0012B	RedoxZone after tunnel	920917	77.1%	5.1%	-87.29	-5.02	-808.39	9.38	262.36	-1738.09
KR0012B	RedoxZone after tunnel	920930	77.1%	5.3%	-107.40	-3.81	-840.88	7.72	262.12	-1796.14
KR0012B	RedoxZone after tunnel	921012	77.2%	5.0%	-83.54	-4.79	-789.49	9.03	274.53	-1665.33
KR0012B	RedoxZone after tunnel	921028	77.4%	5.0%	-82.08	-5.16	-778.06	8.88	274.61	-1671.26
KR0012B	RedoxZone after tunnel	921110	81.6%	4.7%	-57.86	-4.76	-727.39	9.23	278.58	-1546.50
KR0012B	RedoxZone after tunnel	921124	78.7%	4.9%	-92.99	-4.72	-779.58	6.94	283.56	-1686.32
KR0012B	RedoxZone after tunnel	921202	78.7%	5.2%	-130.32	-5.61	-839.75	3.02	281.10	-1828.99
KR0012B	RedoxZone after tunnel	921210	79.1%	5.4%	-162.63	-6.09	-895.91	0.89	283.65	-2002.19
KR0012B	RedoxZone after tunnel	921221	82.2%	4.8%	-94.75	-5.58	-773.86	6.21	289.25	-1690.71
KR0012B	RedoxZone after tunnel	930104	78.9%	5.1%	-141.03	-5.20	-832.30	4.32	288.24	-1881.94
KR0012B	RedoxZone after tunnel	930119	82.2%	4.7%	-98.44	-5.47	-763.34	5.21	286.43	-1675.50
KR0012B	RedoxZone after tunnel	930207	79.7%	5.0%	-128.20	-5.83	-824.90	4.35	293.19	-1847.42
KR0012B	RedoxZone after tunnel	930317	81.4%	5.0%	-136.39	-5.33	-837.22	2.94	287.99	-1908.26
KR0012B	RedoxZone after tunnel	930324	82.6%	5.0%	-134.44	-5.06	-818.65	3.66	287.97	-1853.86
KR0012B	RedoxZone after tunnel	930516	82.0%	4.7%	-122.89	-5.31	-774.44	7.13	297.49	-1784.32
KR0012B	RedoxZone after tunnel	930611	80.8%	4.5%	-116.11	-4.69	-751.17	1.44	289.98	-1719.26
KR0012B	RedoxZone after tunnel	930705	84.9%	4.1%	-77.43	-3.67	-679.75	3.30	299.05	-1546.01
KR0012B	RedoxZone after tunnel	930816	83.8%	4.4%	-99.77	-4.49	-724.27	3.31	299.77	-1664.45
KR0012B	RedoxZone after tunnel	931108	88.3%	5.3%	-51.79	-5.58	-502.73	0.08	305.03	-1202.63
KR0012B	RedoxZone after tunnel	940810	87.9%	3.9%	-108.36	-4.64	-657.31	2.44	308.05	-1574.72

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
HBH05	RedoxZone after tunnel	931112	-7.90	16.89	-64.95	1.43	
KR0012B	RedoxZone after tunnel	910619	7.82	10.12	-46.86	0.93	
KR0012B	RedoxZone after tunnel	920408	53.75	7.82	-53.12	1.07	
KR0012B	RedoxZone after tunnel	920422	55.28	7.24	-53.02	1.11	M. W. Weiner Contraction and Action of the second secon
KR0012B	RedoxZone after tunnel	920506	58.20	2.57	-47.15	1.20	
KR0012B	RedoxZone after tunnel	920520	73.18	2.28	-35.67	0.35	
KR0012B	RedoxZone after tunnel	920603	65.32	8.24	-45.05	0.36	
KR0012B	RedoxZone after tunnel	920626	63.88	7.27	-53.89	1.13	
KR0012B	RedoxZone after tunnel	920708	64.33	6.80	-57.34	1.45	
KR0012B	RedoxZone after tunnel	920721	64.39	7.88	-57.97	1.31	The first framework and and a second se
KR0012B	RedoxZone after tunnel	920806	63.78	9.15	-63.76	1.55	
KR0012B	RedoxZone after tunnel	920818	73.50	7.32	-57.90	1.34	
KR0012B	RedoxZone after tunnel	920903	68.17	8.23	-59.28	1.27	and a second sec
KR0012B	RedoxZone after tunnel	920917	68.25	5.47	-60.27	1.67	
KR0012B	RedoxZone after tunnel	920930	71.15	5.99	-60.32	1.52	
KR0012B	RedoxZone after tunnel	921012	68.93	4.80	-60.46	1.68	
KR0012B	RedoxZone after tunnel	921028	68.85	6.01	-60.63	1.58	
KR0012B	RedoxZone after tunnel	921110	72.13	4.83	-56.84	1.42	The second se
KR0012B	RedoxZone after tunnel	921124	70.83	6.38	-61.90	1.56	
KR0012B	RedoxZone after tunnel	921202	62.62	12.02	-68.88	1.49	
KR0012B	RedoxZone after tunnel	921210	60.14	11.19	-75.14	2.07	
KR0012B	RedoxZone after tunnel	921221	66.81	10.12	-64.39	1.32	
KR0012B	RedoxZone after tunnel	930104	62.12	11.57	-69.82	1.49	
KR0012B	RedoxZone after tunnel	930119	74.32	9.90	-62.36	1.25	
KR0012B	RedoxZone after tunnel	930207	68.59	12.00	-68.95	1.41	
KR0012B	RedoxZone after tunnel	930317	64.55	14.54	-69.56	1.14	
KR0012B	RedoxZone after tunnel	930324	66.76	12.65	-67.83	1.23	
KR0012B	RedoxZone after tunnel	930516	73.75	10.95	-65.24	1.17	
KR0012B	RedoxZone after tunnel	930611	77.80	9.33	-62.98	1.36	
KR0012B	RedoxZone after tunnel	930705	76.88	7.97	-58.08	1.03	
KR0012B	RedoxZone after tunnel	930816	73.17	8.24	-62.95	1.38	;
KR0012B	RedoxZone after tunnel	931108	77.04	9.37	-54.48	0.89	
KR0012B	RedoxZone after tunnel	940810	68.97	12.18	-63.02	0.88	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
KR0012B	RedoxZone after tunnel	940905	5	10.57	7.79	6167.254	2165.756	-69.196	2276	343.9	3.5	100.0
KR0012B	RedoxZone after tunnel	950518	5	10.57	7.79	6167.254	2165.756	-69.196	2314	381.3	4.5	110.0
KR0012B	RedoxZone after tunnel	951010	5	10.57	7.79	6167.254	2165.756	-69.196	2323	375.3	4.5	116.0
KR0012B	RedoxZone after tunnel	960521	5	10.57	7.79	6167.254	2165.756	-69.196	2361	326.9	3.7	83.6
KR0013B	RedoxZone after tunnel	910501	7.05	16.94	12.00	6166.277	2159.071	-69.269	1801	876.0	4.8	571.0
KR0013B	RedoxZone after tunnel	920408	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	986.0	4.7	535.0
KR0013B	RedoxZone after tunnel	920422	7.05	16.94	12.00	6166.277	2159.071	-69.269	1941	964.0	5.1	540.0
KR0013B	RedoxZone after tunnel	920506	7.05	16.94	12.00	6166.277	2159.071	-69.269	1952	926.0	4.5	502.0
KR0013B	RedoxZone after tunnel	920520	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	913.0	6.3	490.0
KR0013B	RedoxZone after tunnel	920603	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	888.0	6.4	466.0
KR0013B	RedoxZone after tunnel	920626	7.05	16.94	12.00	6166.277	2159.071	-69.269	1970	851.0	4.1	440.0
KR0013B	RedoxZone after tunnel	920708	7.05	16.94	12.00	6166.277	2159.071	-69.269	1974	848.0	4.0	433.0
KR0013B	RedoxZone after tunnel	920721	7.05	16.94	12.00	6166.277	2159.071	-69.269	1977	836.0	4.1	424.0
KR0013B	RedoxZone after tunnel	920806	7.05	16.94	12.00	6166.277	2159.071	-69.269	1980	821.0	4.0	413.0
KR0013B	RedoxZone after tunnel	920818	7.05	16.94	12.00	6166.277	2159.071	-69.269	1984	831.0	4.0	413.0
KR0013B	RedoxZone after tunnel	920903	7.05	16.94	12.00	6166.277	2159.071	-69.269	2007	806.0	6.3	405.0
KR0013B	RedoxZone after tunnel	920917	7.05	16.94	12.00	6166.277	2159.071	-69.269	2012	802.0	4.9	398.0
KR0013B	RedoxZone after tunnel	920930	7.05	16.94	12.00	6166.277	2159.071	-69.269	2015	795.0	5.8	386.0
KR0013B	RedoxZone after tunnel	921012	7.05	16.94	12.00	6166.277	2159.071	-69.269	2020	776.0	4.7	378.0
KR0013B	RedoxZone after tunnel	921028	7.05	16.94	12.00	6166.277	2159.071	-69.269	2027	764.0	4.4	378.0
KR0013B	RedoxZone after tunnel	921110	7.05	16.94	12.00	6166.277	2159.071	-69.269	2033	749.0	4.0	365.0
KR0013B	RedoxZone after tunnel	921124	7.05	16.94	12.00	6166.277	2159.071	-69.269	2038	742.0	3.9	359.0
KR0013B	RedoxZone after tunnel	921202	7.05	16.94	12.00	6166.277	2159.071	-69.269	2044	793.0	4.6	384.0
KR0013B	RedoxZone after tunnel	921210	7.05	16.94	12.00	6166.277	2159.071	-69.269	2056	745.0	4.5	360.0
KR0013B	RedoxZone after tunnel	921221	7.05	16.94	12.00	6166.277	2159.071	-69.269	2058	740.0	4.7	353.0
KR0013B	RedoxZone after tunnel	930104	7.05	16.94	12.00	6166.277	2159.071	-69.269	2061	734.0	4.6	343.0
KR0013B	RedoxZone after tunnel	930119	7.05	16.94	12.00	6166.277	2159.071	-69.269	2064	736.0	3.7	342.0
KR0013B	RedoxZone after tunnel	930207	7.05	16.94	12.00	6166.277	2159.071	-69.269	2069	743.0	4.0	347.0
KR0013B	RedoxZone after tunnel	930317	7.05	16.94	12.00	6166.277	2159.071	-69.269	2082	721.0	4.5	330.0
KR0013B	RedoxZone after tunnel	930324	7.05	16.94	12.00	6166.277	2159.071	-69.269	2085	751.0	4.7	351.0
KR0013B	RedoxZone after tunnel	930516	7.05	16.94	12.00	6166.277	2159.071	-69.269	2095	740.0	4.0	343.0
KR0013B	RedoxZone after tunnel	930611	7.05	16.94	12.00	6166.277	2159.071	-69.269	2108	735.0	4.2	329.0
KR0013B	RedoxZone after tunnel	930705	7.05	16.94	12.00	6166.277	2159.071	-69.269	2128	769.0	4.7	346.0

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
KR0012B	RedoxZone after tunnel	940905	17.9	326	531.8	129.0	-67.9	30	-9.6	3.3%	3.3%
KR0012B	RedoxZone after tunnel	950518	21.7	308	608.4	129.0	-68.8	17	-9.4	4.6%	5.5%
KR0012B	RedoxZone after tunnel	951010	23.2	295	642.4	119.6	-66.7	42	-9.5	2.0%	2.0%
KR0012B	RedoxZone after tunnel	960521	14.4	302	495.6	102.0	-70.4	38	-9.9	3.0%	3.0%
KR0013B	RedoxZone after tunnel	910501	63.7	133	2500.0	83.0	-93.3	17	-11.4	6.8%	27.2%
KR0013B	RedoxZone after tunnel	920408	71.5	237	2460.0	149.0	-78.5	25	-10.3	7.4%	11.8%
KR0013B	RedoxZone after tunnel	920422	75.5	243	2450.0	147.0	-81.4	17	-10.4	7.6%	15.0%
KR0013B	RedoxZone after tunnel	920506	70.3	245	2340.0	143.0	-77.8	34	-10.1	6.8%	7.9%
KR0013B	RedoxZone after tunnel	920520	71.3	250	2340.0	149.0	-77.2	34	-10.1	7.0%	7.0%
KR0013B	RedoxZone after tunnel	920603	65.7	260	2290.0	140.0	-78.9	34	-10.5	6.6%	9.0%
KR0013B	RedoxZone after tunnel	920626	64.0	260	2150.0	136.0	-80.1	25	-10.4	6.5%	12.3%
KR0013B	RedoxZone after tunnel	920708	61.9	270	2130.0	148.0	-80.0	8.4	-10.4	7.1%	16.9%
KR0013B	RedoxZone after tunnel	920721	61.0	270	2110.0	149.0	-79.8	8.4	-10.3	7.0%	16.4%
KR0013B	RedoxZone after tunnel	920806	58.2	280	2040.0	150.0	-80.6	17	-10.3	6.6%	14.3%
KR0013B	RedoxZone after tunnel	920818	58.8	280	2020.0	153.0	-80.0	17	-10.3	6.6%	14.0%
KR0013B	RedoxZone after tunnel	920903	57.7	290	1990.0	148.0	-81.3	17	-10.4	6.6%	14.0%
KR0013B	RedoxZone after tunnel	920917	59.1	290	1920.0	146.0	-81.1	8.4	-9.9	6.8%	14.7%
KR0013B	RedoxZone after tunnel	920930	55.3	290	1900.0	146.0	-80.0	17	-10.0	6.5%	12.2%
KR0013B	RedoxZone after tunnel	921012	55.0	299	1880.0	146.0	-81.9	8.4	-9.9	6.6%	15.1%
KR0013B	RedoxZone after tunnel	921028	54.7	300	1840.0	148.0	-80.2	17	-9.9	6.3%	12.0%
KR0013B	RedoxZone after tunnel	921110	52.7	299	1800.0	147.0	-80.1	25	-9.8	5.9%	9.6%
KR0013B	RedoxZone after tunnel	921124	50.9	305	1750.0	145.0	-80.0	25	-9.7	5.8%	9.1%
KR0013B	RedoxZone after tunnel	921202	51.9	293	1920.0	145.0	-75.7	4.2	-9.9	6.9%	14.0%
KR0013B	RedoxZone after tunnel	921210	48.0	307	1740.0	143.0	-74.6	14	-9.9	6.3%	10.4%
KR0013B	RedoxZone after tunnel	921221	51.1	308	1740.0	139.0	-73.2	5.9	-9.9	6.6%	11.7%
KR0013B	RedoxZone after tunnel	930104	50.6	309	1690.0	142.0	-74.6	14	-9.9	6.3%	10.1%
KR0013B	RedoxZone after tunnel	930119	49.5	313	1680.0	146.0	-74.6	14	-9.9	6.2%	10.3%
KR0013B	RedoxZone after tunnel	930207	50.5	310	1790.0	141.0	-72.7	26	-9.9	5.9%	6.1%
KR0013B	RedoxZone after tunnel	930317	47.7	315	1650.0	142.0	-70.8	9.3	-10.0	6.4%	10.1%
KR0013B	RedoxZone after tunnel	930324	51.6	305	1690.0	142.0	-67.9	10	-9.9	6.6%	8.3%
KR0013B	RedoxZone after tunnel	930516	53.5	311	1690.0	143.0	-72.8	19	-9.9	6.1%	7.8%
KR0013B	RedoxZone after tunnel	930611	49.8	307	1710.0	140.0	-75.9	15	-10.0	6.1%	10.9%
KR0013B	RedoxZone after tunnel	930705	52.2	307	1720.0	138.0	-72.2	47	-9.8	3.4%	3.4%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
KR0012B	RedoxZone after tunnel	940905	88.7%	4.8%	-86.93	-5.67	-537.04	-0.57	307.68	-1301.84
KR0012B	RedoxZone after tunnel	950518	85.4%	4.6%	-152.98	-4.89	-779.43	4.14	290.26	-1828.35
KR0012B	RedoxZone after tunnel	951010	88.9%	7.2%	-20.23	-7.74	-272.77	-4.28	273.37	-720.31
KR0012B	RedoxZone after tunnel	960521	90.4%	3.6%	-42.59	-3.45	-501.65	0.64	285.31	-1140.47
KR0013B	RedoxZone after tunnel	910501	59.2%	6.8%	83.97	-9.00	-747.78	37.71	114.89	-1113.31
KR0013B	RedoxZone after tunnel	920408	73.4%	7.4%	123.32	-10.29	-901.40	43.20	216.21	-1475.53
KR0013B	RedoxZone after tunnel	920422	69.8%	7.6%	79.25	-10.27	-933.16	46.48	222.34	-1586.29
KR0013B	RedoxZone after tunnel	920506	78.4%	6.8%	129.12	-9.36	-824.78	44.15	224.50	-1295.16
KR0013B	RedoxZone after tunnel	920520	79.1%	7.0%	97.44	-7.89	-867.30	44.51	229.16	-1379.44
KR0013B	RedoxZone after tunnel	920603	77.8%	6.6%	118.35	-7.00	-815.45	40.44	239.95	-1220.94
KR0013B	RedoxZone after tunnel	920626	74.7%	6.5%	91.47	-9.13	-824.60	39.07	240.46	-1314.77
KR0013B	RedoxZone after tunnel	920708	69.0%	7.1%	22.90	-10.36	-940.83	34.83	250.25	-1634.10
KR0013B	RedoxZone after tunnel	920721	69.5%	7.0%	12.60	-10.23	-946.99	33.99	250.22	-1646.33
KR0013B	RedoxZone after tunnel	920806	72.6%	6.6%	51.50	-9.41	-868.22	32.95	260.59	-1470.32
KR0013B	RedoxZone after tunnel	920818	72.7%	6.6%	54.29	-9.53	-880.22	33.31	260.47	-1523.20
KR0013B	RedoxZone after tunnel	920903	72.8%	6.6%	35.09	-7.13	-878.55	32.40	270.53	-1526.72
KR0013B	RedoxZone after tunnel	920917	71.6%	6.8%	4.72	-8.98	-929.48	32.94	270.32	-1717.10
KR0013B	RedoxZone after tunnel	920930	74.8%	6.5%	32.59	-7.48	-883.40	30.28	270.42	-1577.92
KR0013B	RedoxZone after tunnel	921012	71.7%	6.6%	4.49	-8.74	-906.56	29.68	279.66	-1639.49
KR0013B	RedoxZone after tunnel	921028	75.4%	6.3%	27.16	-8.45	-848.80	30.52	280.69	-1521.22
KR0013B	RedoxZone after tunnel	921110	78.6%	5.9%	55.31	-8.11	-789.93	29.93	279.90	-1364.27
KR0013B	RedoxZone after tunnel	921124	79.2%	5.8%	60.29	-8.00	-775.97	28.52	285.98	-1359.57
KR0013B	RedoxZone after tunnel	921202	72.2%	6.9%	-14.45	-9.45	-960.41	25.41	273.11	-1763.48
KR0013B	RedoxZone after tunnel	921210	77.0%	6.3%	11.14	-8.29	-861.84	23.91	287.54	-1607.60
KR0013B	RedoxZone after tunnel	921221	75.1%	6.6%	-30.39	-8.72	-929.69	25.82	288.27	-1774.34
KR0013B	RedoxZone after tunnel	930104	77.4%	6.3%	2.94	-8.15	-874.17	26.61	289.53	-1644.82
KR0013B	RedoxZone after tunnel	930119	77.3%	6.2%	12.90	-8.91	-861.92	25.77	293.65	-1618.50
KR0013B	RedoxZone after tunnel	930207	82.1%	5.9%	54.00	-8.03	-800.11	27.88	290.54	-1352.81
KR0013B	RedoxZone after tunnel	930317	77.2%	6.4%	-22.35	-8.46	-907.64	23.30	295.38	-1740.90
KR0013B	RedoxZone after tunnel	930324	78.5%	6.6%	-24.19	-8.80	-939.68	26.16	284.80	-1846.22
KR0013B	RedoxZone after tunnel	930516	79.9%	6.1%	22.20	-8.52	-852.08	29.94	291.41	-1584.28
KR0013B	RedoxZone after tunnel	930611	76.8%	6.1%	19.51	-8.28	-862.25	26.32	287.81	-1553.79
KR0013B	RedoxZone after tunnel	930705	84.3%	8.9%	197.39	-10.77	-324.22	18.33	283.28	-426.98

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
KR0012B	RedoxZone after tunnel	940905	72.80	11.33	-58.80	0.93	
KR0012B	RedoxZone after tunnel	950518	62.27	11.82	-68.56	1.35	
KR0012B	RedoxZone after tunnel	951010	62.69	10.90	-46.97	0.78	
KR0012B	RedoxZone after tunnel	960521	54.64	9.28	-52.54	0.67	****
KR0013B	RedoxZone after tunnel	910501	-15.10	2.49	-42.53	1.47	
KR0013B	RedoxZone after tunnel	920408	42.11	4.79	-48.74	0.91	·····
KR0013B	RedoxZone after tunnel	920422	37.44	4.27	-53.13	1.14	· · · · ·
KR0013B	RedoxZone after tunnel	920506	44.13	2.92	-44.72	0.75	
KR0013B	RedoxZone after tunnel	920520	47.82	2.65	-45.35	0.64	
KR0013B	RedoxZone after tunnel	920603	44.48	2.87	-44.06	0.48	
KR0013B	RedoxZone after tunnel	920626	41.75	4.27	-49.99	0.93	
KR0013B	RedoxZone after tunnel	920708	45.76	7.49	-60.91	1.37	
KR0013B	RedoxZone after tunnel	920721	46.96	7.37	-61.38	1.42	
KR0013B	RedoxZone after tunnel	920806	54.54	5.26	-55.83	1.23	·
KR0013B	RedoxZone after tunnel	920818	56.66	5.59	-55.99	1.20	
KR0013B	RedoxZone after tunnel	920903	52.37	4.31	-56.12	1.10	
KR0013B	RedoxZone after tunnel	920917	47.14	4.91	-63.53	1.66	
KR0013B	RedoxZone after tunnel	920930	51.39	4.26	-58.06	1.31	
KR0013B	RedoxZone after tunnel	921012	50.30	4.57	-63.60	1.71	
KR0013B	RedoxZone after tunnel	921028	56.52	4.10	-58.66	1.41	·····
KR0013B	RedoxZone after tunnel	921110	60.79	2.62	-53.80	1.28	
KR0013B	RedoxZone after tunnel	921124	60.25	2.42	-54.48	1.34	
KR0013B	RedoxZone after tunnel	921202	44.89	9.65	-68.31	1.57	
KR0013B	RedoxZone after tunnel	921210	51.87	8.51	-63.27	1.25	
KR0013B	RedoxZone after tunnel	921221	43.41	10.64	-69.50	1.36	
KR0013B	RedoxZone after tunnel	930104	51.21	8.25	-63.67	1.21	
KR0013B	RedoxZone after tunnel	930119	56.19	8.51	-63.54	1.25	
KR0013B	RedoxZone after tunnel	930207	55.33	7.34	-56.35	0.82	
KR0013B	RedoxZone after tunnel	930317	49.71	11.95	-68.18	1.10	
KR0013B	RedoxZone after tunnel	930324	45.79	13.23	-68.75	1.00	
KR0013B	RedoxZone after tunnel	930516	53.82	8.37	-61.17	0.98	
KR0013B	RedoxZone after tunnel	930611	51.13	7.72	-62.09	1.21	
KR0013B	RedoxZone after tunnel	930705	59.23	5.27	-37.47	0.51	- Thetas

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	ĸ	Ca
KR0013B	RedoxZone after tunnel	930816	7.05	16.94	12.00	6166.277	2159.071	-69.269	2142	830.6	4.5	384.0
KR0013B	RedoxZone after tunnel	931108	7.05	16.94	12.00	6166.277	2159.071	-69.269	2194	860.0	4.8	403.0
KR0013B	RedoxZone after tunnel	940810	7.05	16.94	12.00	6166.277	2159.071	-69.269	2271	785.0	4.1	339.0
KR0013B	RedoxZone after tunnel	940905	7.05	16.94	12.00	6166.277	2159.071	-69.269	2277	737.0	4.1	324.0
KR0013B	RedoxZone after tunnel	950518	7.05	16.94	12.00	6166.277	2159.071	-69.269	2315	716.0	4.2	308.0
KR0013B	RedoxZone after tunnel	951010	7.05	16.94	12.00	6166.277	2159.071	-69.269	2324	620.0	4.0	270.0
KR0015B	RedoxZone after tunnel	920408	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	578.0	3.2	247.0
KR0015B	RedoxZone after tunnel	920422	19.82	30.31	25.07	6168.049	2144.354	-69.537	1942	720.0	4.0	345.0
KR0015B	RedoxZone after tunnel	920506	19.82	30.31	25.07	6168.049	2144.354	-69.537	1954	641.0	3.7	296.0
KR0015B	RedoxZone after tunnel	920520	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	531.0	3.3	228.0
KR0015B	RedoxZone after tunnel	920603	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	504.0	3.1	207.0
KR0015B	RedoxZone after tunnel	920626	19.82	30.31	25.07	6168.049	2144.354	-69.537	1971	553.0	3.1	233.0
KR0015B	RedoxZone after tunnel	920708	19.82	30.31	25.07	6168.049	2144.354	-69.537	1975	558.0	3.5	238.0
KR0015B	RedoxZone after tunnel	920721	19.82	30.31	25.07	6168.049	2144.354	-69.537	1978	635.0	3.7	279.0
KR0015B	RedoxZone after tunnel	920806	19.82	30.31	25.07	6168.049	2144.354	-69.537	1981	562.0	3.2	235.0
KR0015B	RedoxZone after tunnel	920818	19.82	30.31	25.07	6168.049	2144.354	-69.537	1985	562.0	3.2	229.0
KR0015B	RedoxZone after tunnel	920903	19.82	30.31	25.07	6168.049	2144.354	-69.537	2006	552.0	4.0	229.0
KR0015B	RedoxZone after tunnel	920917	19.82	30.31	25.07	6168.049	2144.354	-69.537	2013	589.0	4.1	245.0
KR0015B	RedoxZone after tunnel	920930	19.82	30.31	25.07	6168.049	2144.354	-69.537	2016	527.0	4.6	210.0
KR0015B	RedoxZone after tunnel	921012	19.82	30.31	25.07	6168.049	2144.354	-69.537	2021	520.0	3.7	205.0
KR0015B	RedoxZone after tunnel	921028	19.82	30.31	25.07	6168.049	2144.354	-69.537	2028	477.0	3.3	186.0
KR0015B	RedoxZone after tunnel	921110	19.82	30.31	25.07	6168.049	2144.354	-69.537	2034	491.0	3.1	190.0
KR0015B	RedoxZone after tunnel	921124	19.82	30.31	25.07	6168.049	2144.354	-69.537	2039	490.0	3.3	185.0
KR0015B	RedoxZone after tunnel	921202	19.82	30.31	25.07	6168.049	2144.354	-69.537	2045	602.0	4.0	254.0
KR0015B	RedoxZone after tunnel	921210	19.82	30.31	25.07	6168.049	2144.354	-69.537	2054	487.0	3.5	190.0
KR0015B	RedoxZone after tunnel	921221	19.82	30.31	25.07	6168.049	2144.354	-69.537	2059	488.0	3.8	185.0
KR0015B	RedoxZone after tunnel	930104	19.82	30.31	25.07	6168.049	2144.354	-69.537	2062	499.0	3.8	189.0
KR0015B	RedoxZone after tunnel	930119	19.82	30.31	25.07	6168.049	2144.354	-69.537	2065	496.0	3.0	187.0
KR0015B	RedoxZone after tunnel	930207	19.82	30.31	25.07	6168.049	2144.354	-69.537	2070	455.0	3.0	169.0
KR0015B	RedoxZone after tunnel	930317	19.82	30.31	25.07	6168.049	2144.354	-69.537	2083	458.0	3.5	168.0
KR0015B	RedoxZone after tunnel	930325	19.82	30.31	25.07	6168.049	2144.354	-69.537	2086	481.0	3.7	179.0
KR0015B	RedoxZone after tunnel	930516	19.82	30.31	25.07	6168.049	2144.354	-69.537	2096	404.0	2.8	146.0
KR0015B	RedoxZone after tunnel	930611	19.82	30.31	25.07	6168.049	2144.354	-69.537	2109	511.0	3.8	189.0

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	018	Brine Mix.	Glacial Mix.
KR0013B	RedoxZone after tunnel	930816	57.0	297	1870.0	148.0	-75.8	19	-9.7	6.6%	8.8%
KR0013B	RedoxZone after tunnel	931108	64.0	298	2010.0	154.0	-70.7	24	-9.8	6.2%	6.2%
KR0013B	RedoxZone after tunnel	940810	56.5	289	1790.0	147.0	-68.7	27	-9.7	5.4%	5.4%
KR0013B	RedoxZone after tunnel	940905	54.5	291	1737.2	148.0	-68.3	21	-9.4	5.6%	5.6%
KR0013B	RedoxZone after tunnel	950518	52.2	273	1520.9	143.0	-69.8	18	-9.3	6.1%	6.1%
KR0013B	RedoxZone after tunnel	951010	47.1	267	1458.9	125.5	-70.6	71	-9.5	0.2%	0.2%
KR0015B	RedoxZone after tunnel	920408	30.6	342	1150.0	129.0	-81.9	25	-10.7	4.3%	13.2%
KR0015B	RedoxZone after tunnel	920422	48.6	320	1500.0	147.0	-80.7	25	-10.6	5.5%	12.2%
KR0015B	RedoxZone after tunnel	920506	40.4	327	1480.0	134.0	-81.1	25	-10.4	5.0%	11.8%
KR0015B	RedoxZone after tunnel	920520	30.4	348	1140.0	130.0	-83.6	42	-10.5	3.6%	8.3%
KR0015B	RedoxZone after tunnel	920603	26.5	360	1020.0	133.0	-78.9	34	-10.5	3.8%	8.3%
KR0015B	RedoxZone after tunnel	920626	31.5	360	1120.0	138.0	-82.2	17	-10.6	4.5%	14.7%
KR0015B	RedoxZone after tunnel	920708	32.4	370	1120.0	140.0	-82.4	17	-10.7	4.6%	14.7%
KR0015B	RedoxZone after tunnel	920721	38.5	360	1300.0	144.0	-80.1	17	-10.8	5.0%	14.1%
KR0015B	RedoxZone after tunnel	920806	31.8	370	1130.0	141.0	-81.3	17	-10.9	4.5%	15.1%
KR0015B	RedoxZone after tunnel	920818	31.1	370	1250.0	145.0	-82.3	17	-10.6	4.6%	14.6%
KR0015B	RedoxZone after tunnel	920903	30.8	380	1120.0	146.0	-82.6	25	-10.7	4.3%	12.3%
KR0015B	RedoxZone after tunnel	920917	35.2	380	1170.0	149.0	-80.6	17	-10.2	4.9%	11.7%
KR0015B	RedoxZone after tunnel	920930	28.2	390	1040.0	145.0	-81.9	17	-10.2	4.5%	12.1%
KR0015B	RedoxZone after tunnel	921012	27.9	393	1040.0	147.0	-68.2	8.4	-7.9	3.8%	3.8%
KR0015B	RedoxZone after tunnel	921028	25.1	396	876.0	140.0	-82.3	25	-10.1	3.8%	9.9%
KR0015B	RedoxZone after tunnel	921110	26.0	400	924.0	148.0	-81.0	17	-10.3	4.2%	12.2%
KR0015B	RedoxZone after tunnel	921124	25.1	404	895.0	137.0	-81.4	25	-10.7	3.7%	11.3%
KR0015B	RedoxZone after tunnel	921202	36.9	376	1270.0	145.0	-76.3	8.4	-10.1	5.3%	11.9%
KR0015B	RedoxZone after tunnel	921210	23.2	400	895.0	139.0	-76.4	11	-10.1	4.4%	11.1%
KR0015B	RedoxZone after tunnel	921221	25.7	403	895.0	135.0	-75.8	15	-10.1	4.3%	9.3%
KR0015B	RedoxZone after tunnel	930104	26.4	404	901.0	142.0	-75.2	14	-10.1	4.5%	9.4%
KR0015B	RedoxZone after tunnel	930119	26.8	408	878.0	140.0	-76.7	21	-10.2	4.1%	8.5%
KR0015B	RedoxZone after tunnel	930207	22.6	415	792.0	129.0	-69.6	17	-10.1	4.1%	5.9%
KR0015B	RedoxZone after tunnel	930317	22.6	415	760.0	120.0	-72.9	8.4	-10.1	4.2%	9.5%
KR0015B	RedoxZone after tunnel	930325	25.1	417	755.0	132.0	-71.4	13	-10.2	4.3%	7.8%
KR0015B	RedoxZone after tunnel	930516	23.1	427	646.0	120.0	-73.9	7.6	-9.9	4.0%	9.1%
KR0015B	RedoxZone after tunnel	930611	27.3	415	805.0	134.0	-77.6	19	-10.1	4.1%	8.5%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev. H	ICO3 Dev.	CI Dev.
KR0013B	RedoxZone after tunnel	930816	78.1%	6.6%	63.24	-8.86	-893.63	31.82	276.95	-1630.48
KR0013B	RedoxZone after tunnel	931108	79.6%	7.9%	78.48	-10.43	-814.28	33.85	275.90	-1417.82
KR0013B	RedoxZone after tunnel	940810	81.2%	8.0%	69.36	-10.91	-721.61	25.99	266.68	-1260.40
KR0013B	RedoxZone after tunnel	940905	80.8%	7.9%	6.57	-10.88	-775.97	24.30	268.81	-1404.79
KR0013B	RedoxZone after tunnel	950518	80.9%	6.9%	-23.10	-9.44	-883.30	25.84	252.22	-1786.38
KR0013B	RedoxZone after tunnel	951010	88.2%	11.4%	238.50	-13.91	210.02	3.69	239.57	659.61
KR0015B	RedoxZone after tunnel	920408	78.1%	4.3%	71.09	-5.73	-596.87	13.94	325.51	-1161.94
KR0015B	RedoxZone after tunnel	920422	76.9%	5.5%	82.04	-7.16	-717.13	27.65	301.86	-1409.98
KR0015B	RedoxZone after tunnel	920506	78.3%	5.0%	58.37	-6.52	-673.98	21.26	309.46	-1177.49
KR0015B	RedoxZone after tunnel	920520	84.5%	3.6%	106.20	-4.23	-479.10	16.42	331.87	-797.15
KR0015B	RedoxZone after tunnel	920603	84.1%	3.8%	59.82	-4.76	-532.37	11.89	343.65	-1005.57
KR0015B	RedoxZone after tunnel	920626	76.2%	4.5%	21.76	-6.25	-651.40	14.04	343.41	-1302.99
KR0015B	RedoxZone after tunnel	920708	76.2%	4.6%	25.99	-5.86	-647.68	14.91	353.40	-1306.50
KR0015B	RedoxZone after tunnel	920721	75.8%	5.0%	47.40	-6.61	-699.26	19.20	342.69	-1380.19
KR0015B	RedoxZone after tunnel	920806	75.8%	4.5%	31.87	-6.13	-647.54	14.38	353.47	-1287.90
KR0015B	RedoxZone after tunnel	920818	76.1%	4.6%	22.08	-6.30	-669.84	13.36	353.30	-1212.58
KR0015B	RedoxZone after tunnel	920903	79.1%	4.3%	51.99	-4.81	-603.36	14.36	363.48	-1160.41
KR0015B	RedoxZone after tunnel	920917	78.6%	4.9%	20.02	-5.89	-702.24	16.51	362.60	-1425.19
KR0015B	RedoxZone after tunnel	920930	78.9%	4.5%	2.11	-4.64	-663.80	10.95	373.17	-1353.95
KR0015B	RedoxZone after tunnel	921012	84.1%	8.3%	-66.33	-11.13	-535.82	-3.98	370.02	-1249.52
KR0015B	RedoxZone after tunnel	921028	82.5%	3.8%	28.53	-4.63	-560.52	10.35	379.78	-1169.18
KR0015B	RedoxZone after tunnel	921110	79.4%	4.2%	-0.72	-5.57	-628.56	9.83	383.57	-1318.58
KR0015B	RedoxZone after tunnel	921124	81.2%	3.7%	53.45	-4.43	-541.68	10.74	388.10	-1095.82
KR0015B	RedoxZone after tunnel	921202	77.4%	5.3%	-22.86	-6.94	-786.30	16.38	357.98	-1580.18
KR0015B	RedoxZone after tunnel	921210	80.0%	4.4%	-31.44	-5.63	-673.07	6.16	383.12	-1469.53
KR0015B	RedoxZone after tunnel	921221	82.0%	4.3%	-17.31	-5.10	-656.19	9.09	386.06	-1409.56
KR0015B	RedoxZone after tunnel	930104	81.7%	4.5%	-23.05	-5.39	-680.08	9.24	386.87	-1479.99
KR0015B	RedoxZone after tunnel	930119	83.4%	4.1%	19.84	-5.40	-605.63	11.14	391.30	-1293.51
KR0015B	RedoxZone after tunnel	930207	85.9%	4.1%	-21.38	-5.40	-624.00	6.93	397.99	-1380.51
KR0015B	RedoxZone after tunnel	930317	82.0%	4.2%	-36.53	-5.22	-655.24	6.34	398.21	-1495.39
KR0015B	RedoxZone after tunnel	930325	83.6%	4.3%	-21.69	-5.15	-657.81	8.57	399.91	-1537.58
KR0015B	RedoxZone after tunnel	930516	82.9%	4.0%	-63.76	-5.46	-632.65	7.72	410.47	-1487.22
KR0015B	RedoxZone after tunnel	930611	83.2%	4.1%	30.35	-4.68	-611.11	11.49	398.25	-1387.02

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KR0013B	RedoxZone after tunnel	930816	52.76	5.78	-59.37	1.25	
KR0013B	RedoxZone after tunnel	931108	54.78	8.43	-55.90	0.82	
KR0013B	RedoxZone after tunnel	940810	54.60	10.04	-54.39	0.84	
KR0013B	RedoxZone after tunnel	940905	54.18	10.57	-60.07	1.17	
KR0013B	RedoxZone after tunnel	950518	50.15	9.73	-63.14	1.37	
KR0013B	RedoxZone after tunnel	951010	62.20	4.37	-17.17	0.39	
KR0015B	RedoxZone after tunnel	920408	65.69	4.94	-53.29	0.88	
KR0015B	RedoxZone after tunnel	920422	67.63	4.41	-52.16	0.79	
KR0015B	RedoxZone after tunnel	920506	61.40	4.08	-53.47	0.98	
KR0015B	RedoxZone after tunnel	920520	76.70	-0.07	-42.62	0.61	
KR0015B	RedoxZone after tunnel	920603	77.33	4.53	-50.26	0.60	
KR0015B	RedoxZone after tunnel	920626	71.72	5.63	-59.40	1.12	
KR0015B	RedoxZone after tunnel	920708	73.63	5.44	-59.37	1.02	
KR0015B	RedoxZone after tunnel	920721	70.82	6.91	-59.01	0.83	····
KR0015B	RedoxZone after tunnel	920806	74.86	6.83	-59.03	0.86	·······
KR0015B	RedoxZone after tunnel	920818	77.66	5.40	-59.34	1.11	
KR0015B	RedoxZone after tunnel	920903	83.53	3.58	-54.30	0.79	
KR0015B	RedoxZone after tunnel	920917	78.07	4.60	-61.80	1.18	
KR0015B	RedoxZone after tunnel	920930	79.48	3.93	-62.12	1.25	
KR0015B	RedoxZone after tunnel	921012	67.65	9.66	-75.87	2.48	
KR0015B	RedoxZone after tunnel	921028	83.82	2.31	-57.64	1.16	1990.00
KR0015B	RedoxZone after tunnel	921110	86.54	5.17	-62.54	1.19	
KR0015B	RedoxZone after tunnel	921124	82.29	4.46	-56.34	0.73	
KR0015B	RedoxZone after tunnel	921202	67.23	8.67	-69.27	1.27	
KR0015B	RedoxZone after tunnel	921210	74.26	8.72	-69.20	1.25	
KR0015B	RedoxZone after tunnel	921221	71.85	8.01	-67.21	1.07	
KR0015B	RedoxZone after tunnel	930104	76.80	8.53	-67.89	1.07	
KR0015B	RedoxZone after tunnel	930119	80.41	6.65	-62.55	0.90	
KR0015B	RedoxZone after tunnel	930207	69.36	11.77	-69.08	0.73	
KR0015B	RedoxZone after tunnel	930317	58.17	11.15	-73.78	1.10	
KR0015B	RedoxZone after tunnel	930325	69.16	11.26	-70.75	0.82	
KR0015B	RedoxZone after tunnel	930516	61.45	10.03	-75.42	1.28	
KR0015B	RedoxZone after tunnel	930611	73.86	5.76	-64.41	1.00	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	ĸ	Ca
KR0015B	RedoxZone after tunnel	930705	19.82	30.31	25.07	6168.049	2144.354	-69.537	2129	403.0	3.2	141.0
KR0015B	RedoxZone after tunnel	931108	19.82	30.31	25.07	6168.049	2144.354	-69.537	2195	566.0	3.9	210.0
KR0015B	RedoxZone after tunnel	940810	19.82	30.31	25.07	6168.049	2144.354	-69.537	2272	482.0	3.0	176.0
KR0015B	RedoxZone after tunnel	940905	19.82	30.31	25.07	6168.049	2144.354	-69.537	2278	358.0	2.5	124.0
KR0015B	RedoxZone after tunnel	950518	19.82	30.31	25.07	6168.049	2144.354	-69.537	2316	479.0	3.6	207.0
KR0015B	RedoxZone after tunnel	951010	19.82	30.31	25.07	6168.049	2144.354	-69.537	2325	453.0	3.2	159.0
KR0015B	RedoxZone after tunnel	960521	19.82	30.31	25.07	6168.049	2144.354	-69.537	2363	442.0	3.5	143.0
KA0483A	RedoxZone after tunnel	910312	40	90	65.00	6202.786	2171.265	-75.116	1800	1480.0	9.1	1250.0
HA0982B	Tunnel after tunnel	940905	0	2.5	1.25	6634.221	2154.778	-133.507	2279	1557	21.0	428
HA1327B	Tunnel after tunnel	921202	3.5	29.5	16.50	6963.062	2118.058	-182.949	2051	1850	12.0	778
HA1327B	Tunnel after tunnel	930207	3.5	29.5	16.50	6963.062	2118.058	-182.949	2076	1860	11.0	746
HA1327B	Tunnel after tunnel	930929	3.5	29.5	16.50	6963.062	2118.058	-182.949	2191	1790	12.3	674
HA1327B	Tunnel after tunnel	931214	3.5	29.5	16.50	6963.062	2118.058	-182.949	2208	1760	13.7	684
HA1749A	Tunnel after tunnel	930325	5.8	25	15.40	7371.572	2056.658	-239.132	-1	1260	13.0	727
KA1639A	Tunnel after tunnel	930701	13.4	14.4	13.90	7289.736	2021.422	-223.187	2125	2005	6.8	1711
KA1639A	Tunnel after tunnel	930810	13.4	14.4	13.90	7289.736	2021.422	-223.187	2139	1995	6.8	1723
KA1639A	Tunnel after tunnel	930927	13.4	14.4	13.90	7289.736	2021.422	-223.187	2170	2113	6.8	1900
KA1639A	Tunnel after tunnel	930929	13.4	14.4	13.90	7289.736	2021.422	-223.187	2177	2218	8.2	1967
KA1639A	Tunnel after tunnel	930810	15.4	25.9	20.65	7296.386	2020.416	-222.622	2138	1626	6.0	733
KA1639A	Tunnel after tunnel	930927	15.4	25.9	20.65	7296.386	2020.416	-222.622	2171	1620	6.0	774
KA1750A	Tunnel after tunnel	930701	4.4	5.4	4.90	7373.065	2068.565	-237.243	2124	1907	7.4	1540
KA1750A	Tunnel after tunnel	930810	4.4	5.4	4.90	7373.065	2068.565	-237.243	2140	1986	6.9	1607
KA1750A	Tunnel after tunnel	930927	4.4	5.4	4.90	7373.065	2068.565	-237.243	2169	2003	7.0	1630
KA1750A	Tunnel after tunnel	930929	4.4	5.4	4.90	7373.065	2068.565	-237.243	2179	2062	7.8	1684
KA2512A	Tunnel after tunnel	941213	0	37.27	18.64	7214.544	2002.324	-336.422	2291	1877	10.0	903
KBH02	Tunnel after tunnel	930825	240.25	372.85	306.55	6583.470	2128.279	-120.472	2153	1870	20.5	692
KBH02	Tunnel after tunnel	930929	240.25	372.85	306.55	6583.470	2128.279	-120.472	2192	1850	19.4	647
KBH02	Tunnel after tunnel	931214	240.25	372.85	306.55	6583.470	2128.279	-120.472	2210	1800	21.0	638
SA0158A	Tunnel after tunnel	910122	6	19.7	12.85	5829.861	2223.043	-21.690	-1	104	10.0	41
SA0205A	Tunnel after tunnel	901204	6	20	13.00	5875.842	2215.138	-28.283	-1	107	5.7	61
SA0237B	Tunnel after tunnel	901211	6	20	13.00	5909.299	2224.816	-32.763	-1	1280	10.0	734
SA0311A	Tunnel after tunnel	910131	5.7	19	12.35	5980.338	2201.974	-43.709	-1	371	7.1	302
SA0435A	Tunnel after tunnel	910228	6	22	14.00	6106.011	2189.350	-61.781	-1	1030	25.0	731

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
KR0015B	RedoxZone after tunnel	930705	19.1	409	729.0	129.0	-73.7	19	-10.1	3.8%	7.4%
KR0015B	RedoxZone after tunnel	931108	32.9	389	1080.0	148.0	-71.7	28	-9.8	4.1%	4.1%
KR0015B	RedoxZone after tunnel	940810	27.7	389	851.0	132.0	-69.7	32	-9.8	3.1%	3.1%
KR0015B	RedoxZone after tunnel	940905	19.0	422	535.0	118.0	-69.2	29	-9.7	2.4%	2.4%
KR0015B	RedoxZone after tunnel	950518	36.8	346	977.0	140.0	-70.8	8.4	-9.6	5.3%	8.2%
KR0015B	RedoxZone after tunnel	951010	29.2	309	890.0	121.4	-71.8	62	-9.7	0.7%	0.7%
KR0015B	RedoxZone after tunnel	960521	23.0	340	726.0	110.0	-72.9	34	-9.7	3.4%	3.4%
KA0483A	RedoxZone after tunnel	910312	132.0	42	4890	60.0	-85.9	8.4	-11.3	11.4%	25.3%
HA0982B	Tunnel after tunnel	940905	125	225	3404	299	-54.5	22.8	-7.4	4.4%	4.4%
HA1327B	Tunnel after tunnel	921202	158	277	4770	198	-50.6	18.0	-7.5	4.3%	4.3%
HA1327B	Tunnel after tunnel	930207	155	280	4600	208	-59.2	8.0	-7.5	6.6%	6.6%
HA1327B	Tunnel after tunnel	930929	153	265	4350	241	-57.5	18.0	-7.6	5.5%	5.5%
HA1327B	Tunnel after tunnel	931214	157	259	4310	255	-54.5	13.0	-7.4	5.6%	5.6%
HA1749A	Tunnel after tunnel	930325	66	116	3450	285	-69.3	4.2	-10.9	11.6%	19.9%
KA1639A	Tunnel after tunnel	930701	67	22	6290	435	-89.1	5.1	-12.4	15.5%	44.0%
KA1639A	Tunnel after tunnel	930810	68	25	6390	438	-89.8	5.1	-12.1	15.6%	43.2%
KA1639A	Tunnel after tunnel	930927	68	23	6950	485	-91.2	8.4	-12.1	16.4%	44.3%
KA1639A	Tunnel after tunnel	930929	68	23	6960	480	-90.2	4.2	-12.4	16.9%	45.9%
KA1639A	Tunnel after tunnel	930810	41	17	4060	115	-110.9	7.6	-14.7	8.8%	56.4%
KA1639A	Tunnel after tunnel	930927	46	19	4230	130	-107.6	12.0	-14.6	9.1%	53.3%
KA1750A	Tunnel after tunnel	930701	76	37	6310	432	-83.5	4.2	-11.4	15.6%	36.5%
KA1750A	Tunnel after tunnel	930810	71	33	6030	435	-89.6	5.1	-11.5	15.4%	40.1%
KA1750A	Tunnel after tunnel	930927	69	31	6320	450	-86.2	5.1	-11.4	15.8%	38.8%
KA1750A	Tunnel after tunnel	930929	71	33	6230	462	-80.0	8.4	-11.6	16.1%	35.6%
KA2512A	Tunnel after tunnel	941213	117	196	4751	302	-63.8	11.0	-8.1	10.3%	10.3%
KBH02	Tunnel after tunnel	930825	154	366	4320	213	-52.4	10.0	-7.3	3.7%	3.7%
KBH02	Tunnel after tunnel	930929	158	354	4350	210	-52.0	4.2	-7.3	4.4%	4.4%
KBH02	Tunnel after tunnel	931214	160	340	4210	228	-59.2	6.8	-7.7	5.5%	5.5%
SA0158A	Tunnel after tunnel	910122	15	216	127	46	-63.1	22.8	-8.8	2.3%	2.3%
SA0205A	Tunnel after tunnel	901204	12	23	273	48	-57.3	35.5	-7.6	1.7%	1.7%
SA0237B	Tunnel after tunnel	901211	119	49	3580	126	-60.5	30.4	-8.2	6.2%	6.2%
SA0311A	Tunnel after tunnel	910131	31	23	1140	54	-67.8	10.1	-9.3	6.2%	13.1%
SA0435A	Tunnel after tunnel	910228	89	37	3300	56	-71.4	14.4	-9.7	9.7%	9.7%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev. I	ICO3 Dev.	CI Dev.
KR0015B	RedoxZone after tunnel	930705	85.1%	3.8%	-36.36	-4.57	-590.34	4.65	392.60	-1274.57
KR0015B	RedoxZone after tunnel	931108	86.4%	5.5%	44.66	-6.66	-585.86	11.90	369.88	-1179.91
KR0015B	RedoxZone after tunnel	940810	88.3%	5.6%	45.45	-7.22	-421.64	6.42	369.67	-928.76
KR0015B	RedoxZone after tunnel	940905	90.5%	4.7%	3.29	-6.10	-348.80	1.01	403.76	-890.00
KR0015B	RedoxZone after tunnel	950518	81.3%	5.3%	-135.37	-7.16	-815.83	16.62	327.65	-1825.29
KR0015B	RedoxZone after tunnel	951010	90.8%	7.9%	146.54	-9.48	19.93	-0.80	286.34	99.50
KR0015B	RedoxZone after tunnel	960521	89.1%	4.1%	21.30	-4.64	-521.63	7.24	322.66	-1134.11
KA0483A	RedoxZone after tunnel	910312	51.9%	11.4%	145.17	-13.95	-972.79	88.26	17.35	-1200.40
HA0982B	Tunnel after tunnel	940905	61.5%	29.6%	235.94	-26.88	-475.45	12.17	173.58	-503.62
HA1327B	Tunnel after tunnel	921202	60.8%	30.5%	510.37	-37.19	-104.85	41.80	224.38	861.88
HA1327B	Tunnel after tunnel	930207	60.5%	26.3%	462.46	-32.72	-566.93	54.80	233.26	-117.94
HA1327B	Tunnel after tunnel	930929	61.0%	27.9%	432.40	-33.33	-438.48	46.93	216.08	33.34
HA1327B	Tunnel after tunnel	931214	59.5%	29.4%	352.89	-34.24	-435.26	45.25	208.08	-108.87
HA1749A	Tunnel after tunnel	930325	56.9%	11.6%	-96.54	-10.41	-1531.94	21.55	90.45	-2739.43
KA1639A	Tunnel after tunnel	930701	25.0%	15.5%	194.64	-24.37	-1303.84	7.71	-5.91	-1970.78
KA1639A	Tunnel after tunnel	930810	25.6%	15.6%	174.82	-24.53	-1308.19	8.39	-3.13	-1915.60
KA1639A	Tunnel after tunnel	930927	22.8%	16.4%	191.80	-26.26	-1299.44	5.08	-6.17	-1816.63
KA1639A	Tunnel after tunnel	930929	20.4%	16.9%	246.80	-25.71	-1315.72	3.45	-6.56	-2034.82
KA1639A	Tunnel after tunnel	930810	25.9%	8.8%	593.55	-11.93	-986.29	7.15	-0.38	-650.88
KA1639A	Tunnel after tunnel	930927	28.6%	9.1%	559.46	-12.41	-992.06	11.23	0.92	-609.01
KA1750A	Tunnel after tunnel	930701	32.3%	15.6%	87.29	-23.92	-1490.39	16.40	8.07	-1993.37
KA1750A	Tunnel after tunnel	930810	29.1%	15.4%	185.89	-24.09	-1390.76	12.04	4.73	-2183.98
KA1750A	Tunnel after tunnel	930927	29.7%	15.8%	158.64	-24.74	-1441.44	8.60	2.06	-2095.87
KA1750A	Tunnel after tunnel	930929	32.1%	16.1%	180.25	-24.57	-1449.72	9.38	3.24	-2356.49
KA2512A	Tunnel after tunnel	941213	58.5%	21.0%	338.08	-27.16	-1109.13	37.06	156.80	-1370.43
KBH02	Tunnel after tunnel	930825	60.0%	32.6%	516.52	-31.53	-79.56	30.14	310.62	568.38
KBH02	Tunnel after tunnel	930929	59.4%	31.8%	466.26	-31.74	-247.23	37.03	299.71	342.10
KBH02	Tunnel after tunnel	931214	59.5%	29.4%	395.04	-26.97	-474.30	48.14	289.04	-193.53
SA0158A	Tunnel after tunnel	910122	88.6%	6.8%	-309.81	-1.73	-420.48	-10.81	195.00	-1388.25
SA0205A	Tunnel after tunnel	901204	87.0%	9.7%	-341.64	-10.21	-273.37	-24.88	-1.97	-1098.50
SA0237B	Tunnel after tunnel	901211	67.9%	19.8%	125.58	-23.46	-490.56	43.74	11.00	-546.01
SA0311A	Tunnel after tunnel	910131	74.4%	6.2%	-358.69	-5.63	-912.90	7.05	3.90	-2188.61
SA0435A	Tunnel after tunnel	910228	68.7%	12.0%	-173.35	1.90	-1153.22	43.15	9.74	-1994.70

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
KR0015B	RedoxZone after tunnel	930705	73.91	9.08	-66.22	0.91	
KR0015B	RedoxZone after tunnel	931108	80.94	7.58	-58.53	0.76	
KR0015B	RedoxZone after tunnel	940810	73.80	9.11	-56.46	0.67	
KR0015B	RedoxZone after tunnel	940905	70.12	9.72	-61.58	0.76	
KR0015B	RedoxZone after tunnel	950518	63.49	11.35	-73.15	1.38	
KR0015B	RedoxZone after tunnel	951010	72.70	4.94	-28.84	0.43	
KR0015B	RedoxZone after tunnel	960521	56.22	6.72	-55.22	0.88	
KA0483A	RedoxZone after tunnel	910312	-104.59	4.68	-43.93	1.04	
HA0982B	Tunnel after tunnel	940905	101.58	14.07	-38.84	1.87	
HA1327B	Tunnel after tunnel	921202	-3.06	17.52	-42.98	1.71	
HA1327B	Tunnel after tunnel	930207	8.70	11.79	-52.77	2.14	
HA1327B	Tunnel after tunnel	930929	43.04	12.34	-43.28	1.86	
HA1327B	Tunnel after tunnel	931214	48.97	14.68	-46.74	1.98	
HA1749A	Tunnel after tunnel	930325	117.70	16.92	-53.16	0.87	
KA1639A	Tunnel after tunnel	930701	212.34	12.82	-20.54	1.62	
KA1639A	Tunnel after tunnel	930810	214.13	11.42	-21.19	1.83	
KA1639A	Tunnel after tunnel	930927	248.77	10.15	-15.14	1.88	
KA1639A	Tunnel after tunnel	930929	237.66	12.05	-16.90	1.72	· · · · · · · · · · · · · · · · · · ·
KA1639A	Tunnel after tunnel	930810	-12.29	6.02	-18.68	1.10	
KA1639A	Tunnel after tunnel	930927	-0.76	6.68	-16.96	0.85	
KA1750A	Tunnel after tunnel	930701	208.13	12.51	-28.77	1.83	
KA1750A	Tunnel after tunnel	930810	213.56	9.31	-24.66	2.11	
KA1750A	Tunnel after tunnel	930927	223.13	11.39	-25.22	2.05	
KA1750A	Tunnel after tunnel	930929	230.53	14.89	-24.43	1.50	
KA2512A	Tunnel after tunnel	941213	97.71	11.17	-47.95	2.16	
KBH02	Tunnel after tunnel	930825	6.68	14.55	-50.12	1.74	
KBH02	Tunnel after tunnel	930929	1.90	15.57	-55.43	1.84	
KBH02	Tunnel after tunnel	931214	22.15	9.95	-52.98	1.68	
SA0158A	Tunnel after tunnel	910122	-12.02	14.86	-65.87	1.54	
SA0205A	Tunnel after tunnel	901204	-19.20	19.06	-51.59	2.52	
SA0237B	Tunnel after tunnel	901211	-35.14	13.27	-37.73	1.76	
SA0311A	Tunnel after tunnel	910131	-36.59	17.39	-64.61	2.13	
SA0435A	Tunnel after tunnel	910228	-95.79	7.35	-54.68	1.00	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SA0452A	Tunnel after tunnel	910304	5.5	19.6	12.55	6120.233	2184.008	-64.339	-1	1420	14.0	1070
SA0468A	Tunnel after tunnel	910306	6	19.8	12.90	6136.214	2181.914	-67.526	-1	1730	6.5	1230
SA0813B	Tunnel after tunnel	911106	5.6	19.5	12.55	6479.609	2152.822	-112.929	-1	2300	29.0	730
SA0813B	Tunnel after tunnel	930207	5.6	19.5	12.55	6479.609	2152.822	-112.929	2074	1670	19.0	317
SA0813B	Tunnel after tunnel	930907	5.6	19.5	12.55	6479.609	2152.822	-112.929	2166	1660	20.0	325
SA0813B	Tunnel after tunnel	930929	5.6	19.5	12.55	6479.609	2152.822	-112.929	2190	1640	19.1	310
SA0813B	Tunnel after tunnel	940607	5.6	19.5	12.55	6479.609	2152.822	-112.929	2253	1578	11.9	322
SA0813B	Tunnel after tunnel	940905	5.6	19.5	12.55	6479.609	2152.822	-112.929	2275	1573	20.3	318
SA0813B	Tunnel after tunnel	950517	5.6	19.5	12.55	6479.609	2152.822	-112.929	2311	1551	17.5	282
SA0813B	Tunnel after tunnel	951012	5.6	19.5	12.55	6479.609	2152.822	-112.929	2336	1471	16.2	280
SA0813B	Tunnel after tunnel	960521	5.6	19.5	12.55	6479.609	2152.822	-112.929	2353	1523	19.4	276
SA0850B	Tunnel after tunnel	910820	1	19.8	10.40	6514.633	2146.364	-117.736	-1	1920	18.0	1210
SA0923A	Tunnel after tunnel	911101	6	20	13.00	6588.708	2125.893	-128.407	-1	2390	18.9	797
SA0923A	Tunnel after tunnel	930207	6	20	13.00	6588.708	2125.893	-128.407	2075	1800	30.0	678
SA0958B	Tunnel after tunnel	930623	5	19.7	12.35	6618.921	2151.272	-133.195	2121	1829	22.4	595
SA0958B	Tunnel after tunnel	930928	5	19.7	12.35	6618.921	2151.272	-133.195	2181	1810	19.6	657
SA0958B	Tunnel after tunnel	940607	5	19.7	12.35	6618.921	2151.272	-133.195	2254	1634	21.4	478
SA0976B	Tunnel after tunnel	911015	1	10.5	5.75	6630.253	2154.035	-134.171	-1	2170	20.6	993
SA1009B	Tunnel after tunnel	930628	6	19.5	12.75	6672.091	2152.899	-139.744	2123	1847	26.3	535
SA1009B	Tunnel after tunnel	930825	6	19.5	12.75	6672.091	2152.899	-139.744	2152	1770	26.6	506
SA1009B	Tunnel after tunnel	930928	6	19.5	12.75	6672.091	2152.899	-139.744	2172	1740	25.8	514
SA1009B	Tunnel after tunnel	940608	6	19.5	12.75	6672.091	2152.899	-139.744	2262	1682	23.6	441
SA1009B	Tunnel after tunnel	940905	6	19.5	12.75	6672.091	2152.899	-139.744	2280	1590	27.1	372
SA1009B	Tunnel after tunnel	950517	6	19.5	12.75	6672.091	2152.899	-139.744	2313	1568	31.2	275
SA1009B	Tunnel after tunnel	951012	6	19.5	12.75	6672.091	2152.899	-139.744	2334	1526	30.3	240
SA1009B	Tunnel after tunnel	960521	6	19.5	12.75	6672.091	2152.899	-139.744	2356	1598	35.9	239
SA1062B	Tunnel after tunnel	920423	6	20	13.00	6724.883	2145.887	-146.969	-1	2230	23.5	770
SA1062B	Tunnel after tunnel	921202	6	20	13.00	6724.883	2145.887	-146.969	2050	1930	34.0	545
SA1077A	Tunnel after tunnel	920423	6	20.4	13.20	6738.159	2130.074	-149.319	-1	2180	32.6	650
SA1094A	Tunnel after tunnel	920423	4.5	20	12.25	6754.166	2128.233	-151.583	-1	2140	35.1	504
SA1111B	Tunnel after tunnel	920423	6	19	12.50	6772.761	2139.190	-155.069	-1	2160	18.7	736
SA1210A	Tunnel after tunnel	930623	6	20.5	13.25	6870.013	2112.303	-167.945	2119	1770	45.1	256
SA1229A	Tunnel after tunnel	930824	6	20.5	13.25	6885.159	2105.455	-171.291	2147	1810	27.0	580

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
SA0452A	Tunnel after tunnel	910304	120	41	4500	76	-68.5	16.9	-8.9	9.9%	9.9%
SA0468A	Tunnel after tunnel	910306	144	52	5210	98	-66.8	15.2	-9.0	11.0%	11.0%
SA0813B	Tunnel after tunnel	911106	233	1200	4920	36	-50.4	14.0	-7.3	-1.#IND	-1.#IND
SA0813B	Tunnel after tunnel	930207	124	420	3360	227	-58.2	14.0	-7.5	3.0%	3.0%
SA0813B	Tunnel after tunnel	930907	127	326	3300	276	-57.6	19.0	-7.0	3.4%	3.4%
SA0813B	Tunnel after tunnel	930929	124	317	3350	274	-59.8	6.8	-7.5	5.7%	5.7%
SA0813B	Tunnel after tunnel	940607	121	302	3272	299	-54.4	24.0	-7.2	3.4%	3.4%
SA0813B	Tunnel after tunnel	940905	121	292	3113	298	-53.7	22.8	-7.2	3.1%	3.1%
SA0813B	Tunnel after tunnel	950517	124	311	3081	274	-58.9	18.6	-7.5	4.1%	4.1%
SA0813B	Tunnel after tunnel	951012	115	318	2980	257	-57.5	21.1	-7.3	3.2%	3.2%
SA0813B	Tunnel after tunnel	960521	112	319	2964	252	-53.2	19.4	-6.8	2.2%	2.2%
SA0850B	Tunnel after tunnel	910820	141	170	5440	91	-67.2	6.8	-8.3	9.7%	9.7%
SA0923A	Tunnel after tunnel	911101	254	800	5230	29	-63.4	4.2	-7.9	-1.#IND	-1.#IND
SA0923A	Tunnel after tunnel	930207	162	655	4310	128	-59.7	8.4	-7.7	0.2%	0.2%
SA0958B	Tunnel after tunnel	930623	137	371	4088	243	-61.9	14.0	-7.7	5.0%	5.0%
SA0958B	Tunnel after tunnel	930928	144	296	4260	241	-56.0	8.4	-7.5	5.7%	5.7%
SA0958B	Tunnel after tunnel	940607	125	274	3641	303	-55.6	22.8	-7.2	4.1%	4.1%
SA0976B	Tunnel after tunnel	911015	203	500	5590	59	-60.4	14.0	-7.4	1.9%	1.9%
SA1009B	Tunnel after tunnel	930628	164	300	4126	250	-53.1	36.3	-7.3	1.4%	1.4%
SA1009B	Tunnel after tunnel	930825	153	292	3984	250	-47.3	8.0	-7.3	3.9%	3.9%
SA1009B	Tunnel after tunnel	930928	164	276	4080	252	-84.8	5.1	-11.1	13.0%	13.0%
SA1009B	Tunnel after tunnel	940608	145	242	3673	304	-58.1	15.0	-7.3	5.5%	5.5%
SA1009B	Tunnel after tunnel	940905	138	234	3390	313	-54.2	12.7	-7.3	5.0%	5.0%
SA1009B	Tunnel after tunnel	950517	152	228	3386	353	-54.3	20.3	-6.7	3.5%	3.5%
SA1009B	Tunnel after tunnel	951012	146	234	3045	330	-54.5	27.0	-7.1	2.8%	2.8%
SA1009B	Tunnel after tunnel	960521	150	110	3170	371	-57.4	24.5	-7.0	5.2%	5.2%
SA1062B	Tunnel after tunnel	920423	220	531	5320	101	-57.6	9.3	-7.3	1.4%	1.4%
SA1062B	Tunnel after tunnel	921202	177	403	4350	187	-58.0	8.0	-7.7	3.5%	3.5%
SA1077A	Tunnel after tunnel	920423	200	690	4890	128	-58.7	17.0	-7.5	-1.#IND	-1.#IND
SA1094A	Tunnel after tunnel	920423	195	760	4490	112	-60.3	17.0	-7.3	-1.#IND	-1.#IND
SA1111B	Tunnel after tunnel	920423	200	340	5130	111	-60.3	25.0	-7.7	3.1%	3.1%
SA1210A	Tunnel after tunnel	930623	152	309	3370	328	-61.5	17.0	-7.4	4.0%	4.0%
SA1229A	Tunnel after tunnel	930824	151	388	4106	210	-50.1	14.0	-6.6	1.4%	1.4%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
SA0452A	Tunnel after tunnel	910304	64.7%	15.5%	86.68	-14.57	-862.57	60.88	9.09	-1112.97
SA0468A	Tunnel after tunnel	910306	61.7%	16.2%	276.87	-23.74	-921.57	82.01	19.20	-981.56
SA0813B	Tunnel after tunnel	911106	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA0813B	Tunnel after tunnel	930207	66.0%	28.0%	523.62	-25.76	-302.91	17.28	370.58	237.50
SA0813B	Tunnel after tunnel	930907	63.3%	30.0%	419.84	-27.88	-372.16	12.98	274.05	-121.41
SA0813B	Tunnel after tunnel	930929	62.5%	26.1%	326.09	-23.89	-827.80	24.62	270.45	-927.65
SA0813B	Tunnel after tunnel	940607	65.1%	28.1%	396.05	-33.08	-377.02	14.19	252.59	-45.33
SA0813B	Tunnel after tunnel	940905	63.3%	30.4%	337.97	-28.18	-335.34	5.26	239.41	-227.31
SA0813B	Tunnel after tunnel	950517	64.9%	26.9%	345.53	-26.07	-549.85	21.44	263.16	-496.81
SA0813B	Tunnel after tunnel	951012	66.8%	26.9%	346.41	-26.84	-373.14	12.72	270.16	-156.73
SA0813B	Tunnel after tunnel	960521	65.6%	30.0%	380.67	-27.99	-197.78	-2.06	266.90	87.90
SA0850B	Tunnel after tunnel	910820	59.2%	21.4%	414.31	-19.61	-694.38	59.33	130.13	-444.08
SA0923A	Tunnel after tunnel	911101	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA0923A	Tunnel after tunnel	930207	65.3%	34.3%	691.34	-23.17	588.76	31.42	596.87	2124.64
SA0958B	Tunnel after tunnel	930623	61.4%	28.6%	492.67	-24.13	-416.88	28.13	321.04	-25.03
SA0958B	Tunnel after tunnel	930928	59.3%	29.2%	391.51	-28.25	-495.89	32.66	245.25	-234.79
SA0958B	Tunnel after tunnel	940607	61.2%	30.6%	313.85	-27.81	-354.22	8.46	221.23	-148.47
SA0976B	Tunnel after tunnel	911015	61.3%	34.8%	897.20	-34.13	566.64	70.47	441.37	2551.31
SA1009B	Tunnel after tunnel	930628	60.0%	37.3%	543.54	-31.88	208.98	22.35	238.10	1194.96
SA1009B	Tunnel after tunnel	930825	57.4%	34.8%	333.88	-28.99	-291.90	20.47	233.58	37.22
SA1009B	Tunnel after tunnel	930928	59.7%	14.3%	179.35	-2.34	-2019.61	109.38	246.01	-2934.13
SA1009B	Tunnel after tunnel	940608	58.5%	30.6%	244.71	-26.14	-662.02	28.70	189.47	-774.85
SA1009B	Tunnel after tunnel	940905	58.2%	31.7%	153.08	-24.24	-647.41	17.26	179.86	-920.45
SA1009B	Tunnel after tunnel	950517	56.6%	36.3%	112.08	-26.54	-461.95	13.79	167.54	-497.56
SA1009B	Tunnel after tunnel	951012	59.3%	35.1%	173.10	-25.20	-350.57	12.51	175.12	-409.61
SA1009B	Tunnel after tunnel	960521	54.3%	35.4%	32.30	-21.15	-813.13	15.29	50.96	-1430.96
SA1062B	Tunnel after tunnel	920423	59.1%	38.0%	900.45	-35.88	439.52	75.40	468.06	2333.66
SA1062B	Tunnel after tunnel	921202	57.7%	35.4%	509.96	-22.24	-178.16	42.42	343.82	555.01
SA1077A	Tunnel after tunnel	920423	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA1094A	Tunnel after tunnel	920423	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA1111B	Tunnel after tunnel	920423	60.4%	33.4%	833.85	-34.28	83.31	73.10	283.48	1623.05
SA1210A	Tunnel after tunnel	930623	54.9%	37.1%	249.05	-13.98	-577.69	11.04	247.63	-791.42
SA1229A	Tunnel after tunnel	930824	60.1%	37.0%	511.36	-30.84	248.58	10.23	326.41	1174.99

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA0452A	Tunnel after tunnel	910304	-96.16	8.78	-48.25	1.63	
SA0468A	Tunnel after tunnel	910306	-88.31	10.62	-46.99	1.59	
SA0813B	Tunnel after tunnel	911106	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA0813B	Tunnel after tunnel	930207	51.16	10.46	-52.10	1.72	
SA0813B	Tunnel after tunnel	930907	86.58	10.36	-44.42	2.15	
SA0813B	Tunnel after tunnel	930929	83.99	10.89	-55.96	2.07	
SA0813B	Tunnel after tunnel	940607	119.33	14.43	-41.27	2.06	
SA0813B	Tunnel after tunnel	940905	108.28	13.96	-40.62	1.91	
SA0813B	Tunnel after tunnel	950517	93.93	10.73	-46.43	1.88	
SA0813B	Tunnel after tunnel	951012	85.67	11.77	-45.81	2.00	*** • • • • • • • • • • • • • • • • • •
SA0813B	Tunnel after tunnel	960521	72.95	14.26	-46.27	2.25	
SA0850B	Tunnel after tunnel	910820	-110.62	7.32	-52.79	1.89	
SA0923A	Tunnel after tunnel	911101	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA0923A	Tunnel after tunnel	930207	-55.64	4.93	-56.88	0.93	
SA0958B	Tunnel after tunnel	930623	45.91	7.38	-47.57	1.67	
SA0958B	Tunnel after tunnel	930928	33.97	13.30	-51.11	1.90	
SA0958B	Tunnel after tunnel	940607	103.84	12.36	-38.60	1.98	
SA0976B	Tunnel after tunnel	911015	-143.04	4.75	-47.37	1.36	
SA1009B	Tunnel after tunnel	930628	40.19	10.73	-23.72	1.28	
SA1009B	Tunnel after tunnel	930825	30.61	18.68	-49.61	1.63	
SA1009B	Tunnel after tunnel	930928	57.92	-5.64	-55.14	-0.23	and the second
SA1009B	Tunnel after tunnel	940608	92.52	10.50	-43.72	2.01	
SA1009B	Tunnel after tunnel	940905	99.36	13.68	-45.72	1.90	
SA1009B	Tunnel after tunnel	950517	128.70	10.86	-36.45	2.12	
SA1009B	Tunnel after tunnel	951012	118.98	10.90	-32.45	1.72	
SA1009B	Tunnel after tunnel	960521	136.78	8.89	-29.97	2.01	
SA1062B	Tunnel after tunnel	920423	-113.04	5.89	-49.91	1.23	
SA1062B	Tunnel after tunnel	921202	-31.69	7.57	-49.83	1.16	
SA1077A	Tunnel after tunnel	920423	-1.#IND	-1.#IND	-1.#IND	-1.#IND	1
SA1094A	Tunnel after tunnel	920423	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA1111B	Tunnel after tunnel	920423	-93.92	6.03	-35.53	1.24	
SA1210A	Tunnel after tunnel	930623	95.43	3.55	-38.06	1.42	
SA1229A	Tunnel after tunnel	930824	1.14	13.85	-46.19	1.99	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SA1229A	Tunnel after tunnel	940607	6	20.5	13.25	6885.159	2105.455	-171.291	2256	1735	26.1	512
SA1229A	Tunnel after tunnel	950518	6	20.5	13.25	6885.159	2105.455	-171.291	2320	1629	24.1	467
SA1229A	Tunnel after tunnel	951011	6	20.5	13.25	6885.159	2105.455	-171.291	2329	1621	24.4	440
SA1229A	Tunnel after tunnel	960521	6	20.5	13.25	6885.159	2105.455	-171.291	2357	1640	28.0	413
SA1327B	Tunnel after tunnel	921015	6	20.3	13.15	6987.423	2111.440	-184.085	2023	1610	9.4	648
SA1342B	Tunnel after tunnel	920616	0	20.3	10.15	6999.050	2109.358	-186.573	-1	1680	11.0	950
SA1420A	Tunnel after tunnel	920814	6	50	28.00	7092.329	2080.819	-200.592	-1	1650	7.6	981
SA1420A	Tunnel after tunnel	921015	6	50	28.00	7092.329	2080.819	-200.592	2024	1540	10.2	715
SA1420A	Tunnel after tunnel	921202	6	50	28.00	7092.329	2080.819	-200.592	2052	1610	11.0	760
SA1420A	Tunnel after tunnel	930207	6	50	28.00	7092.329	2080.819	-200.592	2077	1550	14.0	482
SA1420A	Tunnel after tunnel	930622	6	50	28.00	7092.329	2080.819	-200.592	2116	1484	9.7	488
SA1420A	Tunnel after tunnel	930824	6	50	28.00	7092.329	2080.819	-200.592	2148	1539	15.8	485
SA1420A	Tunnel after tunnel	930929	6	50	28.00	7092.329	2080.819	-200.592	2183	1600	13.7	480
SA1420A	Tunnel after tunnel	940607	6	50	28.00	7092.329	2080.819	-200.592	2257	1427	15.7	396
SA1420A	Tunnel after tunnel	940906	6	50	28.00	7092.329	2080.819	-200.592	2282	1442	18.2	369
SA1420A	Tunnel after tunnel	950518	6	50	28.00	7092.329	2080.819	-200.592	2318	1348	20.5	284
SA1420A	Tunnel after tunnel	951011	6	50	28.00	7092.329	2080.819	-200.592	2330	1334	20.3	247
SA1420A	Tunnel after tunnel	960521	6	50	28.00	7092.329	2080.819	-200.592	2358	1316	21.1	245
SA1614B	Tunnel after tunnel	921119	5.8	19.3	12.55	7257.869	2039.086	-224.037	2035	1570	8.3	1250
SA1614B	Tunnel after tunnel	930622	5.8	19.3	12.55	7257.869	2039.086	-224.037	2117	1954	5.2	1710
SA1614B	Tunnel after tunnel	930824	5.8	19.3	12.55	7257.869	2039.086	-224.037	2149	1944	7.5	1516
SA1614B	Tunnel after tunnel	930928	5.8	19.3	12.55	7257.869	2039.086	-224.037	2184	1880	6.7	1390
SA1614B	Tunnel after tunnel	940606	5.8	19.3	12.55	7257.869	2039.086	-224.037	2249	1831	7.4	1207
SA1680A	Tunnel after tunnel	921013	0	16	8.00	7318.215	2047.157	-229.265	-1	606	5.9	171
SA1680B	Tunnel after tunnel	921020	6	20	13.00	7317.959	2060.113	-230.324	2025	657	4.9	217
SA1680B	Tunnel after tunnel	930203	6	20	13.00	7317.959	2060.113	-230.324	2066	1100	10.0	583
SA1693F	Tunnel after tunnel	921019	0	38.5	19.25	7339.443	2059.900	-233.173	-1	941	5.4	489
SA1696B	Tunnel after tunnel	921020	5.9	19.2	12.55	7332.421	2065.722	-232.645	-1	693	5.8	285
SA1696B	Tunnel after tunnel	921119	5.9	19.2	12.55	7332.421	2065.722	-232.645	2036	1330	9.4	916
SA1696B	Tunnel after tunnel	930622	5.9	19.2	12.55	7332.421	2065.722	-232.645	2118	1653	6.3	1196
SA1696B	Tunnel after tunnel	930824	5.9	19.2	12.55	7332.421	2065.722	-232.645	2150	1817	8.9	1401
SA1696B	Tunnel after tunnel	930928	5.9	19.2	12.55	7332.421	2065.722	-232.645	2185	1880	8.0	1450
SA1696B	Tunnel after tunnel	940606	5.9	19.2	12.55	7332.421	2065.722	-232.645	2250	1933	9.1	1740

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
SA1229A	Tunnel after tunnel	940607	152	336	3928	243	-58.1	14.0	-7.4	4.0%	4.0%
SA1229A	Tunnel after tunnel	950518	147	310	3675	248	-54.7	23.7	-7.3	2.6%	2.6%
SA1229A	Tunnel after tunnel	951011	136	314	3482	246	-56.3	23.7	-7.3	2.7%	2.7%
SA1229A	Tunnel after tunnel	960521	137	303	3393	248	-46.3	15.2	-6.5	1.5%	1.5%
SA1327B	Tunnel after tunnel	921015	128	252	3920	225	-65.3	17.0	-7.4	6.4%	6.4%
SA1342B	Tunnel after tunnel	920616	152	170	4730	148	-61.9	5.9	-8.7	9.3%	9.3%
SA1420A	Tunnel after tunnel	920814	117	830	4610	200	-59.0	31.0	-7.5	-1.#IND	-1.#IND
SA1420A	Tunnel after tunnel	921015	123	170	3930	226	-86.6	17.0	-11.2	11.3%	20.1%
SA1420A	Tunnel after tunnel	921202	126	202	4140	225	-55.5	32.0	-7.2	4.1%	4.1%
SA1420A	Tunnel after tunnel	930207	129	226	3450	336	-57.6	27.0	-7.2	4.8%	4.8%
SA1420A	Tunnel after tunnel	930622	125	215	3420	307	-50.5	32.1	-7.1	3.2%	3.2%
SA1420A	Tunnel after tunnel	930824	127	212	3435	309	-52.5	22.0	-7.0	4.4%	4.4%
SA1420A	Tunnel after tunnel	930929	139	214	3530	335	-68.8	10.0	-8.5	9.6%	9.6%
SA1420A	Tunnel after tunnel	940607	117	206	3053	303	-72.0	17.0	-8.7	8.9%	8.9%
SA1420A	Tunnel after tunnel	940906	125	199	2950	305	-57.0	28.7	-7.5	4.3%	4.3%
SA1420A	Tunnel after tunnel	950518	136	199	2900	302	-58.4	33.0	-7.3	3.2%	3.2%
SA1420A	Tunnel after tunnel	951011	129	204	2721	267	-58.3	40.0	-7.6	2.3%	2.3%
SA1420A	Tunnel after tunnel	960521	119	214	2677	281	-60.3	23.7	-7.1	3.9%	3.9%
SA1614B	Tunnel after tunnel	921119	80	37	5160	308	-78.3	8.0	-10.5	13.4%	26.5%
SA1614B	Tunnel after tunnel	930622	66	32	6207	424	-103.1	8.0	-13.1	14.6%	51.9%
SA1614B	Tunnel after tunnel	930824	85	67	5816	339	-92.5	4.2	-11.9	14.3%	39.4%
SA1614B	Tunnel after tunnel	930928	91	81	5650	350	-71.9	4.2	-9.7	14.9%	21.6%
SA1614B	Tunnel after tunnel	940606	98	109	5176	333	-77.6	8.4	-10.4	14.0%	23.1%
SA1680A	Tunnel after tunnel	921013	27	237	1160	166	-77.4	7.6	-10.4	6.1%	17.8%
SA1680B	Tunnel after tunnel	921020	31	224	1560	178	-83.8	5.1	-10.8	6.4%	23.6%
SA1680B	Tunnel after tunnel	930203	63	137	2790	194	-85.5	17.0	-10.7	9.0%	21.5%
SA1693F	Tunnel after tunnel	921019	39	160	2400	219	-90.3	4.2	-12.0	8.0%	33.9%
SA1696B	Tunnel after tunnel	921020	33	213	1560	169	-85.6	8.4	-11.2	6.4%	24.9%
SA1696B	Tunnel after tunnel	921119	74	102	3910	266	-84.0	5.1	-11.0	11.4%	27.8%
SA1696B	Tunnel after tunnel	930622	73	68	4828	365	-93.2	8.0	-11.5	13.0%	37.3%
SA1696B	Tunnel after tunnel	930824	72	54	5499	419	-82.8	4.2	-11.1	14.9%	33.6%
SA1696B	Tunnel after tunnel	930928	76	57	5690	428	-81.3	7.0	-11.2	15.1%	32.8%
SA1696B	Tunnel after tunnel	940606	71	89	6275	459	-81.0	7.0	-11.1	15.8%	32.7%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
SA1229A	Tunnel after tunnel	940607	60.0%	32.0%	376.95	-25.21	-308.27	30.20	281.37	88.31
SA1229A	Tunnel after tunnel	950518	61.9%	33.0%	362.24	-28.04	-77.67	21.56	253.93	453.97
SA1229A	Tunnel after tunnel	951011	62.8%	31.8%	381.34	-25.92	-129.95	15.22	259.59	269.51
SA1229A	Tunnel after tunnel	960521	60.2%	36.8%	340.81	-29.53	64.14	-2.90	241.73	432.49
SA1327B	Tunnel after tunnel	921015	64.7%	22.5%	351.51	-28.37	-618.60	42.29	210.34	-466.28
SA1342B	Tunnel after tunnel	920616	61.1%	20.4%	244.05	-24.86	-866.99	74.16	131.43	-882.84
SA1420A	Tunnel after tunnel	920814	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA1420A	Tunnel after tunnel	921015	57.4%	11.3%	225.72	-12.49	-1473.56	79.93	144.96	-2066.57
SA1420A	Tunnel after tunnel	921202	64.2%	27.7%	384.89	-33.66	-65.44	20.70	153.19	536.52
SA1420A	Tunnel after tunnel	930207	62.2%	28.2%	243.70	-31.84	-489.01	21.60	176.53	-540.92
SA1420A	Tunnel after tunnel	930622	64.4%	29.2%	282.40	-36.98	-173.41	13.77	164.01	128.00
SA1420A	Tunnel after tunnel	930824	61.6%	29.7%	223.60	-32.13	-401.49	13.96	160.50	-434.48
SA1420A	Tunnel after tunnel	930929	60.4%	20.3%	134.35	-22.22	-1409.57	61.42	175.56	-2256.18
SA1420A	Tunnel after tunnel	940607	64.4%	17.9%	103.48	-16.11	-1344.06	48.75	170.76	-2227.13
SA1420A	Tunnel after tunnel	940906	63.6%	27.9%	191.85	-26.95	-494.77	18.70	149.86	-762.22
SA1420A	Tunnel after tunnel	950518	64.0%	29.6%	133.11	-26.80	-378.91	23.23	147.47	-418.90
SA1420A	Tunnel after tunnel	951011	66.6%	28.9%	222.11	-25.44	-234.52	19.07	153.36	-111.74
SA1420A	Tunnel after tunnel	960521	64.9%	27.3%	116.92	-22.90	-548.07	15.14	165.68	-825.64
SA1614B	Tunnel after tunnel	921119	46.7%	13.4%	1.51	-18.73	-1361.95	28.62	9.78	-1996.75
SA1614B	Tunnel after tunnel	930622	19.0%	14.6%	254.24	-24.09	-1120.67	10.33	6.32	-1549.18
SA1614B	Tunnel after tunnel	930824	32.0%	14.3%	274.10	-21.27	-1264.90	30.30	40.17	-1803.75
SA1614B	Tunnel after tunnel	930928	48.6%	14.9%	139.81	-23.25	-1507.91	34.01	51.19	-2290.28
SA1614B	Tunnel after tunnel	940606	49.0%	14.0%	200.05	-20.69	-1508.96	44.58	80.65	-2265.75
SA1680A	Tunnel after tunnel	921013	70.1%	6.1%	-102.50	-6.47	-1008.63	3.74	218.72	-2071.98
SA1680B	Tunnel after tunnel	921020	63.6%	6.4%	-87.74	-8.09	-1023.00	6.56	206.00	-1837.42
SA1680B	Tunnel after tunnel	930203	60.6%	9.0%	53.66	-8.13	-1159.30	28.70	115.24	-1983.79
SA1693F	Tunnel after tunnel	921019	50.2%	8.0%	9.30	-10.79	-1062.41	8.44	141.07	-1850.76
SA1696B	Tunnel after tunnel	921020	62.4%	6.4%	-49.40	-7.16	-951.11	8.63	195.19	-1826.78
SA1696B	Tunnel after tunnel	921119	49.4%	11.4%	-3.90	-13.63	-1305.25	30.29	77.67	-2176.19
SA1696B	Tunnel after tunnel	930622	36.7%	13.0%	133.62	-19.90	-1334.20	23.23	42.66	-2104.78
SA1696B	Tunnel after tunnel	930824	36.6%	14.9%	76.02	-21.07	-1498.25	14.98	25.63	-2445.03
SA1696B	Tunnel after tunnel	930928		15.1%	113.80	-22.40	-1491.25	18.15	28.24	-2369.10
SA1696B	Tunnel after tunnel	940606		15.8%	83.42	-22.72	-1340.12	10.43	59.26	-2164.63

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
SA1229A	Tunnel after tunnel	940607	37.21	9.21	-46.16	1.69	
SA1229A	Tunnel after tunnel	950518	50.11	11.56	-38.30	1.61	
SA1229A	Tunnel after tunnel	951011	53.29	10.57	-39.26	1.69	
SA1229A	Tunnel after tunnel	960521	39.51	17.79	-45.04	2.11	
SA1327B	Tunnel after tunnel	921015	47.64	7.31	-48.00	2.43	
SA1342B	Tunnel after tunnel	920616	-44.32	12.88	-55.57	1.50	
SA1420A	Tunnel after tunnel	920814	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA1420A	Tunnel after tunnel	921015	63.88	0.04	-40.90	0.61	
SA1420A	Tunnel after tunnel	921202	41.49	13.79	-32.38	2.14	
SA1420A	Tunnel after tunnel	930207	142.83	11.76	-35.37	2.18	
SA1420A	Tunnel after tunnel	930622	123.06	17.72	-32.41	2.08	
SA1420A	Tunnel after tunnel	930824	112.07	16.00	-39.76	2.25	
SA1420A	Tunnel after tunnel	930929	139.66	6.18	-50.80	1.74	
SA1420A	Tunnel after tunnel	940607	127.37	3.76	-47.73	1.61	
SA1420A	Tunnel after tunnel	940906	118.34	12.26	-35.04	1.84	
SA1420A	Tunnel after tunnel	950518	115.88	9.63	-31.09	1.85	
SA1420A	Tunnel after tunnel	951011	93.23	9.67	-26.66	1.51	
SA1420A	Tunnel after tunnel	960521	100.97	9.09	-41.38	2.25	
SA1614B	Tunnel after tunnel	921119	114.81	11.58	-39.25	1.82	
SA1614B	Tunnel after tunnel	930622	214.95	5.74	-11.59	1.82	
SA1614B	Tunnel after tunnel	930824	133.50	6.81	-28.37	1.73	
SA1614B	Tunnel after tunnel	930928	135.74	13.02	-45.03	2.01	
SA1614B	Tunnel after tunnel	940606	132.13	9.24	-41.15	1.54	
SA1680A	Tunnel after tunnel	921013	78.04	11.64	-62.71	1.54	
SA1680B	Tunnel after tunnel	921020	85.66	9.52	-58.80	1.73	8
SA1680B	Tunnel after tunnel	930203	64.70	4.06	-44.01	1.42	
SA1693F	Tunnel after tunnel	921019	103.85	9.73	-46.32	1.49)
SA1696B	Tunnel after tunnel	921020	76.95	8.73	-54.26	1.46	\$
SA1696B	Tunnel after tunnel	921119	101.55	8.55	-44.73	1.61	
SA1696B	Tunnel after tunnel	930622	177.92	5.47	-29.24	1.99	
SA1696B	Tunnel after tunnel	930824	204.75	11.47	-33.02	1.87	,
SA1696B	Tunnel after tunnel	930928	210.65	12.14	-30.64	1.67	,
SA1696B	Tunnel after tunnel	940606	231.44	11.79	-29.34	1.71	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SA1713A	Tunnel after tunnel	921022	5.8	20.1	12.95	7353.776	2059.619	-233.984	-1	960	14.0	602
SA1730A	Tunnel after tunnel	930203	5.6	20	12.80	7369.317	2065.943	-237.012	2067	1740	10.0	1420
SA1730A	Tunnel after tunnel	930621	5.6	20	12.80	7369.317	2065.943	-237.012	2114	1944	6.1	1709
SA1730A	Tunnel after tunnel	930824	5.6	20	12.80	7369.317	2065.943	-237.012	2151	2002	8.1	1861
SA1730A	Tunnel after tunnel	930928	5.6	20	12.80	7369.317	2065.943	-237.012	2186	2060	7.6	1830
SA1730A	Tunnel after tunnei	940606	5.6	20	12.80	7369.317	2065.943	-237.012	2251	2149	8.2	2160
SA1730A	Tunnel after tunnel	940907	5.6	20	12.80	7369.317	2065.943	-237.012	2286	2431	9.4	2793
SA1730A	Tunnel after tunnel	950518	5.6	20	12.80	7369.317	2065.943	-237.012	2319	2440	8.2	2755
SA1730A	Tunnel after tunnel	951011	5.6	20	12.80	7369.317	2065.943	-237.012	2331	2384	8.2	2617
SA1742A	Tunnel after tunnel	921102	0	41.1	20.55	7388.092	2070.208	-240.943	-1	1300	8.4	968
SA1828B	Tunnel after tunnel	921119	5.8	20	12.90	7401.580	2157.075	-249.511	-1	1700	8.5	1290
SA1828B	Tunnel after tunnel	930216	5.8	20	12.90	7401.580	2157.075	-249.511	2078	1860	9.6	1250
SA1828B	Tunnel after tunnel	930621	5.8	20	12.90	7401.580	2157.075	-249.511	2115	1909	8.0	1392
SA1828B	Tunnel after tunnel	930826	5.8	20	12.90	7401.580	2157.075	-249.511	2157	1933	11.6	1494
SA1828B	Tunnel after tunnel	930928	5.8	20	12.90	7401.580	2157.075	-249.511	2187	1930	10.0	1450
SA1828B	Tunnel after tunnel	940606	5.8	20	12.90	7401.580	2157.075	-249.511	2252	1862	11.7	1064
SA1844B	Tunnel after tunnel	921201	0	20	10.00	7406.191	2169.721	-250.509	-1	1810	9.5	1220
SA1861A	Tunnel after tunnel	921207	3.6	20.2	11.90	7423.227	2184.194	-254.144	-1	1720	11.0	1050
SA2074A	Tunnel after tunnel	930205	6	38.7	22.35	7290.030	2348.258	-281.676	-1	22	2.1	15
SA2074A	Tunnel after tunnel	930928	6	38.7	22.35	7290.030	2348.258	-281.676	2173	1730	11.0	764
SA2074A	Tunnel after tunnel	940607	6	38.7	22.35	7290.030	2348.258	-281.676	2258	1702	10.2	723
SA2074A	Tunnel after tunnel	940906	6	38.7	22.35	7290.030	2348.258	-281.676	2283	1522	10.3	627
SA2074A	Tunnel after tunnel	950518	6	38.7	22.35	7290.030	2348.258	-281.676	2317	1454	9.3	560
SA2109B	Tunnel after tunnel	930215	0	19.9	9.95	7266.468	2312.045	-284.003	-1	1730	17.0	884
SA2142A	Tunnel after tunnel	931202	5.9	20	12.95	7228.704	2315.793	-289.437	2202	1720	25.0	581
SA2175B	Tunnel after tunnel	931213	5.8	20	12.90	7200.014	2294.498	-293.825	2206	2030	17.1	1100
SA2175B	Tunnel after tunnel	940530	5.8	20	12.90	7200.014	2294.498	-293.825	2244	1960	15.3	1037
SA2240B	Tunnel after tunnel	930928	5.7	19.8	12.75	7172.049	2249.831	-301.544	2175	2150	17.1	1040
SA2240B	Tunnel after tunnel	931207	5.7	19.8	12.75	7172.049	2249.831	-301.544	2204	2110	17.5	1010
SA2273A	Tunnel after tunnel	931130	5.8	20	12.90	7149.762	2221.715	-305.968	2199	2070	13.4	1110
SA2273A	Tunnel after tunnel	940527	5.8	20	12.90	7149.762	2221.715	-305.968	2242	1932	13.4	901
SA2273A	Tunnel after tunnel	940907	5.8	20	12.90	7149.762	2221.715	-305.968	2287	1911	14.4	849
SA2273A	Tunnel after tunnel	951011	5.8	20	12.90	7149.762	2221.715	-305.968	2326	1779	13.2	796

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
SA1713A	Tunnel after tunnel	921022	26	25	2730	192	-90.2	4.2	-12.0	9.1%	36.3%
SA1730A	Tunnel after tunnel	930203	65	39	5470	464	-87.2	4.2	-11.7	15.0%	38.7%
SA1730A	Tunnel after tunnel	930621	62	39	6063	459	-85.1	12.0	-12.4	15.2%	40.5%
SA1730A	Tunnel after tunnel	930824	59	40	6065	471	-81.7	4.2	-12.1	16.0%	40.2%
SA1730A	Tunnel after tunnel	930928	65	32	6890	513	-91.6	4.2	-12.4	16.6%	46.5%
SA1730A	Tunnel after tunnel	940606	54	45	7330	512	-89.2	12.0	-11.9	16.9%	42.7%
SA1730A	Tunnel after tunnel	940907	49	31	8500	549	-86.4	11.0	-12.2	19.3%	44.8%
SA1730A	Tunnel after tunnel	950518	54	32	8672	540	-88.8	16.0	-12.1	18.7%	44.7%
SA1730A	Tunnel after tunnel	951011	56	36	8651	530	-87.1	8.5	-11.9	18.7%	44.6%
SA1742A	Tunnel after tunnel	921102	42	71	3800	286	-98.3	4.2	-12.8	10.6%	44.5%
SA1828B	Tunnel after tunnel	921119	92	43	5200	303	-75.9	4.2	-10.3	14.0%	24.8%
SA1828B	Tunnel after tunnel	930216	118	72	5540	340	-80.1	4.0	-10.3	15.0%	24.4%
SA1828B	Tunnel after tunnel	930621	114	48	5850	387	-84.4	4.2	-10.8	15.5%	30.5%
SA1828B	Tunnel after tunnel	930826	108	49	6550	363	-71.4	4.0	-10.3	16.3%	22.7%
SA1828B	Tunnel after tunnel	930928	108	48	6010	362	-71.1	32.0	-9.3	13.9%	13.9%
SA1828B	Tunnel after tunnel	940606	139	111	5123	251	-67.8	8.4	-8.9	12.4%	12.4%
SA1844B	Tunnel after tunnel	921201	113	62	5250	330	-75.8	4.2	-9.5	14.9%	19.9%
SA1861A	Tunnel after tunnel	921207	112	79	4940	302	-73.9	4.2	-9.2	14.3%	16.3%
SA2074A	Tunnel after tunnel	930205	4	20	25	46	-60.0	7.0	-8.4	4.5%	9.1%
SA2074A	Tunnel after tunnel	930928	144	79	4670	277	-61.3	7.0	-8.4	11.1%	11.1%
SA2074A	Tunnel after tunnel	940607	142	94	4276	275	-65.2	5.9	-8.5	11.4%	11.4%
SA2074A	Tunnel after tunnel	940906	126	103	3967	263	-63.3	12.7	-8.5	9.8%	9.8%
SA2074A	Tunnel after tunnel	950518	119	128	3414	262	-65.1	33.0	-8.4	7.1%	7.1%
SA2109B	Tunnel after tunnel	930215	107	67	4480	303	-64.5	5.9	-8.2	12.1%	12.1%
SA2142A	Tunnel after tunnel	931202	128	127	3880	368	-56.2	21.0	-7.2	7.0%	7.0%
SA2175B	Tunnel after tunnel	931213	172	94	5650	276	-61.1	14.0	-8.3	10.7%	10.7%
SA2175B	Tunnel after tunnel	940530	162	127	5442	267	-62.0	8.4	-8.2	10.7%	10.7%
SA2240B	Tunnel after tunnel	930928	177	158	5560	258	-60.7	4.2	-8.0	10.4%	10.4%
SA2240B	Tunnel after tunnel	931207	180	171	5460	254	-57.3	5.9	-8.1	9.5%	9.5%
SA2273A	Tunnel after tunnel	931130	172	146	5570	253	-61.1	4.2	-8.4	11.2%	11.2%
SA2273A	Tunnel after tunnel	940527	166	201	4999	218	-60.5	9.3	-7.8	8.2%	8.2%
SA2273A	Tunnel after tunnel	940907	165	205	4921	203	-56.7	12.7	-7.9	7.1%	7.1%
SA2273A	Tunnel after tunnel	951011	140	180	4347	242	-63.2	8.5	-8.2	9.3%	9.3%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
SA1713A	Tunnel after tunnel	921022	45.5%	9.1%	-101.63	-4.41	-1165.83	-8.81	4.85	-2113.79
SA1730A	Tunnel after tunnel	930203	31.2%	15.0%	-16.65	-20.25	-1505.38	7.47	11.07	-2545.64
SA1730A	Tunnel after tunnel	930621	29.2%	15.2%	171.23	-24.42	-1243.23	3.94	11.09	-2026.22
SA1730A	Tunnel after tunnel	930824	27.8%	16.0%	132.28	-24.07	-1252.70	-2.23	10.93	-2466.66
SA1730A	Tunnel after tunnel	930928	20.3%	16.6%	122.91	-25.73	-1395.92	1.57	2.91	-1949.19
SA1730A	Tunnel after tunnel	940606	23.6%	16.9%	179.68	-25.67	-1119.58	-10.49	15.08	-1656.21
SA1730A	Tunnel after tunnel	940907	18.0%	18.0%	221.35	-27.27	-953.89	-19.75	-0.20	-1692.64
SA1730A	Tunnel after tunnel	950518	18.3%	18.3%	269.51	-28.75	-877.96	-16.08	0.33	-1262.27
SA1730A	Tunnel after tunnel	951011	18.4%	18.4%	211.84	-28.79	-1017.74	-14.19	4.28	-1289.25
SA1742A	Tunnel after tunnel	921102	34.4%	10.6%	66.89	-12.94	-1085.44	1.59	49.86	-1826.45
SA1828B	Tunnel after tunnel	921119	47.1%	14.0%	59.05	-19.76	-1442.63	38.25	14.74	-2287.42
SA1828B	Tunnel after tunnel	930216	45.5%	15.0%	106.95	-20.57	-1669.32	60.59	42.39	-2458.98
SA1828B	Tunnel after tunnel	930621	38.5%	15.5%	96.59	-23.19	-1626.22	54.64	18.43	-2419.99
SA1828B	Tunnel after tunnel	930826	44.8%	16.3%	34.45	-21.05	-1667.65	45.83	17.49	-2112.99
SA1828B	Tunnel after tunnel	930928	54.9%	17.4%	196.99	-23.27	-1257.32	41.66	13.98	-1605.37
SA1828B	Tunnel after tunnel	940606	56.7%	18.5%	218.58	-22.63	-1360.60	68.43	75.33	-1865.20
SA1844B	Tunnel after tunnel	921201	50.3%	14.9%	72.82	-20.39	-1672.88	56.10	32.03	-2676.49
SA1861A	Tunnel after tunnel	921207	55.1%	14.3%	50.10	-17.74	-1730.82	57.30	49.37	-2679.43
SA2074A	Tunnel after tunnel	930205		4.5%	-508.53	-7.23	-868.20	-13.44	2.74	-2394.69
SA2074A	Tunnel after tunnel	930928	56.7%	21.1%	116.58	-26.71	-1409.26	63.61	39.73	-1852.00
SA2074A	Tunnel after tunnel	940607	58.1%	19.1%	125.22	-24.59	-1507.82	69.17	57.43	-2272.69
SA2074A	Tunnel after tunnel	940906	61.4%	18.9%	84.75	-23.46	-1302.23	54.02	66.56	-1831.77
SA2074A	Tunnel after tunnel	950518	65.8%	20.0%	215.89	-24.96	-836.19	42.73	89.74	-1146.67
SA2109B	Tunnel after tunnel	930215	56.1%	19.7%	73.14	-19.03	-1486.68	31.90	29.70	-2444.78
SA2142A	Tunnel after tunnel	931202	55.1%	30.9%	141.80	-25.97	-817.59	10.35	74.16	-1310.48
SA2175B	Tunnel after tunnel	931213	51.7%	27.0%	265.30	-29.54	-997.09	69.06	46.74	-1025.87
SA2175B	Tunnel after tunnel	940530	53.4%	25.1%	249.34	-28.48	-1070.43	66.21	82.27	-1151.32
SA2240B	Tunnel after tunnel	930928	51.4%	27.7%	381.13	-30.55	-1015.75	71.33	109.76	-1055.94
SA2240B	Tunnel after tunnel	931207	51.9%	29.0%	377.72	-31.73	-870.81	69.42	120.92	-802.55
SA2273A	Tunnel after tunnel	931130	52.7%	24.9%	326.68	-30.30	-1084.41	76.89	101.55	-1225.65
SA2273A	Tunnel after tunnel	940527	57.1%	26.5%	390.32	-31.29	-728.95	65.22	154.24	-502.58
SA2273A	Tunnel after tunnei	940907	57.9%	27.8%	419.82	-31.91	-568.67	59.00	156.28	-140.53
SA2273A	Tunnel after tunnel	951011	59.2%	22.2%	283.46	-25.40	-1031.38	55.44	139.07	-1392.50

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA1713A	Tunnel after tunnel	921022	60.96	10.83	-41.71	1.67	
SA1730A	Tunnel after tunnel	930203	247.87	10.97	-27.61	1.80	
SA1730A	Tunnel after tunnel	930621	240.91	14.31	-17.81	1.27	
SA1730A	Tunnel after tunnel	930824	241.04	16.82	-24.28	1.48	
SA1730A	Tunnel after tunnel	930928	274.84	11.39	-16.83	1.81	
SA1730A	Tunnel after tunnel	940606	269.86	10.59	-12.30	1.89	
SA1730A	Tunnel after tunnel	940907	279.23	13.69	-7.78	1.71	
SA1730A	Tunnel after tunnel	950518	273.73	11.25	-3.11	1.78	
SA1730A	Tunnel after tunnel	951011	263.50	12.88	-10.64	1.98	
SA1742A	Tunnel after tunnel	921102	134.03	7.98	-30.59	1.63	
SA1828B	Tunnel after tunnel	921119	100.92	12.22	-43.46	1.81	
SA1828B	Tunnel after tunnel	930216	124.19	6.94	-42.18	1.70	
SA1828B	Tunnel after tunnel	930621	163.97	6.96	-34.92	1.80	
SA1828B	Tunnel after tunnel	930826	129.36	13.31	-41.45	1.43	
SA1828B	Tunnel after tunnel	930928	143.82	7.05	-23.44	1.48	
SA1828B	Tunnel after tunnel	940606	40.24	9.21	-48.81	1.69	
SA1844B	Tunnel after tunnel	921201	116.09	7.84	-46.75	2.04	
SA1861A	Tunnel after tunnel	921207	96.30	7.36	-51.52	2.00	
SA2074A	Tunnel after tunnel	930205	-20.24	23.47	-75.01	2.73	
SA2074A	Tunnel after tunnel	930928	64.57	13.97	-50.20	1.93	
SA2074A	Tunnel after tunnel	940607	70.20	11.11	-52.68	1.97	
SA2074A	Tunnel after tunnel	940906	73.44	12.43	-49.15	1.84	
SA2074A	Tunnel after tunnel	950518	91.47	8.93	-33.13	1.63	
SA2109B	Tunnel after tunnel	930215	88.57	11.85	-50.68	2.30	
SA2142A	Tunnel after tunnel	931202	140.89	12.90	-34.38	2.22	
SA2175B	Tunnel after tunnel	931213	36.35	11.31	-38.13	1.66	
SA2175B	Tunnel after tunnel	940530	36.63	11.29	-45.48	1.87	
SA2240B	Tunnel after tunnel	930928	16.56	11.30	-47.64	1.90	
SA2240B	Tunnel after tunnel	931207	14.01	13.72	-46.44	1.65	
SA2273A	Tunnel after tunnel	931130	19.50	12.47	-48.97	1.72	
SA2273A	Tunnel after tunnel	940527	3.11	11.13	-48.12	1.98	
SA2273A	Tunnel after tunnel	940907	-9.11	13.83	-45.51	1.70	
SA2273A	Tunnel after tunnel	951011	40.03	10.80	-51.12	1.91	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SA2273A	Tunnel after tunnel	960521	5.8	20	12.90	7149.762	2221.715	-305.968	2355	1805	14.0	824
SA2273B	Tunnel after tunnel	931130	5.8	20	12.90	7162.946	2217.931	301.932	2200	1830	8.0	1280
SA2273B	Tunnel after tunnel	940530	5.8	20	12.90	7162.946	2217.931	301.932	2245	1762	7.8	1135
SA2289B	Tunnel after tunnel	931130	6	19.4	12.70	7158.515	2202.689	-307.718	2201	2040	12.0	1160
SA2289B	Tunnel after tunnel	940530	6	19.4	12.70	7158.515	2202.689	-307.718	2246	1953	12.2	969
SA2322A	Tunnel after tunnel	930928	6	20.1	13.05	7136.119	2174.475	-312.606	2174	2170	8.6	1070
SA2322A	Tunnel after tunnel	931207	6	20.1	13.05	7136.119	2174.475	-312.606	2205	1910	9.8	998
SA2322A	Tunnel after tunnel	940308	6	20.1	13.05	7136.119	2174.475	-312.606	2226	1924	11.6	1024
SA2322A	Tunnel after tunnel	940527	6	20.1	13.05	7136.119	2174.475	-312.606	2243	1908	9.4	977
SA2355B	Tunnel after tunnel	940308	5.9	20	12.95	7140.288	2139.196	-318.102	2227	1959	8.4	1634
SA2583A	Tunnel after tunnel	940307	5.7	20	12.85	7301.166	2035.311	-343.513	2223	2099	8.3	1870
SA2583A	Tunnel after tunnel	940518	5.7	20	12.85	7301.166	2035.311	-343.513	2240	2170	8.5	1860
SA2600A	Tunnel after tunnel	940307	5.8	19.4	12.60	7315.455	2044.414	-345.048	2224	2398	9.9	2541
SA2600A	Tunnel after tunnel	940518	5.8	19.4	12.60	7315.455	2044.414	-345.048	2241	2171	7.6	1825
SA2600A	Tunnel after tunnel	940906	5.8	19.4	12.60	7315.455	2044.414	-345.048	2284	2260	9.1	2180
SA2600A	Tunnel after tunnel	950517	5.8	19.4	12.60	7315.455	2044.414	-345.048	2312	2094	7.6	1499
SA2600A	Tunnel after tunnel	951011	5.8	19.4	12.60	7315.455	2044.414	-345.048	2327	2140	7.6	1542
SA2600A	Tunnel after tunnel	960521	5.8	19.4	12.60	7315.455	2044.414	-345.048	2351	2125	9.1	1486
SA2600B	Tunnel after tunnel	940307	5.8	19.2	12.50	7310.340	2056.858	-345.031	2225	2453	9.9	2681
SA2634B	Tunnel after tunnel	940224	6	20.4	13.20	7342.435	2070.008	-349.685	2219	2273	10.2	1986
SA2649A	Tunnel after tunnel	940224	5.8	19.85	12.83	7361.111	2062.669	-352.167	2220	2123	8.3	1715
SA2663B	Tunnel after tunnel	940224	5.6	20.1	12.85	7369.000	2080.494	-354.352	2222	2447	10.0	2639
SA2664A	Tunnel after tunnel	940224	5.8	20.4	13.10	7375.381	2068.268	-353.869	2221	2124	8.2	1753
SA2681A	Tunnel after tunnel	940223	5.7	21.8	13.75	7391.799	2074.622	-356.351	2215	2139	8.1	1675
SA2681B	Tunnel after tunnel	940223	5.6	17.3	11.45	7384.410	2086.032	-357.928	2216	2187	10.6	1772
SA2703A	Tunnel after tunnel	940223	5.7	19.6	12.65	7411.496	2082.084	-358.592	2217	2694	11.0	3285
SA2703A	Tunnel after tunnel	940517	5.7	19.6	12.65	7411.496	2082.084	-358.592	2237	2824	7.8	3581
SA2718A	Tunnel after tunnel	940517	5.8	20.3	13.05	7426.962	2089.935	-361.636	2238	2707	7.9	3360
SA2734B	Tunnel after tunnel	940223	5.7	20.3	13.00	7416.205	2117.629	-363.867	2218	2071	8.5	1726
SA2768A	Tunnel after tunnel	940214	6	20.3	13.15	7438.863	2146.556	-369.104	2211	2459	9.4	2904
SA2768B	Tunnel after tunnel	940214	5.9	19.8	12.85	7425.621	2150.072	-369.042	2212	2190	7.9	2226
SA2783A	Tunnel after tunnel	940214	5.8	19.9	12.85	7442.809	2160.694	-371.361	2213	2258	8.4	2363
SA2783A	Tunnel after tunnel	940517	5.8	19.9	12.85	7442.809	2160.694	-371.361	2239	2348	9.1	2532

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
SA2273A	Tunnel after tunnel	960521	135	175	4531	274	-62.8	20.3	-8.1	8.4%	8.4%
SA2273B	Tunnel after tunnel	931130	136	104	5460	232	-73.3	5.9	-9.8	14.1%	16.1%
SA2273B	Tunnel after tunnel	940530	128	117	5105	196	-71.3	10.1	-9.5	12.9%	12.9%
SA2289B	Tunnel after tunnel	931130	164	138	5570	252	-66.6	10.0	-8.4	11.5%	11.5%
SA2289B	Tunnel after tunnel	940530	162	178	5167	219	-60.8	8.4	-8.0	9.2%	9.2%
SA2322A	Tunnel after tunnel	930928	129	152	5340	227	-66.0	4.2	-8.8	12.7%	12.7%
SA2322A	Tunnel after tunnel	931207	139	165	5070	232	-62.9	7.6	-8.5	10.7%	10.7%
SA2322A	Tunnel after tunnel	940308	140	169	5353	223	-63.4	8.4	-8.1	10.2%	10.2%
SA2322A	Tunnel after tunnel	940527	143	184	5034	213	-68.0	8.4	-8.6	10.8%	10.8%
SA2355B	Tunnel after tunnel	940308	69	23	6240	443	-83.1	5.9	-10.6	15.9%	34.0%
SA2583A	Tunnel after tunnel	940307	57	13	6647	508	-83.5	5.9	-11.1	16.9%	38.7%
SA2583A	Tunnel after tunnel	940518	74	44	6896	492	-85.9	5.9	-10.7	17.1%	36.2%
SA2600A	Tunnel after tunnel	940307	52	17	8349	560	-77.9	9.3	-11.2	19.1%	38.5%
SA2600A	Tunnel after tunnel	940518	72	92	6718	498	-80.4	4.2	-10.8	16.9%	33.5%
SA2600A	Tunnel after tunnel	940906	65	37	7735	470	-93.7	9.3	-12.2	17.1%	45.6%
SA2600A	Tunnel after tunnel	950517	91	90	6024	408	-70.4	11.0	-9.4	15.9%	18.8%
SA2600A	Tunnel after tunnel	951011	89	95	6183	411	-74.0	20.3	-9.5	15.6%	18.4%
SA2600A	Tunnel after tunnel	960521	85	114	5921	404	-75.5	11.0	-9.8	15.6%	21.7%
SA2600B	Tunnel after tunnel	940307	49	13	8597	575	-94.3	5.9	-12.4	21.0%	47.9%
SA2634B	Tunnel after tunnel	940224	91	64	7197	414	-86.2	18.0	-11.3	16.6%	32.4%
SA2649A	Tunnel after tunnel	940224	76	39	6523	501	-82.7	14.0	-10.9	16.6%	32.8%
SA2663B	Tunnel after tunnel	940224	53	20	8686	589	-92.8	4.2	-12.2	21.2%	46.8%
SA2664A	Tunnel after tunnel	940224	75	39	6701	515	-83.4	11.0	-10.9	16.9%	34.4%
SA2681A	Tunnel after tunnel	940223	78	41	6523	486	-82.1	15.0	-10.7	16.5%	31.2%
SA2681B	Tunnel after tunnel	940223	114	64	6842	406	-80.4	9.3	-10.4	17.0%	26.5%
SA2703A	Tunnel after tunnel	940223	43	12	10140	597	-93.2	10.0	-12.8	24.0%	47.3%
SA2703A	Tunnel after tunnel	940517	40	12	10592	600	-93.7	4.2	-13.1	25.9%	49.4%
SA2718A	Tunnel after tunnel	940517	42	15	10148	577	-93.8	4.2	-12.9	24.3%	49.2%
SA2734B	Tunnel after tunnel	940223	95	37	6490	436	-83.6	10.0	-10.7	16.4%	31.4%
SA2768A	Tunnel after tunnel	940214	55	11	9058	580	-92.6	4.2	-12.9	22.2%	48.4%
SA2768B	Tunnel after tunnel	940214	70	14	7640	490	-84.2	4.2	-11.8	17.7%	42.2%
SA2783A	Tunnel after tunnel	940214	60	14	8030	508	-83.2	4.2	-12.2	18.1%	44.5%
SA2783A	Tunnel after tunnel	940517	63	20	8411	523	-88.3	4.2	-12.2	19.2%	45.7%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev. H	ICO3 Dev.	CI Dev.
SA2273A	Tunnel after tunnel	960521	59.2%	24.1%	326.66	-27.12	-829.06	43.19	131.41	-891.81
SA2273B	Tunnel after tunnel	931130	55.6%	14.1%	178.29	-20.43	-1470.53	81.90	74.56	-2076.43
SA2273B	Tunnel after tunnel	940530	60.5%	13.7%	229.55	-19.42	-1374.59	75.53	87.76	-1817.95
SA2289B	Tunnel after tunnel	931130	54.2%	22.8%	338.09	-28.58	-1090.24	76.94	96.42	-1240.72
SA2289B	Tunnel after tunnel	940530	56.6%	25.1%	376.46	-30.77	-838.46	66.49	133.19	-688.99
SA2322A	Tunnel after tunnel	930928	56.6%	18.1%	518.35	-25.24	-1401.01	59.91	116.88	-1739.23
SA2322A	Tunnel after tunnel	931207	58.0%	20.7%	344.76	-27.17	-1091.01	59.97	126.16	-1225.58
SA2322A	Tunnel after tunnel	940308	57.4%	22.3%	351.34	-27.54	-971.59	55.05	128.02	-803.47
SA2322A	Tunnel after tunnel	940527	59.2%	19.2%	378.74	-25.26	-1139.76	69.85	147.25	-1240.75
SA2355B	Tunnel after tunnel	940308	34.2%	15.9%	98.36	-23.61	-1464.55	8.07	-6.71	-2250.13
SA2583A	Tunnel after tunnel	940307	27.5%	16.9%	124.87	-25.65	-1417.58	-7.65	-17.46	-2361.12
SA2583A	Tunnel after tunnel	940518	29.7%	17.1%	173.92	-25.82	-1464.14	8.64	12.98	-2212.27
SA2600A	Tunnel after tunnel	940307	23.2%	19.1%	161.29	-28.52	-1183.90	-21.23	-16.54	-1857.42
SA2600A	Tunnel after tunnel	940518	32.7%	16.9%	197.95	-26.33	-1460.76	7.39	60.93	-2285.11
SA2600A	Tunnel after tunnel	940906	20.3%	17.1%	267.96	-25.16	-1137.43	-0.23	7.16	-1354.93
SA2600A	Tunnel after tunnel	950517	49.4%	15.9%	235.07	-24.37	-1596.64	30.12	58.48	-2458.10
SA2600A	Tunnel after tunnel	951011	50.3%	15.6%	312.06	-23.84	-1502.04	29.14	63.79	-2157.69
SA2600A	Tunnel after tunnel	960521	47.1%	15.6%	302.71	-22.25	-1548.64	25.32	83.26	-2393.95
SA2600B	Tunnel after tunnel	940307	15.5%	15.5%	172.62	-23.82	-1398.76	-10.53	-14.59	-2270.10
SA2634B	Tunnel after tunnel	940224	34.5%	16.6%	337.50	-23.09	-1237.23	27.62	33.23	-1634.75
SA2649A	Tunnel after tunnel	940224	33.9%	16.6%	179.08	-25.13	-1522.25	12.34	8.18	-2347.18
SA2663B	Tunnel after tunnel	940224	16.0%	16.0%	137.41	-24.50	-1474.62	-8.28	-8.34	-2290.23
SA2664A	Tunnel after tunnel	940224	31.7%	16.9%	146.26	-25.81	-1540.58	10.24	7.98	-2323.54
SA2681A	Tunnel after tunnel	940223	35.8%	16.5%	209.95	-25.07	-1537.47	14.83	10.16	-2279.28
SA2681B	Tunnel after tunnel	940223		17.0%	203.86	-23.49	-1530.55	49.06	31.96	-2207.08
SA2703A	Tunnel after tunnel	940223	14.4%	14.4%	195.99	-22.27	-1372.06	-12.12	-14.15	-2071.57
SA2703A	Tunnel after tunnel	940517	12.3%	12.3%	228.99	-23.23	-1438.61	-7.51	-11.24	-2390.92
SA2718A	Tunnel after tunnel	940517	13.2%	13.2%	218.04	-23.76	-1356.95	-8.80	-9.40	-2144.86
SA2734B	Tunnel after tunnel	940223		16.4%	153.77	-24.47	-1466.79	32.22	6.33	-2258.35
SA2768A	Tunnel after tunnel	940214	10.7 AD 41	14.7%	100.50	-23.59	-1412.25	-1.38	-15.44	-2339.57
SA2768B	Tunnel after tunnel	940214		17.7%	124.76	-27.61	-1213.33	2.37	-17.10	-1783.95
SA2783A	Tunnel after tunnel	940214		18.1%	146.36	-27.90	-1153.63	-9.14	-17.36	-1605.75
SA2783A	Tunnel after tunnel	940517	17.5%	17.5%	160.29	-26.87	-1195.17	-4.13	-10.51	-1709.02

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA2273A	Tunnel after tunnel	960521	70.27	9.95	-39.21	1.82	
SA2273B	Tunnel after tunnel	931130	28.53	7.92	-50.34	1.38	
SA2273B	Tunnel after tunnel	940530	5.98	8.06	-50.94	1.39	
SA2289B	Tunnel after tunnel	931130	26.87	8.05	-44.70	1.87	
SA2289B	Tunnel after tunnel	940530	3.01	11.85	-48.58	1.94	
SA2322A	Tunnel after tunnel	930928	16.10	11.29	-52.92	1.83	
SA2322A	Tunnel after tunnel	931207	25.36	12.35	-50.81	1.81	
SA2322A	Tunnel after tunnel	940308	12.65	10.93	-49.42	2.08	
SA2322A	Tunnel after tunnel	940527	13.09	8.01	-51.25	1.81	
SA2355B	Tunnel after tunnel	940308	214.10	10.66	-28.92	2.34	
SA2583A	Tunnel after tunnel	940307	265.24	13.14	-22.32	2.26	
SA2583A	Tunnel after tunnel	940518	246.53	8.63	-24.47	2.38	
SA2600A	Tunnel after tunnel	940307	285.08	16.78	-14.72	1.98	
SA2600A	Tunnel after tunnel	940518	255.33	12.20	-29.22	2.02	an a
SA2600A	Tunnel after tunnel	940906	225.11	8.20	-11.72	1.88	
SA2600A	Tunnel after tunnel	950517	179.17	11.52	-39.04	1.94	
SA2600A	Tunnel after tunnel	951011	185.97	7.84	-30.64	1.82	
SA2600A	Tunnel after tunnel	960521	179.69	8.96	-36.72	1.88	
SA2600B	Tunnel after tunnel	940307	302.29	8.71	-10.51	1.94	
SA2634B	Tunnel after tunnel	940224	175.92	5.80	-17.15	1.43	
SA2649A	Tunnel after tunnel	940224	261.89	9.59	-20.57	1.87	
SA2663B	Tunnel after tunnel	940224	312.31	9.10	-12.68	2.00	
SA2664A	Tunnel after tunnel	940224	271.76	9.88	-21.44	2.01	
SA2681A	Tunnel after tunnel	940223	248.70	9.02	-21.44	1.91	
SA2681B	Tunnel after tunnel	940223	162.03	6.65	-30.98	1.67	
SA2703A	Tunnel after tunnel	940223	303.32	8.78	-5.36	1.49	
SA2703A	Tunnel after tunnel	940517	299.79	10.19	-9.23	1.49	
SA2718A	Tunnel after tunnel	940517	286.43	10.11	-10.04	1.65	
SA2734B	Tunnel after tunnel	940223	200.14	7.78	-26.42	1.94	
SA2768A	Tunnel after tunnel	940214	300.54	10.70	-11.43	1.51	
SA2768B	Tunnel after tunnel	940214	236.11	14.52	-19.03	1.87	
SA2783A	Tunnel after tunnel	940214	248.45	17.00	-15.94	1.69	
SA2783A	Tunnel after tunnel	940517	256.37	12.75	-14.15	1.83	

ID code	Area	Date	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	Na	K	Ca
SA2783A	Tunnel after tunnel	940907	5.8	19.9	12.85	7442.809	2160.694	-371.361	2288	2448	9.6	2813
SA2783A	Tunnel after tunnel	951025	5.8	19.9	12.85	7442.809	2160.694	-371.361	2337	2840	11.7	3713
SA2783A	Tunnel after tunnel	960520	5.8	19.9	12.85	7442.809	2160.694	-371.361	2352	3053	10.9	4062
SA2834B	Tunnel after tunnel	940214	6	20.2	13.10	7443.845	2213.830	-377.885	2214	2522	10.7	2734
SA2880A	Tunnel after tunnel	951025	11.92	13.92	12.92	7455.116	2259.267	-384.736	2338	2847	12.1	3813
SA2880A	Tunnel after tunnel	960412	11.92	13.92	12.92	7455.116	2259.267	-384.736	2349	3156	13.6	4378

ID code	Area	Date	Mg	HCO3	CI	SO4	D	TR	O18	Brine Mix.	Glacial Mix.
SA2783A	Tunnel after tunnel	940907	58	18	9023	513	-90.5	9.3	-12.1	19.7%	45.5%
SA2783A	Tunnel after tunnel	951025	50	18	10911	599	-88.5	21.1	-12.5	24.2%	42.9%
SA2783A	Tunnel after tunnel	960520	49	15	12054	616	-90.0	22.0	-12.5	26.6%	42.9%
SA2834B	Tunnel after tunnel	940214	96	15	9094	571	-86.8	4.2	-12.3	21.9%	42.4%
SA2880A	Tunnel after tunnel	951025	46	30	11372	565	-87.7	17.0	-12.3	24.3%	42.8%
SA2880A	Tunnel after tunnel	960412	41	22	12956	626	-84.5	21.0	-12.1	27.9%	39.9%

ID code	Area	Date	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	HCO3 Dev.	CI Dev.
SA2783A	Tunnel after tunnel	940907	17.4%	17.4%	216.89	-26.36	-1025.25	-8.47	-12.31	-1358.51
SA2783A	Tunnel after tunnel	951025	16.4%	16.4%	259.30	-24.85	-984.48	-13.04	-11.47	-1518.80
SA2783A	Tunnel after tunnel	960520	15.3%	15.3%	309.41	-24.95	-1086.25	-9.74	-12.99	-1412.65
SA2834B	Tunnel after tunnel	940214	17.9%	17.9%	96.93	-26.95	-1510.38	27.65	-16.37	-2308.52
SA2880A	Tunnel after tunnel	951025	16.4%	16.4%	259.37	-24.50	-899.85	-17.06	0.51	-1095.69
SA2880A	Tunnel after tunnel	960412	16.1%	16.1%	273.99	-24.14	-1024.75	-20.98	-7.51	-1181.52

ID code	Area	Date	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA2783A	Tunnel after tunnel	940907	242.08	10.26	-8.89	1.91	
SA2783A	Tunnel after tunnel	951025	292.58	9.08	3.64	1.21	
SA2783A	Tunnel after tunnel	960520	294.39	7.22	5.59	1.23	
SA2834B	Tunnel after tunnel	940214	278.50	10.61	-14.57	1.33	
SA2880A	Tunnel after tunnel	951025	257.84	9.78	-0.46	1.40	
SA2880A	Tunnel after tunnel	960412	288.05	9.54	3.69	1.25	

APPENDIX 2: Boreholes with a time serie

ID code	Area	Date	m3 row		Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	ĸ
KAS03	Äspö after tunnel	920819		533	626	579.50	7825.385	1781.814	-566.304	1986	1340	5.8
KAS03	Äspö after tunnel	921202		533	626	579.50	7825.385	1781.814	-566.304	2048		
KAS03	Äspö after tunnel	930207	82	533	626	579.50	7825.385	1781.814	-566.304	2073	1340	5.8
KAS03	Äspö after tunnel	930516	83	533	626	579.50	7825.385	1781.814	-566.304	2097	1370	5.5
KAS03	Äspö after tunnel	930816	84	533	626	579.50	7825.385	1781.814	-566.304	2146	1626.8	7.1
KAS03	Äspö after tunnel	930907	85	533	626	579.50	7825.385	1781.814	-566.304	2162	1450	6.9
KAS03	Äspö after tunnel	940412	86	533	626	579.50	7825.385	1781.814	-566.304	2234	1564	6.7
KAS07	Äspö after tunnel	920831	93	191	290	240.50	7131.309	2139.342	-201.271	1996	971	8.1
KAS07	Äspö after tunnel	930906		191	290	240.50	7131.309	2139.342	-201.271	2159	1540	11.0
KAS07	Äspö after tunnel	940406	94	191	290	240.50	7131.309	2139.342	-201.271	2228	1479	10.2
KAS07	Äspö after tunnel	920831	95	501	604	552.50	6995.844	2042.233	-464.993	1995	1940	9.8
KAS07	Äspö after tunnel	930906	96	501	604	552.50	6995.844	2042.233	-464.993	2158	1980	10.2
KAS07	Äspö after tunnel	940412	97	501	604	552.50	6995.844	2042.233	-464.993	2236	1924	9.8
KAS07	Äspö after tunnel	940906	98	501	604	552.50	6995.844	2042.233	-464.993	2273	1890	9.5
KAS09	Äspö after tunnel	920901	102	116	150	133.00	6857.829	2089.529	-110.585	2002	1790	33.2
KAS09	Äspö after tunnel	930519	103	116	150	133.00	6857.829	2089.529	-110.585	2105	1770	40.0
KAS09	Äspö after tunnel	930906	104	116	150	133.00	6857.829	2089.529	-110.585	2160	1700	42.5
KAS09	Äspö after tunnel	940406	105	116	150	133.00	6857.829	2089.529	-110.585	2230	1628	38.0
KAS09	Äspö after tunnel	940906	106	116	150	133.00	6857.829	2089.529	-110.585	2274	1490	39.5
KAS09	Äspö after tunnel	951012	107	116	150	133.00	6857.829	2089.529	-110.585	2333	1465.1	33.9
KAS12	Äspö after tunnel	920901	108	234	277	255.50	7475.856	2182.879	-231.657	2003	1440	11.3
KAS12	Äspö after tunnel	930519	109	234	277	255.50	7475.856	2182.879	-231.657	2106	1460	12.0
KAS12	Äspö after tunnel	930907	110	234	277	255.50	7475.856	2182.879	-231.657	2161	1650	12.5
HBH01	RedoxZone after tunnel	911128	121	31	50.6	40.80	6183.527	2166.468	-30.879	-1	8.6	2.3
HBH01	RedoxZone after tunnel	920228	122	31	50.6	40.80	6183.527	2166.468	-30.879	-1	487.0	6.7
HBH01	RedoxZone after tunnel	920423	123	31	50.6	40.80	6183.527	2166.468	-30.879	1948	494.0	5.9
HBH01	RedoxZone after tunnel	920521	124	31	50.6	40.80	6183.527	2166.468	-30.879	-1	482.0	5.8
HBH01	RedoxZone after tunnel	920626	125	31	50.6	40.80	6183.527	2166.468	-30.879	1972	441.0	5.0
HBH01	RedoxZone after tunnel	920806	126	31	50.6	40.80	6183.527	2166.468	-30.879	1982	426.0	4.8
HBH01	RedoxZone after tunnel	920904	127	31	50.6	40.80	6183.527	2166.468	-30.879	2010	434.0	6.4
HBH01	RedoxZone after tunnel	921001	128	31	50.6	40.80	6183.527	2166.468	-30.879	2018	420.0	7.1
HBH01	RedoxZone after tunnel	921028	129	31	50.6	40.80	6183.527	2166.468		2029	421.0	5.7
HBH01	RedoxZone after tunnel	921125	130	31	50.6	40.80	6183.527	2166.468		2040	391.0	5.6

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	018	Brine Mix.
KAS03	Äspö after tunnel	920819	659	47.8	48	3360		-116.0	8.0	-14.9	8.3%
KAS03	Äspö after tunnel	921202					154.0	-112.3		-14.6	
KAS03	Äspö after tunnel	930207	800	42.8	49	3530	176.0	-111.2	5.1	-14.6	8.7%
KAS03	Äspö after tunnel	930516	872	45.7	42	3840	198.0	-108.3	4.2	-14.4	9.3%
KAS03	Äspö after tunnel	930816	1263.8	44.3	33	4701	275.0	-105.8	5.0	-13.9	11.4%
KAS03	Äspö after tunnel	930907	964	48.4	38	4230	213.0	-108.5	4.2	-14.3	10.0%
KAS03	Äspö after tunnel	940412	1162	48.4	38	4637	270.0	-106.3	6.8	-13.6	11.1%
KAS07	Äspö after tunnel	920831	522	39.3	167	2460	205.0	-87.1	8.0	-11.2	8.2%
KAS07	Äspö after tunnel	930906	655	126.0	182	3810		-65.3	24.0	-8.1	
KAS07	Äspö after tunnel	940406	559	125.0	335	3744	74.4	-65.4	22.0	-8.0	3.6%
KAS07	Äspö after tunnel	920831	1650	50.1	18	6060	486.0	-94.2	25.0	-12.1	14.9%
KAS07	Äspö after tunnel	930906	1600	51.2	52	6120	453.0	-89.1	9.0	-11.3	15.3%
KAS07	Äspö after tunnel	940412	1633	56.5	13	6077	472.0	-86.5	4.2	-11.6	15.9%
KAS07	Äspö after tunnel	940906	1610	59.6	13	5960	446.0	-80.4	12.7	-11.2	15.4%
KAS09	Äspö after tunnel	920901	403	152.0	396	3820	228.0	-61.9	25.0	-7.4	2.0%
KAS09	Äspö after tunnel	930519	291	148.0	264	3542	352.0	-56.2	35.0	-7.1	2.2%
KAS09	Äspö after tunnel	930906	268	150.0	240	3390	363.0	-55.8	10.0	-6.7	4.6%
KAS09	Äspö after tunnel	940406	219	144.8	206	3162	363.0	-58.8	30.0	-7.1	3.6%
KAS09	Äspö after tunnel	940906	191	141.0	192	2930	364.0	-51.5	38.0	-6.9	1.4%
KAS09	Äspö after tunnel	951012	199	139.7	175	2804	298.3	-56.7	33.8	-7.0	2.3%
KAS12	Äspö after tunnel	920901	891	91.5	-76	4220	171.0	-90.7	8.0	-11.4	11.1%
KAS12	Äspö after tunnel	930519	880	84.4	103	4159	168.0	-86.1	5.1	-11.2	11.1%
KAS12	Äspö after tunnel	930907	1070	107.0	61	4860	233.0	-82.0	4.2	-10.5	13.3%
HBH01	RedoxZone after tunnel	911128	41.3	4.0	137	11.3	24.5	-67.3	34	-8.8	2.6%
HBH01	RedoxZone after tunnel	920228	257.0	37.6	222	1200.0	130.0	-74.7	34	-10.0	5.1%
HBH01	RedoxZone after tunnel	920423	224.0	34.8	237	1080.0	132.0	-74.7	42	-10.1	4.6%
HBH01	RedoxZone after tunnel	920521	211.0	34.3	243	1056.0	126.0	-75.8	34	-10.3	4.7%
HBH01	RedoxZone after tunnel	920626	180.0	30.2	260	932.0	130.0	-79.3	17	-10.7	4.8%
HBH01	RedoxZone after tunnel	920806	166.0	26.1	270	869.0	133.0	-78.3	17	-10.3	4.7%
HBH01	RedoxZone after tunnel	920904	169.0	26.8	280	843.0	142.0	-77.8	25	-10.2	4.7%
HBH01	RedoxZone after tunnel	921001	163.0	26.5	280	833.0	138.0	-78.1	17	-9.7	5.0%
HBH01	RedoxZone after tunnel	921028	162.0	27.0	286	812.0	134.0	-76.9	17	-9.8	4.8%
HBH01	RedoxZone after tunnel	921125	144.0	23.7	288	737.0	136.0	-76.7	25	-9.6	4.5%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
KAS03	Äspö after tunnel	920819	57.8%	25.6%	8.3%	366.08	-11.14	-962.81	15.86	31.47
KAS03	Äspö after tunnel	921202								
KAS03	Äspö after tunnel	930207	56.1%	26.5%	8.7%	323.96	-11.85	-891.95	9.48	31.77
KAS03	Äspö after tunnel	930516	55.0%	26.4%	9.3%	281.65	-13.38	-940.38	10.02	23.80
KAS03	Äspö after tunnel	930816	54.1%	23.1%	11.4%	297.18	-15.89	-950.41	0.73	11.89
KAS03	Äspö after tunnel	930907	54.9%	25.1%	10.0%	282.40	-13.33	-980.37	10.13	18.86
KAS03	Äspö after tunnel	940412	52.1%	25.7%	11.1%	268.13	-15.71	-995.99	5.93	17.04
KAS07	Äspö after tunnel	920831	27.5%	56.1%	8.2%	14.49	-8.51	-1070.71	7.93	147.02
KAS07	Äspö after tunnel	930906								
KAS07	Äspö after tunnel	940406	3.6%	72.0%	20.9%	512.02	-23.80	-159.95	45.49	295.22
KAS07	Äspö after tunnel	920831	40.5%	29.7%	14.9%	194.61	-20.26	-1256.63	-7.07	-9.59
KAS07	Äspö after tunnel	930906	38.3%	31.0%	15.3%	187.41	-20.66	-1385.23	-7.51	23.60
KAS07	Äspö after tunnel	940412	40.5%	27.8%	15.9%	71.39	-22.08	-1452.19	-4.17	-15.83
KAS07	Äspö after tunnel	940906	33.5%	35.7%	15.4%	85.77	-21.55	-1394.60	0.51	-16.12
KAS09	Äspö after tunnel	920901	2.0%	61.4%	34.6%	520.13	-21.24	-31.05	20.24	337.65
KAS09	Äspö after tunnel	930519	2.2%	56.1%	39.5%	326.39	-22.06	-191.49	-2.36	199.12
KAS09	Äspö after tunnel	930906	4.6%	52.5%	38.3%	90.65	-18.72	-679.76	4.37	177.05
KAS09	Äspö after tunnel	940406	3.6%	56.4%	36.5%	164.48	-20.00	-524.11	5.99	145.33
KAS09	Äspö after tunnel	940906	1.4%	57.5%	39.8%	108.50	-22.62	-130.34	-10.43	126.65
KAS09	Äspö after tunnel	951012	2.3%	60.3%	35.0%	154.36	-21.29	-300.09	6.44	116.15
KAS12	Äspö after tunnel	920901	29.5%	48.4%	11.1%	147.99	-11.02	-1260.50	49.16	52.36
KAS12	Äspö after tunnel	930519	27.1%	50.8%	11.1%	165.30	-10.37	-1275.97	41.97	79.03
KAS12	Äspö after tunnel	930907	24.1%	49.4%	13.3%	100.41	-14.20	-1510.47	56.24	33.71
HBH01	RedoxZone after tunnel	911128	2.6%	92.1%	2.6%	-299.14	-3.23	-470.82	-6.15	121.55
HBH01	RedoxZone after tunnel	920228	6.9%	82.8%	5.1%	-114.60	-3.84	-744.54	17.84	203.65
HBH01	RedoxZone after tunnel	920423	4.9%	85.8%	4.6%	-48.92	-3.64	-679.81	16.96	219.09
HBH01	RedoxZone after tunnel	920521	8.1%	82.4%	4.7%	-69.31	-3.88	-706.80	16.18	225.38
HBH01	RedoxZone after tunnel	920626	15.7%	74.6%	4.8%	-123.37	-4.91	-759.57	11.66	243.15
HBH01	RedoxZone after tunnel	920806	13.9%	76.6%	4.7%	-128.97	-4.95	-757.92	7.86	253.04
HBH01	RedoxZone after tunnel	920904	10.4%	80.2%	4.7%	-112.55	-3.20	-740.88	8.84	262.71
HBH01	RedoxZone after tunnel	921001	10.8%	79.3%	5.0%	-162.80	-3.12	-807.25	7.35	262.33
HBH01	RedoxZone after tunnel	921028	10.7%	79.6%	4.8%		-4.21	-778.21	8.44	268.54
HBH01	RedoxZone after tunnel	921125	7.8%	83.3%	4.5%		-3.55			

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KAS03	Äspö after tunnel	920819	-1083.77	55.89	2.38	-17.91	1.07	
KAS03	Äspö after tunnel	921202						n PM- No de la companya de la compa
KAS03	Äspö after tunnel	930207	-1105.98	50.72	5.56	-21.81	1.17	
KAS03	Äspö after tunnel	930516	-1125.95	63.85	7.11	-22.60	1.21	
KAS03	Äspö after tunnel	930816	-1366.00	111.30	7.30	-18.59	1.47	
KAS03	Äspö after tunnel	930907	-1097.63	69.15	6.29	-21.37	1.25	
KAS03	Äspö after tunnel	940412	-1275.95	110.42	5.45	-19.38	1.58	
KAS07	Äspö after tunnel	920831	-1903.92	86.76	7.83	-48.43	1.61	
KAS07	Äspö after tunnel	930906			- 1998 - 2007 - 1998 - 2019 - 201			
KAS07	Äspö after tunnel	940406	789.71	-68.93	6.73	-50.15	1.67	
KAS07	Äspö after tunnel	920831	-1904.26	271.27	5.39	-5.28	1.59	
KAS07	Äspö after tunnel	930906	-2059.63	232.47	8.46	-22.68	2.13	
KAS07	Äspö after tunnel	940412	-2376.55	244.14	` 12.41	-24.22	2.03	
KAS07	Äspö after tunnel	940906	-2272.69	224.00	13.32	-23.61	1.72	
KAS09	Äspö after tunnel	920901	774.14	26.65	3.36	-36.49	1.37	
KAS09	Äspö after tunnel	930519	97.19	123.00	6.94	-21.17	1.42	
KAS09	Äspö after tunnel	930906	-1120.63	118.73	8.95	-42.69	2.10	· · · · · · · · · · · · · · · · · · ·
KAS09	Äspö after tunnel	940406	-745.61	137.60	6.31	-26.53	1.71	
KAS09	Äspö after tunnel	940906	-137.01	141.07	11.16	-19.53	1.53	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KAS09	Äspö after tunnel	951012	-423.42	91.87	8.52	-26.64	1.78	
KAS12	Äspö after tunnel	920901	-1675.07	11.69	3.45	-40.84	1.41	
KAS12	Äspö after tunnel	930519	-1748.31	8.34	6.13	-46.14	1.35	
KAS12	Äspö after tunnel	930907	-2210.47	42.10	6.16	-45.74	1.59	5 × 0
HBH01	RedoxZone after tunnel	911128	-1391.55	-14.51	12.66	-58.20	1.79	
HBH01	RedoxZone after tunnel	920228	-1543.96	55.04	6.55	-49.03	0.86	
HBH01	RedoxZone after tunnel	920423	-1396.14	64.21	5.42	-43.98	0.59	
HBH01	RedoxZone after tunnel	920521	-1458.48	57.21	6.76	-48.64	0.72	
HBH01	RedoxZone after tunnel	920626	-1642.19	59.68	9.11	-57.80	1.11	1
HBH01	RedoxZone after tunnel	920806	-1662.28	63.81	8.75	-59.79	1.32	
HBH01	RedoxZone after tunnel	920904	-1649.80	73.81	6.59	-55.41	1.06	
HBH01	RedoxZone after tunnel	921001	-1825.21	65.38	6.30	-62.47	1.58	
HBH01	RedoxZone after tunnel	921028	-1763.91	63.58	7.59	-62.82	1.48	· · · · · · · · · · · · · · · · · · ·
HBH01	RedoxZone after tunnel	921125	-1635.41	71.02	5.83	-58.47	1.40	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
HBH01	RedoxZone after tunnel	921202	131	31	50.6	40.80	6183.527	2166.468	-30.879	2046	390.0	5.7
HBH01	RedoxZone after tunnel	930207	132	31	50.6	40.80	6183.527	2166.468	-30.879	2071	369.0	5.0
HBH01	RedoxZone after tunnel	930311	133	31	50.6	40.80	6183.527	2166.468	-30.879	2079	361.0	3.7
HBH01	RedoxZone after tunnel	930328	134	31	50.6	40.80	6183.527	2166.468	-30.879	2087	356.0	5.5
HBH01	RedoxZone after tunnel	930516	135	31	50.6	40.80	6183.527	2166.468	-30.879	2098	321.0	4.3
HBH01	RedoxZone after tunnel	930612	136	31	50.6	40.80	6183.527	2166.468	-30.879	2110	304.0	4.0
HBH01	RedoxZone after tunnel	930706	137	31	50.6	40.80	6183.527	2166.468	-30.879	2130	312.0	5.0
HBH01	RedoxZone after tunnel	930816	138	31	50.6	40.80	6183.527	2166.468	-30.879	2144	349.0	5.1
HBH01	RedoxZone after tunnel	930907	139	31	50.6	40.80	6183.527	2166.468	-30.879	2165	346.0	5.0
HBH01	RedoxZone after tunnel	930921	140	31	50.6	40.80	6183.527	2166.468	-30.879	2167	348.0	5.0
HBH01	RedoxZone after tunnel	931112	141	31	50.6	40.80	6183.527	2166.468	-30.879	2196	305.0	4.6
HBH01	RedoxZone after tunnel	940811	142	31	50.6	40.80	6183.527	2166.468	-30.879	2268	260.0	3.3
HBH01	RedoxZone after tunnel	940905	143	31	50.6	40.80	6183.527	2166.468	-30.879	2269	263.0	3.2
HBH01	RedoxZone after tunnel	950324	144	31	50.6	40.80	6183.527	2166.468	-30.879	2307	286.0	3.8
HBH02	RedoxZone after tunnel	911129	147	21	32.4	26.70	6190.937	2161.031	-15.296	-1	11.9	2.6
HBH02	RedoxZone after tunnel	920228	148	21	32.4	26.70	6190.937	2161.031	-15.296	-1	21.1	1.7
HBH02	RedoxZone after tunnel	920423		21	32.4	26.70	6190.937	2161.031	-15.296	1947	7.5	1.3
HBH02	RedoxZone after tunnel	920521		21	32.4	26.70	6190.937	2161.031	-15.296	-1	5.9	1.5
HBH02	RedoxZone after tunnel	920904	149	21	32.4	26.70	6190.937	2161.031	-15.296	2009	5.3	1.7
HBH02	RedoxZone after tunnel	920930		21	32.4	26.70	6190.937	2161.031	-15.296	2017	6.5	1.9
HBH02	RedoxZone after tunnel	921028	150		32.4	26.70	6190.937	2161.031	-15.296	2031	6.2	1.3
HBH02	RedoxZone after tunnel	921126	151	21	32.4	26.70	6190.937	2161.031	-15.296	2042	5.3	1.0
HBH02	RedoxZone after tunnel	921202	152	21	32.4	26.70	6190.937	2161.031	-15.296	2047	5.5	1.0
HBH02	RedoxZone after tunnel	930207	153	21	32.4	26.70	6190.937	2161.031	-15.296	2072	5.6	1.0
HBH02	RedoxZone after tunnel	930317	154	21	32.4	26.70	6190.937	2161.031	-15.296	2080	5.4	1.1
HBH02	RedoxZone after tunnel	930328	155	21	32.4	26.70	6190.937	2161.031	-15.296	2088	5.4	1.2
HBH02	RedoxZone after tunnel	930516		21	32.4	26.70	6190.937	2161.031	-15.296	2099	6.1	0.9
HBH02	RedoxZone after tunnel	930612	156	21	32.4	26.70	6190.937	2161.031	-15.296	2111	6.2	1.4
HBH02	RedoxZone after tunnel	930706	157	21	32.4	26.70	6190.937	2161.031	-15.296	2131	6.4	1.4
HBH02	RedoxZone after tunnel	930816	158	21	32.4	26.70	6190.937	2161.031	-15.296	2145	6.7	1.4
HBH02	RedoxZone after tunnel	930907	159	21	32.4	26.70	6190.937	2161.031	-15.296	2164	8.0	1.3
HBH02	RedoxZone after tunnel	930921		21	32.4	26.70	6190.937	2161.031	-15.296	2168		
HBH02	RedoxZone after tunnel	931112	160	21	32.4	26.70	6190.937	2161.031	-15.296	2197	6.4	1.2

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
HBH01	RedoxZone after tunnel	921202	144.0	22.8	291	739.0	138.0	-73.8	9.3	-9.7	5.0%
HBH01	RedoxZone after tunnel	930207	130.0	21.4	294	654.0	140.0	-72.4	9.3	-9.7	4.9%
HBH01	RedoxZone after tunnel	930311	120.0	19.9	291	610.0	128.0	-70.1	15	-9.9	4.5%
HBH01	RedoxZone after tunnel	930328	118.0	19.7	292	598.0	129.0	-68.0	14	-10.0	4.7%
HBH01	RedoxZone after tunnel	930516	108.0	21.3	299	519.0	129.0	-71.0	22	-9.9	4.2%
HBH01	RedoxZone after tunnel	930612	94.3	15.8	305	476.0	123.0	-75.1	25	-9.9	3.7%
HBH01	RedoxZone after tunnel	930706	98.2	16.8	311	484.0	125.0	-71.4	14	-9.8	4.3%
HBH01	RedoxZone after tunnel	930816	115.0	19.1	309	461.0	105.0	-71.8	22	-9.7	4.0%
HBH01	RedoxZone after tunnel	930907	113.0	20.2	310	515.0	125.0	-73.2	16	-9.5	4.4%
HBH01	RedoxZone after tunnel	930921	115.0	20.5	311	529.0	126.0	-63.9	26	-9.5	3.2%
HBH01	RedoxZone after tunnel	931112	97.6	17.8	315	450.0	114.0	-67.8	25	-9.5	3.6%
HBH01	RedoxZone after tunnel	940811	82.1	14.3	311	352.0	105.0	-68.5	14	-9.8	3.8%
HBH01	RedoxZone after tunnel	940905	81.0	14.3	319	348.0	104.0	-68.6	14	-9.8	3.8%
HBH01	RedoxZone after tunnel	950324	94.4	16.2	290	550.0	103.0	-72.7	31	-9.8	3.5%
HBH02	RedoxZone after tunnel	911129	45.0	3.6	142	19.1	19.9	-72.9	42	-9.7	2.1%
HBH02	RedoxZone after tunnel	920228	34.5	3.2	137	13.5	24.3	-71.7	42	-10.0	2.0%
HBH02	RedoxZone after tunnel	920423	20.8	2.6	68		17.1	-78.9	42	-10.2	
HBH02	RedoxZone after tunnel	920521	24.1	4.5	73		18.0	-73.6	42	-10.0	
HBH02	RedoxZone after tunnel	920904	16.7	2.4	40	8.3	17.5	-61.6	25	-8.5	3.4%
HBH02	RedoxZone after tunnel	920930	25.2	3.0	62		20.4	-61.5	25	-7.6	
HBH02	RedoxZone after tunnel	921028	20.8	3.4	70	10.4	18.4	-63.6	17	-7.9	3.6%
HBH02	RedoxZone after tunnel	921126	16.7	4.0	65	9.6	15.4	-70.8	25	-8.9	3.0%
HBH02	RedoxZone after tunnel	921202	17.1	3.1	53	10.6	16.2	-64.9	20	-8.0	3.5%
HBH02	RedoxZone after tunnel	930207	17.9	5.6	65	9.2	15.1	-65.6	12	-9.1	3.5%
HBH02	RedoxZone after tunnel	930317	16.3	2.2	64	10.3	15.2	-62.6	23	-9.9	3.1%
HBH02	RedoxZone after tunnel	930328	20.9	3.7	63	12.4	15.7	-62.5	16	-9.5	3.4%
HBH02	RedoxZone after tunnel	930516	25.2	3.6	77		17.4	-69.6	22	-9.5	
HBH02	RedoxZone after tunnel	930612	25.9	3.2	74	12.8	20.9	-71.7	18	-9.4	3.2%
HBH02	RedoxZone after tunnel	930706	25.1	3.3	70	9.9	20.6	-66.0	29	-9.2	3.0%
HBH02	RedoxZone after tunnel	930816	27.5	3.3	77	7.8	18.7	-64.8	20	-8.6	3.3%
HBH02	RedoxZone after tunnel	930907	28.4	4.9	79	17.7	18.3	-65.7	24	-8.5	3.2%
HBH02	RedoxZone after tunnel	930921			58			-63.5	38	-9.0	
HBH02	RedoxZone after tunnel	931112	21.4	2.8	55	12.1	17.8	-63.3	37	-9.1	2.8%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
HBH01	RedoxZone after tunnel	921202	11.2%	78.7%	5.0%	-197.88	-4.61	-834.71	3.49	273.33
HBH01	RedoxZone after tunnel	930207	10.7%	79.4%	4.9%	-205.23	-5.08	-825.98	2.53	276.43
HBH01	RedoxZone after tunnel	930311	9.2%	81.8%	4.5%	-164.41	-5.54	-754.67	2.63	273.81
HBH01	RedoxZone after tunnel	930328	8.4%	82.2%	4.7%	-191.65	-4.12	-793.70	1.70	274.46
HBH01	RedoxZone after tunnel	930516	7.1%	84.6%	4.2%	-165.17	-4.27	-701.30	5.31	282.01
HBH01	RedoxZone after tunnel	930612	8.2%	84.4%	3.7%	-129.48	-3.68	-627.25	1.54	288.76
HBH01	RedoxZone after tunnel	930706	8.8%	82.6%	4.3%	-188.44	-3.82	-734.87	0.35	294.05
HBH01	RedoxZone after tunnel	930816	6.1%	86.0%	4.0%	-113.77	-3.07	-655.32	3.88	292.17
HBH01	RedoxZone after tunnel	930907	7.9%	83.4%	4.4%	-163.10	-3.96	-734.50	3.46	292.84
HBH01	RedoxZone after tunnel	930921	3.2%	87.3%	6.3%	-123.41	-6.41	-509.83	-3.58	290.70
HBH01	RedoxZone after tunnel	931112	3.6%	88.4%	4.5%	-140.59	-4.22	-595.32	0.52	297.14
HBH01	RedoxZone after tunnel	940811	7.8%	84.5%	3.8%	-189.96	-4.66	-666.90	-0.50	294.52
HBH01	RedoxZone after tunnel	940905	7.6%	84.8%	3.8%	-180.46	-4.64	-657.18	-0.29	302.57
HBH01	RedoxZone after tunnel	950324	5.4%	87.7%	3.5%	-118.25	-3.37	-578.46	2.89	273.76
HBH02	RedoxZone after tunnel	911129	5.9%	90.0%	2.1%	-228.82	-1.79	-355.51	-4.36	127.72
HBH02	RedoxZone after tunnel	920228	6.9%	89.1%	2.0%	-217.65	-2.66	-362.72	-4.69	122.86
HBH02	RedoxZone after tunnel	920423								
HBH02	RedoxZone after tunnel	920521								
HBH02	RedoxZone after tunnel	920904	4.5%	88.7%	3.4%	-396.04	-5.42	-651.32	-10.81	23.68
HBH02	RedoxZone after tunnel	920930								
HBH02	RedoxZone after tunnel	921028	4.7%	88.2%	3.6%	-413.60	-6.14	-677.96	-10.42	53.49
HBH02	RedoxZone after tunnel	921126	9.3%	84.7%	3.0%	-343.27	-5.23	-563.45	-7.49	49.88
HBH02	RedoxZone after tunnel	921202	5.3%	87.7%	3.5%	-400.92	-6.21	-659.38	-10.28	36.73
HBH02	RedoxZone after tunnel	930207	11.2%	81.7%	3.5%	-408.20	-6.34	-670.89	-8.02	49.35
HBH02	RedoxZone after tunnel	930317	9.9%		3.1%	-355.62	-5.34	-584.57	-9.69	48.81
HBH02	RedoxZone after tunnel	930328	10.3%	82.8%	3.4%	-395.33	-5.92	-646.12	-9.49	47.39
HBH02	RedoxZone after tunnel	930516					and the second se			
HBH02	RedoxZone after tunnel	930612	13.2%	80.5%	3.2%	-362.82	-5.18	-588.31	-8.96	59.11
HBH02	RedoxZone after tunnel	930706		87.0%	3.0%	-341.13	-4.81	-553.30	-8.15	54.61
HBH02	RedoxZone after tunnel	930816	6.6%	86.7%	3.3%	-383.79	-5.54	-622.44	-9.56	61.07
HBH02	RedoxZone after tunnel	930907	5.4%	88.2%	3.2%	-367.15	-5.38	-596.00	-7.46	63.10
HBH02	RedoxZone after tunnel	930921								
HBH02	RedoxZone after tunnel	931112	3.7%	90.7%	2.8%	-321.87	-4.68	-524.92	-8.02	39.44

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
HBH01	RedoxZone after tunnel	921202	-1942.41	64.76	10.93	-69.62	1.62	
HBH01	RedoxZone after tunnel	930207	-1965.11	68.42	12.04	-70.34	1.58	
HBH01	RedoxZone after tunnel	930311	-1786.30	62.39	13.49	-66.98	1.25	
HBH01	RedoxZone after tunnel	930328	-1899.79	60.66	14.79	-68.43	1.05	
HBH01	RedoxZone after tunnel	930516	-1698.19	68.18	11.18	-62.79	1.05	
HBH01	RedoxZone after tunnel	930612	-1500.74	68.64	8.35	-59.51	1.20	
HBH01	RedoxZone after tunnel	930706	-1798.33	62.44	12.04	-68.80	1.32	
HBH01	RedoxZone after tunnel	930816	-1649.38	47.03	9.79	-64.14	1.16	
HBH01	RedoxZone after tunnel	930907	-1806.86	61.37	9.44	-67.61	1.52	
HBH01	RedoxZone after tunnel	930921	-1359.36	62.71	14.63	-61.47	0.94	
HBH01	RedoxZone after tunnel	931112	-1502.20	56.82	11.70	-63.54	1.07	······································
HBH01	RedoxZone after tunnel	940811	-1699.96	48.62	14.50	-70.67	1.24	
HBH01	RedoxZone after tunnel	940905	-1674.31	48.41	14.31	-70.94	1.23	
HBH01	RedoxZone after tunnel	950324	-1293.31	52.19	8.73	-56.85	1.02	
HBH02	RedoxZone after tunnel	911129	-1077.94	-10.88	10.03	-48.10	1.27	
HBH02	RedoxZone after tunnel	920228	-1074.54	-6.23	12.02	-47.14	1.08	
HBH02	RedoxZone after tunnel	920423						
HBH02	RedoxZone after tunnel	920521						
HBH02	RedoxZone after tunnel	920904	-1821.74	-32.96	19.14	-63.80	2.23	
HBH02	RedoxZone after tunnel	920930						
HBH02	RedoxZone after tunnel	921028	-1903.88	-34.32	17.16	-71.30	2.83	
HBH02	RedoxZone after tunnel	921126	-1579.69	-28.55	14.08	-59.84	2.37	
HBH02	RedoxZone after tunnel	921202	-1842.64	-34.87	16.47	-67.87	2.81	
HBH02	RedoxZone after tunnel	930207	-1877.78	-36.83	20.32	-69.85	2.33	
HBH02	RedoxZone after tunnel	930317	-1635.78	-30.27	22.66	-61.04	1.42	
HBH02	RedoxZone after tunnel	930328	-1814.93	-34.63	22.79	-66.99	1.84	
HBH02	RedoxZone after tunnel	930516						
HBH02	RedoxZone after tunnel	930612	-1669.85	-25.53	16.08	-62.60	2.26	
HBH02	RedoxZone after tunnel	930706	-1574.58	-23.25	17.09	-58.17	1.83	
HBH02	RedoxZone after tunnel	930816	-1772.73	-30.41	17.70	-66.82	2.36	
HBH02	RedoxZone after tunnel	930907	-1692.84	-28.94	15.97	-64.29	2.34	
HBH02	RedoxZone after tunnel	930921						
HBH02	RedoxZone after tunnel	931112	-1484.48	-23.72	17.35	-53.79	1.59	

ID code	Area	Date	m3 row		Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	К
HBH02	RedoxZone after tunnel	950324	161	21	32.4	26.70	6190.937	2161.031	-15.296	2308	45.9	1.4
HBH05	RedoxZone after tunnel	921028	162	11	22	16.50	6185.414	2144.279	-8.697	2030	15.4	2.6
HBH05	RedoxZone after tunnel	921125	163	11	22	16.50	6185.414	2144.279	-8.697	2041	16.6	2.5
HBH05	RedoxZone after tunnel	930612	164	11	22	16.50	6185.414	2144.279	-8.697	2112	19.2	3.0
HBH05	RedoxZone after tunnel	930706	165	11	22	16.50	6185.414	2144.279	-8.697	2132	19.4	2.7
HBH05	RedoxZone after tunnel	931112	166	11	22	16.50	6185.414	2144.279	-8.697	2198	25.4	2.6
HBH05	RedoxZone after tunnel	950324		11	22	16.50	6185.414	2144.279	-8.697	2309	26.5	2.2
KR0012B	RedoxZone after tunnel	910619	167	5	10.57	7.79	6167.254	2165.756	-69.196	1804	410.0	2.0
KR0012B	RedoxZone after tunnel	920408	168	5	10.57	7.79	6167.254	2165.756	-69.196	-1	629.0	5.0
KR0012B	RedoxZone after tunnel	920422	169	5	10.57	7.79	6167.254	2165.756	-69.196	1940	604.0	4.9
KR0012B	RedoxZone after tunnel	920506	170	5	10.57	7.79	6167.254	2165.756	-69.196	1953	597.0	5.1
KR0012B	RedoxZone after tunnel	920520	171	5	10.57	7.79	6167.254	2165.756	-69.196	-1	591.0	5.2
KR0012B	RedoxZone after tunnel	920603	172	5	10.57	7.79	6167.254	2165.756	-69.196	-1	572.0	4.9
KR0012B	RedoxZone after tunnel	920626	173	5	10.57	7.79	6167.254	2165.756	-69.196	1969	540.0	4.7
KR0012B	RedoxZone after tunnel	920708	174	5	10.57	7.79	6167.254	2165.756	-69.196	1973	539.0	4.9
KR0012B	RedoxZone after tunnel	920721	175	5	10.57	7.79	6167.254	2165.756	-69.196	1976	527.0	4.6
KR0012B	RedoxZone after tunnel	920806	176	5	10.57	7.79	6167.254	2165.756	-69.196	1979	526.0	4.5
KR0012B	RedoxZone after tunnel	920818	177	5	10.57	7.79	6167.254	2165.756	-69.196	1983	522.0	4.5
KR0012B	RedoxZone after tunnel	920903	178	5	10.57	7.79	6167.254	2165.756	-69.196	2008	516.0	5.5
KR0012B	RedoxZone after tunnel	920917	179	5	10.57	7.79	6167.254	2165.756	-69.196	2011	513.0	5.5
KR0012B	RedoxZone after tunnel	920930	180	5	10.57	7.79	6167.254	2165.756	-69.196	2014	510.0	7.0
KR0012B	RedoxZone after tunnel	921012	181	5	10.57	7.79	6167.254	2165.756	-69.196	2019	503.0	5.5
KR0012B	RedoxZone after tunnel	921028	182	5	10.57	7.79	6167.254	2165.756	-69.196	2026	497.0	5.0
KR0012B	RedoxZone after tunnel	921110	183	5	10.57	7.79	6167.254	2165.756	-69.196	2032	486.0	4.8
KR0012B	RedoxZone after tunnel	921124	184	5	10.57	7.79	6167.254	2165.756	-69.196	2037	478.0	5.3
KR0012B	RedoxZone after tunnel	921202	185	5	10.57	7.79	6167.254	2165.756	-69.196	2043	475.0	5.0
KR0012B	RedoxZone after tunnel	921210	186	5	10.57	7.79	6167.254	2165.756	-69.196	2055	471.0	5.0
KR0012B	RedoxZone after tunnel	921221	187	5	10.57	7.79	6167.254	2165.756	-69.196	2057	468.0	4.3
KR0012B	RedoxZone after tunnel	930104	188	5	10.57	7.79	6167.254	2165.756	-69.196	2060	452.0	5.2
KR0012B	RedoxZone after tunnel	930119	189	5	10.57	7.79	6167.254	2165.756	-69.196	2063	452.0	4.2
KR0012B	RedoxZone after tunnel	930207	190	5	10.57	7.79	6167.254	2165.756	-69.196	2068	461.0	4.5
KR0012B	RedoxZone after tunnel	930317	191	5	10.57	7.79	6167.254	2165.756	-69.196	2081	453.0	5.0
KR0012B	RedoxZone after tunnel	930324	192	5	10.57	7.79	6167.254	2165.756	-69.196	2084	445.0	5.1

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
HBH02	RedoxZone after tunnel	950324	38.0	3.8	170	100.0	13.8	-73.9	35	-9.9	2.0%
HBH05	RedoxZone after tunnel	921028	38.4	4.0	137	11.2	23.0	-75.3	25	-9.6	2.6%
HBH05	RedoxZone after tunnel	921125	39.2	4.3	143	11.7	22.3	-75.8	34	-9.5	2.3%
HBH05	RedoxZone after tunnel	930612	38.5	3.8	162	12.0	21.5	-68.4	22	-9.9	2.8%
HBH05	RedoxZone after tunnel	930706	40.4	4.5	165	19.9	16.6	-65.1	22	-8.8	2.9%
HBH05	RedoxZone after tunnel	931112	42.6	8.8	172	27.6	36.6	-64.7	24	-9.4	3.0%
HBH05	RedoxZone after tunnel	950324	36.0	4.4			14.0	-71.9	58	-9.6	
KR0012B	RedoxZone after tunnel	910619	200.0	22.0	185	915.0	62.0	-83.2	25	-11.5	3.7%
KR0012B	RedoxZone after tunnel	920408	280.0	37.8	243	1360.0	134.0	-76.4	25	-10.2	5.5%
KR0012B	RedoxZone after tunnel	920422	268.0	37.7	245	1330.0	134.0	-77.3	25	-10.2	5.4%
KR0012B	RedoxZone after tunnel	920506	255.0	36.9	248	1290.0	131.0	-80.5	34	-9.9	5.0%
KR0012B	RedoxZone after tunnel	920520	252.0	37.2	250	1300.0	139.0	-77.6	51	-10.3	4.5%
KR0012B	RedoxZone after tunnel	920603	235.0	34.9	250	1270.0	136.0	-76.8	34	-11.0	4.9%
KR0012B	RedoxZone after tunnel	920626	213.0	31.9	260	1130.0	137.0	-77.5	25	-10.2	5.0%
KR0012B	RedoxZone after tunnel	920708	206.0	31.1	260	1110.0	140.0	-81.1	17	-10.3	5.2%
KR0012B	RedoxZone after tunnel	920721	206.0	31.1	270	1130.0	139.0	-79.7	17	-10.4	5.1%
KR0012B	RedoxZone after tunnel	920806	200.0	29.5	280	1070.0	141.0	-80.2	8.4	-10.4	5.3%
KR0012B	RedoxZone after tunnel	920818	196.0	29.6	280	1040.0	147.0	-80.5	17	-10.4	5.1%
KR0012B	RedoxZone after tunnel	920903	195.0	28.5	280	1080.0	143.0	-78.3	17	-10.3	5.1%
KR0012B	RedoxZone after tunnel	920917	191.0	29.1	280	1000.0	143.0	-80.3	17	-9.8	5.1%
KR0012B	RedoxZone after tunnel	920930	187.0	28.0	280	1020.0	148.0	-79.4	17	-9.9	5.3%
KR0012B	RedoxZone after tunnel	921012	187.0	28.3	292	1010.0	142.0	-81.1	17	-9.8	5.0%
KR0012B	RedoxZone after tunnel	921028	186.0	27.9	292	970.0	141.0	-79.9	17	-9.9	5.0%
KR0012B	RedoxZone after tunnel	921110	178.0	27.1	296	934.0	140.0	-78.5	25	-9.7	4.7%
KR0012B	RedoxZone after tunnel	921124	171.0	25.7	301	918.0	142.0	-78.7	17	-9.8	4.9%
KR0012B	RedoxZone after tunnel	921202	168.0	22.9	299	932.0	138.0	-72.4	10	-9.8	5.2%
KR0012B	RedoxZone after tunnel	921210	159.0	21.7	302	888.0	139.0	-72.3	4.2	-9.1	5.4%
KR0012B	RedoxZone after tunnel	921221	163.0	24.7	307	876.0	137.0	-72.4	18	-9.7	4.8%
KR0012B	RedoxZone after tunnel	930104	155.0	23.8	306	823.0	136.0	-72.9	9.3	-9.8	5.1%
KR0012B	RedoxZone after tunnel	930119	153.0	23.3	304	835.0	143.0	-72.9	20	-9.8	4.7%
KR0012B	RedoxZone after tunnel	930207	156.0	23.7	311	840.0	142.0	-71.9	11	-9.8	5.0%
KR0012B	RedoxZone after tunnel	930317	144.0	22.3	306	780.0	138.0	-68.1	12	-9.9	5.0%
KR0012B	RedoxZone after tunnel	930324	146.0	22.7	306	789.0	139.0	-69.2	15	-9.7	5.0%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
HBH02	RedoxZone after tunnel	950324	8.5%	87.4%	2.0%	-193.18	-2.96	-359.79	-4.11	156.05
HBH05	RedoxZone after tunnel	921028	11.4%	83.3%	2.6%	-293.44	-2.96	-475.58	-6.19	122.60
HBH05	RedoxZone after tunnel	921125	8.6%	86.8%	2.3%	-253.02	-2.39	-409.45	-4.60	128.72
HBH05	RedoxZone after tunnel	930612	9.5%	85.0%	2.8%	-304.02	-2.80	-499.42	-6.86	147.19
HBH05	RedoxZone after tunnel	930706	4.0%	90.1%	2.9%	-324.01	-3.44	-531.13	-6.82	149.30
HBH05	RedoxZone after tunnel	931112	5.1%	88.8%	3.0%	-327.29	-3.70	-544.40	-2.82	156.33
HBH05	RedoxZone after tunnel	950324		1						
KR0012B	RedoxZone after tunnel	910619	20.9%	71.7%	3.7%	-22.91	-5.68	-520.64	7.76	170.30
KR0012B	RedoxZone after tunnel	920408	11.1%	77.9%	5.5%	-16.07	-6.28	-793.96	16.62	224.65
KR0012B	RedoxZone after tunnel	920422	11.4%	77.8%	5.4%	-28.61	-6.17	-785.22	16.93	226.83
KR0012B	RedoxZone after tunnel	920506	9.1%	80.9%	5.0%	12.93	-5.14	-717.36	17.71	230.11
KR0012B	RedoxZone after tunnel	920520	4.5%	86.5%	4.5%	64.85	-4.11	-620.85	19.74	232.18
KR0012B	RedoxZone after tunnel	920603	11.4%	78.8%	4.9%	5.07	-5.05	-708.82	16.27	232.60
KR0012B	RedoxZone after tunnel	920626	11.3%	78.7%	5.0%	-46.89	-5.59	-764.06	12.62	242.35
KR0012B	RedoxZone after tunnel	920708	15.5%	74.1%	5.2%	-69.00	-5.76	-806.24	11.13	242.61
KR0012B	RedoxZone after tunnel	920721	15.0%	74.8%	5.1%	-72.28	-5.91	-791.71	11.42	252.65
KR0012B	RedoxZone after tunnel	920806	17.4%	71.9%	5.3%	-94.77	-6.38	-833.50	9.11	262.70
KR0012B	RedoxZone after tunnel	920818	15.2%	74.7%	5.1%	-68.24	-5.85	-786.66	10.21	262.78
KR0012B	RedoxZone after tunnel	920903	13.6%	76.1%	5.1%	-85.01	-5.04	-805.60	8.76	262.47
KR0012B	RedoxZone after tunnel	920917	12.7%	77.1%	5.1%	-87.29	-5.02	-808.39	9.38	262.36
KR0012B	RedoxZone after tunnel	920930	12.3%	77.1%	5.3%	-107.40	-3.81	-840.88	7.72	262.12
KR0012B	RedoxZone after tunnel	921012	12.7%	77.2%	5.0%	-83.54	-4.79	-789.49	9.03	274.53
KR0012B	RedoxZone after tunnel	921028	12.7%	77.4%	5.0%	-82.08	-5.16	-778.06	8.88	274.61
KR0012B	RedoxZone after tunnel	921110	9.0%	81.6%	4.7%	-57.86	-4.76	-727.39	9.23	278.58
KR0012B	RedoxZone after tunnel	921124	11.5%	78.7%	4.9%	-92.99	-4.72	-779.58	6.94	283.56
KR0012B	RedoxZone after tunnel	921202	11.0%	78.7%	5.2%	-130.32	-5.61	-839.75	3.02	281.10
KR0012B	RedoxZone after tunnel	921210	10.0%	79.1%	5.4%	-162.63	-6.09	-895.91	0.89	283.65
KR0012B	RedoxZone after tunnel	921221	8.2%	82.2%	4.8%	-94.75	-5.58	-773.86	6.21	289.25
KR0012B	RedoxZone after tunnel	930104	10.9%	78.9%	5.1%	-141.03	-5.20	-832.30	4.32	288.24
KR0012B	RedoxZone after tunnel	930119	8.4%	82.2%	4.7%	-98.44	-5.47	-763.34	5.21	286.43
KR0012B	RedoxZone after tunnel	930207	10.2%	79.7%	5.0%	-128.20	-5.83	-824.90	4.35	293.19
KR0012B	RedoxZone after tunnel	930317	8.6%	81.4%	5.0%	-136.39	-5.33	-837.22	2.94	287.99
KR0012B	RedoxZone after tunnel	930324	7.5%			-134.44	-5.06	-818.65		287.97

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
HBH02	RedoxZone after tunnel	950324	-989.61	-16.75	11.09	-52.50	1.35	
HBH05	RedoxZone after tunnel	921028	-1396.80	-16.07	11.51	-58.38	1.91	
HBH05	RedoxZone after tunnel	921125	-1217.28	-11.99	9.09	-52.85	1.74	
HBH05	RedoxZone after tunnel	930612	-1461.58	-19.35	16.76	-63.13	1.40	
HBH05	RedoxZone after tunnel	930706	-1545.76	-26.77	15.66	-68.26	1.91	
HBH05	RedoxZone after tunnel	931112	-1580.44	-7.90	16.89	-64.95	1.43	
HBH05	RedoxZone after tunnel	950324						
KR0012B	RedoxZone after tunnel	910619	-1059.32	7.82	10.12	-46.86	0.93	
KR0012B	RedoxZone after tunnel	920408	-1582.39	53.75	7.82	-53.12	1.07	
KR0012B	RedoxZone after tunnel	920422	-1555.57	55.28	7.24	-53.02	1.11	
KR0012B	RedoxZone after tunnel	920506	-1374.01	58.20	2.57	-47.15	1.20	
KR0012B	RedoxZone after tunnel	920520	-1094.65	73.18	2.28	-35.67	0.35	· · · · · · · · · · · · · · · · · · ·
KR0012B	RedoxZone after tunnel	920603	-1315.80	65.32	8.24	-45.05	0.36	
KR0012B	RedoxZone after tunnel	920626	-1546.88	63.88	7.27	-53.89	1.13	
KR0012B	RedoxZone after tunnel	920708	-1663.30	64.33	6.80	-57.34	1.45	
KR0012B	RedoxZone after tunnel	920721	-1603.48	64.39	7.88	-57.97	1.31	
KR0012B	RedoxZone after tunnel	920806	-1761.58	63.78	9.15	-63.76	1.55	
KR0012B	RedoxZone after tunnel	920818	-1652.25	73.50	7.32	-57.90	1.34	
KR0012B	RedoxZone after tunnel	920903	-1661.39	68.17	8.23	-59.28	1.27	
KR0012B	RedoxZone after tunnel	920917	-1738.09	68.25	5.47	-60.27	1.67	
KR0012B	RedoxZone after tunnel	920930	-1796.14	71.15	5.99	-60.32	1.52	
KR0012B	RedoxZone after tunnel	921012	-1665.33	68.93	4.80	-60.46	1.68	
KR0012B	RedoxZone after tunnel	921028	-1671.26	68.85	6.01	-60.63	1.58	
KR0012B	RedoxZone after tunnel	921110	-1546.50	72.13	4.83	-56.84	1.42	
KR0012B	RedoxZone after tunnel	921124	-1686.32	70.83	6.38	-61.90	1.56	
KR0012B	RedoxZone after tunnel	921202	-1828.99	62.62	12.02	-68.88	1.49	
KR0012B	RedoxZone after tunnel	921210	-2002.19	60.14	11.19	-75.14	2.07	
KR0012B	RedoxZone after tunnel	921221	-1690.71	66.81	10.12	-64.39	1.32	
KR0012B	RedoxZone after tunnel	930104	-1881.94	62.12	11.57	-69.82	1.49	
KR0012B	RedoxZone after tunnel	930119	-1675.50	74.32	9.90	-62.36	1.25	
KR0012B	RedoxZone after tunnel	930207	-1847.42	68.59	12.00	-68.95	1.41	
KR0012B	RedoxZone after tunnel	930317	-1908.26	64.55	14.54	-69.56	1.14	
KR0012B	RedoxZone after tunnel	930324	-1853.86	66.76	12.65	-67.83	1.23	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
KR0012B	RedoxZone after tunnel	930516	193	5	10.57	7.79	6167.254	2165.756	-69.196	2094	424.0	4.3
KR0012B	RedoxZone after tunnel	930611	194	5	10.57	7.79	6167.254	2165.756	-69.196	2107	406.0	4.5
KR0012B	RedoxZone after tunnel	930705	195	5	10.57	7.79	6167.254	2165.756	-69.196	2127	403.0	4.8
KR0012B	RedoxZone after tunnel	930816	196	5	10.57	7.79	6167.254	2165.756	-69.196	2141	411.0	4.5
KR0012B	RedoxZone after tunnel	931108	197	5	10.57	7.79	6167.254	2165.756	-69.196	2193	387.0	4.3
KR0012B	RedoxZone after tunnel	940810	198	5	10.57	7.79	6167.254	2165.756	-69.196	2270	346.6	3.4
KR0012B	RedoxZone after tunnel	940905	199	5	10.57	7.79	6167.254	2165.756	-69.196	2276	343.9	3.5
KR0012B	RedoxZone after tunnel	950518	200	5	10.57	7.79	6167.254	2165.756	-69.196	2314	381.3	4.5
KR0012B	RedoxZone after tunnel	951010	201	5	10.57	7.79	6167.254	2165.756	-69.196	2323	375.3	4.5
KR0012B	RedoxZone after tunnel	960521	202	5	10.57	7.79	6167.254	2165.756	-69.196	2361	326.9	3.7
KR0013B	RedoxZone after tunnel	910501	203	7.05	16.94	12.00	6166.277	2159.071	-69.269	1801	876.0	4.8
KR0013B	RedoxZone after tunnel	920408	204	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	986.0	4.7
KR0013B	RedoxZone after tunnel	920422	205	7.05	16.94	12.00	6166.277	2159.071	-69.269	1941	964.0	5.1
KR0013B	RedoxZone after tunnel	920506	206	7.05	16.94	12.00	6166.277	2159.071	-69.269	1952	926.0	4.5
KR0013B	RedoxZone after tunnel	920520	207	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	913.0	6.3
KR0013B	RedoxZone after tunnel	920603	208	7.05	16.94	12.00	6166.277	2159.071	-69.269	-1	888.0	6.4
KR0013B	RedoxZone after tunnel	920626	209	7.05	16.94	12.00	6166.277	2159.071	-69.269	1970	851.0	4.1
KR0013B	RedoxZone after tunnel	920708	210	7.05	16.94	12.00	6166.277	2159.071	-69.269	1974	848.0	4.0
KR0013B	RedoxZone after tunnel	920721	211	7.05	16.94	12.00	6166.277	2159.071	-69.269	1977	836.0	4.1
KR0013B	RedoxZone after tunnel	920806	212	7.05	16.94	12.00	6166.277	2159.071	-69.269	1980	821.0	4.0
KR0013B	RedoxZone after tunnel	920818	213	7.05	16.94	12.00	6166.277	2159.071	-69.269	1984	831.0	4.0
KR0013B	RedoxZone after tunnel	920903	214	7.05	16.94	12.00	6166.277	2159.071	-69.269	2007	806.0	6.3
KR0013B	RedoxZone after tunnel	920917	215	7.05	16.94	12.00	6166.277	2159.071	-69.269	2012	802.0	4.9
KR0013B	RedoxZone after tunnel	920930	216	7.05	16.94	12.00	6166.277	2159.071	-69.269	2015	795.0	5.8
KR0013B	RedoxZone after tunnel	921012	217	7.05	16.94	12.00	6166.277	2159.071	-69.269	2020	776.0	4.7
KR0013B	RedoxZone after tunnel	921028	218	7.05	16.94	12.00	6166.277	2159.071	-69.269	2027	764.0	4.4
KR0013B	RedoxZone after tunnel	921110	219	7.05	16.94	12.00	6166.277	2159.071	-69.269	2033	749.0	4.0
KR0013B	RedoxZone after tunnel	921124	220	7.05	16.94	12.00	6166.277	2159.071	-69.269	2038	742.0	3.9
KR0013B	RedoxZone after tunnel	921202	221	7.05	16.94	12.00	6166.277	2159.071	-69.269	2044	793.0	4.6
KR0013B	RedoxZone after tunnel	921210	222	7.05	16.94	12.00	6166.277	2159.071	-69.269	2056	745.0	4.5
KR0013B	RedoxZone after tunnel	921221	223	7.05	16.94	12.00	6166.277	2159.071	-69.269	2058	740.0	4.7
KR0013B	RedoxZone after tunnel	930104	224	7.05	16.94	12.00	6166.277	2159.071	-69.269	2061	734.0	4.6
KR0013B	RedoxZone after tunnel	930119	225	7.05	16.94	12.00	6166.277	2159.071		2064	736.0	3.7

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	018	Brine Mix.
KR0012B	RedoxZone after tunnel	930516	136.0	25.1	315	710.0	142.0	-72.0	17	-9.9	4.7%
KR0012B	RedoxZone after tunnel	930611	118.0	18.6	307	662.0	143.0	-75.1	18	-9.9	4.5%
KR0012B	RedoxZone after tunnel	930705	120.0	19.1	316	645.0	137.0	-74.1	27	-9.9	4.1%
KR0012B	RedoxZone after tunnel	930816	126.0	20.1	317	665.0	137.0	-74.1	21	-9.6	4.4%
KR0012B	RedoxZone after tunnel	931108	118.0	20.4	324	619.0	135.0	-69.6	34	-9.6	3.2%
KR0012B	RedoxZone after tunnel	940810	100.0	17.4	325	500.0	126.0	-68.1	25	-9.8	3.9%
KR0012B	RedoxZone after tunnel	940905	100.0	17.9	326	531.8	129.0	-67.9	30	-9.6	3.3%
KR0012B	RedoxZone after tunnel	950518	110.0	21.7	308	608.4	129.0	-68.8	17	-9.4	4.6%
KR0012B	RedoxZone after tunnel	951010	116.0	23.2	295	642.4	119.6	-66.7	42	-9.5	2.0%
KR0012B	RedoxZone after tunnel	960521	83.6	14.4	302	495.6	102.0	-70.4	38	-9.9	3.0%
KR0013B	RedoxZone after tunnel	910501	571.0	63.7	133	2500.0	83.0	-93.3	17	-11.4	6.8%
KR0013B	RedoxZone after tunnel	920408	535.0	71.5	237	2460.0	149.0	-78.5	25	-10.3	7.4%
KR0013B	RedoxZone after tunnel	920422	540.0	75.5	243	2450.0	147.0	-81.4	17	-10.4	7.6%
KR0013B	RedoxZone after tunnel	920506	502.0	70.3	245	2340.0	143.0	-77.8	34	-10.1	6.8%
KR0013B	RedoxZone after tunnel	920520	490.0	71.3	250	2340.0	149.0	-77.2	34	-10.1	7.0%
KR0013B	RedoxZone after tunnel	920603	466.0	65.7	260	2290.0	140.0	-78.9	34	-10.5	6.6%
KR0013B	RedoxZone after tunnel	920626	440.0	64.0	260	2150.0	136.0	-80.1	25	-10.4	6.5%
KR0013B	RedoxZone after tunnel	920708	433.0	61.9	270	2130.0	148.0	-80.0	8.4	-10.4	7.1%
KR0013B	RedoxZone after tunnel	920721	424.0	61.0	270	2110.0	149.0	-79.8	8.4	-10.3	7.0%
KR0013B	RedoxZone after tunnel	920806	413.0	58.2	280	2040.0	150.0	-80.6	17	-10.3	6.6%
KR0013B	RedoxZone after tunnel	920818	413.0	58.8	280	2020.0	153.0	-80.0	17	-10.3	6.6%
KR0013B	RedoxZone after tunnel	920903	405.0	57.7	290	1990.0	148.0	-81.3	17	-10.4	6.6%
KR0013B	RedoxZone after tunnel	920917	398.0	59.1	290	1920.0	146.0	-81.1	8.4	-9.9	6.8%
KR0013B	RedoxZone after tunnel	920930	386.0	55.3	290	1900.0	146.0	-80.0	17	-10.0	6.5%
KR0013B	RedoxZone after tunnel	921012	378.0	55.0	299	1880.0	146.0	-81.9	8.4	-9.9	6.6%
KR0013B	RedoxZone after tunnel	921028	378.0	54.7	300	1840.0	148.0	-80.2	17	-9.9	6.3%
KR0013B	RedoxZone after tunnel	921110	365.0	52.7	299	1800.0	147.0	-80.1	25	-9.8	5.9%
KR0013B	RedoxZone after tunnel	921124	359.0	50.9	305	1750.0	145.0	-80.0	25	-9.7	5.8%
KR0013B	RedoxZone after tunnel	921202	384.0	51.9	293	1920.0	145.0	-75.7	4.2	-9.9	6.9%
KR0013B	RedoxZone after tunnel	921210	360.0	48.0	307	1740.0	143.0	-74.6	14	-9.9	6.3%
KR0013B	RedoxZone after tunnel	921221	353.0	51.1	308	1740.0	139.0	-73.2	5.9	-9.9	6.6%
KR0013B	RedoxZone after tunnel	930104	343.0	50.6	309	1690.0	142.0	-74.6	14	-9.9	6.3%
KR0013B	RedoxZone after tunnel	930119	342.0	49.5	313	1680.0	146.0	-74.6	14	-9.9	6.2%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
KR0012B	RedoxZone after tunnel	930516	8.6%	82.0%	4.7%	-122.89	-5.31	-774.44	7.13	297.49
KR0012B	RedoxZone after tunnel	930611	10.3%	80.8%	4.5%	-116.11	-4.69	-751.17	1.44	289.98
KR0012B	RedoxZone after tunnel	930705	6.9%	84.9%	4.1%	-77.43	-3.67	-679.75	3.30	299.05
KR0012B	RedoxZone after tunnel	930816	7.5%	83.8%	4.4%	-99.77	-4.49	-724.27	3.31	299.77
KR0012B	RedoxZone after tunnel	931108	3.2%	88.3%	5.3%	-51.79	-5.58	-502.73	0.08	305.03
KR0012B	RedoxZone after tunnel	940810	4.4%	87.9%	3.9%	-108.36	-4.64	-657.31	2.44	308.05
KR0012B	RedoxZone after tunnel	940905	3.3%	88.7%	4.8%	-86.93	-5.67	-537.04	-0.57	307.68
KR0012B	RedoxZone after tunnel	950518	5.5%	85.4%	4.6%	-152.98	-4.89	-779.43	4.14	290.26
KR0012B	RedoxZone after tunnel	951010	2.0%	88.9%	7.2%	-20.23	-7.74	-272.77	-4.28	273.37
KR0012B	RedoxZone after tunnel	960521	3.0%	90.4%	3.6%	-42.59	-3.45	-501.65	0.64	285.31
KR0013B	RedoxZone after tunnel	910501	27.2%	59.2%	6.8%	83.97	-9.00	-747.78	37.71	114.89
KR0013B	RedoxZone after tunnel	920408	11.8%	73.4%	7.4%	123.32	-10.29	-901.40	43.20	216.21
KR0013B	RedoxZone after tunnel	920422	15.0%	69.8%	7.6%	79.25	-10.27	-933.16	46.48	222.34
KR0013B	RedoxZone after tunnel	920506	7.9%	78.4%	6.8%	129.12	-9.36	-824.78	44.15	224.50
KR0013B	RedoxZone after tunnel	920520	7.0%	79.1%	7.0%	97.44	-7.89	-867.30	44.51	229.16
KR0013B	RedoxZone after tunnel	920603	9.0%	77.8%	6.6%	118.35	-7.00	-815.45	40.44	239.95
KR0013B	RedoxZone after tunnel	920626	12.3%	74.7%	6.5%	91.47	-9.13	-824.60	39.07	240.46
KR0013B	RedoxZone after tunnel	920708	16.9%	69.0%	7.1%	22.90	-10.36	-940.83	34.83	250.25
KR0013B	RedoxZone after tunnel	920721	16.4%	69.5%	7.0%	12.60	-10.23	-946.99	33.99	250.22
KR0013B	RedoxZone after tunnel	920806	14.3%	72.6%	6.6%	51.50	-9.41	-868.22	32.95	260.59
KR0013B	RedoxZone after tunnel	920818	14.0%	72.7%	6.6%	54.29	-9.53	-880.22	33.31	260.47
KR0013B	RedoxZone after tunnel	920903	14.0%	72.8%	6.6%	35.09	-7.13	-878.55	32.40	270.53
KR0013B	RedoxZone after tunnel	920917	14.7%	71.6%	6.8%	4.72	-8.98	-929.48	32.94	270.32
KR0013B	RedoxZone after tunnel	920930	12.2%	74.8%	6.5%	32.59	-7.48	-883.40	30.28	270.42
KR0013B	RedoxZone after tunnel	921012	15.1%	71.7%	6.6%	4.49	-8.74	-906.56	29.68	279.66
KR0013B	RedoxZone after tunnel	921028	12.0%	75.4%	6.3%	27.16	-8.45	-848.80	30.52	280.69
KR0013B	RedoxZone after tunnel	921110	9.6%	78.6%	5.9%	55.31	-8.11	-789.93	29.93	279.90
KR0013B	RedoxZone after tunnel	921124	9.1%	79.2%	5.8%	60.29	-8.00	-775.97	28.52	285.98
KR0013B	RedoxZone after tunnel	921202	14.0%	72.2%	6.9%	-14.45	-9.45	-960.41	25.41	273.11
KR0013B	RedoxZone after tunnel	921210	10.4%	77.0%	6.3%	11.14	-8.29	-861.84	23.91	287.54
KR0013B	RedoxZone after tunnel	921221	11.7%	75.1%	6.6%	-30.39	-8.72	-929.69	25.82	288.27
KR0013B	RedoxZone after tunnel	930104	10.1%	77.4%	6.3%	2.94	-8.15	-874.17	26.61	289.53
KR0013B	RedoxZone after tunnel	930119	10.3%	77.3%	6.2%	12.90	-8.91	-861.92	25.77	293.65

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KR0012B	RedoxZone after tunnel	930516	-1784.32	73.75	10.95	-65.24	1.17	
KR0012B	RedoxZone after tunnel	930611	-1719.26	77.80	9.33	-62.98	1.36	
KR0012B	RedoxZone after tunnel	930705	-1546.01	76.88	7.97	-58.08	1.03	
KR0012B	RedoxZone after tunnel	930816	-1664.45	73.17	8.24	-62.95	1.38	
KR0012B	RedoxZone after tunnel	931108	-1202.63	77.04	9.37	-54.48	0.89	
KR0012B	RedoxZone after tunnel	940810	-1574.72	68.97	12.18	-63.02	0.88	
KR0012B	RedoxZone after tunnel	940905	-1301.84	72.80	11.33	-58.80	0.93	
KR0012B	RedoxZone after tunnel	950518	-1828.35	62.27	11.82	-68.56	1.35	No. 1974 - Anna - Marine Marine and Sana
KR0012B	RedoxZone after tunnel	951010	-720.31	62.69	10.90	-46.97	0.78	
KR0012B	RedoxZone after tunnel	960521	-1140.47	54.64	9.28	-52.54	0.67	
KR0013B	RedoxZone after tunnel	910501	-1113.31	-15.10	2.49	-42.53	1.47	
KR0013B	RedoxZone after tunnel	920408	-1475.53	42.11	4.79	-48.74	0.91	
KR0013B	RedoxZone after tunnel	920422	-1586.29	37.44	4.27	-53.13	1.14	
KR0013B	RedoxZone after tunnel	920506	-1295.16	44.13	2.92	-44.72	0.75	and a second
KR0013B	RedoxZone after tunnel	920520	-1379.44	47.82	2.65	-45.35	0.64	
KR0013B	RedoxZone after tunnel	920603	-1220.94	44.48	2.87	-44.06	0.48	
KR0013B	RedoxZone after tunnel	920626	-1314.77	41.75	4.27	-49.99	0.93	
KR0013B	RedoxZone after tunnel	920708	-1634.10	45.76	7.49	-60.91	1.37	
KR0013B	RedoxZone after tunnel	920721	-1646.33	46.96	7.37	-61.38	1.42	
KR0013B	RedoxZone after tunnel	920806	-1470.32	54.54	5.26	-55.83	1.23	
KR0013B	RedoxZone after tunnel	920818	-1523.20	56.66	5.59	-55.99	1.20	
KR0013B	RedoxZone after tunnel	920903	-1526.72	52.37	4.31	-56.12	1.10	
KR0013B	RedoxZone after tunnel	920917	-1717.10	47.14	4.91	-63.53	1.66	
KR0013B	RedoxZone after tunnel	920930	-1577.92	51.39	4.26	-58.06	1.31	
KR0013B	RedoxZone after tunnel	921012	-1639.49	50.30	4.57	-63.60	1.71	
KR0013B	RedoxZone after tunnel	921028	-1521.22	56.52	4.10	-58.66	1.41	
KR0013B	RedoxZone after tunnel	921110	-1364.27	60.79	2.62	-53.80	1.28	
KR0013B	RedoxZone after tunnel	921124	-1359.57	60.25	2.42	-54.48	1.34	
KR0013B	RedoxZone after tunnel	921202	-1763.48	44.89	9.65	-68.31	1.57	
KR0013B	RedoxZone after tunnel	921210	-1607.60		8.51	-63.27	1.25	
KR0013B	RedoxZone after tunnel	921221	-1774.34	43.41	10.64	-69.50	1.36	
KR0013B	RedoxZone after tunnel	930104	-1644.82	51.21	8.25	-63.67	1.21	
KR0013B	RedoxZone after tunnel	930119	-1618.50	56.19	8.51	-63.54	1.25	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	К
KR0013B	RedoxZone after tunnel	930207	226	7.05	16.94	12.00	6166.277	2159.071	-69.269	2069	743.0	4.0
KR0013B	RedoxZone after tunnel	930317	227	7.05	16.94	12.00	6166.277	2159.071	-69.269	2082	721.0	4.5
KR0013B	RedoxZone after tunnel	930324	228	7.05	16.94	12.00	6166.277	2159.071	-69.269	2085	751.0	4.7
KR0013B	RedoxZone after tunnel	930516	229	7.05	16.94	12.00	6166.277	2159.071	-69.269	2095	740.0	4.0
KR0013B	RedoxZone after tunnel	930611	230	7.05	16.94	12.00	6166.277	2159.071	-69.269	2108	735.0	4.2
KR0013B	RedoxZone after tunnel	930705	231	7.05	16.94	12.00	6166.277	2159.071	-69.269	2128	769.0	4.7
KR0013B	RedoxZone after tunnel	930816	232	7.05	16.94	12.00	6166.277	2159.071	-69.269	2142	830.6	4.5
KR0013B	RedoxZone after tunnel	931108	233	7.05	16.94	12.00	6166.277	2159.071	-69.269	2194	860.0	4.8
KR0013B	RedoxZone after tunnel	940810	234	7.05	16.94	12.00	6166.277	2159.071	-69.269	2271	785.0	4.1
KR0013B	RedoxZone after tunnel	940905	235	7.05	16.94	12.00	6166.277	2159.071	-69.269	2277	737.0	4.1
KR0013B	RedoxZone after tunnel	950518	236	7.05	16.94	12.00	6166.277	2159.071	-69.269	2315	716.0	4.2
KR0013B	RedoxZone after tunnel	951010	237	7.05	16.94	12.00	6166.277	2159.071	-69.269	2324	620.0	4.0
KR0015B	RedoxZone after tunnel	920408	238	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	578.0	3.2
KR0015B	RedoxZone after tunnel	920422	239	19.82	30.31	25.07	6168.049	2144.354	-69.537	1942	720.0	4.0
KR0015B	RedoxZone after tunnel	920506	240	19.82	30.31	25.07	6168.049	2144.354	-69.537	1954	641.0	3.7
KR0015B	RedoxZone after tunnel	920520	241	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	531.0	3.3
KR0015B	RedoxZone after tunnel	920603	242	19.82	30.31	25.07	6168.049	2144.354	-69.537	-1	504.0	3.1
KR0015B	RedoxZone after tunnel	920626	243	19.82	30.31	25.07	6168.049	2144.354	-69.537	1971	553.0	3.1
KR0015B	RedoxZone after tunnel	920708	244	19.82	30.31	25.07	6168.049	2144.354	-69.537	1975	558.0	3.5
KR0015B	RedoxZone after tunnel	920721	245	19.82	30.31	25.07	6168.049	2144.354	-69.537	1978	635.0	3.7
KR0015B	RedoxZone after tunnel	920806		19.82	30.31	25.07	6168.049	2144.354	-69.537	1981	562.0	3.2
KR0015B	RedoxZone after tunnel	920818		19.82	30.31	25.07	6168.049	2144.354	-69.537	1985	562.0	3.2
KR0015B	RedoxZone after tunnel	920903	248	19.82	30.31	25.07	6168.049	2144.354	-69.537	2006	552.0	4.0
KR0015B	RedoxZone after tunnel	920917	249	19.82	30.31	25.07	6168.049	2144.354	-69.537	2013	589.0	4.1
KR0015B	RedoxZone after tunnel	920930		19.82	30.31	25.07	6168.049	2144.354	-69.537	2016	527.0	4.6
KR0015B	RedoxZone after tunnel	921012	251	19.82	30.31	25.07	6168.049	2144.354	-69.537	2021	520.0	3.7
KR0015B	RedoxZone after tunnel	921028		19.82	30.31	25.07	6168.049	2144.354	-69.537	2028	477.0	3.3
KR0015B	RedoxZone after tunnel	921110	253	19.82	30.31	25.07	6168.049	2144.354	-69.537	2034	491.0	3.1
KR0015B	RedoxZone after tunnel	921124		19.82	30.31	25.07	6168.049	2144.354	-69.537	2039	490.0	3.3
KR0015B	RedoxZone after tunnel	921202	255	19.82	30.31	25.07	6168.049	2144.354	-69.537	2045	602.0	4.0
KR0015B	RedoxZone after tunnel	921210	256	19.82	30.31	25.07	6168.049	2144.354	-69.537	2054	487.0	3.5
KR0015B	RedoxZone after tunnel	921221	257	19.82	30.31	25.07	6168.049	2144.354	-69.537	2059	488.0	3.8
KR0015B	RedoxZone after tunnel	930104	258	19.82	30.31	25.07	6168.049	2144.354	-69.537	2062	499.0	3.8

ID code	Area	Date	СА	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
KR0013B	RedoxZone after tunnel	930207	347.0	50.5	310	1790.0	141.0	-72.7	26	-9.9	5.9%
KR0013B	RedoxZone after tunnel	930317	330.0	47.7	315	1650.0	142.0	-70.8	9.3	-10.0	6.4%
KR0013B	RedoxZone after tunnel	930324	351.0	51.6	305	1690.0	142.0	-67.9	10	-9.9	6.6%
KR0013B	RedoxZone after tunnel	930516	343.0	53.5	311	1690.0	143.0	-72.8	19	-9.9	6.1%
KR0013B	RedoxZone after tunnel	930611	329.0	49.8	307	1710.0	140.0	-75.9	15	-10.0	6.1%
KR0013B	RedoxZone after tunnel	930705	346.0	52.2	307	1720.0	138.0	-72.2	47	-9.8	3.4%
KR0013B	RedoxZone after tunnel	930816	384.0	57.0	297	1870.0	148.0	-75.8	19	-9.7	6.6%
KR0013B	RedoxZone after tunnel	931108	403.0	64.0	298	2010.0	154.0	-70.7	24	-9.8	6.2%
KR0013B	RedoxZone after tunnel	940810	339.0	56.5	289	1790.0	147.0	-68.7	27	-9.7	5.4%
KR0013B	RedoxZone after tunnel	940905	324.0	54.5	291	1737.2	148.0	-68.3	21	-9.4	5.6%
KR0013B	RedoxZone after tunnel	950518	308.0	52.2	273	1520.9	143.0	-69.8	18	-9.3	6.1%
KR0013B	RedoxZone after tunnel	951010	270.0	47.1	267	1458.9	125.5	-70.6	71	-9.5	0.2%
KR0015B	RedoxZone after tunnel	920408	247.0	30.6	342	1150.0	129.0	-81.9	25	-10.7	4.3%
KR0015B	RedoxZone after tunnel	920422	345.0	48.6	320	1500.0	147.0	-80.7	25	-10.6	5.5%
KR0015B	RedoxZone after tunnel	920506	296.0	40.4	327	1480.0	134.0	-81.1	25	-10.4	5.0%
KR0015B	RedoxZone after tunnel	920520	228.0	30.4	348	1140.0	130.0	-83.6	42	-10.5	3.6%
KR0015B	RedoxZone after tunnel	920603	207.0	26.5	360	1020.0	133.0	-78.9	34	-10.5	3.8%
KR0015B	RedoxZone after tunnel	920626	233.0	31.5	360	1120.0	138.0	-82.2	17	-10.6	4.5%
KR0015B	RedoxZone after tunnel	920708	238.0	32.4	370	1120.0	140.0	-82.4	17	-10.7	4.6%
KR0015B	RedoxZone after tunnel	920721	279.0	38.5	360	1300.0	144.0	-80.1	17	-10.8	5.0%
KR0015B	RedoxZone after tunnel	920806	235.0	31.8	370	1130.0	141.0	-81.3	17	-10.9	4.5%
KR0015B	RedoxZone after tunnel	920818	229.0	31.1	370	1250.0	145.0	-82.3	17	-10.6	4.6%
KR0015B	RedoxZone after tunnel	920903	229.0	30.8	380	1120.0	146.0	-82.6	25	-10.7	4.3%
KR0015B	RedoxZone after tunnel	920917	245.0	35.2	380	1170.0	149.0	-80.6	17	-10.2	4.9%
KR0015B	RedoxZone after tunnel	920930	210.0	28.2	390	1040.0	145.0	-81.9	17	-10.2	4.5%
KR0015B	RedoxZone after tunnel	921012	205.0	27.9	393	1040.0	147.0	-68.2	8.4	-7.9	3.8%
KR0015B	RedoxZone after tunnel	921028	186.0	25.1	396	876.0	140.0	-82.3	25	-10.1	3.8%
KR0015B	RedoxZone after tunnel	921110	190.0	26.0	400	924.0	148.0	-81.0	17	-10.3	4.2%
KR0015B	RedoxZone after tunnel	921124	185.0	25.1	404	895.0	137.0	-81.4	25	-10.7	3.7%
KR0015B	RedoxZone after tunnel	921202	254.0	36.9	376	1270.0	145.0	-76.3	8.4	-10.1	5.3%
KR0015B	RedoxZone after tunnel	921210	190.0	23.2	400	895.0	139.0	-76.4	11	-10.1	4.4%
KR0015B	RedoxZone after tunnel	921221	185.0	25.7	403	895.0	135.0	-75.8	15	-10.1	4.3%
KR0015B	RedoxZone after tunnel	930104	189.0	26.4	404	901.0	142.0	-75.2	14	-10.1	4.5%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
KR0013B	RedoxZone after tunnel	930207	6.1%	82.1%	5.9%	54.00	-8.03	-800.11	27.88	290.54
KR0013B	RedoxZone after tunnel	930317	10.1%	77.2%	6.4%	-22.35	-8.46	-907.64	23.30	295.38
KR0013B	RedoxZone after tunnel	930324	8.3%	78.5%	6.6%	-24.19	-8.80	-939.68	26.16	284.80
KR0013B	RedoxZone after tunnel	930516	7.8%	79.9%	6.1%	22.20	-8.52	-852.08	29.94	291.41
KR0013B	RedoxZone after tunnel	930611	10.9%	76.8%	6.1%	19.51	-8.28	-862.25	26.32	287.81
KR0013B	RedoxZone after tunnel	930705	3.4%	84.3%	8.9%	197.39	-10.77	-324.22	18.33	283.28
KR0013B	RedoxZone after tunnel	930816	8.8%	78.1%	6.6%	63.24	-8.86	-893.63	31.82	276.95
KR0013B	RedoxZone after tunnel	931108	6.2%	79.6%	7.9%	78.48	-10.43	-814.28	33.85	275.90
KR0013B	RedoxZone after tunnel	940810	5.4%	81.2%	8.0%	69.36	-10.91	-721.61	25.99	266.68
KR0013B	RedoxZone after tunnel	940905	5.6%	80.8%	7.9%	6.57	-10.88	-775.97	24.30	268.81
KR0013B	RedoxZone after tunnel	950518	6.1%	80.9%	6.9%	-23.10	-9.44	-883.30	25.84	252.22
KR0013B	RedoxZone after tunnel	951010	0.2%	88.2%	11.4%	238.50	-13.91	210.02	3.69	239.57
KR0015B	RedoxZone after tunnel	920408	13.2%	78.1%	4.3%	71.09	-5.73	-596.87	13.94	325.51
KR0015B	RedoxZone after tunnel	920422	12.2%	76.9%	5.5%	82.04	-7.16	-717.13	27.65	301.86
KR0015B	RedoxZone after tunnel	920506	11.8%	78.3%	5.0%	58.37	-6.52	-673.98	21.26	309.46
KR0015B	RedoxZone after tunnel	920520	8.3%	84.5%	3.6%	106.20	-4.23	-479.10	16.42	331.87
KR0015B	RedoxZone after tunnel	920603	8.3%	84.1%	3.8%	59.82	-4.76	-532.37	11.89	343.65
KR0015B	RedoxZone after tunnel	920626	14.7%	76.2%	4.5%	21.76	-6.25	-651.40	14.04	343.41
KR0015B	RedoxZone after tunnel	920708	14.7%	76.2%	4.6%	25.99	-5.86	-647.68	14.91	353.40
KR0015B	RedoxZone after tunnel	920721	14.1%	75.8%	5.0%	47.40	-6.61	-699.26	19.20	342.69
KR0015B	RedoxZone after tunnel	920806	15.1%	75.8%	4.5%	31.87	-6.13	-647.54	14.38	353.47
KR0015B	RedoxZone after tunnel	920818	14.6%	76.1%	4.6%	22.08	-6.30	-669.84	13.36	353.30
KR0015B	RedoxZone after tunnel	920903	12.3%	79.1%	4.3%	51.99	-4.81	-603.36	14.36	363.48
KR0015B	RedoxZone after tunnel	920917	11.7%	78.6%	4.9%	20.02	-5.89	-702.24	16.51	362.60
KR0015B	RedoxZone after tunnel	920930	12.1%	78.9%	4.5%	2.11	-4.64	-663.80	10.95	373.17
KR0015B	RedoxZone after tunnel	921012	3.8%	84.1%	8.3%	-66.33	-11.13	-535.82	-3.98	370.02
KR0015B	RedoxZone after tunnel	921028	9.9%	82.5%	3.8%	28.53	-4.63	-560.52	10.35	379.78
KR0015B	RedoxZone after tunnel	921110	12.2%	79.4%	4.2%	-0.72	-5.57	-628.56	9.83	383.57
KR0015B	RedoxZone after tunnel	921124	11.3%	81.2%	3.7%	53.45	-4.43	-541.68	10.74	388.10
KR0015B	RedoxZone after tunnel	921202	11.9%	77.4%	5.3%	-22.86	-6.94	-786.30	16.38	357.98
KR0015B	RedoxZone after tunnel	921210	11.1%	80.0%	4.4%	-31.44	-5.63	-673.07	6.16	383.12
KR0015B	RedoxZone after tunnel	921221	9.3%	82.0%	4.3%	-17.31	-5.10	-656.19	9.09	386.06
KR0015B	RedoxZone after tunnel	930104	9.4%	81.7%	4.5%	-23.05	-5.39	-680.08	9.24	386.87

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KR0013B	RedoxZone after tunnel	930207	-1352.81	55.33	7.34	-56.35	0.82	
KR0013B	RedoxZone after tunnel	930317	-1740.90	49.71	11.95	-68.18	1.10	
KR0013B	RedoxZone after tunnel	930324	-1846.22	45.79	13.23	-68.75	1.00	
KR0013B	RedoxZone after tunnel	930516	-1584.28	53.82	8.37	-61.17	0.98	
KR0013B	RedoxZone after tunnel	930611	-1553.79	51.13	7.72	-62.09	1.21	The second
KR0013B	RedoxZone after tunnel	930705	-426.98	59.23	5.27	-37.47	0.51	
KR0013B	RedoxZone after tunnel	930816	-1630.48	52.76	5.78	-59.37	1.25	
KR0013B	RedoxZone after tunnel	931108	-1417.82	54.78	8.43	-55.90	0.82	
KR0013B	RedoxZone after tunnel	940810	-1260.40	54.60	10.04	-54.39	0.84	
KR0013B	RedoxZone after tunnel	940905	-1404.79	54.18	10.57	-60.07	1.17	
KR0013B	RedoxZone after tunnel	950518	-1786.38	50.15	9.73	-63.14	1.37	
KR0013B	RedoxZone after tunnel	951010	659.61	62.20	4.37	-17.17	0.39	
KR0015B	RedoxZone after tunnel	920408	-1161.94	65.69	4.94	-53.29	0.88	
KR0015B	RedoxZone after tunnel	920422	-1409.98	67.63	4.41	-52.16	0.79	
KR0015B	RedoxZone after tunnel	920506	-1177.49	61.40	4.08	-53.47	0.98	······································
KR0015B	RedoxZone after tunnel	920520	-797.15	76.70	-0.07	-42.62	0.61	
KR0015B	RedoxZone after tunnel	920603	-1005.57	77.33	4.53	-50.26	0.60	
KR0015B	RedoxZone after tunnel	920626	-1302.99	71.72	5.63	-59.40	1.12	
KR0015B	RedoxZone after tunnel	920708	-1306.50	73.63	5.44	-59.37	1.02	
KR0015B	RedoxZone after tunnel	920721	-1380.19	70.82	6.91	-59.01	0.83	
KR0015B	RedoxZone after tunnel	920806	-1287.90	74.86	6.83	-59.03	0.86	
KR0015B	RedoxZone after tunnel	920818	-1212.58	77.66	5.40	-59.34	1.11	
KR0015B	RedoxZone after tunnel	920903	-1160.41	83.53	3.58	-54.30	0.79	
KR0015B	RedoxZone after tunnel	920917	-1425.19	78.07	4.60	-61.80	1.18	
KR0015B	RedoxZone after tunnel	920930	-1353.95	79.48	3.93	-62.12	1.25	
KR0015B	RedoxZone after tunnel	921012	-1249.52	67.65	9.66	-75.87	2.48	
KR0015B	RedoxZone after tunnel	921028	-1169.18	83.82	2.31	-57.64	1.16	
KR0015B	RedoxZone after tunnel	921110	-1318.58	86.54	5.17	-62.54	1.19	
KR0015B	RedoxZone after tunnel	921124	-1095.82	82.29	4.46	-56.34	0.73	
KR0015B	RedoxZone after tunnel	921202	-1580.18	67.23	8.67	-69.27	1.27	
KR0015B	RedoxZone after tunnel	921210	-1469.53	74.26	8.72	-69.20	1.25	
KR0015B	RedoxZone after tunnel	921221	-1409.56	71.85	8.01	-67.21	1.07	
KR0015B	RedoxZone after tunnel	930104	-1479.99	76.80	8.53	-67.89	1.07	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
KR0015B	RedoxZone after tunnel	930119	259	19.82	30.31	25.07	6168.049	2144.354	-69.537	2065	496.0	3.0
KR0015B	RedoxZone after tunnel	930207	260	19.82	30.31	25.07	6168.049	2144.354	-69.537	2070	455.0	3.0
KR0015B	RedoxZone after tunnel	930317	261	19.82	30.31	25.07	6168.049	2144.354	-69.537	2083	458.0	3.5
KR0015B	RedoxZone after tunnel	930325	262	19.82	30.31	25.07	6168.049	2144.354	-69.537	2086	481.0	3.7
KR0015B	RedoxZone after tunnel	930516	263	19.82	30.31	25.07	6168.049	2144.354	-69.537	2096	404.0	2.8
KR0015B	RedoxZone after tunnel	930611	264	19.82	30.31	25.07	6168.049	2144.354	-69.537	2109	511.0	3.8
KR0015B	RedoxZone after tunnel	930705	265	19.82	30.31	25.07	6168.049	2144.354	-69.537	2129	403.0	3.2
KR0015B	RedoxZone after tunnel	930816		19.82	30.31	25.07	6168.049	2144.354	-69.537	2143	503.0	3.4
KR0015B	RedoxZone after tunnel	931108	266	19.82	30.31	25.07	6168.049	2144.354	-69.537	2195	566.0	3.9
KR0015B	RedoxZone after tunnel	940810	267	19.82	30.31	25.07	6168.049	2144.354	-69.537	2272	482.0	3.0
KR0015B	RedoxZone after tunnel	940905	268	19.82	30.31	25.07	6168.049	2144.354	-69.537	2278	358.0	2.5
KR0015B	RedoxZone after tunnel	950518	269	19.82	30.31	25.07	6168.049	2144.354	-69.537	2316	479.0	3.6
KR0015B	RedoxZone after tunnel	951010	270	19.82	30.31	25.07	6168.049	2144.354	-69.537	2325	453.0	3.2
KR0015B	RedoxZone after tunnel	960521	271	19.82	30.31	25.07	6168.049	2144.354	-69.537	2363	442.0	3.5
ASSEA01	RedoxZone after tunnel	930708	273							-1	1810.0	69.0
ASSEA01	RedoxZone after tunnel	930517	274							-1	1380.0	58.0
ASSEA01	RedoxZone after tunnel	920828	275							1994	1960.0	95.0
ASSEA02	RedoxZone after tunnel	930517	276							-1	1640.0	66.0
ASSEA02	RedoxZone after tunnel	920828								1993		
ASSEA02	RedoxZone after tunnei	930708	277							-1	1810.0	69.0
ASSEA03	RedoxZone after tunnel	920828								1992		
ASSEA03	RedoxZone after tunnel	930517	278							-1	1820.0	75.0
ASSEA03	RedoxZone after tunnel	930708	279					·····		-1	1920.0	64.0
ASSEA04	RedoxZone after tunnel	930708	280							-1	1990.0	66.0
ASSEA04	RedoxZone after tunnel	930518	281							-1	2050.0	83.0
ASSEA04	RedoxZone after tunnel	920826								1991		
HA1327B	Tunnel after tunnel	921202	285	3.5	29.5	16.50	6963.062	2118.058	-182.949	2051	1850	12.0
HA1327B	Tunnel after tunnel	930207	286	3.5	29.5	16.50	6963.062	2118.058	-182.949	2076	1860	11.0
HA1327B	Tunnel after tunnel	930826		3.5	29.5	16.50	6963.062	2118.058	-182.949	2156	1780	12.6
HA1327B	Tunnel after tunnel	930929	287	3.5	29.5	16.50	6963.062	2118.058	-182.949	2191	1790	12.3
HA1327B	Tunnel after tunnel	931214	288	3.5	29.5	16.50	6963.062	2118.058	-182.949	2208	1760	13.7
KA1639A	Tunnel after tunnel	930701	290	13.4	14.4	13.90	7289.736	2021.422	-223.187	2125	2005	6.8
KA1639A	Tunnel after tunnel	930810	291	13.4	14.4	13.90	7289.736	2021.422		2139	1995	6.8

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
KR0015B	RedoxZone after tunnel	930119	187.0	26.8	408	878.0	140.0	-76.7	21	-10.2	4.1%
KR0015B	RedoxZone after tunnel	930207	169.0	22.6	415	792.0	129.0	-69.6	17	-10.1	4.1%
KR0015B	RedoxZone after tunnel	930317	168.0	22.6	415	760.0	120.0	-72.9	8.4	-10.1	4.2%
KR0015B	RedoxZone after tunnel	930325	179.0	25.1	417	755.0	132.0	-71.4	13	-10.2	4.3%
KR0015B	RedoxZone after tunnel	930516	146.0	23.1	427	646.0	120.0	-73.9	7.6	-9.9	4.0%
KR0015B	RedoxZone after tunnel	930611	189.0	27.3	415	805.0	134.0	-77.6	19	-10.1	4.1%
KR0015B	RedoxZone after tunnel	930705	141.0	19.1	409	729.0	129.0	-73.7	19	-10.1	3.8%
KR0015B	RedoxZone after tunnel	930816	189.0	26.6	427		124.0	-74.8	20	-10.1	
KR0015B	RedoxZone after tunnel	931108	210.0	32.9	389	1080.0	148.0	-71.7	28	-9.8	4.1%
KR0015B	RedoxZone after tunnel	940810	176.0	27.7	389	851.0	132.0	-69.7	32	-9.8	3.1%
KR0015B	RedoxZone after tunnel	940905	124.0	19.0	422	535.0	118.0	-69.2	29	-9.7	2.4%
KR0015B	RedoxZone after tunnel	950518	207.0	36.8	346	977.0	140.0	-70.8	8.4	-9.6	5.3%
KR0015B	RedoxZone after tunnel	951010	159.0	29.2	309	890.0	121.4	-71.8	62	-9.7	0.7%
KR0015B	RedoxZone after tunnel	960521	143.0	23.0	340	726.0	110.0	-72.9	34	-9.7	3.4%
ASSEA01	RedoxZone after tunnel	930708	88.8	215.0	84	3380	501.0	-50.7	36	-6.0	1.7%
ASSEA01	RedoxZone after tunnel	930517	67.7	168.0	61	2670	384.0	-54.6	26	-7.0	3.5%
ASSEA01	RedoxZone after tunnel	920828	93.7	234.0	90	3760	504.0	-53.3	42	-5.9	0.3%
ASSEA02	RedoxZone after tunnel	930517	76.1	197.0	73	3160	435.0	-54.5	38	-6.9	2.3%
ASSEA02	RedoxZone after tunnel	920828						-55.0	25	-6.1	
ASSEA02	RedoxZone after tunnel	930708	88.0	212.0	83	3320	462.0	-50.8	33	-6.0	1.7%
ASSEA03	RedoxZone after tunnel	920828						-55.9	42	-6.8	
ASSEA03	RedoxZone after tunnel	930517	82.6	223.0	80	3540	492.0	-54.8	29	-6.9	3.6%
ASSEA03	RedoxZone after tunnel	930708	91.0	227.0	84	3620	514.0	-52.3	36	-6.5	2.8%
ASSEA04	RedoxZone after tunnel	930708	94.0	234.0	89	3680	535.0	-53.6	58	-6.7	0.8%
ASSEA04	RedoxZone after tunnel	930518	93.0	251.0	94	4030	549.0	-53.0	40	-6.5	2.0%
ASSEA04	RedoxZone after tunnel	920826						-57.6	68	-6.9	
HA1327B	Tunnel after tunnel	921202	778	158	277	4770	198	-50.6	18.0	-7.5	4.3%
HA1327B	Tunnel after tunnel	930207	746	155	280	4600	208	-59.2	8.0	-7.5	6.6%
HA1327B	Tunnel after tunnel	930826	696	147	270		230	-58.2	19.0	-7.7	
HA1327B	Tunnel after tunnel	930929	674	153	265	4350	241	-57.5	18.0	-7.6	5.5%
HA1327B	Tunnel after tunnel	931214	684	157	259	4310	255	-54.5	13.0	-7.4	5.6%
KA1639A	Tunnel after tunnel	930701	1711	67	22	6290	435	-89.1	5.1	-12.4	15.5%
KA1639A	Tunnel after tunnel	930810	1723	68	25	6390	438	-89.8	5.1	-12.1	15.6%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
KR0015B	RedoxZone after tunnel	930119	8.5%	83.4%	4.1%	19.84	-5.40	-605.63	11.14	391.30
KR0015B	RedoxZone after tunnel	930207	5.9%	85.9%	4.1%	- 21.38	-5.40	-624.00	6.93	397.99
KR0015B	RedoxZone after tunnel	930317	9.5%	82.0%	4.2%	-36.53	-5.22	-655.24	6.34	398.21
KR0015B	RedoxZone after tunnel	930325	7.8%	83.6%	4.3%	-21.69	-5.15	-657.81	8.57	399.91
KR0015B	RedoxZone after tunnel	930516	9.1%	82.9%	4.0%	-63.76	-5.46	-632.65	7.72	410.47
KR0015B	RedoxZone after tunnel	930611	8.5%	83.2%	4.1%	30.35	-4.68	-611.11	11.49	398.25
KR0015B	RedoxZone after tunnel	930705	7.4%	85.1%	3.8%	-36.36	-4.57	-590.34	4.65	392.60
KR0015B	RedoxZone after tunnel	930816								
KR0015B	RedoxZone after tunnel	931108	4.1%	86.4%	5.5%	44.66	-6.66	-585.86	11.90	369.88
KR0015B	RedoxZone after tunnel	940810	3.1%	88.3%	5.6%	45.45	-7.22	-421.64	6.42	369.67
KR0015B	RedoxZone after tunnel	940905	2.4%	90.5%	4.7%	3.29	-6.10	-348.80	1.01	403.76
KR0015B	RedoxZone after tunnel	950518	8.2%	81.3%	5.3%	-135.37	-7.16	-815.83	16.62	327.65
KR0015B	RedoxZone after tunnel	951010	0.7%	90.8%	7.9%	146.54	-9.48	19.93	-0.80	286.34
KR0015B	RedoxZone after tunnel	960521	3.4%	89.1%	4.1%	21.30	-4.64	-521.63	7.24	322.66
ASSEA01	RedoxZone after tunnel	930708	1.7%	40.2%	56.5%	-127.35	-18.86	-317.45	0.29	-3.60
ASSEA01	RedoxZone after tunnel	930517	3.5%	49.9%	43.1%	-288.18	-10.11	-674.03	4.14	-8.50
ASSEA01	RedoxZone after tunnel	920828	0.3%	33.5%	65.9%	-160.74	-6.77	-60.43	-16.61	-10.40
ASSEA02	RedoxZone after tunnel	930517	2.3%	45.1%	50.2%	-155.28	-12.58	-448.28	5.97	-6.19
ASSEA02	RedoxZone after tunnel	920828								
ASSEA02	RedoxZone after tunnel	930708	1.7%	41.1%	55.6%	-97.58	-17.45	-315.32	0.77	-3.38
ASSEA03	RedoxZone after tunnel	920828							1	
ASSEA03	RedoxZone after tunnel	930517	3.6%	38.3%	54.5%	-219.87	-10.73	-694.89	15.69	-4.79
ASSEA03	RedoxZone after tunnel	930708	2.8%	39.7%	54.6%	-57.01	-21.48	-539.45	19.48	-0.94
ASSEA04	RedoxZone after tunnel	930708	0.8%	40.6%	57.7%	83.89	-23.31	-157.59	14.81	-0.27
ASSEA04	RedoxZone after tunnel	930518	2.0%	33.3%	62.7%	-115.30	-14.63	-388.60	12.51	-1.94
ASSEA04	RedoxZone after tunnel	920826								
HA1327B	Tunnel after tunnel	921202	4.3%	60.8%	30.5%	510.37	-37.19	-104.85	41.80	224.38
HA1327B	Tunnel after tunnel	930207	6.6%	60.5%	26.3%	462.46	-32.72	-566.93	54.80	233.26
HA1327B	Tunnel after tunnel	930826								
HA1327B	Tunnel after tunnel	930929	5.5%	61.0%	27.9%	432.40	-33.33	-438.48	46.93	216.08
HA1327B	Tunnel after tunnel	931214	5.6%	59.5%	29.4%	352.89	-34.24	-435.26	45.25	208.08
KA1639A	Tunnel after tunnel	930701	44.0%	25.0%	15.5%	194.64	-24.37	-1303.84	7.71	-5.91
KA1639A	Tunnel after tunnel	930810	43.2%		15.6%		-24.53	-1308.19		-3.13

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KR0015B	RedoxZone after tunnel	930119	-1293.51	80.41	6.65	-62.55	0.90	
KR0015B	RedoxZone after tunnel	930207	-1380.51	69.36	11.77	-69.08	0.73	
KR0015B	RedoxZone after tunnel	930317	-1495.39	58.17	11.15	-73.78	1.10	
KR0015B	RedoxZone after tunnel	930325	-1537.58	69.16	11.26	-70.75	0.82	4
KR0015B	RedoxZone after tunnel	930516	-1487.22	61.45	10.03	-75.42	1.28	
KR0015B	RedoxZone after tunnel	930611	-1387.02	73.86	5.76	-64.41	1.00	
KR0015B	RedoxZone after tunnel	930705	-1274.57	73.91	9.08	-66.22	0.91	
KR0015B	RedoxZone after tunnel	930816						· · · · · · · · · · · · · · · · · · ·
KR0015B	RedoxZone after tunnel	931108	-1179.91	80.94	7.58	-58.53	0.76	
KR0015B	RedoxZone after tunnel	940810	-928.76	73.80	9.11	-56.46	0.67	
KR0015B	RedoxZone after tunnel	940905	-890.00	70.12	9.72	-61.58	0.76	
KR0015B	RedoxZone after tunnel	950518	-1825.29	63.49	11.35	-73.15	1.38	
KR0015B	RedoxZone after tunnel	951010	99.50	72.70	4.94	-28.84	0.43	
KR0015B	RedoxZone after tunnel	960521	-1134.11	56.22	6.72	-55.22	0.88	
ASSEA01	RedoxZone after tunnel	930708	-848.82	187.73	4.60	-4.27	1.54	
ASSEA01	RedoxZone after tunnel	930517	-1612.02	124.47	7.51	-24.05	1.44	
ASSEA01	RedoxZone after tunnel	920828	-394.06	153.50	-2.85	8.49	1.00	
ASSEA02	RedoxZone after tunnel	930517	-1000.52	148.53	3.88	-7.21	1.04	
ASSEA02	RedoxZone after tunnel	920828				- 17		· · · · · · · · · · · · · · · · · · ·
ASSEA02	RedoxZone after tunnel	930708	-849.22	153.62	4.90	-8.20	1.59	
ASSEA03	RedoxZone after tunnel	920828						
ASSEA03	RedoxZone after tunnel	930517	-1484.53	171.51	2.21	-9.43	0.92	
ASSEA03	RedoxZone after tunnel	930708	-1048.41	200.08	4.35	-3.86	1.25	
ASSEA04	RedoxZone after tunnel	930708	-238.41	222.83	0.81	17.33	0.70	
ASSEA04	RedoxZone after tunnel	930518	-741.54	199.76	-0.37	6.66	0.73	
ASSEA04	RedoxZone after tunnel	920826						
HA1327B	Tunnel after tunnel	921202	861.88	-3.06	17.52	-42.98	1.71	
HA1327B	Tunnel after tunnel	930207	-117.94	8.70	11.79	-52.77	2.14	
HA1327B	Tunnel after tunnel	930826				- Million		
HA1327B	Tunnel after tunnel	930929	33.34	43.04	12.34	-43.28	1.86	
HA1327B	Tunnel after tunnel	931214	-108.87	48.97	14.68	-46.74	1.98	
KA1639A	Tunnel after tunnel	930701	-1970.78	212.34	12.82	-20.54	1.62	
KA1639A	Tunnel after tunnel	930810	-1915.60	214.13	11.42	-21.19	1.83	n ha in an a' ann an tarthann an tartha

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
KA1639A	Tunnel after tunnel	930927	292	13.4	14.4	13.90	7289.736	2021.422	-223.187	2170	2113	6.8
KA1639A	Tunnel after tunnel	930929	293	13.4	14.4	13.90	7289.736	2021.422	-223.187	2177	2218	8.2
KA1639A	Tunnel after tunnel	930810	294	15.4	25.9	20.65	7296.386	2020.416	-222.622	2138	1626	6.0
KA1639A	Tunnel after tunnel	930927	295	15.4	25.9	20.65	7296.386	2020.416	-222.622	2171	1620	6.0
KA1639A	Tunnel after tunnel	930929		15.4	25.9	20.65	7296.386	2020.416	-222.622	2189	1645	6.2
KA1750A	Tunnel after tunnel	930701	296	4.4	5.4	4.90	7373.065	2068.565	-237.243	2124	1907	7.4
KA1750A	Tunnel after tunnel	930810	297	4.4	5.4	4.90	7373.065	2068.565	-237.243	2140	1986	6.9
KA1750A	Tunnel after tunnel	930927	298	4.4	5.4	4.90	7373.065	2068.565	-237.243	2169	2003	7.0
KA1750A	Tunnel after tunnel	930929	299	4.4	5.4	4.90	7373.065	2068.565	-237.243	2179	2062	7.8
KBH02	Tunnel after tunnel	930623		240.25	372.85	306.55	6583.470	2128.279	-120.472	2122		
KBH02	Tunnel after tunnel	930825	306	240.25	372.85	306.55	6583.470	2128.279	-120.472	2153	1870	20.5
KBH02	Tunnel after tunnel	930929	307	240.25	372.85	306.55	6583.470	2128.279	-120.472	2192	1850	19.4
KBH02	Tunnel after tunnel	931214	308	240.25	372.85	306.55	6583.470	2128.279	-120.472	2210	1800	21.0
SA0813B	Tunnel after tunnel	911106	316	5.6	19.5	12.55	6479.609	2152.822	-112.929	-1	2300	29.0
SA0813B	Tunnel after tunnel	930207	317	5.6	19.5	12.55	6479.609	2152.822	-112.929	2074	1670	19.0
SA0813B	Tunnel after tunnel	930907	318	5.6	19.5	12.55	6479.609	2152.822	-112.929	2166	1660	20.0
SA0813B	Tunnel after tunnel	930929	319	5.6	19.5	12.55	6479.609	2152.822	-112.929	2190	1640	19.1
SA0813B	Tunnel after tunnel	931214		5.6	19.5	12.55	6479.609	2152.822	-112.929	2207	1630	
SA0813B	Tunnel after tunnel	940607	320	5.6	19.5	12.55	6479.609	2152.822	-112.929	2253	1578	11.9
SA0813B	Tunnel after tunnel	940905	321	5.6	19.5	12.55	6479.609	2152.822	-112.929	2275	1573	20.3
SA0813B	Tunnel after tunnel	950517	322	5.6	19.5	12.55	6479.609	2152.822	-112.929	2311	1551	17.5
SA0813B	Tunnel after tunnel	951012	323	5.6	19.5	12.55	6479.609	2152.822	-112.929	2336	1471	16.2
SA0813B	Tunnel after tunnel	960521	324	5.6	19.5	12.55	6479.609	2152.822	-112.929	2353	1523	19.4
SA0958B	Tunnel after tunnel	911108		5	19.7	12.35	6618.921	2151.272	-133.195	-1		
SA0958B	Tunnel after tunnel	930623	328	5	19.7	12.35	6618.921	2151.272	-133.195	2121	1829	22.4
SA0958B	Tunnel after tunnel	930928	329	5	19.7	12.35	6618.921	2151.272	-133.195	2181	1810	19.6
SA0958B	Tunnel after tunnel	940607	330	5	19.7	12.35	6618.921	2151.272	-133.195	2254	1634	21.4
SA1009B	Tunnel after tunnel	930628	332	6	19.5	12.75	6672.091	2152.899	-139.744	2123	1847	26.3
SA1009B	Tunnel after tunnel	930825	333	6	19.5	12.75	6672.091	2152.899	-139.744	2152	1770	26.6
SA1009B	Tunnel after tunnel	930928	334	6	19.5	12.75	6672.091	2152.899	-139.744	2172	1740	25.8
SA1009B	Tunnel after tunnel	940608	335	6	19.5	12.75	6672.091	2152.899	-139.744	2262	1682	23.6
SA1009B	Tunnel after tunnel	940905	336	6	19.5	12.75	6672.091	2152.899	-139.744	2280	1590	27.1
SA1009B	Tunnel after tunnel	950517	337	6	19.5	12.75	6672.091	2152.899	-139.744	2313	1568	31.2

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
KA1639A	Tunnel after tunnel	930927	1900	68	23	6950	485	-91.2	8.4	-12.1	16.4%
KA1639A	Tunnel after tunnel	930929	1967	68	23	6960	480	-90.2	4.2	-12.4	16.9%
KA1639A	Tunnel after tunnel	930810	733	41	17	4060	115	-110.9	7.6	-14.7	8.8%
KA1639A	Tunnel after tunnel	930927	774	46	19	4230	130	-107.6	12.0	-14.6	9.1%
KA1639A	Tunnel after tunnel	930929	791	46			132	-107.1		-14.2	77074
KA1750A	Tunnel after tunnel	930701	1540	76	37	6310	432	-83.5	4.2	-11.4	15.6%
KA1750A	Tunnel after tunnel	930810	1607	71	33	6030	435	-89.6	5.1	-11.5	15.4%
KA1750A	Tunnel after tunnel	930927	1630	69	31	6320	450	-86.2	5.1	-11.4	15.8%
KA1750A	Tunnel after tunnel	930929	1684	71	33	6230	462	-80.0	8.4	-11.6	16.1%
KBH02	Tunnel after tunnel	930623			387	4545	171	-58.1	14.0	-7.2	
KBH02	Tunnel after tunnel	930825	692	154	366	4320	213	-52.4	10.0	-7.3	3.7%
KBH02	Tunnel after tunnel	930929	647	158	354	4350	210	-52.0	4.2	-7.3	4.4%
KBH02	Tunnel after tunnel	931214	638	160	340	4210	228	-59.2	6.8	-7.7	5.5%
SA0813B	Tunnel after tunnel	911106	730	233	1200	4920	36	-50.4	14.0	-7.3	-1.#IND
SA0813B	Tunnel after tunnel	930207	317	124	420	3360	227	-58.2	14.0	-7.5	3.0%
SA0813B	Tunnel after tunnel	930907	325	127	326	3300	276	-57.6	19.0	-7.0	3.4%
SA0813B	Tunnel after tunnel	930929	310	124	317	3350	274	-59.8	6.8	-7.5	5.7%
SA0813B	Tunnel after tunnel	931214	332	128	298	3320	298	-53.7	30.4	-7.2	
SA0813B	Tunnel after tunnel	940607	322	121	302	3272	299	-54.4	24.0	-7.2	3.4%
SA0813B	Tunnel after tunnel	940905	318	121	292	3113	298	-53.7	22.8	-7.2	3.1%
SA0813B	Tunnel after tunnel	950517	282	124	311	3081	274	-58.9	18.6	-7.5	4.1%
SA0813B	Tunnel after tunnel	951012	280	115	318	2980	257	-57.5	21.1	-7.3	3.2%
SA0813B	Tunnel after tunnel	960521	276	112	319	2964	252	-53.2	19.4	-6.8	2.2%
SA0958B	Tunnel after tunnel	911108			540	5400		-57.5	14.0	-7.4	
SA0958B	Tunnel after tunnel	930623	595	137	371	4088	243	-61.9	14.0	-7.7	5.0%
SA0958B	Tunnel after tunnel	930928	657	144	296	4260	241	-56.0	8.4	-7.5	5.7%
SA0958B	Tunnel after tunnel	940607	478	125	274	3641	303	-55.6	22.8	-7.2	4.1%
SA1009B	Tunnel after tunnel	930628	535	164	300	4126	250	-53.1	36.3	-7.3	1.4%
SA1009B	Tunnel after tunnel	930825	506	153	292	3984	250	-47.3	8.0	-7.3	3.9%
SA1009B	Tunnel after tunnel	930928	514	164	276	4080	252	-84.8	5.1	-11.1	13.0%
SA1009B	Tunnel after tunnel	940608	441	145	242	3673	304	-58.1	15.0	-7.3	5.5%
SA1009B	Tunnel after tunnel	940905	372	138	234	3390	313	-54.2	12.7	-7.3	5.0%
SA1009B	Tunnel after tunnel	950517	275	152	228	3386	353	-54.3	20.3	-6.7	3.5%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
KA1639A	Tunnel after tunnel	930927	44.3%	22.8%	16.4%	191.80	-26.26	-1299.44	5.08	-6.17
KA1639A	Tunnel after tunnel	930929	45.9%	20.4%	16.9%	246.80	-25.71	-1315.72	3.45	-6.56
KA1639A	Tunnel after tunnel	930810	56.4%	25.9%	8.8%	593.55	-11.93	-986.29	7.15	-0.38
KA1639A	Tunnel after tunnel	930927	53.3%	28.6%	9.1%	559.46	-12.41	-992.06	11.23	0.92
KA1639A	Tunnel after tunnel	930929								
KA1750A	Tunnel after tunnel	930701	36.5%	32.3%	15.6%	87.29	-23.92	-1490.39	16.40	8.07
KA1750A	Tunnel after tunnel	930810	40.1%	29.1%	15.4%	185.89	-24.09	-1390.76	12.04	4.73
KA1750A	Tunnel after tunnel	930927	38.8%	29.7%	15.8%	158.64	-24.74	-1441.44	8.60	2.06
KA1750A	Tunnel after tunnel	930929	35.6%	32.1%	16.1%	180.25	-24.57	-1449.72	9.38	3.24
KBH02	Tunnel after tunnel	930623								
KBH02	Tunnel after tunnel	930825	3.7%	60.0%	32.6%	516.52	-31.53	-79.56	30.14	310.62
KBH02	Tunnel after tunnel	930929	4.4%	59.4%	31.8%	466.26	-31.74	-247.23	37.03	299.71
KBH02	Tunnel after tunnel	931214	5.5%	59.5%	29.4%	395.04	-26.97	-474.30	48.14	289.04
SA0813B	Tunnel after tunnel	911106	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA0813B	Tunnel after tunnel	930207	3.0%	66.0%	28.0%	523.62	-25.76	-302.91	17.28	370.58
SA0813B	Tunnel after tunnel	930907	3.4%	63.3%	30.0%	419.84	-27.88	-372.16	12.98	274.05
SA0813B	Tunnel after tunnel	930929	5.7%	62.5%	26.1%	326.09	-23.89	-827.80	24.62	270.45
SA0813B	Tunnel after tunnel	931214								
SA0813B	Tunnel after tunnel	940607	3.4%	65.1%	28.1%	396.05	-33.08	-377.02	14.19	252.59
SA0813B	Tunnel after tunnel	940905	3.1%	63.3%	30.4%	337.97	-28.18	-335.34	5.26	239.41
SA0813B	Tunnel after tunnel	950517	4.1%	64.9%	26.9%	345.53	-26.07	-549.85	21.44	263.16
SA0813B	Tunnel after tunnel	951012	3.2%		26.9%	346.41	-26.84	-373.14	12.72	270.16
SA0813B	Tunnel after tunnel	960521	2.2%	65.6%	30.0%	380.67	-27.99	-197.78	-2.06	266.90
SA0958B	Tunnel after tunnel	911108								· · · · · · · · · · · · · · · · · · ·
SA0958B	Tunnel after tunnel	930623	5.0%		28.6%		-24.13	-416.88	28.13	321.04
SA0958B	Tunnel after tunnel	930928	5.7%		29.2%	391.51	-28.25	-495.89	32.66	245.25
SA0958B	Tunnel after tunnel	940607	4.1%		30.6%	313.85	-27.81	-354.22	8.46	221.23
SA1009B	Tunnel after tunnel	930628	1.4%		37.3%	543.54	-31.88	208.98	22.35	238.10
SA1009B	Tunnel after tunnel	930825	3.9%		34.8%	333.88	-28.99	-291.90	20.47	233.58
SA1009B	Tunnel after tunnel	930928	13.0%	59.7%	14.3%	179.35	-2.34	-2019.61	109.38	246.01
SA1009B	Tunnel after tunnel	940608	5.5%	58.5%	30.6%	244.71	-26.14	-662.02	28.70	189.47
SA1009B	Tunnel after tunnel	940905	5.0%	58.2%	31.7%	153.08	-24.24	-647.41	17.26	179.86
SA1009B	Tunnel after tunnel	950517	3.5%	56.6%	36.3%	112.08	-26.54	-461.95	13.79	167.54

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
KA1639A	Tunnel after tunnel	930927	-1816.63	248.77	10.15	-15.14	1.88	
KA1639A	Tunnel after tunnel	930929	-2034.82	237.66	12.05	-16.90	1.72	
KA1639A	Tunnel after tunnel	930810	-650.88	-12.29	6.02	-18.68	1.10	
KA1639A	Tunnel after tunnel	930927	-609.01	-0.76	6.68	-16.96	0.85	
KA1639A	Tunnel after tunnel	930929					101 10 10	
KA1750A	Tunnel after tunnel	930701	-1993.37	208.13	12.51	-28.77	1.83	
KA1750A	Tunnel after tunnel	930810	-2183.98	213.56	9.31	-24.66	2.11	
KA1750A	Tunnel after tunnel	930927	-2095.87	223.13	11.39	-25.22	2.05	
KA1750A	Tunnel after tunnel	930929	-2356.49	230.53	14.89	-24.43	1.50	······································
KBH02	Tunnel after tunnel	930623						
KBH02	Tunnel after tunnel	930825	568.38	6.68	14.55	-50.12	1.74	
KBH02	Tunnel after tunnel	930929	342.10	1.90	15.57	-55.43	1.84	
KBH02	Tunnel after tunnel	931214	-193.53	22.15	9.95	-52.98	1.68	
SA0813B	Tunnel after tunnel	911106	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA0813B	Tunnel after tunnel	930207	237.50	51.16	10.46	-52.10	1.72	
SA0813B	Tunnel after tunnel	930907	-121.41	86.58	10.36	-44.42	2.15	
SA0813B	Tunnel after tunnel	930929	-927.65	83.99	10.89	-55.96	2.07	
SA0813B	Tunnel after tunnel	931214						
SA0813B	Tunnel after tunnel	940607	-45.33	119.33	14.43	-41.27	2.06	
SA0813B	Tunnel after tunnel	940905	-227.31	108.28	13.96	-40.62	1.91	
SA0813B	Tunnel after tunnel	950517	-496.81	93.93	10.73	-46.43	1.88	
SA0813B	Tunnel after tunnel	951012	-156.73	85.67	11.77	-45.81	2.00	
SA0813B	Tunnel after tunnel	960521	87.90	72.95	14.26	-46.27	2.25	
SA0958B	Tunnel after tunnel	911108						
SA0958B	Tunnel after tunnel	930623	-25.03	45.91	7.38	-47.57	1.67	
SA0958B	Tunnel after tunnel	930928	-234.79	33.97	13.30	-51.11	1.90	
SA0958B	Tunnel after tunnel	940607	-148.47	103.84	12.36	-38.60	1.98	
SA1009B	Tunnel after tunnel	930628	1194.96	40.19	10.73	-23.72	1.28	
SA1009B	Tunnel after tunnel	930825	37.22	30.61	18.68	-49.61	1.63	
SA1009B	Tunnel after tunnel	930928	-2934.13	57.92	-5.64	-55.14	-0.23	
SA1009B	Tunnel after tunnel	940608	-774.85	92.52	10.50	-43.72	2.01	
SA1009B	Tunnel after tunnel	940905	-920.45	99.36	13.68	-45.72	1.90	
SA1009B	Tunnel after tunnel	950517	-497.56	128.70	10.86	-36.45	2.12	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
SA1009B	Tunnel after tunnel	951012	338	6	19.5	12.75	6672.091	2152.899	-139.744	2334	1526	30.3
SA1009B	Tunnel after tunnel	960521	339	6	19.5	12.75	6672.091	2152.899	-139.744	2356	1598	35.9
SA1210A	Tunnel after tunnel	920319		6	20.5	13.25	6870.013	2112.303	-167.945	-1		
SA1210A	Tunnel after tunnel	920325		6	20.5	13.25	6870.013	2112.303	-167.945	-1		
SA1210A	Tunnel after tunnel	920403		6	20.5	13.25	6870.013	2112.303	-167.945	-1		
SA1210A	Tunnel after tunnel	920410		6	20.5	13.25	6870.013	2112.303	-167.945	-1		
SA1210A	Tunnel after tunnel	920512		6	20.5	13.25	6870.013	2112.303	-167.945	-1		
SA1210A	Tunnel after tunnel	930623	345	6	20.5	13.25	6870.013	2112.303	-167.945	2119	1770	45.1
SA1229A	Tunnel after tunnel	920320		6	20.5	13.25	6885.159	2105.455	-171.291	-1		
SA1229A	Tunnel after tunnel	920326	1	6	20.5	13.25	6885.159	2105.455	-171.291	-1		
SA1229A	Tunnel after tunnel	920403		6	20.5	13.25	6885.159	2105.455	-171.291	-1		
SA1229A	Tunnel after tunnel	920410		6	20.5	13.25	6885.159	2105.455	-171.291	-1		
SA1229A	Tunnei after tunnel	920512		6	20.5	13.25	6885.159	2105.455	-171.291	-1		
SA1229A	Tunnel after tunnel	930824	346	6	20.5	13.25	6885.159	2105.455	-171.291	2147	1810	27.0
SA1229A	Tunnel after tunnel	940607	347	6	20.5	13.25	6885.159	2105.455	-171.291	2256	1735	26.1
SA1229A	Tunnel after tunnel	950518	348	6	20.5	13.25	6885.159	2105.455	-171.291	2320	1629	24.1
SA1229A	Tunnel after tunnel	951011	349	6	20.5	13.25	6885.159	2105.455	-171.291	2329	1621	24.4
SA1229A	Tunnel after tunnel	960521	350	6	20.5	13.25	6885.159	2105.455	-171.291	2357	1640	28.0
SA1420A	Tunnel after tunnel	920814	353	6	50	28.00	7092.329	2080.819	-200.592	-1	1650	7.6
SA1420A	Tunnel after tunnel	921015	354	6	50	28.00	7092.329	2080.819	-200.592	2024	1540	10.2
SA1420A	Tunnel after tunnel	921202	355	6	50	28.00	7092.329	2080.819	-200.592	2052	1610	11.0
SA1420A	Tunnel after tunnel	930207	356	6	50	28.00	7092.329	2080.819	-200.592	2077	1550	14.0
SA1420A	Tunnel after tunnel	930622	357	6	50	28.00	7092.329	2080.819	-200.592	2116	1484	9.7
SA1420A	Tunnel after tunnel	930824	358	6	50	28.00	7092.329	2080.819	-200.592	2148	1539	15.8
SA1420A	Tunnel after tunnel	930929	359	6	50	28.00	7092.329	2080.819	-200.592	2183	1600	13.7
SA1420A	Tunnel after tunnel	940607	360	6	50	28.00	7092.329	2080.819	-200.592	2257	1427	15.7
SA1420A	Tunnel after tunnel	940906	361	6	50	28.00	7092.329	2080.819	-200.592	2282	1442	18.2
SA1420A	Tunnel after tunnel	950518	362	6	50	28.00	7092.329	2080.819	-200.592	2318	1348	20.5
SA1420A	Tunnel after tunnel	951011	363	6	50	28.00	7092.329	2080.819	-200.592	2330	1334	20.3
SA1420A	Tunnel after tunnel	960521	364	6	50	28.00	7092.329	2080.819	-200.592	2358	1316	21.1
SA1614B	Tunnel after tunnel	920917		5.8	19.3	12.55	7257.869	2039.086	-224.037	-1		
SA1614B	Tunnel after tunnel	921119	365	5.8	19.3	12.55	7257.869	2039.086	-224.037	2035	1570	8.3
SA1614B	Tunnel after tunnel	930622	366	5.8	19.3	12.55	7257.869	2039.086	-224.037	2117	1954	5.2

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
SA1009B	Tunnel after tunnel	951012	240	146	234	3045	330	-54.5	27.0	-7.1	2.8%
SA1009B	Tunnel after tunnel	960521	239	150	110	3170	371	-57.4	24.5	-7.0	5.2%
SA1210A	Tunnel after tunnel	920319			480	4900		-53.9	30.0	-6.9	
SA1210A	Tunnel after tunnel	920325			490	4900		-49.6	23.0	-6.6	
SA1210A	Tunnel after tunnel	920403			510	4900		-55.4	27.0	-6.9	
SA1210A	Tunnel after tunnel	920410			510	4800		-52.4	30.4	-6.9	
SA1210A	Tunnel after tunnel	920512			530	4400		-46.6	10.0	-6.5	
SA1210A	Tunnel after tunnel	930623	256	152	309	3370	328	-61.5	17.0	-7.4	4.0%
SA1229A	Tunnel after tunnel	920320			530	5500		-51.7	16.9	-7.1	
SA1229A	Tunnel after tunnel	920326			530	5600		-49.7	27.0	-7.1	
SA1229A	Tunnel after tunnel	920403			520	5600		-52.8	16.9	-7.0	
SA1229A	Tunnel after tunnel	920410			520	5600		-60.0	16.0	-7.3	
SA1229A	Tunnel after tunnel	920512			490	5500		-63.6	17.0	-8.1	
SA1229A	Tunnel after tunnel	930824	580	151	388	4106	210	-50.1	14.0	-6.6	1.4%
SA1229A	Tunnel after tunnel	940607	512	152	336	3928	243	-58.1	14.0	-7.4	4.0%
SA1229A	Tunnel after tunnel	950518	467	147	310	3675	248	-54.7	23.7	-7.3	2.6%
SA1229A	Tunnel after tunnel	951011	440	136	314	3482	246	-56.3	23.7	-7.3	2.7%
SA1229A	Tunnel after tunnel	960521	413	137	303	3393	248	-46.3	15.2	-6.5	1.5%
SA1420A	Tunnel after tunnel	920814	981	117	830	4610	200	-59.0	31.0	-7.5	-1.#IND
SA1420A	Tunnel after tunnel	921015	715	123	170	3930	226	-86.6	17.0	-11.2	11.3%
SA1420A	Tunnel after tunnel	921202	760	126	202	4140	225	-55.5	32.0	-7.2	4.1%
SA1420A	Tunnel after tunnel	930207	482	129	226	3450	336	-57.6	27.0	-7.2	4.8%
SA1420A	Tunnel after tunnel	930622	488	125	215	3420	307	-50.5	32.1	-7.1	3.2%
SA1420A	Tunnel after tunnel	930824	485	127	212	3435	309	-52.5	22.0	-7.0	4.4%
SA1420A	Tunnel after tunnel	930929	480	139	214	3530	335	-68.8	10.0	-8.5	9.6%
SA1420A	Tunnel after tunnel	940607	396	117	206	3053	303	-72.0	17.0	-8.7	8.9%
SA1420A	Tunnel after tunnel	940906	369	125	199	2950	305	-57.0	28.7	-7.5	4.3%
SA1420A	Tunnel after tunnel	950518	284	136	199	2900	302	-58.4	33.0	-7.3	3.2%
SA1420A	Tunnel after tunnel	951011	247	129	204	2721	267	-58.3	40.0	-7.6	2.3%
SA1420A	Tunnel after tunnel	960521	245	119	214	2677	281	-60.3	23.7	-7.1	3.9%
SA1614B	Tunnel after tunnel	920917			140	2600		-85.5		-11.5	
SA1614B	Tunnel after tunnel	921119	1250	80	37	5160	308	-78.3	8.0	-10.5	13.4%
SA1614B	Tunnel after tunnel	930622	1710	66	32	6207	424	-103.1	8.0	-13.1	14.6%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
SA1009B	Tunnel after tunnel	951012	2.8%	59.3%	35.1%	173.10	-25.20	-350.57	12.51	175.12
SA1009B	Tunnel after tunnel	960521	5.2%	54.3%	35.4%	32.30	-21.15	-813.13	15.29	50.96
SA1210A	Tunnel after tunnel	920319								
SA1210A	Tunnel after tunnel	920325								
SA1210A	Tunnel after tunnel	920403								
SA1210A	Tunnel after tunnel	920410								
SA1210A	Tunnel after tunnel	920512								
SA1210A	Tunnel after tunnel	930623	4.0%	54.9%	37.1%	249.05	-13.98	-577.69	11.04	247.63
SA1229A	Tunnel after tunnel	920320								·····
SA1229A	Tunnel after tunnel	920326				78 Au 2				
SA1229A	Tunnel after tunnel	920403								
SA1229A	Tunnel after tunnel	920410								
SA1229A	Tunnel after tunnel	920512				w		·····		· · · · · · · · · · · · · · · · · · ·
SA1229A	Tunnel after tunnel	930824	1.4%	60.1%	37.0%	511.36	-30.84	248.58	10.23	326.41
SA1229A	Tunnel after tunnel	940607	4.0%	60.0%	32.0%	376.95	-25.21	-308.27	30.20	281.37
SA1229A	Tunnel after tunnel	950518	2.6%	61.9%	33.0%	362.24	-28.04	-77.67	21.56	253.93
SA1229A	Tunnel after tunnel	951011	2.7%	62.8%	31.8%	381.34	-25.92	-129.95	15.22	259.59
SA1229A	Tunnel after tunnel	960521	1.5%	60.2%	36.8%	340.81	-29.53	64.14	-2.90	241.73
SA1420A	Tunnel after tunnel	920814	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
SA1420A	Tunnel after tunnel	921015	20.1%	57.4%	11.3%	225.72	-12.49	-1473.56	79.93	144.96
SA1420A	Tunnel after tunnel	921202	4.1%	64.2%	27.7%	384.89	-33.66	-65.44	20.70	153.19
SA1420A	Tunnel after tunnel	930207	4.8%	62.2%	28.2%	243.70	-31.84	-489.01	21.60	176.53
SA1420A	Tunnel after tunnel	930622	3.2%	64.4%	29.2%	282.40	-36.98	-173.41	13.77	164.01
SA1420A	Tunnel after tunnel	930824	4.4%	61.6%	29.7%	223.60	-32.13	-401.49	13.96	160.50
SA1420A	Tunnel after tunnel	930929	9.6%	60.4%	20.3%	134.35	-22.22	-1409.57	61.42	175.56
SA1420A	Tunnel after tunnel	940607	8.9%	64.4%	17.9%	103.48	-16.11	-1344.06	48.75	170.76
SA1420A	Tunnel after tunnel	940906	4.3%	63.6%	27.9%	191.85	-26.95	-494.77	18.70	149.86
SA1420A	Tunnel after tunnel	950518	3.2%	64.0%	29.6%	133.11	-26.80	-378.91	23.23	147.47
SA1420A	Tunnel after tunnel	951011	2.3%	66.6%	28.9%	222.11	-25.44	-234.52	19.07	153.36
SA1420A	Tunnel after tunnel	960521	3.9%	64.9%	27.3%	116.92	-22.90	-548.07	15.14	165.68
SA1614B	Tunnel after tunnel	920917								
SA1614B	Tunnel after tunnel	921119	26.5%	46.7%	13.4%	1.51	-18.73	-1361.95	28.62	9.78
SA1614B	Tunnel after tunnel	930622	51.9%	19.0%	14.6%	254.24	-24.09	-1120.67	10.33	6.32

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	018 Dev.	Reference water
SA1009B	Tunnel after tunnel	951012	-409.61	118.98	10.90	-32.45	1.72	
SA1009B	Tunnel after tunnel	960521	-1430.96	136.78	8.89	-29.97	2.01	
SA1210A	Tunnel after tunnel	920319						
SA1210A	Tunnel after tunnel	920325	······································					
SA1210A	Tunnel after tunnel	920403						
SA1210A	Tunnel after tunnel	920410					-	
SA1210A	Tunnel after tunnel	920512						
SA1210A	Tunnel after tunnel	930623	-791.42	95.43	3.55	-38.06	1.42	
SA1229A	Tunnel after tunnel	920320						
SA1229A	Tunnel after tunnel	920326						· · · · · · · · · · · · · · · · · · ·
SA1229A	Tunnel after tunnel	920403						
SA1229A	Tunnel after tunnel	920410						
SA1229A	Tunnel after tunnel	920512						······································
SA1229A	Tunnel after tunnel	930824	1174.99	1.14	13.85	-46.19	1.99	
SA1229A	Tunnel after tunnel	940607	88.31	37.21	9.21	-46.16	1.69	
SA1229A	Tunnel after tunnel	950518	453.97	50.11	11.56	-38.30	1.61	
SA1229A	Tunnel after tunnel	951011	269.51	53.29	10.57	-39.26	1.69	
SA1229A	Tunnel after tunnel	960521	432.49	39.51	17.79	-45.04	2.11	
SA1420A	Tunnel after tunnel	920814	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	
SA1420A	Tunnel after tunnel	921015	-2066.57	63.88	0.04	-40.90	0.61	
SA1420A	Tunnel after tunnel	921202	536.52	41.49	13.79	-32.38	2.14	
SA1420A	Tunnel after tunnel	930207	-540.92	142.83	11.76	-35.37	2.18	
SA1420A	Tunnel after tunnel	930622	128.00	123.06	17.72	-32.41	2.08	
SA1420A	Tunnel after tunnel	930824	-434.48	112.07	16.00	-39.76	2.25	
SA1420A	Tunnel after tunnel	930929	-2256.18	139.66	6.18	-50.80	1.74	
SA1420A	Tunnel after tunnel	940607	-2227.13	127.37	3.76	-47.73	1.61	
SA1420A	Tunnel after tunnel	940906	-762.22	118.34	12.26	-35.04	1.84	
SA1420A	Tunnel after tunnel	950518	-418.90	115.88	9.63	-31.09	1.85	
SA1420A	Tunnel after tunnel	951011	-111.74	93.23	9.67	-26.66	1.51	· · · ·
SA1420A	Tunnel after tunnel	960521	-825.64	100.97	9.09	-41.38	2.25	
SA1614B	Tunnel after tunnel	920917						
SA1614B	Tunnel after tunnel	921119	-1996.75	114.81	11.58	-39.25	1.82	
SA1614B	Tunnel after tunnel	930622	-1549.18	214.95	5.74	-11.59	1.82	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
SA1614B	Tunnel after tunnel	930824	367	5.8	19.3	12.55	7257.869	2039.086	-224.037	2149	1944	7.5
SA1614B	Tunnel after tunnel	930928	368	5.8	19.3	12.55	7257.869	2039.086	-224.037	2184	1880	6.7
SA1614B	Tunnel after tunnel	940606	369	5.8	19.3	12.55	7257.869	2039.086	-224.037	2249	1831	7.4
SA1696B	Tunnel after tunnel	921020	374	5.9	19.2	12.55	7332.421	2065.722	-232.645	-1	693	5.8
SA1696B	Tunnel after tunnel	921119	375	5.9	19.2	12.55	7332.421	2065.722	-232.645	2036	1330	9.4
SA1696B	Tunnel after tunnel	930622	376	5.9	19.2	12.55	7332.421	2065.722	-232.645	2118	1653	6.3
SA1696B	Tunnel after tunnel	930824	377	5.9	19.2	12.55	7332.421	2065.722	-232.645	2150	1817	8.9
SA1696B	Tunnel after tunnel	930928	378	5.9	19.2	12.55	7332.421	2065.722	-232.645	2185	1880	8.0
SA1696B	Tunnel after tunnel	940606	379	5.9	19.2	12.55	7332.421	2065.722	-232.645	2250	1933	9.1
SA1730A	Tunnel after tunnel	6:00		5.6	20	12.80	7369.317	2065.943	-237.012	-1		
SA1730A	Tunnel after tunnel	930203	381	5.6	20	12.80	7369.317	2065.943	-237.012	2067	1740	10.0
SA1730A	Tunnel after tunnel	930621	382	5.6	20	12.80	7369.317	2065.943	-237.012	2114	1944	6.1
SA1730A	Tunnel after tunnel	930824	383	5.6	20	12.80	7369.317	2065.943	-237.012	2151	2002	8.1
SA1730A	Tunnel after tunnel	930928	384	5.6	20	12.80	7369.317	2065.943	-237.012	2186	2060	7.6
SA1730A	Tunnel after tunnel	940606	385	5.6	20	12.80	7369.317	2065.943	-237.012	2251	2149	8.2
SA1730A	Tunnel after tunnel	940907	386	5.6	20	12.80	7369.317	2065.943	-237.012	2286	2431	9.4
SA1730A	Tunnel after tunnel	950518	387	5.6	20	12.80	7369.317	2065.943	-237.012	2319	2440	8.2
SA1730A	Tunnel after tunnel	951011	388	5.6	20	12.80	7369.317	2065.943	-237.012	2331	2384	8.2
SA1730A	Tunnel after tunnel	960521		5.6	20	12.80	7369.317	2065.943	-237.012	2354	2377	9.4
SA1828B	Tunnel after tunnel	921119	390	5.8	20	12.90	7401.580	2157.075	-249.511	-1	1700	8.5
SA1828B	Tunnel after tunnel	930216	391	5.8	20	12.90	7401.580	2157.075	-249.511	2078	1860	9.6
SA1828B	Tunnel after tunnel	930621	392	5.8		12.90	7401.580	2157.075	-249.511	2115	1909	8.0
SA1828B	Tunnel after tunnel	930826	393	5.8	20	12.90	7401.580	2157.075	-249.511	2157	1933	11.6
SA1828B	Tunnel after tunnel	930928	394	5.8		12.90	7401.580	2157.075	-249.511	2187	1930	10.0
SA1828B	Tunnel after tunnel	940606	395	5.8	20	12.90	7401.580	2157.075	-249.511	2252	1862	11.7
SA2074A	Tunnel after tunnel	930205	398	6	38.7	22.35	7290.030	2348.258	-281.676	-1	22	2.1
SA2074A	Tunnel after tunnel	930928	399	6	38.7	22.35	7290.030	2348.258	-281.676	2173	1730	11.0
SA2074A	Tunnel after tunnel	940607	400	6	38.7	22.35	7290.030	2348.258	-281.676	2258	1702	10.2
SA2074A	Tunnel after tunnel	940906	401	6	38.7	22.35	7290.030	2348.258	-281.676	2283	1522	10.3
SA2074A	Tunnel after tunnel	950518	402	6	38.7	22.35	7290.030	2348.258	-281.676	2317	1454	9.3
SA2074A	Tunnel after tunnel	951011		6	38.7	22.35	7290.030	2348.258	-281.676	2332	1425	9.1
SA2273A	Tunnel after tunnel	931130	409	5.8	20	12.90	7149.762	2221.715	-305.968	2199	2070	13.4
SA2273A	Tunnel after tunnel	940527	410	5.8	20	12.90	7149.762	2221.715	-305.968	2242	1932	13.4

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
SA1614B	Tunnel after tunnel	930824	1516	85	67	5816	339	-92.5	4.2	-11.9	14.3%
SA1614B	Tunnel after tunnel	930928	1390	91	81	5650	350	-71.9	4.2	-9.7	14.9%
SA1614B	Tunnel after tunnel	940606	1207	98	109	5176	333	-77.6	8.4	-10.4	14.0%
SA1696B	Tunnel after tunnel	921020	285	33	213	1560	169	-85.6	8.4	-11.2	6.4%
SA1696B	Tunnel after tunnel	921119	916	74	102	3910	266	-84.0	5.1	-11.0	11.4%
SA1696B	Tunnel after tunnel	930622	1196	73	68	4828	365	-93.2	8.0	-11.5	13.0%
SA1696B	Tunnel after tunnel	930824	1401	72	54	5499	419	-82.8	4.2	-11.1	14.9%
SA1696B	Tunnel after tunnel	930928	1450	76	57	5690	428	-81.3	7.0	-11.2	15.1%
SA1696B	Tunnel after tunnel	940606	1740	71	89	6275	459	-81.0	7.0	-11.1	15.8%
SA1730A	Tunnel after tunnel	6:00			310	3000		-93.3		-11.9	
SA1730A	Tunnel after tunnel	930203	1420	65	39	5470	464	-87.2	4.2	-11.7	15.0%
SA1730A	Tunnel after tunnel	930621	1709	62	39	6063	459	-85.1	12.0	-12.4	15.2%
SA1730A	Tunnel after tunnel	930824	1861	59	40	6065	471	-81.7	4.2	-12.1	16.0%
SA1730A	Tunnel after tunnel	930928	1830	65	32	6890	513	-91.6	4.2	-12.4	16.6%
SA1730A	Tunnel after tunnel	940606	2160	54	45	7330	512	-89.2	12.0	-11.9	16.9%
SA1730A	Tunnel after tunnel	940907	2793	49	31	8500	549	-86.4	11.0	-12.2	19.3%
SA1730A	Tunnel after tunnel	950518	2755	54	32	8672	540	-88.8	16.0	-12.1	18.7%
SA1730A	Tunnel after tunnel	951011	2617	56	36	8651	530	-87.1	8.5	-11.9	18.7%
SA1730A	Tunnel after tunnel	960521	2452	58	43	8055	540	-90.2		-12.0	
SA1828B	Tunnel after tunnel	921119	1290	92	43	5200	303	-75.9	4.2	-10.3	14.0%
SA1828B	Tunnel after tunnel	930216	1250	118	72	5540	340	-80.1	4.0	-10.3	15.0%
SA1828B	Tunnel after tunnel	930621	1392	114	48	5850	387	-84.4	4.2	-10.8	15.5%
SA1828B	Tunnel after tunnel	930826	1494	108	49	6550	363	-71.4	4.0	-10.3	16.3%
SA1828B	Tunnel after tunnel	930928	1450	108	48	6010	362	-71.1	32.0	-9.3	13.9%
SA1828B	Tunnel after tunnel	940606	1064	139	111	5123	251	-67.8	8.4	-8.9	12.4%
SA2074A	Tunnel after tunnel	930205	15	4	20	25	46	-60.0	7.0	-8.4	4.5%
SA2074A	Tunnel after tunnel	930928	764	144	79	4670	277	-61.3	7.0	-8.4	11.1%
SA2074A	Tunnel after tunnel	940607	723	142	94	4276	275	-65.2	5.9	-8.5	11.4%
SA2074A	Tunnel after tunnel	940906	627	126	103	3967	263	-63.3	12.7	-8.5	9.8%
SA2074A	Tunnel after tunnel	950518	560	119	128	3414	262	-65.1	33.0	-8.4	7.1%
SA2074A	Tunnel after tunnel	951011	510	112	140	3239	251	-66.3		-8.7	
SA2273A	Tunnel after tunnel	931130	1110	172	146	5570	253	-61.1	4.2	-8.4	11.2%
SA2273A	Tunnel after tunnel	940527	901	166	201	4999	218	-60.5	9.3	-7.8	8.2%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
SA1614B	Tunnel after tunnel	930824	39.4%	32.0%	14.3%	274.10	-21.27	-1264.90	30.30	40.17
SA1614B	Tunnel after tunnel	930928	21.6%	48.6%	14.9%	139.81	-23.25	-1507.91	34.01	51.19
SA1614B	Tunnel after tunnel	940606	23.1%	49.0%	14.0%	200.05	-20.69	-1508.96	44.58	80.65
SA1696B	Tunnel after tunnel	921020	24.9%	62.4%	6.4%	-49.40	-7.16	-951.11	8.63	195.19
SA1696B	Tunnel after tunnel	921119	27.8%	49.4%	11.4%	-3.90	-13.63	-1305.25	30.29	77.67
SA1696B	Tunnel after tunnel	930622	37.3%	36.7%	13.0%	133.62	-19.90	-1334.20	23.23	42.66
SA1696B	Tunnel after tunnel	930824	33.6%	36.6%	14.9%	76.02	-21.07	-1498.25	14.98	25.63
SA1696B	Tunnel after tunnel	930928	32.8%	37.0%	15.1%	113.80	-22.40	-1491.25	18.15	28.24
SA1696B	Tunnel after tunnel	940606	32.7%	35.7%	15.8%	83.42	-22.72	-1340.12	10.43	59.26
SA1730A	Tunnel after tunnel	6:00				1976a A			7 * 7. d =	
SA1730A	Tunnel after tunnel	930203	38.7%	31.2%	15.0%	-16.65	-20.25	-1505.38	7.47	11.07
SA1730A	Tunnel after tunnel	930621	40.5%	29.2%	15.2%	171.23	-24.42	-1243.23	3.94	11.09
SA1730A	Tunnel after tunnel	930824	40.2%	27.8%	16.0%	132.28	-24.07	-1252.70	-2.23	10.93
SA1730A	Tunnel after tunnel	930928	46.5%	20.3%	16.6%	122.91	-25.73	-1395.92	1.57	2.91
SA1730A	Tunnel after tunnel	940606	42.7%	23.6%	16.9%	179.68	-25.67	-1119.58	-10.49	15.08
SA1730A	Tunnel after tunnel	940907	44.8%	18.0%	18.0%	221.35	-27.27	-953.89	-19.75	-0.20
SA1730A	Tunnel after tunnel	950518	44.7%	18.3%	18.3%	269.51	-28.75	-877.96	-16.08	0.33
SA1730A	Tunnel after tunnel	951011	44.6%	18.4%	18.4%	211.84	-28.79	-1017.74	-14.19	4.28
SA1730A	Tunnel after tunnel	960521								
SA1828B	Tunnel after tunnel	921119	24.8%	47.1%	14.0%	59.05	-19.76	-1442.63	38.25	14.74
SA1828B	Tunnel after tunnel	930216	24.4%	45.5%	15.0%	106.95	-20.57	-1669.32	60.59	42.39
SA1828B	Tunnel after tunnel	930621	30.5%	38.5%	15.5%	96.59	-23.19	-1626.22	54.64	18.43
SA1828B	Tunnel after tunnel	930826	22.7%	44.8%	16.3%	34.45	-21.05	-1667.65	45.83	17.49
SA1828B	Tunnel after tunnel	930928	13.9%	54.9%	17.4%	196.99	-23.27	-1257.32	41.66	13.98
SA1828B	Tunnel after tunnel	940606	12.4%	56.7%	18.5%	218.58	-22.63	-1360.60	68.43	75.33
SA2074A	Tunnel after tunnel	930205	9.1%	81.8%	4.5%	-508.53	-7.23	-868.20	-13.44	2.74
SA2074A	Tunnei after tunnel	930928	11.1%	56.7%	21.1%	116.58	-26.71	-1409.26	63.61	39.73
SA2074A	Tunnel after tunnel	940607	11.4%	58.1%	19.1%	125.22	-24.59	-1507.82	69.17	57.43
SA2074A	Tunnel after tunnel	940906	9.8%	61.4%	18.9%	84.75	-23.46	-1302.23	54.02	66.56
SA2074A	Tunnel after tunnel	950518	7.1%	65.8%	20.0%	215.89	-24.96	-836.19	42.73	89.74
SA2074A	Tunnel after tunnel	951011								
SA2273A	Tunnel after tunnel	931130	11.2%	52.7%	24.9%	326.68	-30.30	-1084.41	76.89	101.55
SA2273A	Tunnel after tunnel	940527	8.2%	57.1%	26.5%	390.32	-31.29	-728.95	65.22	154.24

~

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA1614B	Tunnel after tunnel	930824	-1803.75	133.50	6.81	-28.37	1.73	
SA1614B	Tunnel after tunnel	930928	-2290.28	135.74	13.02	-45.03	2.01	
SA1614B	Tunnel after tunnel	940606	-2265.75	132.13	9.24	-41.15	1.54	
SA1696B	Tunnel after tunnel	921020	-1826.78	76.95	8.73	-54.26	1.46	
SA1696B	Tunnel after tunnel	921119	-2176.19	101.55	8.55	-44.73	1.61	and the second sec
SA1696B	Tunnel after tunnel	930622	-2104.78	177.92	5.47	-29.24	1.99	
SA1696B	Tunnel after tunnel	930824	-2445.03	204.75	11.47	-33.02	1.87	
SA1696B	Tunnel after tunnel	930928	-2369.10	210.65	12.14	-30.64	1.67	
SA1696B	Tunnel after tunnel	940606	-2164.63	231.44	11.79	-29.34	1.71	
SA1730A	Tunnel after tunnel	6:00						
SA1730A	Tunnel after tunnel	930203	-2545.64	247.87	10.97	-27.61	1.80	
SA1730A	Tunnel after tunnel	930621	-2026.22	240.91	14.31	-17.81	1.27	
SA1730A	Tunnel after tunnel	930824	-2466.66	241.04	16.82	-24.28	1.48	
SA1730A	Tunnel after tunnel	930928	-1949.19	274.84	11.39	-16.83	1.81	
SA1730A	Tunnel after tunnel	940606	-1656.21	269.86	10.59	-12.30	1.89	
SA1730A	Tunnel after tunnel	940907	-1692.64	279.23	13.69	-7.78	1.71	
SA1730A	Tunnel after tunnel	950518	-1262.27	273.73	11.25	-3.11	1.78	
SA1730A	Tunnel after tunnel	951011	-1289.25	263.50	12.88	-10.64	1.98	
SA1730A	Tunnel after tunnel	960521						
SA1828B	Tunnel after tunnel	921119	-2287.42	100.92	12.22	-43.46	1.81	
SA1828B	Tunnel after tunnel	930216	-2458.98	124.19	6.94	-42.18	1.70	
SA1828B	Tunnel after tunnel	930621	-2419.99	163.97	6.96	-34.92	1.80	
SA1828B	Tunnel after tunnel	930826	-2112.99	129.36	13.31	-41.45	1.43	
SA1828B	Tunnel after tunnel	930928	-1605.37	143.82	7.05	-23.44	1.48	
SA1828B	Tunnel after tunnel	940606	-1865.20	40.24	9.21	-48.81	1.69	
SA2074A	Tunnel after tunnel	930205	-2394.69	-20.24	23.47	-75.01	2.73	
SA2074A	Tunnel after tunnel	930928	-1852.00	64.57	13.97	-50.20	1.93	
SA2074A	Tunnel after tunnel	940607	-2272.69	70.20	11.11	-52.68	1.97	
SA2074A	Tunnel after tunnel	940906	-1831.77	73.44	12.43	-49.15	1.84	
SA2074A	Tunnel after tunnel	950518	-1146.67	91.47	8.93	-33.13	1.63	
SA2074A	Tunnel after tunnel	951011						A
SA2273A	Tunnel after tunnel	931130	-1225.65	19.50	12.47	-48.97	1.72	
SA2273A	Tunnel after tunnel	940527	-502.58	3.11	11.13	-48.12	1.98	

ID code	Area	Date	m3 row	Secup	Seclow	Centr.	Northing	Easting	Elevation	SNO	NA	K
SA2273A	Tunnel after tunnel	940907	411	5.8	20	12.90	7149.762	2221.715	-305.968	2287	1911	14.4
SA2273A	Tunnel after tunnel	950518		5.8	20	12.90	7149.762	2221.715	-305.968	2321	1866	12.4
SA2273A	Tunnel after tunnel	951011	412	5.8	20	12.90	7149.762	2221.715	-305.968	2326	1779	13.2
SA2273A	Tunnel after tunnel	960521	413	5.8	20	12.90	7149.762	2221.715	-305.968	2355	1805	14.0
SA2273B	Tunnel after tunnel	930928		5.8	20	12.90	7162.946	2217.931	301.932	2176		
SA2273B	Tunnel after tunnel	931130	414	5.8	20	12.90	7162.946	2217.931	301.932	2200	1830	8.0
SA2273B	Tunnel after tunnel	940530	415	5.8	20	12.90	7162.946	2217.931	301.932	2245	1762	7.8
SA2322A	Tunnel after tunnel	930928	418	6	20.1	13.05	7136.119	2174.475	-312.606	2174	2170	8.6
SA2322A	Tunnel after tunnel	931207	419	6	20.1	13.05	7136.119	2174.475	-312.606	2205	1910	9.8
SA2322A	Tunnel after tunnel	940308	420	6	20.1	13.05	7136.119	2174.475	-312.606	2226	1924	11.6
SA2322A	Tunnel after tunnel	940527	421	6	20.1	13.05	7136.119	2174.475	-312.606	2243	1908	9.4
SA2600A	Tunnel after tunnel	931202		5.8	19.4	12.60	7315.455	2044.414	-345.048	2203		and Print and Annual Print and Annual Ann
SA2600A	Tunnel after tunnel	940307	425	5.8	19.4	12.60	7315.455	2044.414	-345.048	2224	2398	9.9
SA2600A	Tunnel after tunnel	940518	426	5.8	19.4	12.60	7315.455	2044.414	-345.048	2241	2171	7.6
SA2600A	Tunnel after tunnel	940906	427	5.8	19.4	12.60	7315.455	2044.414	-345.048	2284	2260	9.1
SA2600A	Tunnel after tunnel	950517	428	5.8	19.4	12.60	7315.455	2044.414	-345.048	2312	2094	7.6
SA2600A	Tunnel after tunnel	951011	429	5.8	19.4	12.60	7315.455	2044.414	-345.048	2327	2140	7.6
SA2600A	Tunnel after tunnel	960521	430	5.8	19.4	12.60	7315.455	2044.414	-345.048	2351	2125	9.1
SA2783A	Tunnel after tunnel	940111		5.8	19.9	12.85	7442.809	2160.694	-371.361	-1		
SA2783A	Tunnel after tunnel	940214	444	5.8	19.9	12.85	7442.809	2160.694	-371.361	2213	2258	8.4
SA2783A	Tunnel after tunnel	940517	445	5.8	19.9	12.85	7442.809	2160.694	-371.361	2239	2348	9.1
SA2783A	Tunnel after tunnel	940907	446	5.8	19.9	12.85	7442.809	2160.694	-371.361	2288	2448	9.6
SA2783A	Tunnel after tunnel	950523		5.8	19.9	12.85	7442.809	2160.694	-371.361	2322	2811	10.3
SA2783A	Tunnel after tunnel	951025	447	5.8	19.9	12.85	7442.809	2160.694	-371.361	2337	2840	11.7
SA2783A	Tunnel after tunnel	960520	448	5.8	19.9	12.85	7442.809	2160.694	-371.361	2352	3053	10.9
SGKLX02	Laxemar	930803	1	1631	1681						8500	45.5
Glacial	Glacial		2								0.17	0.4
Litorina	Sea		3								3180	154
Rain'60	Rain		4								0.4	0.29

ID code	Area	Date	CA	MG	HCO3	CL	SO4	D	TR	O18	Brine Mix.
SA2273A	Tunnel after tunnel	940907	849	165	205	4921	203	-56.7	12.7	-7.9	7.1%
SA2273A	Tunnel after tunnel	950518	852	151	182	4788	241	-64.0		-7.8	· · ·
SA2273A	Tunnel after tunnel	951011	796	140	180	4347	242	-63.2	8.5	-8.2	9.3%
SA2273A	Tunnel after tunnel	960521	824	135	175	4531	274	-62.8	20.3	-8.1	8.4%
SA2273B	Tunnel after tunnel	930928			90	5481		-75.8	5.9	-9.4	
SA2273B	Tunnel after tunnel	931130	1280	136	104	5460	232	-73.3	5.9	-9.8	14.1%
SA2273B	Tunnel after tunnel	940530	1135	128	117	5105	196	-71.3	10.1	-9.5	12.9%
SA2322A	Tunnel after tunnel	930928	1070	129	152	5340	227	-66.0	4.2	-8.8	12.7%
SA2322A	Tunnel after tunnel	931207	998	139	165	5070	232	-62.9	7.6	-8.5	10.7%
SA2322A	Tunnel after tunnel	940308	1024	140	169	5353	223	-63.4	8.4	-8.1	10.2%
SA2322A	Tunnel after tunnel	940527	977	143	184	5034	213	-68.0	8.4	-8.6	10.8%
SA2600A	Tunnel after tunnel	931202			25	7250		-88.4	10.0	-11.5	
SA2600A	Tunnel after tunnel	940307	2541	52	17	8349	560	-77.9	9.3	-11.2	19.1%
SA2600A	Tunnel after tunnel	940518	1825	72	92	6718	498	-80.4	4.2	-10.8	16.9%
SA2600A	Tunnel after tunnel	940906	2180	65	37	7735	470	-93.7	9.3	-12.2	17.1%
SA2600A	Tunnel after tunnel	950517	1499	91	90	6024	408	-70.4	11.0	-9.4	15.9%
SA2600A	Tunnel after tunnel	951011	1542	89	95	6183	411	-74.0	20.3	-9.5	15.6%
SA2600A	Tunnel after tunnel	960521	1486	85	114	5921	404	-75.5	11.0	-9.8	15.6%
SA2783A	Tunnel after tunnel	940111			9	7853		-90.6		-12.6	
SA2783A	Tunnel after tunnel	940214	2363	60	14	8030	508	-83.2	4.2	-12.2	18.1%
SA2783A	Tunnel after tunnel	940517	2532	63	20	8411	523	-88.3	4.2	-12.2	19.2%
SA2783A	Tunnel after tunnel	940907	2813	58	18	9023	513	-90.5	9.3	-12.1	19.7%
SA2783A	Tunnel after tunnel	950523	3662	53	14	10944	585	-88.6		-12.0	
SA2783A	Tunnel after tunnel	951025	3713	50	18	10911	599	-88.5	21.1	-12.5	24.2%
SA2783A	Tunnel after tunnel	960520	4062	49	15	12054	616	-90.0	22.0	-12.5	26.6%
SGKLX02	Laxemar	930803	19300	2.12	14.1	47200	906	-44.9	4.2	-8.9	100.0%
Glacial	Glacial		0.18	0.1	0.12	0.5	0.5	-158	0	-21	0.0%
Litorina	Sea		152	380	146	6100	527	-35	0	-5	0.0%
Rain'60	Rain		0.24	0.1	12.2	0.23	1.4	-80	100	-10.5	0.0%

ID code	Area	Date	Glacial Mix.	Meteoric Mix.	Marine Mix.	Na Dev.	K Dev.	Ca Dev.	Mg Dev.	CO3 Dev
SA2273A	Tunnel after tunnel	940907	7.1%	57.9%	27.8%	419.82	-31.91	-568.67	59.00	156.28
SA2273A	Tunnel after tunnel	950518								
SA2273A	Tunnel after tunnel	951011	9.3%	59.2%	22.2%	283.46	-25.40	-1031.38	55.44	139.07
SA2273A	Tunnel after tunnel	960521	8.4%	59.2%	24.1%	326.66	-27.12	-829.06	43.19	131.41
SA2273B	Tunnel after tunnel	930928								
SA2273B	Tunnel after tunnel	931130	16.1%	55.6%	14.1%	178.29	-20.43	-1470.53	81.90	74.56
SA2273B	Tunnel after tunnel	940530	12.9%	60.5%	13.7%	229.55	-19.42	-1374.59	75.53	87.76
SA2322A	Tunnel after tunnel	930928	12.7%	56.6%	18.1%	518.35	-25.24	-1401.01	59.91	116.88
SA2322A	Tunnel after tunnel	931207	10.7%	58.0%	20.7%	344.76	-27.17	-1091.01	59.97	126.16
SA2322A	Tunnel after tunnel	940308	10.2%	57.4%	22.3%	351.34	-27.54	-971.59	55.05	128.02
SA2322A	Tunnel after tunnel	940527	10.8%	59.2%	19.2%	378.74	-25.26	-1139.76	69.85	147.25
SA2600A	Tunnel after tunnel	931202							•	
SA2600A	Tunnel after tunnel	940307	38.5%	23.2%	19.1%	161.29	-28.52	-1183.90	-21.23	-16.54
SA2600A	Tunnel after tunnel	940518	33.5%	32.7%	16.9%	197.95	-26.33	-1460.76	7.39	60.93
SA2600A	Tunnel after tunnel	940906	45.6%	20.3%	17.1%	267.96	-25.16	-1137.43	-0.23	7.16
SA2600A	Tunnel after tunnel	950517	18.8%	49.4%	15.9%	235.07	-24.37	-1596.64	30.12	58.48
SA2600A	Tunnel after tunnel	951011	18.4%	50.3%	15.6%	312.06	-23.84	-1502.04	29.14	63.79
SA2600A	Tunnel after tunnel	960521	21.7%	47.1%	15.6%	302.71	-22.25	-1548.64	25.32	83.26
SA2783A	Tunnel after tunnel	940111								
SA2783A	Tunnel after tunnel	940214	44.5%	19.4%	18.1%	146.36	-27.90	-1153.63	-9.14	-17.36
SA2783A	Tunnel after tunnel	940517	45.7%	17.5%	17.5%	160.29	-26.87	-1195.17	-4.13	-10.51
SA2783A	Tunnel after tunnel	940907	45.5%	17.4%	17.4%	216.89	-26.36	-1025.25	-8.47	-12.31
SA2783A	Tunnel after tunnel	950523								
SA2783A	Tunnel after tunnel	951025	42.9%	16.4%	16.4%	259.30	-24.85	-984.48	-13.04	-11.47
SA2783A	Tunnel after tunnel	960520	42.9%	15.3%	15.3%	309.41	-24.95	-1086.25	-9.74	-12.99
SGKLX02	Laxemar	930803	0.0%	0.0%	0.0%	0.00	0.00	0.00	0.00	0.00
Glacial	Glacial		100.0%	0.0%	0.0%	0.00	0.00	0.00	0.00	0.00
Litorina	Sea		0.0%	0.0%	100.0%	0.00	0.00	0.00	0.00	0.00
Rain'60	Rain		0.0%	100.0%	0.0%	0.00	0.00	0.00	0.00	0.00

ID code	Area	Date	CI Dev.	SO4 Dev.	D Dev.	Tr Dev.	O18 Dev.	Reference water
SA2273A	Tunnel after tunnel	940907	-140.53	-9.11	13.83	-45.51	1.70	
SA2273A	Tunnel after tunnel	950518				····		
SA2273A	Tunnel after tunnel	951011	-1392.50	40.03	10.80	-51.12	1.91	
SA2273A	Tunnel after tunnel	960521	-891.81	70.27	9.95	-39.21	1.82	a ta se a
SA2273B	Tunnel after tunnel	930928						
SA2273B	Tunnel after tunnel	931130	-2076.43	28.53	7.92	-50.34	1.38	
SA2273B	Tunnel after tunnel	940530	-1817.95	5.98	8.06	-50.94	1.39	······································
SA2322A	Tunnel after tunnel	930928	-1739.23	16.10	11.29	-52.92	1.83	
SA2322A	Tunnel after tunnel	931207	-1225.58	25.36	12.35	-50.81	1.81	
SA2322A	Tunnel after tunnel	940308	-803.47	12.65	10.93	-49.42	2.08	** ····
SA2322A	Tunnel after tunnel	940527	-1240.75	13.09	8.01	-51.25	1.81	
SA2600A	Tunnel after tunnel	931202						
SA2600A	Tunnel after tunnel	940307	-1857.42	285.08	16.78	-14.72	1.98	
SA2600A	Tunnel after tunnel	940518	-2285.11	255.33	12.20	-29.22	2.02	
SA2600A	Tunnel after tunnel	940906	-1354.93	225.11	8.20	-11.72	1.88	····
SA2600A	Tunnel after tunnel	950517	-2458.10	179.17	11.52	-39.04	1.94	
SA2600A	Tunnel after tunnel	951011	-2157.69	185.97	7.84	-30.64	1.82	
SA2600A	Tunnel after tunnel	960521	-2393.95	179.69	8.96	-36.72	1.88	
SA2783A	Tunnel after tunnel	940111						
SA2783A	Tunnel after tunnel	940214	-1605.75	248.45	17.00	-15.94	1.69	
SA2783A	Tunnel after tunnel	940517	-1709.02	256.37	12.75	-14.15	1.83	
SA2783A	Tunnel after tunnel	940907	-1358.51	242.08	10.26	-8.89	1.91	
SA2783A	Tunnel after tunnel	950523						
SA2783A	Tunnel after tunnel	951025	-1518.80	292.58	9.08	3.64	1.21	
SA2783A	Tunnel after tunnel	960520	-1412.65	294.39	7.22	5.59	1.23	
SGKLX02	Laxemar	930803	0.00	0.00	0.00	0.00	0.00	Brine
Glacial	Glacial		0.00	0.00	0.00	0.00	0.00	Glacial
Litorina	Sea		0.00	0.00	0.00	0.00	0.00	Marine
Rain'60	Rain		0.00	0.00	0.00	0.00	0.00	Meteoric

Appendix 3: Boreholes associated with major fracture zones

Fracture	Represnting	ID code	Tunnel	m3 row	Area	Secup	Seclow	Centr.	Northing	Easting	Elevation	Date
zone	day		length									
	(0=90-10-14)		(m)									
Redox zone	242	KR0012B	513	167	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	910619
Redox zone	536	KR0012B	513	168	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920408
Redox zone	550	KR0012B	513	169	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920422
Redox zone	564	KR0012B	513	170	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920506
Redox zone	578	KR0012B	513	171	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920520
Redox zone	592	KR0012B	513	172	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920603
Redox zone	613	KR0012B	513	173	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920626
Redox zone	627	KR0012B	513	174	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920708
Redox zone	640	KR0012B	513	175	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920721
Redox zone	656	KR0012B	513	176	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920806
Redox zone	668	KR0012B	513	177	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920818
Redox zone	684	KR0012B	513	178	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920903
Redox zone	698	KR0012B	513	179	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920917
Redox zone	711	KR0012B	513	180	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	920930
Redox zone	723	KR0012B	513	181	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921012
Redox zone	739	KR0012B	513	182	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921028
Redox zone	752	KR0012B	513	183	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921110
Redox zone	766	KR0012B	513	184	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921124
Redox zone	774	KR0012B	513	185	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921202
Redox zone	782	KR0012B	513	186	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921210
Redox zone	793	KR0012B	513	187	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	921221
Redox zone	807	KR0012B	513	188	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930104
Redox zone	822	KR0012B	513	189	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930119
Redox zone	841	KR0012B	513	190	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930207
Redox zone	879	KR0012B	513	191	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930317
Redox zone	886	KR0012B	513	192	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930324
Redox zone	939	KR0012B	513	193	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930516
Redox zone	965	KR0012B	513	194	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930611
Redox zone	989	KR0012B	513	195	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930705
Redox zone	1031	KR0012B	513	196	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	930816
Redox zone	1115	KR0012B	513	197	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	931108

Fracture	Represnting	ID code	SNO	Na	К	Ca	Mg	HCO3	CI	SO4	D	TR	180	Brine
zone	day													
	(0=90-10-14)			(mg/L)	SMOW	(TU)	SMOW	Mixing						
Redox zone	242	KR0012B	1804	410.0	2.0	200.0	22.0	185	915.0	62.0	-83.2	25	-11.5	3.7%
Redox zone	536	KR0012B	-1	629.0	5.0	280.0	37.8	243	1360.0	134.0	-76.4	25	-10.2	5.5%
Redox zone	550	KR0012B	1940	604.0	4.9	268.0	37.7	245	1330.0	134.0	-77.3	25	-10.2	5.4%
Redox zone	564	KR0012B	1953	597.0	5.1	255.0	36.9	248	1290.0	131.0	-80.5	34	-9.9	5.0%
Redox zone	578	KR0012B	-1	591.0	5.2	252.0	37.2	250	1300.0	139.0	-77.6	51	-10.3	4.5%
Redox zone	592	KR0012B	-1	572.0	4.9	235.0	34.9	250	1270.0	136.0	-76.8	34	-11.0	4.9%
Redox zone	613	KR0012B	1969	540.0	4.7	213.0	31.9	260	1130.0	137.0	-77.5	25	-10.2	5.0%
Redox zone	627	KR0012B	1973	539.0	4.9	206.0	31.1	260	1110.0	140.0	-81.1	17	-10.3	5.2%
Redox zone	640	KR0012B	1976	527.0	4.6	206.0	31.1	270	1130.0	139.0	-79.7	17	-10.4	5.1%
Redox zone	656	KR0012B	1979	526.0	4.5	200.0	29.5	280	1070.0	141.0	-80.2	8.4	-10.4	5.3%
Redox zone	668	KR0012B	1983	522.0	4.5	196.0	29.6	280	1040.0	147.0	-80.5	17	-10.4	5.1%
Redox zone	684	KR0012B	2008	516.0	5.5	195.0	28.5	280	1080.0	143.0	-78.3	17	-10.3	5.1%
Redox zone	698	KR0012B	2011	513.0	5.5	191.0	29.1	280	1000.0	143.0	-80.3	17	-9.8	5.1%
Redox zone	711	KR0012B	2014	510.0	7.0	187.0	28.0	280	1020.0	148.0	-79.4	17	-9.9	5.3%
Redox zone	723	KR0012B	2019	503.0	5.5	187.0	28.3	292	1010.0	142.0	-81.1	17	-9.8	5.0%
Redox zone	739	KR0012B	2026	497.0	5.0	186.0	27.9	292	970.0	141.0	-79.9	17	-9.9	5.0%
Redox zone	752	KR0012B	2032	486.0	4.8	178.0	27.1	296	934.0	140.0	-78.5	25	-9.7	4.7%
Redox zone	766	KR0012B	2037	478.0	5.3	171.0	25.7	301	918.0	142.0	-78.7	17	-9.8	4.9%
Redox zone	774	KR0012B	2043	475.0	5.0	168.0	22.9	299	932.0	138.0	-72.4	10	-9.8	5.2%
Redox zone	782	KR0012B	2055	471.0	5.0	159.0	21.7	302	888.0	139.0	-72.3	4.2	-9.1	5.4%
Redox zone	793	KR0012B	2057	468.0	4.3	163.0	24.7	307	876.0	137.0	-72.4	18	-9.7	4.8%
Redox zone	807	KR0012B	2060	452.0	5.2	155.0	23.8	306	823.0	136.0	-72.9	9.3	-9.8	5.1%
Redox zone	822	KR0012B	2063	452.0	4.2	153.0	23.3	304	835.0	143.0	-72.9	20	-9.8	4.7%
Redox zone	841	KR0012B	2068	461.0	4.5	156.0	23.7	311	840.0	142.0	-71.9	11	-9.8	5.0%
Redox zone	879	KR0012B	2081	453.0	5.0	144.0	22.3	306	780.0	138.0	-68.1	12	-9.9	5.0%
Redox zone	886	KR0012B	2084	445.0	5.1	146.0	22.7	306	789.0	139.0	-69.2	15	-9.7	5.0%
Redox zone	939	KR0012B	2094	424.0	4.3	136.0	25.1	315	710.0	142.0	-72.0	17	-9.9	4.7%
Redox zone	965	KR0012B	2107	406.0	4.5	118.0	18.6	307	662.0	143.0	-75.1	18	-9.9	4.5%
Redox zone	989	KR0012B	2127	403.0	4.8	120.0	19.1	316	645.0	137.0	-74.1	27	-9.9	4.1%
Redox zone		KR0012B	2141	411.0	4.5	126.0	20.1	317	665.0	137.0	-74.1	21	-9.6	4.4%
Redox zone	1115	KR0012B	2193	387.0	4.3	118.0	20.4	324	619.0	135.0	-69.6	34	-9.6	3.2%

Fracture	Represnting	ID code	Glacial	Meteoric	Marine	Na	K	Ca	Mg	HCO3	CI	S04
zone	day											
	(0=90-10-14)		Mixing	Mixing	Mixing	Deviation						
Redox zone	242	KR0012B	20.9%	71.7%	3.7%	-22.91	-5.68	-520.64	7.76	170.30	-1059.32	7.82
Redox zone	536	KR0012B	11.1%	77.9%	5.5%	-16.07	-6.28	-793.96	16.62	224.65	-1582.39	53.75
Redox zone	550	KR0012B	11.4%	77.8%	5.4%	-28.61	-6.17	-785.22	16.93	226.83	-1555.57	55.28
Redox zone	564	KR0012B	9.1%	80.9%	5.0%	12.93	-5.14	-717.36	17.71	230.11	-1374.01	58.20
Redox zone	578	KR0012B	4.5%	86.5%	4.5%	64.85	-4.11	-620.85	19.74	232.18	-1094.65	73.18
Redox zone	592	KR0012B	11.4%	78.8%	4.9%	5.07	-5.05	-708.82	16.27	232.60	-1315.80	65.32
Redox zone	613	KR0012B	11.3%	78.7%	5.0%	-46.89	-5.59	-764.06	12.62	242.35	-1546.88	63.88
Redox zone	627	KR0012B	15.5%	74.1%	5.2%	-69.00	-5.76	-806.24	11.13	242.61	-1663.30	64.33
Redox zone	640	KR0012B	15.0%	74.8%	5.1%	-72.28	-5.91	-791.71	11.42	252.65	-1603.48	64.39
Redox zone	656	KR0012B	17.4%	71.9%	5.3%	-94.77	-6.38	-833.50	9.11	262.70	-1761.58	63.78
Redox zone	668	KR0012B	15.2%	74.7%	5.1%	-68.24	-5.85	-786.66	10.21	262.78	-1652.25	73.50
Redox zone	684	KR0012B	13.6%	76.1%	5.1%	-85.01	-5.04	-805.60	8.76	262.47	-1661.39	68.17
Redox zone	698	KR0012B	12.7%	77.1%	5.1%	-87.29	-5.02	-808.39	9.38	262.36	-1738.09	68.25
Redox zone	711	KR0012B	12.3%	77.1%	5.3%	-107.40	-3.81	-840.88	7.72	262.12	-1796.14	71.15
Redox zone	723	KR0012B	12.7%	77.2%	5.0%	-83.54	-4.79	-789.49	9.03	274.53	-1665.33	68.93
Redox zone	739	KR0012B	12.7%	77.4%	5.0%	-82.08	-5.16	-778.06	8.88	274.61	-1671.26	68.85
Redox zone	752	KR0012B	9.0%	81.6%	4.7%	-57.86	-4.76	-727.39	9.23	278.58	-1546.50	72.13
Redox zone		KR0012B	11.5%	78.7%	4.9%	-92.99	-4.72	-779.58	6.94	283.56	-1686.32	70.83
Redox zone		KR0012B	11.0%	78.7%	5.2%	-130.32	-5.61	-839.75	3.02	281.10	-1828.99	62.62
Redox zone	782	KR0012B	10.0%	79.1%	5.4%	-162.63	-6.09	-895.91	0.89	283.65	-2002.19	60.14
Redox zone	793	KR0012B	8.2%	82.2%	4.8%	-94.75	-5.58	-773.86	6.21	289.25	-1690.71	66.81
Redox zone	807	KR0012B	10.9%	78.9%	5.1%	-141.03	-5.20	-832.30	4.32	288.24	-1881.94	62.12
Redox zone	822	KR0012B	8.4%	82.2%	4.7%	-98.44	-5.47	-763.34	5.21	286.43	-1675.50	74.32
Redox zone	841	KR0012B	10.2%	79.7%	5.0%	-128.20	-5.83	-824.90	4.35	293.19	-1847.42	68.59
Redox zone	879	KR0012B	8.6%	81.4%	5.0%	-136.39	-5.33	-837.22	2.94	287.99	-1908.26	64.55
Redox zone	886	KR0012B	7.5%	82.6%	5.0%	-134.44	-5.06	-818.65	3.66	287.97	-1853.86	66.76
Redox zone	939	KR0012B	8.6%	82.0%	4.7%	-122.89	-5.31	-774.44	7.13	297.49	-1784.32	73.75
Redox zone	965	KR0012B	10.3%	80.8%	4.5%	-116.11	-4.69	-751.17	1.44	289.98	-1719.26	77.80
Redox zone		KR0012B	6.9%	84.9%	4.1%	-77.43	-3.67	-679.75	3.30	299.05	-1546.01	76.88
Redox zone	1031	KR0012B	7.5%	83.8%	4.4%	-99.77	-4.49	-724.27	3.31	299.77	-1664.45	73.17
Redox zone	1115	KR0012B	3.2%	88.3%	5.3%	-51.79	-5.58	-502.73	0.08	305.03	-1202.63	77.04

Fracture	Represnting	ID code	D	Tr	¹⁸ O
zone	day				
	(0=90-10-14)		Deviation	Deviation	Deviation
Redox zone	242	KR0012B	10.12	-46.86	0.93
Redox zone	536	KR0012B	7.82	-53.12	1.07
Redox zone	550	KR0012B	7.24	-53.02	1.11
Redox zone	564	KR0012B	2.57	-47.15	1.20
Redox zone	578	KR0012B	2.28	-35.67	0.35
Redox zone	592	KR0012B	8.24	-45.05	0.36
Redox zone	613	KR0012B	7.27	-53.89	1.13
Redox zone	627	KR0012B	6.80	-57.34	1.45
Redox zone	640	KR0012B	7.88	-57.97	1.31
Redox zone	656	KR0012B	9.15	-63.76	1.55
Redox zone	668	KR0012B	7.32	-57.90	1.34
Redox zone	684	KR0012B	8.23	-59.28	1.27
Redox zone	698	KR0012B	5.47	-60.27	1.67
Redox zone	711	KR0012B	5.99	-60.32	1.52
Redox zone	723	KR0012B	4.80	-60.46	1.68
Redox zone	739	KR0012B	6.01	-60.63	1.58
Redox zone	752	KR0012B	4.83	-56.84	1.42
Redox zone	766	KR0012B	6.38	-61.90	1.56
Redox zone	774	KR0012B	12.02	-68.88	1.49
Redox zone	782	KR0012B	11.19	-75.14	2.07
Redox zone	793	KR0012B	10.12	-64.39	1.32
Redox zone	807	KR0012B	11.57	-69.82	1.49
Redox zone	822	KR0012B	9.90	-62.36	1.25
Redox zone	841	KR0012B	12.00	-68.95	1.41
Redox zone	879	KR0012B	14.54	-69.56	1.14
Redox zone	886	KR0012B	12.65	-67.83	1.23
Redox zone	939	KR0012B	10.95	-65.24	1.17
Redox zone	965	KR0012B	9.33	-62.98	1.36
Redox zone	989	KR0012B	7.97	-58.08	1.03
Redox zone	1031	KR0012B	8.24	-62.95	1.38
Redox zone	1115	KR0012B	9.37	-54.48	0.89

Fracture	Represnting	ID code	Tunnel	m3 row	Area	Secup	Seclow	Centr.	Northing	Easting	Elevation	Date
zone	day		length				-					
	(0=90-10-14)		(m)									
Redox zone	1390	KR0012B	513	198	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	940810
Redox zone	1416	KR0012B	513	199	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	940905
Redox zone	1671	KR0012B	513	200	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	950518
Redox zone	1816	KR0012B	513	201	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	951010
Redox zone	2040	KR0012B	513	202	RedoxZone after tunnel	5	10.57	7.79	6167.254	2165.756	-69.196	960521
NE-4a,4b	304	SA0850B	850	325	Tunnel after tunnel	1	19.8	10.40	6514.633	2146.364	-117.736	910820
NE-4a,4b	382	SA0813B	813	316	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	911106
NE-4a,4b	841	SA0813B	813	317	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	930207
NE-4a,4b	1053	SA0813B	813	318	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	Distant de la companya de la	930907
NE-4a,4b	1075	SA0813B	813	319	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	930929
NE-4a,4b	1151	SA0813B	813		Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822		931214
NE-4a,4b	1326	SA0813B	813	320	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	940607
NE-4a,4b	1416	SA0813B	813	321	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	940905
NE-4a,4b	1670	SA0813B	813	322	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	950517
NE-4a,4b	1818	SA0813B	813	323	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	951012
NE-4a,4b	2040	SA0813B	813	324	Tunnel after tunnel	5.6	19.5	12.55	6479.609	2152.822	-112.929	960521
NE-3b,3c	384	SA0958B	958		Tunnel after tunnel	5	19.7	12.35	6618.921	2151.272	-133.195	911108
NE-3b,3c	551	SA1062B	1062	340	Tunnel after tunnel	6	20	13.00	6724.883	2145.887	-146.969	920423
NE-3b,3c	774	SA1062B	1062	341	Tunnel after tunnel	6	20	13.00	6724.883	2145.887	-146.969	921202
NE-3b,3c	977	SA0958B	958	328	Tunnel after tunnel	5	19.7	12.35	6618.921	2151.272	-133.195	930623
NE-3b,3c	1074	SA0958B	958	329	Tunnel after tunnel	5	19.7	12.35	6618.921	2151.272	-133.195	930928
NE-3b,3c	1326	SA0958B	958	330	Tunnel after tunnel	5	19.7	12.35	6618.921	2151.272	-133.195	940607
NE-3b,3c	360	SA0976B	976	331	Tunnel after tunnel	1	10.5	5.75	6630.253	2154.035	-134.171	911015
NE-3b,3c	1012	SA1009B	1009	332	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	930628
NE-3b,3c	1040	SA1009B	1009	333	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	930825
NE-3b,3c	1074	SA1009B	1009	334	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	930928
NE-3b,3c	1327	SA1009B	1009	335	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	940608
NE-3b,3c	1416	SA1009B	1009	336	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	940905
NE-3b,3c	1670	SA1009B	1009	337	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899		950517
NE-3b,3c	1818	SA1009B	1009	338	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899	-139.744	951012
NE-3b,3c	2040	SA1009B	1009	339	Tunnel after tunnel	6	19.5	12.75	6672.091	2152.899		960521

Fracture	Represnting	ID code	SNO	Na	К	Ca	Mg	HCO3	CI	SO4	D	TR	180	Brine
zone	day													
	(0=90-10-14)			(mg/L)	SMOW	(TU)	SMOW	Mixing						
Redox zone		KR0012B	2270	346.6	3.4	100.0	17.4	325	500.0	126.0	-68.1	25	-9.8	3.9%
Redox zone	1416	KR0012B	2276	343.9	3.5	100.0	17.9	326	531.8	129.0	-67.9	30	-9.6	3.3%
Redox zone	1671	KR0012B	2314	381.3	4.5	110.0	21.7	308	608.4	129.0	-68.8	17	-9.4	4.6%
Redox zone	1816	KR0012B	2323	375.3	4.5	116.0	23.2	295	642.4	119.6	-66.7	42	-9.5	2.0%
Redox zone	2040	KR0012B	2361	326.9	3.7	83.6	14.4	302	495.6	102.0	-70.4	38	-9.9	3.0%
NE-4a,4b	304	SA0850B	-1	1920	18.0	1210	141	170	5440	91	-67.2	6.8	-8.3	9.7%
NE-4a,4b	382	SA0813B	-1	2300	29.0	730	233	1200	4920	36	-50.4	14.0	-7.3	-1.#IND
NE-4a,4b	841	SA0813B	2074	1670	19.0	317	124	420	3360	227	-58.2	14.0	-7.5	3.0%
NE-4a,4b	1053	SA0813B	2166	1660	20.0	325	127	326	3300	276	-57.6	19.0	-7.0	3.4%
NE-4a,4b	1075	SA0813B	2190	1640	19.1	310	124	317	3350	274	-59.8	6.8	-7.5	5.7%
NE-4a,4b	1151	SA0813B	2207	1630		332	128	298	3320	298	-53.7	30.4	-7.2	
NE-4a,4b	1326	SA0813B	2253	1578	11.9	322	121	302	3272	299	-54.4	24.0	-7.2	3.4%
NE-4a,4b	1416	SA0813B	2275	1573	20.3	318	121	292	3113	298	-53.7	22.8	-7.2	3.1%
NE-4a,4b	1670	SA0813B	2311	1551	17.5	282	124	311	3081	274	-58.9	18.6	-7.5	4.1%
NE-4a,4b	1818	SA0813B	2336	1471	16.2	280	115	318	2980	257	-57.5	21.1	-7.3	3.2%
NE-4a,4b	2040	SA0813B	2353	1523	19.4	276	112	319	2964	252	-53.2	19.4	-6.8	2.2%
NE-3b,3c		SA0958B	-1					540	5400		-57.5	14.0	-7.4	
NE-3b,3c	551	SA1062B	-1	2230	23.5	770	220	531	5320	101	-57.6	9.3	-7.3	1.4%
NE-3b,3c		SA1062B	2050	1930	34.0	545	177	403	4350	187	-58.0	8.0	-7.7	3.5%
NE-3b,3c	977	SA0958B	2121	1829	22.4	595	137	371	4088	243	-61.9	14.0	-7.7	5.0%
NE-3b,3c	1074	SA0958B	2181	1810	19.6	657	144	296	4260	241	-56.0	8.4	-7.5	5.7%
NE-3b,3c	1326	SA0958B	2254	1634	21.4	478	125	274	3641	303	-55.6	22.8	-7.2	4.1%
NE-3b,3c	360	SA0976B	-1	2170	20.6	993	203	500	5590	59	-60.4	14.0	-7.4	1.9%
NE-3b,3c	1012	SA1009B	2123	1847	26.3	535	164	300	4126	250	-53.1	36.3	-7.3	1.4%
NE-3b,3c	1040	SA1009B	2152	1770	26.6	506	153	292	3984	250	-47.3	8.0	-7.3	3.9%
NE-3b,3c	1074	SA1009B	2172	1740	25.8	514	164	276	4080	252	-84.8	5.1	-11.1	13.0%
NE-3b,3c	1327	SA1009B	2262	1682	23.6	441	145	242	3673	304	-58.1	15.0	-7.3	5.5%
NE-3b,3c	1416	SA1009B	2280	1590	27.1	372	138	234	3390	313	-54.2	12.7	-7.3	5.0%
NE-3b,3c	1670	SA1009B	2313	1568	31.2	275	152	228	3386	353	-54.3	20.3		3.5%
NE-3b,3c	1818	SA1009B	2334	1526	30.3	240	146	234	3045	330	-54.5	27.0		2.8%
NE-3b,3c	2040	SA1009B	2356	1598	35.9	239	150	110		371	-57.4	24.5		

Fracture	Represnting	ID code	Glacial	Meteoric	Marine	Na	K	Ca	Mg	HCO3	CI	SO4
zone	day											
	(0=90-10-14)		Mixing	Mixing	Mixing	Deviation						
Redox zone	1390	KR0012B	4.4%	87.9%	3.9%	-108.36	-4.64	-657.31	2.44	308.05	-1574.72	68.97
Redox zone	1416	KR0012B	3.3%	88.7%	4.8%	-86.93	-5.67	-537.04	-0.57	307.68	-1301.84	72.80
Redox zone	1671	KR0012B	5.5%	85.4%	4.6%	-152.98	-4.89	-779.43	4.14	290.26	-1828.35	62.27
Redox zone	1816	KR0012B	2.0%	88.9%	7.2%	-20.23	-7.74	-272.77	-4.28	273.37	-720.31	62.69
Redox zone	2040	KR0012B	3.0%	90.4%	3.6%	-42.59	-3.45	-501.65	0.64	285.31	-1140.47	54.64
NE-4a,4b	304	SA0850B	9.7%	59.2%	21.4%	414.31	-19.61	-694.38	59.33	130.13	-444.08	-110.62
NE-4a,4b	382	SA0813B	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
NE-4a,4b	841	SA0813B	3.0%	66.0%	28.0%	523.62	-25.76	-302.91	17.28	370.58	237.50	51.16
NE-4a,4b	1053	SA0813B	3.4%	63.3%	30.0%	419.84	-27.88	-372.16	12.98	274.05	-121.41	86.58
NE-4a,4b	1075	SA0813B	5.7%	62.5%	26.1%	326.09	-23.89	-827.80	24.62	270.45	-927.65	83.99
NE-4a,4b		SA0813B										
NE-4a,4b		SA0813B	3.4%	65.1%	28.1%	396.05	-33.08	-377.02	14.19	252.59	-45.33	119.33
NE-4a,4b		SA0813B	3.1%	63.3%	30.4%	337.97	-28.18	-335.34	5.26	239.41	-227.31	108.28
NE-4a,4b	1670	SA0813B	4.1%	64.9%	26.9%	345.53	-26.07	-549.85	21.44	263.16	-496.81	93.93
NE-4a,4b	1818	SA0813B	3.2%	66.8%	26.9%	346.41	-26.84	-373.14	12.72	270.16	-156.73	85.67
NE-4a,4b		SA0813B	2.2%	65.6%	30.0%	380.67	-27.99	-197.78	-2.06	266.90	87.90	72.95
NE-3b,3c		SA0958B										
NE-3b,3c		SA1062B	1.4%	59.1%	38.0%	900.45	-35.88	439.52	75.40	468.06	2333.66	-113.04
NE-3b,3c		SA1062B	3.5%	57.7%	35.4%		-22.24	-178.16	42.42	343.82	555.01	-31.69
NE-3b,3c	977	SA0958B	5.0%	61.4%	28.6%	492.67	-24.13	-416.88	28.13	321.04	-25.03	45.91
NE-3b,3c	1074	SA0958B	5.7%	59.3%	29.2%	391.51	-28.25	-495.89	32.66	245.25	-234.79	33.97
NE-3b,3c	and a second	SA0958B	4.1%	61.2%	30.6%	313.85	-27.81	-354.22	8.46	221.23	-148.47	103.84
NE-3b,3c	360	SA0976B	1.9%	61.3%	34.8%	897.20	-34.13	566.64	70.47	441.37	2551.31	-143.04
NE-3b,3c		SA1009B	1.4%	60.0%	37.3%	543.54	-31.88	208.98	22.35	238.10	1194.96	40.19
NE-3b,3c	1040	SA1009B	3.9%	57.4%	34.8%	333.88	-28.99	-291.90	20.47	233.58	37.22	30.61
NE-3b,3c	1074	SA1009B	13.0%	59.7%	14.3%	179.35	-2.34	-2019.61	109.38	246.01	-2934.13	57.92
NE-3b,3c	1327	SA1009B	5.5%	58.5%	30.6%	244.71	-26.14	-662.02	28.70	189.47	-774.85	92.52
NE-3b,3c	1416	SA1009B	5.0%	58.2%	31.7%	153.08	-24.24	-647.41	17.26	179.86	-920.45	99.36
NE-3b,3c		SA1009B	3.5%	56.6%	36.3%	112.08	-26.54	-461.95	13.79	167.54	-497.56	128.70
NE-3b,3c	1818	SA1009B	2.8%	59.3%	35.1%	173.10	-25.20	-350.57	12.51	175.12	-409.61	118.98
NE-3b,3c	2040	SA1009B	5.2%	54.3%	35.4%	32.30	-21.15	-813.13	15.29	50.96	-1430.96	136.78

Fracture	Represnting	ID code	D	Tr	¹⁸ O
zone	day				
	(0=90-10-14)		Deviation	Deviation	Deviation
Redox zone	1390	KR0012B	12.18	-63.02	0.88
Redox zone	1416	KR0012B	11.33	-58.80	0.93
Redox zone	1671	KR0012B	11.82	-68.56	1.35
Redox zone	1816	KR0012B	10.90	-46.97	0.78
Redox zone	2040	KR0012B	9.28	-52.54	0.67
NE-4a,4b	304	SA0850B	7.32	-52.79	1.89
NE-4a,4b	382	SA0813B	-1.#IND	-1.#IND	-1.#IND
NE-4a,4b	841	SA0813B	10.46	-52.10	1.72
NE-4a,4b	1053	SA0813B	10.36	-44.42	2.15
NE-4a,4b	1075	SA0813B	10.89	-55.96	2.07
NE-4a,4b	1151	SA0813B			
NE-4a,4b	1326	SA0813B	14.43	-41.27	2.06
NE-4a,4b	1416	SA0813B	13.96	-40.62	1.91
NE-4a,4b	1670	SA0813B	10.73	-46.43	1.88
NE-4a,4b	1818	SA0813B	11.77	-45.81	2.00
NE-4a,4b	2040	SA0813B	14.26	-46.27	2.25
NE-3b,3c	384	SA0958B			
NE-3b,3c	551	SA1062B	5.89	-49.91	1.23
NE-3b,3c	774	SA1062B	7.57	-49.83	1.16
NE-3b,3c	977	SA0958B	7.38	-47.57	1.67
NE-3b,3c	1074	SA0958B	13.30	-51.11	1.90
NE-3b,3c	1326	SA0958B	12.36	-38.60	1.98
NE-3b,3c	360	SA0976B	4.75	-47.37	1.36
NE-3b,3c	1012	SA1009B	10.73	-23.72	1.28
NE-3b,3c	1040	SA1009B	18.68	-49.61	1.63
NE-3b,3c	1074	SA1009B	-5.64	-55.14	-0.23
NE-3b,3c	1327	SA1009B	10.50	-43.72	2.01
NE-3b,3c	1416	SA1009B	13.68	-45.72	1.90
NE-3b,3c	1670	SA1009B	10.86	-36.45	2.12
NE-3b,3c	1818	SA1009B	10.90	-32.45	1.72
NE-3b,3c	2040	SA1009B	8.89	-29.97	2.01

Fracture	Represnting	ID code	Tunnel	m3 row	Area	Secup	Seclow	Centr.	Northing	Easting	Elevation	Date
zone	day		length									
	(0=90-10-14)		(m)									
NE-1a,1b	518	SA1229A	1229		Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	920320
NE-1a,1b	524	SA1229A	1229		Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	920326
NE-1a,1b	531	SA1229A	1229		Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	920403
NE-1a,1b	538	SA1229A	1229		Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	920410
NE-1a,1b	570	SA1229A	1229		Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	920512
NE-1a,1b	605	SA1342B	1342	352	Tunnel after tunnel	0	20.3	10.15	6999.050	2109.358	-186.573	920616
NE-1a,1b	726	SA1327B	1327	351	Tunnel after tunnel	6	20.3	13.15	6987.423	2111.440	-184.085	921015
NE-1a,1b	774	HA1327B	1327	285	Tunnel after tunnel	3.5	29.5	16.50	6963.062	2118.058	-182.949	921202
NE-1a,1b	841	HA1327B	1327	286	Tunnel after tunnel	3.5	29.5	16.50	6963.062	2118.058	-182.949	930207
NE-1a,1b	1039	SA1229A	1229	346	Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	930824
NE-1a,1b	1041	HA1327B	1327		Tunnel after tunnel	3.5	29.5	16.50	6963.062	2118.058	-182.949	930826
NE-1a,1b	1075	HA1327B	1327	287	Tunnel after tunnel	3.5	29.5	16.50	6963.062	2118.058	-182.949	930929
NE-1a,1b	1151	HA1327B	1327	288	Tunnel after tunnel	3.5	29.5	16.50	6963.062	2118.058	-182.949	931214
NE-1a,1b	1326	SA1229A	1229	347	Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	940607
NE-1a,1b	1671	SA1229A	1229	348	Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	950518
NE-1a,1b	1817	SA1229A	1229	349	Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	951011
NE-1a,1b	2040	SA1229A	1229	350	Tunnel after tunnel	6	20.5	13.25	6885.159	2105.455	-171.291	960521
EW-3a	298	SA1420A	1420	353	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	920814
EW-3a	726	SA1420A	1420	354	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	921015
EW-3a	774	SA1420A	1420	355	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	921202
EW-3a	841	SA1420A	1420	356	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	930207
EW-3a	976	SA1420A	1420	357	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	930622
EW-3a	1039	SA1420A	1420	358	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	930824
EW-3a	1075	SA1420A	1420	359	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	930929
EW-3a	1326	SA1420A	1420	360	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	940607
EW-3a	1417	SA1420A	1420	361	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	940906
EW-3a	1671	SA1420A	1420	362	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	950518
EW-3a	1817	SA1420A	1420	363	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	951011
EW-3a	2040	SA1420A	1420	364	Tunnel after tunnel	6	50	28.00	7092.329	2080.819	-200.592	960521
NE-2a-1	698	SA1614B	1614		Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	920917
NE-2a-1	709	SA1643B	1643		Tunnel after tunnel	0	20.2	10.10	7281.555	2044.474	-226.070	920928

Fracture	Represnting	ID code	SNO	Na	К	Ca	Mg	HCO3	CI	SO4	D	TR	18O	Brine
zone	day													
	(0=90-10-14)			(mg/L)	SMOW	(TU)	SMOW	Mixing						
NE-1a,1b	518	SA1229A	-1					530	5500		-51.7	16.9	-7.1	
NE-1a,1b	524	SA1229A	-1					530	5600		-49.7	27.0	-7.1	
NE-1a,1b	531	SA1229A	-1					520	5600		-52.8	16.9	-7.0	
NE-1a,1b	538	SA1229A	-1					520	5600		-60.0	16.0	-7.3	
NE-1a,1b	570	SA1229A	-1					490	5500		-63.6	17.0	-8.1	
NE-1a,1b	605	SA1342B	-1	1680	11.0	950	152	170	4730	148	-61.9	5.9	-8.7	9.3%
NE-1a,1b	726	SA1327B	2023	1610	9.4	648	128	252	3920	225	-65.3	17.0	-7.4	6.4%
NE-1a,1b	774	HA1327B	2051	1850	12.0	778	158	277	4770	198	-50.6	18.0	-7.5	4.3%
NE-1a,1b	841	HA1327B	2076	1860	11.0	746	155	280	4600	208	-59.2	8.0	-7.5	6.6%
NE-1a,1b	1039	SA1229A	2147	1810	27.0	580	151	388	4106	210	-50.1	14.0	-6.6	1.4%
NE-1a,1b	1041	HA1327B	2156	1780	12.6	696	147	270		230	-58.2	19.0	-7.7	
NE-1a,1b	1075	HA1327B	2191	1790	12.3	674	153	265	4350	241	-57.5	18.0	-7.6	5.5%
NE-1a,1b	1151	HA1327B	2208	1760	13.7	684	157	259	4310	255	-54.5	13.0	-7.4	5.6%
NE-1a,1b	1326	SA1229A	2256	1735	26.1	512	152	336	3928	243	-58.1	14.0	-7.4	4.0%
NE-1a,1b	1671	SA1229A	2320	1629	24.1	467	147	310	3675	248	-54.7	23.7	-7.3	2.6%
NE-1a,1b	1817	SA1229A	2329	1621	24.4	440	136	314	3482	246	-56.3	23.7	-7.3	2.7%
NE-1a,1b	2040	SA1229A	2357	1640	28.0	413	137	303	3393	248	-46.3	15.2	-6.5	1.5%
EW-3a	298	SA1420A	-1	1650	7.6	981	117	830	4610	200	-59.0	31.0	-7.5	-1.#IND
EW-3a	726	SA1420A	2024	1540	10.2	715	123	170	3930	226	-86.6	17.0	-11.2	11.3%
EW-3a	774	SA1420A	2052	1610	11.0	760	126	202	4140	225	-55.5	32.0	-7.2	4.1%
EW-3a	841	SA1420A	2077	1550	14.0	482	129	226	3450	336	-57.6	27.0	-7.2	4.8%
EW-3a	976	SA1420A	2116	1484	9.7	488	125	215	3420	307	-50.5	32.1	-7.1	3.2%
EW-3a	1039	SA1420A	2148	1539	15.8	485	127	212	3435	309	-52.5	22.0	-7.0	4.4%
EW-3a	1075	SA1420A	2183	1600	13.7	480	139	214	3530	335	-68.8	10.0	-8.5	9.6%
EW-3a	1326	SA1420A	2257	1427	15.7	396	117	206	3053	303	-72.0	17.0	-8.7	8.9%
EW-3a	1417	SA1420A	2282	1442	18.2	369	125	199	2950	305	-57.0	28.7	-7.5	4.3%
EW-3a	1671	SA1420A	2318	1348	20.5	284	136	199	2900	302	-58.4	33.0	-7.3	3.2%
EW-3a	1817	SA1420A	2330	1334	20.3	247	129	204	2721	267	-58.3	40.0	-7.6	2.3%
EW-3a	2040	SA1420A	2358	1316	21.1	245	119	214	2677	281	-60.3	23.7	-7.1	3.9%
NE-2a-1	698	SA1614B	-1					140	2600		-85.5		-11.5	
NE-2a-1	709	SA1643B	-1				1	44	4100		-106.0		-13.5	

Fracture	Represnting	ID code	Glacial	Meteoric	Marine	Na	K	Ca	Mg	HCO3	CI	SO4
zone	day											
	(0=90-10-14)		Mixing	Mixing	Mixing	Deviation						
NE-1a,1b	518	SA1229A										
NE-1a,1b	524	SA1229A										
NE-1a,1b	531	SA1229A										
NE-1a,1b	538	SA1229A						·~				
NE-1a,1b	570	SA1229A										
NE-1a,1b	605	SA1342B	9.3%	61.1%	20.4%	244.05	-24.86	-866.99	74.16	131.43	-882.84	-44.32
NE-1a,1b	726	SA1327B	6.4%	64.7%	22.5%	351.51	-28.37	-618.60	42.29	210.34	-466.28	47.64
NE-1a,1b	774	HA1327B	4.3%	60.8%	30.5%	510.37	-37.19	-104.85	41.80	224.38	861.88	-3.06
NE-1a,1b	841	HA1327B	6.6%	60.5%	26.3%	462.46	-32.72	-566.93	54.80	233.26	-117.94	8.70
NE-1a,1b	1039	SA1229A	1.4%	60.1%	37.0%	511.36	-30.84	248.58	10.23	326.41	1174.99	1.14
NE-1a,1b	1041	HA1327B										
NE-1a,1b	1075	HA1327B	5.5%	61.0%	27.9%	432.40	-33.33	-438.48	46.93	216.08	33.34	43.04
NE-1a,1b	1151	HA1327B	5.6%	59.5%	29.4%	352.89	-34.24	-435.26	45.25	208.08	-108.87	48.97
NE-1a,1b	1326	SA1229A	4.0%	60.0%	32.0%	376.95	-25.21	-308.27	30.20	281.37	88.31	37.21
NE-1a,1b	1671	SA1229A	2.6%	61.9%	33.0%	362.24	-28.04	-77.67	21.56	253.93	453.97	50.11
NE-1a,1b	1817	SA1229A	2.7%	62.8%	31.8%	381.34	-25.92	-129.95	15.22	259.59	269.51	53.29
NE-1a,1b	2040	SA1229A	1.5%	60.2%	36.8%	340.81	-29.53	64.14	-2.90	241.73	432.49	39.51
EW-3a	298	SA1420A	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND	-1.#IND
EW-3a	726	SA1420A	20.1%	57.4%	11.3%	225.72	-12.49	-1473.56	79.93	144.96	-2066.57	63.88
EW-3a	774	SA1420A	4.1%	64.2%	27.7%	384.89	-33.66	-65.44	20.70	153.19	536.52	41.49
EW-3a	841	SA1420A	4.8%	62.2%	28.2%	243.70	-31.84	-489.01	21.60	176.53	-540.92	142.83
EW-3a	976	SA1420A	3.2%	64.4%	29.2%	282.40	-36.98	-173.41	13.77	164.01	128.00	123.06
EW-3a	1039	SA1420A	4.4%	61.6%	29.7%	223.60	-32.13	-401.49	13.96	160.50	-434.48	112.07
EW-3a	1075	SA1420A	9.6%	60.4%	20.3%	134.35	-22.22	-1409.57	61.42	175.56	-2256.18	139.66
EW-3a	1326	SA1420A	8.9%	64.4%	17.9%	103.48	-16.11	-1344.06	48.75	170.76	-2227.13	127.37
EW-3a	1417	SA1420A	4.3%	63.6%	27.9%	191.85	-26.95	-494.77	18.70	149.86	-762.22	118.34
EW-3a	1671	SA1420A	3.2%	64.0%	29.6%	133.11	-26.80	-378.91	23.23	147.47	-418.90	115.88
EW-3a	1817	SA1420A	2.3%	66.6%	28.9%	222.11	-25.44	-234.52	19.07	153.36	-111.74	
EW-3a	2040	SA1420A	3.9%	64.9%	27.3%	116.92	-22.90	-548.07	15.14	165.68		100.97
NE-2a-1	698	SA1614B				1						
NE-2a-1	709	SA1643B			and the second design of the s							

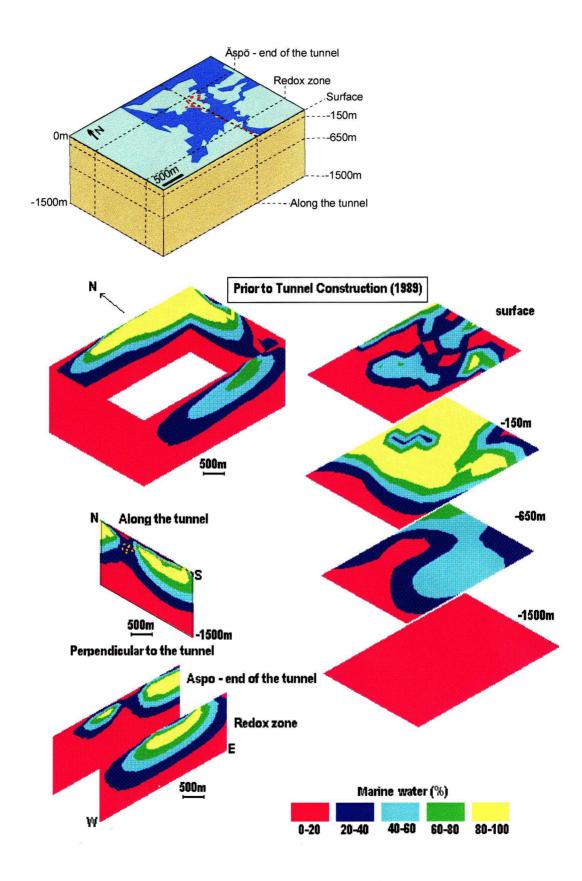
Fracture	Represnting	ID code	D	Tr	¹⁸ O
zone	day				
	(0=90-10-14)		Deviation	Deviation	Deviation
NE-1a,1b	518	SA1229A			
NE-1a,1b	524	SA1229A			
NE-1a,1b	531	SA1229A			
NE-1a,1b	538	SA1229A			
NE-1a,1b	570	SA1229A			
NE-1a,1b	605	SA1342B	12.88	-55.57	1.50
NE-1a,1b	726	SA1327B	7.31	-48.00	2.43
NE-1a,1b	774	HA1327B	17.52	-42.98	1.71
NE-1a,1b	841	HA1327B	11.79	-52.77	2.14
NE-1a,1b	1039	SA1229A	13.85	-46.19	1.99
NE-1a,1b	1041	HA1327B			
NE-1a,1b		HA1327B	12.34	-43.28	1.86
NE-1a,1b	1151	HA1327B	14.68	-46.74	1.98
NE-1a,1b	1326	SA1229A	9.21	-46.16	1.69
NE-1a,1b	1671	SA1229A	11.56	-38.30	1.61
NE-1a,1b	1817	SA1229A	10.57	-39.26	1.69
NE-1a,1b	2040	SA1229A	17.79	-45.04	2.11
EW-3a	298	SA1420A	-1.#IND	-1.#IND	-1.#IND
EW-3a	726	SA1420A	0.04	-40.90	0.61
EW-3a	774	SA1420A	13.79	-32.38	2.14
EW-3a	841	SA1420A	11.76	-35.37	2.18
EW-3a	976	SA1420A	17.72	-32.41	2.08
EW-3a	1039	SA1420A	16.00	-39.76	2.25
EW-3a	1075	SA1420A	6.18	-50.80	1.74
EW-3a	1326	SA1420A	3.76	-47.73	1.61
EW-3a	1417	SA1420A	12.26	-35.04	1.84
EW-3a	1671	SA1420A	9.63	-31.09	1.85
EW-3a	1817	SA1420A	9.67	-26.66	1.51
EW-3a	2040	SA1420A	9.09	-41.38	2.25
NE-2a-1	698	SA1614B			
NE-2a-1	709	SA1643B			

Fracture	Represnting	ID code	Tunnel	m3 row	Area	Secup	Seclow	Centr.	Northing	Easting	Elevation	Date
zone	day		length							······································		
	(0=90-10-14)		(m)									
NE-2a-1	724	SA1680A	1680	370	Tunnel after tunnel	0	16	8.00	7318.215	2047.157	-229.265	921013
NE-2a-1	730	SA1693F	1693	373	Tunnel after tunnel	0	38.5	19.25	7339.443	2059.900	-233.173	921019
NE-2a-1	731	SA1680B	1680	371	Tunnel after tunnel	6	20	13.00	7317.959	2060.113	-230.324	921020
NE-2a-1	731	SA1696B	1696	374	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	921020
NE-2a-1	761	SA1614B	1614	365	Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	921119
NE-2a-1	761	SA1696B	1696	375	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	921119
NE-2a-1	837	SA1680B	1680	372	Tunnel after tunnel	6	20	13.00	7317.959	2060.113	-230.324	930203
NE-2a-1	976	SA1614B	1614	366	Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	930622
NE-2a-1	976	SA1696B	1696	376	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	930622
NE-2a-1	1039	SA1614B	1614	367	Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	930824
NE-2a-1	1039	SA1696B	1696	377	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	930824
NE-2a-1	1075	SA1614B	1614	368	Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	930928
NE-2a-1	1075	SA1696B	1696	378	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	930928
NE-2a-1	1325	SA1614B	1614	369	Tunnel after tunnel	5.8	19.3	12.55	7257.869	2039.086	-224.037	940606
NE-2a-1	1325	SA1696B	1696	379	Tunnel after tunnel	5.9	19.2	12.55	7332.421	2065.722	-232.645	940606
NE-2a-2	407	SA1844B	1844	396	Tunnel after tunnel	0	20	10.00	7406.191	2169.721	-250.509	921201
NE-2a-2	413	SA1861A	1861	397	Tunnel after tunnel	3.6	20.2	11.90	7423.227	2184.194	-254.144	921207
NE-2a-2		SA1742A	1742	389	Tunnel after tunnel	0	41.1	20.55	7388.092	2070.208	-240.943	921102
NE-2a-2		SA1828B	1828	390	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	921119
NE-2a-2	850	SA1828B	1828	391	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	930216
NE-2a-2	975	SA1828B	1828	392	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	930621
NE-2a-2	1041	SA1828B	1828	393	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	930826
NE-2a-2	1075	SA1828B	1828	394	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	930928
NE-2a-2	1325	SA1828B	1828	395	Tunnel after tunnel	5.8	20	12.90	7401.580	2157.075	-249.511	940606
NE2a-3	123	SA2634B	2634	432	Tunnel after tunnel	6	20.4	13.20	7342.435	2070.008	-349.685	940224
NE2a-3	123	SA2649A	2649	433	Tunnel after tunnel	5.8	19.85	12.83	7361.111	2062.669	-352.167	940224
NE2a-3	949	SA2583A	2583		Tunnel after tunnel	0	20	10.00	7298.333	2035.212	-343.215	930526
NE2a-3	1126	SA2649B	2649		Tunnel after tunnel	0	20.4	10.20	7354.053	2073.520	-352.015	931119
NE2a-3	1139	SA2600A	2600		Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414		931202
NE2a-3	1234	SA2583A	2583	423	Tunnel after tunnel	5.7	20	12.85	7301.166	2035.311	-343.513	940307
NE2a-3	1234	SA2600A	2600	425	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414		940307

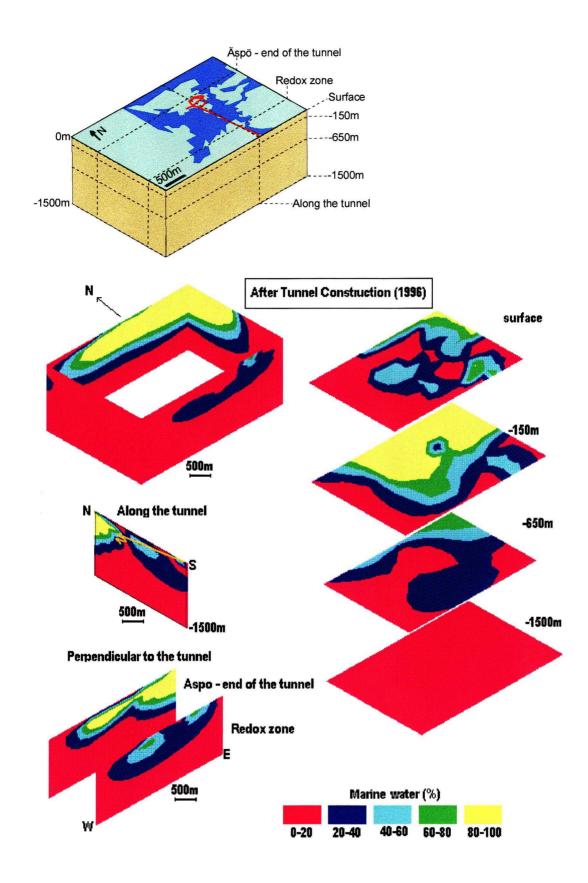
Fracture	Represnting	ID code	SNO	Na	К	Ca	Mg	HCO3	CI	SO4	D	TR	180	Brine
zone	day													
	(0=90-10-14)			(mg/L)	SMOW	(TU)	SMOW	Mixing						
NE-2a-1	724	SA1680A	-1	606	5.9	171	27	237	1160	166	-77.4	7.6	-10.4	6.1%
NE-2a-1	730	SA1693F	-1	941	5.4	489	39	160	2400	219	-90.3	4.2	-12.0	8.0%
NE-2a-1	731	SA1680B	2025	657	4.9	217	31	224	1560	178	-83.8	5.1	-10.8	6.4%
NE-2a-1	731	SA1696B	-1	693	5.8	285	33	213	1560	169	-85.6	8.4	-11.2	6.4%
NE-2a-1	761	SA1614B	2035	1570	8.3	1250	80	37	5160	308	-78.3	8.0	-10.5	13.4%
NE-2a-1	761	SA1696B	2036	1330	9.4	916	74	102	3910	266	-84.0	5.1	-11.0	11.4%
NE-2a-1	837	SA1680B	2066	1100	10.0	583	63	137	2790	194	-85.5	17.0	-10.7	9.0%
NE-2a-1	976	SA1614B	2117	1954	5.2	1710	66	32	6207	424	-103.1	8.0	-13.1	14.6%
NE-2a-1	976	SA1696B	2118	1653	6.3	1196	73	68	4828	365	-93.2	8.0	-11.5	13.0%
NE-2a-1	1039	SA1614B	2149	1944	7.5	1516	85	67	5816	339	-92.5	4.2	-11.9	14.3%
NE-2a-1	1039	SA1696B	2150	1817	8.9	1401	72	54	5499	419	-82.8	4.2	-11.1	14.9%
NE-2a-1	1075	SA1614B	2184	1880	6.7	1390	91	81	5650	350	-71.9	4.2	-9.7	14.9%
NE-2a-1	1075	SA1696B	2185	1880	8.0	1450	76	57	5690	428	-81.3	7.0	-11.2	15.1%
NE-2a-1	1325	SA1614B	2249	1831	7.4	1207	98	109	5176	333	-77.6	8.4	-10.4	14.0%
NE-2a-1	1325	SA1696B	2250	1933	9.1	1740	71	89	6275	459	-81.0	7.0	-11.1	15.8%
NE-2a-2	407	SA1844B	-1	1810	9.5	1220	113	62	5250	330	-75.8	4.2	-9.5	14.9%
NE-2a-2	413	SA1861A	-1	1720	11.0	1050	112	79	4940	302	-73.9	4.2	-9.2	14.3%
NE-2a-2	744	SA1742A	-1	1300	8.4	968	42	71	3800	286	-98.3	4.2	-12.8	10.6%
NE-2a-2	761	SA1828B	-1	1700	8.5	1290	92	43	5200	303	-75.9	4.2	-10.3	14.0%
NE-2a-2	850	SA1828B	2078	1860	9.6	1250	118	72	5540	340	-80.1	4.0	-10.3	15.0%
NE-2a-2	975	SA1828B	2115	1909	8.0	1392	114	48	5850	387	-84.4	4.2	-10.8	15.5%
NE-2a-2	1041	SA1828B	2157	1933	11.6	1494	108	49	6550	363	-71.4	4.0	-10.3	16.3%
NE-2a-2	1075	SA1828B	2187	1930	10.0	1450	108	48	6010	362	-71.1	32.0	-9.3	13.9%
NE-2a-2	1325	SA1828B	2252	1862	11.7	1064	139	111	5123	251	-67.8	8.4	-8.9	12.4%
NE2a-3	123	SA2634B	2219	2273	10.2	1986	91	64	7197	414	-86.2	18.0	-11.3	16.6%
NE2a-3	123	SA2649A	2220	2123	8.3	1715	76	39	6523	501	-82.7	14.0	-10.9	16.6%
NE2a-3	949	SA2583A	-1					12	7871		-90.6		-12.1	
NE2a-3	1126	SA2649B	-1					13	9041		-92.9	5.1	-12.8	
NE2a-3	1139	SA2600A	2203	~				25	7250		-88.4	10.0		
NE2a-3	1234	SA2583A	2223	2099	8.3	1870	57	13	6647	508	-83.5	5.9	-11.1	16.9%
NE2a-3	1234	SA2600A	2224	2398	9.9	2541	52	17	8349	560	-77.9	9.3		19.1%

Fracture	Represnting	ID code	Glacial	Meteoric	Marine	Na	К	Ca	Mg	HCO3	CI	SO4
zone	day											
	(0=90-10-14)		Mixing	Mixing	Mixing	Deviation						
NE-2a-1	724	SA1680A	17.8%	70.1%	6.1%	-102.50	-6.47	-1008.63	3.74	218.72	-2071.98	78.04
NE-2a-1	730	SA1693F	33.9%	50.2%	8.0%	9.30	-10.79	-1062.41	8.44	141.07	-1850.76	103.85
NE-2a-1	731	SA1680B	23.6%	63.6%	6.4%	-87.74	-8.09	-1023.00	6.56	206.00	-1837.42	85.66
NE-2a-1	731	SA1696B	24.9%	62.4%	6.4%	-49.40	-7.16	-951.11	8.63	195.19	-1826.78	76.95
NE-2a-1	761	SA1614B	26.5%	46.7%	13.4%	1.51	-18.73	-1361.95	28.62	9.78	-1996.75	114.81
NE-2a-1	761	SA1696B	27.8%	49.4%	11.4%	-3.90	-13.63	-1305.25	30.29	77.67	-2176.19	101.55
NE-2a-1	837	SA1680B	21.5%	60.6%	9.0%	53.66	-8.13	-1159.30	28.70	115.24	-1983.79	64.70
NE-2a-1	976	SA1614B	51.9%	19.0%	14.6%	254.24	-24.09	-1120.67	10.33	6.32	-1549.18	214.95
NE-2a-1	976	SA1696B	37.3%	36.7%	13.0%	133.62	-19.90	-1334.20	23.23	42.66	-2104.78	177.92
NE-2a-1	1039	SA1614B	39.4%	32.0%	14.3%	274.10	-21.27	-1264.90	30.30	40.17	-1803.75	133.50
NE-2a-1	1039	SA1696B	33.6%	36.6%	14.9%	76.02	-21.07	-1498.25	14.98	25.63	-2445.03	204.75
NE-2a-1	1075	SA1614B	21.6%	48.6%	14.9%	139.81	-23.25	-1507.91	34.01	51.19	-2290.28	135.74
NE-2a-1	1075	SA1696B	32.8%	37.0%	15.1%	113.80	-22.40	-1491.25	18.15	28.24	-2369.10	210.65
NE-2a-1		SA1614B	23.1%	49.0%	14.0%	200.05	-20.69	-1508.96	44.58	80.65	-2265.75	132.13
NE-2a-1	1325	SA1696B	32.7%	35.7%	15.8%	83.42	-22.72	-1340.12	10.43	59.26	-2164.63	231.44
NE-2a-2	407	SA1844B	19.9%	50.3%	14.9%	72.82	-20.39	-1672.88	56.10	32.03	-2676.49	116.09
NE-2a-2		SA1861A	16.3%	55.1%	14.3%	50.10	-17.74	-1730.82	57.30	49.37	-2679.43	96.30
NE-2a-2		SA1742A	44.5%	34.4%	10.6%	66.89	-12.94	-1085.44	1.59	49.86	-1826.45	134.03
NE-2a-2		SA1828B	24.8%	47.1%	14.0%		-19.76	-1442.63	38.25	14.74	-2287.42	100.92
NE-2a-2	850	SA1828B	24.4%	45.5%	15.0%	106.95	-20.57	-1669.32	60.59	42.39	-2458.98	124.19
NE-2a-2	975	SA1828B	30.5%	38.5%	15.5%	96.59	-23.19	-1626.22	54.64	18.43	-2419.99	163.97
NE-2a-2	1041	SA1828B	22.7%	44.8%	16.3%	34.45	-21.05	-1667.65	45.83	17.49	-2112.99	129.36
NE-2a-2	1075	SA1828B	13.9%	54.9%	17.4%	196.99	-23.27	-1257.32	41.66	13.98	-1605.37	143.82
NE-2a-2	1325	SA1828B	12.4%	56.7%	18.5%	218.58	-22.63	-1360.60	68.43	75.33	-1865.20	40.24
NE2a-3	123	SA2634B	32.4%	34.5%	16.6%	337.50	-23.09	-1237.23	27.62	33.23	-1634.75	175.92
NE2a-3	123	SA2649A	32.8%	33.9%	16.6%	179.08	-25.13	-1522.25	12.34	8.18	-2347.18	261.89
NE2a-3		SA2583A										***
NE2a-3	1126	SA2649B										
NE2a-3	1139	SA2600A										
NE2a-3	1234	SA2583A	38.7%	27.5%	16.9%	124.87	-25.65	-1417.58	-7.65	-17.46	-2361.12	265.24
NE2a-3	1234	SA2600A	38.5%	23.2%	19.1%	161.29	-28.52	-1183.90	-21.23			

Fracture	Represnting	ID code	D	Tr	¹⁸ O
zone	day				
	(0=90-10-14)		Deviation	Deviation	Deviation
NE-2a-1	724	SA1680A	11.64	-62.71	1.54
NE-2a-1	730	SA1693F	9.73	-46.32	1.49
NE-2a-1	731	SA1680B	9.52	-58.80	1.73
NE-2a-1	731	SA1696B	8.73	-54.26	1.46
NE-2a-1	761	SA1614B	11.58	-39.25	1.82
NE-2a-1	761	SA1696B	8.55	-44.73	1.61
NE-2a-1	837	SA1680B	4.06	-44.01	1.42
NE-2a-1	976	SA1614B	5.74	-11.59	1.82
NE-2a-1	976	SA1696B	5.47	-29.24	1.99
NE-2a-1	1039	SA1614B	6.81	-28.37	1.73
NE-2a-1	1039	SA1696B	11.47	-33.02	1.87
NE-2a-1	1075	SA1614B	13.02	-45.03	2.01
NE-2a-1	1075	SA1696B	12.14	-30.64	1.67
NE-2a-1	1325	SA1614B	9.24	-41.15	1.54
NE-2a-1	1325	SA1696B	11.79	-29.34	1.71
NE-2a-2	407	SA1844B	7.84	-46.75	2.04
NE-2a-2	413	SA1861A	7.36	-51.52	2.00
NE-2a-2	744	SA1742A	7.98	-30.59	1.63
NE-2a-2	761	SA1828B	12.22	-43.46	1.81
NE-2a-2	850	SA1828B	6.94	-42.18	1.70
NE-2a-2	975	SA1828B	6.96	-34.92	1.80
NE-2a-2	1041	SA1828B	13.31	-41.45	1.43
NE-2a-2	1075	SA1828B	7.05	-23.44	1.48
NE-2a-2	1325	SA1828B	9.21	-48.81	1.69
NE2a-3	123	SA2634B	5.80	-17.15	1.43
NE2a-3	123	SA2649A	9.59	-20.57	1.87
NE2a-3	949	SA2583A			
NE2a-3	1126	SA2649B			
NE2a-3	1139	SA2600A			
NE2a-3	1234	SA2583A	13.14	-22.32	2.26
NE2a-3	1234	SA2600A	16.78	-14.72	1.98


Fracture	Represnting	ID code	Tunnel	m3 row	Area	Secup	Seclow	Centr.	Northing	Easting	Elevation	Date
zone	day		length							··· · · · · · · · · · · · · · · · · ·		
	(0=90-10-14)		(m)									
NE2a-3	1234	SA2600B	2600	431	Tunnel after tunnel	5.8	19.2	12.50	7310.340	2056.858	-345.031	940307
NE2a-3	1307	SA2583A	2583	424	Tunnel after tunnel	5.7	20	12.85	7301.166	2035.311	-343.513	940518
NE2a-3	1307	SA2600A	2600	426	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414	-345.048	940518
NE2a-3	1417	SA2600A	2600	427	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414	-345.048	940906
NE2a-3	1670	SA2600A	2600	428	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414	-345.048	950517
NE2a-3	1817	SA2600A	2600	429	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414	-345.048	951011
NE2a-3	2040	SA2600A	2600	430	Tunnel after tunnel	5.8	19.4	12.60	7315.455	2044.414	-345.048	960521
NNW-4H2O-1	859	SA2074A	2074	398	Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	930205
NNW-4H2O-1	1075	SA2074A	2074	399	Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	930928
NNW-4H2O-1	1326	SA2074A	2074	400	Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	940607
NNW-4H2O-1	1417	SA2074A	2074	401	Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	940906
NNW-4H2O-1	1671	SA2074A	2074	402	Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	950518
NNW-4H2O-1	1817	SA2074A	2074		Tunnel after tunnel	6	38.7	22.35	7290.030	2348.258	-281.676	951011
NNW-4H2O-2	849	SA2109B	2109	403	Tunnel after tunnel	0	19.9	9.95	7266.468	2312.045	-284.003	930215
NNW-4H2O-2	1139	SA2142A	2142	404	Tunnel after tunnel	5.9	20	12.95	7228.704	2315.793	-289.437	931202
NNW-4H2O-2	1150	SA2175B	2175	405	Tunnel after tunnel	5.8	20	12.90	7200.014	2294.498	-293.825	931213
NNW-4H2O-2	1318	SA2175B	2175	406	Tunnel after tunnel				7200.014	2294.498	-293.825	940530

Fracture	Represnting	ID code	SNO	Na	К	Ca	Mg	HCO3	CI	SO4	D	TR	180	Brine
zone	day													
	(0=90-10-14)			(mg/L)	SMOW	(TU)	SMOW	Mixing						
NE2a-3	1234	SA2600B	2225	2453	9.9	2681	49	13	8597	575	-94.3	5.9	-12.4	21.0%
NE2a-3	1307	SA2583A	2240	2170	8.5	1860	74	44	6896	492	-85.9	5.9	-10.7	17.1%
NE2a-3	1307	SA2600A	2241	2171	7.6	1825	72	92	6718	498	-80.4	4.2	-10.8	16.9%
NE2a-3	1417	SA2600A	2284	2260	9.1	2180	65	37	7735	470	-93.7	9.3	-12.2	17.1%
NE2a-3	1670	SA2600A	2312	2094	7.6	1499	91	90	6024	408	-70.4	11.0	-9.4	15.9%
NE2a-3	1817	SA2600A	2327	2140	7.6	1542	89	95	6183	411	-74.0	20.3	-9.5	15.6%
NE2a-3	2040	SA2600A	2351	2125	9.1	1486	85	114	5921	404	-75.5	11.0	-9.8	15.6%
NNW-4H2O-1	859	SA2074A	-1	22	2.1	15	4	20	25	46	-60.0	7.0	-8.4	4.5%
NNW-4H2O-1	1075	SA2074A	2173	1730	11.0	764	144	79	4670	277	-61.3	7.0	-8.4	11.1%
NNW-4H2O-1	1326	SA2074A	2258	1702	10.2	723	142	94	4276	275	-65.2	5.9	-8.5	11.4%
NNW-4H2O-1	1417	SA2074A	2283	1522	10.3	627	126	103	3967	263	-63.3	12.7	-8.5	9.8%
NNW-4H2O-1	1671	SA2074A	2317	1454	9.3	560	119	128	3414	262	-65.1	33.0	-8.4	7.1%
NNW-4H2O-1	1817	SA2074A	2332	1425	9.1	510	112	140	3239	251	-66.3		-8.7	
NNW-4H2O-2	849	SA2109B	-1	1730	17.0	884	107	67	4480	303	-64.5	5.9	-8.2	12.1%
NNW-4H2O-2	1139	SA2142A	2202	1720	25.0	581	128	127	3880	368	-56.2	21.0	-7.2	7.0%
NNW-4H2O-2	1150	SA2175B	2206	2030	17.1	1100	172	94	5650	276	-61.1	14.0	-8.3	10.7%
NNW-4H2O-2	1318	SA2175B	2244	1960	15.3	1037	162	127	5442	267	-62.0	8.4	-8.2	10.7%


Fracture	Represnting	ID code	Glacial	Meteoric	Marine	Na	К	Ca	Mg	HCO3	CI	SO4
zone	day											
	(0=90-10-14)		Mixing	Mixing	Mixing	Deviation						
NE2a-3	1234	SA2600B	47.9%	15.5%	15.5%	172.62	-23.82	-1398.76	-10.53	-14.59	-2270.10	302.29
NE2a-3	1307	SA2583A	36.2%	29.7%	17.1%	173.92	-25.82	-1464.14	8.64	12.98	-2212.27	246.53
NE2a-3	1307	SA2600A	33.5%	32.7%	16.9%	197.95	-26.33	-1460.76	7.39	60.93	-2285.11	255.33
NE2a-3	1417	SA2600A	45.6%	20.3%	17.1%	267.96	-25.16	-1137.43	-0.23	7.16	-1354.93	225.11
NE2a-3	1670	SA2600A	18.8%	49.4%	15.9%	235.07	-24.37	-1596.64	30.12	58.48	-2458.10	179.17
NE2a-3	1817	SA2600A	18.4%	50.3%	15.6%	312.06	-23.84	-1502.04	29.14	63.79	-2157.69	185.97
NE2a-3	2040	SA2600A	21.7%	47.1%	15.6%	302.71	-22.25	-1548.64	25.32	83.26	-2393.95	179.69
NNW-4H2O-1	859	SA2074A	9.1%	81.8%	4.5%	-508.53	-7.23	-868.20	-13.44	2.74	-2394.69	-20.24
NNW-4H2O-1	1075	SA2074A	11.1%	56.7%	21.1%	116.58	-26.71	-1409.26	63.61	39.73	-1852.00	64.57
NNW-4H2O-1	1326	SA2074A	11.4%	58.1%	19.1%	125.22	-24.59	-1507.82	69.17	57.43	-2272.69	70.20
NNW-4H2O-1	1417	SA2074A	9.8%	61.4%	18.9%	84.75	-23.46	-1302.23	54.02	66.56	-1831.77	73.44
NNW-4H2O-1	1671	SA2074A	7.1%	65.8%	20.0%	215.89	-24.96	-836.19	42.73	89.74	-1146.67	91.47
NNW-4H2O-1	1817	SA2074A										- 117 - 117 and - 100 at 100 and 100 at 100
NNW-4H2O-2	849	SA2109B	12.1%	56.1%	19.7%	73.14	-19.03	-1486.68	31.90	29.70	-2444.78	88.57
NNW-4H2O-2	1139	SA2142A	7.0%	55.1%	30.9%	141.80	-25.97	-817.59	10.35	74.16	-1310.48	140.89
NNW-4H2O-2	1150	SA2175B	10.7%	51.7%	27.0%	265.30	-29.54	-997.09	69.06	46.74	-1025.87	36.35
NNW-4H2O-2	1318	SA2175B	10.7%	53.4%	25.1%	249.34	-28.48	-1070.43	66.21	82.27	-1151.32	36.63

Fracture	Represnting	ID code	D	Tr	¹⁸ O
zone	day				
	(0=90-10-14)		Deviation	Deviation	Deviation
NE2a-3	1234	SA2600B	8.71	-10.51	1.94
NE2a-3	1307	SA2583A	8.63	-24.47	2.38
NE2a-3	1307	SA2600A	12.20	-29.22	2.02
NE2a-3	1417	SA2600A	8.20	-11.72	1.88
NE2a-3	1670	SA2600A	11.52	-39.04	1.94
NE2a-3	1817	SA2600A	7.84	-30.64	1.82
NE2a-3	2040	SA2600A	8.96	-36.72	1.88
NNW-4H2O-1	859	SA2074A	23.47	-75.01	2.73
NNW-4H2O-1	1075	SA2074A	13.97	-50.20	1.93
NNW-4H2O-1	1326	SA2074A	11.11	-52.68	1.97
NNW-4H2O-1	1417	SA2074A	12.43	-49.15	1.84
NNW-4H2O-1	1671	SA2074A	8.93	-33.13	1.63
NNW-4H2O-1	1817	SA2074A			18 V. andara
NNW-4H2O-2	849	SA2109B	11.85	-50.68	2.30
NNW-4H2O-2	1139	SA2142A	12.90	-34.38	2.22
NNW-4H2O-2	1150	SA2175B	11.31	-38.13	1.66
NNW-4H2O-2	1318	SA2175B	11.29	-45.48	1.87

Appendix 4: Visualisation of the modern Baltic Sea water

a) Result of the M3 modelling of modern Baltic Sea water prior to tunnel construction.

b) Result of the M3 modelling of modern Baltic Sea water after the tunnel construction.

Appendix 5: Grid data prior to tunnel construction

PRIOR TO TUNNEL C	CONSTRUCTION
-------------------	--------------

SO4 Dev	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg/	mg/i	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
(0	0	0	0	0	0	100	-8.9	4.2	906	47200	14.1	19300	8500.0	-1500.0	5600.0	-300.0
133.7	5.9	-308.2	23.3	5.4	4.6	16.5	73.4	-10	6.2	827.1	34318.1	24.7	13863	6432.2	-1331.1	5600.0	-300.0
254.9	14.6	-575.5	36.8	10.8	10.1	32.1	47	-11	8.1	737.8	21596.9	38.3	8506.1	4373.4	-1162.2	5600.0	-300.0
333.2	35.4	-754.8	21.6	15.2	20	43.7	21.2	-11.8	10.2	605.2	9241.8	63	3352.1	2301.5	-993.3	5600.0	-300.0
0.4	179	-527.3	-256.7	5.3	76.7	1 6.4	1.6	-10.3	11.6	44.5	0.2	196.3	0.2	53.0	-824.4	5600.0	-300.0
-3.1	156.1	-465.3	-219	9.3	76.9	14.5	0	-10.2	13.1	42.1	0.2	179.1	0.2	30.2	-655.6	5600.0	-300.0
-5.5	125.9	-373	-173.8	11.7	78	11.6	0	-10.1	14.9	45.5	0.2	152.5	0.2	87.0	-486.7	5600.0	-300.0
-5.3	87.8	-258.4	-119.5	11.5	81.6	8.1	0	-10	17.1	45.5	0.2	114.3	0.2	144.8	-317.8	5600.0	-300.0
-3.2	43.9	-129.3	-58.9	7.5	88. 9	4.1	0	-10.2	19.5	32.2	0.2	65.7	0.2	128.6	-148.9	5600.0	-300.0
(0	0	0	0	100	0	0	-10.5	22	1.4	0.2	12.2	0.2	0.4	20.0	5600.0	-300.0
50 .1	-0.8	-2.3	28.6	2.1	0	5.2	93.4	-9.2	7.8	907	44257	15.3	18023.5	8031.7	-1500.0	5880.1	-300.0
153.4	9.7	-362.8	29.3	6.9	3.5	18.3	70.4	-9.9	7.6	827.2	32903.8	30.1	13227.5	6228.6	-1331.1	5880.1	-300.0
235.3	31.7	-639.7	7.8	11.1	12.9	30	44.9	-10.7	8.4	700.9	20489.4	55.8	8040.6	4176.8	-1162.2	5880.1	-300.0
203.9	86.8	-726	-83.1	12.1	34.7	31.6	20.7	-10.9	9.9	455.7	8781.9	111.6	3290.2	2061.0	-993.3	5880.1	-300.0
68	154.6	-630.5	-209.4	10.4	62.4	22	4.3	-10.4	11.3	162.9	893.5	178.1	217.3	488.1	-824.4	5880.1	-300.0
12.6	163	-529.2	-229	12.5	71.4	16.6	0	-10	12.7	67.1	0.2	189.7	0.2	52.1	-655.6	5880.1	-300.0
-3	141.6	-426.3	-198.5	14.9	73.7	13.1	0	-9.8	14.2	52.6	0.2	172	0.2	49.9	-486.7	5880.1	-300.0
-5.5	103.5	-305.5	-143.7	14.9	77.1	9.4	0	-9.8	16.3	52.3	0.2	134.3	0.2	126.0	-317.8	5880.1	-300.0
-3.7	53.5	-157	-73.9	10.1	85.8	4.8	0	-10	19.1	35.6	0.2	78.5	0.2	105.1	-148.9	5880.1	-300.0
-3.4	5	12.6	-14.1	0	100	0	0	-10.6	22.3	1.4	0.2	14.3	0.2	0.4	20.0	5880.1	-300.0
76.4	-1.5	39.3	56.2	2.9	0.1	7.9	89.3	-9.3	11.4	900.4	42526.1	15.4	17271.7	7735.6	-1500.0	6160.2	-300.0
173.4	12.3	-422.7	37.6	7	5.2	19.4	67.5	-10	9.7	821.7	31511.4	32.6	12611.5	5995.4	-1331.1	6160.2	-300.0
226.8	42.4	-743.7	-14.5	10.1	17.1	27.7	43.8	-10.6	9	677.7	19765.2	65.5	7729.6	4032.9	-1162.2	6160.2	-300.0
184.8	94.4	-788.4	-106.5	11.3	37.2	28.4	22	-10.7	10	444.4	9226.1	118.6	3475.6	2123.5	-993.3	6160.2	-300.0
89	145.5	-676.1	-198.5	11.4	57.6	23	7	-10.4	11.4	213.3	2133.2	170.2	686.6	757.8	-824.4	6160.2	-300.0
24	166.6	-561	-237.5	12.7	68.2	17.9	0.2	-10.1	12.5	93.2	0.2	193.5	0.2	179.1	-655.6	6160.2	-300.0
	158.3	-466.6	-227.2	14.4	71.7	14.5	0	-9.9	13.4	61	0.2	187.9	0.2	88.1	-486.7	6160.2	-300.0
	126.5	-362.6	-180.8	14.4	75	11.2	0	-9.8	14.9	57.7	0.2	156.4	0.2	143.2	-317.8	6160.2	-300.0
	70.3	-202.7	-100.6	9.9	84.1	6.2	0	-10	18	40.4	0.2	94.8	0.2	122.3	-148.9	6160.2	-300.0
-3.1	5.1	12.9	-14.7	0	100	0	0	-10.6	22.3	1.4	0.2	14.1	0.2	0.4	20.0	6160.2	-300.0
83.	-4.1	155.3	91.7	3	1.1	8.9	87.3	-9.4	15.5	890.1	41914.9	12.7	17002.3	7604.3	-1500.0	6440.3	-300.0
	6.2	-531.5	60.9	6.6	5.7	21	66.2	-10.2	11.4	841.2	30782.1	25.8	12246.4	5892.3	-1331.1	6440.3	-300.0
	34	-1016.7	-8.2	9.3	17.1	29.5	43.4	-10.9	8.7	721.5	19111.6	55.9	7371.1	3976.2	-1162.2	6440.3	-300.0
	95.7	-890.2	-121.9	9.9	40.4	28.1	20.9	-10.9	10.2	440.7	8489.6	118.1	3164.9	1973.5	-993.3	6440.3	-300.0
69.8	153.1	-654.6	-224	8.8	62.8	21.3	6.6	-10.5	12.1	176.5	1855.6	174.5	628	613.5	-824.4	6440.3	-300.0
								-10.2	12.8	71.2	0.2	199.9	0.2	142.0	-655.6	6440.3	-300.0

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
-300.0	6440.3	-486.7	73.5	0.2	202.8	0.2	49	12.3	-10.1	0.4	15.3	74.1	9.6	-264.7	-491.2	179.7	-6.1
-300.0	6440.3	-317.8	123.7	0.2	186.4	0.2	53.5	12.4	-10.1	0.6	13.9	75.3	9.6	-237.9	-454	163	-4.3
-300.0	6440.3	-148.9	145.6	0.2	140.3	0.2	49.5	14.8	-10.2	0.9	10.5	80.6	7.5	-173.5	-356.1	119.4	0.3
-300.0	6440.3	20.0	0.4	11.7	37.6	0.2	4.6	20.2	-10.5	0.5	1.8	98.2	0	-38	-75.9	26.1	1
-300.0	6720.4	-1500.0	7607.9	17208.9	9.9	42353.1	862.4	20.7	-9.3	86.9	8.2	2.5	2.7	136.6	434.5	-6.6	61
-300.0	6720.4	-1331.1	5891.6	12119	13.8	30631.7	869.8	12.3	-10.4	66.1	23	4.9	5.7	92.8	-643.7	-4.4	240.7
-300.0	6720.4	-1162.2	4092.8	6988.4	24.6	18708	857.4	5.3	-11.5	44.7	35.6	11.2	8.5	24.1	-1653.2	4.6	407.5
-300.0	6720.4	-993.3	1561.6	2330.9	114.3	6401.4	416.5	11	-11.2	16.3	31.4	42.9	9.5	-122.7	-817.3	92.8	218.3
-300.0	6720.4	-824.4	173.5	162.2	180.9	432.4	69.2	12.3	-10.6	3.8	18.1	74.4	3.7	-270.5	-581.1	165.8	13.7
-300.0	6720.4	-655.6	24.7	0.2	203.4	0.2	25.3	13.1	-10.4	2.6	15.1	79.7	2.7	-278.7	-502.2	189.4	-13.2
-300.0	6720.4	-486.7	12.1	2.1	204.1	0.2	23.9	12.6	-10.6	2.6	15.6	79.6	2.2	-277.5	-497.5	190.7	-12.3
-300.0	6720.4	-317.8	63.7	28	206.2	31.5	44	9.4	-10.6	3.1	16.7	78.3	2.1	-267.3	-574.8	193.2	3.6
-300.0	6720.4	-148.9	68.0	51.2	197.1	86.4	43.9	12.3	-10.4	3.1	15.8	79.3	1.9	-262	-562.1	184.1	4
-300.0	6720.4	20.0	7.1	81.1	182.2	76.8	34.1	10.6	-10.2	3.1	11.8	86	0	-238	-508.3	172	7.7
-300.0	7000.6	-1500.0	7607.2	17331.8	8.4	42589.5	848.6	21.7	-9.3	87.1	7.9	3.4	1.9	145.9	525.6	-7.1	49.7
-300.0	7000.6	-1331.1	5881.4	12233	10.8	30843	857.5	12.7	-10.4	66.4	22.9	6	4.5	98.7	-580.2	-5.8	232.5
-300.0	7000.6	-1162.2	4061.6	7187.5	22.5	19043.3	824.1	6	-11.5	45	34.9	13.4	6.6	30	-1500.6	4.9	381.6
-300.0	7000.6	-993.3	1830.4	2883.6	92.8	7870.7	470	9.4	-11.4	20.2	32.5	40.8	6.6	-96.2	-1020.5	75.2	251.5
-300.0	7000.6	-824.4	362.6	511.4	155.7	1408.5	127.7	11.4	-11	6.1	22.3	69.9	1.8	-214.6	-674.4	143.7	61.8
-300.0	7000.6	-655.6	38.4	26	171.8	70.8	40.9	11.9	-10.9	3.3	19.4	78.1	0	-223.9	-604	162.5	12.8
-300.0	7000.6	-486.7	0.4	0.2	175.9	0.2	11.1	10.9	-10.9	2.7	18.6	80.4	0	-213.2	-585.5	168	-6.2
-300.0	7000.6	-317.8	19.1	0.2	171.1	0.2	12.3	10.5	-10.8	2.7	17.4	80.6	0	-190.2	-572.5	161.8	-10
-300.0	7000.6	-148.9	106.6	0.2	148.5	77.8	28.5	12.8	-10.5	2.4	13.7	81.9	2	-162.3	-476.6	135.2	-5.1
-300.0	7000.6	20.0	0.4	49.8	91.3	0.2	4.3	16. 4	-10.5	1.5	5.9	95.2	0	-117.6	-246.4	82.8	1.1
-300.0	7280.7	-1500.0	7567.2	17123.4	7.3	42115.5	872.2	16.3	-9.5	87.5	9	3	0.8	103.6	237.1	-6.7	75
-300.0	7280.7	-1331.1	5862.2	12451.6	16	31167.4	822.9	11.7	-10.3	66.9	21.3	8	3.3	74.8	-453.4	0.7	199.5
-300.0	7280.7	-1162.2	3983.6	7698.3	37.8	19802.9	710	8.4	-11.1	44.9	30.6	19.2	4.8	15.4	-972.2	22.1	277.6
-300.0	7280.7	-993.3	2116.2	3680.2	81.4	9764.3	472.6	8.4	-11.3	24.1	31.8	39.4	4.2	-70.2	-985.1	66.9	230.9
-300.0	7280.7	-824.4	769.0	1122.5	122.1	3152.2	225.9	9.4	-11.2	10	27.8	60.2	1.8	-140.1	-815.1	110.8	124.7
-300.0	7280.7	-655.6	159.5	33.5	139.7	305.6	84.7	10.1	-11.2	3.9	24.2	72.4	0	-154.8	-713.8	131	51.1
-300.0	7280.7	-486.7	0.4	0.2	140.9	0.2	17.3	10.8	-11.1	1.9	21.1	78.6	0	-130.7	-645.9	133.5	7.8
-300.0	7280.7	-317.8	11.7	0.2	125.8	0.2	1.4	12.4	-11	1.4	17. 1	81.9	0	-88.2	-550.8	116.5	-12
-300.0	7280.7	-148.9	82.8	0.2	84.7	0.2	5.5	16.1	-10.6	0.9	10.2	87	1.6	-42.8	-343.3	71.5	-12.2
-300.0	7280.7	20.0	0.4	0.2	9.3	0.2	1.4	21.9	-10.7	0	0.1	100	0	5.1	-11.3	1.3	-3.8
-300.0	7560.8	-1500.0	7676.6	17344.7	8.4	42614.6	885	11.8	-9.5	89.4	8.3	2.2	0.3	66.7	85.6	-4.8	73.3
-300.0	7560.8	-1331.1	5948.9	12787.3	20	31835.2	808.6	9.7	-10.2	68.2	20.1	7.8	3.1	51.4	-385.8	4.9	174
-300.0	7560.8	-1162.2	4018.5	8013	43.4	20365.7	674.7	8.4	-11	45.4	29.5	19.3	4.8	9.9	-746.7	27.5	237.9

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/i	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
-300.0	7560.8	-993.3	2162.2	3862.9	82	10134.5	460.2	8.4	-11.3	24.5	32.1	38.2	4.5	-59.6	-862.3	67.3	214.2
-300.0	7560.8	-824.4	817.2	1107.7	118.4	3182.4	237.6	9	-11.2	9.9	29	57.6	3	-120.4	-810.8	105.6	131.2
-300.0	7560.8	-655.6	197.2	0.2	131.9	6.3	99.8	10	-11.1	3	25.1	69.3	2.3	-127.4	-726.4	119.7	59.9
-300.0	7560.8	-486.7	45.4	0.2	126	0.2	35.3	11.5	-11	0.6	21.3	75.2	2.6	-91.7	-634.2	112.9	14.6
-300.0	7560.8	-317.8	78.0	0.2	103.8	0.2	12.1	13.9	-10.8	0.1	16.1	79.7	3.6	-42.1	-501.6	88.8	-8.6
-300.0	7560.8	-148.9	44.6	0.2	61.9	0.2	1.4	17.5	-10.6	0	8.9	88.6	2.2	-2.7	-289.4	47.9	-13.3
-300.0	7560.8	20.0	0.4	0.2	7	0.2	1.4	21.8	-11	0	0.2	100	0	12.3	-28.9	3.6	-10.2
-300.0	7840.9	-1500.0	7980.6	18045.2	10.4	44251.7	897.5	7.9	-9.3	93.4	5.6	0.9	0.2	34.7	14.2	-3.1	50.2
-300.0	7840.9	-1331.1	6185.8	13328.7	21.2	33082.5	820.4	7.4	-10.1	70.9	18.9	5.4	4	35.6	-353.7	4.7	157.1
-300.0	7840.9	-1162.2	4143.3	8197	41.4	20804.1	698.6	8	-11	45.8	31.1	14.8	7.3	19.6	-651.2	22.5	245
-300.0	7840.9	-993.3	2041.3	3490.4	89.5	9217.8	458.5	9	-11.3	22	33.7	36.3	7.2	-57.5	-768	71.4	220.6
-300.0	7840.9	-824.4	515.2	477.4	145.1	1543.8	174.3	9.9	-10.9	6.1	25.9	62.7	4.8	-159.6	-714.3	129.6	92.3
-300.0	7840.9	-655.6	141.8	0.2	148	0.2	81.7	11	-10.7	0.9	22.3	69.8	6.8	-148.7	-651.2	129.4	37
-300.0	7840.9	-486.7	175.6	0.2	130.8	0.2	59	12.7	-10.5	0	19.1	71.3	9.8	-96.9	-561.7	107.8	10.4
-300.0	7840.9	-317.8	254.7	0.2	102.7	0.2	49.4	15.1	-10.3	0	14.3	74.7	11.2	-43.8	-426.2	77.3	-4.6
-300.0	7840.9	-148.9	157.3	0.2	60.7	0.2	23.5	18.3	-10.3	0	7.8	85.2	7.1	-6.5	-238.9	40	-8.5
-300.0	7840.9	20.0	0.4	0.2	7	0.2	1.4	21.9	-10.9	0	0.1	100	0	6.4	-19.3	3.4	-7.7
-300.0	8121.0	-1500.0	8500.0	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300.0	8121.0	-1331.1	6441.2	13878.1	24.2	34375.2	832.6	6.1	-10	73.5	16.6	4.3	5.6	18	-312.2	5.1	137.3
-300.0	8121.0	-1162.2	4386.8	8533.2	37.2	21685.9	744.7	8	-11	47.2	32.2	9.7	11	31.1	-581.8	13.3	259.5
-300.0	8121.0	-993.3	2301.9	3353	62.9	9244.5	605.4	10.2	-11.8	21.2	43.7	20	15.1	21.6	-755	35.3	333.3
-300.0	8121.0	-824.4	141.9	0.2	190	0.2	61.3	11.3	-10.4	2.2	17.8	74.1	6.1	-243.7	-555	171.7	7.7
-300.0	8121.0	-655.6	284.8	0.2	164.6	0.2	84.3	12.4	-10.3	0.8	17.9	69.4	12.3	-178.7	-535.6	138.1	10.8
-300.0	8121.0	-486.7	453.4	0.2	138.7	0.2	98.8	14.1	-10.1	0.3	15.8	67.3	17.1	-116.1	-458.7	105.4	4.9
-300.0	8121.0	-317.8	538.2	0.2	107.5	36.1	98.4	16.4	-9.9	0.1	11.7	70	18.5	-63.6	-333.5	71.8	-1.6
-300.0	8121.0	-148.9	406.3	0.2	65.6	174.1	68.9	19.1	-10	0.1	6.1	80.7	13.3	-25.9	-172.3	36.2	-3.4
-300.0	8121.0	20.0	0.4	0.2	12.2	0.2	1.4	22	-10.5	0	0	100	0	0	0	0	0
116.7	5600.0	-1500.0	8166.9	18270.4	13.1	44796.8	910.5	5	-9.2	94.9	5.1	0	2.2	26.1	-56.6	-3.2	38.6
116.7	5600.0	-1331.1	6418.2	13569.9	26.2	33667	828.9	5.2	-9.9	72.2	18.3	0.8	7.6	43.1	-369.2	4.9	135
116.7	5600.0	-1162.2	4445.1	8470.3	48.2	21501.9	711.3	6.5	-10.7	47	30.6	8.2	12.8	43	-623.9	21.9	217.8
116.7	5600.0	-993.3	2415.8	3750.1	98.3	9961	487	8.1	-10.9	23.1	33.2	27.3	15.1	-25.7	-730	69.8	197.9
116.7	5600.0	-824.4	896.3	614.9	159.8	2032.7	215.7	9.8	-10.4	6.5	24.5	52.6	15	-135.7	-668	130.5	76.7
116.7	5600.0	-655.6	457.2	0.2	169.1	0.2	129.6	11.5	-10	0.2	19.5	60.5	18.4	-149.3	-581.8	134.7	29.4
116.7	5600.0	-486.7	406.4	0.2	151.9	0.2	111.4	13.6	-9.7	0	15.4	63.6	21.4	-123.5	-471	113.2	13.8
116.7	5600.0	-317.8	401.0	0.2	117.9	0.2	98.1	16	-9.6	0	10.8	69.2	20.6	-83.7	-333.1	79.7	6.8
116.7	5600.0	-148.9	272.6	0.2	69.1	0.2	62.9	18.9	-9.9	0	5.7	81.1	13.5	-38.3	-174.9	39.6	3.2
116.7	5600.0	20.0	0.4	0.2	10.6	0.2	1.4	22	-10.6	0	0.1	100	0	-1.1	-2.6	0.9	-0.8

SO4 Dev	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Са	Na	Elevation	Northing	Easting
mg/l	mg/l	mg/l	mg/l	%	%	%	%	d %o	ΤU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
59	-3.9	-55.4	44.2	4	0	7.2	92.7	-9.1	6.8	919.9	43895.2	14.4	17846.2	8051.8	-1500.0	5880.1	116.7
152.6	6.9	-422.8	49.9	9.2	0	19.8	70.2	-9.8	6.3	836.4	32736.5	30	13129.7	6303.6	-1331.1	5880.1	116.7
219.2	30.3	-703.4	31	14	7.7	30.5	45.4	-10.5	6.7	704.4	20655.6	58	8078.8	4334.0	-1162.2	5880.1	116.7
194	78.1	-806	-41.3	16.8	25.7	32.8	22.4	-10.6	7.9	486.2	9565.4	109	3543.8	2398.2	-993.3	5880.1	116.7
97.7	130	-749.3	-132.5	18.7	45.9	26.9	6.4	-10.2	9.4	254.8	1986.5	163.8	512.9	1004.7	-824.4	5880.1	116.7
39.1	143.1	-648.1	-160.2	22.7	54.3	21.5	0	-9.8	11	153.3	0.2	182.8	0.2	502.2	-655.6	5880.1	116.7
15.2	127.5	-528.9	-143.2	26.7	56.9	17.2	0	-9.4	12.8	130.8	0.2	173	0.2	462.2	-486.7	5880.1	116.7
5.9	94.1	-384.1	-103.1	26.7	61.7	12.3	0	-9.2	15.2	121.3	0.2	140.3	0.2	498.9	-317.8	5880.1	116.7
2.4	49.2	-209.4	-50.5	18.7	74.9	6.7	0	-9.5	18.3	81.8	0.2	85.3	0.2	354.6	-148.9	5880.1	116.7
-1	4.2	-15.8	-5.5	0.2	100	0.3	0	-10.4	21.8	1.4	0.2	16.5	0.2	0.4	20.0	5880.1	116.7
77.5	-5.2	-15	67.5	4.6	0	8.9	90.1	-9.2	9.8	918.2	42859.5	13.7	17383.5	7873.7	-1500.0	6160.2	116.7
171.3	7.3	-478.2	58.8	9.3	0	20.8	68.3	-9.9	8	838.6	31820.7	30.5	12706.3	6154.5	-1331.1	6160.2	116.7
223.6	34.9	-809.2	19.5	13.5	9.7	29.7	44.7	-10.4	7.2	700.1	20165.5	62.1	7842.7	4249.8	-1162.2	6160.2	116.7
191.1	81.1	-884.1	-54.8	16.6	26.4	31.5	23.2	-10.6	7.9	488.9	9795.8	111.9	3614.6	2442.2	-993.3	6160.2	116.7
108.8	126.5	-799.1	-131.2	19.4	42.7	27.7	8.1	-10.2	9.3	284.6	2738.2	161.2	783.8	1169.6	-824.4	6160.2	116.7
46	147.2	-687.9	-167.5	23.5	50.8	23	0.6	-9.8	10.6	176.3	0.2	187.8	0.2	633.6	-655.6	6160.2	116.7
16	141.8	-578.2	-163.7	27.8	52.9	18.9	0	-9.4	11.8	147.5	0.2	188.7	0.2	572.1	-486.7	6160.2	116.7
5.2	114.7	-448.9	-130.9	28.7	56.7	14.4	0	-9.2	13.7	139.9	0.2	163.3	0.2	619.7	-317.8	6160.2	116.7
1.8	67.8	-270.7	-75.1	20.8	70.4	8.5	0	-9.4	17	98.9	0.2	106.5	0.2	460.5	-148.9	6160.2	116.7
-0.9	14.4	-50.7	-18.3	0.6	98.4	1.2	0	-10.4	21	1.4	0.2	27.2	0.2	0.4	20.0	6160.2	116.7
84.1	-8.4	85.8	97.9	4.5	0	9.7	88.8	-9.2	13.3	912	42524.2	10.1	17228.1	7786.9	-1500.0	6440.3	116.7
201.6	0.6	-569.2	79.5	8.6	0	22.2	67.5	-10	9.5	858.4	31381.2	22 .7	12466.4	6089.0	-1331.1	6440.3	116.7
269.4	25.9	-1035.9	26.7	12.4	9.7	31.4	44.6	-10.7	7	739.2	19756.5	51.5	7594.8	4213.4	-1162.2	6440.3	116.7
208.6	78.6	-993.3	-63.6	14.8	28.7	32	22.7	-10.8	7.8	493.2	9360.8	107	3416.5	2339.8	-993.3	6440.3	116.7
99	129.2	-805.6	-146.5	16.4	46.6	27.2	8.2	-10.4	9.6	260.4	2690.5	160.1	798.1	1071.2	-824.4	6440.3	116.7
37	153.7	-695.5	-180.5	19.5	53.6	23.3	2.2	-10	10.4	160.3	89.4	189	0.2	624.7	-655.6	6440.3	116.7
11	157.6	-623.3	-183.7	23.4	54	20.6	0.5	-9.7	10.5	139.8	0.2	198.5	0.2	603.2	-486.7	6440.3	116.7
3.2	144.2	-549.3	-165.9	25.4	55.2	17.6	0.4	-9.4	11.4	141.8	0.2	188.1	0.2	677.7	-317.8	6440.3	1 16 .7
2	109.8	-419.1	-127.4	20.6	64.9	12.7	0.5	-9.5	13.9	116.7	0.2	147.9	0.2	575.2	-148.9	6440.3	116.7
1	55.6	-194	-70.1	3.5	90.9	4.8	0.2	-10.2	17.8	22.6	0.2	71.8	0.2	60.4	20.0	6440.3	116.7
72.3	-11.8	276.4	132.2	3.8	0	9.4	88.6	-9.2	17.2	895	42856.9	7	17379	7783.8	-1500.0	6720.4	116.7
231.4	-9.8	-657	106	7.4	0	24	67.7	-10.3	10.3	883.4	31370.5	10.5	12409.4	6091.2	-1331.1	6720.4	116.7
353.6	4	-1412.6	50.5	10.9	6.7	35.6	45.6	-11.2	5.2	823.7	19585.9	27.1	7395	4267.2	-1162.2	6720.4	116.7
242.4	69.1	-1083.8	-60.2	12.5	30.6	34.6	21.3	-11.1	7.6	501.5	8481.6	94.1	3041.9	2145.7	-993.3	6720.4	116.7
79.4	129.5	-786.9	-160.2	11.1	54.1	26.7	7.2	-10.7	9.5	203.6	2060.5	153.4	611.3	801.4	-824.4	6720.4	116.7
28	151.6	-707.1	-174.2	12.3	59.5	23.9	3.6	-10.4	10.1	126.2	530	177.3	5.4	522.0	-655.6	6720.4	116.7
6	160.9	-678.7	-172.1	14.7	59.1	22.7	2.8	-10.3	9.3	109.5	296.8	189.9	0.2	531.5	-486.7	6720.4	116.7

SO4 Dev	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg/	mg/l	mg/l	mg/l	%	%	%	%	d %o	τυ	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
	161.9	-664	-164.1	17.5	58	21.1	2.8	-10	8.9	116.6	433.5	194.9	0.2	626.6	-317.8	6720.4	116.7
-1.3	149.1	-590	-160.2	17.5	62	17. 2	2.6	-9.8	10.8	115.3	486.9	182.6	0.2	615.6	-148.9	6720.4	116.7
1	111.5	-388.6	-137.7	5.7	82.7	9.5	1.7	-10	13.6	48	63.5	130.3	0.2	191.1	20.0	6720.4	116.7
68.7	-13.4	321.5	137.9	2.8	0	9.5	88.7	-9.3	17.7	886.7	42956.9	7	17437.2	7763.1	-1500.0	7000.6	116.7
229.5	-12.8	-620.3	111	5.8	0.6	24.3	67.9	-10.4	10.5	875.5	31536.7	7	12498.4	6069.1	-1331.1	7000.6	116.7
349.4	-1.2	-1366.3	58.4	8.4	8.1	36.1	46.1	-11.3	5.1	812.2	19897.5	18.6	7552.2	4248.9	-1162.2	7000.6	116.7
266.7	51.5	-1167.2	-34.7	9.2	29.7	36.8	23.5	-11.4	6.3	528.3	9326.7	71.9	3373.8	2252.4	-993.3	7000.6	116.7
120.5	102.6	-887.2	-113	7.1	51.9	31.1	9.4	-11.1	7.8	244	2921.6	120.7	936.7	912.4	-824.4	7000.6	116.7
55.9	122.1	-810	-115.8	6	60.1	28.5	5.1	-11	8.3	134.8	982.6	138.9	185.3	509.4	-655.6	7000.6	116.7
11.7	135.7	-778.2	-95.6	5.4	64	26.4	3.8	-11	8.3	75.9	458.4	152	0.2	402.2	-486.7	7000.6	116.7
-12.7	137.3	-743.4	-66.2	7.8	65	23.3	3.5	-10.8	8.9	61.3	511	157.1	0.2	480.7	-317.8	7000.6	116.7
-13.9	116.9	-592.1	-61	12.8	66.9	17	2.8	-10.1	11.6	79.4	604.7	144.1	0.2	579.9	-148.9	7000.6	116.7
	72.7	-301.7	-63.9	4.7	86.6	7.1	1.3	-10.2	16	31.5	114.5	90.3	0.2	194.5	20.0	7000.6	116.7
85.4	-13.1	127.7	106.9	1.7	0	10.5	88.9	-9.4	13.7	899.4	42577.4	7	17279.6	7714.2	-1500.0	7280.7	116.7
207.3	-8.6	-536.7	90.2	4.4	2.3	23.5	68.2	-10.3	9.4	848.5	31693	7.8	12630.7	6026.7	-1331.1	7280.7	116.7
	7.4	-1044.4	47.9	6.3	11.9	33.9	46.4	-11.1	6.1	740.5	20463.3	24.7	7916.9	4191.7	-1162.2	7280.7	116.7
	40.7	-1117.1	-12.6	6.7	28.6	37.4	26.2	-11.5	5.5	531.9	10680.1	57.6	3953	2428.3	-993.3	7280.7	116.7
	70.9	-1003.1	-53.8	5.5	45.2	36.1	12.5	-11.5	5.8	317	4270.5	86.4	1420.5	1186.7	-824.4	7280.7	116.7
97.5	87.1	-918.3	-48.5	3.6	56.3	33.5	6.2	-11.5	6.3	173.4	1361.3	100.1	279.2	591.0	-655.6	7280.7	116.7
	101.4	-849	-13	0.6	65.9	29.5	3.7	-11.6	8	62.7	256.7	110.8	0.2	317.8	-486.7	7280.7	116.7
-18.6	97.8	-768.1	43.8	1.1	71.2	24.2	3	-11.3	10	15	193.1	108.5	0.2	329.9	-317.8	7280.7	116.7
	66.3	-528.1	56.5	7.3	74.8	15.3	1.9	-10.5	13.9	32.7	340.8	86.2	0.2	448.5	-148.9	7280.7	116.7
	18.9	-167	29.8	0	96.1	3.6	0.2	-10.5	19.4	1.4	0.2	30.1	0.2	35.2	20.0	7280.7	116.7
87.7	-11.4	-15.2	73.6	1.2	0	10.4	90	-9.5	9.8	910	42752.6	7	17362.5	7765.7	-1500.0	7560.8	116.7
189.1	-4.6	-494.8	66	4.1	2.2	22.8	69	-10.3	7.5	836.4	32062.3	11.4	12833	6064.2	-1331.1	7560.8	116.7
256.5	12.5	-870	36.6	6.2	12.2	33.1	46.6	-11	6	711.9	20833.5	29.6	8139.2	4197.2	-1162.2	7560.8	116.7
246.5	41.9	-1016	-11.6	6.7	27.7	37.6	26.4	-11.4	5.6	521.9	10944.6	58.8	4090.9	2447.5	-993.3	7560.8	116.7
180.2	68.5	-995.4	-45.7	6.4	43.3	36.9	12.3	-11.5	5.8	326.3	4237.1	85	1387.8	1204.9	-824.4	7560.8	116.7
106.2	80.3	-921.1	-33.8	6.4	53.5	34.2	5.2	-11.4	6.8	187.5	1014.3	96.9	83.9	607.9	-655.6	7560.8	116.7
37.6	83.5	-824.7	12	6.7	60.6	29.7	2.3	-11.3	8.9	94.6	0.2	101	0.2	420.1	-486.7	7560.8	116.7
	71.6	-689	66.1	8.7	65.8	23.2	1.4	-10.9	11.6	52.6	0.2	92.6	0.2	459.6	-317.8	7560.8	116.7
	40.8	-437.9	79.5	9.1	75.6	13.6	0.5	-10.5	15.7	35.2	0.2	63.4	0.2	411.6	-148.9	7560.8	116.7
	2.4	-112.6	50.9	0	100	2.3	0	-10.9	20.7	1.4	0.2	7	0.2	0.4	20.0	7560.8	116.7
	-9.2	-92	43.5	1.5	0	8.8	92.4	-9.4	6.6	920.3	43641	7	17743.5	7946.8	-1500.0	7840.9	116.7
	-3	-473.7	45.8	5.3	0.4	21.8	70.7	-10.2	5.7	844.2	32833	14.8	13172.2	6219.5	-1331.1	7840.9	116.7
	13.2	-781.2	30.3	8.5	9.3	33.5	46.8	-11	5.8	722.7	21107.3	33.3	8263.7	4277.6	-1162.2	7840.9	116.7
	50.4	-919.8	-25.6	9.5	26.6	37.5	24.7	-11.3	6.4	515.6	10376.9	71.1	3867.1	2379.4	-993.3	7840.9	116.7

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	018	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
116.7	7840.9	-824.4	1045.7	965.7	110.6	3173	292	7.3	-11.2	9.6	34.1	45.3	9.8	-83.5	-902.9	89.3	152.4
116.7	7840.9	-655.6	610.6	0.2	120.4	351.3	184.5	8.6	-10.9	3	30.9	52	13.2	-67.4	-833.5	94.4	86.6
116.7	7840.9	-486.7	634.3	0.2	115.6	0.2	143.8	10.6	-10.6	0.8	26.9	53.1	18.3	-14	-726.6	82.4	39.5
116.7	7840.9	-317.8	737.0	0.2	100.3	0.2	124.4	13.4	-10.1	0	20.6	56.2	22	33.7	-566.7	61.3	7.3
116.7	7840.9	-148.9	534.9	0.2	64.6	0.2	78	17.1	-10	0	11.6	70.9	16.5	48.9	-336.6	31.8	-5.9
116.7	7840.9	20.0	0.4	0.2	7	0.2	1.4	21.3	-10.9	0	1.5	100	0	32.5	-65.4	-0.3	-7.7
116.7	8121.0	-1500.0	8115. 4	18088.3	10.8	44445.7	925.4	4.7	-9.3	94.3	6.6	0	2.7	15.8	-114.1	-6	57
116.7	8121.0	-1331.1	6400.3	13520.3	20.6	33653.7	852.6	4.8	-10	72.3	19.8	0	7.4	24.7	-434	-0.3	159.1
116.7	8121.0	-1162.2	4465.4	8537.5	38.6	21794.1	744.4	6	-10.9	47.8	32.5	6.6	12.1	21.2	-697.6	13.3	247.7
116.7	8121.0	-993.3	2487.5	3923.1	83.7	10543	528.8	7.5	-11.1	24.4	35.9	24.5	14.2	-40.9	-812.4	56.4	232
116.7	8121.0	-824.4	1083.8	914.8	137.8	3029.9	273	8.9	-10.7	8.6	29.1	46.6	15.1	-128.2	-769.9	108.8	114.7
116.7	8121.0	-655.6	825.6	0.2	142.9	751.3	205	10.4	-10.3	3	26	49.2	21.3	-106.6	-706.6	105.3	64.8
116.7	8121.0	-486.7	960.3	0.2	132	403.3	199.8	12.5	-9.9	1.1	22.7	46.8	29	-52.3	-601.4	83.8	36.6
116.7	8121.0	-317.8	1063.3	0.2	112	532.1	192.1	15.1	-9.4	0.3	17	49.2	32.9	-8.8	-444.3	57.9	15.2
116.7	8121.0	-148.9	792.8	0.2	73.4	441.9	135.1	18.3	-9.5	0	9.1	65.4	24.9	9	-239.6	29	3.8
116.7	8121.0	20.0	0.4	0.2	10.5	0.2	1.4	21.9	-10.6	0	0.1	100	0	2.9	-8.1	0	-1.1
533.5	5600.0	-1500.0	7994.6	17760.2	14	43564	903	5.2	-9.3	92.5	7.1	0	3.1	38.7	-87.7	-3.2	49.2
533.5	5600.0	-1331.1	6370.0	13349.8	29.2	33097.3	810.2	4.8	-9.9	71.2	18.6	0.6	8.3	57.8	-397	6.9	121.7
533.5	5600.0	-1162.2	4600.7	8717	53.9	22023.8	682	5.3	-10.5	48.4	28.1	8.1	13.5	57.8	-644.1	26.4	172.2
533.5	5600.0	-993.3	2940.7	4576.3	91.8	12018.7	511.3	6.4	-10.6	27.6	31.7	20.6	18.1	22.5	-770.9	58.9	165.8
533.5	5600.0	-824.4	1729.8	1621.4	130.2	4836.3	345.2	8	-10.3	12.2	29.3	33.9	22.6	-28.5	-771.6	91.2	114.6
533.5	5600.0	-655.6	1137.4	44.8	148.4	1076.2	249.3	10	-9.8	3.6	24.7	4 1.8	27.9	-55.1	-692.7	102.1	69.1
533.5	5600.0	-486.7	935.4	0.2	143.7	0.2	206.8	12.3	-9.4	0	19.5	47	31.7	-55.5	-563.4	91.7	40.7
533.5	5600.0	-317.8	813.2	0.2	118.2	0.2	171.8	15.2	-9.2	0	13.5	55.6	30.5	-40.8	-396.5	67.1	22.7
533.5	5600.0	-148.9	528.3	0.2	72.5	0.2	107.2	18.5	-9.6	0	6.9	72.8	20.1	-19.4	-204.1	34.5	10.1
533.5	5600.0	20.0	0.4	0.2	11.7	0.2	1.4	22	-10.5	0	0	100	0	-0.3	-1	0.3	-0.2
533.5	5880.1	-1500.0	8001.3	17633.4	15.1	43372.1	916.2	6.2	-9.1	91.8	8.2	0	4.7	51.3	-87.2	-3.9	60
533.5	5880.1	-1331.1	6349.0	13119	31.5	32680.2	824.6	5.3	-9.8	70.2	19.8	0	10	64.6	-443.7	7.3	135.9
533.5	5880.1	-1162.2	4566.7	8423.9	59	21470.5	694.6	5.3	-10.3	47.3	29.4	5.1	15.5	56.9	-722.3	29.1	184.6
533.5	5880.1	-993.3	2926.3	4276.7	99.4	11468.1	525.5	6.1	-10.4	26.4	33.1	16.8	20.8	17.5	-855.7	63.2	175.9
533.5	5880.1	-824.4	1762.4	1338	140.7	4360	366.2	7.5	-10.1	11.1	31.2	28.2	26.7	-34.1	-850.3	96.6	123.9
533.5	5880.1	-655.6	1228.6	0.2	164.9	676.3	276.1	9.3	-9.5	2.5	26.8	34.1	33.9	-64.1	-762.3	110.9	73. 9
533.5	5880.1	-486.7	1121.4	0.2	166.8	0.2	244.7	11.5	-8.9	0	21.4	36.6	40.5	-67.5	-625.4	103.3	41.2
533.5	5880.1	-317.8	1101.9	0.2	144.8	0.2	223.8	14.3	-8.6	0	15.1	42.6	41.9	-52.6	-448.3	78.7	
533.5	5880.1	-148.9	809.0	0.2	95	0.2	157.1	17.9	-8.9	0	7.9	60.9	31	-27.6	-238.6	42.6	8.9
533.5	5880.1	20.0	8.8	0.2	20.3	0.2	8.7	21.7	-10.3	0	0.4	96.6	3.3	-4.2	-17.8	3.8	
533.5	6160.2	-1500.0	7956.8	17493.7	14.2	43109.3	920.3	8.1	-9.1	90.9	8.9	0	5.2	66	-56.5	-5.3	69.6

		Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/i	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
533.5	6160.2	-1331.1	6309.0	12955.7	30.6	32394.1	833.9	6.4	-9.8	69.6	20.5	0	10.3	71.6	-481.6	6.1	149.8
533.5	6160.2	-1162.2	4554.1	8311.1	58.8	21319.6	705.7	5.6	-10.3	47.1	29.7	4.7	15.6	54.8	-803.5	28.8	196.6
533.5	6160.2	-993.3	2963.9	4273	99.7	11579.6	538.6	6	-10.4	26.8	33.5	15.6	21.2	12.6	-931.9	63	183.8
533.5	6160.2	-824.4	1859.2	1433.9	141.9	4722.7	385.3	7.1	-10.1	11.9	32.3	25.2	27.8	-36.2	-907.7	96.5	130.6
533.5	6160.2	-655.6	1374.1	0.2	171. 4	1157.4	299.3	8.6	-9.5	3.5	28.6	29.3	36.1	-67.2	-813.7	114.7	77.3
533.5	6160.2	-486.7	1334.4	0.2	181.9	17.3	275.8	10.5	-8.8	0	23.6	29.3	44.7	-74.9	-682.8	113	40.9
533.5	6160.2	-317.8	1397.8	0.2	168.2	81.2	267.9	13.1	-8.3	0	17.3	32.5	49	-64.3	-512.1	92.8	19.3
533.5	6160.2	-148.9	1090.5	0.2	118.9	221.9	200.7	16.7	-8.6	0	9.6	51.2	38.4	-41.2	-295.5	56.7	7.1
533.5	6160.2	20.0	0.4	0.2	29.8	0.2	7.3	20.9	-10.3	0	1.4	96	2.7	-16.2	-55.5	14.2	-0.5
533.5	6440.3	-1500.0	7932.9	17488.7	10.8	43133.7	920.3	10.3	-9.1	90.6	9.1	0	4.8	82.9	3	-8.2	74.6
533.5	6440.3	-1331.1	6294.4	12911.3	24	32382.5	848.1	7.5	-9.9	69.6	21.2	0	9.4	83.2	-526.8	0.8	168.3
533.5	6440.3	-1162.2	4548.5	8265.3	49.9	21332.5	728.3	5.6	-10.5	47.5	30.8	4.9	14.2	59.8	-920.9	21.8	222.9
533.5	6440.3	-993.3	2947.0	4285.6	90.9	11684.3	550.2	5.7	-10.6	27.4	34.6	16.4	19.2	12.7	-1021	57	201
533.5	6440.3	-824.4	1857.1	1575.6	133.9	5083.4	384.8	6.8	-10.3	12.9	33.5	26.3	25	-35.2	-952.5	92.3	135.6
533.5	6440.3	-655.6	1424.3	187.8	166.1	1838.1	298.7	7.9	-9.8	5.2	30.5	29.3	33	-62	-855.8	113.6	77.8
533.5	6440.3	-486.7	1443.8	0.2	184.8	854.1	280.4	9.2	-9.1	1.9	26.4	27.3	42.5	-69.7	-747.3	119.1	38.6
533.5	6440.3	-317.8	1575.8	0.2	183.7	895.3	283.7	11.3	-8.4	0.8	20.6	27.4	49.4	-66.1	-604.4	108.1	15.3
533.5	6440.3	-148.9	1339.0	0.2	146.9	880.6	233.5	14.7	-8.4	0.4	12.8	42.7	42.7	-56	-400.9	79.3	3.9
533.5	6440.3	20.0	312.4	0.2	63.8	22.7	58.6	19.1	-9.8	0	3.7	84.5	11.3	-40	-143.4	37	-1.4
533.5	6720.4	-1500.0	7924.7	17574.8	7	43340.2	916.7	12	-9.2	90.7	9.2	0	3.8	97.9	70.4	-11.7	75.4
533.5	6720.4	-1331.1	6291.4	12951.1	14.2	32539.1	861.7	8	-10.1	70	22.2	0	7.8	96.1	-567.1	-6.8	186.7
533.5	6720.4	-1162.2	4543.8	8272.2	34.2	21450	756.3	5.1	-10.8	48.2	32.8	5.1	11.8	71.4	-1047.9	9.5	257.1
533.5	6720.4	-993.3	2894.9	4309.4	72.8	11778.7	563.9	5	· -11	28	36.9	17.8	15.5	23.2	-1114.2	43.9	228.2
533.5	6720.4	-824.4	1783.9	1717.3	112.6	5382.2	378.7	5.9	-10.8	14	35.9	29.2	19.4	-19.8	-1004.1	78.7	149.4
533.5	6720.4	-655.6	1371.3	485	142.2	2473.6	284	6.8	-10.4	7.1	33.7	32.7	25.3	-33.5	-914.3	100.2	86
533.5	6720.4	-486.7	1397.4	29	166.2	1595.7	254.2	7.8	-9.8	4.2	30.2	30.8	33.7	-30.9	-832.6	112.6	38
533.5	6720.4	-317.8	1595.8	0.2	178.9	1601.3	261.4	9.5	-9	3	24.6	28.4	42.9	-27	-719.9	112.3	7.2
533.5	6720.4	-148.9	1525.9	0.2	161.9	1505.8	245.4	12.8	-8.5	2	16.2	37.1	43.7	-37.4	-518.8	93.2	-4
533.5	6720.4	20.0	642.2	0.2	92.4	509.9	107.4	17.5	-9.4	0.6	5.7	73.3	20	-48	-227.8	54.2	-4.8
533.5	7000.6	-1500.0	7881.8	17559.3	7	43285	913.9	12	-9.3	90.6	9.8	0	2.5	100.4	69.2	-14.2	79.8
533.5	7000.6	-1331.1	6251.8	12986	7	32601.3	860.8	7.9	-10.2	70.2	23.1	0	5.8	99.1	-573.9	-11.4	193.9
533.5	7000.6	-1162.2	4516.3	8377.8	21.1	21685.4	760.4	4.6	-11	48.9	34.3	6.2	8.9	78.5	-1070.3	0.4	270.4
533.5	7000.6	-993.3	2897.3	4510	49.3	12262.9	580	3.9	-11.4	29.3	39.6	18.3	11.3	42.2	-1170.9	26.3	253.9
533.5	7000.6	-824.4	1800.1	2000.4	75.6	6072	402.5	4.1	-11.4	15.9	40.3	29.3	13.5	18.8	-1088.8	50	
533.5	7000.6	-655.6	1321.1	786.7	95.4	3149.9	287.7	4.8	-11.2	9.2	39	35.1	16.1	25.9	-1013.2	66.2	118.7
533.5	7000.6	-486.7	1179.3	256.7	121.8	1963.3	200.2	6.6	-11	6.1	34.9	39.2	19.4	47.6	-939.4	87.8	
533.5	7000.6	-317.8	1366.9	114.4	141.5	1891.4	180.2	8.5	-10.2	4.8	28.8	38.4	27.6	81.6	-855.9	95.8	

Easting	Northing	Elevation	Na	Са	HCO3	Cl	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
533.5	7000.6	-148.9	1573.1	62	141.4	1914	216.7	12.3	-8.9	3.2	18.3	38.7	39.4	54.6	-604.6	78.8	-19.8
533.5	7000.6	20.0	827.3	0.2	84.4	812.6	123.3	18	-9.2	0.8	5.2	69.7	24	-5	-226.3	40.7	-11.6
533.5	7280.7	-1500.0	7811.1	17407.7	7	42907	916.2	10.1	-9.5	90.3	10.9	0	1.5	87.1	-22.4	-14.9	90.1
533.5	7280.7	-1331.1	6183.9	12969.5	7	32485.3	850.4	6.9	-10.3	70.1	23.7	0	4.3	87.5	-569.4	-11.7	192.4
533.5	7280.7	-1162.2	4466.0	8504.9	15.7	21879.3	744.1	4.3	-11.2	49.2	34.7	7.5	6.6	72.6	-1002.7	-1.8	263.1
533.5	7280.7	-993.3	2914.3	4745.2	32.7	12788.2	588.6	3.1	-11.7	30.6	41.5	18.2	8.3	51.4	-1167.3	14	267.4
533.5	7280.7	-824.4	1871.9	2268.1	41.8	6767.7	442 .1	2.4	-11.8	17.7	44.6	27.1	9.9	52.2	-1162.7	21.5	229
533.5	7280.7	-655.6	1403.1	1064.6	40	3909.4	337.9	1.8	-11.8	11.2	45.2	32.2	11.3	90	-1120	18	176.1
533.5	7280.7	-486.7	867.9	276.3	76	1789.9	140.2	6.7	-12.1	6.6	38	49.1	6.3	110.2	-997.1	59.8	46.8
533.5	7280.7	-317.8	901.6	147.9	88.4	1654.9	57.2	8	-11.7	5.9	32.4	55.7	6	214.7	-987.7	72	-28.2
533.5	7280.7	-148.9	1344.0	70.3	99.1	1818.2	143.8	12.7	-9.7	3.6	19.6	48.9	27.5	166.1	-658.3	52.4	-34.3
533.5	7280.7	20.0	654.3	0.2	50.8	607	81.4	19.4	-9.5	0.4	3.8	77.6	17.8	51.4	-183.1	15.3	-17.4
533.5	7560.8	-1500.0	7782.9	1730 4 .2	7	42649	922	7.5	-9.5	90.3	11.6	0	1.3	65.7	-126.9	-14	97
533.5	7560.8	-1331.1	6156.4	12964.2	7	32411.6	846.2	5.4	-10.4	70.1	23.9	0	4	67.3	-576.3	-9.6	189.5
533.5	7560.8	-1162.2	4433.4	8556.3	17.7	21915.3	734.6	3.9	-11.2	49.2	34.8	7.7	6.3	54.8	-940.9	0.6	255.8
533.5	7560.8	-993.3	2879.5	4771.9	33.3	12797.6	586.5	3.3	-11.7	30.5	41.7	18.3	7.9	35.9	-1124.5	15.2	268.1
533.5	7560.8	-824.4	1802.2	2175.6	44.5	6523.8	440.6	3.2	-11.9	17.2	44.7	27.5	9.6	37.1	-1150.6	24.6	233.7
533.5	7560.8	-655.6	1263.3	781.9	53.2	3208.4	316.9	4.2	-11.9	9.6	44.1	33.9	11.8	72.3	-1087.8	30.4	167.1
533.5	7560.8	-486.7	1057.3	119.7	74	1691.4	198.5	7.2	-11.7	5.5	38.9	40.4	14.6	122.1	-972.1	47	70.7
533.5	7560.8	-317.8	1221.2	0.2	89.2	1510	154.9	10.2	-10.9	3.9	30.9	42	22.5	177.8	-835.3	50.7	0.6
533.5	7560.8	-148.9	1267.9	0.2	82.5	1357.9	155.6	14.7	-9.7	2	18	49.3	29.8	149.8	-533.6	32.7	-20.4
533.5	7560.8	20.0	120.4	0.2	16.3	0.2	1.4	20.4	-10.4	0	3	94.3	2.3	65.7	-134.8	1.5	-15.8
533.5	7840.9	-1500.0	7825.0	17328.3	7	42704.4	929.3	5.5	-9.6	90.8	11.3	0	2.1	41.7	-196.3	-11.9	95.7
533.5	7840.9	-1331.1	6210.2	13042.4	11.1	32579.2	851.4	4.3	-10.3	70.5	23.4	0	5.4	44.3	-575.6	-6.6	183.9
533.5	7840.9	-1162.2	4472.8	8602.7	25.4	22004.6	738.9	3.9	-11.1	49.1	34.1	6.4	8.4	31.9	-885.9	5.3	249.5
533.5	7840.9	-993.3	2877.1	4701.4	47.6	12613	585.7	4.2	-11.5	29.7	40.2	17.6	10.9	4.9	-1052.8	25.4	258.7
533.5	7840.9	-824.4	1766.9	1972	69.4	6036.1	431	5.2	-11.6	15.7	41.5	27.6	13.9	-7.5	-1070.8	43.4	215.1
533.5	7840.9	-655.6	1311.7	533.5	83.9	2711.4	324.8	6.8	-11.3	7.7	40.1	31.4	19.8	23.4	-993.3	50.1	149.7
533.5		-486.7	1355.3	0.2	97.2	1611	271.9	9.2	-10.7	4	35.7	29.8	29.5	77.5	-860.7	49.9	79.7
533.5		-317.8	1591.6	0.2	105.4	1521.9	259.5	12.3	-9.7	2.1	27.6	28.4	40.8	113.1	-670.8	42.1	24.8
533.5		-148.9	1317.3	0.2	83.3	1128.9	198	16.4	-9.3	0.7	15.4	46.1	36.6	94.5	-393.8	24.1	-1.8
533.5		20.0	0.4	0.2	7	0.2	1.4	21.1	-10.9	0	1.9	100	0	40.6	-73.8	-1.5	-8
533.5		-1500.0	7879.8	17360.9	9.4	42785.9	933.3	4.5	-9.5	91.1	10.2	0	3.9	17.9	-216	-8.5	88
533.5		-1331.1	6319.5	13190.1	19.3	32938	857.2	4	-10.2	71.1	21.6	0	8.1	20.7	-539.8	-2.4	170.5
533.5		-1162.2	4629.6	8815.7	36.7	22537.6	748.8	4.4	-10.8	49.8	31.7	4.9	12.4	8.6	-802.5	11	232.8
533.5		-993.3	3062.4	4909.4	65.1	13159.2	597.2	5.5	-11.1	30.2	36.8	15.6	16.4	-23.8	-941.4	35	237.1
533.5	8121.0	-824.4	1986.8	2144.3	94.4	6537.7	446.8	7	-11	15.8	36.7	25	21.6	-47	-946.5	57.6	188.9

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
533.5	8121.0	-655.6	1614.0	689.3	111.6	3258.2	364.2	8.9	-10.5	7.8	34.6	26.3	30.6	-24.2	-864.1	62.5	131.5
533.5	8121.0	-486.7	1736.0	98.9	121.2	2204.8	343.4	11.3	-9.7	3.9	30.3	21.7	43.4	22.2	-724.5	54.6	78.7
533.5	8121.0	-317.8	1951.2	0.2	122.8	2047.5	341.9	14.2	-8.7	1.9	22.8	19.9	54.6	51.1	-529.9	40.4	36.4
533.5	8121.0	-148.9	1575.3	0.2	94.6	1575.3	262.5	17.9	-8.6	0.7	12	40.2	46.4	40	-279.1	21.8	11
533.5	8121.0	20.0	0.4	0.2	10.5	0.2	1.4	22	-10.6	0	0.1	100	0	3	-5.2	-0.4	-0.2
950.2	5600.0	-1500.0	7954.9	17655.1	14.4	43267.9	893.9	4.9	-9.4	92	7.3	0	2.9	44.1	-102.4	-2.6	45.2
950.2	5600.0	-1331.1	6395.8	13364.4	28.3	33063.6	795.2	4.2	-10	71.4	18.4	1	8	76.4	-418.6	6.4	106.5
950.2	5600.0	-1162.2	4772.8	8968.1	49.3	22571.3	674	4.2	-10.5	49.9	27.9	6.7	13.7	96.1	-683.3	21.4	149.6
950.2	5600.0	-993.3	3331.9	5091.1	78.1	13313.6	541.5	4.9	-10.7	30.6	33.1	14.1	20.2	90.6	-841	42.5	157.6
950.2	5600.0	-824.4	2297.9	2236.5	108.5	6549.1	424.8	6.4	-10.4	15.9	33	21.2	27.8	64.5	-872.3	63.1	134.1
950.2	5600.0	-655.6	1730.9	526.8	129.9	2589.4	347.3	8.5	-9.8	6.6	29.3	26.2	35.7	35.2	-798.6	73.6	98.9
950.2	5600.0	-486.7	1480.0	0.2	134.8	824.6	300.7	11.2	-9.2	1.7	23.3	31.3	41.5	14.1	-651	70.1	65.8
950.2	5600.0	-317.8	1279.4	0.2	118.5	328.9	252	14.5	-8.9	0	15.9	41.6	40.8	3.2	-453.9	53.9	38.7
950.2	5600.0	-148.9	845.7	0.2	77.1	254.6	160.8	18.2	-9.2	0	7.9	63.4	27.9	0	-228.8	28.7	17.2
950.2	5600.0	20.0	38.5	0.2	13.4	0.2	8.7	22	-10.4	0	0.1	98.7	1.4	1.5	-0.7	-0.7	0.7
950.2	5880.1	-1500.0	8016.4	17666.5	15.8	43400.9	908.1	5.4	-9.2	92	7.9	0	4.4	52	-104.4	-3	50.9
950.2	5880.1	-1331.1	6435.4	13277.8	30.5	32994.5	811.8	4.3	-9.8	71.1	19.4	0	9.8	81.6	-455.8	6.4	116
950.2	5880.1	-1162.2	4800.7	8797	53.4	22334.4	692.2	4	-10.3	49.3	29.3	2.6	16.1	97.6	-747.2	22.7	160.5
950.2	5880.1	-993.3	3370.4	4866.3	85.2	12984.8	561.8	4.4	-10.5	29.8	34.7	9	23.6	89.4	-916	45.4	167.5
950.2	5880.1	-824.4	2382.1	1992.2	119.9	6224.1	450.9	5.7	-10.1	15	35	14.1	32.9	62	-947.8	68	141.3
950.2	5880.1	-655.6	1909.2	296.5	147.5	2379.3	385.4	7.7	-9.4	5.7	31.5	16.1	43.8	31.7	-870.1	80.7	102.5
950.2	5880.1	-486.7	1811.6	0.2	160.1	845.3	360.3	10.3	-8.5	1	25.3	16.8	54.1	9.5	-714.8	78.9	66.2
950.2	5880.1	-317.8	1812.1	0.2	151.1	655.2	342.1	13.7	-7.8	0	17.5	21.7	59.2	-1.7	-502.4	62.2	37.1
950.2	5880.1	-148.9	1533.5	0.2	112.6	817.4	275.7	17.8	-7.9	0	8.6	39.7	51	-3.6	-252	33.5	15.5
950.2	5880.1	20.0	472.9	0.2	34.1	257	83.3	22.1	-9.5	0	0	83.5	16.8	0	0.1	-0.4	0.2
950.2	6160.2	-1500.0	8049.8	17718.4	15.3	43591	914.9	6.4	-9.1	92.2	7.9	0	4.9	58.8	-82.8	-4	54.1
950.2	6160.2	-1331.1	6473.9	13311.9	29.7	33182	823.6	4.9	-9.7	71.4	19.6	0	10.2	84.1	-474.8	5.2	123.2
950.2	6160.2	-1162.2	4856.4	8841.2	52.9	22583.3	708	4	-10.3	49.8	29.7	0.9	16.6	96	-795.3	21.5	169.3
950.2	6160.2	-993.3	3455.3	4944.9	85.4	13343.1	580.5	4.2	-10.4	30.5	35.5	6.4	24.5	86.8	-971	44.5	175.1
950.2	6160.2	-824.4	2512.3	2106.1	122	6695.9	473.7	5.2	-10.1	15.8	36.5	10	34.8	61.8	-1000.6	67.7	146.8
950.2	6160.2	-655.6	2115.3	432.6	154.5	2960.1	416.9	6.9	-9.2	6.7	33.5	9.3	47.7	34.1	-924.4	82.8	105.2
950.2	6160.2	-486.7	2145.0	0.2	175.5	1555.9	409.4	9.3	-8.2	2	27.7	5.9	61.8	12.4	-773.1	84.2	65.6
950.2	6160.2	-317.8	2334.8	0.2	177.2	1523.9	421.2	12.7	-7.2	0.1	19.6	4.8	73.2	-0.7	-557.4	69.8	34.5
950.2	6160.2	-148.9	2324.8	0.2	149.6	1913.2	400.9	17.1	-6.7	0	9.8	15	74.1	-5.1	-285	39.6	13
950.2	6160.2	20.0	283.5	0.2	25.9	231.2	49.4	21.9	-10	0	0	90.5	9.5	-1.7	-2.8	1	-0.1
950.2	6440.3	-1500.0	8088.4	17880.6	12.8	44003.4	917.6	7.5	-9.1	92.8	7.4	0	4.3	62.1	-42.9	-5.7	54.1
950.2	6440.3	-1331.1	6516.7	13463.3	25	33611.6	833.7	5.4	-9.8	72.2	19.5	0	9.2	85.4	-485.8	-3.7	130.8

SO4 Dev	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg/l	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
182.4	16.1	-845.4	96.9	15.2	1.1	30.2	50.8	-10.4	4	723.2	23039.3	45.6	8989.5	4901.1	-1162.2	6440.3	950.2
187.9	37.7	-1025.3	89.8	22.6	6.4	36.6	31.7	-10.6	3.9	594.6	13895.4	76	5132.3	3504.3	-993.3	6440.3	950.2
156.3	60.6	-1047.3	70.7	32.4	9.4	38.4	17.4	-10.3	4.7	484.9	7398.5	111.5	2360	2579.4	-824.4	6440.3	950.2
110.6	77.2	-975.1	50.4	45.7	7.2	36.3	8.6	-9.5	6.2	429	3816.1	146	743.6	2229.1	-655.6	6440.3	950.2
65.8	83.3	-837.6	32.8	62.1	0.8	31.1	4	-8.4	8.2	429.1	2507.3	174.6	21.7	2344.4	-486.7	6440.3	950.2
30.6	74.8	-632.5	16.5	77	0	23	1.9	-7.2	11.4	453.5	2439.7	187.1	0.2	2624.4	-317.8	6440.3	950.2
9	49.2	-356.8	0.8	76.6	9	12.5	0.8	-6.7	15.8	420.1	2423.8	162.2	0.2	2504.0	-148.9	6440.3	950.2
-1.5	11.5	-54.1	-9.4	33.1	65.2	1.6	0	-8.7	21	172.8	991.8	67.8	0.2	1033.3	20.0	6440.3	950.2
54.2	-8	-10.6	61.8	2.9	0	6.9	93.6	-9.1	8.2	918	44434.9	8.9	18064.2	8114.0	-1500.0	6720.4	950.2
140	-3.5	-499.6	86.4	7.3	0	19.7	73.2	-9.9	5.6	841	34031.6	17.2	13628.6	6534.8	-1331.1	6720.4	950.2
200.7	7	-898.6	102	12.2	2.3	31.3	51.9	-10.7	3.7	735.6	23435.5	32.5	9135.5	4902.5	-1162.2	6720.4	950.2
209.5	24.7	-1085	101.7	18.2	7.9	38.8	33	-11	3.3	605	14369.4	57	5316.7	3488.4	-993.3	6720.4	950.2
177.1	43.8	-1102.3	93.8	26.2	11.3	41.6	19.1	-10.9	3.9	488.8	8037	86.2	2628.1	2553.1	-824.4	6720.4	950.2
126.1	60	-1035.9	87.8	37.9	9.2	40.7	10.7	-10.3	5.2	423.3	4611.6	118	1089.2	2204.4	-655.6	6720.4	950.2
69.9	71.4	-914.8	81.7	54.9	1.6	36	6.3	-9.2	7.1	416.1	3368.7	152.6	382.2	2360.5	-486.7	6720.4	950.2
24.7	71.4	-723.7	65.9	74.4	0	27.5	3.9	-7.7	10.1	452.5	3291.3	179.8	144	2765.5	-317.8	6720.4	950.2
2.1	52.6	-434.1	30.1	79.3	2.4	15.5	2	-6.8	14.7	438.1	3029	169	72.8	2721.6	-148.9	6720.4	950.2
-3.9	16.9	-92.7	-7.1	40.7	56.3	2.7	0.1	-8.3	20.3	211.9	1279.4	83.2	0.2	1292.2	20.0	6720.4	950.2
63.3	-10.9	-36.5	63	1.5	0	7.8	93.4	-9.3	7.9	917.5	44253.6	7	17990.7	8050.4	-1500.0	7000.6	950.2
152.9	-8.6	-532.8	87.4	5	0	20.9	73.2	-10.2	5.3	843	33979.8	8.9	13610	6472.0	-1331.1	7000.6	950.2
219.9	-2.3	-942.8	106	8.7	3.8	33.1	52.4	-11	3.2	741.1	23548.6	18.4	9187.6	4839.8	-1162.2	7000.6	950.2
237.6	8.3	-1142.3	114.6	12.9	9.7	4 1.7	34.1	-11.5	2.5	614.8	14675.7	33.3	5454.3	3422.5	-993.3	7000.6	950.2
213.2	18.4	-1170.7	123.9	18.4	13.6	46.1	20.8	· -11.7	2.8	498.7	8547.3	49.9	2863.6	2474.0	-824.4	7000.6	950.2
158.4	30.2	-1110.9	139.1	26.7	13.4	46.5	12.8	-11.4	3.9	415.2	5210.2	72.7	1391	2073.0	-655.6	7000.6	950.2
80	48.8	-998.2	152.8	41.2	8	42.1	8.3	-10.5	6.3	372.6	3875.9	111.1	668.7	2168.5	-486.7	7000.6	950.2
16.2	58.5	-826.2	152	66.5	0	32.9	5.8	-8.6	9.4	419	3902.9	155.7	389.2	2757.5	-317.8	7000.6	950.2
-7.5	44.9	-490.5	89.3	90	0	17.9	3.1	-6.4	14.5	494.7	3940.6	175.4	239.1	3213.0	-148.9	7000.6	950.2
-5.8	9.6	-68.3	5.3	56.9	41.2	1.7	0.1	-7.4	20.8	295.9	1946.8	97.8	40.7	1825.8	20.0	7000.6	950.2
81.3	-13.3	-125.3	63	0.6	0	10.1	92.1	-9.5	6.8	918.9	43446.6	7	17648.3	7910.2	-1500.0	7280.7	950.2
168.8	-11.7	-589.2	82.9	3.4	0	22.8	72.4	-10.4	4.4	842.7	33437	7	13391	6345.0	-1331.1	7280.7	950.2
237.3	-7.9	-978.3	97.7	6	5.1	34.9	52.3	-11.3	2.6	742.8	23332.1	9	9116.7	4731.3	-1162.2	7280.7	950.2
265.3	-3.3	-1189.4	109	8.7	11.3	44.1	34.5	-12	1.9	624.3	14691.4	15.8	5484.2	3319.8	-993.3	7280.7	950.2
253.5	-3	-1234.5	132.2	12.2	15.5	49.9	21.7	-12.3	1.9	514.5	8724.2	19.8	2966	2361.8	-824.4	7280.7	950.2
198.9	1.4	-1175.2	171.2	17.3	17	51.5	13.9	-12.3	3	417	5438.7	30.8	1540.1	1907.3	-655.6	7280.7	950.2
95.4	26.8	-1050.8	205	27.4	16.4	46.9	9.2	-11.8	6.1	323.7	3862.8	70.1	770.9	1860.0	-486.7	7280.7	950.2
12.3	43.8	-903.4	232.1	53.8	1.9	37.5	6.7	-9.8	9.2	356.9	3935	123.6	475.6	2513.8	-317.8	7280.7	950.2
-13.8	-0.0	-528.3	149.3	92.5	0	19.9	3.6	-6.5	14.7	505.7	4307.8	167.6	297	3392.4	-148.9	7280.7	950.2

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
950.2	7280.7	20.0	1953.2	53.3	92.8	2113.4	314.1	21.6	-7.1	0	0.2	38.9	60.9	21	-31.4	-0.8	-6.8
950.2	7560.8	-1500.0	7795.0	17310.4	7	42656.1	923.7	5.3	-9.7	90.9	11.9	0	0.6	53.4	-224	-13.9	97.4
950.2	7560.8	-1331.1	6244.0	13158.2	7	32869.4	846.4	3.4	-10.5	71.5	24.1	0	3.1	66.7	-646.2	-11.7	182
950.2	7560.8	-1162.2	4643.0	8992.1	8.3	22997.3	748.4	2.2	-11.4	51.8	35.6	5.4	5.4	71.4	-1006.2	-7.6	250.7
950.2	7560.8	-993.3	3219.1	5394.3	14.2	14424.9	634	2	-12.1	34.2	44.6	12.3	7.5	72.2	-1217.1	-3.2	284
950.2	7560.8	-824.4	2217.7	2839.1	18.3	8348.6	519.8	2.8	-12.5	21.1	50.2	17.5	10.3	92	-1255.8	-2	273.3
950.2	7560.8	-655.6	1743.1	1384.3	28.7	4986.8	412.4	4.3	-12.6	13.1	51.8	19.5	15.2	145.1	-1170.9	2.3	213
950.2	7560.8	-486.7	1776.9	665.2	60.6	3596.5	332.3	7	-12	8.6	48.1	16.5	26.6	203.6	-1030.2	18.6	114.3
950.2	7560.8	-317.8	2409.9	363.2	109.6	3608.7	361.4	10.1	-10.1	5.9	38.8	2.1	52.9	230.5	-845.2	31.2	29.4
950.2	7560.8	-148.9	2885.4	177.8	138.7	3559.5	429.9	15.2	-7.5	2.9	21.3	0	78.2	157.7	-492.5	24.6	-7.9
950.2	7560.8	20.0	684.3	0.2	35.9	642.6	98	21.2	-9.4	0	1.6	77.8	20.4	44.2	-62.2	-3.4	-9.7
950.2	7840.9	-1500.0	7748.3	17094.4	7	42162.3	930.6	4.2	-9.7	90.1	12.6	0	1.8	35.9	-290.5	-12.5	105.2
950.2	7840.9	-1331.1	6227.8	13036.4	7.7	32590.1	854.8	2.8	-10.5	71	24.2	0	4.8	42.6	-671.4	-9.1	186.4
950.2	7840.9	-1162.2	4652.7	8942.7	16.2	22886.7	759.9	2.3	-11.3	51.5	34.8	4.4	7.6	36.9	-999	-2.8	253.3
950.2	7840.9	-993.3	3235.5	5345.8	27.2	14321.3	648.2	2.8	-11.9	33.8	42.7	11.5	10.6	22.8	-1196.2	5.4	285.4
950.2	7840.9	-824.4	2231.5	2723.8	38.8	8103.9	533.3	4.4	-12.1	20.3	47.2	16.7	15	30.2	-1216.6	12	270.1
950.2	7840.9	-655.6	1819.5	1225.6	53.6	4714.8	435.7	6.4	-12	11.9	48	16.7	22.7	86.5	-1103.7	16.7	207.8
950.2	7840.9	-486.7	1992.0	537.7	79.7	3525.9	389.5	8.7	-11.1	7.4	44.7	9.3	38	156.5	-940.1	21.9	122
950.2	7840.9	-317.8	2597.5	250.3	117.3	3523.9	422.8	11.7	-9.3	4.6	35.9	0	63.7	185.2	-725.7	24.2	45.8
950.2	7840.9	-148.9	2707.3	86.2	128.8	3154.2	421.4	16.1	-7.6	1.9	19.9	1.3	76	127.1	-401.8	17.4	3.4
950.2	7840.9	20.0	36.8	0.2	10.6	0.2	1.4	21.5	-10.5	0	1.4	97.6	1	30.5	-42.4	-2.7	-5.7
950.2	8121.0	-1500.0	7755.0	16977.9	8.4	41910.6	935.8	3.8	-9.7	89.5	12	0	4.1	15.7	-305.6	-9.6	103.2
950.2	8121.0	-1331.1	6301.7	13058.6	16.7	32676.1	862.9	3	-10.3	70.9	22.7	0	8	18.3	-640.8	-4.8	177.9
950.2	8121.0	-1162.2	4803.6	9093.3	29.3	23299.2	772.6	3	-10.9	51.8	32.3	2.6	12.3	8	-924.2	3.6	238.1
950.2	8121.0	-993.3	3466.4	5572.6	46.4	14957.9	667.2	4.1	-11.3	34.4	38.9	8.5	17.4	-10.8	-1091.8	15	263.6
950.2	8121.0	-824.4	2544.6	2952.1	65.4	8817.3	564.1	6.1	-11.3	20.8	41.9	12	24.7	-10.6	-1102.4	24.8	244.9
950.2	8121.0	-655.6	2219.1	1393.7	85.1	5388.5	491.6	8.3	-10.9	12	41.7	9.3	36.5	33.1	-989.1	28.9	189.6
950.2	8121.0	-486.7	2459.2	641.7	109.9	4128.5	476.1	10.7	-9.8	7.1	37.9	0	55.4	91.4	-816.1	28	119.3
950.2	8121.0	-317.8	3038.1	319.9	140.3	4020.8	520.1	13.6	-7.9	4.1	29.3	0	81	114.8	-592	23.3	56.3
950.2	8121.0	-148.9	3231.1	173.7	151.5	3788.2	531.1	17.6	-6.3	1.7	15.1	0	94.8	71.6	-296.3	14.3	16
950.2	8121.0	20.0	0.4	0.2	9.9	0.2	1.4	22	-10.6	0	0.1	100	0	0.9	-1.5	-0.2	0.1
1366.9	5600.0	-1500.0	8020.3	17864.8	13.6	43726.3	889.2	4.5	-9.4	93.1	6.4	0	2.1	43.4	-101.8	-2.4	35.1
1366.9	5600.0	-1331.1	6461.0	13518	23.6	33360.4	786.3	3.5	-10.1	72.3	18.4	1.4	6.9	98.3	-443.2	3.2	95.1
1366.9	5600.0	-1162.2	4858.6	9050.2	38.4	22690.9	669.3	3	-10.8	50.7	29.6	5.6	12.6	148.7	-751.4	12.1	143.3
1366.9	5600.0	-993.3	3500.0	5179.7	60.6	13509.8	557	3.5	-11.1	31.6	36.5	9.9	20.2	170.6	-948.3	25.4	163.8
1366.9	5600.0	-824.4	2593.6	2409.3	88.8	7078.6	469.8	4.9	-10.7	17.4	37.5	13	30.2	154.5	-992.9	40.6	152.7
1366.9	5600.0	-655.6	2121.8	744.9	114.5	3358.5	413.4	7.2	-9.9	8.2	33.6	15.1	41	116.4	-908.4	51.5	122.2

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev I	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1366.9	5600.0	-486.7	1906.5	0.2	127.9	1616.1	374.5	10.2	-9.1	3.1	26.7	18.8	49.3	75.3	-736.6	53.1	86.1
1366.9	5600.0	-317.8	1681.3	0.2	119.9	1005.3	321	13.8	-8.6	0.7	18.1	29.7	49.7	40.9	-509	43.5	52.1
1366.9	5600.0	-148.9	1117.8	0.2	82	681.6	206.7	17.9	-8.9	0	8.9	55.3	34.7	16.1	-253.5	24.5	23.2
1366.9	5600.0	20.0	12.6	0.2	12.6	6.8	3.6	22	-10.5	0	0	99.6	0.4	0.4	-0.1	-0.2	0.2
1366.9	5880.1	-1500.0	8096.2	17908.6	15.4	43930.5	902	4.5	-9.1	93.3	6.8	0	3.5	49.5	-111.3	-2.4	37.7
1366.9	5880.1	-1331.1	6533.2	13507	26.4	33475.3	802.2	3.3	-9.9	72.4	19.2	0	8.8	102	-474.8	3.6	100.2
1366.9	5880.1	-1162.2	4942.6	9001	43.2	22768.8	689.3	2.6	-10.6	50.7	30.6	0.9	15.3	148.9	-798.9	13.5	149.4
1366.9	5880.1	-993.3	3609.3	5091.9	68.6	13553.1	581.9	2.9	-10.8	31.4	37.8	3.9	24.3	168.5	-1006	28.3	169.3
1366.9	5880.1	-824.4	2748.5	2273.3	101.1	7068.8	502.1	4.1	-10.4	17	39.3	4.8	36.2	152.9	-1059.1	45.1	157.1
1366.9	5880.1	-655.6	2374.1	586.5	133.1	3389.6	460.4	6.3	-9.4	7.7	35.7	3.4	50.4	115.5	-978.6	57.9	124.7
1366.9	5880.1	-486.7	2330.3	0.2	155	1845.1	447.2	9.2	-8.2	2.6	28.7	2	64	73.8	-801.9	60.9	86.1
1366.9	5880.1	-317.8	2349.8	0.2	156.5	1557.9	432	13	-7.3	0.3	19.5	6	71.9	38.5	-557	50.8	50.3
1366.9	5880.1	-148.9	2053.2	0.2	126	1578.6	361.4	17.5	-7.2	0	9.3	24.3	65.2	14.3	-271.7	28	21.2
1366.9	5880.1	20.0	939.3	0.2	50.6	847.9	159.4	22.3	-8.8	0	0	69.6	31	2.6	9.9	-3	0.4
1366.9	6160.2	-1500.0	8150.8	18004.1	15.5	44218.3	907.8	4.8	-9.1	93.8	6.7	0	4	52.8	-101.7	-2.8	37.2
1366.9	6160.2	-1331.1	6614.5	13643.2	26.8	33913.4	813.4	3.4	-9.8	73.1	19	0	9.4	100.6	-482.2	3.3	101.4
1366.9	6160.2	-1162.2	5067.4	9207.3	44.5	23439.3	707	2.5	-10.4	51.8	30.4	0	16. 4	142.3	-816.2	13.4	151.1
1366.9	6160.2	-993.3	3775.5	5347.7	71	14394.8	605	2.6	-10.6	32.8	37.9	0.4	25.9	160.5	-1028.7	28.4	170.7
1366.9	6160.2	-824.4	2949.0	2517.9	105	7919.8	530.3	3.7	-10.2	18.4	40.2	0	38.8	149.5	-1092.4	45.6	158.7
1366.9	6160.2	-655.6	2640.0	795.3	141.1	4213.7	498.4	5.5	-9.2	9	37.5	0	55.2	118.1	-1025.8	59.7	125.6
1366.9	6160.2	-486.7	2728.9	0.2	171	2725.2	505.2	8.3	-7.8	3.8	30.9	0	73.3	79.3	-857.9	64.7	85
1366.9	6160.2	-317.8	2951.6	0.2	183.1	2569.5	522.8	12	-6.5	1.3	21.5	0	88.1	43.5	-607.8	55.9	47.3
1366.9	6160.2	-148.9	2954.6	0.2	164.3	2810.4	504	17	-5.8	0.2	10.3	0	91.7	17.4	-296.3	30.7	18.5
1366.9	6160.2	20.0	1824.8	37.1	84.9	1922.8	304.2	22.4	-7.3	0	0	42.5	58.2	4.1	20.3	-5.2	0.1
1366.9	6440.3	-1500.0	8231.1	18284.2	14.5	44897.3	909.9	5.2	-9	95.1	5.4	0	3.3	46.5	-67.8	-3.1	31.4
1366.9	6440.3	-1331.1	6703.6	13935.5	24.2	34670.4	820.8	3.5	-9.8	74.6	18.1	0	8.5	94	-472.3	1.6	100.2
1366.9	6440.3	-1162.2	5164.6	9512.2	39.7	24279.8	719.2	2.5	-10.4	53.5	30.1	0	15.2	137.7	-826.6	10.1	154.6
1366.9		-993.3	3884.2	5693.7	63.6	15361.4	619.4	2.4	-10.7	34.7	38.4	0	24.3	160.3	-1047.3	23.3	176.7
1366.9		-824.4	3068.6	2892.1	95.5	8959.4	545.3	3.3	-10.4	20.5	41.7	0	36.8	157.7	-1118.6	39	165.7
1366.9		-655.6	2796.4	1174.5	132.5	5287	516.1	5	-9.4	11.2	40.1	0	53.8	136	-1066.3	53.3	131.4
1366.9		-486.7	2982.4	336.1	169.1	3834.2	533.6	7.3	-7.9	5.9	34.3	0	74.8	103.1	-914.4	61.1	86.1
1366.9		-317.8	3321.4	62.2	191.5	3635.2	567.6	10.9	-6.4	3.1	24.7	0	94.2	65.4	-670.3	56.4	43.5
1366.9		-148.9	3161.7	44.8	171.7	3386.5	527.1	16.1	-5.8	1.3	12.5	0	95.1	29.5	-344.9	33.8	14.4
1366.9		20.0	1520.0	22.4	73.7	1581.5	253.1	22.1	-7.9	0	0.5	51.3	48.4	4.5	0.1	-3.1	-0.1
1366.9		-1500.0	8339.4	18731	12.8	45923.7	910.8	5.4	-9	97.2	3.2	0	1.7	28.1	-22.5	-3	21.7
1366.9		-1331.1	6762.2	14249.9	18.6	35425.8	824.6	3.5	-9.9	76.2	17.2	0	6.3	84.7	-465.4	-1.2	101
1366.9	6720.4	-1162.2	5182.0	9747.2	28.9	24879.1	725.1	2.2	-10.7	54.8	30.6	0.3	12.1	138.7	-849	3.5	164.7

Easting	Northing	Elevation	Na	Са	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
366.9	6720.4	-993.3	3878.3	5954.5	46.5	16020.7	624.6	2.1	-11.1	36.3	40.1	2	19.6	171.3	-1077.9	12.5	192.4
366.9	6720.4	-824.4	3041.4	3217.3	71.2	9739.4	546.5	3.1	-11	22.4	44.8	1	30.1	181.4	-1151	24	184.9
1366.9	6720.4	-655.6	2766.9	1560.1	104.2	6179.5	511.2	4.7	-10.3	13.5	44.6	0	45.6	173.9	-1105.7	36.3	149
366.9	6720.4	-486.7	3034.0	738.8	145.9	4831.4	529.8	6.7	-8.8	8.3	39.6	0	68.4	152	-967.8	46.9	93.9
366.9	6720.4	-317.8	3610.9	408.9	186.3	4745	593.5	9.9	-6.7	5.2	29.6	0	96.2	112.5	-734.4	49	40
366.9	6720.4	-148.9	3603.6	238.9	183.5	4295.6	583.5	15.3	-5.4	2.4	15.4	0	100	56.3	-390.8	32.7	8.1
366.9	6720.4	20.0	1516.9	20.1	72.7	1569.7	251.5	22	-7.9	0	1	51	48.2	6.4	-4.3	-3.8	-0.8
366.9	7000.6	-1500.0	8256.2	18604.6	8	45622.6	910.5	5	-9.2	96.7	4.3	0	0.2	29.4	-62.8	-5.7	33.3
366.9	7000.6	-1331.1	6677.2	14181.1	10.6	35260.2	826.1	3	-10.1	76.1	18.5	0.1	3.9	85.3	-512.3	-5.8	116.1
366.9	7000.6	-1162.2	5086.1	9745.5	15.6	24862.7	727.3	1.7	-11.1	55.1	32.4	2.6	8.2	142.2	-901.2	-4.5	184.8
366.9	7000.6	-993.3	3752.7	6026.1	24.6	16148.8	625.1	1.7	-11.8	37	42.9	5.2	13.4	183.1	-1129.4	-1	219.1
366.9	7000.6	-824.4	2867.0	3387.1	38	10034.1	541.3	3	-12	23.6	49.1	5.7	20.6	206.5	-1194.5	3.8	218.6
1366.9	7000.6	-655.6	2533.3	1835.3	61.2	6615.8	490.3	4.7	-11.6	15.2	50.7	1.1	32.3	218	-1141.9	11.8	182.6
366.9	7000.6	-486.7	2809.4	1067.7	103.9	5368.3	491	6.7	-10.4	10.3	47.2	0	54	215.1	-1003.6	25	112.8
366.9	7000.6	-317.8	3733.4	712.7	169.7	5573.9	594.9	9.7	-7.6	7	36.7	0	93.1	176.1	-782.6	37.2	41
366.9	7000.6	-148.9	4536.0	444.3	215.7	5707.4	722.7	15.3	-5	3.4	18.4	0	100	87.5	-414.5	30.7	3.3
366.9	7000.6	20.0	1945.7	65.5	86.8	2090.4	322.7	22.3	- 7. 2	0	0	38.5	61.8	4.8	27.1	-8.1	-0.9
366.9	7280.7	-1500.0	7997.1	17901.3	7	43999.4	911.7	4.2	-9.5	93.7	8.7	0	0	47.3	-188.5	-10.3	65.4
366.9	7280.7	-1331.1	6473.7	13731.7	7	34203.6	829.4	2.3	-10.5	74.3	21.7	0.3	2.2	88.5	-613	-10.4	144.7
366.9	7280.7	-1162.2	4915.2	9518.4	7	24291.2	733.4	1.1	-11.5	54.4	34.8	4.3	5	132.2	-986.5	-10.4	213.9
366.9	7280.7	-993.3	3554.0	5904.6	7.4	15778.2	631.8	1.3	-12.3	36.8	45.5	8.5	8.1	167.7	-1210.2	-10.8	255.3
366.9	7280.7	-824.4	2599.9	3349.7	10.4	9781	541.3	3.1	-12.9	23.8	52.7	11	12	196.5	-1256.3	-11.9	262.1
1366.9	7280.7	-655.6	2173.0	1906.7	22.4	6475.5	467.4	5.1	-12.9	15.8	56	9.3	18.7	231.2	-1177.7	-8.4	224.8
1366.9	7280.7	-486.7	2348.3	1207.2	60	5242	431.1	6.8	-12.2	11.3	54.1	0	35.6	256.1	-1027.5	6.5	140.9
1366.9	7280.7	-317.8	3376.8	825.8	142.6	5479.5	535.3	9.8	-9.3	7.9	44.1	0	78	223.1	-823.7	31.2	52.7
1366.9	7280.7	-148.9	5001.4	501.4	243	6297.1	799.6	16.5	-5	3.8	21.6	0	100	97.8	-453.7	40.6	6.9
1366.9	7280.7	20.0	1823.7	76.5	81.1	1991.5	303.3	22.4	-7.3	0	0	43.4	58.1	1.5	44.4	-8.9	-0.7
1366.9	7560.8	-1500.0	7807.7	17350.4	7	42728.6	917.6	3.4	-9.8	91.5	11.7	0	0	47.3	-298.5	-12.3	91.2
1366.9	7560.8	-1331.1	6310.2	13313	7	33225.8	839.3	1.6	-10.7	72.7	24	0	1.9	74.7	-709.1	-11.9	170.9
1366.9	7560.8	-1162.2	4777.2	9261.3	7	23665.9	750.7	0.7	-11.7	53.6	36.1	4.8	4.1	96	-1080	-11.5	243.9
1366.9	7560.8	-993.3	3388.2	5712	7	15260.7	657.4	1.3	-12.5	36.4	46.3	10.4	6.1	103.2	-1316.8	-12.1	295.5
1366.9	7560.8	-824.4	2352.8	3144.1	7	9156.9	561.3	3.8	-13.2	23.1	53.5	14.6	8.4	117.5	-1335.2	-14.1	306.8
1366.9	7560.8	-655.6	1872.9	1766.4	9.8	5929.4	458.1	5.9	-13.5	15.3	57.1	15.4	12.2	187.5	-1197.6	-12.1	255.1
1366.9	7560.8	-486.7	1944.9	1141.7	37.4	4758.8	384.7	7.2	-13	11.1	56.2	9.2	23.5	254. 9	-1037.6	0.4	
1366.9	7560.8	-317.8	2713.3	754.9	106.2	4724.5	429.2	9.4	-10.9	7.9	48.4	0	56	260.3	-858.8	24.8	62.5
1366.9	7560.8	-148.9	4052.1	391.4	199.8	5152.3	632.2	15.1	-6.4	3.7	27.8	0	100	137.6	-492.6	39.4	
1366.9	7560.8	20.0	416.5	10	26.8	447.2	67.7	21.9	-9.8	0	0.2	86.7	13.1	6.9	4.4	-2.8	-1.8

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1366.9	7840.9	-1500.0	7712.8	16997.6	7	41928.2	926.4	2.9	-9.9	90	13	0	1	34.2	-365.1	-11.9	106
1366.9	7840.9	-1331.1	6254.9	13070.8	7	32685.9	853.6	1.4	-10.7	71.6	24.5	0	3.7	49	-756.5	-10.4	185
1366.9	7840.9	-1162.2	4770.2	9145.9	9.1	23427	774.8	0.8	-11.5	53.2	35.5	3.7	6.4	49.8	-1121.6	-8.2	259.4
1366.9	7840.9	-993.3	3407.0	5650	13.5	15150.9	695.2	1.6	-12.3	36.4	44.6	9.2	9.1	27.1	-1379.6	-6.1	317.4
1366.9	7840.9	-824.4	2341.4	2996.6	18.2	8840.3	604.8	5	-12.8	22.5	50.8	13.2	13.1	11.4	-1370.7	-5.7	331.4
1366.9	7840.9	-655.6	1934.9	1635.1	27.4	5714.6	491.1	7.3	-12.9	14.3	53.7	12.9	18.8	116.4	-1163.1	-3.8	261.4
1366.9	7840.9	-486.7	2060.3	1032.6	50.3	4671.6	412.6	8.7	-12.3	10.2	52.6	6.4	30.7	220.6	-977.1	3.2	158.5
1366.9	7840.9	-317.8	2745.9	688.4	96.1	4667.1	435.5	10.4	-10.7	7.3	46.7	0	58.3	275.2	-804.3	11.5	62.6
1366.9	7840.9	-148.9	3563.7	327.5	156.8	4576.1	536	13.7	-7.6	3.2	31	0	97.6	186.7	-443.6	17.8	-7.2
1366.9	7840.9	20.0	292.6	0.2	21.8	300.8	44.9	21.5	-10.2	0	1.7	89.3	9	11.2	-4.1	-2.2	-3.3
1366.9	8121.0	-1500.0	7700.5	16810.5	7.5	41526.6	934.4	3	-9.9	89	12.8	0	3.7	16.4	-374.6	-9.9	108.4
1366.9	8121.0	-1331.1	6315.9	13028.3	13.7	32641.9	866.6	2	-10.5	71.2	23.4	0	7.5	23.9	-727.8	-7.1	181.7
1366.9	8121.0	-1162.2	4926.3	9261.2	22.1	23785.9	794.4	1.8	-1 1.1	53.3	33.1	1.1	11.8	16.9	-1048.8	-2.9	248.7
1366.9	8121.0	-993.3	3684.9	5895.2	32.8	15877.2	721.7	2.9	-11.6	37	40.7	4.6	17.3	-6.2	-1262.3	1.7	295.5
1366.9	8121.0	-824.4	2790.9	3316.9	45.9	9873.6	645.2	5.8	-11.7	23.5	45.4	5.6	25.3	-11.6	-1257.9	4.9	298.6
1366.9	8121.0	-655.6	2506.1	1817.1	64	6603.6	570.1	8.4	-11.3	14.7	46.7	0.9	37.5	63	-1081.9	7.1	239
1366.9	8121.0	-486.7	2809.9	1078.8	93.3	5447.5	544.2	10.3	-10.2	9.7	44.1	0	57.7	149.6	-881.6	9.1	152.1
1366.9	8121.0	-317.8	3644.8	682	141	5458.7	611.8	12.7	-8	6.2	36.4	0	92.2	186	-658.3	9.8	70.2
1366.9	8121.0	-148.9	4617.2	401.3	198.1	5705.1	745.6	16.7	-5	2.7	20.1	0	100	116.2	-322.4	8.5	13.9
1366.9	8121.0	20.0	2149.8	137.7	99.8	2444.5	357.8	22.6	-6.7	0	0	34.1	67.8	-6.6	33.4	-3.3	0.1
1783.6	5600.0	-1500.0	8190.5	18383.7	12.8	44957.4	892.2	4.2	-9.2	95.6	4.2	0	0.9	31.8	-74.8	-2	20.8
1783.6	5600.0	-1331.1	6541.4	13752.6	17.5	33874.3	781.9	2.8	-10.2	73.6	18.4	2	5.2	117.6	-465.5	-0.8	87.3
1783.6	5600.0	-1162.2	4807.8	8871.9	23.8	22158.3	658.6	1.8	· -11.3	50.3	32.8	5.7	10.1	210.2	-850.2	1.2	149.2
1783.6	5600.0	-993.3	3389.4	4746.6	39	12349.7	549.9	1.9	-11.9	30.2	42.3	8.9	17.6	264.1	-1106.1	8	183.4
1783.6	5600.0	-824.4	2621.6	2165.2	69.3	6503	484.1	3.5	-11.3	16.9	42.8	9.2	29.7	242.1	-1136.2	22.3	174.2
1783.6	5600.0	-655.6	2296.1	712.4	101.6	3426.1	448.1	6.1	-10.2	8.6	37.6	8.7	43.3	184.3	-1018.2	36	141.2
1783.6	5600.0	-486.7	2177.3	0.2	123.8	1993.9	423.2	9.3	-9	3.7	29.5	10.2	54.6	121.8	-815.6	42.2	101.1
1783.6	5600.0	-317.8	2017.3	0.2	125	1490.9	378.9	13.2	-8.3	1.3	19.8	19.3	58	67.4	-558.5	37.8	61.7
1783.6	5600.0	-148.9	1438.7	0.2	91.8	1113	260.8	17.6	-8.5	0.3	9.6	45.4	43.6	26.9	-275.7	22.5	27.5
1783.6	5600.0	20.0	253.8	10.8	20.9	269.3	44.2	22	-10.1	0	0.2	92.2	7.8	4.1	-1.6	-1.8	1.6
1783.6	5880.1	-1500.0	8217.6	18279.2	14.5	44798.4	900.2	3.7	-9.1	95.3	5.3	0	2.4	43.6	-107.9	-2.1	24.4
1783.6	5880.1	-1331.1	6609.8	13715.8	20.8	33933.7	795.1	2.3	-10	73.6	19.2	0	7.2	122.8	-501.2	0	90
1783.6	5880.1	-1162.2	4950.8	8952.2	30.7	22585.9	680.2	1.3	-11	50.8	33.1	0.5	13.4	204.9	-878.8	3.9	149
1783.6	5880.1	-993.3	3606.7	4899.7	50.4	13045.5	580.6	1.4	-11.4	31.1	42.2	2	22.5	250.4	-1130.2	12.9	180.3
1783.6	5880.1	-824.4	2843.9	2181	83.5	6904	519.9	2.7	-10.8	17.2	43.7	0.6	36.2	234.6	-1185.6	28.1	173.5
1783.6	5880.1	-655.6	2576.6	625	121.4	3648.1	496.1	5.1	-9.6	8.5	39.3	0	52.7	180.7	-1086.3	43.5	141.4
1783.6	5880.1	-486.7	2602.7	0.2	152.3	2304.6	494.6	8.2	-8.2	3.5	31.3	0	68.9	1 1 7.2	-885.2	51.9	100

m		Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev I	HCO3 Dev	SO4 Dev
	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1783.6	5880.1	-317.8	2657.5	0.2	162.8	2056.4	484.6	12.2	-7	1	21.1	0	79	60.8	-612.2	47.6	59.1
1783.6	5880.1	-148.9	2342.0	0.2	136.5	2010.8	409.5	17.1	-6.8	0	10	15.6	72.9	21.5	-297.3	28.2	24.8
1783.6	5880.1	20.0	1198.1	0.2	60.8	1191.8	201.2	22.3	-8.4	0	0	61.8	38.7	2.7	12	-3.3	0.2
1783.6	6160.2	-1500.0	8218.4	18204.4	14.7	44675.1	901	3.6	-9.1	95	6	0	3	52.9	-126.3	-2.4	25.1
1783.6	6160.2	-1331.1	6687.7	13817.7	22.5	34303.9	803.5	2.1	-9.9	74.2	19.1	0	8.2	121.9	-510.8	0.6	88.2
1783.6	6160.2	-1162.2	5148.0	9317.9	35.3	23691.1	699.8	1.2	-10.6	52.7	31.8	0	15.2	189.5	-866.9	5.9	142.6
1783.6	6160.2	-993.3	3891.1	5428.6	57.5	14624.5	609.4	1.3	-10.9	33.7	40.6	0	25.2	227.1	-1108.2	16.2	171.3
1783.6	6160.2	-824.4	3126.0	2627.7	91	8297.3	551.7	2.4	-10.4	19.5	43.3	0	39.4	219.6	-1189.6	31.3	167.7
1783.6	6160.2	-655.6	2866.8	935.3	131.5	4732.7	533.4	4.3	-9.3	10.2	40.2	0	57.3	176	-1124.6	47.6	138.8
1783.6	6160.2	-486.7	2964.6	112.7	169.1	3258.1	544.7	7.1	-7.7	4.9	33	0	76.5	116.2	-944.9	58.7	97.3
1783.6	6160.2	-317.8	3090.1	0.2	185.6	2935.8	546.9	10.9	-6.4	2.1	22.8	0	89.7	59.4	-672.9	56.4	55.4
1783.6	6160.2	-148.9	2605.8	0.2	151.4	2534.4	447.1	16.2	-6.5	0.7	11.1	7.6	79.4	20.3	-335.1	34.5	22.1
1783.6	6160.2	20.0	917.1	0.2	48	913.5	154.4	22.3	-8.9	0	0	70.8	29.6	4	9.5	-3.8	0.5
1783.6	6440.3	-1500.0	8271.4	18394.6	14.2	45139.3	899.8	3.5	-9	95.9	5	0	2.3	48.5	-111.4	-2.2	18.9
1783.6	6440.3	-1331.1	6777.6	14099.4	21.5	35044.7	807.6	2	-9.8	75.6	18	0	7.5	114.4	-498.6	0.3	83.2
1783.6	6440.3	-1162.2	5285.8	9718	33.5	24786.2	710.4	1.2	-10.6	54.7	30.7	0	14.5	179.8	-852.9	4.9	138.8
1783.6	6440.3	-993.3	4062.2	5927.8	54	15999.2	624.3	1.3	-10.9	36.2	39.8	0	24.1	219.2	-1094.1	13.9	169.2
1783.6	6440.3	-824.4	3293.9	3134.2	84.7	9688.2	567.5	2.3	-10.5	22.1	43.6	0	37.5	220.4	-1191.6	27.5	169.2
1783.6	6440.3	-655.6	3037.6	1397.5	124.7	6016.2	550.6	4	-9.4	12.8	41.8	0	55.5	187	-1155.7	43.4	142.4
1783.6	6440.3	-486.7	3197.0	521.2	167.6	4472.9	568.9	6.1	-7.8	7.3	35.4	0	76.8	132.8	-1005.3	56.9	98
1783.6	6440.3	-317.8	3425.1	199.1	194. 1	4066	585	9.4	-6.3	4.2	25.3	0	94.3	74.5	-746.7	58.9	50.9
1783.6	6440.3	-148.9	2868.7	105	162	3243	478.3	15	-6.3	1.9	12.7	0.2	84.3	28.5	-386.9	38.6	17
1783.6	6440.3	20.0	682.1	0.2	37.2	671.1	115.4	22.2	-9.3	0	0.3	78	21.9	4.8	5.6	-4.3	0.9
1783.6	6720.4	-1500.0	8362.9	18788.4	13.2	46039.9	898.3	3.4	-9	97.8	2.9	0	0.7	30.4	-78.7	-1.4	8.8
1783.6	6720.4	-1331.1	6831.1	14396.6	17.6	35761.5	808	1.8	-9.9	77.1	17	0	5.5	104.9	-490.3	-1.1	80.7
1783.6	6720.4	-1162.2	5312.0	9976.1	25.5	25449.1	711.8	1	-10.8	56.1	30.7	0	11.5	180.3	-859.4	0.7	143
1783.6	6720.4	-993.3	4070.6	6231.1	40.2	16775	624.6	1.3	-11.2	37.8	40.7	0	19.6	230	-1101.2	6.2	178.1
1783.6	6720.4	-824.4	3272.3	3502.2	63.5	10581.5	565.5	2.6	-11.1	24.1	45.6	0	30.8	242.4	-1201.5	15.4	184.5
1783.6	6720.4	-655.6	2994.7	1827.8	97	7002.6	544.3	4.2	-10.2	15.2	45.2	0	46.5	221	-1181.5	27.9	161
1783.6	6720.4	-486.7	3215.3	981.8	141	5576	561.1	5.8	-8.6	10	39.7	0	68.8	176.5	-1057.6	41.6	108
1783.6	6720.4	-317.8	3763.7	626	187.3	5436.4	615.6	8.1	-6.4	6.8	29.4	0	96.6	118	-825.9	49.4	45.7
1783.6	6720.4	-148.9	3860.1	398.6	194.5	4969	617.5	13.5	-5	3.5	15	0	100	57	-444.1	36.5	5.1
1783.6	6720.4	20.0	1105.1	16.2	51.8	1132.4	186.2	22.6	-8.6	0	0.1	64.7	35.5	4.5	24.8	-7.9	1.3
1783.6	7000.6	-1500.0	8266.6	18625.1	8.9	45651.7	896.9	3	-9.2	97.2	4.1	0	0	32.7	-124.4	-3.6	20.7
1783.6	7000.6	-1331.1	6733.2	14290.6	10.7	35509.5	807.1	1.3	-10.2	76.8	18.3	0.5	3	107	-540.3	-4.7	95.1
1783.6	7000.6	-1162.2	5199.8	9927.6	14.1	25322.8	708.8	0.4	-11.2	56.1	32.3	2.2	7.7	187.9	-909.8	-5.3	159.9
1783.6	7000.6	-993.3	3915.7	6232.5	21.3	16736.4	614.7	1.1	-11.9	38.1	43.1	4	13.4	250.9	-1139.4	-4.2	198.5

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1783.6	7000.6	-824.4	3051.9	3614	32.8	10734.5	550.2	3.5	-12.1	24.9	49.3	4	20.9	273.5	-1216.2	-1.8	214.4
1783.6	7000.6	-655.6	2693.5	2108	52	7375.4	520.7	5.6	-11.7	16.9	50.8	0.3	31.3	265.2	-1190.7	3.8	202.7
1783.6	7000.6	-486.7	2823.7	1380.8	86.3	6066.9	501.3	6.6	-10.6	12.3	47.3	0	48.4	241.1	-1059.9	14.8	134.9
1783.6	7000.6	-317.8	3520.0	1041.1	146.4	6149	552.2	7.4	-8.2	9.3	38	0	80.1	183.7	-873.5	31.4	46.1
1783.6	7000.6	-148.9	4666.1	718.4	227.9	6576.5	718.1	11.2	-5	5.4	20.4	0	100	97.3	-525.6	45.2	-11.1
1783.6	7000.6	20.0	1547.8	39	66.7	1614.2	260.5	22.9	-7.8	0	0	51.3	49.8	2.4	51.1	-12.2	1.4
1783.6	7280.7	-1500.0	7996.7	17897.1	7	43971.3	898.1	2.4	-9.6	94	8.5	0	0	52.2	-248.1	-8.2	54.2
1783.6	7280.7	-1331.1	6513.3	13795.8	7	34349.6	810.9	0.7	-10.6	74.8	21.5	0.9	1.3	111.6	-649	-9	126
1783.6	7280.7	-1162.2	5001.5	9621.5	7	24564.5	713.3	0	-11.6	55.1	34.7	4.3	4.4	181.3	-1010.5	-10.4	191
1783.6	7280.7	-993.3	3666.1	5971.4	7	16023.6	611.9	0.5	-12.6	37.3	45.8	8.2	7.9	247.6	-1230.6	-12.1	232.2
1783.6	7280.7	-824.4	2708.4	3452.6	7	10195.2	538.4	4.8	-13.1	24.3	52.8	11	11.8	269.7	-1252	-15.8	256
1783.6	7280.7	-655.6	2249.9	2164.7	9.5	7102.2	502.6	7.1	-13.2	17.4	56.4	10.5	15.7	274.9	-1209.6	-17.2	262.2
1783.6	7280.7	-486.7	2139.3	1593.5	26.4	5775.3	422.2	7.4	-13.2	13.4	56.9	7.2	22.5	284.5	-1024.2	-9.4	181.8
1783.6	7280.7	-317.8	2464.8	1199.1	87.3	5337.1	393.3	7.4	-11.9	10.3	51.1	0	42.9	226.7	-853.2	23.7	73.9
1783.6	7280.7	-148.9	3368.3	595.1	249.3	4847.7	537.6	13.9	-7.5	5.8	28	0	89.3	38.2	-656.9	120.9	15
1783.6	7280.7	20.0	278.8	2.2	34.2	275.8	51.5	22 .7	-10	0	0	91.5	9.1	-13.2	-18.6	9.8	2.1
1783.6	7560.8	-1500.0	77 9 8.9	17331.9	7	42668.8	905.4	2	-9.9	91.6	11.6	0	0	53.1	-350.8	-10.5	82.3
1783.6	7560.8	-1331.1	6336.0	13343.1	7	33298.5	824.3	0.3	-10.8	73.1	23.9	0.6	1	96.5	-754.1	-11.1	157.3
1783.6	7560.8	-1162.2	4845.2	9319.3	7	23842.8	738	0	-11.8	54.1	36.2	5	3.3	137.8	-1133	-12.2	229.7
1783.6	7560.8	-993.3	3474.6	5742.3	7	15423.9	653.7	0.5	-12.8	36.9	46.7	10.2	5.6	158.2	-1389.3	-14.4	289.2
1783.6	7560.8	-824.4	2405.3	3173	7	9344.2	577.5	5	-13.4	23.6	53.8	14.8	7.8	152.2	-1388.5	-18.6	322.2
1783.6	7560.8	-655.6	1899.7	1984	7	6427.1	490.7	7.3	-13.7	16.7	57.4	17.7	8.4	215	-1247.2	-18.6	294.9
1783.6	7560.8	-486.7	1680.6	1506.2	7	5234.3	378.2	6.2	-13.9	13.5	57.6	20.4	8.6	259	-1111.1	-11.5	209.9
1783.6	7560.8	-317.8	1563.6	988.7	58	4021.5	273.8	5.1	-13.5	10.1	53.7	21.6	14.7	236.4	-985.8	32.4	104.1
1783.6	7560.8	-148.9	1484.4	240.7	189.2	2152.8	249.6	11.9	-11.2	4.8	35	26.8	33.5	14.3	-730.6	136.4	29.4
1783.6	7560.8	20.0	0.4	0.2	19	0.2	1.4	22.8	-11.2	0.2	1.9	100	0	-20.8	-63.4	18.5	1.4
1783.6	7840.9	-1500.0	7699.9	16973.4	7	41859.2	916.6	1.9	-10	90.1	13	0	0.1	40.2	-408.1	-10.7	99.8
1783.6	7840.9	-1331.1	6273.7	13083.9	7	32727.9	843.7	0.4	-10.8	72	24.6	0	2.8	68	-806.7	-10.5	176.8
1783.6	7840.9	-1162.2	4836.9	9196.6	7	23603.7	773	0	-11.7	53.9	35.9	3.5	5.6	81.5	-1202	-10.4	255.3
1783.6	7840.9	-993.3	3528.7	5732.1	8	15468.2	718.3	0	-12.5	37.7	45.1	8.4	8.4	58.6	-1556.3	-10.6	332.4
1783.6	7840.9	-824.4	2142.7	2673.3	9.5	8095.7	668.3	7.6	-13.1	21.5	52	13.6	12.8	-95.5	-1502.4	-14	405.2
1783.6	7840.9	-655.6	1974.0	1845.9	12.1	6182.8	524	8.1	-13.2	15.6	54.9	13.9	15.6	148	-1193.4	-14.7	299.5
1783.6	7840.9	-486.7	1740.2	1280.9	28.1	4927	358.2	8.1	-13.3	11.7	54.4	18.1	15.8	243	-997.3	1	168.3
1783.6	7840.9	-317.8	1958.3	1097.9	38	4786	326.2	8.4	-12.9	10.6	52.6	14	22.7	334.2	-984	1.5	110
1783.6	7840.9	-148.9	1720.0	311	84.6	2792.5	179.3	5.5	-13.2	4.4	53.9	8	33.6	274.2	-595.8	33.9	-38.4
1783.6	7840.9	20.0	10.9	0.2	7.9	0.2	1.4	18.7	-11.4	0	9.5	90.9	0	22.5	-15.7	-2.8	-9
1783.6	8121.0	-1500.0	7690.9	16787.6	7	41469.5	927.7	2.3	-9.9	89.1	12.9	0	3	22.9	-408.6	-9.5	104.7

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/i	mg/l	mg/l
1783.6	8121.0	-1331.1	6337.2	13036.5	11.5	32684.3	861.6	1.2	-10.6	71.5	23.6	0	6.8	41	-775.6	-8.3	177.5
1783.6	8121.0	-1162.2	4999.0	9310.7	17.6	23975.1	799.5	0.8	-11.3	54	33.7	0.2	11.5	43.7	-1126.9	-6.9	249.5
1783.6	8121.0	-993.3	3813.4	5978.6	26	16209.2	748.9	1.9	-11.7	38.1	41.8	2.3	17.7	18.9	-1388.7	-5.5	311
1783.6	8121.0	-824.4	2921.1	3380	37.5	10185.7	695.4	5.7	-11.8	24.4	46.9	1.9	26.8	-8.2	-1377.2	-5.3	332.5
1783.6	8121.0	-655.6	2695.5	1992	55.3	7188.9	621.8	8.4	-11.4	16	48.3	0	39.3	85.9	-1154.7	-4	269.6
1783.6	8121.0	-486.7	2977.4	1312.4	84.9	6136.7	582.3	9.8	-10.3	11.2	46	0	57.9	179.5	-944.7	0.5	175.1
1783.6	8121.0	-317.8	3719.9	883	131.8	5999.3	624.9	11.6	-8.4	7.7	39.6	0	89.4	223.8	-734.9	4.6	84.4
1783.6	8121.0	-148.9	4491.1	468.4	188.8	5755.7	714	15.2	-5.4	3.4	24.5	0	100	148.4	-372.7	8.8	11.8
1783.6	8121.0	20.0	2478.3	119.8	114.4	2738	412.2	22.7	-6.1	0	0	23.6	78.7	-8.5	38.2	-3.3	-1.2
2200.4	5600.0	-1500.0	8499.7	19299.2	14.1	47198.1	906	4.2	-8.9	100	0	0	0	0	-0.1	0	0
2200.4	5600.0	-1331.1	6604.8	13938.1	12.6	34338.8	780.5	2.3	-10.3	74.7	18.4	2.2	3.9	131.4	-484.7	-3.9	83.1
2200.4	5600.0	-1162.2	4702.6	8593.9	11.4	21465.4	646.8	0.9	-11.8	49.4	36	6.2	7.7	261.9	-943.7	-7.6	158.7
2200.4	5600.0	-993.3	2976.5	3739.4	12.6	9708.2	517.2	0.3	-13.1	26.1	50.5	11.3	12	373.6	-1320.8	-10.1	216.8
2200.4	5600.0	-824.4	2515.6	1818.3	52.9	5686.9	478.9	2.4	-11.9	15.7	47.2	8.7	27.4	308.6	-1258	9.6	191.8
2200.4	5600.0	-655.6	2307.2	602.3	90.8	3246.9	455.3	5.3	-10.5	8.5	40.5	6.9	42.6	230	-1103.2	26.6	153.5
2200.4	5600.0	-486.7	2288.5	0.2	121	2121.5	444.2	8.8	-9.1	4	31.4	6.3	56.6	149.6	-874.2	36.9	109.5
2200.4	5600.0	-317.8	2313.6	0.2	134.3	1873.3	429.3	12.9	-7.9	1.5	20.8	10	66.2	80	-592.8	36.2	66.6
2200.4	5600.0	-148.9	2003.5	0.2	114.9	1788	354.3	17.5	-7.6	0.4	9.8	27.8	60.9	29.6	-285.9	22.5	28.9
2200.4	5600.0	20.0	3.2	0.4	12.3	3.4	1.9	22	-10.5	0	0	99.9	0.1	0	0	0	0
2200.4	5880.1	-1500.0	8305.9	18546	13.5	45457.5	899.8	3.2	-9	96.7	4.3	0	1.6	39.9	-109.9	-2	15.7
2200.4	5880.1	-1331.1	6640.3	13802.6	16	34163.4	789.5	1.6	-10.1	74.2	19.6	0	6	140.8	-532.3	-3	85.4
2200.4	5880.1	-1162.2	4891.5	8781.7	20.2	22185.5	668.9	0.3	-11.3	50.4	35.5	0.7	11.3	250.2	-955.9	-3.6	152.7
2200.4	5880.1	-993.3	3485.3	4561.9	34.9	12228.2	567.1	0.2	-11.9	29.9	46.2	2.4	19.7	315.2	-1244.8	1.6	192
2200.4	5880.1	-824.4	2773.4	1965.1	68.9	6418.3	513.1	1.7	-11.3	16.6	47.2	0.5	33.6	292.4	-1291.7	17.4	185.2
2200.4	5880.1	-655.6	2558.3	548.4	111.7	3515.5	495.5	4.3	-9.9	8.5	41.8	0	50.8	220.3	-1172.1	36.7	150.7
2200.4	5880.1	-486.7	2638.2	0.2	151.3	2358.1	502.3	7.6	-8.3	3.8	32.9	0	68.7	135.9	-950.9	51.4	106.4
2200.4	5880.1	-317.8	2850.8	0.2	174.4	2311.4	518.3	11.7	-6.8	1.3	22	0	84.3	62.8	-656	52.3	62.7
2200.4	5880.1	-148.9	2989.9	0.2	167.2	2792.9	516.8	16.8	-5.7	0.2	10.1	0	92.8	17.1	-311.3	32.2	25.3
2200.4	5880.1	20.0	2689.2	133.1	121.3	2995.6	444.5	22.6	-5.8	0	0	16.3	85	0	33.5	-4.7	-2.2
2200.4	6160.2	-1500.0	8216.6	18203.8	13.1	44694	893.8	2.6	-9.1	95.1	6.2	0	2.2	60.4	-162.8	-2.8	20.4
2200.4	6160.2	-1331.1	6683.1	13793.1	18.3	34273.8	793.4	1.2	-10	74.3	19.9	0	7.1	144.2	-553.2	-2.1	83.1
2200.4	6160.2	-1162.2	5132.0	9246	27.3	23556.1	688.3	0.3	-10.9	52.6	33.4	0	13.6	228.1	-925.4	0.2	139.9
2200.4	6160.2	-993.3	3868.9	5338.1	46.4	14453	599.3	0.3	-1 1.2	33.6	42.7	0	23.1	275.8	-1184.7	8.1	172.6
2200.4	6160.2	-824.4	3103.7	2574.9	79.7	8214.8	543.8	1.5	-10.7	19.7	45.2	0	36.7	264.8	-1274.4	23.7	172
2200.4	6160.2	-655.6	2824.9	927	124.4	4723.8	524.8	3.5	-9.5	10.6	41.6	0	54	204.1	-1208.1	45.1	143.9
2200.4	6160.2	-486.7	2887.4	121.4	170.8	3234.6	533.2	6.1	-7.9	5.4	33.7	0	72.7	119.9	-1022.3	65.6	101.5
2200.4	6160.2	-317.8	3023.2	0.2	198	2909.7	539.1	9.7	-6.5	2.6	23.3	0	86.9	42.9	-739.4	72.5	58.1

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev I	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2200.4	6160.2	-148.9	2675.4	0.2	168.6	2669.4	460.8	15.1	-6.3	1.1	11.4	5.2	81.3	1.6	-374.3	49.2	22.9
2200.4	6160.2	20.0	851.5	35.7	46.1	935.1	141.8	22.2	-9	0	0	73.4	27	0.5	11.2	-2.2	-0.6
2200.4	6440.3	-1500.0	8194.2	18160.7	12.2	44614.6	888	2.3	-9.2	95	6.4	0	1.7	65.9	-178.5	-3	18.5
2200.4	6440.3	-1331.1	6735.5	13949.4	18	34726	793.6	1	-10	75.1	19.2	0	6.6	141.7	-552.8	-1.9	78.2
2200.4	6440.3	-1162.2	5285.1	9666.7	27.9	24713.3	697	0.2	-10.7	54.7	31.7	0	13.3	216	-901.4	1	131.5
2200.4	6440.3	-993.3	4086.1	5939.7	46.6	16089.9	614.1	0.4	-11	36.6	40.7	0	22.6	260.1	-1151	8.7	163.7
2200.4	6440.3	-824.4	3310.2	3178.6	77.7	9849	559.9	1.5	-10.6	22.7	44	0	35.3	255.2	-1263.8	23.5	167.8
2200.4	6440.3	-655.6	2996.8	1445.3	121.9	6128.8	539.8	3.1	-9.5	13.5	41.5	0	51.8	202.1	-1242.8	45.5	144.5
2200.4	6440.3	-486.7	3048.5	552.7	173.4	4432	546.5	4.8	-7.9	8	34.5	0	70.7	119.2	-1104.2	70.9	101.4
2200.4	6440.3	-317.8	3154.0	216.7	209.6	3851.3	546	7.2	-6.4	4.9	24.7	0	85.1	36.4	-850.3	86.7	53.9
2200.4	6440.3	-148.9	2517.7	122.4	176.1	2928.3	425.2	12.5	-6.7	2.5	13	10.8	72.9	-10.8	-466.6	68	18.4
2200.4	6440.3	20.0	281.9	4.7	26.6	292.6	49	21.5	-10	0	0.3	90.7	9	-4.2	-7.1	2.4	0.3
2200.4	6720.4	-1500.0	8177.3	18208.3	10.3	44722.6	882.9	2.1	-9.3	95.3	6.1	0	0.4	64.5	-187.5	-3.3	17.5
2200.4	6720.4	-1331.1	6741.5	14083.1	14.9	35069.1	790.7	0.7	-10.1	75.8	18.8	0	4.9	139.8	-559.2	-2.8	77.7
2200.4	6720.4	-1162.2	5314.6	9899.3	22.6	25325.1	696.1	0.1	-10.9	55.9	31.3	0	10.9	217.1	-902	-1.2	132
2200.4	6720.4	-993.3	4124.3	6269	37.3	16945.8	614.1	0.6	-11.2	38.3	40.4	0	19	267.7	-1145.6	4.1	167.1
2200.4	6720.4	-824.4	3331.5	3580.8	62	10856.2	561.2	2.1	-10.9	24.9	44.3	0	29.8	270.1	-1267.9	15.1	178.8
2200.4	6720.4	-655.6	2995.8	1903.3	99.4	7222.1	540.9	3.5	-9.9	16.2	42.4	0	44	224.1	-1282.9	33.4	162.7
2200.4	6720.4	-486.7	3077.0	1036.8	148.9	5619.5	543.6	4.2	-8.2	11.1	35.4	0	62.5	146.7	-1197.1	57.3	113.6
2200.4	6720.4	-317.8	3447.6	672.9	199.8	5286.4	570.2	5.3	-6.2	7.9	25.6	0	85.2	65.3	-985.5	76.7	49.7
2200.4	6720.4	-148.9	3595.2	464.3	209.4	4908	572.1	10.3	-5	4.5	13.5	0	100	18.1	-564.4	64.5	2.3
2200.4	6720.4	20.0	756.1	35.6	41.1	838.7	125.8	22.2	-9.2	0	0	76.6	23.9	0.5	13.2	-3.2	-0.8
2200.4	7000.6	-1500.0	8079.4	18037.5	7	44312.7	879.9	1.7	-9.5	94.7	7.2	0	0	67.6	-230.1	-4.9	27.9
2200.4	7000.6	-1331.1	6645.2	13967.4	9.5	34792.9	787.8	0.3	-10.3	75.5	19.9	0.1	2.7	143.2	-603.5	-5.2	89.5
2200.4	7000.6	-1162.2	5211.9	9835.8	14.2	25169.4	690.5	0	-11.2	55.8	32.4	2.1	7.6	227.3	-943.3	-5.2	144.7
2200.4	7000.6	-993.3	3992.7	6242.3	23	16864.7	601.6	0.5	-11.8	38.3	42	4.2	13.9	294	-1172.7	-3.2	180.9
2200.4	7000.6	-824.4	3159.0	3669.8	37.2	11019.9	549.7	3.4	-11.7	25.5	46.3	5.3	21.8	302.7	-1275.1	1.1	204
2200.4	7000.6	-655.6	2774.0	2186	59.2	7690.3	536.2	5.2	-10.9	17.9	44.7	5.3	31.2	259.9	-1321.4	10.5	209.3
2200.4	7000.6	-486.7	2729.7	1459.5	92.1	6252.9	498.8	5.1	-9.3	13.9	36.3	6.5	42.7	193.1	-1284.7	27	147.9
2200.4	7000.6	-317.8	2961.9	1148.1	133.5	6007	468.8	3.7	-7.4	11.6	25.7	3.5	58.8	105.3	-1179.3	45.5	53.5
2200.4	7000.6	-148.9	3627.3	910.7	203.4	6210.5	514.8	4.5	-5.2	8.1	17.3	0	89.9	79.2	-789.6	72.8	-32.4
2200.4	7000.6	20.0	202.8	114.8	19.6	561.1	12.9	20.1	-10.1	0.8	0.1	95.5	3.6	19.7	-44	2.5	-14.8
2200.4	7280.7	-1500.0	7911.5	17635.1	7	43367.8	881.5	1.3	-9.7	93	9.6	0	0	72.7	-306.4	-7.3	49.7
2200.4	7280.7	-1331.1	6474.6	13620.1	7	33965.4	790.7	0	-10.6	74.1	22	1.1	1	142.8	-685	-8	113.8
2200.4	7280.7	-1162.2	5030.3	9541.6	7	24439.6	692.4	0	-11.6	54.7	34.5	4.3	4.8	225.2	-1029.3	-8.9	170.9
2200.4	7280.7	-993.3	3761.5	5901	11	15971.2	590.4	0	-12.4	37	44.6	7.9	9.5	313.8	-1254.4	-9.1	204.7
2200.4	7280.7	-824.4	2856.7	3445.1	14.3	10493.5	531	6.3	-12.6	24.2	48.8	11.6	15.2	317.7	-1250.9	-12.7	231.6

SO4 De	ICO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Са	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
	-11.9	-1377.6	267.9	19.4	13.8	47.9	18.6	-11.9	7.2	553.7	7544.8	20.7	2241.1	2465.0	-655.6	7280.7	2200.4
208.	0.1	-1358.9	222.8	19.3	27.4	37.6	15.6	-10.9	6.8	452.4	6083	33.9	1687.6	2164.1	-486.7	7280.7	2200.4
100.	18.6	-1337	117.6	18.8	44.9	22.1	14.3	-8.8	2.1	329.7	5759	53.5	1444	1926.8	-317.8	7280.7	2200.4
11.	165.4	-813.6	41.9	27.4	34.8	30.6	7.2	-10.4	3.8	222.5	3123.5	210.8	623.3	1529.0	-148.9	7280.7	2200.4
0.	-0.8	15	-1.8	21	79.7	0	0	-9.3	21.9	110.7	694.5	39.5	20.9	653.7	20.0	7280.7	2200.4
72.	-8.9	-375.4	67.2	0	0	11.6	91.4	-9.9	1.1	889.6	42500.6	7	17262.7	7772.8	-1500.0	7560.8	2200.4
141.	-9.7	-765.7	125.3	0.6	1	23.8	72.8	-10.8	0	804	33165.6	7	13279.7	6330.8	-1331.1	7560.8	2200.4
207.	-11	-1130.9	185.3	3.9	4.8	35.9	53.8	-11.8	0	715.7	23754.2	7	9255.5	4881.4	-1162.2	7560.8	2200.4
259	-12.6	-1376.1	229.9	8.2	8.9	45.6	36.6	-12.6	0	633.7	15445.2	7	5689.1	3595.7	-993.3	7560.8	2200.4
294.	-16	-1412.1	225.4	13.4	12.3	50.2	23.9	-12.8	4.7	581.5	9756.1	8.3	3214	2678.2	-824.4	7560.8	2200.4
	-16	-1409.6	216.7	17.8	15.1	49.2	17.7	-12.2	6.6	558.5	6982.4	14.4	2032.6	2287.3	-655.6	7560.8	2200.4
	-4.3	-1421.5	180.5	22	21	41.6	15.2	-11	4.3	503.1	5889.1	32.5	1547.6	2172.4	-486.7	7560.8	2200.4
144.	44.4	-1202.2	102.5	28.7	23.1	37	11.1	-10.4	1.6	396.3	4428.4	90.7	975.1	1955.1	-317.8	7560.8	2200.4
	183.4	-754.8	-101.8	37.1	36.2	22	4.6	-9.1	9.8	311.7	1895.2	242.6	184.3	1466.9	-148.9	7560.8	2200.4
	39.3	-59.3	-32.6	0	100	0.3	0.1	-11.3	22.3	1.4	0.2	30.8	0.2	0.4	20.0	7560.8	2200.4
	-9.1	-408.3	51.3	0	0	12.4	90.4	-10	1.4	902.6	41974.7	7	17029.3	7711.4	-1500.0	7840.9	2200.4
	-9.6	-801.6	95.9	2.3	0	24.4	72	-10.8	0	824.3	32750.8	7	13091	6285.6	-1331.1	7840.9	2200.4
234	-10.6	-1182.8	130.5	6.1	3.2	35.9	53.4	-11.7	0	750.5	23508.4	7	9133.1	4863.7	-1162.2	7840.9	2200.4
300	-11.8	-1462	130.6	11.5	6.1	44.8	36.8	-12.3	0.5	694.5	15401	11	5645.8	3619.9	-993.3	7840.9	2200.4
334	-13.4	-1490	106.6	19.4	7	49.5	23.6	-12.4	4.5	651.4	9513.5	19.3	3097.2	2731.9	-824.4	7840.9	2200.4
296	-11	-1344.6	159.1	29.1	4.9	49.4	16.3	-11.8	6.6	597.5	6768.1	34.4	1850.8	2471.1	-655.6	7840.9	2200.4
215	1.2	-1202.8	193.3	42	0	45.4	12.6	-10.7	6.6	551.2	5787.7	64.3	1291.5	2598.9	-486.7	7840.9	2200.4
119	28.9	-993.2	188	65.3	0	39.6	9	-9.1	7.1	544.7	5228	123.8	835.1	3025.5	-317.8	7840.9	2200.4
28	53.2	-534.8	93.6	100	0	26.9	3.7	-6.7	11.5	596.1	4582.6	197.8	333	3633.1	-148.9	7840.9	2200.4
) -1	-1.9	10.6	0.6	21.9	77.7	0.5	0	-9.3	21.7	114.2	727.6	39.6	17.6	686.6	20.0	7840.9	2200.4
92	-8.5	-395.3	33	2.2	0	12.2	89.7	-9.9	2.1	916.3	41747.4	7	16913.8	7725.0	-1500.0	8121.0	2200.4
	-8.4	-765.2	68	6.2	0	23.4	71.7	-10.6	0.9	845.1	32803.3	10.5	13085.8	6360.0	-1331.1	8121.0	2200.4
	-8.6	-1117.1	91.6	11.6	0	34.1	53.7	-11.3	0.6	780.7	23892.3	16	9254.9	5021.5	-1162.2	8121.0	2200.4
	-8.7	-1362.2	88.7	19.9	0	42.2	37.5	-11.7	1.7	734.9	16142.6	25.6	5893.8	3902.8	-993.3	8121.0	2200.4
	-8.4	-1385.6	80.2	32.3	0	46.3	24.6	-1 1.5	4.7	703.3	10545.6	41.9	3413.4	3199.5	-824.4	8121.0	2200.4
	-5.5	-1229.7	123.9	49.6	0	45.9	16.4	-10.5	7.3	677.5	7662.7	67.9	2014.3	3097.4	-655.6	8121.0	2200.4
	1.6	-1026.8	167.6	74.1	0	41.7	11.5	-8.9	9	683.7	6642	108	1304	3499.3	-486.7	8121.0	2200.4
	10.8	-766.8	171.2	100	0	33.7	7.5	-6.6	11.4	746	6443.5	165	846.5	4279.3	-317.8	8121.0	2200.4
	13.1	-371.9	98.7	100	0	18.3	3.2	-5	16.1	811.1	6121.5	213.9	465.6	4906.5	-148.9	8121.0	2200.4
	-5.7	38.4	-4.2	75.6	27.4	0	0	-6.2	23.1	399.1	2731.4	108	153.5	2399.3	20.0	8121.0	2200.4
	-2.6	-84.7	31.6	0	0	3.3	97.2	-9.2	3.5	893.5	45700.8	11	18673.4	8291.2	-1500.0	5600.0	2617.1
	-5.7	-516	145.6	3.7	1.7	19.3	74.3	-10.4	1.8	778.3	34189.2	10.4	13833.7	6580.7	-1331.1	5600.0	2617.1

h	ing	Elevat	ion	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
	m		m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/
0	0.0	-116	2.2	4740.9	8629.5	9.7	21779.4	649.3	0.5	-11.8	49.6	36.4	5.2	7.8	272.5	-961.4	-9.5	158
0	0.0	-993	3.3	3254.1	4330.9	18.2	11594.4	538	0.4	-12.6	28.9	47.6	8.6	14.2	349.2	-1259.7	-7 .7	201.2
0	0.0	-824	4.4	2491.8	1854.8	45.1	5957.7	471.7	2.2	-12.1	16.1	48.1	9.9	25.1	326.6	-1287.4	4.9	193.4
0	0.0	-65	5.6	2207.1	605.6	80.2	3288.9	437.1	5.2	-10.9	8.7	41.6	10.2	38.2	248.7	-1137.8	21.8	156.1
0	0.0	-48	6.7	2179.9	11.4	113	2152.1	424.1	8.9	-9.4	4.3	32	10.2	52.1	158.5	-897.4	35.1	110.5
0	0.0	-31	7.8	2313.9	0.2	134.4	1974.7	428	13	-8	1.7	21	10.3	65.6	80.4	-604.2	37.1	66.3
0	0.0	-14	8.9	2537.0	0.2	138	2409.9	441.9	17.6	-6.6	0.5	9.7	11.2	77.7	27.3	-284	23.1	28.1
0	0.0	2	0.0	2340.0	130.5	107.2	2635.5	386.6	22.4	-6.4	0	0	27.3	73.7	0.4	24.8	-3.6	-1.6
8	0.1	-150	0.0	8253.7	18392	12.2	45124	894.2	2.7	-9.1	96	5.2	0	1.3	49.8	-144.7	-2.8	17.3
8	0.1	-133	1.1	6609.1	13699.6	13.4	34010.2	784	1.1	-10.2	73.9	20.5	0	5.5	155.4	-564.9	-4.8	85.6
8	0.1	-116	2.2	4877.0	8727.2	16.1	22226.7	663.4	0	-11.4	50.3	36.3	0.6	10.6	268	-987.5	-6.6	152
8	0.1	-99	3.3	3474.0	4571.7	28.9	12459.9	559.7	0	-12	30.1	46.8	2.9	18.2	333.1	-1273.9	-2.3	190.4
8	0.1	-82	4.4	2679.0	1938.4	58.4	6456.7	493.6	1.4	-11.6	16.7	48.2	3.4	29.7	313.8	-1332.2	12.2	185.3
8	0.1	-65	5.6	2372.8	524.2	100	3407	461.4	4.2	-10.4	8.6	42.6	2.5	44.2	233.8	-1210.6	34	150.1
8	0.1	-48	6.7	2389.9	0.2	144.4	2146.6	458.9	7.6	-8.8	3.9	33.2	0.2	60.6	132.6	-978.4	55.3	104.2
8	0.1	-31	7.8	2656.8	0.2	176.6	2092.5	486.3	1 1.6	-7.1	1.3	22	0	78.6	47.5	-674.4	62	60.2
88	0.1	-14	8.9	3023.8	0.2	176.6	2748	524	16.8	-5.6	0	10.1	0	94.8	5.1	-318.7	38.9	24
88	0.1	2	0.0	2392.2	25.5	107.6	2481.6	397.4	22.7	-6.2	0	0	24.5	76.9	2.2	34.2	-7.5	-2.2
6	0.2	-150	0.0	8148.5	18019.3	11.5	44298.1	885	2.1	-9.2	94.4	7.1	0	1.6	71.6	-203.5	-3.7	21.1
6	0.2	-133	1.1	6627.7	13645.3	15	33997.7	783.1	0.7	-10.1	73.7	20.8	0	6.3	161.5	-591.3	-4.2	81.9
6	0.2	-116	2.2	5082.7	9144	21.8	23418.8	675.7	0	-11	52.3	34.2	0	12.2	250.4	-963.7	-3.3	137.5
6	0.2	-99	3.3	3802.0	5278.9	37.9	14410.7	581.7	0	-11.4	33.6	43.4	0	20.4	300.3	-1226.3	3.2	169.8
6	0.2	-82	4.4	2972.1	2542.3	68.3	8155.1	514.8	1.1	-11.1	19.8	45.7	0.3	31.7	285.2	-1319.5	19.2	168.7
6	0.2	-65	5.6	2574.0	897.1	114	4514.5	477.3	3.4	-10	10.8	41.6	0	45.6	208.2	-1250.9	45.9	139.2
6	0.2	-48	6.7	2497.6	70.5	169	2788.7	466.8	6	-8.5	5.4	33.3	0	61.1	97	-1059.4	79.2	95.9
6	0.2	-31	7.8	2621.7	0.2	211.6	2371.5	476.4	9	-7	2.5	23.2	0	75.8	-1.4	-780.6	101	54.2
6	0.2	-14	8.9	2835.9	0.2	204.5	2751.4	492.9	14	-5.9	1	11.7	0	87.6	-37.8	-409.9	76.6	21.9
6	0.2	2	0.0	2662.8	115.9	115.6	2933.9	440.1	22.9	-5.8	0	0	17.2	84.3	5	43	-9.6	-2
4	0.3	-150	0.0	8072.7	17819.9	10.1	43855.2	875.3	1.7	-9.3	93.6	8	0	1.1	84.3	-238.1	-4.3	21.7
14	0.3	-133	1.1	6644.2	13698.1	14.8	34195.1	779.2	0.4	-10.1	74	20.5	0	5.9	163.7	-601.3	-3.9	77.4
14	0.3	-116	2.2	5226.2	9535.5	23.2	24475.7	681.1	0	-10.8	54.2	32.4	0	12	238.8	-940.8	-1.8	126.8
14	0.3	-99	3.3	4029.9	5897	40.1	16047.4	594.6	0	-11.1	36.6	40.7	0	20.2	280.8	-1190.5	5.5	156.9
14	0.3	-82	4.4	3200.1	3170.7	70.3	9822.7	530.9	1.2	-10.8	23	43.3	0.3	30.8	267.2	-1309.7	22	160.1
14	0.3	-65	5.6	2754.2	1416.6	118	5904.4	492.3	2.8	-9.7	13.7	40.1	0	44	192.3	-1293.9	51.9	136.4
14	0.3	-48	6.7	2606.9	473.1	181.4	3851.1	474.4	4.3	-8.2	8	32.7	0	58.3	74.2	-1159.8	95.3	94.7
14	0.3	-31	7.8	2527.6	109.9	238.8	2963.1	454.2	5.4	-7.1	4.9	24.1	1.7	67.9	-44.1	-931.8	138.8	52.3
14	0.3	-14	8.9	1967.4	55.1	234	2154.3	353.1	7.7	-7.3	3	15.5	23.3	57.6	-114.6	-599.5	146.6	22.4

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2617.1	6440.3	20.0	726.2	31.4	69.2	774.5	126.9	19.6	-9.2	0.2	1.4	75.2	23.3	-33	-45.4	26	1.2
2617.1	6720.4	-1500.0	8007.4	17711.8	8	43602	867.5	1.4	-9.5	93.1	8.5	0	0	90.5	-263.3	-4.8	23.6
2617.1	6720.4	-1331.1	6624.3	13732.9	12.6	34303.6	774.4	0.2	-10.2	74.3	20.3	0	4.5	165.8	-614.7	-4.3	77.4
2617.1	6720.4	-1162.2	5264.1	9744.6	20.6	25027.1	680.6	0	-10.9	55.3	31.5	0.2	10.3	237.7	-939.3	-2.3	125.3
2617.1	6720.4	-993.3	4111.0	6244.1	36	16951.1	599.5	0.2	-11.1	38.3	39.4	1.7	18	279.9	-1182.9	4	157.1
2617.1	6720.4	-824.4	3301.8	3591	63.4	10914.2	543.4	1.6	-10.7	25.2	41.9	2.7	28	268.4	-1319.9	18.6	167.3
2617.1	6720.4	-655.6	2879.5	1867.1	107.9	7089.5	513.9	2.9	-9.6	16.4	38.4	2.7	40.6	197	-1352.9	46	151.4
2617.1	6720.4	-486.7	2806.0	921.8	170.8	5128.7	505	3.5	-7.9	11	30.6	0.7	56.3	83.4	-1280.8	87	108.8
2617.1	6720.4	-317.8	2953.5	501.9	237.3	4373.1	512.4	3.9	-6.2	7.6	22	0	73.6	-31.2	-1076.2	129.3	56
2617.1	6720.4	-148.9	2911.3	306.5	249.6	3759.6	491.9	7.7	-5.6	4.4	13.5	0	82.7	-87.8	-657.2	128.3	16.7
2617.1	6720.4	20.0	1605.3	70.9	73.7	1763.6	266.2	22.4	-7.7	0	0	50	51	1.8	32.4	-6.8	-1.2
2617.1	7000.6	-1500.0	7920.3	17564.7	7	43241.8	863.3	1.1	-9.6	92.6	9.3	0	0	93.7	-296.7	-5.7	31.5
2617.1	7000.6	-1331.1	6543.5	13637	8.9	34070.5	770.8	0	-10.4	74	21	0.2	2.7	168.5	-647.6	-5.5	86.2
2617.1	7000.6	-1162.2	5192.5	9704.8	15.4	24935.3	677.7	0	-11.1	55.2	32	2.4	8	243.6	-968.8	-4.4	135
2617.1	7000.6	-993.3	4048.8	6260.5	27.7	17007	598.7	0.3	-11.4	38.6	39.7	4.6	15	292.7	-1206.2	-0.3	169.8
2617.1	7000.6	-824.4	3263.4	3706.4	49.3	11224.1	553.5	2.4	-11	26	41.8	6.3	24.2	284.1	-1348	9.5	190.2
2617.1	7000.6	-655.6	2894.6	2120.4	84.6	7737.8	542	3.8	-9.6	18. 1	37.1	7.6	35.9	214.8	-1429.7	28.7	188.7
2617.1	7000.6	-486.7	2907.1	1274.1	136.3	6109.9	539.7	3.7	-7.5	13.6	26.1	7.6	51.6	107.6	-1435.2	58.1	144
2617.1	7000.6	-317.8	3314.0	857.5	198.4	5687.9	568.8	3.9	-5.2	10.3	16	0	76.5	5.5	-1248.1	85.7	72.3
2617.1	7000.6	-148.9	4176.5	542.8	244.6	5696.4	682.4	10.2	-5	5.5	9.4	0	100	-24	-689.7	76.2	14.1
2617.1	7000.6	20.0	1903.4	55.8	82.4	2025.3	318.7	23.1	-7.1	0	0	40.9	60.9	-1	37.2	-11.5	0.6
2617.1	7280.7	-1500.0	7821.8	17373.3	7	42772.7	864.9	0.9	-9.8	91.8	10.4	0	0	91.9	-337.2	-6.7	45.1
2617.1	7280.7	-1331.1	6423.2	13427.8	7	33554.3	772.7	0	-10.6	73.2	22.3	1.3	1.2	165.3	-697.6	-7	103.3
2617.1	7280.7	-1162.2	5048.1	9467	9.9	24346.6	679.8	0	-11.4	54.3	33.5	4.1	5.9	241.7	-1027.8	-6.9	156.1
2617.1	7280.7	-993.3	3891.6	6006	19.4	16383.7	601.9	0.2	-11.8	37.6	41.4	6.7	12.6	297	-1263.7	-5.2	194.7
2617.1	7280.7	-824.4	3133.3	3535.6	35.6	10829.6	567.5	3.1	-11.4	25.4	43.2	8.6	21.7	289.7	-1392	-0.7	223.4
2617.1	7280.7	-655.6	2842.1	2120.5	62.4	7753.3	579.4	4.7	-9.8	18.5	37.1	10.5	32.9	220.7	-1506.1	10.5	237.8
2617.1	7280.7	-486.7	2923.7	1397.1	106.2	6458.6	586.7	4	-7.1	15.1	21.9	14.2	48	113	-1596.4	32.3	196.7
2617.1	7280.7	-317.8	3307.1	970.9	169.8	5999.8	597.3	4.1	-5	11.6	11.3	4	72.4	14.1	-1387.1	61.9	110
2617.1	7280.7	-148.9	4251.9	524.7	256.7	5683.2	717	12.5	-5	5.5	9.1	0	100	-24.7	-719.4	85.3	36.4
2617.1	7280.7	20.0	940.4	30.3	45	1008.6	157.1	22.4	-8.8	0	0	70.8	30.1	1	22.3	-7.5	-0.5
2617.1	7560.8	-1500.0	7761.3	17246.5	7	42459.5	873.5	1	-9.9	91.3	11.2	0	0	80.3	-364.6	-7.3	59.3
2617.1	7560.8	-1331.1	6324.5	13234	7	33076.9	782.8	0	-10.8	72.4	23.4	1.5	0.6	149.2	-741.4	-8	123.2
2617.1	7560.8	-1162.2	4904.5	9182.6	7	23651.7	693.9	0	-11.6	53.2	35	4.5	5.2	217.9	-1093.7	-8.8	184.4
2617.1	7560.8	-993.3	3736.3	5682.2	15.2	15600.2	625.6	0.2	-12	36.3	43.2	6.6	12.3	261.3	-1341.8	-8.7	231.9
2617.1	7560.8	-824.4	3032.0	3247.1	30.9	10149.4	600.5	3	-11.5	24.2	45.2	6.8	22.8	253.8	-1452.7	-6.6	261.3
2617.1	7560.8	-655.6	2861.4	1915.2	58.1	7356.9	617. 4	4.8	-10	17.4	39.9	4.8	37	205.5	-1504.2	1.1	264.6

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev I	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2617.1	7560.8	-486.7	3120.8	1254.6	105	6309	647.3	4.7	-7.6	13.8	28.2	0	57.2	127.4	-1499.3	19.6	220.5
2617.1	7560.8	-317.8	3716.2	792.1	184.6	5877.5	696.1	6.2	-5.2	9.7	19.1	0	89.6	43.5	-1214.8	54.8	136.3
2617.1	7560.8	-148.9	4691.3	391.3	276.1	5738.5	814.2	14.8	-5	4.1	10.7	0	100	-19.9	-611.4	81.7	54.7
2617.1	7560.8	20.0	1630.7	71.6	72.8	1790.4	268.5	22.5	-7.6	0	0	49.3	51.9	3.3	41.7	-8.8	-3.1
2617.1	7840.9	-1500.0	7772.2	17243.7	7	42453.9	887.9	1.4	-9.9	91.2	11	0	0	60	-360.7	-7.1	68.3
2617.1	7840.9	-1331.1	6306.9	13163.2	7	32912.4	799.8	0.1	-10.7	72.1	23.5	0.8	1.8	123.5	-748.5	-8	137.1
2617.1	7840.9	-1162.2	4847.6	8999.6	8.1	23229.1	715.7	0	-11.6	52.4	35.7	3.4	6.6	183.5	-1121	-9.4	205.9
2617.1	7840.9	-993.3	3690.3	5451.4	17.6	15084	659	0.5	-12	35.3	44.2	4	15.1	212.9	-1380.2	-9.9	259.8
2617.1	7840.9	-824.4	3082.0	3040.6	37.2	9741	643.6	3	-11.4	23.1	46.6	0.6	28.7	205.7	-1461.2	-8.1	282.8
2617.1	7840.9	-655.6	3071.8	1738.4	70.1	7156.8	662.3	5.2	-10	15.9	42.8	0	48.2	185. 9	-1407.9	-1.6	263.9
2617.1	7840.9	-486.7	3545.8	1086.2	122	6306.3	711.2	6.6	-7.7	11.6	35	0	75.8	151.5	-1263.4	12.5	207
2617.1	7840.9	-317.8	4396.5	656	196.9	6183.2	801.1	9.2	-5	7.5	25.5	0	100	97.2	-958	33.5	126.6
2617.1	7840.9	-148.9	5076.7	337	248.6	6005.7	868.2	15.4	-5	2.9	12.9	0	100	33.2	-460.4	36.3	48.1
2617.1	7840.9	20.0	553.2	22.1	33.5	603.4	92.3	22.1	-9.5	0	0	82.9	17.6	0.3	10.7	-2.3	-0.9
2617.1	8121.0	-1500.0	7829.7	17269.3	7.8	42545.8	903.7	2.2	-9.8	91.2	10.3	0	1.3	39.6	-327.9	-6.6	70.9
2617.1	8121.0	-1331.1	6395.5	13232.5	10.2	33121.3	820.4	1	-10.6	72.2	22.5	0	5.2	97.4	-703	-7.4	139.2
2617.1	8121.0	-1162.2	4970.1	9089.4	15	23507.7	741.9	0.5	-11.4	52.5	34.6	0.7	11.1	152.4	-1064.1	-8.8	207.3
2617.1	8121.0	-993.3	3882.6	5580.3	27.2	15494.4	693	1.4	-11.7	35.5	43	0	21.5	179.5	-1308.1	-9.2	257.6
2617.1	8121.0	-824.4	3391.0	3215.5	51.3	10336	687.1	3.7	-11	23.4	45.3	0	38.5	176.7	-1362.2	-7.3	272
2617.1	8121.0	-655.6	3498.2	1891.9	88.8	7814.1	716.2	6.3	-9.4	15.8	42.2	0	62.4	167.9	-1258.3	-2.1	244
2617.1	8121.0	-486.7	4056.4	1181.4	140.1	6923.1	777	8.8	-7.2	10.9	35.4	0	93.8	151.9	-1056.1	6.5	184.8
2617.1	8121.0	-317.8	4834.3	733.7	199.1	6710.5	859.5	12.1	-5	6.7	25.6	0	100	115.3	-754.3	15.3	111.7
2617.1	8121.0	-148.9	5058.0	401.7	225.6	6097.2	858.2	17.1	-5	2.7	12.4	0	100	54.1	-352.9	14.1	43.5
2617.1	8121.0	20.0	2658.2	128.9	121.5	2942.5	439.6	22.6	-5.8	0	0	17.6	84.3	-4.3	38.9	-3.6	-2.9
3033.8	5600.0	-1500.0	8287.1	18651.5	11.3	45669.5	893.9	3.5	-9.2	97.1	3.4	0	0.1	31.6	-87.1	-2.5	13.8
3033.8	5600.0	-1331.1	6585.4	13836.7	10.4	34323.9	778.2	1.9	-10.4	74.3	19.3	1.6	3.8	146.6	-515.1	-5.9	84.7
3033.8	5600.0	-1162.2	4743.6	8616.7	10	22040.4	649.5	0.5	-11.8	49.6	36.4	5	8.1	273.2	-961.7	-9.5	157.5
3033.8	5600.0	-993.3	3236.5	4315.1	17.5	11942	535.5	0.4	-12.6	28.8	47.7	8.9	13.8	349.3	-1261.2	-7.9	201.3
3033.8	5600.0	-824.4	2409.7	1955	37.2	6385.2	452.4	2.5	-12.3	16.6	47.8	13.9	21.1	328.7	-1280	2.3	190.5
3033.8	5600.0	-655.6	2017.5	786.1	65.5	3650.5	395.5	5.8	-11.4	9.7	41	18.8	29.8	249.5	-1121.3	18.3	150.5
3033.8	5600.0	-486.7	1847.3	187.7	94.5	2276.3	358.9	9.7	-10.2	5.2	31.3	23.4	39.3	154.3	-876.3	33.4	104
3033.8	5600.0	-317.8	1783.7	0.2	111	1709.4	333.4	13.7	-9	2.4	20.5	28.8	47.4	73.5	-587.2	37.9	61.4
3033.8	5600.0	-148.9	1504.6	0.2	95.4	1351.8	269.5	17.9	-8.5	0.6	9.6	44	44.9	23.6	-283.4	24.4	26.6
3033.8	5600.0	20.0	108.9	0.2	14.6	54.1	20.6	22.1	-10.3	0	0.1	96.3	3.8	3.4	-0.6	-2.6	1
3033.8	5880.1	-1500.0	8210.0	18284.5	11.7	44901.6	889.4	2.6	-9.2	95.5	5.5	0	1.1	53.2	-156.9	-3	17.9
3033.8	5880.1	-1331.1	6580.9	13642.6	12.3	33987.5	778.6	1.1	-10.3	73.6	20.6	0	5.2	159.4	-570.5	-5.5	84.3
3033.8	5880.1	-1162.2	4849.7	8700.7	14.1	22382.1	656.3	0	-11.5	50.1	36.3	1.4	9.9	272.1	-989.8	-7.7	149.5
								-				•••			200.0	• • •	140.0

Easting	Northing	Elevation	Na	Ca	HCO3	Cl	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3033.8	5880.1	-993.3	3418.3	4582.9	23.8	12736.1	545.9	0	-12.2	30.2	46.7	5	16.1	337.4	-1273.7	-4.7	186.9
3033.8	5880.1	-824.4	2538.2	2028.5	46.1	6760	460.8	1.7	-11.9	17.2	47.8	9.4	23.8	318.9	-1325.3	7.6	179
3033.8	5880.1	-655.6	2075.0	650.7	81.1	3536.5	399.5	4.9	-11	9.3	41.8	14.1	33.1	232.8	-1193.7	29.7	140.6
3033.8	5880.1	-486.7	1875.4	0.2	123.7	1898.4	362.9	8.8	-9.7	4.3	32	18.2	43.7	116.9	-950.9	57	92.9
3033.8	5880.1	-317.8	1891.3	0.2	153.4	1377.6	353.9	12.7	-8.3	1.4	21	21	54.9	24.2	-650.5	70.5	51.3
3033.8	5880.1	-148.9	1871.0	0.2	137.7	1408.6	333.5	17.1	-7.5	0	9.9	29.2	59.5	-10.5	-318	47.3	20.6
3033.8	5880.1	20.0	1091.7	0.2	57.3	876.4	185.4	22.4	-8.4	0	0	63.9	37	-0.9	16.3	-4.3	-1.4
3033.8	6160.2	-1500.0	8059.3	17813.2	9.9	43849	874.4	2	-9.4	93.5	7.8	0	1.1	79.5	-227	-4.5	21.7
3033.8	6160.2	-1331.1	6562.0	13523.6	12.5	33790.4	771.4	0.7	-10.2	73.2	21.1	0	5.5	169.6	-604	-5.6	79.7
3033.8	6160.2	-1162.2	5028.0	9112.9	17.2	23463.2	660.9	0	-11.1	52.2	34.1	0.4	10.6	258.2	-967.3	-5.7	132.4
3033.8	6160.2	-993.3	3721.8	5326.6	28.9	14624.9	558.1	0	-11.6	33.8	43	3.7	17	308.5	-1224.2	-1.1	162.1
3033.8	6160.2	-824.4	2798.4	2639.4	52.1	8365.9	471.6	1.5	-11.5	20.3	45.1	7.8	24.5	293.9	-1313.5	12.4	158.2
3033.8	6160.2	-655.6	2201.2	975.6	91.5	4440.3	399.5	4.3	-10.7	11.2	40.6	13.4	32.8	206.5	-1235.9	40.3	124.9
3033.8	6160.2	-486.7	1826.5	62.9	150.6	2152.5	344.1	7.8	-9.5	5.3	31.4	20.1	41.3	62.2	-1021.8	87.1	77.9
3033.8	6160.2	-317.8	1706.0	0.2	202.5	1278	321.7	10.5	-8.3	2.2	21.5	25.1	49.6	-54.1	-748.6	126.7	40.5
3033.8	6160.2	-148.9	1708.4	0.2	192.4	1334.4	311	13.8	-7.6	0.8	11.8	32	54.1	-80.3	-431.9	109.3	18.1
3033.8	6160.2	20.0	1282.2	0.2	88.5	1196.1	219.6	21	-8.1	0	0.5	57.4	42.2	-23.5	-25.3	20	0.3
3033.8	6440.3	-1500.0	7948.6	17519.2	8.1	43182.3	861.1	1.6	-9.5	92.2	9	0	0.5	96.7	-271.8	-5.4	23.1
3033.8	6440.3	-1331.1	6552.4	13508.6	12	33804.1	764.1	0.5	-10.2	73.2	21	0	5	174.9	-620.4	-5.4	74.9
3033.8	6440.3	-1162.2	5161.4	9480.6	18.7	24409.3	663.3	0	-10.9	53.9	32.1	0.9	10.3	247.1	-946.2	-4.1	119.8
3033.8	6440.3	-993.3	3956.3	5947.4	32.1	16201.4	569.3	0.2	-11.2	36.8	39.8	3.8	16.9	287.1	-1188.1	1.7	146.2
3033.8	6440.3	-824.4	3046.4	3259.4	56.7	9973.5	488.1	1.5	-11	23.5	42.1	7.6	24.6	271.9	-1304.3	16.5	145.9
3033.8	6440.3	-655.6	2400.5	1452	100.2	5718.3	416.1	3.7	-10.3	13.9	38.4	13.1	32.6	183.6	-1279.1	49	118.3
3033.8	6440.3	-486.7	1920.8	385.6	173.4	2992	351.1	6.3	-9.1	7.5	30.1	21.1	39.8	21.4	-1115	111.7	73.4
3033.8	6440.3	-317.8	1570.4	0.2	251.7	1618.3	299.4	6.9	-8.3	4.2	22.2	30.1	42.2	-124.9	-904.1	185.8	38.9
3033.8	6440.3	-148.9	862.7	0.2	271.2	664.5	185.5	6.2	-8.9	3	16.7	54	25.6	-202.1	-689.4	226.9	23.1
3033.8	6440.3	20.0	67.1	0.2	120.5	0.2	31.6	16.2	-10.2	0.8	4.5	91.6	3.2	-101.1	-194.2	104.6	6.4
3033.8	6720.4	-1500.0	7868.7	17355.6	7	42797.2	851.8	1.4	-9.6	91.5	9.7	0	0	105.7	-300.2	-5.8	25.1
3033.8	6720.4	-1331.1	6527.3	13503.5	10.8	33808.6	758.5	0.3	-10.3	73.2	20.8	0	4	177.8	-634.2	-5.3	74.2
3033.8	6720.4	-1162.2	5214.1	9677.1	18.6	24914.6	664.6	0	-10.9	55	30.9	2.1	9.5	242.6	-942.5	-3.3	116.7
3033.8	6720.4	-993.3	4081.1	6297.2	33.4	17103.4	580.5	0.4	-11.1	38.6	37.7	4.7	16.5	276.7	-1178.6	3.3	143.8
3033.8	6720.4	-824.4	3232.2	3670.4	60.3	11070.3	513.6	1.7	-10.7	25.6	39.5	7.6	25.1	257.6	-1312.4	19.2	149.1
3033.8	6720.4	-655.6	2677.6	1868.9	107.5	6927.2	463.1	3.5	-9.7	16.3	35.6	11	35.3	171	-1329.8	52.3	129.3
3033.8	6720.4	-486.7	2375.9	793.4	181.3	4393.5	428.4	5.1	-8.2	10.1	27.7	13.9	46.9	27.5	-1224.8	109.7	89.6
3033.8	6720.4	-317.8	2223.8	292	262.5	3076.1	405.4	5.5	-7.1	6.4	20.3	15.8	56.3	-110.8	-1027.4	177.4	50.4
3033.8	6720.4	-148.9	1671.2	112.9	288.5	1948.7	314.4	7	-7.4	4	14.7	32.8	48	-194.1	-734.8	213.9	25
3033.8	6720.4	20.0	636.1	5.1	129.8	572.3	123.6	18.5	-9.1	0.7	2.9	75.4	21.2	-95.5	-158.3	89.6	4.7

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/i	
3033.8	7000.6	-1500.0	7801.8	17251.3	7	42531.9	847.5	1.2	-9.8	91.1	10.2	0	0	108.3	-321.8	-6.1	30.2
3033.8	7000.6	-1331.1	6470.4	13441.3	8.9	33649.8	755.7	0.2	-10.4	73	21.1	1.2	2.7	179	-654.4	-5.5	
3033.8	7000.6	-1162.2	5180.0	9665.6	16.8	24893.6	665.9	0	-10.9	55	30.9	3.5	8.3	243	-960.6	-3.5	
3033.8	7000.6	-993.3	4091.7	6344.1	31.9	17257.7	591.6	0.5	-11.1	39	37.3	5.6	15.9	276.6	-1196.6	2.5	
3033.8	7000.6	-824.4	3330.3	3795.3	59.1	11480.5	544.5	2.1	-10.5	26.4	38.3	7.3	26.1	256.9	-1341.2	16.4	
3033.8	7000.6	-655.6	2941.6	2090.9	104.1	7715.4	526.1	3.6	-9.1	17.7	33.3	7.8	39.5	177.7	-1392	43	156.9
3033.8	7000.6	-486.7	2917.4	1089.4	168.3	5658.3	533.2	4.9	-7.2	12.1	24.2	4.7	57.6	60.7	-1325.8	81.9	120.3
3033.8	7000.6	-317.8	3203.8	565.8	234.3	4782.5	568.8	6.9	-5.3	7.9	15.6	0	81	-42.3	-1082.2	115.6	
3033.8	7000.6	-148.9	3382.1	276.6	243.4	4168	581.7	12.5	-5	3.8	8.4	0	98.6	-74.6	-606.9	100.4	
3033.8	7000.6	20.0	1822.1	29.6	104.5	1884.2	309.4	21.9	-7.1	0	0	42.1	58.7	-26.3	-21.6	13.8	
3033.8	7280.7	-1500.0	7758.5	17213.4	7	42410.7	849.3	1.2	-9.8	90.9	10.5	0	0	103.2	-334	-6.1	
3033.8	7280.7	-1331.1	6393.8	13336.8	7	33370.2	756.9	0	-10.5	72.6	21.7	2.1	1.5	175.3	-677.7	-5.9	
3033.8	7280.7	-1162.2	5071.9	9470	13.9	24409.2	668.4	0	-11.1	54.2	31.9	4.5	7.1	242.5	-996.9	-4.7	140.2
3033.8	7280.7	-993.3	3996.9	6110	28.3	16718.3	602.2	0.5	-11.2	38	38.5	6	15.5	279	-1239.1	-0.4	176.6
3033.8	7280.7	-824.4	3329.5	3627.8	54.3	11177.4	574.8	2.3	-10.5	25.8	39	5.8	27.7	261.9	-1383	9.6	195.5
3033.8	7280.7	-655.6	3115.2	2057.4	95.5	7865.2	586.3	4	-8.8	17.8	33	3.3	44.5	191.3	-1440.6	27.7	190.8
3033.8	7280.7	-486.7	3303.1	1162.8	151.7	6256.3	623.2	5.4	-6.5	12.7	22.5	0	67.2	92.2	-1380.8	52.3	154.6
3033.8	7280.7	-317.8	3744.3	652.7	208.3	5574.1	672.9	8.3	-5	8.3	13.2	0	95.3	8.6	-1096.8	70.2	95.8
3033.8	7280.7	-148.9	3668.0	303.4	206.8	4561.1	631.5	14.8	-5	3.7	6.3	0	100	-19.9	-562.1	53.3	38.9
3033.8	7280.7	20.0	806.6	0.2	41.5	795.5	137.6	22.3	-9	0	0	74.9	26.1	-2.2	-1.8	-5.8	1.2
3033.8	7560.8	-1500.0	7779.6	17330.1	7	42648.6	858.7	1.4	-9.8	91.5	10.1	0	0	87.1	-321.5	-5.7	43.7
3033.8	7560.8	-1331.1	6338.5	13279.1	7	33190.5	763.3	0.1	-10.6	72.4	22.2	2.5	0.8	163	-687.5	-6.1	103.4
3033.8	7560.8	-1162.2	4918.5	9156.7	10.8	23628.1	671.9	0	· -11.4	52.8	33.8	5	6.2	236.8	-1037.5	-6.3	161.1
3033.8	7560.8	-993.3	3818.5	5652.6	24.4	15625.9	611	0.4	-11.5	35.9	41.1	5.5	15.5	277.1	-1293.8	-4	204.1
3033.8	7560.8	-824.4	3259.2	3236.5	50.7	10319.6	600.7	2.3	-10.7	23.9	41.6	2.4	30.4	262.8	-1418.3	2.6	224
3033.8	7560.8	-655.6	3236.7	1828.3	91.8	7516.2	635.7	4.3	-8.9	16.5	35.5	0	51.4	202.5	-1431.7	15.1	215.6
3033.8	7560.8	-486.7	3616.6	1054.1	146.8	6326	696.1	6.2	-6.4	11.7	25.4	0	78.7	120.5	-1321.9	32.4	175.6
3033.8	7560.8	-317.8	4154.2	585.2	203.6	5808.9	755.5	9.7	-5	7. 4	15.7	0	100	46.1	-1008.8	46.9	112.3
3033.8	7560.8	-148.9	3970.8	253.3	205.5	4737	689	15.9	-5	3	7.4	0	100	4.9	-499.4	38.1	47.1
3033.8		20.0	773.8	0.2	41.9	718.9	131.8	22.1	-9	0	0	75.4	25.4	0.2	3.4	-4.3	0.6
3033.8	7840.9	-1500.0	7906.6	17679.3	7	43443.8	876.8	1.9	-9.6	93	8.5	0	0	59.3	-268.6	-4.6	43.8
3033.8		-1331.1	6360.4	13369.1	7	33369.1	775.8	0.6	-10.6	72.7	21.9	2.2	1.2	142.2	-662.4	-6	110.5
3033.8	7840.9	-1162.2	4775.4	8828.7	9.2	22814	674.7	0	-11.6	51.2	35.6	5.1	6.2	229.5	-1056.8	-7.7	178.3
3033.8	7840.9	-993.3	3605.0	5074.1	21.7	14237.2	612.6	0.3	-11.9	33.1	44.5	4.6	16.2	278.6	-1333.2	-7.3	227.3
3033.8	7840.9	-824.4	3198.9	2804.6	50.9	9360.1	620.2	2.4	-10.9	21.6	44.8	0	34.6	262.9	-1417.2	-2.4	242
3033.8	7840.9	-655.6	3392.5	1617.9	95	7199.2	675.7	4.9	-9	14.9	38.7	0	60.2	209.9	-1355.2	6.8	223.3
3033.8	7840.9	-486.7	3942.3	961.6	150.7	6398.1	753.8	7.5	-6.5	10.4	29.5	0	91.8	144.6	-1176.8	19.2	176.8

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	018	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3033.8	7840.9	-317.8	4573.8	535.1	205.9	6061.9	825.4	11.3	-5	6.2	19.4	0	100	79.4	-855.6	29.2	112.4
3033.8	7840.9	-148.9	4444.9	219	212.5	5114.2	767.5	16.7	-5	2.2	9	0	100	27	-412.5	23.6	47.1
3033.8	7840.9	20.0	1550.5	0.2	76.2	1509.9	260.9	22.2	-7.7	0	0	50.6	50.4	-0.9	10.3	-3.5	0
3033.8	8121.0	-1500.0	8062.4	18004.1	9.9	44218.2	897.3	2.9	-9.5	94.3	6.5	0	0.4	32.2	-199.7	-3.9	40.5
3033.8	8121.0	-1331.1	6476.6	13565.4	10.4	33848.6	795	1.5	-10.5	73.4	20.6	1.3	3.8	118.3	-601	-5.7	109.9
3033.8	8121.0	-1162.2	4812.9	8801.2	12.1	22766.7	688.5	0.6	-11.6	50.8	35.5	3.8	8.9	214.6	-1011.6	-8.5	181.5
3033.8	8121.0	-993.3	3603.2	4890	24.2	13828.9	623.5	0.9	-12	31.9	45.5	2.4	19.5	273	-1292.5	-9.2	231.6
3033.8	8121.0	-824.4	3346.0	2809.2	56.2	9460.1	645.4	3.1	-10.9	21.1	45.3	0	40.7	254.5	-1334	-5.3	239.3
3033.8	8121.0	-655.6	3664.1	1763.8	101.5	7692.1	711.5	6	-8.9	14.9	39.3	0	68.9	206	-1220.6	1.6	213.5
3033.8	8121.0	-486.7	4242.8	1136.6	153.6	6973	790.7	9.1	-6.5	10.3	30.7	0	100	152.7	-1008.7	9.8	165.2
3033.8	8121.0	-317.8	4798.6	697.5	200.8	6550.2	851.9	12.9	-5	6.2	20.6	0	100	96.2	-703.4	15.5	104.6
3033.8	8121.0	-148.9	4659.5	349.2	208.8	5562.1	797.3	17.6	-5	2.4	9.5	0	100	40.1	-330	12.1	44.6
3033.8	8121.0	20.0	2660.6	116.2	120.4	2924.2	442.4	22.6	-5.8	0	0	17.3	84.3	-1.7	28.6	-4.8	-0.1
3450.6	5600.0	-1500.0	8499.9	19299.7	14.1	47199.2	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.6	5600.0	-1331.1	6609.2	14031.1	9.1	34853.8	771.9	2.5	-10.4	75.1	17.9	4.2	2.7	137.5	-473	-5.9	76.9
3450.6	5600.0	-1162.2	4722.5	8725.5	7.4	22461.1	639.2	1.1	-11.9	50	35.5	8.1	6.5	268.6	-929.8	-10.1	152
3450.6	5600.0	-993.3	2971.7	3764.6	11.4	10934.7	515.1	0.3	-13.1	26.2	50.5	11.8	11.5	374.3	-1319	-10.6	216.2
3450.6	5600.0	-824.4	2338.7	2323.7	25.9	7294.1	423.4	3.4	-12.7	18.3	45.9	21.5	14.7	320.2	-1221.7	-0.8	180.1
3450.6	5600.0	-655.6	1856.0	1304.1	46.8	4686.5	344.6	7.1	-12	12	38.6	31.2	18.7	237.8	-1045.9	13.9	136.3
3450.6	5600.0	-486.7	1493.5	653.3	68.8	2947.7	278.5	11	-11.1	7.4	29.1	41.2	22.7	143.5	-807.4	29.6	91.3
3450.6	5600.0	-317.8	1184.6	296.4	77.9	1861.4	217.9	14.9	-10.3	4.1	19	53	24.1	65.9	-536.1	35.6	52.4
3450.6	5600.0	-148.9	730.9	121.2	58	1012.2	131.9	18.6	-10	1.8	9.1	71.8	17.4	21.1	-259.6	23.6	22.5
3450.6	5600.0	20.0	0.4	0.4	12.2	0.5	1.4	22	-10.5	0	0	100	0	0	0	0	0
3450.6	5880.1	-1500.0	8164.2	18267.7	10.3	44871.6	879.2	3.2	-9.3	95.4	5	0	0.2	51	-140.3	-3.4	14
3450.6	5880.1	-1331.1	6557.3	13723.9	10.2	34238	767.2	1.7	-10.4	73.9	19.6	1.4	3.9	154.7	-538.9	-6.1	77.3
3450.6	5880.1	-1162.2	4831.9	8865	10.4	22882.8	642.2	0.6	-11.6	50.8	34.9	5.1	7.9	265.5	-947.3	-8.9	140.4
3450.6	5880.1	-993.3	3367.5	4800.9	16.1	13361.6	524.2	0.7	-12.4	31.1	45.2	10.3	12.2	332	-1226.6	-7.4	177.3
3450.6	5880.1	-824.4	2440.9	2432.9	30.7	7683.9	422.4	2.9	-12.3	19	45.6	18.4	16.2	311.5	-1256.2	2	164.4
3450.6	5880.1	-655.6	1820.4	1099.9	56.2	4332	331.5	6.5	-11.7	11.3	39.3	28.8	19.9	224.2	-1114.3	22	123.3
3450.6	5880.1	-486.7	1354.4	312	92.6	2177.2	254.1	10.9	-10.8	5.9	29.4	40.4	23.6	100	-866.1	52.3	75.3
3450.6	5880.1	-317.8	1068.5	0.2	116.2	1058.7	201.9	14.8	-9.9	2.5	18.9	51.2	26.6	6.7	-577.8	70.7	37.9
3450.6	5880.1	-148.9	773.2	0.2	90.9	548.9	143.3	18.3	-9.5	0.6	9	66.4	23.2	-17.8	-284.4	48.9	14.4
3450.6	5880.1	20.0	148.2	0.2	17.3	46.9	25.3	22.6	-10.2	0	0	94.9	5.7	-1.1	14.6	-2.6	-2.7
3450.6	6160.2	-1500.0	7954.8	17645.9	7.5	43464.5	858.5	2.5	-9.6	92.6	7.9	0	0.7	83.7	-226.2	-2.0	19.6
3450.6	6160.2	-1331.1	6502.5	13521	9.5	33819.4	755.6	1.3	-10.4	73	20.4	1.2	4	168.8	-580.5	-6.7	73
3450.6	6160.2		5001.4	9285.5	12.3	23919.1	642.8	0.6	-11.3	52.8	32.6	4.7	8.1	252.5	-921.6	-7.6	121.1
3450.6	6160.2	-993.3	3687.4	5641.5	19.1	15384.2	531.8	1	-11.8	35.2	40.9	9.8	12.5	302.1	-321.0	-7.0	147.2

Easting	Northing	Elevation	Na	Са	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3450.6	6160.2	-824.4	2687.6	3034.8	31.9	9210.6	426.9	2.7	-11.9	22	43	17.3	16.4	294.7	-1242.8	2.8	140.6
3450.6	6160.2	-655.6	1898.1	1342.3	55.3	5019.7	319.4	5.9	-11.5	12.8	38.8	28.8	18.6	216.9	-1163.1	22.8	104.8
3450.6	6160.2	-486.7	1115.0	252.3	113.4	1866.5	201	11.4	-10.7	5.8	27.8	46.9	18.6	26.6	-903.8	79.6	49.3
3450.6	6160.2	-317.8	747.9	0.2	171.4	487	146.8	14.7	-9.8	2.2	17.8	58.6	20.5	-94	-614	134	17.6
3450.6	6160.2	-148.9	570.2	0.2	147	257.7	114	16.3	-9.6	1	10.1	70.3	18	-85.6	-370.4	112.1	9.3
3450.6	6160.2	20.0	50.6	0.2	14.2	29.7	9.4	22.2	-10.4	0	0	98.3	1.9	-0.9	4.8	-0.5	-0.9
3450.6	6440.3	-1500.0	7831.3	17307.1	7	42690.8	844	2.1	-9.7	91.1	9.3	0.1	0	102.7	-274.8	-6.5	21
3450.6	6440.3	-1331.1	6480.4	13459.4	9.1	33705.7	746.9	1.1	-10.4	72.8	20.4	1.9	3.6	175.7	-600.4	-6.7	68
3450.6	6440.3	-1162.2	5127.1	9612.5	14.2	24731.9	643.9	0.7	-11	54.4	30.6	5	8.1	242.4	-902.8	-6	107.8
3450.6	6440.3	-993.3	3922.3	6221.5	23.1	16821.5	542.6	1.2	-11.4	38	37.6	9.5	13	281	-1126.7	-2.4	129.7
3450.6	6440.3	-824.4	2947.0	3594.6	37.5	10658.1	444.5	2.6	-11.4	24.9	40	16	17.5	275.5	-1234	6.4	126.5
3450.6	6440.3	-655.6	2133.9	1744.7	60.1	6169.6	339.5	5.1	-1 1.1	15.2	37.4	26.4	20	211.7	-1209.9	25.6	96.6
3450.6	6440.3	-486.7	1105.8	393.5	136.8	2187.5	190.5	11.3	-10.3	6.9	25.3	49.4	17.7	-42.9	-960.4	103.9	33.9
3450.6	6440.3	-317.8	688.3	0.2	234.7	620.5	137.9	13.2	-9.5	3.2	17.2	60.4	18.5	-176.3	-701.8	199.9	10.1
3450.6	6440.3	-148.9	390.2	0.2	256.9	182.7	97.7	10.7	-9.8	2.7	13.7	72.5	10.7	-178.2	-604.4	232.1	16
3450.6	6440.3	20.0	0.4	7.2	150.4	0.2	1.4	15.7	-10.7	1.4	5.3	99.1	0	-97.4	-263.5	146	9.8
3450.6	6720.4	-1500.0	7757.4	17136.8	7	42289.3	835.1	1.9	-9.8	90.4	9.9	1	0	112.1	-300.9	-6.6	22.2
3450.6	6720.4	-1331.1	6463.1	13439	9.1	33667.1	742.1	1	-10.4	72.8	20.2	2.7	3.1	178.5	-612.1	-6	66.3
3450.6	6720.4	-1162.2	5194.3	9785.9	16.3	25171	647.5	0.8	-10.9	55.3	29.3	5.5	8.1	235.9	-897.3	-4.1	103.5
3450.6	6720.4	-993.3	4075.7	6537.9	29	17636.8	558.6	1.3	-11.1	39.5	35.4	9.1	14.2	265.1	-1114.4	1.6	125.5
3450.6	6720.4	-824.4	3180.9	3952.9	51	11632.7	478.5	2.7	-10.9	26.7	37	13.8	20.9	247.9	-1230.8	15.1	126.2
3450.6	6720.4	-655.6	2479.9	2083.8	90.8	7185.1	402.1	5.2	-10.2	16.9	33.4	20.8	27.7	163.1	-1221.5	45.4	102.7
3450.6	6720.4	-486.7	1907.9	856.7	164.6	4000.8	329.8	8.6	-9.1	9.7	25	30.2	34.2	-2	-1062.3	109.6	61.3
3450.6	6720.4	-317.8	1618.6	274.2	248.5	2330.7	295.1	10.1	-8.1	5.5	17.7	35.7	40.3	-132.9	-852.2	184.5	32
3450.6	6720.4	-148.9	1282.1	100.3	286.9	1471.9	246.2	10.4	-8.2	3.7	13.2	46.7	36.1	-178.4	-661.8	228	21.8
3450.6	6720.4	20.0	663.5	62.2	189.4	684.4	130.9	16.4	-9.2	1.5	4.9	73.8	20.4	-114.9	-263.9	150.4	8.5
3450.6	7000.6	-1500.0	7715.4	17074.9	7	42123.1	831.6	1.8	-9.9	90.1	10.1	1.7	0	114	-311.8	-6.4	24.7
3450.6	7000.6	-1331.1	6433.7	13407.2	8.9	33579.2	740.9	1	-10.4	72.7	20.2	3.5	2.5	178.7	-621.6	-5.4	69.4
3450.6	7000.6	-1162.2	5196.0	9790.7	17.6	25192.5	652.5	0.7	-10.9	55.4	28.9	5.9	8.1	233.5	-905.7	-2.8	108.1
3450.6	7000.6	-993.3	4141.6	6587.9	33.4	17814.9	577	1.4	-10.9	39.8	34.5	8.2	15.6	258.6	-1123.4	3.9	133.4
3450.6	7000.6	-824.4	3367.4	4062.2	61	12046.2	521.7	2.9	-10.4	27.3	35.3	10.2	25.5	236.1	-1244.9		139.7
3450.6	7000.6	-655.6	2893.0	2277.4	105.6	7998.7	487.3	5	-9.3	18	31.1	11.6	37.9	158.7	-1251.5	46.3	124.3
3450.6	7000.6	-486.7	2699.6	1147.3	167.1	5456.3	474.6	7.5	-7.8	11.4	23.5	10.9	53.1	45.2	-1129.5		91.6
3450.6	7000.6	-317.8	2743.6	531.9	223.1	4116.6	483.9	10.2	-6.4	6.8	15.7	6.9	69.7	-47.8	-881	119.5	55.1
3450.6	7000.6	-148.9	2875.6	248.1	224.6	3516.2	496.2	14.7	-5.6	3.2	8.4	3.8	84.1	-67.8	-492.4		24.3
3450.6	7000.6	20.0	2732.0	130.6	127.5	3019	452.2	22.5	-5.8	0	0	14.7	86.4	-2	31.6		-1.9
3450.6	7280.7	-1500.0	7714.2	17135.3	7	42228.7	834.1	1.9	-9.9	90.4	9.9	2.2	0	- 107.9	-304.5		27.8

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3450.6	7280.7	-1331.1	6396.3	13375.2	8.3	33468.6	742.5	0.9	-10.5	72.5	20.4	4.1	1.7	175.6	-625.7	-5	76
3450.6	7280.7	-1162.2	5126.6	9631.8	17	24801.3	656.1	0.7	-11	54.6	29.7	6.2	7.8	235.2	-925	-2.8	119.8
3450.6	7280.7	-993.3	4099.4	6366.5	34	17328.8	591.3	1.3	-11	38.8	35.5	7.1	16.9	263.3	-1151.4	3	150.5
3450.6	7280.7	-824.4	3451.3	3895.8	63.3	11798.2	560	2.9	-10.2	26.5	35.9	6.1	30	243.2	-1272.1	15.1	161.5
3450.6	7280.7	-655.6	3193.5	2239.8	106.5	8236.5	560.6	5	-8.8	17.8	31	2.6	47.2	177	-1276.2	34.8	150.2
3450.6	7280.7	-486.7	3233.2	1220.6	157.5	6181.3	580.6	7.5	-7	11.7	22.9	0	67.5	88.7	-1148.6	57.7	118.4
3450.6	7280.7	-317.8	3334.0	625.5	193.1	4966.6	589.5	11.1	-5.6	7.1	14.5	0	85.5	16.8	-864.9	68.3	75.2
3450.6	7280.7	-148.9	2902.3	277	167.4	3661.6	499.6	16.4	-5.7	3	6.8	6.1	83.4	-7.6	-436.7	44.5	32.5
3450.6	7280.7	20.0	1136.7	64.5	53.1	1287.3	188.2	22.5	-8.5	0	0	65.3	35.7	4.2	14.7	-7	-0.5
3450.6	7560.8	-1500.0	7794.3	17411.4	7	42831.6	844.3	2.2	-9.8	91.6	8.8	2.3	0	90.5	-265	-4.9	28
3450.6	7560.8	-1331.1	6380.6	13416.6	7.7	33512.1	747.1	1.1	-10.6	72.7	20.4	4.5	1.1	167.1	-611.8	-4.8	82.6
3450.6	7560.8	-1162.2	4982.9	9323.6	14.5	24025.5	654	0.6	-11.2	53.2	31.6	6.6	7	241.1	-948.3	-4.1	135.2
3450.6	7560.8	-993.3	3920.2	5855.2	30.8	16114.2	593.1	1.1	-11.3	36.4	38.4	6.4	17.2	279.5	-1193.7	-0.3	172.4
3450.6	7560.8	-824.4	3405.1	3468.6	61.1	10882.9	583	2.8	-10.4	24.4	38.6	2.1	33.5	262	-1298.8	8.4	184.7
3450.6	7560.8	-655.6	3363.7	2019.5	103.8	7952	612.3	5.2	-8.7	16.6	33	0	55.1	201	-1270.3	21.8	171.6
3450.6	7560.8	-486.7	3576.6	1154.8	150.6	6385.6	653	8	-6.7	11.1	24.5	0	78.8	123.7	-1113.2	35.8	136.8
3450.6	7560.8	-317.8	3665.8	616.6	179.6	5280.8	653	11.9	-5.3	6.7	15.5	0	95.7	56.7	-815.4	41.3	88.6
3450.6	7560.8	-148.9	2813.5	253.4	147	3524.3	488.7	16.8	-6	2.8	7.3	8.6	80.5	16.9	-408.7	28.1	39.2
3450.6	7560.8	20.0	251.6	9.5	21.8	275.9	43.1	22	-10.1	0	0	92.3	7.9	1.2	-0.8	-1	0.3
3450.6	7840.9	-1500.0	8027.7	18068.2	7.6	44331.8	866.4	2.9	-9.5	94.5	5.8	1.6	0	56.7	-171.3	-3	20.4
3450.6	7840.9	-1331.1	6444.2	13646.5	8.2	33998.5	757.3	1.5	-10.5	73.6	19.6	4.5	1.2	150.3	-562.2	-4.4	84.1
3450.6	7840.9	-1162.2	4781.3	8899.9	10.6	22952.1	643.7	0.5	-11.6	51.1	34.2	7.7	5.9	253.1	-965.5	-6.1	149.7
3450.6	7840.9	-993.3	3562.6	4998.5	23.8	14022.8	572.1	0.8	-12	32.2	43.5	7.3	16	313.9	-1249.6	-5	195.4
3450.6	7840.9	-824.4	3266.4	2903.5	57.2	9583.2	588.5	2.8	-10.8	21.5	42.5	0	36.1	288.3	-1309.2	1.5	203
3450.6	7840.9	-655.6	3484.8	1813.5	102.2	7620.9	646.8	5.6	-8.8	15.2	35.7	0	61.9	221.9	-1220.9	11.3	182.7
3450.6	7840.9	-486.7	3862.2	1131.4	148.8	6582.6	705.9	8.8	-6.6	10.5	26.7	0	88.8	148.7	-1026.9	21	143.4
3450.6	7840.9	-317.8	4060.3	651.7	180.2	5712.8	719.8	12.7	-5	6.3	17.2	0	100	82.5	-728.3	25.2	92.6
3450.6	7840.9	-148.9	3462.0	280.3	164.5	4215.8	596.4	17.4	-5.1	2.5	8	0	100	32.1	-356.9	17.9	40.7
3450.6	7840.9	20.0	1547.6	54.7	74.7	1681.6	257.2	22.2	-7.8	0	0	51.9	49	2.5	8.4	-3.1	-0.3
3450.6	8121.0	-1500.0	8499.9	19299.7	14.1	47199.2	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.6	8121.0	-1331.1	6599.6	13990.2	11.2	34801.7	776.1	2.5	-10.4	75	17.9	3.9	3.1	127.9	-484	-4.4	80.2
3450.6	8121.0	-1162.2	4728.9	8739	10	22545.1	644.8	1.1	-11.9	50.1	35.1	7.9	6.8	254.8	-934.7	-8.1	154.7
3450.6	8121.0	-993.3	3008.7	3785.3	12.6	11020.7	522	0.3	-13	26.4	50.4	10.9	12.4	372.8	-1319.8	-10.6	217.2
3450.6	8121.0	-824.4	3291.2	2767.4	56.1	9288.1	599.1	3.3	-11	20.5	44.1	0	39.3	298.3	-1251.6	-3.8	206.1
3450.6	8121.0	-655.6	3687.4	1979	102.1	8097	675.2	6.5	-8.9	15.5	36.3	0	67.4	226.4	-1114.4	3.7	179.6
3450.6	8121.0	-486.7	4121.3	1382.8	146.6	7287.4	739.6	10	-6.7	11.1	27.3	0	95	158.4	-903.4	10.4	138.9
3450.6	8121.0	-317.8	4375.0	910.7	178.6	6501.8	762.9	13.9	-5	7	17.8	0	100	95.6	-620.2	13.5	89.4

	Easting	Northing Elevation		Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev HC	CO3 Dev	SO4 Dev
_	m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
	3450.6	8121.0	-148.9	4075.6	498.2	179.4	5247	691.6	18.2	-5	3.2	8.1	0	100	40.4	-290.3	9.6	39
	3450.6	8121.0	20.0	2875.2	174.1	130.4	3256.4	473.7	22.5	-5.5	0	0	11	90.5	-1.9	35	-3	-3.2
}																		

Appendix 6: Grid data after the tunnel construction

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τυ	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/
-300.0	5600.0	-1500.0	8500.0	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	
-300.0	5600.0	-1331.1	5639.3	12666.4	80.8	31043.7	610.7	12.7	-9.1	66.3	4.7	27.6	1.2	-37.8	-133.6	66.3	2.9
-300.0	5600.0	-1162.2	2762.0	6118	150.1	14999.3	307.8	20.7	-9.3	33	8.6	56.4	1.9	-106.9	-256	135.8	-2.5
-300.0	5600.0	-993.3	55.5	48.4	216.9	70.5	14.6	27.9	-9.5	2.1	11.2	84.5	2.1	-191.1	-360.7	203.2	-16.8
-300.0	5600.0	-824.4	0.4	0.2	209.4	0.2	10.9	26.9	-10	0.7	12.4	83.6	3.4	-178.9	-356.5	193.9	-14.8
-300.0	5600.0	-655.6	0.4	0.2	191.4	0.2	12.7	26.3	-9.9	0	10.9	84	6.1	-154.6	-332.7	171.5	-11.6
-300.0	5600.0	-486.7	7.8	0.2	163.2	0.2	20.7	25.3	-9.9	0	8.8	84.7	8	-124.1	-282.5	140.3	-9.6
-300.0	5600.0	-317.8	77.8	0.2	123	0.2	26.9	24	-9.9	0	6.2	86.8	8.2	-86.1	-205.5	99.6	-7.1
-300.0	5600.0	-148.9	90.0	0.2	71.3	0.2	22.2	22.8	-10.1	0	3.1	91.7	5.6	-42.7	-107	51.4	-3.8
-300.0	5600.0	20.0	0.4	0.2	12.2	0.2	1.4	22	-10.5	0	0	100	0	0	0	0	C
-300.0	5880.1	-1500.0	7870.8	17412.7	32.8	43030.8	832.4	9.5	-8.8	90.4	2.1	5.7	1.9	127	-33.7	16.6	3.3
-300.0	5880.1	-1331.1	5531.3	12013.1	85.8	29786.9	607	15.2	-8.9	63	6.8	25.6	3.7	59.7	-154.6	68.3	16.5
-300.0	5880.1	-1162.2	2921.9	6147.8	149.2	15312.1	339.9	21.8	-9.2	33.1	10.3	51	4.5	-36.8	-258.5	131.5	15.3
-300.0	5880.1	-993.3	868.8	1601	201.1	4034.4	119.5	26.7	-9.4	9.9	12.2	7 2	4.9	-127.6	-334	183.3	3.2
-300.0	5880.1	-824.4	49.0	0.2	218	0.2	28.8	27.9	-9.7	0.2	12.5	80.3	6	-166.3	-360.9	198.6	-6.6
-300.0	5880.1	-655.6	0.4	0.2	210	0.2	11.2	27.5	-9.7	0	11.2	82.2	8.3	-165.4	-351.1	186.9	-10.5
-300.0	5880.1	-486.7	0.4	0.2	185.1	0.2	18.9	26.2	-9.6	0	9.3	82.3	10.5	-143.3	-311	158.6	-11.1
-300.0	5880.1	-317.8	47.4	0.2	143	0.2	29.1	24.5	-9.6	0	6.7	83.6	11	-105.2	-237.9	115.7	-8.9
-300.0	5880.1	-148.9	61.3	0.2	84.8	0.2	23.4	22.9	-9.9	0	3.5	89.3	7.8	-54.7	-127.9	62	-4.8
-300.0	5880.1	20.0	0.4	0.2	16.6	0.2	1.4	22.4	-10.6	0	0	100	0	-12.1	15.6	7.3	-1.7
-300.0	6160.2	-1500.0	7617.7	16308.5	37.9	40854.6	797.9	13.8	-8.8	84.8	4.4	7.6	3.7	289.2	-64.8	19.6	9.6
-300.0	6160.2	-1331.1	5518.5	11484	82.6	28938.1	616.1	18.4	-8.9	60.3	9.1	23.8	6	200.5	-170.1	62.2	37.6
-300.0	6160.2	-1162.2	3185.7	6389.4	138.4	16176.5	391	23.3	-9.1	34.2	12.2	45.5	7	55.3	-235	117.5	43.5
-300.0	6160.2	-993.3	1266.2	2314.2	190.1	5898.1	179.9	27.1	-9.3	13.3	12.8	66	6.7	-81.6	-293.7	169.7	22.0
-300.0	6160.2	-824.4	242.9	129.7	218.3	371.6	56.4	28.9	-9.5	2.1	11.9	78.1	6.9	-158.4	-338.2	197.4	-0.4
-300.0	6160.2	-655.6	0.4	0.2	220.7	0.2	17.6	28.8	-9.5	0	10.6	81.9	8.4	-180.5	-348.3	197.2	-11.0
-300.0	6160.2	-486.7	0.4	0.2	201.5	0.2	19.7	27.4	-9.5	0	9.1	81.9	10.3	-172.2	-328.8	175.1	-14.
-300.0	6160.2	-317.8	62.1	0.2	159.2	0.2	29.9	25.4	-9.5	0	7.3	82.4	11	-141.2	-275.4	131.9	-13.4
-300.0	6160.2	-148.9	81.8	0.2	93.6	0.2	25.4	23.3	-9.8	0	4.3	87.9	8	-81.9	-162.6	70.6	-8.3
-300.0	6160.2	20.0	0.4	0.2	16.7	0.2	1.4	22.4	-10.6	0	0	100	0	-12.9	16.4	7.7	-1.7
-300.0	6440.3	-1500.0	7647.6	15762.3	32.9	40154.6	784.1	17.4	-8.8	82.2	6.7	6.7	5.2	493.9	-106.5	12.9	11.6

•

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
-300.0	6440.3	-1331.1	5735.6	11350.5	68.1	29165.3	656.9	21.1	-8.9	59.8	12	19.5	8.4	381.6	-215	44.9	70.1
-300.0	6440.3	-1162.2	3321.9	6347	121.7	16322.1	449.5	25.2	-9	33.7	15.2	40.6	9.9	141.6	-181.9	97.3	91.3
-300.0	6440.3	-993.3	1191.0	2144.5	186.4	5494.2	186.7	28.3	-9.4	12.2	13.4	66.5	7.2	-77.2	-238.4	165.5	36.9
-300.0	6440.3	-824.4	199.9	185.3	220.6	446.3	45.7	30.3	-9.6	2.4	10.6	81	5.4	-176.6	-314.6	201.7	-5.7
-300.0	6440.3	-655.6	0.4	0.2	225.7	0.2	12	30.5	-9.6	0	9.3	84.6	5.9	-202	-334.5	205.8	-17.6
-300.0	6440.3	-486.7	0.4	0.2	212.8	0.2	14.3	28.4	-9.6	0	8.8	84	7	-207.9	-343.4	191.3	-20.2
-300.0	6440.3	-317.8	58.8	0.2	173.4	0.2	22.2	26.8	-9.6	0.2	8.6	83.1	7.6	-197	-337	151.1	-20.5
-300.0	6440.3	-148.9	103.1	0.2	95.8	0.2	23.1	24.8	-9.7	0.7	7.5	84.9	6.5	-163.3	-296.3	75.3	-18.6
-300.0	6440.3	20.0	0.4	4.5	9.6	0.2	1.4	23.9	-10.4	0.4	1.3	98.8	0	-39.7	-64.3	-1.9	-5.1
-300.0	6720.4	-1500.0	7776.1	15450.4	24.8	40098.2	754	20.6	-9	80.7	9	5.4	5.9	726.6	-131	4.2	-8.7
-300.0	6720.4	-1331.1	6335.4	11920	45.8	31262.5	736.6	22.3	-8.9	63.9	14.2	12.7	9.4	605.4	-427.6	21.5	108
-300.0	6720.4	-1162.2	3428.8	6241.9	87.9	16188.5	560.9	27	-8.8	32.2	21.4	31	15.4	202.5	6.4	57.1	187.5
-300.0	6720.4	-993.3	502.3	887.7	200.5	2245.1	97.4	28.9	-9.7	5.7	12.8	76.5	4.9	-145.2	-231.8	183.1	18
-300.0	6720.4	-824.4	11.3	7.7	220.1	0.2	6.8	31.4	-9.8	1.7	9.1	87	2.2	-204.4	-325.4	206.1	-21.6
-300.0	6720.4	-655.6	0.4	0.2	218.2	0.2	3.4	32.6	-9.9	1.5	8.7	88	2	-201.2	-318.8	204.5	-21.5
-300.0	6720.4	-486.7	0.4	0.2	211.2	0.2	5.1	27.3	-9.9	1.8	9.6	86.7	2	-224.5	-365.3	197.7	-23.2
-300.0	6720.4	-317.8	3.8	15.1	183.2	0.2	4.1	29.3	-10	2	9.8	86.7	1.6	-220.9	-378.6	170.3	-24.2
-300.0	6720.4	-148.9	29.2	33.6	88.8	60.3	3.1	24.9	-9.8	2.7	13	82.2	2.2	-278.1	-503.2	75.4	-35.1
-300.0	6720.4	20.0	0.4	42.2	0	47.3	1.4	35.7	-9.9	2.5	8.5	90.4	0	-246.6	-430.1	-18	-32.4
-300.0	7000.6	-1500.0	7750.6	15406.7	21.9	40024.6	743.1	20.6	-9.1	80.5	9.5	5.9	5.1	745.6	-127.8	2.6	-13.3
-300.0	7000.6	-1331.1	6305.7	11872	41.4	31209.4	717.4	22.3	-9.1	63.7	15.1	13.3	8.1	636.1	-422.5	19.1	97.6
-300.0	7000.6	-1162.2	3557.5	6522.6	80.8	16966	554.6	25.8	-9.1	34.3	21.6	31.5	12.7	241	-103.3	53.9	176.7
-300.0	7000.6	-993.3	910.0	1618.9	167.5	4212.8	171.2	27.7	-10	9.5	17.3	68.1	5.1	-65.6	-224.8	151	56.6
-300.0	7000.6	-824.4	128.6	182	191.9	468.4	36.3	28.7	-10.3	2.9	14.3	82	0.9	-147.9	-366.3	181	3.8
-300.0	7000.6	-655.6	0.4	0.2	187.7	0.2	11.4	28.6	-10.5	1.9	14.1	84.5	0	-151.5	-404.3	178.7	-5.2
-300.0	7000.6	-486.7	0.4	0.2	177.2	0.2	1.4	25.6	-10.5	1.9	14	85.2	0	-157.5	-447.1	169.2	-15.9
-300.0	7000.6	-317.8	21.7	0.2	147.9	0.2	1.4	24.6	-10.4	2.1	13.1	84.9	0	-154.9	-456.7	138.3	-25.3
-300.0	7000.6	-148.9	96.0	0.2	83	81.4	5.7	24.5	-10.1	2	10.9	84.6	2.5	-157.9	-410.7	69.3	-27.4
-300.0	7000.6	20.0	0.4	21.9	4.4	0.2	1.4	27.5	-10.3	1.3	4.3	97.3	0	-124.1	-212.1	-3.6	-18.3
-300.0	7280.7	-1500.0	7610.3	15733.2	24.9	40125.1	768.5	17.2	-9.1	82.2	8	7.6	3.1	527.7	-119.5	8.1	7.6
-300.0	7280.7	-1331.1	5759.7	11460	53.7	29511.2	644.8	20.3	-9.3	60.7	13.9	19.9	5.3	432.1	-250.9	35.3	66.5
-300.0	7280.7	-1162.2	3489.2	6731.4	94.8	17389.2	461.2	23.3	-9.6	36.2	18.5	38.6	6.2	213.4	-259.7	76.6	99.7

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	018	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/i	mg/l	mg/l
-300.0	7280.7	-993.3	1480.0	2711.9	139.9	7077.4	233.8	25.2	-10.2	15.7	19.9	60.2	3.8	20.7	-314.9	125.7	70
-300.0	7280.7	-824.4	428.9	586	159.9	1672.1	93	25.5	-10.7	5.3	20.1	73	1.4	-67.4	-417.2	149.5	36.1
-300.0	7280.7	-655.6	81.2	0.2	156.9	0.2	35.6	24.3	-11	1.8	20	77.7	0.4	-84.9	-481.7	148.3	15.7
-300.0	7280.7	-486.7	11.6	0.2	143.9	0.2	6.4	22.4	-10.9	1	18.4	80.4	0.1	-79.2	-506.9	135.8	-4.9
-300.0	7280.7	-317.8	66.9	0.2	117.5	0.2	1.4	21.1	-10.7	1	15.1	82.4	1.3	-59.8	-465.8	107.2	-19.4
-300.0	7280.7	-148.9	121.1	0.2	72	0.2	5.8	21	-10.4	0.7	9.1	86.9	3	-32.7	-302.4	58.1	-17.6
-300.0	7280.7	20.0	0.4	0.2	9.7	0.2	1.4	21.8	-10.7	0	0.3	100	0	5.2	-12.7	2.5	-2.8
-300.0	7560.8	-1500.0	7574.5	16293.3	28.3	40838.2	784.5	13.5	-9.1	84.9	5.8	8.7	1.1	321.1	-85.4	13.8	9.1
-300.0	7560.8	-1331.1	5532.3	11612.5	65.2	29294.7	609	17.4	-9.3	61.2	11.3	24.3	2.5	246.4	-205.4	50.4	40.4
-300.0	7560.8	-1162.2	3281.4	6681.5	109.1	16972.7	399.5	21.5	-9.7	36.1	16	44.2	2.8	119.2	-291.7	95.2	56.4
-300.0	7560.8	-993.3	1436.5	2704.5	144.8	7005.7	208.1	24	-10.2	16	19.2	61.7	2.3	3.5	-370.7	132.6	49.9
-300.0	7560.8	-824.4	452.0	490	157.2	1519.2	95.7	24.1	-10.7	4.9	21.2	70.7	2.7	-52.7	-447	145.4	35.5
-300.0	7560.8	-655.6	149.2	0.2	150.4	0.2	51.6	22.6	-10.9	0.8	21.5	72.9	4.4	-58.4	-496.1	136.8	19.8
-300.0	7560.8	-486.7	144.9	0.2	134.3	0.2	34.6	20.8	-10.8	0	19.5	73.9	6.4	-41.5	-497.5	118	1.2
-300.0	7560.8	-317.8	210.1	0.2	108.1	0.2	27.9	19.8	-10.5	0	15.1	76.9	7.8	-14.9	-425.8	89.3	-12.1
-300.0	7560.8	-148.9	135.5	0.2	65.8	0.2	11.6	20	-10.5	0	8.5	86.4	4.9	8.2	-257.3	49.6	-12.6
-300.0	7560.8	20.0	0.4	0.2	3.7	0.2	1.4	21.5	-11.1	0	0.9	100	0	12.9	-32.8	6.2	-6.9
-300.0	7840.9	-1500.0	7831.7	17395.4	26.3	42988.5	823.5	9.3	-9	90.4	3.1	6.6	0	146	-48.1	12.9	4 .1
-300.0	7840.9	-1331.1	5525.9	12098.9	73.9	30003.1	601.7	14.6	-9.2	63.6	8.2	26.3	1	86.6	-174.4	60.5	19.5
-300.0	7840.9	-1162.2	2947.0	6308.1	130.6	15724.7	340.9	20.8	-9.6	34.2	12.6	50.9	1.3	-0.7	-288.2	118.1	23.5
-300.0	7840.9	-993.3	927.9	1796.3	173.9	4575	129.5	24.9	-10	11.3	15.9	70.4	1.5	-80.6	-377.6	162.1	18
-300.0	7840.9	-824.4	211.0	0.2	179.9	144.1	56.4	24.8	-10.4	2	18.4	74.6	4.4	-100.3	-431.1	165.1	13.6
-300.0	7840.9	-655.6	196.1	0.2	164.5	0.2	58.5	22.9	-10.4	0	19.3	70.8	10.2	-78.2	-455.3	142.4	8.8
-300.0	7840.9	-486.7	354.5	0.2	143	0.2	73.1	21.1	-10.2	0	17.5	67.7	15.5	-46.8	-434.3	113.7	-0.2
-300.0	7840.9	-317.8	455.2	0.2	113.4	0.2	77	20.2	-10	0	13.3	69.8	17.4	-16.6	-351.9	81.1	-7.3
-300.0	7840.9	-148.9	294.2	0.2	68.6	0.2	45.9	20.4	-10.1	0	7.3	81.6	11.2	4.5	-206.1	43.4	-7.5
-300.0	7840.9	20.0	0.4	0.2	4.8	0.2	1.4	21.8	-11	0	0.6	100	0	7.4	-22.1	4.9	-4.6
-300.0	8121.0	-1500.0	8500.0	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300.0	8121.0	-1331.1	5649.5	12690.5	79.9	31117	610.7	12.6	-9.2	66.4	5	27.4	1.1	-33.7	-134.5	65.6	2.4
-300.0	8121.0	-1162.2	2779.7	6157.9	148.6	15114	309	20.6	-9.4	33.2	8.9	56	1.8	-102.2	-256.9	134.4	-2.4
-300.0	8121.0	-993.3	56.1	49.5	216.8	73.7	14.7	27.9	-9.5	2.1	11.2	84.5	2.1	-191	-360.8	203.2	-16.8
-300.0	8121.0	-824.4	147.8	0.2	203.5	0.2	35.2	25.9	-10	1.1	14.1	78.3	6.6	-163.2	-372.8	184.3	-11.6

Easting	Northing	Elevation	Na	Са	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
-300.0	8121.0	-655.6	405.5	0.2	179	0.2	81	23.6	-9.9	0	15.3	69	16.1	-113.2	-379.2	147.5	-5.8
-300.0	8121.0	-486.7	648.6	0.2	153.6	0.2	115.8	22	-9.6	0	13.8	63.5	23.4	-72	-344.1	112.4	-6.1
-300.0	8121.0	-317.8	744.0	0.2	121.3	259.3	124.9	21.3	-9.4	0	10.2	65.1	25.2	-39.6	-261.6	77.1	-7.2
-300.0	8121.0	-148.9	542.5	0.2	74.7	322.7	89.1	21.4	-9.7	0	5.2	77.2	17.8	-16.3	-138.6	39.6	-5.1
-300.0	8121.0	20.0	0.4	0.2	12.2	0.2	1.4	22	-10.5	0	0	100	0	0	0	0	0
116.7	5600.0	-1500.0	7960.5	17863.9	28.3	43811.1	851.1	6.2	-9	92.8	2.3	3.6	1.2	33.4	-53.6	12.9	3.9
116.7	5600.0	-1331.1	5684.0	12503.5	78	30745.9	628	11.6	-9.2	65.7	7.8	22.1	3.1	-2.9	-202	61.1	15.7
116.7	5600.0	-1162.2	3173.3	6694.7	136.3	16535.5	370.5	18	-9.5	36.2	12.4	45.3	4.5	-52.6	-338.5	118.4	17.5
116.7	5600.0	-993.3	1205.1	2164.1	182.6	5414.8	163.6	22.7	-9.8	13.1	15.6	64	5.8	-98.3	-436.8	163.4	12.9
116.7	5600.0	-824.4	406.3	228.4	196.4	658.5	80.6	24	-10	3	16.7	70.9	8	-107.4	-469.8	174	10
116.7	5600.0	-655.6	202.4	0.2	188.4	0.2	61.2	23.9	-9.9	0	15.5	72.8	11	-94.5	-451.5	161.2	8
116.7	5600.0	-486.7	203.1	0.2	166	0.2	61.1	23.3	-9.8	0	12.8	74.2	13.5	-74	-390.9	134.9	5.4
116.7	5600.0	-317.8	240.8	0.2	128.2	0.2	60.6	22.5	-9.7	0	9.2	77.5	13.7	-48.6	-291.6	96.8	3.1
116.7	5600.0	-148.9	184.1	0.2	75.1	0.2	42.7	21.9	-9.9	0	4.9	85.6	9.5	-20.7	-159.9	49.7	1.9
116.7	5600.0	20.0	0.4	0.2	10.7	0.2	1.4	22	-10.6	0	0.2	100	0	0.3	0	0.4	0.5
116.7	5880.1	-1500.0	7862.8	17249.1	33	42660.9	840.3	8.6	-8.8	89.7	4.1	2.1	3.2	136.5	-78.6	15.1	10.7
116.7	5880.1	-1331.1	5660.8	12082.2	80.6	30019.1	633.8	13.4	-9	63.6	9.7	19.3	5.4	85	-222	60.8	29.2
116.7	5880.1	-1162.2	3258.8	6585.2	137.3	16484.8	394.1	19.1	-9.3	35.6	14.2	40.9	6.9	9.4	-348	116.2	34.3
116.7	5880.1	-993.3	1358.2	2273.2	185.2	5818	194.8	23.2	-9.6	13.6	16.9	58.9	8.2	-61.7	-441.7	162.4	27.3
116.7	5880.1	-824.4	434.8	99.5	207.9	426.5	94.7	24.8	-9.7	2.3	17.5	67.5	10.4	-96.3	-485.5	181.6	17.8
116.7	5880.1	-655.6	183.9	0.2	208.2	0.2	67.3	24.7	-9.6	0	16.2	69.7	13.9	-99.4	-479.6	176.3	10.3
116.7	5880.1	-486.7	224.7	0.2	190.2	0.2	71.2	23.9	-9.4	0	13.6	69.7	17.5	-85.7	-427.8	152.8	4.7
116.7	5880.1	-317.8	315.5	0.2	151.7	0.2	77.4	22.8	-9.3	0	10	71.7	18.7	-61.3	-330.6	112.7	1.4
116.7	5880.1	-148.9	251.1	0.2	91.1	0.2	57.6	21.9	-9.6	0	5.6	80.5	13.9	-29.6	-189.2	59.5	0.6
116.7	5880.1	20.0	0.4	0.2	15.4	0.2	1.4	22	-10.4	0	0.4	99.8	0.1	-4	-13.3	3.4	0.3
116.7	6160.2	-1500.0	7759.4	16549.6	34	41410.9	823.5	11.9	-8.7	86.2	6	2.2	4.8	280.5	-102.9	14.2	17.3
116.7	6160.2	-1331.1	5709.0	11752.8	75.6	29609.6	649	16	-9	61.9	11.8	16.9	7.4	211.2	-234.6	53.4	49
116.7	6160.2	-1162.2	3468.2	6747.6	127.7	17131.2	437.6	20.3	-9.2	36.3	16.2	36.2	8.9	92.1	-331.5	103.8	60.5
116.7	6160.2	-993.3	1618.7	2700.2	177.3	6978.8	239.7	23.7	-9.5	15.6	18	54.4	9.7	-21 .7	-415.7	152.3	46.1
116.7	6160.2	-824.4	595.9	399.6	208.5	1208	120	25.4	-9.7	3.8	17.7	65.1	11.2	-86.4	-475.9	180.7	25.6
116.7	6160.2	-655.6	278.3	0.2	217.9	0.2	80.2	25.5	-9.6	0	16.4	68.1	14.4	-106.3	-489.6	184.5	11.7
116.7	6160.2	-486.7	319.7	0.2	206.7	0.2	83	24.5	-9.3	0	14.1	67.3	18.5	-102.9	-457.4	167	2.8

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/i	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
116.7	6160.2	-317.8	431.8	0.2	169.8	0.2	92	23.2	-9.1	0	11.1	67.9	20.8	-85.6	-377.5	127.1	-2.6
116.7	6160.2	-148.9	355.9	0.2	102.4	0.2	71	22.3	-9.4	0	6.8	76.6	16.1	-53	-238	67.1	-3.6
116.7	6160.2	20.0	0.4	0.2	15.7	0.2	1.4	22.5	-10.4	0	1.1	98.7	0.4	-17.1	-43.2	3.1	-2.2
116.7	6440.3	-1500.0	7826.2	16174.3	27.6	41047.9	816.6	14.9	-8.8	84.4	8	1	6	460.1	-135.8	6.6	20.2
116.7	6440.3	-1331.1	5919.4	11701	60.9	29968.8	686.5	18.3	-9	61.8	14.5	12.9	9.2	370.8	-267.4	36.5	77.6
116.7	6440.3	-1162.2	3613.1	6774.1	110.4	17435.7	489.9	21.8	-9.3	36.3	19.1	31.8	11	174.1	-294.1	84.2	102.3
116.7	6440.3	-993.3	1600.8	2643.3	168.7	6886.1	254.8	24.5	-9.7	15.2	19.3	53.9	9.8	-6.9	-374.8	143.8	64.3
116.7	6440.3	-824.4	597.1	515.7	204.3	1482.9	119.6	26.1	-9.9	4.5	17.9	66.5	9.5	-91.8	-466.3	178.8	27.7
116.7	6440.3	-655.6	341.0	0.2	216.6	0.2	82.5	26.2	-9.8	0.9	16.6	69.2	11.8	-113.9	-498.2	186.7	11.3
116.7	6440.3	-486.7	394.7	0.2	212.3	0.2	84.8	24.7	-9.5	0.2	15.1	67.7	15.6	-120.1	-495.2	176.3	0.2
116.7	6440.3	-317.8	509.2	0.2	180.4	0.2	93.5	23.7	-9.2	0.4	13.1	66.5	18.7	-119.4	-456.1	140.1	-9
116.7	6440.3	-148.9	465.4	0.2	107.6	67.2	79	23.4	-9.3	0.6	10	71.7	16.5	-109.9	-366.9	71.1	-14
116.7	6440.3	20.0	25.1	0.2	13.4	0.2	4.5	25.1	-10.1	0.2	3.9	92.8	2.5	-72	-169.1	-2.8	-11.7
116.7	6720.4	-1500.0	7954.5	15991.6	18.7	41156.5	800.9	17.2	-9	83.6	10	0	6.3	643.7	-164	-2.5	9.7
116.7	6720.4	-1331.1	6301.2	12004	40.7	31238	738.8	19.5	-9.1	64	17.1	7.9	10	544.3	-372.3	15.6	106.2
116.7	6720.4	-1162.2	3733.6	6781.8	83.9	17624.1	562	22.7	-9.3	36.1	23.5	25.8	13.4	239.6	-224.3	55.2	163.9
116.7	6720.4	-993.3	1320.8	2124.1	160.1	5594.7	235.2	24.6	-10.1	12.5	21.5	56.4	8.5	-17.2	-348	137.8	75.9
116.7	6720.4	-824.4	496.4	461.5	190.2	1343	103.7	25.8	-10.4	4.6	19.3	69.1	6.1	-92.2	-488.8	170.3	28.6
116.7	6720.4	-655.6	372.7	93.6	196.1	471.4	80.7	25.9	-10.4	2.9	18.8	70.6	7.1	-96.9	-529.4	174.1	16.6
116.7	6720.4	-486.7	407.7	11.6	196.7	357.1	74.1	23.3	-10.1	2.6	17.9	69.6	9.4	-108.8	-560.6	170.7	0.9
116.7	6720.4	-317.8	499.3	3.3	174.3	467.9	74.8	23.1	-9.8	2.5	16.2	67.9	12.7	-119.5	-556.9	143.4	-15.5
116.7	6720.4	-148.9	509.8	0.2	102.6	508.3	70.9	23.7	-9.4	2.4	14.2	68.4	14.3	-153.2	-528.1	69.9	-27.3
116.7	6720.4	20.0	111.0	0.2	8.3	52.3	9.8	28.7	-9.9	1.5	7.7	86.5	4	-144.7	-342.4	-9.6	-25.9
116.7	7000.6	-1500.0	7928.8	15949.7	14.7	41087.7	792.2	17.1	-9.1	83.5	10.8	0	5.4	661.6	-167.4	-5.1	7.4
116.7	7000.6	-1331.1	6299.0	12015.2	33.7	31325	729.3	19.1	-9.3	64.2	18.2	8	8.6	571.3	-385	10.8	102.4
116.7	7000.6	-1162.2	3834.9	6996.2	70.3	18238.6	566.7	21.6	-9.7	37.6	25.2	24.7	11.4	277.5	-281.1	45	165.6
116.7	7000.6	-993.3	1540.0	2524.2	131	6716.6	274.1	22.9	-10.5	14.9	25.6	51.4	7.1	4 1.7	-382.2	111.8	100.1
116.7	7000.6	-824.4	644.8	707.5	152.1	2108.1	138.5	22.9	-11.1	6.4	25.5	63.5	4.1	-29	-544.9	137	58.1
116.7	7000.6	-655.6	431.2	215.9	151.1	924.9	96.8	22	-11.3	4.2	25.8	66.4	3.2	-31	-622.2	137.1	40.7
116.7	7000.6	-486.7	351.0	43.8	151.1	533.9	55.4	19.7	-11.1	3.6	23.9	69.6	2.6	-37.7	-671.5	137.4	8.3
116.7	7000.6	-317.8	414.3	4.2	135.9	552.2	37.2	19.1	-10.6	3.4	20.6	70.5	5.1	-35.4	-667.1	118	-21.3
116.7	7000.6	-148.9	512.9	0.2	87.4	624.7	51	20.9	-10	2.7	15.2	70.8	10.7	-55.3	-545.6	61.6	-30.6

SO4 Dev	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg/l	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
	-4.9	-277.9	-70.8	2.6	89.4	6.5	1.2	-10.2	25.1	2.5	84.1	10.3	0.2	115.4	20.0	7000.6	116.7
19.2	-0.6	-156.3	497.7	3.6	1.6	10.1	84.2	-9.2	14.4	801.4	40939.5	16.7	16104.1	7772.2	-1500.0	7280.7	116.7
79.1	22.4	-307.8	425.4	5.8	12.6	17.5	62.7	-9.5	17.1	677.9	30304.6	41.3	11794.5	5937.9	-1331.1	7280.7	116.7
117.7	55.7	-369.9	252.6	6.9	28.6	24.1	38.8	-10.1	19.4	506.7	18506.5	74.6	7140	3775.2	-1162.2	7280.7	116.7
106.3	91.3	-466.7	103.9	5.6	45.7	28.4	19	-10.8	20.4	309.3	8567.4	107.4	3215.8	1901.9	-993.3	7280.7	116.7
88.4	102.5	-603.2	48.2	4.4	54.5	31.7	8.6	-11.5	19.5	190.6	3200.8	116.1	1056.7	919.9	-824.4	7280.7	116.7
66.7	98.3	-701	43.4	3.5	58.4	32.9	4.7	-11.9	17.6	129.4	1170.3	110.1	213	559.4	-655.6	7280.7	116.7
17.6	101	-744.7	37.4	1.2	65.9	29.3	3.3	-11.8	15.8	54.8	333.2	109.9	0.2	354.3	-486.7	7280.7	116.7
-22.3	89.1	-716.7	62.4	1.8	71	23.8	2.9	-11.3	15.2	14.6	289	99.5	0.2	364.2	-317.8	7280.7	116.7
-28.2	50	-504.5	60.2	7.5	74.6	15.2	1.9	-10.5	17.2	30	413.4	69.4	0.2	461.6	-148.9	7280.7	116.7
-16.3	-0.9	-170	25.2	0	97.1	4.5	0.3	-10.7	20.9	1.4	0.2	6.6	0.2	0.4	20.0	7280.7	116.7
19.6	5.5	-132.7	319.8	1.9	2.8	8.6	86	-9.2	11.2	808.6	41243.3	20.8	16455.1	7687.3	-1500.0	7560.8	116.7
55.9	36	-276. 2	265.5	3.5	16.3	15.5	62.8	-9.6	14.5	643.6	29942.1	51.9	11847	5714.9	-1331.1	7560.8	116.7
79.7	71.7	-394.4	168	4.3	33	22.1	38.6	-10.1	17.7	453	18068	87.3	7058.8	3587.6	-1162.2	7560.8	116.7
84.4	98.4	-507.5	83.6	4.9	46.7	27.6	19	-10.8	19.3	284	8445	113.4	3174.6	1861.8	-993.3	7560.8	116.7
79.8	102.3	-616.9	52.1	6.6	52.3	31.9	7.9	-11.4	18.5	188.2	2975.9	118.4	920.1	941.7	-824.4	7560.8	116.7
61.8	93.1	-691.8	54.6	9.5	53.1	33.2	3.4	-11.6	16.6	143.9	782.7	112.3	0.2	645.9	-655.6	7560.8	116.7
22.7	86.4	-706	61.7	12.3	55.7	29.6	1.7	-11.3	15	104	98.4	109.2	0.2	596.8	-486.7	7560.8	116.7
-10.1	71.5	-632.7	82.9	15	59.8	23	1.2	-10.7	14.7	81.1	139.7	98.8	0.2	661.7	-317.8	7560.8	116.7
-17.8	40.4	-417.2	81.9	13.2	71.3	13.8	0.5	-10.3	16.6	57.8	135.9	66.7	0.2	545.2	-148.9	7560.8	116.7
-11.7	0.6	-122.7	47.5	0	100	3.6	0	-11.1	20	1.4	0.2	0	0.2	0.4	20.0	7560.8	116.7
13.8	8.5	-104.5	165.1	1.2	2.3	6.4	89.2	-9.2	8	828.7	42401.2	23.3	17116.8	7788.0	-1500.0	7840.9	116.7
35.1	47.5	-248.9	121.8	2.7	18.5	12.8	64.1	-9.5	12.2	630.2	30211.5	62.8	12122.7	5654.6	-1331.1	7840.9	116.7
46.9	92.8	-382.9	58.3	3.9	38.1	18.7	37.1	-9.9	17	404.5	17128.1	108.4	6784.3	3337.4	-1162.2	7840.9	116.7
49.8	124.6	-495.3	4.8	5.9	52.5	23.8	15.9	-10.4	19.9	226.2	6866.8	141.6	2584.9	1546.6	-993.3	7840.9	116.7
48.7	126	-575.2	-5.1	10.8	54.8	27.6	5.3	-10.8	19.7	154.8	1856.1	148.4	462.8	790.9	-824.4	7840.9	116.7
39.2	108.6	-614.3	13.9	19	49.8	28.7	1.4	-10.7	17.9	153.2	267.7	141.3	0.2	738.5	-655.6	7840.9	116.7
19	88.5	-594	35.7	28	45	25.8	0.1	-10.2	16.6	168.6	62	133.4	0.2	935.7	-486.7	7840.9	116.7
0.5	65.1	-493.8	52.8	33.1	46.4	19.6	0	-9.5	16.5	173.1	276.4	117.5	0.2	1079.6	-317.8	7840.9	116.7
-6	34.6	-305.7	52.8	24.2	63.8	11.2	0	-9.6	18	117.5	168.9	76.3	0.2	774.6	-148.9	7840.9	116.7
-5.1	0.4	-71.5	31.3	0	100	2.3	0	-11	20.6	1.4	0.2	0.4	0.2	0.4	20.0	7840.9	116.7
	11.1	-69.1	46	1.5	2.5	3.9	92	-9.1	5.9	846.4	43462.6	27	17683.7	7912.8	-1500.0	8121.0	116.7

	••																
Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial		Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/i	mg/l
116.7	8121.0	-1331.1	5705.8	12474.7	72.9	30799.5	630.6	10.8	-9.4	65.7	9.6	20	3.5	10.7	-209.1	55.6	16.6
116.7	8121.0	-1162.2	3276.2	6785.7	127	16945.4	384.2	16.8	-9.7	36.8	14.7	41.4	5.6	-37	-341.2	108.1	19.8
116.7	8121.0	-993.3	1422.6	2332.1	168.5	6143	195.6	20.9	-9.9	14.3	18.9	56.7	8.9	-77.4	-442.7	146.3	18
116.7	8121.0	-824.4	855.9	452	176.3	1827.8	149.2	21	-10.1	4.7	22	55.9	16.3	-70.5	-495.1	144.9	18.7
116.7	8121.0	-655.6	986.1	0.2	167.3	745.3	180.5	19.6	-9.8	1.5	22.9	46.8	28.2	-37.3	-506.3	120.6	17.5
116.7	8121.0	-486.7	1284.9	0.2	155.5	708	224.1	18.6	-9.2	0.2	20.5	38.7	40	-7.7	-464.3	92.8	10.2
116.7	8121.0	-317.8	1430.8	0.2	134.3	906.5	239.5	18.6	-8.7	0	15.2	39.1	45.2	10.7	-360.1	64	2.4
116.7	8121.0	-148.9	1053.4	0.2	88.2	725.8	174.1	19.8	-9	0	8	58	33.5	14.6	-199.6	32.5	-0.6
116.7	8121.0	20.0	0.4	0.2	10.5	0.2	1.4	21.8	-10.6	0	0.4	100	0	3.4	-8.9	0.5	-0.9
533.5	5600.0	-1500.0	7749.5	17259.2	32.2	42383.5	832.7	6.8	-9.1	89.9	4	4.4	1.8	53.5	-90.1	16.1	8.9
533.5	5600.0	-1331.1	5785.9	12506.1	70.5	30846.5	649.2	10.6	-9.4	66	10.6	17.8	4.3	40.2	-261.9	52.1	28.5
533.5	5600.0	-1162.2	3734.0	7610.7	113.7	18915	448.7	14.9	-9.8	41.2	16.4	34	6.5	20.1	-419.9	93	40.1
533.5	5600.0	-993.3	2070.1	3649.5	150.3	9218	280.9	18.4	-10.1	21	20.3	47.8	8.8	0.2	-536.3	126.6	43.2
533.5	5600.0	-824.4	1084.7	1249.1	171.2	3310.2	179	20.3	-10.2	8.5	21.6	56.2	11.7	-10.1	-589.9	143	39.8
533.5	5600.0	-655.6	658.2	126.3	175.2	531	132.5	21	-10	2.2	20.3	60.4	15.1	-11.9	-577.4	141.6	32.2
533.5	5600.0	-486.7	535.1	0.2	162.9	0.2	115.1	21.1	-9.7	0	16.8	63.5	18.1	-10.1	-503.9	124.5	22.5
533.5	5600.0	-317.8	497.9	0.2	131.5	0.2	102.4	21.1	-9.6	0	12	68.8	18.5	-6.7	-375.6	92.6	13.2
533.5	5600.0	-148.9	353.3	0.2	79.3	0.2	69.4	21.3	-9.8	0	6.2	80.1	13.1	-2.3	-202.1	48.6	5.9
533.5	5600.0	20.0	0.4	0.2	11.6	0.2	1.4	22	-10.5	0	0	100	0	0.1	-0.1	0	0.2
533.5	5880.1	-1500.0	7798. 9	17067.6	33.4	42179.3	839.1	8	-8.9	88.9	5.3	1.2	3.5	131	-108.5	15.1	15.2
533.5	5880.1	-1331.1	5827.4	12312.6	7 2	30604.6	661.1	11.7	-9.2	65	12.1	14.4	6.1	107.4	-280.5	51.1	39.8
533.5	5880.1	-1162.2	3771.9	7451.5	116.6	18697.2	464.9	15.7	-9.6	40.4	18.1	30.3	8.4	68.3	-437.5	93.2	53.9
533.5	5880.1	-993.3	2094.8	3499.3	157.3	8964.2	296.4	19	-9.9	20.2	21.9	44.2	10.9	28.4	-557.5	130.3	55.3
533.5	5880.1	-824.4	1096.2	1066.9	184.8	2947.2	191.4	20.7	-10	7.5	23	52.5	14.3	3	-620.7	152.3	47.8
533.5	5880.1	-655.6	703.4	0.2	196.7	183.5	147.5	21.2	-9.7	1.2	21.6	55.6	18.9	-7.1	-618	156.3	36.1
533.5	5880.1	-486.7	670.8	0.2	191.2	0.2	141.2	21.1	-9.3	0	18	56.2	24.3	-8.9	-549.5	142.4	23.1
533.5	5880.1	-317.8	740.0	0.2	162.3	0.2	143.6	20.9	-9	0	13	58.6	27.6	-7.8	-418.7	109.3	11.9
533.5	5880.1	-148.9	604.3	0.2	102.8	0.2	112.6	21.2	-9.2	0	6.9	69.9	22.6	-5.9	-233.8	58.6	4.5
533.5	5880.1	20.0	12.7	0.2	17	0.2	9.6	22	-10.3	0	0.5	96.5	3.2	-4.7	-16.7	1.1	0.3
533.5	6160.2	-1500.0	7834.4	16825.5	31.5	41909.7	839.9	9.9	-8.8	87.7	6.5	0	4.7	232.5	-120.6	11.7	20.9
533.5	6160.2	-1331.1	5921.3	12227	67	30675.3	678.6	13.2	-9.2	64.5	13.7	11.8	7.5	196.8	-286.7	44.4	54.3
533.5	6160.2	-1162.2	3912.5	7553.6	110.1	19136.7	494.8	16.6	-9.6	40.9	19.7	26.9	9.7	129.4	-432.1	84.8	73.1

													-				
Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τυ	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
533.5	6160.2	-993.3	2239.0	3698.1	152.9	9560.2	325.9	19.3	-9.9	21.2	23.3	40.9	11.8	61.1	-551.9	124.3	71.4
533.5	6160.2	-824.4	1223.4	1260.1	186.2	3499.1	214.8	20.8	-10	8.5	24.2	49.6	15	17.6	-629.3	151.7	58
533.5	6160.2	-655.6	844.1	117.3	206.2	703.1	169.6	21.2	-9.7	2.2	22.7	52.1	20.4	-0.6	-643.4	162.1	41.4
533.5	6160.2	-486.7	872.9	0.2	209.8	0.2	169.8	20.9	-9.1	0	19.3	50.7	27.8	-6.1	-588.1	153.8	24.3
533.5	6160.2	-317.8	1026.0	0.2	186.8	169.5	183.9	20.8	-8.6	0	14.2	50.1	34.2	-8.9	-463.7	122	9.8
533.5	6160.2	-148.9	882.6	0.2	122.1	316.7	152.7	21.3	-8.7	0	8	61.1	29.8	-12.4	-275.6	65.9	1.1
533.5	6160.2	20.0	0.4	0.2	16.3	0.2	4.1	22.5	-10.3	0	1.3	96.4	2.3	-15.4	-47.6	0.7	-2.5
533.5	6440.3	-1500.0	7923.7	16713.6	25.3	41982.5	842.3	11.7	-8.8	87.2	7.8	0	5.3	345.8	-132.2	4.8	24.6
533.5	6440.3	-1331.1	6077.1	12282	55.4	31115.9	703.4	14.6	-9.2	64.9	15.5	9.3	8.2	298.4	-294.4	32	71.9
533.5	6440.3	-1162.2	4052.3	7689.6	95.5	19659.1	529.7	17.3	-9.7	41.5	21.8	23.9	10.3	193.1	-417.9	69.8	98.8
533.5	6440.3	-993.3	2322.0	3845	139.6	10017.2	350.5	19.4	-10.1	22	25.3	39	11.3	89.7	-538.7	111.7	91.1
533.5	6440.3	-824.4	1307.7	1474.6	174.4	4106.3	232	20.5	-10.3	9.9	26	48.4	13.5	32.1	-639.6	141.9	70.6
533.5	6440.3	-655.6	963.8	396	198	1508.3	186.3	20.6	-10	4.2	24.8	50.5	18.6	11.7	-677.7	155.8	50.2
533.5	6440.3	-486.7	1029.1	43.7	210	830.8	186.9	20.1	-9.4	2	21.5	47.9	26.8	3.7	-645.3	153.7	27.9
533.5	6440.3	-317.8	1225.2	0.2	196.2	951.9	203.8	20.2	-8.6	1.2	16.6	45.2	35.4	-6	-540.1	127	7
533.5	6440.3	-148.9	1119.9	0.2	135.6	934.7	179.3	21.4	-8.5	0.7	10.3	53.7	34	-22.7	-361.5	70.3	-5.9
533.5	6440.3	20.0	257.3	0.2	29.3	37.5	39.5	23.7	-9.8	0	3	87.1	9.3	-35.6	-121.5	1.2	-10
533.5	6720.4	-1500.0	8011.8	16693.8	17.4	42208.9	841.7	12.8	-9	87.2	9	0	5.2	438.8	-145.7	-2.6	24.9
533.5	6720.4	-1331.1	6232.8	12411.2	41	31689.2	725.5	15.2	-9.4	65.7	17.4	7	8.1	386.5	-314.9	18.1	87
533.5	6720.4	-1162.2	4160.4	7812.5	75.8	20118.3	561.3	17.3	-9.9	42.3	24.7	21.1	9.9	248.6	-414.1	51.2	125.4
533.5	6720.4	-993.3	2350.4	3908.9	117.1	10273.8	369.6	18.7	-10.6	22.5	28.6	37.3	9.7	120.7	-541.6	92.4	113.3
533.5	6720.4	-824.4	1359.5	1642.2	145.6	4634.9	248.3	19.1	-10.9	11.3	30.1	46.7	10.4	62.3	-675.6	118.7	90.3
533.5	6720.4	-655.6	1042.3	658.9	164.8	2310.9	200.3	18.6	-10.8	6.4	29.5	48.9	14.1	47.1	-745.1	130.5	67.9
533.5	6720.4	-486.7	1086.5	285.1	181.9	1611.4	186.6	17.8	-10.1	4.3	26.1	47.3	21.3	37.7	-744.9	134.7	35.4
533.5	6720.4	-317.8	1307.2	157.4	180.6	1614.5	198.2	18.2	-9.1	3.3	20.6	43.7	31.5	23.8	-662.5	117.3	3.1
533.5	6720.4	-148.9	1316.0	72	134.9	1500.9	193.2	20.5	-8.5	2.2	13.5	47.7	35.9	-10.4	-477.2	66.6	-14.9
533.5	6720.4	20.0	531.5	0.2	38.9	471.2	74.2	24.2	-9.4	0.7	4.9	77.8	16.3	-45	-202.4	0.2	-18.3
533.5	7000.6	-1500.0	7982.2	16645.8	12.4	42121.5	836	12.5	-9.1	87	10	0	4.2	453.9	-156	-6	25.7
533.5	7000.6	-1331.1	6232.1	12430.1	32	31784	723.1	14.6	-9.6	66	18.9	6.7	6.7	408	-330.8	11.4	89.5
533.5	7000.6	-1162.2	4211.9	7931.6	59.3	20490.7	568.6	16.3	-10.3	43.2	27.1	19.7	8.2	279.9	-441.3	37.9	133.8
533.5	7000.6	-993.3	2460.6	4117.7	88.1	10919.8	392.5	16.9	-11.2	24.1	33	33.7	7.7	166.8	-580.4	67.8	133
533.5	7000.6	-824.4	1510.5	1896	100	5461.9	285.4	16	-11.8	13.3	37.1	40.8	7.8	127	-740.4	79.3	122.8

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
533.5	7000.6	-655.6	1155.6	895.7	106.1	3117.5	229.7	14.4	-12	8.6	38.1	43.4	9.3	121.2	-846.3	82.2	101.5
533.5	7000.6	-486.7	1014.3	396.7	126.2	2012.6	164	13.3	-11.4	6.2	33.2	48.2	12	102.4	-879.6	96.4	44.1
533.5	7000.6	-317.8	1194.3	216.8	136.8	1879.9	146.3	13.7	-10.3	5	26.5	47.5	20.7	108.8	-830.4	93.5	-8.3
533.5	7000.6	-148.9	1438.8	118.7	117	1888.7	185.2	17.4	-8.9	3.2	16.7	45.1	34.5	66.6	-583.8	55.2	-25.8
533.5	7000.6	20.0	71 1.2	0.2	39.4	744.6	93.7	22.6	-9.3	0.9	5.3	73.3	20.2	-7.5	-217.4	-1.7	-21.6
533.5	7280.7	-1500.0	7841.1	16576.6	12.4	41723.4	828.3	11	-9.3	86.7	10.6	0	2.7	383.1	-161.6	-4	28.2
533.5	7280.7	-1331.1	6067.6	12320	32	31328.2	698.5	13.1	-9.9	65.5	19.4	8.5	4.7	349.8	-333.2	14.5	80
533.5	7280.7	-1162.2	4158.3	7952.4	54	20503	546.4	14.6	-10.6	43.6	28.2	20.4	5.9	266.4	-476.7	36.4	120.1
533.5	7280.7	-993.3	2564.5	4310	69	11498.6	401.1	14.8	-11.6	25.5	36	30.6	6.3	197.2	-629.3	52.1	136.4
533.5	7280.7	-824.4	1702.6	2098	61.9	6194.3	325.1	12.8	-12.5	14.9	43.6	32.9	7.7	190.3	-795.9	44.2	148.7
533.5	7280.7	-655.6	1443.7	1124.7	41	4046	301.1	9.4	-13.1	10.5	48.9	30.2	10.2	220.9	-932.7	20.9	150.9
533.5	7280.7	-486.7	878.8	306.7	75.6	1855.3	133.6	9	-12.4	6.5	38.7	48.9	5.8	141.7	-956.6	60.1	43.3
533.5	7280.7	-317.8	909.5	156	87.8	1677.1	59	8.7	-11.6	5.9	32.2	55.7	6.2	215.6	-984.1	71	-27.5
533.5	7280.7	-148.9	1357.4	80.4	90.9	1851.9	145.3	13.7	-9.7	3.6	19.5	48.5	28	163.7	-654	43.7	-35.3
533.5	7280.7	20.0	566.2	0.2	27.8	537.3	64.3	20.3	-9.8	0.6	5.1	79.1	14.9	44.5	-192.4	-2.5	-20.5
533.5	7560.8	-1500.0	7711.6	16599.2	16	41460.2	822.5	8.9	-9.4	86.8	10.3	0	1.7	276.6	-160.7	1	26.8
533.5	7560.8	-1331.1	5893.0	12236.3	39.1	30851.6	672.7	11.3	-10	65.1	18.7	10.6	3.4	253.6	-329.2	23.4	64.9
533.5	7560.8	-1162.2	4017.6	7826.4	62.1	20060.7	511.6	13.4	-10.7	43	27.3	22.6	4.8	207.2	-487.8	46.1	96
533.5	7560.8	-993.3	2505.4	4190.5	75.4	11212.3	377	13.9	-11.5	25	35.3	31.2	6.6	171.8	-640	58.5	115.2
533.5	7560.8	-824.4	1672.2	1885.4	72	5769.9	306.3	12.5	-12.2	13.7	42.2	32.3	10.3	172.2	-780.3	51.6	126.2
533.5	7560.8	-655.6	1398.5	708.4	68.6	3180.6	273. 9	10.3	-12.3	8.1	44.7	29.9	16.5	181.1	-874.4	40.8	112.2
533.5	7560.8	-486 .7	1345.1	87.5	89.4	1907.2	222.6	9.6	-11.4	4.9	38.6	31.7	24.1	161	-884.6	51.1	50.1
533.5	7560.8	-317.8	1573.2	0.2	106.5	1788.5	212.1	10.4	-10.1	3.5	29.7	31.3	34.8	173.1	-802.5	53.1	-3.4
533.5	7560.8	-148.9	1516.2	0.2	92.1	1576.3	201	14.3	-9.2	1.8	17.4	41.4	38.5	137.9	-521	32.5	-19.1
533.5	7560.8	20.0	65.7	0.2	7.8	0.2	1.4	19.6	-10.7	0	4.3	94.6	0.5	57.4	-149.7	-2.3	-14.5
533.5	7840.9	-1500.0	7662.6	16753.4	21.9	41543.8	822.6	7.1	-9.4	87.6	9.1	0.7	1.6	168.6	-148.3	6.6	20.8
533.5	7840.9	-1331.1	5798.7	12261.2	50.3	30661.9	656.5	9.9	-9.9	65.1	16.8	12.4	3.6	150.7	-311.1	33.9	47.5
533.5	7840.9	-1162.2	3887.4	7669.7	80	19524.7	480.8	12.9	-10.5	42.1	24.4	25.3	5.8	122.8	-466.7	62.2	68.1
533.5	7840.9	-993.3	2391.0	3917.7	100.6	10499.8	343.2	14.4	-11	23.3	31.4	33.7	9.5	103.3	-603.2	79.2	80.8
533.5	7840.9	-824.4	1624.1	1564.7	107.9	5038.3	278.4	14	-11.3	11.6	36.4	33.7	16.6	104.9	-706.2	78.3	84.5
533.5	7840.9	-655.6	1515.8	381.4	113.6	2592.7	276.3	12.8	-11	5.7	37.6	26.7	28.8	114.7	-754.9	68.3	71.9
533.5	7840.9	-486.7	1820.3	0.2	128.4	1912.2	310.4	12.4	-9.8	2.8	33.3	16.6	46.1	116.6	-725.5	59.9	41.5

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/i	mg/l	mg/l	mg/l
533.5	7840.9	-317.8	2179.0	0.2	138.1	1995.6	348.1	13.6	-8.4	1.4	24.8	11.1	61.4	110.7	-596.5	48.2	11.6
533.5	7840.9	-148.9	1755.3	0.2	105.2	1527.3	273.3	16.6	-8.3	0.4	13.7	33	51.7	82.1	-360.1	27	-3
533.5	7840.9	20.0	0.4	0.2	0	0.2	1.4	20.4	-11	0	2.6	100	0	35.3	-82.8	-1.5	-6
533.5	8121.0	-1500.0	7642.9	16873.6	30.1	41624.3	822.8	6.1	-9.4	88	7.2	2.2	2.6	77.1	-121.7	12.7	11.4
533.5	8121.0	-1331.1	5805.7	12390.4	62.8	30806	652.4	9.3	-9.7	65.6	14	13.8	5.4	61.5	-273.5	43.1	29.7
533.5	8121.0	-1162.2	3922.5	7760.5	98.4	19649.9	473.1	12.8	-10.1	42.3	20.5	26.6	9	42.1	-415.7	75.3	42.1
533.5	8121.0	-993.3	2481.2	3986.6	126.1	10658.5	338.4	15.2	-10.4	23.3	26	34.3	14.8	30	-530.4	96.3	48.6
533.5	8121.0	-824.4	1809.7	1654.2	140.5	5341.7	286.5	15.7	-10.4	11.5	29.7	32.4	25.1	35.5	-601.5	97.9	49.6
533.5	8121.0	-655.6	1816.8	486.5	149.3	3039.2	309	15.2	-9.7	5.4	30.2	22.2	41.2	49.9	-616.7	85.7	42.6
533.5	8121.0	-486.7	2212.3	0.2	159.6	2459.2	373.4	15.2	-8.6	2.4	26.7	8.6	61.3	58.5	-562.2	68.9	28
533.5	8121.0	-317.8	2556.0	0.2	160.8	2516.5	423	16.4	-7.3	0.9	19.4	2.5	76.2	54.2	-429.6	49.3	12.7
533.5	8121.0	-148.9	2064.6	0.2	121.4	2020.2	339.4	18.8	-7.5	0.2	9.8	25.8	63.3	33.8	-229.8	25.9	3.4
533.5	8121.0	20.0	18.2	0.2	12.8	0.2	3.6	21.9	-10.5	0	0.2	99.2	0.6	2.3	-5.5	-0.2	-0.6
950.2	5600.0	-1500.0	7753.6	17220	29.5	42290.5	837.3	6.4	-9.2	89.8	4.9	3.5	1.9	61.2	-110.8	13.2	13.7
950.2	5600.0	-1331.1	5973.5	12752.1	58.3	31527.7	679.2	9.2	-9.7	67.5	13.1	13.3	4.9	79.2	-317	39.3	41.7
950.2	5600.0	-1162.2	4168.3	8265.8	90.1	20671.7	512.8	12.3	-10.2	45	20.6	24.8	7.7	94.4	-513.6	68	63.7
950.2	5600.0	-993.3	2653.7	4534.9	120.4	11571.8	366.7	14.9	-10.6	26	25.8	35.5	10.7	100.2	-661.2	94.3	74.1
950.2	5600.0	-824.4	1632.3	2038.2	144.4	5391.1	261.4	16.8	-10.6	12.8	27.4	43.7	14	94.4	-731.5	113	71
950.2	5600.0	-655.6	1086.0	709.8	158	2015.1	197.9	18	-10.3	5.3	25.5	49.6	17.5	79.4	-718.6	120.6	57.6
950.2	5600.0	-486.7	855.3	170.3	156.7	598.7	163.1	18.8	-9.9	1.7	21	54.8	20.5	58.3	-629.3	114.2	39.4
950.2	5600.0	-317.8	741.5	26.4	134.2	245.2	137.9	19.7	-9.5	0.3	14.7	61.9	21.3	34.4	-470.6	90.6	22.1
950.2	5600.0	-148.9	531.9	7.4	85	226.8	95.8	20.7	-9.6	0	7.4	75.2	16.3	14.1	-251.1	49.6	9.2
950.2	5600.0	20.0	61.4	0.2	12.9	5.8	13	22	-10.4	0	0.1	97.9	2.2	3	3	-1.9	1.2
950.2	5880.1	-1500.0	7846.6	17224	30.2	42475.2	848.7	6.9	-9	89.8	5.8	0.2	3.2	111.8	-124.6	12.2	18.2
950.2	5880.1	-1331.1	6044.4	12718.1	59.8	31596.6	692.7	9.6	-9.5	67.3	14.3	10	6.2	123.4	-334.6	38.9	49.8
950.2	5880.1	-1162.2	4215.8	8200.7	93.9	20626.9	527	12.6	-10.1	44.7	22	21.4	9.2	127.6	-536.1	69.5	73.9
950.2	5880.1	-993.3	2686.0	4443.5	128.3	11426.6	380.6	15	-10.4	25.5	27.3	31.9	12.4	122.6	-692.2	99.1	84
950.2	5880.1	-824.4	1678.0	1938.3	159	5205.4	276.8	16.7	-10.4	12.2	29	39.5	16.5	110.5	-773.8	122.8	78.9
950.2	5880.1	-655.6	1197.9	640.9	182.1	1912.6	220.7	17.6	-10	4.7	27.1	43.5	21.9	94.4	-769.7	136.2	62.2
950.2	5880.1	-486.7	1099.8	165.2	191.9	708.3	202.9	18.3	-9.4	1.3	22.4	45.1	28.6	74.6	-681.8	135	40.4
950.2	5880.1	-317.8	1181.3	68.9	178.3	631.9	206.8	19.1	-8.7	0.1	15.7	46.8	35.2	48.4	-515	112.5	20.3
950.2	5880.1	-148.9	1148.2	18.4	128.4	803.2	196	20.4	-8.4	0	7.8	54.7	36.2	17.7	-277.7	64.4	7.3

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
950.2	5880.1	20.0	456.3	0.2	34.8	242.4	82.1	22	-9.6	0	0	83.9	16.3	-5.2	-3.5	1.6	1.1
950.2	6160.2	-1500.0	7936.3	17253.7	28	42730.8	856.7	7.8	-8.9	89.9	6.3	0	3.9	169.1	-126.3	9.1	21.5
950.2	6160.2	-1331.1	6157.2	12826.3	56.2	32016.8	708.8	10.3	-9.5	67.8	15	7.8	6.8	173.2	-333.8	34.4	58.2
950.2	6160.2	-1162.2	4343.6	8389.2	89.9	21199.3	549.3	12.9	-10	45.6	23	18.9	9.6	163.1	-533.8	64.5	85.6
950.2	6160.2	-993.3	2818.5	4674.8	126.1	12072.1	404.8	15	-10.4	26.6	28.4	29.2	12.7	144.4	-695.9	95.7	95.9
950.2	6160.2	-824.4	1824.3	2170.6	161.4	5861.8	302.3	16.3	-10.4	13.5	30.3	36.2	17.2	126.1	-791.8	122.7	89.3
950.2	6160.2	-655.6	1396.7	862.5	193.8	2596.3	251.8	17	-9.9	6	28.6	38.6	24.2	112.1	-800.8	141.9	70.2
950.2	6160.2	-486.7	1414.6	383.7	218	1482.3	248.1	17.4	-9	2.5	23.7	36.9	34.6	99.3	-715.3	148.1	44.2
950.2	6160.2	-317.8	1688.4	282.1	219.3	1551.1	279.5	18.3	-8	1	16.6	32.7	47.7	77.7	-538.7	130.2	19.8
950.2	6160.2	-148.9	1948.1	199.4	175.1	1939.5	318.6	20	-7.2	0.4	8.2	31.2	59	38	-284.7	75.6	5
950.2	6160.2	20.0	288.0	0.2	23.4	235.6	50.6	22.1	-10	0	0.1	90.3	9.7	-3.7	-3.2	-1.2	0
950.2	6440.3	-1500.0	8046.5	17394.5	23	43228.7	864.1	8.6	-8.9	90.6	6.4	0	3.9	220.2	-116	4.1	22.5
950.2	6440.3	-1331.1	6297.7	13054.1	47.7	32713.7	726.7	10.8	-9.5	69	15.6	6.5	6.7	220.3	-322.6	26	66.4
950.2	6440.3	-1162.2	4486.0	8664.7	78.1	21984.6	574	13	-10.1	47	24.2	17	9.1	198.8	-522.8	53.4	99.8
950.2	6440.3	-993.3	2952.8	4972.4	112	12902.6	430.8	14.6	-10.6	28.3	30.2	27.1	11.7	168.5	-694.8	83	112.1
950.2	6440.3	-824.4	1968.9	2477 .9	146.7	6760.1	329.7	15.5	-10.7	15.5	32.6	33.7	15.8	1 4 5.9	-811.8	109.4	106
950.2	6440.3	-655.6	1578.5	1152.4	183.3	3556.5	282.8	15.8	-10.2	8.1	31.1	35.2	23.4	134.4	-841.9	130.8	85.9
950.2	6440.3	-486.7	1664.2	618.6	220.2	2454.6	284.3	16.1	-9.2	4.5	26.1	31.6	36.1	128.3	-765.3	144.1	54.8
950.2	6440.3	-317.8	2002.7	444.1	238.1	2441.8	319.4	17.1	-7.8	2.6	18.4	25.4	52.2	112.5	-581.2	135.2	22.6
950.2	6440.3	-148.9	2106.9	290.4	197.6	2422.9	330.5	19.4	-7.1	1.2	9.5	27.8	60.6	67.8	-317	85.9	1.6
950.2	6440.3	20.0	948.6	0.2	69.8	969.2	149.1	22.3	-8.8	0	0.9	69.3	29.7	9.2	-2 7.8	8.7	-6.5
950.2	6720.4	-1500.0	8132.4	17564.2	16.8	43732.8	868.1	8.9	-9	91.5	6.5	0	3.3	252.5	-104.2	-1.1	21.9
950.2	6720.4	-1331.1	6405.7	13273.7	36.6	33349.7	739.5	10.9	-9.6	70.2	16.4	5.7	5.8	255.9	-315.3	16.4	73
950.2	6720.4	-1162.2	4588.4	8887.4	60.9	22633.4	593.3	12.6	-10.4	48.3	26.2	15.5	7.8	232.8	-521.5	38.6	114.3
950.2	6720.4	-993.3	3050.1	5203	87.3	13595.6	453.9	13.6	-11.1	29.9	33.4	25	9.6	200.3	-708.2	62.1	132.1
950.2	6720.4	-824.4	2081.7	2733	113.1	7585.4	357.6	13.8	-11.4	17.5	37.1	30.9	12.8	179.8	-853.5	81.3	131.1
950.2	6720.4	-655.6	1708.0	1396.2	144.8	4470.5	312.6	13.5	-11	10.6	36.3	31.9	19.9	169.5	-916.7	98.6	112.1
950.2	6720.4	-486.7	1819.9	777.8	188.1	3320.1	311.3	13.7	-9.8	6.8	30.6	27.9	33.7	161.9	-866.3	116	73.3
950.2	6720.4	-317.8	2236.1	498	222.8	3202	350	15.1	-8	4.4	21.7	19.4	53.7	144.9	-685.5	116.6	29.2
950.2	6720.4	-148.9	2335.1	281.8	198.6	2923.9	357.6	18.4	-7	2.2	11.5	21.3	64.4	89.2	-392.7	78	0.1
950.2	6720.4	20.0	1117.6	0.2	80.6	1186	169.8	22.4	-8.5	0.1	1.8	63.7	34.2	12.8	-67.8	9.1	-11.2
950.2	7000.6	-1500.0	8087.6	17483.1	11.7	43565	862.2	8.6	-9.2	91.2	7.8	0	2.3	266.8	-117	-4.6	24.3

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
950.2	7000.6	-1331.1	6386.2	13258.4	27.3	33358.7	736.8	10.3	-9.9	70.3	18.1	5.5	4.4	274.7	-328.8	9.6	77.1
950.2	7000.6	-1162.2	4605.7	8949.3	44.4	22864	597.6	11.6	-10.8	48.9	28.8	14.4	5.9	259.4	-539.7	25.6	123
950.2	7000.6	-993.3	3111.5	5335.2	59.1	14058	469.5	11.9	-11.7	31.1	37.6	22.4	7.2	239	-739	38.9	149.6
950.2	7000.6	-824.4	2188.6	2920.4	68.6	8272	387.3	11.1	-12.3	19.3	43.6	26.2	9.8	232.8	-910.5	44	160.4
950.2	7000.6	-655.6	1819.6	1580.5	87.1	5233.5	344.8	10.1	-12.1	12.7	44.2	26.6	15.9	225.9	-1010.5	51.5	145.4
950.2	7000.6	-486.7	1898.3	859.2	131.9	3903.1	326.3	10	-10.7	8.8	37.5	23.9	29.5	206.2	-998.8	72.7	91.7
950.2	7000.6	-317.8	2489.8	505.1	182.9	3813.6	380.1	11.8	-8.4	6.1	26.9	10.8	56	189.2	-841.2	82.9	31.5
950.2	7000.6	-148.9	3015.5	291.4	191.2	3834.5	461.2	16.5	-6.2	3.1	14	0	82.8	115.6	-483.1	55.5	-1.6
950.2	7000.6	20.0	1683.4	28.5	88.4	1844.3	265.3	22.1	-7.6	0.2	1.5	46.3	51.9	10.5	-66	0.1	-10.3
950.2	7280.7	-1500.0	7916.5	17149.8	9.7	42716.7	847.7	7.8	-9.4	89.6	9.8	0	1.2	257.5	-151.4	-4.9	29
950.2	7280.7	-1331.1	6238.4	12998.9	23.8	32704.2	718.9	9.4	-10.2	69.1	20	6	3	267.4	-356.1	8.4	76.7
950.2	7280.7	-1162.2	4525.1	8824.3	36.3	22585.5	583.1	10.4	-11.2	48.5	30.8	14.3	4.3	263.3	-563.9	20.6	120.5
950.2	7280.7	-993.3	3106.7	5316.5	41.6	14115	467.1	10.3	-12.2	31.3	40.8	20.5	5.6	261.4	-764.1	25.2	152.8
950.2	7280.7	-824.4	2253.6	2957.9	36.7	8559.3	402.5	8.8	-13	20	48.9	21.5	8.6	275.4	-943.3	17	175
950.2	7280.7	-655.6	1932.5	1626.6	41.9	5622.6	372.2	7	-12.9	13.7	51.3	19.3	15.4	278.3	-1060	12.6	166.8
950.2	7280.7	-486.7	1971.8	803.9	88.9	4048.8	336.9	6.9	-11.4	9.3	43.4	17.7	29.5	238.3	-1064.8	38.4	96.8
950.2	7280.7	-317.8	2707.9	434.9	149.5	4056.2	402.5	8.7	-8.8	6.6	32	1	60.4	229.5	-938.1	55.3	25.3
950.2	7280.7	-148.9	3560.6	264.2	182.3	4405.5	542.9	14.5	-5.8	3.3	16.6	0	98.6	145.4	-533.3	37	-5.9
950.2	7280.7	20.0	1897.9	44.2	84.6	2052.6	304.7	21.5	-7.3	0.1	1	39.8	59.1	15.6	-42	-5.2	-7.8
950.2	7560.8	-1500.0	7738.1	16843.8	12.2	41863.7	833.3	6.7	-9.6	88.2	11.1	0	0.8	216.8	-176.9	-1.8	30.2
950.2	7560.8	-1331.1	6067.5	12713.3	27.8	31923.8	696.9	8.4	-10.3	67.8	20.8	6.9	2.5	228.1	-372.2	13.2	69.6
950.2	7560.8	-1162.2	4398.1	8602.2	40.9	22014.4	558	9.6	-11.2	47.5	30.9	15.2	4.1	232.8	-568.9	25.8	106
950.2	7560.8	-993.3	3029.5	5134.7	46.1	13709.6	443.8	9.7	-12.2	30.4	40.6	20.8	6.3	241.2	-753.4	29.6	134.3
950.2	7560.8	-824.4	2200.4	2736.2	43.5	8114.9	379.2	8.5	-12.8	18.8	48.2	21	10.8	257	-908.1	22.2	151.2
950.2	7560.8	-655.6	1952.9	1337.6	52.3	5111.6	361.1	7.1	-12.6	11.9	50.3	15.8	21.3	258	-997.7	17.4	139.9
950.2	7560.8	-486.7	2277.7	572.8	95.9	3915.9	388.3	7.2	-10.9	7.7	44	4.1	43.8	228.2	-981.2	30.3	87.3
950.2	7560.8	-317.8	3164.3	245.8	154.7	4102.2	496.6	9.4	-8	4.9	32.4	0	80.2	198.3	-823.4	39.1	29.8
950.2	7560.8	-148.9	3471.0	115.7	168.2	3985.6	542.1	14.7	-5.9	2.2	16.9	0	99.3	125.8	-469.7	26	-1
950.2	7560.8	20.0	633.6	0.2	31.8	557.8	93.1	20.6	-9.6	0	2.3	78.4	19.1	33.4	-76.6	-3.8	-8
950.2	7840.9	-1500.0	7618.4	16665.6	18.6	41299.2	823.9	5.8	-9.7	87.3	10.9	0	1.3	157	-180.5	3.6	26.1
950.2	7840.9	-1331.1	5962.0	12541.4	38	31405.3	681.4	7.7	-10.3	66.8	19.8	7.8	3.6	167.4	-363.5	21.5	56.8
950.2	7840.9	-1162.2	4325.9	8438.5	56	21573.7	538.4	9.4	-11	46.5	28.9	16.1	6.3	175	-542.5	37.5	83.7

Easting	Northing	Elevation	Na	Са	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/
950.2	7840.9	-993.3	3004.6	4965	68	13326.2	423.5	10.2	-11.7	29.3	37.1	21.2	10.4	184.6	-700	45.6	102.8
950.2	7840.9	-824.4	2228.6	2513.8	75.6	7681.6	360.9	9.8	-12	17.1	43	20.2	18.1	195	-815.4	44	109.4
950.2	7840.9	-655.6	2108.3	1061.5	92.1	4684.1	365.5	9.2	-11.4	9.7	44.2	10.8	34.2	194.4	-861.8	39.7	96.7
950.2	7840.9	-486.7	2698.6	353.8	132	3846.5	456.1	9.7	-9.4	5.5	39.2	0	64.6	175.3	-809.7	38.6	65.5
950.2	7840.9	-317.8	3659.4	101.4	180.3	4227.6	598.5	12.1	-6.6	3	28.6	0	100	139.5	-635.1	34.7	30.3
950.2	7840.9	-148.9	3525.2	27	171.6	3797.2	571. 4	16.4	-5.5	1.1	14.4	0	100	82.4	-347.4	20.8	6.3
950.2	7840.9	20.0	0.4	0.2	5.4	0.2	1.4	21	-10.7	0	1.7	100	0	22.5	-51.7	-1.9	-3.5
950.2	8121.0	-1500.0	7557.8	16570.6	27.8	40962.7	819.2	5.5	-9.6	86.7	9.7	0.8	3	94.6	-161.6	9.8	18
950.2	8121.0	-1331.1	5961.2	12526.6	50.9	31300.9	677.9	7.6	-10.1	66.5	17.5	8.5	6.3	102.7	-328.5	29.9	41.3
950.2	8121.0	-1162.2	4403.7	8499.6	74.4	21716.2	538.5	9.7	-10.5	46.4	25.2	15.9	10.8	109.7	-485.7	48.8	60.1
950.2	8121.0	-993.3	3177.6	5077.4	94.1	13677.5	431.7	11.1	-10.9	29.3	31.8	19.5	17.8	117.7	-614.1	60.5	71.7
950.2	8121.0	-824.4	2511.9	2634.9	110.5	8159.5	383.8	11.6	-10.8	17	36.1	16.1	29.6	125.6	-693.9	62.1	73.4
950.2	8121.0	-655.6	2506.3	1162.4	132	5226.5	411.6	11.8	-9.9	9.3	36.5	3.2	50	126.4	-705.9	56.7	63.5
950.2	8121.0	-486.7	3133.0	435.6	166.4	4377.6	521	12.7	-8	4.9	32	0	82	113.7	-632.8	48.1	45
950.2	8121.0	-317.8	3991.2	175. 4	201.8	4640.2	659.8	14.9	-5.5	2.4	22.8	0	100	84.9	-467.3	36.2	24.6
950.2	8121.0	-148.9	4016.6	124.1	194.8	4437.9	662.7	18.5	-5	0.8	10.7	0	100	42.1	-230.2	19.5	8.5
950.2	8121.0	20.0	85.2	0.2	15.6	85.2	15.1	22	-10.4	0	0.1	97.3	2.7	0.8	-1.3	-0.2	-0.3
1366.9	5600.0	-1500.0	7890.7	17554.6	23.6	43085.2	854.1	5.7	-9.3	91.5	5	2.1	1.6	57.7	-112.1	7.7	16.1
1366.9	5600.0	-1331.1	6182.7	13088.5	43.8	32437.6	710.9	7.7	-10	69.6	15.3	9.2	4.9	112.4	-366.6	25.1	54.5
1366.9	5600.0	-1162.2	4445.5	8564.9	66.1	21609.8	561	9.9	-10.8	47.2	25.5	17.5	8.3	170.3	-623.1	43.9	89.6
1366.9	5600.0	-993.3	2972.1	4814.3	90.9	12514.3	425.2	12	-11.3	28.2	32.4	26.1	11.6	205.2	-814.8	64.4	108.3
1366.9	5600.0	-824.4	1950.7	2358.1	117.1	6362.4	318.3	13.8	-11.3	15	34.1	34.3	14.8	201.6	-896.8	85.3	103.9
1366.9	5600.0	-655.6	1357.8	1081.6	138.8	2944.2	242.3	15.3	-10.8	7.3	31.2	41.8	17.7	168.8	-875.2	101.3	82.3
1366.9	5600.0	-486.7	1045.1	563.9	147.5	1382.1	189.4	16.7	-10.2	3.5	25.3	49.6	19.7	120.2	-770.7	105.8	53.8
1366.9	5600.0	-317.8	828.8	371.1	133.7	798.1	145.6	18.4	-9.7	1.8	17.6	59.9	19.2	62.9	-590.3	92.6	27.7
1366.9	5600.0	-148.9	531.4	189.7	89.5	478.7	92.1	20.2	-9.7	0.9	8.7	75.5	13.9	13.6	-326.6	56.8	10.1
1366.9	5600.0	20.0	15.7	0.2	12.6	8	4.2	22	-10.5	0	0	99.5	0.5	0.6	0.5	-0.3	0.2
1366.9	5880.1	-1500.0	7981.0	17624.5	24.5	43363.8	865.7	5.7	-9.1	91.9	5.6	0	2.6	87.3	-128.4	7.3	19.5
1366.9	5880.1	-1331.1	6260.7	13149.2	45.9	32673	723.5	7.7	-9.8	69.8	16.2	6.1	5.8	137.1	-386.3	25.7	59.8
1366.9	5880.1	-1162.2	4516.6	8634.6	70.7	21834.9	574.4	9.8	-10.6	47.5	26.4	14.4	9.2	187.9	-646.8	46.7	95.6
1366.9	5880.1	-993.3	3042.3	4884	99.8	12707.6	439.4	11.7	-11 .1	28.4	33.5	22.8	12.8	218	-847.5	70.7	114.3
1366.9	5880.1	-824.4	2037.6	2413.3	132.8	6495.2	335	13.3	-11.1	15.1	35.5	30.1	16.8	216.1	-944.4	96.4	109.4

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1366.9	5880.1	-655.6	1508.6	1166.2	165.6	3112.7	266.3	14.5	-10.5	7.3	32.7	35.7	21.7	190.6	-934.3	119.7	85.6
1366.9	5880.1	-486.7	1329.4	745.6	189.4	1743.8	228.9	15.6	-9.7	3.6	26.7	40.1	27.3	150.2	-832.6	133	52.7
1366.9	5880.1	-317.8	1322.8	637.8	190.3	1446.2	215	17.3	-8.8	2.1	18.5	44.5	33	92.5	-648.8	125.5	22.6
1366.9	5880.1	-148.9	1281.0	339.8	152.4	1341.7	209.1	19.5	-8.3	1	8.9	52	36.7	21.9	-371.3	85.6	6.1
1366.9	5880.1	20.0	777.1	0.2	63.8	625.5	137.1	21.8	-8.9	0	0	74.4	26.3	-20.6	-11.4	15.4	1.8
1366.9	6160.2	-1500.0	8064.4	17741.5	23	43735.2	874.2	5.9	-9	92.5	5.8	0	2.9	112.7	-130.5	5.5	21.3
1366.9	6160.2	-1331.1	6371.7	13371.3	44.2	33274.5	736.9	7.7	-9.7	70.9	16.2	4.6	5.9	155.6	-382.9	23.7	63.2
1366.9	6160.2	-1162.2	4660.2	8981.3	69.6	22709.5	592.4	9.7	-10.5	49.1	26.3	12.7	9.1	197	-638.7	45.3	99.6
1366.9	6160.2	-993.3	3210.0	5300	100.4	13741.9	461.3	11.3	-11	30.4	33.5	20.7	12.6	221.1	-844.1	70.5	119.2
1366.9	6160.2	-824.4	2224.7	2803.6	137.6	7500.8	361.5	12.6	-11	17	35.9	27.1	17.2	223.5	-957.4	98.8	116.4
1366.9	6160.2	-655.6	1749.3	1507.9	181.4	4059.7	300.7	13.4	-10.4	9	33.6	31	23.9	212.7	-959.2	128.6	93.1
1366.9	6160.2	-486.7	1701.9	1092	226.6	2750.2	278.4	14.3	-9.3	5	27.4	31.7	33.7	197.3	-847.3	154.4	56.6
1366.9	6160.2	-317.8	1929.8	1052.6	254.3	2635.1	294.7	15.8	-8	3.1	18.7	29.6	46.9	165.8	-634.2	160.1	21
1366.9	6160.2	-148.9	2240.2	760.8	229.7	2768.4	348.5	18.5	-6.8	1.6	8.7	25.8	62.9	92.9	-335.6	117.6	3.3
1366.9	6160.2	20.0	1706.6	16.1	114.7	1788.8	283.2	21.6	-7.4	0	0	47.2	54.1	10.8	24.6	24.2	0.9
1366.9	6440.3	-1500.0	8184.7	18055.6	19.7	44518.7	883.1	6	-9	94	5	0	2.5	117.9	-105.3	2.6	18.7
1366.9	6440.3	-1331.1	6512.6	13751	38.5	34220	751	7.7	-9.7	72.8	15.7	4.2	5.2	161.8	-358.2	18.8	64.3
1366.9	6440.3	-1162.2	4813.8	9402.6	61	23771.8	611.6	9.4	-10.6	51.2	26.4	11.8	8	204.5	-619.8	38	105.3
1366.9	6440.3	-993.3	3377.4	5747.5	88.5	14907.9	485.8	10.8	-11.1	32.8	34.2	19.3	11.1	228	-837.5	60.3	129.4
1366.9	6440.3	-824.4	2407.1	3216.8	123.5	8683.3	392.8	11.7	-11.2	19.6	37.4	24.9	15.7	233.2	-972.2	85.9	132.1
1366.9	6440.3	-655.6	1966.9	1828.4	171.7	5201.2	340.4	12.3	-10.6	11.5	35.4	27.6	23.6	231.5	-990.4	116.8	112.7
1366.9	6440.3	-486.7	2004.4	1283.3	237.1	3853.4	327.1	12.9	-9.2	7	28.6	26.3	36.5	238.3	-864	153.7	73.3
1366.9	6440.3	-317.8	2338.6	1120	298.5	3678.1	347.9	14.4	-7.6	4.3	18.8	21.7	54.1	241.1	-596.5	178.3	27.6
1366.9	6440.3	-148.9	2477.0	816.2	279.7	3396.3	365.6	17.4	-6.6	2	8.3	22.6	66.4	177.8	-268.1	141.9	0.8
1366.9	6440.3	20.0	1361.0	148.9	123.4	1539.1	209.3	21.3	-8.1	0	0	59.6	41.4	57.7	51.2	35.7	-5.4
1366.9	6720.4	-1500.0	8330.9	18555.9	15.9	45659.9	892	5.7	-8. 9	96.4	3	0	1.5	93.1	-54.7	0	11.3
1366.9	6720.4	-1331.1	6631.2	14136.5	30.3	35146.2	761.3	7.4	-9.8	74.7	15.2	4.5	3.9	158. 1	-328	12.5	64.1
1366.9	6720.4	-1162.2	4915.2	9707.1	46.7	24567.6	625.3	8.9	-10.8	52.9	27.4	11.3	6.2	217.2	-609.2	26.5	112.9
1366.9	6720.4	-993.3	3486.4	6041.1	65.8	15751.5	506.5	9.9	-11.6	34.8	36.5	17.8	8.8	247.6	-845.2	41.7	144.9
1366.9	6720.4	-824.4	2531.0	3489.4	89.8	9604.8	423.7	10.4	-11.8	21.9	41	22.6	12.8	254.4	-1008.6	57.5	157.5
1366.9	6720.4	-655.6	2111.6	2023.5	128.8	6156.9	383.4	10.7	-11.2	14.1	39.6	24.3	20.8	246.8	-1061.5	79.3	147
1366.9	6720.4	-486.7	2210.2	1302.4	198.4	4753.8	382.3	11.5	-9.6	9.3	31.9	21.5	36.4	247.8	-955.2	114.8	108

1386.9 67204 -137.8 264.4 591.2 284.1 4490.1 419.1 13.4 -7.3 5.7 20.1 12.8 80.2 24.4 119.5 119.5 1386.9 6720.4 41.03 123.6 44 113.5 119.5 </th <th>Easting</th> <th>Northing</th> <th>Elevation</th> <th>Na</th> <th>Ca</th> <th>HCO3</th> <th>CI</th> <th>SO4</th> <th>H3</th> <th>O18</th> <th>Brine</th> <th>Glacial</th> <th>Meteoric</th> <th>Marine</th> <th>Na Dev</th> <th>Ca Dev H</th> <th>CO3 Dev</th> <th>SO4 Dev</th>	Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
1386.9 67204 -317.8 264.4 591.2.3 284.1 4490.1 410.1 13.4 -7.3 5.7 20.1 12.8 80.2 26.4 1386.9 6720.4 10.0 65.5 37.4 60.5 38.1 119.5 - 1386.9 6720.4 20.0 123.6 44 113.5 114 4530.0 843.5 12.4 - 0 65.5 37.4 60.5 38.1 12.4 - 6.6 37.4 60.5 38.6 7.6 6.6 37.4 60.5 37.4 60.5 38.7 6.6 13.6 12.4 - 7.6 6.6 2.4 17.6 2.4 4.6 7.6 1.6 4.6 6.6 1.1 7.6 6.6 4.6 2.4 1.6 6.6 2.4 1.66.5 1.5 9.7 1.2.2 3.6 4.0.1 16.8 4.6 2.4 1.6 4.6 9.7 1.2.2 1.6.4 4.6 1.6 1.2.7 2.3.6 4.0.1 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.3 1.6.	m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1366 9 6720.4 20.01233.644113.51407.6185.221.6-8.20063.537.450.538.124-11366 97000.6-1331.16591.51402.32235058756.56.9-10.174.616.84.400.4107.1-68.8-311366 97000.6-131.16591.51402.32224681.4625.58.1-11.253.329.710.84.324.0.44516.615.5-11366.97000.6-993.33003.36102.24116042.1514.98.7-12.223.640.116.36.3200.3-864.422151366.97000.6-993.33003.36102.24116042.1514.98.7-12.223.346.419.69.6293.5-1051.225.2181366.97000.6-993.33093.66102.24116042.1514.98.7-12.723.346.419.69.6293.5-1051.225.2181366.97000.6-486.7234.8135.4132.7542.3419.99.4-10.311.537.814.116.3232.2-109.459.7141366.97000.6-317.8323.8.776.522.06.51.1-1.53.110010015.8-397.67021366.97200.7 <td>1366.9</td> <td>6720.4</td> <td>-317.8</td> <td>2694.5</td> <td>912.3</td> <td>284.1</td> <td>4490.1</td> <td>419.1</td> <td>13.4</td> <td>-7.3</td> <td>5.7</td> <td>20.1</td> <td>12.8</td> <td>60.8</td> <td>254.4</td> <td>-666.1</td> <td>148.1</td> <td>50.6</td>	1366.9	6720.4	-317.8	2694.5	912.3	284.1	4490.1	419.1	13.4	-7.3	5.7	20.1	12.8	60.8	254.4	-666.1	148.1	50.6
1366 9 7000.8 $\cdot 1500.0$ 8267.3 18433 11.1 45390.4 884.6 5.5 $\cdot 9.2$ 95.9 4.4 0 0.4 107.1 $\cdot 68.8$ $\cdot 3.1$ 1 1366.9 7000.6 $\cdot 1331.1$ 6591.5 14022.3 322 32688 765.5 6.9 $\cdot 10.1$ 74.6 16.8 4.6 2.4 175.2 $\cdot 33.3$ 6.6 1366.9 7000.6 $\cdot 1162.2$ 4906.7 9722.3 32.2 24681.4 625.5 8.1 -112.2 53.3 29.7 10.8 4.3 2404 -618.6 15.5 1366.9 7000.6 -824.4 2584.0 357.8 48.8 10068.9 444.6 8.7 -12.7 23.3 46.4 19.6 9.6 233.5 -151.2 25.2 18 1366.9 7000.6 -485.7 239.4 131.4 420.5 8.6 -12.7 3.3 10 0 100 135.8 -397.6 70 2 42.4 150.5 -14.6 136.9 700.6 171.3 34	1366.9	6720.4	-148.9	2872.1	529.2	284.1	3979.8	433.9	17.3	-5.9	2.5	8.4	11.4	77.2	183.6	-294.1	119.5	9
1366.97000.6-1331.16591.514082.32233058756.56.9-10.174.616.84.62.4175.2-33.76.61366.97000.6-1162.2406.79722.332.22481.4625.58.1-11.253.329.710.84.3240.4-611615.51366.97000.6-983.33509.36102.24.116042.1514.98.7-12.223.640.116.36.3280.3.864.422151366.97000.6-855.6220.4213.171.8679.444.68.7-12.723.346.419.69.629.5-115.125.2181366.97000.6-486.72394.81315.4132.75428.3441.99.4-10.311.537.814.136.325.4-1094.559.7141366.97000.6-486.72394.81315.4132.75428.3547.953.711.9-6.97.323.707.4.8232.839.77021366.97000.6-14.894128.942.2265.75306.1666.717.1-53.1100100135.8-397.67021366.97280.7-1331.16399.213594.217.23395.9736.66.5-10.572.4204.51.3204.8384.93.871366.97280.7<	1366.9	6720.4	20.0	1233.6	44	113.5	1407.6	185.2	21.6	-8.2	0	0	63.5	37.4	50.5	36.1	24	-8.1
1366.97000.6-1162.24906.7972.332.224681.4625.58.1-11.253.327.710.84.3240.4-619.612.51366.97000.6-993.33509.36102.24116402.1514.98.7-12.235.640.116.36.3280.3-864.422151366.97000.6-824.42584.0357.849.81006.9444.68.7-12.233.346.419.69.6293.5-1051.225.2181366.97000.6-466.7239.41315.4132.75428.3441.99.4-10.311.537.814.136.3254.2-1094.559.7141366.97000.6-446.7239.41315.4132.75428.3529.4537.911.9-6.97.323.7074.8232-839.791.441366.97000.6-440.74128.9442.2265.7530.6666.711.55.1100100135.8-397.67.021366.97280.7-150.0799.91764.77.64370.3861.952-9692.48.700155.5-16.5-10.512.8260639.610.212136.91366.97280.7-150.0799.91764.77.64370.3861.952.2-10.57.2204.51.3204.8384.	1366.9	7000.6	-1500.0	8267.3	18433	11.1	45390.4	884.6	5.5	-9.2	95.9	4.4	0	0.4	107.1	-68.8	-3	14.1
1366.97000.6-993.33509.36102.24116042.1514.98.7-12.235.640.116.36.3280.3864.422151366.97000.6-624.42540.03579.849.810068.9444.68.7-12.723.346.419.69.79.710.525.2181366.97000.6-655.6220.42123.171.86791.4420.58.6-12.216.146.319.717.3276.9114.5133331366.97000.6-647.62394.81315.4137.5323.7765228.35259.4537.911.9-6.97.323.7074.8323.8359.791.481366.97000.6-148.9412.8423.2265.7530.61666.717.1-53.1100100135.8-397.67021366.97280.7-1500.0798.91768.4778.322.2-7.40047.355.445.2221366.97280.7-1600.0798.91768.427.322.2-7.40047.353.844.222.21.5-1366.97280.7-163.1639.91768.477.423.323.310.72.8260.6639.610.2121366.97280.7-164.724.124139.56107.4-11.652.	1366.9	7000.6	-1331.1	6591.5	14082.3	22	35058	756.5	6.9	-10.1	74.6	16.8	4.6	2.4	175.2	-338.7	6.6	68
1366.97000.6-824.42584.03579.849.810068.9444.68.7 -12.7 23.346.419.69.6293.5 -10112 22.5181366.97000.6-456.72304.81313.171.86791.4420.58.6 -12.2 16.146.319.717.3276.9 -1145.1 33181366.97000.6-486.72394.81315.4132.75428.3441.99.4 -10.3 11.537.814.136.3254.2 -1094.5 559.7141366.97000.6 -148.9 412.8423.2265.75306.1666.717.1 -5 3.1100100135.8 -397.6 7021366.97280.7 -1500.0 798.917684.77.643703.1861.95.2 -7.4 0047.353.814.222.21.5 -145.4 -52.2 21.5 -13.2 20.4 -33.6 10.212.21.5 -165.6 20.7 -130.1 6392.7 -145.4 -384.9 3.871.366.97280.7 -150.0 798.9 17684.7 7.6 43703.1861.95.2 -7.4 0047.353.814.222.21.5 -145.4 3.871.36.91.36.9280.7 -133.1 23.2310.72.8260 -639.6 10.21.21366.97280.7 -1162.2 4793.09469.5<	1366.9	7000.6	-1162.2	4906.7	9722.3	32.2	24681.4	625.5	8.1	-11.2	53.3	29.7	10.8	4.3	240.4	-619.6	15.5	120
1366.97000.6-655.62200.42123.171.86791.4420.58.6-12.216.146.319.717.3276.9-1145.133181366.97000.6-486.72394.81315.4132.75428.3441.99.4-10.311.537.814.136.3254.2-1094.559.7141366.97000.6-317.8323.778228.3525.4537.911.9-5.31.00100135.8-397.67021366.97000.6-148.9412.8423.2265.7530.1666.717.1-53.1100100135.8-397.67021366.97280.7-150.07998.917684.77.643703.1861.95.2-9.692.48.700155.5-145.4-5.221366.97280.7-1162.2473.09469.524.124139.56107.4-11.652.332.310.72.8260639.610.211366.97280.7-162.7204.53.66.93.71.131611.53.817.72.32.87.160.56.7181366.97280.7-186.7204.53.66.90.742.250.37.6-12.635.243.215.64.530.66.73.311.3161366.97280.7-86.6209.7204.53.6 <td>1366.9</td> <td>7000.6</td> <td>-993.3</td> <td>3509.3</td> <td>6102.2</td> <td>41</td> <td>16042.1</td> <td>514.9</td> <td>8.7</td> <td>-12.2</td> <td>35.6</td> <td>40.1</td> <td>16.3</td> <td>6.3</td> <td>280.3</td> <td>-864.4</td> <td>22</td> <td>158.9</td>	1366.9	7000.6	-993.3	3509.3	6102.2	41	16042.1	514.9	8.7	-12.2	35.6	40.1	16.3	6.3	280.3	-864.4	22	158.9
1366.9700.6-486.72394.81315.4132.75428.3441.99.4-10.311.537.814.136.3254.2-1094.559.714.41366.9700.6-317.83238.7755228.3525.4537.911.9-6.97.323.7074.8232-839.791.481366.9700.6-148.94128.9423.2265.75306.1666.717.1-53.1100100135.8-397.67021366.9700.620.01718.344.59.81904.4278.322.2-7.40047.353.814.222.21.51.5-145.452.21.51.3204.8-384.93.871366.97280.7-1500.0798.917684.77.643703.1861.95.2-9.692.48.700155.5-145.41.21.51.45.41.21.45.83.871366.97280.7-162.24793.09469.524.1241.95.5610.07.4-11.652.332.310.72.8260.663.610.212121366.97280.7-933.33441.9587.52.621579.426.46.7-13.116.652.215.815.2314.7-1166.66.6191366.97280.7-365.62209.7204.536.6690.7<	1366.9	7000.6	-824.4	2584.0	3579.8	49.8	10068.9	444.6	8.7	-12.7	23.3	46.4	19.6	9.6	293.5	-1051.2	25.2	182.6
1366.9700.6 -317.8 3238.7785228.35259.4537.911.9 -6.9 7.323.7074.8232 -83.7 91.481366.9700.6 -148.9 4128.9423.2265.75306.1666.717.1 -5 3.1100100135.8 -397.6 7021366.97200.7 -1500.0 798.91768.77.64370.3861.952 -9.6 92.48.700155.5 -145.4 -52.2 21366.97280.7 -1331.1 639.213542.77.23398.9736.66.5 -10.5 72.4204.513204.8-384.93.871366.97280.7 -1162.2 4793.09469.524.124139.56107.4 -11.6 52.332.310.72.8260 -639.6 10.2121366.97280.7 -93.3 3441.95957.526.215794.2503.87.2 -13.3 23.350.817.87.232.8.7 -1060.5 6.7181366.97280.7 -282.7 -280.7 -229.7 -296.7 -296.7 -13.1 16.652.211.7 1162.2 31.7 -1060.5 6.7181366.97280.7 -486.7 2209.7208.536.66908.7425.46.7 -13.1 16.652.215.815.2 31.7 -1162.2 49.7 <	1366.9	7000.6	-655.6	2200.4	2123.1	71.8	6791.4	420.5	8.6	-12.2	16.1	46.3	19.7	17.3	276.9	-1145.1	33	183.6
1366.9700.6-148.94128.9423.2265.75306.1666.717.1-53.1100100135.8-397.67021366.97280.7-1500.07998.917684.77.643703.1861.95.29.692.48.700155.5-145.4-5.221366.97280.7-1331.16399.21354.217.23395.9736.66.5-10.572.4204.51.320.4.8-384.93.871366.97280.7-1162.24793.09469.524.124139.56107.4-11.652.332.310.72.8260-639.610.21121366.97280.7-824.42543.03485.22.5998.9438.57.2-13.323.350.817.87.232.871.000.56.7181366.97280.7-824.42543.03485.22.5998.9438.57.2-13.316.652.215.815.231.4.7-116.66.6191366.97280.7-824.42543.03485.22.5988.9438.57.2-13.316.652.215.815.231.4.7-116.66.6191366.97280.7-466.7250.31296.693573.0.1476.47.4-1112.344.44.538.8279.5-1152.427.9161366.9	1366.9	7000.6	-486.7	2394.8	1315.4	132.7	5428.3	441.9	9.4	-10.3	11.5	37.8	14.1	36.3	254.2	-1094.5	59.7	147.4
1366.97000.620.01718.344.598.81904.4278.322.2 -7.4 0047.353.814.222.21.51.51366.97280.7 -1500.0 799.917684.77.643703.1861.95.2 -9.6 92.48.700155.5 -145.4 -5.2 2.21366.97280.7 -1331.1 639.213594.217.233958.9736.66.5 -10.5 72.4204.51.3204.8 -384.9 3.871366.97280.7 -162.2 4793.09469.52.4.124139.56107.4 -11.6 52.332.310.72.8260 -639.6 10.2121366.97280.7 -824.4 2543.03485.22.5989.9438.57.2 -13.3 23.350.817.87.232.8.7 -106.5 6.76.76.713.116.652.215.815.2314.7 -1168.6 6.619.31366.97280.7 -655.6 209.7208.536.66908.7425.46.7 -13.1 16.652.215.815.2314.7 -1168.6 6.619.31366.97280.7 -317.8 376.1687.8195.15687634.810 -6.9 7.630090.922.5.4 -932.3 56.181366.97280.7 -148.9 543.5372.6637.815.9 </td <td>1366.9</td> <td>7000.6</td> <td>-317.8</td> <td>3238.7</td> <td>785</td> <td>228.3</td> <td>5259.4</td> <td>537.9</td> <td>11.9</td> <td>-6.9</td> <td>7.3</td> <td>23.7</td> <td>0</td> <td>74.8</td> <td>232</td> <td>-839.7</td> <td>91.4</td> <td>80.6</td>	1366.9	7000.6	-317.8	3238.7	785	228.3	5259.4	537.9	11.9	-6.9	7.3	23.7	0	74.8	232	-839.7	91.4	80.6
1366.97280.7-1500.0798.917684.77.643703.1861.95.2-9.692.48.700155.5-145.4-5.221366.97280.7-1331.16399.213594.217.233958.9736.66.5-10.572.4204.51.3204.8-384.93.871366.97280.7-1162.24793.09469.524.124139.56107.4-11.652.332.310.72.8260-639.610.2121366.97280.7-993.33441.95957.526.215794.2503.87.6-12.635.243.215.64.5305.6-873.311.3161366.97280.7-824.42543.03485.2259989.9438.57.2-13.323.350.817.87.2328.7-1060.56.7181366.97280.7-824.4254.03485.225998.9438.57.2-13.116.652.215.815.2314.7-1168.66.6191366.97280.7-846.7266.031296.693573.0.1476.47.4-1112.344.44.538.8279.5152.427.9161366.97280.7-317.8376.1687.8195.15687634.810-6.97.630090.9225.4-932.356.1681366.9 <td>1366.9</td> <td>7000.6</td> <td>-148.9</td> <td>4128.9</td> <td>423.2</td> <td>265.7</td> <td>5306.1</td> <td>666.7</td> <td>17.1</td> <td>-5</td> <td>3.1</td> <td>10</td> <td>0</td> <td>100</td> <td>135.8</td> <td>-397.6</td> <td>70</td> <td>25.3</td>	1366.9	7000.6	-148.9	4128.9	423.2	265.7	5306.1	666.7	17.1	-5	3.1	10	0	100	135.8	-397.6	70	25.3
1366.97280.7 -1331.1 6399.213594.217.233958.9736.66.5 -10.5 72.4204.51.3204.8 -384.9 3.8736.61366.97280.7 -1162.2 4793.09469.524.124139.56107.4 -11.6 52.332.310.72.8260 -639.6 10.2121366.97280.7 -993.3 3441.95957.526.215794.2503.87.6 -12.6 35.243.215.64.5305.6 -873.3 11.3161366.97280.7 -924.4 2543.03485.2259989.9438.57.2 -13.3 23.350.817.87.2328.7 -1060.5 6.7181366.97280.7 -655.6 229.72084.536.66908.7475.46.7 -13.1 16.652.215.815.2314.7 -1168.6 6.6191366.97280.7 -486.7 2560.31296.693573.01476.47.4 -11 12.344.44.538.8279.5 -152.4 27.9161366.97280.7 -148.9 543.4374.3272.66509.5891.515.9 -5 2.9140100108.6 -445 4221366.97280.7 -148.9 543.4374.3272.66509.5891.515.9 -5 2.9140100108.6 -445	1366.9	7000.6	20.0	1718.3	44.5	98.8	1904.4	278.3	22.2	-7.4	0	0	47.3	53.8	14.2	22.2	1.5	-3.3
1366.97280.7 $\cdot 1162.2$ 4793.09469.524.124139.56107.4 $\cdot 11.6$ 52.332.310.72.8260 $\cdot 639.6$ 10.2121366.97280.7 $\cdot 993.3$ 3441.95957.526.215794.2503.87.6 $\cdot 12.6$ 35.243.215.64.5305.6 $\cdot 873.3$ 11.3161366.97280.7 $\cdot 824.4$ 2543.03485.2259989.9438.57.2 $\cdot 13.3$ 23.350.817.87.2328.7 $\cdot 1060.5$ 6.7181366.97280.7 $\cdot 655.6$ 2209.72084.536.66908.7425.46.7 -13.1 16.652.215.815.2314.7 $\cdot 1168.6$ 6.6191366.97280.7 $\cdot 486.7$ 2560.31296.6935730.1476.47.4 -11 12.344.44.538.8279.5 $\cdot 1152.4$ 27.9161366.97280.7 $\cdot 317.8$ 376.1687.8195.15687634.810 -6.9 7.630090.9225.4 -932.3 56.181366.97280.7 $\cdot 148.9$ 5435.4374.3272.66509.5891.515.9 -5 2.9140100108.6 445 4221366.97560.8 $\cdot 1500.0$ 777.717108.68.942342847.14.9 -9.8 89.711.300163.9 -19	1366.9	7280.7	-1500.0	7998.9	17684.7	7.6	43703.1	861.9	5.2	-9.6	92.4	8.7	0	0	155.5	-145.4	-5.2	26.5
1366.97280.7-993.33441.95957.526.215794.2503.87.6-12.635.243.215.64.5305.6-873.311.3161366.97280.7-824.42543.03485.2259989.9438.57.2-13.323.350.817.87.2328.7-1060.56.7181366.97280.7-655.62209.72084.536.66908.7425.46.7-13.116.652.215.815.2314.7-1168.666191366.97280.7-486.72560.31296.6935730.1476.47.4-1112.344.44.538.8279.5-1152.427.9161366.97280.7-317.83766.1687.8195.15687634.810-6.97.630090.9225.4-932.356.181366.97280.7-148.95435.4374.3272.66509.5891.515.9-52.9140100108.6-4454221366.9760.8-150.07772.717108.68.942342842.14.9-9.889.711.300163.9-193-3.7331366.97560.8-1331.16207.41312219.332850.2714.96.1-10.770.1224.61.3206.1-414.16.171366.97560.8<	1366.9	7280.7	-1331.1	6399.2	13594.2	17.2	33958.9	736.6	6.5	-10.5	72.4	20	4.5	1.3	204.8	-384.9	3.8	73.7
1366.97280.7 -824.4 2543.03485.225998.9438.57.2 -13.3 23.350.817.87.2328.7 -1060.5 6.7181366.97280.7 -655.6 220.9.72084.536.66908.7425.46.7 -13.1 16.652.215.815.2314.7 -1168.6 666191366.97280.7 -486.7 2560.31296.6935730.1476.47.4 -11 12.344.44.538.8279.5 -1152.4 27.9161366.97280.7 -317.8 3766.1687.8195.15687634.810 -6.9 7.630090.9225.4 -932.3 56.1681366.97280.7 -148.9 5435.4374.3272.66509.5891.515.9 -5 2.9140100108.6 -445 42221366.97280.720.01728.568.380.91891.5287.722.3 -7.4 0046.254.9 -2.5 25.9 -5.2 -5.2 136.9 -2.5 25.9 -5.2 -5.2 136.9 -2.5 25.9 -5.2 -5.2 -13.6 -6.9 -6.4 1.3206.1 -414.1 6.1 7.7 7.6 30.5 00163.9 -193.3 -3.7 33.2 -56.6 -642 12.8 11.1 1366.9 7560.8 -133.1 60.7 $-11.$	1366.9	7280.7	-1162.2	4793.0	9469.5	24.1	24139.5	610	7.4	-11.6	52.3	32.3	10.7	2.8	260	-639.6	10.2	121.3
1366.97280.7-655.62209.72084.536.66908.7 425.4 6.7-13.116.652.215.815.2314.7-1168.66.6191366.97280.7-486.72560.31296.6935730.1 476.4 7.4-1112.3 444.4 4.538.8279.5-1152.427.9161366.97280.7-317.83766.1687.8195.15687634.810-6.97.630090.9225.4-932.356.1881366.97280.7-148.95435.4374.3272.66509.5891.515.9-52.9140100108.6-44542221366.97280.720.01728.568.380.91891.5287.722.3-7.40046.254.9-2.525.9-5.2-5.21366.97560.8-150.07772.717108.68.942342842.14.9-9.889.7111.300163.9-193-3.7331366.97560.8-1331.16207.41312219.332850.2714.96.1-10.770.1224.61.3206.1-414.16.171366.97560.8-1162.24657.99154.926.523415.8587.97-11.750.733.310.92.9252.6-64212.8111366.97560.8	1366.9	7280.7	-993.3	3441.9	5957.5	26.2	15794.2	503.8	7.6	-12.6	35.2	43.2	15.6	4.5	305.6	-873.3	11.3	160.8
1366.9 7280.7 -486.7 2560.3 1296.6 93 5730.1 476.4 7.4 -11 12.3 44.4 4.5 38.8 279.5 -1152.4 27.9 16 1366.9 7280.7 -317.8 3766.1 687.8 195.1 5687 634.8 10 -6.9 7.6 30 0 90.9 225.4 -932.3 56.1 88 1366.9 7280.7 -148.9 5435.4 374.3 272.6 6509.5 891.5 15.9 -5 2.9 14 0 100 108.6 -445 42 2 1366.9 7280.7 20.0 1728.5 68.3 80.9 1891.5 287.7 22.3 -7.4 0 0 46.2 54.9 -2.5 25.9 -5.2 -5.2 -5.2 -5.9 -5.2 -5.9 -5.2 2.5 25.9 -5.2 -5.2 -5.9 -5.2 -5.9 -5.2 -5.9 -5.2 -5.9 -5.2 -5.9 -5.2 -5.9 -5.2 -5.9 -5.2 25.9 -5.2 25	1366.9	7280.7	-824.4	2543.0	3485.2	25	9989.9	438.5	7.2	-13.3	23.3	50.8	17.8	7.2	328.7	-1060.5	6.7	188.7
1366.9 7280.7 -317.8 376.1 687.8 195.1 5687 634.8 10 -6.9 7.6 30 0 90.9 225.4 -932.3 56.1 88 1366.9 7280.7 -148.9 5435.4 374.3 272.6 6509.5 891.5 15.9 -5 2.9 14 0 100 108.6 -445 42 2 1366.9 7280.7 20.0 1728.5 68.3 80.9 1891.5 287.7 22.3 -7.4 0 0 46.2 54.9 -2.5 25.9 -5.2 -5.2 1366.9 7560.8 -1500.0 7772.7 17108.6 8.9 42342 842.1 4.9 -9.8 89.7 11.3 0 0 163.9 -193 -3.7 3 1366.9 7560.8 -162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737.6	1366.9	7280.7	-655.6	2209.7	2084.5	36.6	6908.7	425.4	6.7	-13.1	16.6	52.2	15.8	15.2	314.7	-1168.6	6.6	194.9
1366.9 7280.7 -148.9 5435.4 374.3 272.6 6509.5 891.5 15.9 -5 2.9 14 0 100 108.6 -445 42 22 1366.9 7280.7 20.0 1728.5 68.3 80.9 1891.5 287.7 22.3 -7.4 0 0 46.2 54.9 -2.5 25.9 -5.2 -5.2 1366.9 7560.8 -1500.0 7772.7 17108.6 8.9 42342 842.1 4.9 -9.8 89.7 11.3 0 0 163.9 -193 -3.7 3 1366.9 7560.8 -1331.1 6207.4 13122 19.3 32850.2 714.9 6.1 -10.7 70.1 22 4.6 1.3 206.1 -414.1 6.1 7 1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737	1366.9	7280.7	-486.7	2560.3	1296.6	93	5730.1	476.4	7.4	-11	12.3	44.4	4.5	38.8	279.5	-1152.4	27.9	160.9
1366.9 7280.7 20.0 1728.5 68.3 80.9 1891.5 287.7 22.3 -7.4 0 0 46.2 54.9 -2.5 25.9 -5.2 -5.2 1366.9 7560.8 -1500.0 7772.7 17108.6 8.9 42342 842.1 4.9 -9.8 89.7 11.3 0 0 163.9 -193 -3.7 3 1366.9 7560.8 -1331.1 6207.4 13122 19.3 32850.2 714.9 6.1 -10.7 70.1 22 4.6 1.3 206.1 -414.1 6.1 7 1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737.6 28.3 15314.2 479.1 7.2 -12.7 34.1 43.6 15.9 4.7 294.7 -849.4 13.8 14 1366.9 7560.8 -824.4 2430.7		7280.7	-317.8	3766.1	687.8	195.1	5687	634.8	10	-6.9	7.6	30	0	90.9	225.4	-932.3	56.1	87.9
1366.9 7560.8 -1500.0 7772.7 17108.6 8.9 42342 842.1 4.9 -9.8 89.7 11.3 0 0 163.9 -193 -3.7 3 1366.9 7560.8 -1331.1 6207.4 13122 19.3 32850.2 714.9 6.1 -10.7 70.1 22 4.6 1.3 206.1 -414.1 6.1 7 1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737.6 28.3 15314.2 479.1 7.2 -12.7 34.1 43.6 15.9 4.7 294.7 -849.4 13.8 14 1366.9 7560.8 -824.4 2430.	1366.9	7280.7	-148.9	5435.4	374.3	272.6	6509.5	891.5	15.9	-5	2.9	14	0	100	108.6	-445	42	25.3
1366.9 7560.8 -1331.1 6207.4 13122 19.3 32850.2 714.9 6.1 -10.7 70.1 22 4.6 1.3 206.1 -414.1 6.1 7 1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737.6 28.3 15314.2 479.1 7.2 -12.7 34.1 43.6 15.9 4.7 294.7 -849.4 13.8 14 1366.9 7560.8 -824.4 2430.7 3265.6 26.4 9513 404.7 6.7 -13.4 22.1 51.2 18.4 7.3 317.8 -1010 9.5 16 1366.9 7560.8 -655.6 2092.4 1805.2 36.9 6297.3 385.4 6.2 -13.2 14.9 53.3 15 16.3 306 -1092.3 8.3 16 1366.9 7560.8 -486.7 2	1366.9	7280.7	20.0	1728.5	68.3	80.9	1891.5	287.7	22.3	-7.4	0	0	46.2	54.9	-2.5	25.9	-5.2	-0.6
1366.9 7560.8 -1162.2 4657.9 9154.9 26.5 23415.8 587.9 7 -11.7 50.7 33.3 10.9 2.9 252.6 -642 12.8 11 1366.9 7560.8 -993.3 3341.2 5737.6 28.3 15314.2 479.1 7.2 -12.7 34.1 43.6 15.9 4.7 294.7 -849.4 13.8 14 1366.9 7560.8 -824.4 2430.7 3265.6 26.4 9513 404.7 6.7 -13.4 22.1 51.2 18.4 7.3 317.8 -1010 9.5 16 1366.9 7560.8 -655.6 2092.4 1805.2 36.9 6297.3 385.4 6.2 -13.2 14.9 53.3 15 16.3 306 -1092.3 8.3 16 1366.9 7560.8 -486.7 2673.0 1068.4 90.6 5391.5 480.4 6.9 -11.1 10.6 47.8 0 47.3 264 -1054.4 19.6 13 1366.9 7560.8 -317.8	1366.9	7560.8	-1500.0	7772.7	17108.6	8.9	42342	842.1	4.9	-9.8	89.7	11.3	0	0	163.9	-193	-3.7	31.8
1366.9 7560.8 -993.3 3341.2 5737.6 28.3 15314.2 479.1 7.2 -12.7 34.1 43.6 15.9 4.7 294.7 -849.4 13.8 14 1366.9 7560.8 -824.4 2430.7 3265.6 26.4 9513 404.7 6.7 -13.4 22.1 51.2 18.4 7.3 317.8 -1010 9.5 16 1366.9 7560.8 -655.6 2092.4 1805.2 36.9 6297.3 385.4 6.2 -13.2 14.9 53.3 15 16.3 306 -1092.3 8.3 16 1366.9 7560.8 -486.7 2673.0 1068.4 90.6 5391.5 480.4 6.9 -11.1 10.6 47.8 0 47.3 264 -1054.4 19.6 13 1366.9 7560.8 -317.8 4148.9 568.6 188.1 5759.7 697.2 9.6 -6.9 6.4 35.1 0 100 191.2 -832.5 34.9 7	1366.9	7560.8	-1331.1	6207.4	13122	19.3	32850.2	714.9	6.1	-10.7	70.1	22	4.6	1.3	206.1	-414.1	6.1	72.6
1366.9 7560.8 -824.4 2430.7 3265.6 26.4 9513 404.7 6.7 -13.4 22.1 51.2 18.4 7.3 317.8 -1010 9.5 16 1366.9 7560.8 -655.6 2092.4 1805.2 36.9 6297.3 385.4 6.2 -13.2 14.9 53.3 15 16.3 306 -1092.3 8.3 16 1366.9 7560.8 -486.7 2673.0 1068.4 90.6 5391.5 480.4 6.9 -11.1 10.6 47.8 0 47.3 264 -1054.4 19.6 13 1366.9 7560.8 -317.8 4148.9 568.6 188.1 5759.7 697.2 9.6 -6.9 6.4 35.1 0 100 191.2 -832.5 34.9 7	1366.9	7560.8	-1162.2	4657.9	9154.9	26.5	23415.8	587.9	7	-11.7	50.7	33.3	10.9	2.9	252.6	-642	12.8	112.5
1366.9 7560.8 -655.6 2092.4 1805.2 36.9 6297.3 385.4 6.2 -13.2 14.9 53.3 15 16.3 306 -1092.3 8.3 16 1366.9 7560.8 -486.7 2673.0 1068.4 90.6 5391.5 480.4 6.9 -11.1 10.6 47.8 0 47.3 264 -1054.4 19.6 13 1366.9 7560.8 -317.8 4148.9 568.6 188.1 5759.7 697.2 9.6 -6.9 6.4 35.1 0 100 191.2 -832.5 34.9 7	1366.9	7560.8	-993.3	3341.2	5737.6	28.3	15314.2	479.1	7.2	-12.7	34.1	43.6	15.9	4.7	294.7	-849.4	13.8	145.2
1366.9 7560.8 -486.7 2673.0 1068.4 90.6 5391.5 480.4 6.9 -11.1 10.6 47.8 0 47.3 264 -1054.4 19.6 13 1366.9 7560.8 -317.8 4148.9 568.6 188.1 5759.7 697.2 9.6 -6.9 6.4 35.1 0 100 191.2 -832.5 34.9 7	1366.9	7560.8	-824.4	2430.7	3265.6	26.4	9513	404.7	6.7	-13.4	22.1	51.2	18.4	7.3	317.8	-1010	9.5	165.2
1366.9 7560.8 -317.8 4148.9 568.6 188.1 5759.7 697.2 9.6 -6.9 6.4 35.1 0 100 191.2 -832.5 34.9 7	1366.9	7560.8	-655.6	2092.4	1805.2	36.9	6297.3	385.4	6.2	-13.2	14.9	53.3	15	16.3	306	-1092.3	8.3	163.9
	1366.9	7560.8	-486.7	2673.0	1068.4	90.6	5391.5	480.4	6.9	-11.1	10.6	47.8	0	47.3	264	-1054.4	19.6	134.8
1366 9 7560 8 -148 9 5484 2 291 3 257 2 6337 6 900 4 15 5 .5 2 3 16 7 0 100 96 1 403 2 27 1 1	1366.9	7560.8	-317.8	4148.9	568.6	188.1	5759.7	697.2	9.6	-6.9	6.4	35.1	0	100	191.2	-832.5	34.9	74.2
	1366.9	7560.8	-148.9	5484.2	291.3	257.2	6337.6	900.4	15.5	-5	2.3	16.7	0	100	86.1	-403.3	27.1	18.3

Easting	Northing	Elevation	Na	Ca	HCO3	Cl	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1366.9	7560.8	20.0	400.6	5.4	27.6	419	66.9	21.9	-9.8	0	0	87.3	12.7	2.2	-0.7	-1.3	-0.7
1366.9	7840.9	-1500.0	7624.8	16739	14.7	41429.3	829.2	4.6	-9.9	87.8	12	0	0.6	141.1	-207	0.5	30.3
1366.9	7840.9	-1331.1	6097.7	12820.8	27.9	32124.6	701	5.9	-10.6	68.5	21.9	4.7	3	177.5	-411	12.1	64.2
1366.9	7840.9	-1162.2	4607.5	8954.1	38.9	22964.1	574.5	7.1	-11.5	49.5	32	10.6	5.7	215.7	-612.6	21.1	95.3
1366.9	7840.9	-993.3	3351.2	5605.7	45.9	15073.1	466.5	7.6	-12.2	33.1	41	14.9	9.2	248.5	-786.8	25.1	118.1
1366.9	7840.9	-824.4	2480.3	3103.9	50.9	9253.1	389.7	7.5	-12.7	20.7	47.3	16.4	14.4	264.2	-907.1	24.4	126
1366.9	7840.9	-655.6	2164.6	1500.5	66.5	5758.9	368	7.2	-12.3	12.5	49.1	10.9	26.8	251.4	-945.4	24	113.3
1366.9	7840.9	-486.7	2973.9	743.2	121.1	5011.5	507.1	8.4	-9.9	7.8	44.4	0	65.9	212	-869.8	25.7	88.8
1366.9	7840.9	-317.8	4679.0	451.2	209	6006.4	780.5	11.6	-5.6	4.7	32.4	0	100	147.6	-654.3	26.2	53.7
1366.9	7840.9	-148.9	5402.0	268.1	246.9	6177.6	891.6	16.7	-5	1.7	15.1	0	100	66.3	-317.3	17.7	16.9
1366.9	7840.9	20.0	349.8	0.2	25.7	343.9	58.5	21.9	-9.9	0	0.2	88.7	11.2	2.8	-3.8	-1.2	-0.7
1366.9	8121.0	-1500.0	7557.0	16530.2	23.6	40900.4	823.8	4.7	-9.8	86.6	11.3	0	2.8	103	-192.4	5.8	23.8
1366.9	8121.0	-1331.1	6102.0	12719.8	40.3	31890.3	699.8	6.2	-10.4	67.8	20.1	4.6	6.5	133.3	-377.1	19	51.3
1366.9	8121.0	-1162.2	4710.8	8976.3	56.5	23082.8	581	7.6	-11	49.3	28.7	9.2	11.3	163.5	-551.9	30.3	74.8
1366.9	8121.0	-993.3	3581.2	5722.7	71.2	15511.5	486.2	8.6	-11.4	33.1	36.1	11.1	18.3	187.8	-692.8	37	89.8
1366.9	8121.0	-824.4	2885.3	3252.4	86.7	9923	433.8	9.2	-11.3	20.6	40.8	8.1	29.3	198	-776	38.6	91.8
1366.9	8121.0	-655.6	2812.7	1634.5	112.7	6627.8	454.1	9.7	-10.4	12.1	41.4	0	50.2	187.4	-779.6	37.1	79.6
1366.9	8121.0	-486.7	3649.1	805	164.1	5757.1	604.2	11.2	-7.9	7	36.5	0	91.2	155.7	-686.4	33.1	60.5
1366.9	8121.0	-317.8	5066.0	481.6	231.3	6413.1	840	14.2	-5	3.8	25.9	0	100	105.3	-492.1	26	38
1366.9	8121.0	-148.9	5710.1	335.2	259.2	6601.5	906	18.5	-5	1.5	11.5	0	100	44	-222.7	14.4	14.5
1366.9	8121.0	20.0	1799.1	112.6	86.6	2045	298.6	22.3	-7.4	0	0	44.5	56.7	-5.5	25.4	-1.8	-1
1783.6	5600.0	-1500.0	8133.3	18218.6	17.5	44659.5	877.6	4.8	-9.2	94.8	3.6	0.8	1	40.1	-81.9	2.5	13
1783.6	5600.0	-1331.1	6385.1	13452.6	29.9	33435.5	739.8	6.4	-10.3	71.7	17	5.7	4.7	137.7	-403.1	1 1.9	65
1783.6	5600.0	-1162.2	4560.6	8462.2	42.1	21658.9	594.1	8.1	-11.5	47.5	31.2	1 1.7	8.6	250.1	-747.7	20.8	118.3
1783.6	5600.0	-993.3	3023.7	4401.7	59.8	11918.6	460.3	9.8	-12.3	27.2	40.9	18.8	12.1	322.8	-1003	34.5	149.5
1783.6	5600.0	-824.4	2043.2	2168.3	89.2	6203.1	351.4	11.5	-12.1	14.9	41.6	27.5	14.8	307.4	-1076.2	59	138.4
1783.6	5600.0	-655.6	1470.3	1176.4	118.1	3259.6	266.5	13.2	-11.4	8.1	36.8	36.8	16.7	246.5	-1029.9	83.1	104.5
1783.6	5600.0	-486.7	1116.1	834.5	134.2	1858.4	197.9	15	-10.6	4.7	29.4	47.1	17.2	166.5	-912.6	97	64.2
1783.6	5600.0	-317.8	793.7	692.3	127.6	1186.6	132.5	17.3	-10	3.2	20.4	60.9	14.2	70.5	-729.1	94.1	28.5
1783.6	5600.0	-148.9	363.6	351	92.7	546.7	62.2	20.1	-9.9	1.9	10.2	80.2	6.9	-20.9	-438.6	69.9	7.5
1783.6	5600.0	20.0	31.9	0.2	29.3	0.2	15.4	22.1	-10.3	0	0	98	2.3	-35.5	-19.8	13.9	2.6
1783.6	5880.1	-1500.0	8159.3	18146.7	18.5	44575.6	884.8	4.5	-9.1	94.6	4.9	0	1.8	62.9	-119.4	2.4	18.5

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1783.6	5880.1	-1331.1	6439.4	13500	32.5	33605.6	749.3	6	-10.1	72	17.8	2.9	5.3	151.4	-433	13.5	69
1783.6	5880.1	-1162.2	4660.9	8692.8	48.5	22216.8	605.9	7.6	-11.2	48.5	31.2	9.1	9	250.6	-765.8	25.8	118.7
1783.6	5880.1	-993.3	3161.4	4769.1	71.6	12749.4	473.8	9.1	-11.9	28.8	40.3	16.2	12.6	314.3	-1018.1	44.4	146.5
1783.6	5880.1	-824.4	2167.2	2431.3	106.4	6758.4	365.9	10.6	-11.8	15.8	42	24.1	16	312	-1119.4	72.8	138.2
1783.6	5880.1	-655.6	1620.0	1419.2	145.8	3662.8	284	11.9	-11.1	8.6	37.9	31.9	19.3	268.2	-1096.5	104.8	104
1783.6	5880.1	-486.7	1354.6	1238.9	177.2	2386.5	221.4	13.3	-10.2	5.3	30.7	40.1	21.8	203.6	-993.9	129.9	58.3
1783.6	5880.1	-317.8	1145.7	1324.4	181.9	1957	165	15.5	-9.4	4.3	21.7	51.2	21.1	107.6	-840.3	134.7	15.2
1783.6	5880.1	-148.9	791.0	711.2	147.2	1326.2	115.4	19	-9	3.2	11.1	67.4	17.2	-35.8	-589.3	107.3	-5.3
1783.6	5880.1	20.0	688.7	0.2	81.5	458.5	132.8	21.6	-8.8	0	0	75.9	24.8	-89.3	-71.2	34.6	2.4
1783.6	6160.2	-1500.0	8166.5	18102.4	17.5	44527.8	888.1	4.3	-9.1	94.4	5.8	0	1.9	78.1	-144.3	1.4	22.4
1783.6	6160.2	-1331.1	6514.0	13696.9	32.6	34098.4	757.4	5.7	-10	72.9	17.7	1.9	5.1	153.5	-438.7	13.6	69.9
1783.6	6160.2	-1162.2	4832.5	9226	51	23467.1	620.3	7.2	-11	50.9	29.7	8.2	8.4	234.6	-745.1	28.5	114.4
1783.6	6160.2	-993.3	3398.8	5505.1	77	14468.8	493.8	8.6	-11.6	32.1	38.2	15.2	11.9	288.9	-988.4	49.4	140.1
1783.6	6160.2	-824.4	2403.4	3066.3	114.6	8287.2	390.6	9.8	-11.5	18.8	40.7	22.3	15.7	301.1	-1114.3	79.5	137.4
1783.6	6160.2	-655.6	1870.7	1913.8	165	4894.6	314	10.7	-10.9	10.9	37.6	28.7	20.5	286.7	-1110.4	118.9	107.6
1783.6	6160.2	-486.7	1706.0	1767.8	222.6	3572.1	259.6	11.6	-9.8	7	30.6	34.3	26.2	268.9	-989.8	162.7	58.7
1783.6	6160.2	-317.8	1703.1	2224.9	262.6	3338.7	220	13	-8.8	5.6	21.5	40.7	30.9	239.5	-791.1	191.7	8
1783.6	6160.2	-148.9	1442.0	2087.2	240.3	2660.9	185.6	16.9	-8.5	4.2	11.2	54.2	29.7	130.5	-536.7	173.8	-8.6
1783.6	6160.2	20.0	654.8	0.2	101.2	586.1	116.4	21.4	-9.1	0	0	80.2	20.9	-9	-31.4	54.6	6.3
1783.6	6440.3	-1500.0	8237.7	18344.4	15.2	45093.8	893.3	4.1	-9.1	95.6	5	0	1.3	67.8	-129.9	-0.2	20
1783.6	6440.3	-1331.1	6625.9	14074.1	29.1	34986	766.7	5.4	-10	74.7	16.8	2.1	4.1	141	-416.7	11.3	67.8
1783.6	6440.3	-1162.2	4994.1	9751	4 5.9	24725.1	635.1	6.9	-10.9	53.5	28.7	8.2	7	221	-717.9	25	113.2
1783.6	6440.3	-993.3	3600.6	6115.6	69	15987.7	516.1	8.1	-11.6	35.3	37.2	14.7	10.2	274.9	-966.8	43.3	142.7
1783.6	6440.3	-824.4	2615.8	3605.8	103	9775.1	422.1	9.2	-11.6	22	40.5	21.2	14	293.2	-1115.2	69.5	148.6
1783.6	6440.3	-655.6	2092.3	2272.1	156.6	6203.2	355	9.9	-11	13.7	37.8	27	19.6	293.4	-1126.5	109.5	127.5
1783.6	6440.3	-486.7	1987.5	1878.8	242.7	4739	305.9	10.5	-9.7	9	29.9	31.7	28.1	319.2	-960.1	172.2	78.1
1783.6	6440.3	-317.8	2130.9	2002.4	353.3	4472.4	265.1	11.4	-8.2	6	18.8	36	38.3	387.5	-600.1	250.1	12.7
1783.6	6440.3	-148.9	1955.5	1796	358.8	3702	228.1	14.4	-7.6	3.4	8	47.3	41	343.7	-235	246.2	-14.9
1783.6	6440.3	20.0	560.0	510.1	110.6	781.6	73.3	20.6	-9.5	0	0	86.4	14.4	93.9	51.1	58.9	-1.7
1783.6	6720.4	-1500.0	8353.3	18807.9	12.6	46112.3	899.7	3.7	-9.1	97.8	3.1	0	0.2	31.2	-82.9	-1.4	12.3
1783.6	6720.4	-1331.1	6721.7	14449.4	23.2	35851.2	773.2	5.1	-10.1	76.6	15.9	3	2.7	124	-385.4	7.4	64.9
1783.6	6720.4	-1162.2	5090.1	10080.9	35.1	25552.8	645	6.5	-11.1	55.3	28.8	8.4	5.2	220.6	-700.7	16.9	116.1

SO4 De	ICO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	ΤU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
153.4	28.1	-964.6	281.8	8	14.1	38.3	37.4	-11.9	7.6	534.7	16909.8	50.1	6444.8	3718.2	-993.3	6720.4	1783.6
172.	42.2	-1143.5	298. 2	11.4	19.7	42.7	24.5	-12.1	8.6	455.1	10754.3	70.6	3886.9	2748.0	-824.4	6720.4	1783.6
169.	64.9	-1198.7	278	16.7	25	40.6	16.5	-11.6	9.5	407.6	7169.6	105.7	2416.1	2221.7	-655.6	6720.4	1783.6
130.	117.3	-1054.9	283.1	26.4	30.2	31.2	11.5	-10.1	10.6	372.2	5527.4	185.4	1691	2110.4	-486.7	6720.4	1783.6
48.	213.3	-618.9	386.3	42.1	33.7	16.9	7	-7.8	11.8	328	5037.3	340.4	1250.2	2345.2	-317.8	6720.4	1783.6
0.	206.5	-179.5	330.4	59.6	32.4	5	2.9	-6.3	17.2	331	4260.4	402.2	622.9	2509.8	-148.9	6720.4	1783.6
-6.	24.4	56.1	48.8	24.2	77.3	0	0	-9	21.7	116.5	977.9	101.4	2 7.7	813.3	20.0	6720.4	1783.6
15.	-3.7	-97.3	44.7	0	0	4.4	97.2	-9.3	3.5	890.8	45763.1	8.7	18653.5	8275.1	-1500.0	7000.6	1783.6
68.	3	-393.1	139.5	1.2	3.4	17.3	76.4	-10.3	4.8	766.4	35687.6	16.6	14366.5	6668.6	-1331.1	7000.6	1783.6
121.	8.5	-703.8	241.7	3.5	8.3	30.7	55.5	-11.5	6	642.6	25576.4	23.7	10060.3	5069.7	-1162.2	7000.6	1783.6
164.	12.4	-972.5	313.9	6.1	13.2	41.2	37.9	-12.4	7	540.1	17044.5	30.3	6437.7	3729.4	-993.3	7000.6	1783.6
197.	12.7	-1175.1	334.5	8. 9	17.3	47.3	25.5	-12.9	7.8	476.1	11030.9	34.8	3886.9	2791.7	-824.4	7000.6	1783.6
219.	9.3	-1285.9	284.4	13.2	20.4	47.2	18.8	-12.6	8.8	460	7820.2	39.2	2501.6	2309.3	-655.6	7000.6	1783.6
207.	24.9	-1253	213.7	23.2	24.3	37.7	14.7	-11	10.3	462.6	6242.9	74.7	1705.2	2207.0	-486.7	7000.6	1783.6
117.	110.2	-945	258.2	46	26.2	18.4	9.4	-7.6	11.9	442.9	5337	208.6	1005.5	2529.8	-317.8	7000.6	1783.6
47.	104	-411.3	146.4	100	0	6.6	3.6	-5	18.5	606.1	5166.3	281.5	453.9	3657.8	-148.9	7000.6	1783.6
-2.	-5.3	27.5	0.8	41.4	59.8	0	0	-8.1	22.3	214	1430.5	71.6	31.9	1306.7	20.0	7000.6	1783.6
28.	-5.9	-173	104.8	0	0	8.8	93.5	-9.7	3.6	867.4	44022.2	5.3	17871	8005.8	-1500.0	7280.7	1783.6
75.	0.4	-436.1	179.7	0.3	3.3	20.6	73.9	-10.7	4.7	746.7	34522	12.3	13840.3	6473.7	-1331.1	7280.7	1783.6
123.	4.2	-716.5	269.5	2.4	8.3	33.2	54.1	-11.8	5.7	626.8	24918.6	17.2	9752.5	4946.1	-1162.2	7280.7	1783.6
166.	4.7	-968.5	349.5	4.8	12.7	44.2	36.9	-12.9	6.5	526.4	16570.2	19.6	6193.6	3642.6	-993.3	7280.7	1783.6
201.	-0.2	-1165.2	389.4	7.3	15.8	51.7	24.8	-13.6	7.1	465.3	10635.2	17.4	3655.4	2729.7	-824.4	7280.7	1783.6
236.	-10.8	-1286.7	345.9	10.1	16.4	53.3	19.7	-13.6	7.6	468.6	8107.1	10.6	2545.9	2344.7	-655.6	7280.7	1783.6
240.	4.7	-1309.7	297.2	22.3	14.4	46.1	17.3	-12	8.3	515.1	7340.2	44.4	2057.4	2477.9	-486.7	7280.7	1783.6
136.	85	-1162.8	250.7	48.8	16.1	25	10.1	-8.4	9.8	485.4	5168.7	163.8	863.2	2663.3	-317.8	7280.7	1783.6
40.	89.3	-577.3	93.8	100	0	19.5	3.7	-5.3	14.5	681	5076.3	257.3	311.7	4074.4	-148.9	7280.7	1783.6
-0.	0.4	7.2	-2.7	13	87.2	0	0	-9.8	22	68.2	423.4	29.4	11.9	403.3	20.0	7280.7	1783.6
34.	-5.1	-218.9	132	0	0	11.6	90.6	-9.9	3.6	847.5	42621.4	6.2	17258.5	7785.9	-1500.0	7560.8	1783.6
76.	1.6	-462.6	198.1	0.4	3.2	22.8	71.5	-10.9	4.6	726.5	33374.6	13.6	13334.3	6287.4	-1331.1	7560.8	1783.6
118.	5.6	-713.6	274.5	2.5	8.3	34.6	52.4	-12	5.6	607.1	24157.7	18.6	9410.9	4810.7	-1162.2	7560.8	1783.6
	5.9	-935.8	344.3	4.6	12.9	45.2	35.8	-13	6.3	503.2	16110.4	20.1	5981.4	3533.9	-993.3	7560.8	1783.6
	2.1	-1099.8	378.9	5.6	17.2	52.7	23.9	-13.8	6.7	426.9	10295.1	16.3	3512.7	2587.5	-824.4	7560.8	1783.6

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	НЗ	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τυ	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
1783.6	7560.8	-655.6	2110.8	2302.8	12.2	7452.5	399.8	7.1	-14	18.1	53.3	19.3	7.1	350.7	-1182.8	-3.4	198.4
1783.6	7560.8	-486.7	2534.9	2007.8	44.5	7246.8	496.5	8.2	-12.6	16.2	52.3	4.3	27.1	292.4	-1157.2	1.4	206.1
1783.6	7560.8	-317.8	3202.9	1042.8	135.4	5781	572.8	8.9	-9.8	9.7	43.1	0	69.2	175.8	-935.1	34.1	120.1
1783.6	7560.8	-148.9	4291.6	259.5	229.5	5087.7	704.9	12.9	-5.3	2.9	22.5	0	100	48.4	-501.2	49.8	17
1783.6	7560.8	20.0	175.0	0.2	21.2	158.2	29.9	21.8	-10.2	0	0.4	93.9	5.8	-2.4	-0.8	1.4	-1.2
1783.6	7840.9	-1500.0	7647.1	16855.4	11.3	41678.6	834.9	3.7	-10	88.5	12.6	0	0	128.3	-230.7	-1.9	33.9
1783.6	7840.9	-1331.1	6187.4	13006.7	20.8	32631.8	714.9	4.8	-10.9	69.7	23.2	3	2.3	187	-457.1	5.9	70.9
1783.6	7840.9	-1162.2	4769.7	9204.3	28.5	23726.5	597.9	5.8	-11.8	51.2	33.9	7.5	5.3	249.9	-680.9	11.3	105.8
1783.6	7840.9	-993.3	3554.7	5894.1	33.5	15991.8	495.9	6.6	-12.6	35	43.3	11.2	8.8	301.8	-868.6	13.3	132.3
1783.6	7840.9	-824.4	2630.3	3422.1	35.4	10194.6	412	7.1	-13.2	22.8	49.8	14.8	11.6	322.3	-988.9	12.7	143.6
1783.6	7840.9	-655.6	1941.9	1806.7	37.3	6308.6	330.5	7.1	-13.5	14.6	52.2	20	12.9	296.9	-1016.3	13.7	130.5
1783.6	7840.9	-486.7	2689.7	1220.9	86.5	5813.9	469.1	8.7	-11.3	10.7	48.6	0	48.4	240.7	-923.6	14.6	117
1783.6	7840.9	-317.8	4681.1	952.7	190.9	7090.9	793.4	11.8	-6.5	7.6	36.8	0	100	154.7	-701.3	17.8	82.1
1783.6	7840.9	-148.9	5422.0	446.5	245.3	6595.6	897.7	16.3	-5	2.8	17.4	0	100	57.3	-353.3	17.8	23.8
1783.6	7840.9	20.0	617.4	8.8	36.6	640	103.3	21.9	-9.4	0	0.2	80.1	19.8	-1.2	2.2	-2	-0.9
1783.6	8121.0	-1500.0	7591.5	16621.1	19.6	41134.2	830.8	4.1	-10	87.2	12.1	0	2.3	105.8	-214.5	2.3	28.6
1783.6	8121.0	-1331.1	6203.6	12883.2	32.1	32384.8	716.3	5.2	-10.6	68.9	21.7	2.4	6.1	156.2	-420.6	11.3	60.2
1783.6	8121.0	-1162.2	4886.7	9214.9	44.5	23851.8	608.6	6.4	-11.3	50.8	31.2	5.2	11.3	207.1	-616.7	18.2	88.4
1783.6	8121.0	-993.3	3811.0	6017.4	56.7	16482.1	522.5	7.5	-11.7	35	39.1	6	18.5	245.6	-770.5	22.2	107.4
1783.6	8121.0	-824.4	3113.5	3577.4	71.1	10965.7	470.8	8.3	-11.7	22.7	43.9	3.4	29.1	258.1	-853	23.5	111.5
1783.6	8121.0	-655.6	2964.7	1965	96	7597.6	479.8	9.3	-10.9	14.2	44.5	0	47.9	238	-843.9	23.5	98.9
1783.6	8121.0	-486.7	3853.6	1166.3	152.4	6815	641.8	11.2	-8.3	9.1	39.4	0	90.9	191.1	-732.6	21.5	80.8
1783.6	8121.0	-317.8	5434.1	808.1	232	7526.9	905.9	14.5	-5	5.6	28.1	0	100	123.9	-522.5	17.6	55.1
1783.6	8121.0	-148.9	5945.3	481.1	263.4	7175.1	906	18.5	-5	2.3	12.5	0	100	49.8	-239	11.1	21.5
1783.6	8121.0	20.0	2342.9	108.9	109.4	2584.8	388.4	22.4	-6.4	0	0	27.2	74.2	-4.8	26.9	-2.2	-1.8
2200.4	5600.0	-1500.0	8499.8	19299.2	14.1	47198.5	906	4.2	-8.9	100	0	0	0	0	-0.1	0	0
2200.4	5600.0	-1331.1	6531.5	13720.5	19.9	34221.6	760.4	5.4	-10.4	73.3	18.1	3.2	4.5	155.5	-428.9	2.5	72.2
2200.4	5600.0	-1162.2	4578.1	8190.9	23.6	21340.5	613.4	6.8	-12.1	46.9	36	7.6	8.8	315.5	-854.6	3.2	142.3
2200.4	5600.0	-993.3	2813.3	3237	26.6	9707.9	475.4	8.1	-13.6	23	51.4	12.9	12.7	458.5	-1227.7	3.2	200.2
2200.4	5600.0	-824.4	2026.2	1799.8	65.5	5728.1	367.9	9.9	-12.8	13.8	47.6	23.2	14.6	387.5	-1219	37.4	165.5
2200.4	5600.0	-655.6	1504.5	1102.9	98.4	3362.3	279.4	11.7	-11.9	8.2	40.9	33.5	16.1	298.7	-1142.6	66.2	120.4
2200.4	5600.0	-486.7	1179.2	929.4	119.3	2208	208.2	13.7	-10.9	5.3	32.4	44.1	16.9	194.6	-1010.6	84.5	71.2

	N and here a										~					-	
Easting	•	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial		Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2200.4	5600.0	-317.8	920.5	895.1	120.7	1673	148.1	16.5	-10	4	22.4	56.5	15.8	73.7	-824.6	86.8	27.5
2200.4	5600.0	-148.9	568.1	553	104.8	1056.1	90.5	20.2	-9.5	2.8	11.3	73.4	11.8	-46.1	-525.1	76.6	2
2200.4	5600.0	20.0	2.4	0.3	12.4	1.9	1.7	22	-10.5	0	0	99.9	0.1	-0.1	-0.1	0.1	0
2200.4	5880.1	-1500.0	8290.0	18521.9	13.9	45485.2	898.4	3.7	-9.1	96.5	4.4	0	1.2	48	-115.2	-1.2	17.7
2200.4	5880.1	-1331.1	6541.9	13669.2	22.5	34154.5	765.3	4.8	-10.3	73.1	19.3	0.6	5	166.4	-475.2	4.5	76.4
2200.4	5880.1	-1162.2	4702.9	8556.8	31.5	22190	622.8	6.1	-11.7	48.5	35.1	5.4	8.9	301.2	-865.5	10.2	136.8
2200.4	5880.1	-993.3	3152.2	4422.8	48.6	12326.3	489.7	7.4	-12.6	27.9	46	12	12.4	389.5	-1159.7	23.6	171.8
2200.4	5880.1	-824.4	2170.8	2229.1	82.9	6642.8	377.9	8.8	-12.4	15.5	46.9	20.7	14.9	378.2	-1255.4	53.1	158.6
2200.4	5880.1	-655.6	1621.0	1421.3	124	3875.8	287.2	10.2	-11.6	9	4 1.7	30.2	17.1	312.7	-1217.6	89	115.6
2200.4	5880.1	-486.7	1333.8	1451.7	156.6	2771.2	213	11.6	-10.6	6.1	33.6	39.9	18.4	224	-1114.9	118	60.1
2200.4	5880.1	-317.8	1107.5	1840.7	156.1	2498.4	141.8	13.7	-9.7	5.8	24.6	52	16	100.8	-1004.1	120.6	4.2
2200.4	5880.1	-148.9	524.4	1370.1	101.5	1910.2	39.9	18.4	-9.4	6.3	14.8	75.2	3	-109	-883.7	85	-34.1
2200.4	5880.1	20.0	2433.3	0.2	147.9	2440.9	418.4	21.9	-6	0	0	22	79.9	-70.9	13	28.9	0.9
2200.4	6160.2	-1500.0	8194.7	18198.5	12.8	44786.8	894.3	3.3	-9.3	95.1	6.5	0	1.3	68	-173.5	-2.3	25.7
2200.4	6160.2	-1331.1	6564.9	13752.9	23.3	34371.7	767.7	4.4	-10.3	73.6	19.5	0	4.6	164.8	-497.3	5.6	76.8
2200.4	6160.2	-1162.2	4893.0	9210.1	36.5	23688.5	633.8	5.6	-11.4	51.4	32.6	5.2	8	269	-836.5	15.6	125.8
2200.4	6160.2	-993.3	3456.4	5450.1	58	14678.1	507.5	6.9	-12	32.5	41.7	12	11.2	338.2	-1103.3	33.2	154
2200.4	6160.2	-824.4	2440.6	3054.7	93.5	8586.6	398.6	8	-12	19.3	44	20.2	14.1	349.1	-1234.9	63.5	149.2
2200.4	6160.2	-655.6	1852.3	2008.2	143.7	5275.6	308.7	8.9	-11.3	11.6	40.3	28.9	17	319.7	-1228	107.2	113.5
2200.4	6160.2	-486.7	1606.6	2081.5	199.8	3984.6	234.5	9.5	-10.2	8	32.8	37.3	20	283.1	-1115.8	156.6	56.1
2200.4	6160.2	-317.8	1565.1	3222.8	222.9	3942.8	171.9	9.9	-9.4	7.5	24.9	45.1	21.3	244.2	-981.2	178.1	-8.7
2200.4	6160.2	-148.9	1520.8	5704.9	131	4432	108.9	11.2	-9.6	9.7	19.5	53.7	16.6	165.6	-975.9	97	-67.6
2200.4	6160.2	20.0	460.2	0.2	73	587.3	81.1	23.5	-9.4	1.8	2.8	80.4	15.1	-171.6	-291.7	42.1	-16
2200.4	6440.3	-1500.0	8179.3	18197.9	10.6	44796.8	892.9	3	-9.3	95.2	6.8	0	0.7	66	-188.1	-3.5	26.9
2200.4	6440.3	-1331.1	6623.9	13998.3	21.1	34948.1	771.2	4.1	-10.3	74.8	18.8	0.3	3.6	152.6	-491.8	4.7	74.7
2200.4	6440.3	-1162.2	5052.1	9759.9	34.1	24985.1	645	5.3	-11.2	54.1	30.8	5.8	6.6	245.3	-808.2	14.9	120.1
2200.4	6440.3	-993.3	3687.7	6173	53.8	16439.6	527.8	6.5	-11.8	36.2	39.3	12.3	9.6	308.9	-1069.8	31	149.6
2200.4	6440.3	-824.4	2682.1	3692.8	86	10302.9	428.5	7.7	-11.9	23	42.1	20.1	12.5	326.3	-1223.5	58.1	153.8
2200.4	6440.3	-655.6	2075.5	2397.6	139.2	6689.7	346.2	8.6	-11.2	14.7	38.6	28.8	16.1	314.8	-1233.8	103.9	
2200.4	6440.3	-486.7	1837.0	2118.9	223.9	5107.7	272	9	-10	9.9	30.3	37.7	20.7	329.9	-1066.5	178.1	
2200.4	6440.3	-317.8	1865.3	2585.5	324.8	4826.7	203.7	9	-8.7	7.3	20	46	25.9	414.4	-712.8	269.6	
2200.4	6440.3	-148.9	1723.2	2464	303.3	4091.6	196.2	13.4	-7.7	5.1	9.4		27.9	403.4	-389.8	258.3	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
2200.4 6720.4 -1500.0 8178.6 1828.4 7.8 44991.5 690.8 2.7 -9.4 557 6.6 0 0 57.1 -183.4 -4.9 25.8 2200.4 6720.4 -1331.1 6661.6 14198 16.6 5941.42 772.4 3.8 -10.3 57.8 18.5 1.3 2.3 144.1 -479.1 2.1 73.4 2200.4 6720.4 -198.2 5139.6 1003.3 266.2 524.1 1.5 1.3 5.7 0.4 6.3 51 2320.4 565.6 1.1 362.7 1.5 1.5 1.5 1.5 3.62.1 1.0 1.5 1.5 1.5 1.6 1.4 3.66.7 1.4 3.66.7 1.4 3.66.7 1.4 3.66.7 1.4 4.67.7 2.86.3 1.01 1.2.3 2.8.3 3.9.6 1.9.1 2.8.4 2.56.6 1.21 2.20 4.53.4 2.50.6 1.21 2.2.4 4.53.4 2.50.6 1.21 2.2.4 2.2.4 2.2.4 2.2.2.4 1.23.3 3.8.6 1.9	m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/i	mg/l	mg/l	mg/l
22004 67204 -1331.1 6661.6 14198 1.6.6 35414.2 772.4 3.8 -10.3 75.8 18.5 1.3 2.3 144.1 479.1 1.2.1 73.4 22004 67204 -1162.2 5139.6 1003.3 2.6 25741.2 652.4 5.1 -11.3 55.7 30.4 6.3 5.1 23.9.9 -791.1 9.7 120.4 22004 67204 -824.4 2846.5 3999.2 59.8 11358.3 463.6 7.8 -11.3 7.5 38.4 22.1 24.4 286.3 1301.2 263.3 166.9 2200.4 6720.4 -686.7 140.3 176.5 38.4 27.5 11.4 8.4 7.6 14.3 51.5 26.2 41.4 55.7 36.4 421.5 31.4 22.0 47.7 25.8 31.1 22.0 47.1 10.6 -10.6 14.3 51.5 26.2 41.4 57.7 36 423.6 34.4 36.5 -10.6 12.1 2200.4 7000.6 -150.0 0	2200.4	6440.3	20.0	309.3	1218.7	31.3	667.4	49.3	21.3	-10	1.1	2	91.8	5.2	51.2	-109.7	18.2	10
22004 67204 -11622 5139.6 10063.3 266 25741.2 652.4 5.1 -11.3 557 30.4 6.3 51 239.9 -791.1 9.7 120.4 22004 6720.4 992.3 382.9 6523.3 40.1 17416.7 546.2 6.4 -12 38.4 39.1 12.1 8.1 306.2 -109.5 20 155.8 22004 6720.4 -486.7 1440.3 1786.3 158.5 5602.6 334.7 10.6 -10.1 12.3 28.3 39.6 19.1 286.3 -130.1 283.3 166.9 12.2 12.2 41.4 64.7 148.5 120.2 128.4 128.2 12.2 122.4 14.4 55.7 36 423.6 -33.4 202.5 121.1 22004 6720.4 -148.9 1886.0 513.5 285.3 4174.2 241.8 156 -7.5 4 44 55.7 36 423.6 -334.5 250.5 121.1 2200.4 700.6 -1162.2 513.5 285.4	2200.4	6720.4	-1500.0	8178.6	18288.4	7.8	44991.5	890.8	2.7	-9.4	95.7	6.6	0	0	57.1	-183.4	-4.9	25.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200.4	6720.4	-1331.1	6661.6	14198	16.6	35414.2	772.4	3.8	-10.3	75.8	18.5	1.3	2.3	1 44.1	-479.1	2.1	73.4
22004 67204 -8244 2848.5 3999.2 59.8 11368.3 463.6 7.8 -12.1 25.6 42.4 19.2 11 32.0 1.42.4 35.6 173.1 2200.4 6720.4 -655.6 2234.4 2523.7 93.3 7688.4 401.6 9.3 -11.5 17.5 38.8 28.1 14.3 226.3 -1301.2 63.3 166.9 2200.4 6720.4 -478.7 1940.3 1786.3 168.5 5802.6 33.7 10.6 -10.1 12.3 28.3 39.6 19.1 28.7 114.8 15.5 2.62 451.4 467.7 28.4 14.4 47.7 28.8 31 220.4 707.0 0 0.691.1 196.7 -3.4 -3.6.5 -10.6 12.8 2200.4 7000.6 -1331.1 660.5 1410.8 11.8 3522.7 765.2 3.7 -10.6 75.5 19.6 1.9 1 157.1 -48.4 -39.2 57.8 -768.8 3.9 124.3 2200.4 7000.6 -1182.2 <td>2200.4</td> <td>6720.4</td> <td>-1162.2</td> <td>5139.6</td> <td>10063.3</td> <td>26.6</td> <td>25741.2</td> <td>652.4</td> <td>5.1</td> <td>-11.3</td> <td>55.7</td> <td>30.4</td> <td>6.3</td> <td>5.1</td> <td>239.9</td> <td>-791.1</td> <td>9.7</td> <td>120.4</td>	2200.4	6720.4	-1162.2	5139.6	10063.3	26.6	25741.2	652.4	5.1	-11.3	55.7	30.4	6.3	5.1	239.9	-791.1	9.7	120.4
22004 6720.4 -655.6 2234.4 252.7 93.3 768.4 401.6 9.3 -11.5 17.5 38.8 28.1 14.3 228.3 -130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 130.1 28.3 120.2 63.3 166.9 22.0 672.0 4 44.8 55.7 64 44.4 55.7 64 44.4 55.7 64 44.6 55.7 62.4 33.4 36.5 -10.6 12.8 22004 700.0 675.7 0.2 20.4 771.1 172.7 27.3 7.5 19.6 19 115.7 44.4 55.7 10.3 40.07 75.9 19.0 19 115.7 44.4 0.7 75.9 10.3 14.3 32.7 10.5 11.6 55.8 31.6 6.4 3.9	2200.4	6720.4	-993.3	3824.9	6529.3	40.1	17418.7	546.2	6.4	-12	38.4	39.1	12.1	8.1	306.2	-1059.5	20	155.8
2200.4 6720.4 -486.7 1940.3 1786.3 168.5 5802.6 334.7 10.6 -10.1 12.3 28.3 38.6 19.1 284.7 -1148.5 122.4 2200.4 6720.4 -317.8 1396.1 1344.7 315.9 5114.1 237.5 11.4 -8.4 7.6 14.3 515.5 26.2 451.4 -647.7 258.8 31 2200.4 6720.4 -20.0 675.7 0.2 20.4 77.1 12.2 28.9 0.2 0 79.1 21 -3.4 36.5 -10.6 128.8 2200.4 7000.6 -1500.0 8096.1 18128.2 4.8 44620.2 881.4 2.7 -9.6 95 7.7 0 0 69.1 -196.7 -6.3 28.4 2200.4 7000.6 -1162.2 612.3 10034 18.6 2573.2 650.4 5 -11.6 75.8 31.6 6.4 3.9 257.8 -78.8 3.9 124.3 2200.4 7000.6 -824.4 293.9 2971.2 <	2200.4	6720.4	-824.4	2848.5	3999.2	59.8	11358.3	463.6	7.8	-12.1	25.6	42.4	19.2	11	320.2	-1242.4	35.6	173.1
2200.4 6720.4 -317.8 1936.1 1344.7 315.9 5114.1 237.5 11.4 -8.4 7.6 14.3 51.5 26.2 451.4 -647.7 228 31 2200.4 6720.4 -148.9 1896.0 513.5 285.3 4174.2 241.8 15.6 -7.5 4 4.4.4 55.7 36 423.6 -33.4.5 250.5 12.1 2200.4 6720.4 20.0 675.7 0.2 20.4 771.1 127.2 22.8 -9.3 0.2 0 79.1 21 -3.4 -36.5 -10.6 12.8 2200.4 7000.6 -1331.1 6605.9 14108.5 11.8 35224.7 765.2 3.7 -10.6 75.5 19.6 1.9 1 157.1 -484 -0.7 75.9 2200.4 7000.6 -162.2 513.7 10034 18.6 25735.2 650.4 5 -11.6 55.8 31.6 6.4 3.9 257.8 -788.8 3.9 124.3 2200.4 7000.6 -824.4 2	2200.4	6720.4	-655.6	2234.4	2523.7	93.3	7688.4	401.6	9.3	-11.5	17.5	38.8	28.1	14.3	286.3	-1301.2	63.3	166.9
2200.4 6720.4 -148.9 1896.0 513.5 285.3 4174.2 241.8 15.6 -7.5 4 4.4 4.557 36 423.6 -334.5 225.5 12.1 2200.4 6720.4 20.0 675.7 0.2 20.4 771.1 1272 22.8 -9.3 0.2 0 79.1 21 -3.4 -36.5 -10.6 12.8 2200.4 7000.6 -1500.0 8096.1 18128.2 4.8 44620.2 881.4 2.7 -9.6 95 7.7 0 0 691.1 -16.7 6.3 28.4 2200.4 7000.6 -1182.2 513.7 10034 118.6 25735.2 650.4 5 -11.6 55.8 31.6 6.4 3.9 257.8 -78.8 3.9 124.3 2200.4 7000.6 -933.3 3866.6 6502.6 261.1 17509 554.1 6.4 -12.4 38.7 41 11.2 7.3 335.5 -1059.1 8.2 164.9 2200.4 7000.6 -824.4 2939.2 3971.2 31.6 1159.9 491.2 8 12.7 28.5 454.4 16.5 10.5 334.4 -126.4 10.2 12.7 28.5 454.4 16.5 10.5 344.4 128.6 142.9 22.04 700.6 -486.7 $202.1.9$ 142.9 42.7 6450.8 4254.4 12.3 -10.9 15.9 30.8 37.4	2200.4	6720.4	-486.7	1940.3	1786.3	168.5	5802.6	334.7	10.6	-10.1	12.3	28.3	39.6	19.1	284.7	-1148.5	128.2	122.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2200.4	6720.4	-317.8	1936.1	1344.7	315.9	5114.1	237.5	11.4	-8.4	7.6	14.3	51.5	26.2	451.4	-647.7	258	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200.4	6720.4	-148.9	1896.0	513.5	285.3	4174.2	241.8	15.6	-7.5	4	4.4	55.7	36	423.6	-334.5	250.5	12.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200.4	6720.4	20.0	675.7	0.2	20.4	771.1	127.2	22.8	-9.3	0.2	0	79.1	21	-3.4	-36.5	-10.6	12.8
22004 700.6 -116.2 512.7 10034 18.6 2573.5.2 650.4 5 -11.6 55.8 31.6 6.4 3.9 257.8 -788.8 3.9 124.3 2200.4 7000.6 -993.3 3856.6 6502.6 26.1 17509 554.1 6.4 -12.4 38.7 41 11.2 7.3 335.5 -1059.1 8.2 164.9 2200.4 7000.6 -824.4 293.2 3971.2 31.6 11594.9 491.2 8 -12.7 26.5 45.4 16.5 10.5 354.4 -1266.4 10.2 195.4 2200.4 7000.6 -856.6 239.8 261.8 30.8 8407.2 464.7 10 -12.3 20 42.9 23.8 12.7 28.1 1.400 7 215.4 2200.4 7000.6 -846.7 202.9 174.9 42.7 6450.8 28.7 13.5 -8.4 9.9 12 56.3 21.8 321.6 -949.8 144.5 814 2200.4 7000.6 -148.9 <t< td=""><td>2200.4</td><td>7000.6</td><td>-1500.0</td><td>8096.1</td><td>18128.2</td><td>4.8</td><td>44620.2</td><td>881.4</td><td>2.7</td><td>-9.6</td><td>95</td><td>7.7</td><td>0</td><td>0</td><td>69.1</td><td>-196.7</td><td>-6.3</td><td>28.4</td></t<>	2200.4	7000.6	-1500.0	8096.1	18128.2	4.8	44620.2	881.4	2.7	-9.6	95	7.7	0	0	69.1	-196.7	-6.3	28.4
22004 700.6 -993.3 3856.6 6502.6 25.1 17509 554.1 6.4 -12.4 38.7 41 11.2 7.3 335.5 -105.9 8.2 164.9 22004 7000.6 -824.4 2939.2 3971.2 31.6 11594.9 491.2 8 -12.7 26.5 45.4 16.5 10.5 354.4 -126.4 10.2 195.4 2200.4 7000.6 -655.6 2390.8 2613.8 30.8 8407.2 464.7 10 -12.3 20 42.9 23.8 12.7 281.1 -1400 7 215.4 2200.4 7000.6 -466.7 2021.9 1742.9 42.7 6450.8 425.4 12.3 -10.9 15.9 30.8 37.4 15.7 163.9 -142.3 114.5 81.6 2200.4 7000.6 -466.7 2021.9 1742.9 42.7 6450.8 425.4 12.3 -10.9 15.9 30.8 37.4 15.7 163.9 -142.3 114.5 81.6 2200.4 7000.6 -20.9 456.7 12.6 508.4 283.7 18.2 -6.5 4.1 6 35.6 54.3 264.7 $73.1.2$ 200.3 392.2 2200.4 7000.6 20.0 456.7 12.6 305.5 508.4 80.7 22.5 9.7 0 0 85.9 14.5 4.4 14.9 16.6 2200.4 7280.7 </td <td>2200.4</td> <td>7000.6</td> <td>-1331.1</td> <td>6605.9</td> <td>14108.5</td> <td>11.8</td> <td>35224.7</td> <td>765.2</td> <td>3.7</td> <td>-10.6</td> <td>75.5</td> <td>19.6</td> <td>1.9</td> <td>1</td> <td>157.1</td> <td>-484</td> <td>-0.7</td> <td>75.9</td>	2200.4	7000.6	-1331.1	6605.9	14108.5	11.8	35224.7	765.2	3.7	-10.6	75.5	19.6	1.9	1	157.1	-484	-0.7	75.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200.4	7000.6	-1162.2	5123.7	10034	18.6	25735.2	650.4	5	-11.6	55.8	31.6	6.4	3.9	257.8	-788.8	3.9	124.3
2200.4 7000.6 -655.6 2390.8 2613.8 30.8 8407.2 464.7 10 -12.3 20 42.9 23.8 12.7 281.1 -140.0 7 215.4 2200.4 7000.6 -486.7 2021.9 1742.9 42.7 6450.8 425.4 12.3 -10.9 15.9 30.8 37.4 15.7 163.9 -1423.8 15 196.7 2200.4 7000.6 -317.8 1856.1 1041.5 182.6 5085.4 287 13.5 -8.4 9.9 12 56.3 21.8 321.6 -949.8 144.5 81.4 2200.4 7000.6 -148.9 2331.7 489.6 273.2 4256.8 363.7 18.2 -6.5 4.1 6 35.6 54.3 264.7 -371.2 200.3 39.2 2200.4 7080.6 -148.9 2331.7 489.6 273.2 4256.8 363.7 18.2 -6.5 4.1 6 35.6 54.3 264.7 -371.2 200.3 39.2 2200.4 7280.7 -1331.1 </td <td>2200.4</td> <td>7000.6</td> <td>-993.3</td> <td>3856.6</td> <td>6502.6</td> <td>26.1</td> <td>17509</td> <td>554.1</td> <td>6.4</td> <td>-12.4</td> <td>38.7</td> <td>41</td> <td>11.2</td> <td>7.3</td> <td>335.5</td> <td>-1059.1</td> <td>8.2</td> <td>164.9</td>	2200.4	7000.6	-993.3	3856.6	6502.6	26.1	17509	554.1	6.4	-12.4	38.7	41	11.2	7.3	335.5	-1059.1	8.2	164.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200.4	7000.6	-824.4	2939.2	3971.2	31.6	11594.9	491.2	8	-12.7	26.5	45.4	16.5	10.5	354.4	-1266.4	10.2	195.4
2200.4 700.6 -317.8 1856.1 1041.5 182.6 5085.4 287 13.5 -8.4 9.9 12 56.3 21.8 321.6 -949.8 144.5 81.4 2200.4 700.6 -148.9 2331.7 489.6 273.2 4256.8 363.7 18.2 -6.5 4.1 6 35.6 54.3 264.7 -371.2 200.3 39.2 2200.4 700.6 20.0 456.7 12.6 30.5 508.4 80.7 22.5 -9.7 0 0 85.9 14.5 4.4 14.9 1.6 3.7 2200.4 7280.7 -1500.0 7931.5 17699.6 2.9 43643.3 865.3 2.7 -9.9 92.9 10.1 0 0 99.6 -229.6 -7.1 34.5 2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -993.3 3793.4	2200.4	7000.6	-655.6	2390.8	2613.8	30.8	8407.2	464.7	10	-12.3	20	42.9	23.8	12.7	281.1	-1400	7	215.4
2200.4 7000.6 -148.9 2331.7 489.6 273.2 4256.8 363.7 18.2 -6.5 4.1 6 35.6 54.3 264.7 -371.2 200.3 39.2 2200.4 7000.6 20.0 456.7 12.6 30.5 508.4 80.7 22.5 -9.7 0 0 85.9 14.5 4.4 14.9 1.6 3.7 2200.4 7280.7 -1500.0 7931.5 17699.6 2.9 43643.3 865.3 2.7 -9.9 92.9 10.1 0 0 99.6 -229.6 -7.1 34.5 2200.4 7280.7 -131.1 6462.3 13747 9 34412.1 749.8 3.8 -10.8 73.8 21.7 2.2 0.1 184.9 -504.3 -2.2 80.3 2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -993.3 3793.4	2200.4	7000.6	-486.7	2021.9	1742.9	42.7	6450.8	425.4	12.3	-10.9	15.9	30.8	37.4	15.7	163.9	-1423.8	15	196.7
2200.4 700.6 20.0 456.7 12.6 30.5 508.4 80.7 22.5 -9.7 0 0 85.9 14.5 4.4 14.9 1.6 3.7 2200.4 7280.7 -1500.0 7931.5 17699.6 2.9 43643.3 865.3 2.7 -9.9 92.9 10.1 0 0 99.6 -229.6 -7.1 34.5 2200.4 7280.7 -1331.1 6462.3 13747 9 34412.1 749.8 3.8 -10.8 73.8 21.7 2.2 0.1 184.9 -504.3 -2.2 80.3 2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -93.3 3793.4 6217.9 19.7 16950.3 546.2 6.5 -12.8 37.5 43.7 10.1 7.2 376.8 -1047.4 2.6 168.1 2200.4 7280.7 -824.4 2944.8 <td>2200.4</td> <td>7000.6</td> <td>-317.8</td> <td>1856.1</td> <td>1041.5</td> <td>182.6</td> <td>5085.4</td> <td>287</td> <td>13.5</td> <td>-8.4</td> <td>9.9</td> <td>12</td> <td>56.3</td> <td>21.8</td> <td>321.6</td> <td>-949.8</td> <td>144.5</td> <td>81.4</td>	2200.4	7000.6	-317.8	1856.1	1041.5	182.6	5085.4	287	13.5	-8.4	9.9	12	56.3	21.8	321.6	-949.8	144.5	81.4
2200.4 7280.7 -1500.0 7931.5 17699.6 2.9 43643.3 865.3 2.7 -9.9 92.9 10.1 0 0 99.6 -229.6 -7.1 34.5 2200.4 7280.7 -1331.1 6462.3 13747 9 34412.1 749.8 3.8 -10.8 73.8 21.7 2.2 0.1 184.9 -504.3 -2.2 80.3 2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -993.3 3793.4 6217.9 19.7 16950.3 546.2 6.5 -12.8 37.5 43.7 10.1 7.2 376.8 -1047.4 2.6 168.1 2200.4 7280.7 -824.4 2944.8 3584.3 23.9 10898.3 492.7 8.2 -13.3 24.8 49.7 12.7 12.5 436.8 -124.3 1.1 201.5 2200.4 7280.7 -655.6 <td></td> <td>7000.6</td> <td>-148.9</td> <td>2331.7</td> <td>489.6</td> <td>273.2</td> <td>4256.8</td> <td>363.7</td> <td>18.2</td> <td>-6.5</td> <td>4.1</td> <td>6</td> <td>35.6</td> <td>54.3</td> <td>264.7</td> <td>-371.2</td> <td>200.3</td> <td>39.2</td>		7000.6	-148.9	2331.7	489.6	273.2	4256.8	363.7	18.2	-6.5	4.1	6	35.6	54.3	264.7	-371.2	200.3	39.2
2200.4 7280.7 -1331.1 6462.3 13747 9 34412.1 749.8 3.8 -10.8 73.8 21.7 2.2 0.1 184.9 -504.3 -2.2 80.3 2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -993.3 3793.4 6217.9 19.7 16950.3 546.2 6.5 -12.8 37.5 43.7 10.1 7.2 376.8 -1047.4 2.6 168.1 2200.4 7280.7 -824.4 2944.8 3584.3 23.9 10898.3 492.7 8.2 -13.3 24.8 49.7 12.7 12.5 436.8 -142.6 1.1 201.5 2200.4 7280.7 -655.6 2582.1 2790.5 7.9 9067.8 501.9 10.1 -13.1 21.5 48.8 16.9 12.6 352.9 -13.89 2.4.5 2200.4 7280.7 -486.7 2	2200.4	7000.6	20.0	456.7	12.6	30.5	508.4	80.7	22.5	-9.7	0	0	85.9	14.5	4.4	14.9	1.6	3.7
2200.4 7280.7 -1162.2 5017.6 9751.7 14.2 25128 637.7 5 -11.9 54.5 33.7 6.4 3.1 284.7 -791.8 1 127.2 2200.4 7280.7 -993.3 3793.4 6217.9 19.7 16950.3 546.2 6.5 -12.8 37.5 43.7 10.1 7.2 376.8 -1047.4 2.6 168.1 2200.4 7280.7 -824.4 2944.8 3584.3 23.9 10898.3 492.7 8.2 -13.3 24.8 49.7 12.7 12.5 436.8 -1243.6 1.1 201.5 2200.4 7280.7 -655.6 2582.1 2790.5 7.9 9067.8 501.9 10.1 -13.1 21.5 48.8 16.9 12.6 352.9 -1389.2 -14.2 240 2200.4 7280.7 -486.7 2483.0 2484.8 13.1 8477.8 500.5 10.5 -11.7 20.8 38.2 26.3 14.6 250.3 -1546.5 -13.9 234.5 2200.4 7280.7		7280.7	-1500.0	7931.5	17699.6	2.9	43643.3	865.3	2.7	-9.9	92.9	10.1	0	0	99.6	-229.6	-7.1	34.5
2200.4 7280.7 -993.3 3793.4 6217.9 19.7 16950.3 546.2 6.5 -12.8 37.5 43.7 10.1 7.2 376.8 -1047.4 2.6 168.1 2200.4 7280.7 -824.4 2944.8 3584.3 23.9 10898.3 492.7 8.2 -13.3 24.8 49.7 12.7 12.5 436.8 -1243.6 1.1 201.5 2200.4 7280.7 -655.6 2582.1 2790.5 7.9 9067.8 501.9 10.1 -13.1 21.5 48.8 16.9 12.6 352.9 -1389.2 -14.2 240 2200.4 7280.7 -486.7 2483.0 2484.8 13.1 8477.8 500.5 10.5 -11.7 20.8 38.2 26.3 14.6 250.3 -1546.5 -13.9 234.5 2200.4 7280.7 -317.8 1477.1 951.4 95.9 4345.1 270.2 7.5 -11.2 11.5 28.1 48.4 12.1 120.2 -1275.9 70.5 102.1 2200.4 7280.7 <td></td> <td>7280.7</td> <td>-1331.1</td> <td>6462.3</td> <td>13747</td> <td>9</td> <td>34412.1</td> <td>749.8</td> <td>3.8</td> <td>-10.8</td> <td>73.8</td> <td>21.7</td> <td>2.2</td> <td>0.1</td> <td>184.9</td> <td>-504.3</td> <td>-2.2</td> <td>80.3</td>		7280.7	-1331.1	6462.3	13747	9	34412.1	749.8	3.8	-10.8	73.8	21.7	2.2	0.1	184.9	-504.3	-2.2	80.3
2200.4 7280.7 -824.4 2944.8 3584.3 23.9 10898.3 492.7 8.2 -13.3 24.8 49.7 12.7 12.5 436.8 -1243.6 1.1 201.5 2200.4 7280.7 -655.6 2582.1 2790.5 7.9 9067.8 501.9 10.1 -13.1 21.5 48.8 16.9 12.6 352.9 -1389.2 -14.2 240 2200.4 7280.7 -486.7 2483.0 2484.8 13.1 8477.8 500.5 10.5 -11.7 20.8 38.2 26.3 14.6 250.3 -1546.5 -13.9 234.5 2200.4 7280.7 -317.8 1477.1 951.4 95.9 4345.1 270.2 7.5 -11.2 11.5 28.1 48.4 12.1 120.2 -1275.9 70.5 102.1 2200.4 7280.7 -148.9 1012.4 279.9 233.8 1782.7 204.3 12.4 -10.5 5.3 23.8 51.8 19.1 -43.3 -765.2 199.4 55 2200.4 7280.7	2200.4	7280.7	-1162.2	5017.6	9751.7	14.2	25128	637.7	5	-11.9	54.5	33.7	6.4	3.1	284.7	-791.8	1	127.2
2200.4 7280.7 -655.6 2582.1 2790.5 7.9 9067.8 501.9 10.1 -13.1 21.5 48.8 16.9 12.6 352.9 -1389.2 -14.2 240 2200.4 7280.7 -486.7 2483.0 2484.8 13.1 8477.8 500.5 10.5 -11.7 20.8 38.2 26.3 14.6 250.3 -1546.5 -13.9 234.5 2200.4 7280.7 -317.8 1477.1 951.4 95.9 4345.1 270.2 7.5 -11.2 11.5 28.1 48.4 12.1 120.2 -1275.9 70.5 102.1 2200.4 7280.7 -148.9 1012.4 279.9 233.8 1782.7 204.3 12.4 -10.5 5.3 23.8 51.8 19.1 -43.3 -765.2 199.4 55 2200.4 7280.7 20.0 633.1 24 36.1 680.6 105.9 22.2 -9.4 0 0 80.3 20.2 -1.9 13 -3.2 -0.8 2200.4 7280.7 20.0	2200.4	7280.7	-993.3	3793.4	6217.9	19.7	16950.3	546.2	6.5	-12.8	37.5	43.7	10.1	7.2	376.8	-1047.4	2.6	168.1
2200.4 7280.7 -486.7 2483.0 2484.8 13.1 8477.8 500.5 10.5 -11.7 20.8 38.2 26.3 14.6 250.3 -1546.5 -13.9 234.5 2200.4 7280.7 -317.8 1477.1 951.4 95.9 4345.1 270.2 7.5 -11.2 11.5 28.1 48.4 12.1 120.2 -1275.9 70.5 102.1 2200.4 7280.7 -148.9 1012.4 279.9 233.8 1782.7 204.3 12.4 -10.5 5.3 23.8 51.8 19.1 -43.3 -765.2 199.4 55 2200.4 7280.7 20.0 633.1 24 36.1 680.6 105.9 22.2 -9.4 0 0 80.3 20.2 -1.9 13 -3.2 -0.8	2200.4	7280.7	-824.4	2944.8	3584.3	23.9	10898.3	492.7	8.2	-13.3	24.8	49.7	12.7	12.5	436.8	-1243.6	1.1	201.5
2200.4 7280.7 -317.8 1477.1 951.4 95.9 4345.1 270.2 7.5 -11.2 11.5 28.1 48.4 12.1 120.2 -1275.9 70.5 102.1 2200.4 7280.7 -148.9 1012.4 279.9 233.8 1782.7 204.3 12.4 -10.5 5.3 23.8 51.8 19.1 -43.3 -765.2 199.4 55 2200.4 7280.7 20.0 633.1 24 36.1 680.6 105.9 22.2 -9.4 0 0 80.3 20.2 -1.9 13 -3.2 -0.8	2200.4	7280.7	-655.6	2582.1	2790.5	7.9	9067.8	501.9	10.1	-13.1	21.5	48.8	16.9	12.6	352.9	-1389.2	-14.2	240
2200.4 7280.7 -148.9 1012.4 279.9 233.8 1782.7 204.3 12.4 -10.5 5.3 23.8 51.8 19.1 -43.3 -765.2 199.4 55 2200.4 7280.7 20.0 633.1 24 36.1 680.6 105.9 22.2 -9.4 0 0 80.3 20.2 -1.9 13 -3.2 -0.8	2200.4	7280.7	-486.7	2483.0	2484.8	13.1	8477.8	500.5	10.5	-11.7	20.8	38.2	26.3	14.6	250.3	-1546.5	-13.9	234.5
2200.4 7280.7 20.0 633.1 24 36.1 680.6 105.9 22.2 -9.4 0 0 80.3 20.2 -1.9 13 -3.2 -0.8	2200.4	7280.7	-317.8	1477.1	951.4	95. 9	4345.1	270.2	7.5	-11.2	11.5	28.1	48.4	12.1	120.2	-1275.9	70.5	102.1
		7280.7	-148.9			233.8	1782.7	204.3	12.4	-10.5	5.3	23.8	51.8	19.1	-43.3	-765.2	199.4	55
2200.4 7560.8 -1500.0 7776.7 17284.6 4.1 42682.1 850.1 2.9 -10 90.9 11.9 0 0 119.3 -250.6 -6 37.9	2200.4	7280.7	20.0	633.1	24	36.1	680.6	105.9	22.2	-9.4	0	0	80.3	20.2	-1.9	13	-3.2	-0.8
	2200.4	7560.8	-1500.0	7776.7	17284.6	4.1	42682.1	850.1	2.9	-10	90.9	11.9	0	0	119.3	-250.6	-6	37.9

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2200.4	7560.8	-1331.1	6315.5	13360.5	10.2	33529.1	733.6	3.9	-11	71.9	23.5	2.3	0.1	201.3	-514.2	-1	81.5
2200.4	7560.8	-1162.2	4893.0	9431.7	15.3	24413.5	621.8	5.1	-12	52.9	35.2	6.3	3.2	294.1	-782.8	1.8	125.3
2200.4	7560.8	-993.3	3701.8	6006.6	19.7	16500.9	531.3	6.5	-12.9	36.3	45.1	9.4	7.4	377.2	-1012.7	2.5	162.6
2200.4	7560.8	-824.4	2900.0	3622.5	20.8	11011.2	479.5	8.2	-13.5	24.8	51.2	11.5	11.8	417.7	-1171	-0.7	192.3
2200.4	7560.8	-655.6	2641.0	2799.2	15.7	9165.2	493.7	10.6	-13.3	20.9	51.9	11.5	15.4	376.1	-1240.4	-10	222.8
2200.4	7560.8	-486.7	3075.4	3321.5	23.6	10633.8	602.5	14.6	-12.5	23.1	48.6	3	25.1	310.7	-1170.2	-16.1	260.2
2200.4	7560.8	-317.8	2875.8	2395.1	67.8	8468.9	529	12.9	-11.1	17.8	40.2	4.5	37.4	175.9	-1093.6	7.5	170.6
2200.4	7560.8	-148.9	3221.2	585.7	191.3	4864.5	516.7	11.3	-6.9	6.2	20.4	0	83.8	34.4	-733.3	64.1	19.5
2200.4	7560.8	20.0	0.4	0.2	19	0.2	1.4	21.3	-10.6	0	0.8	100	0	-6	-13.3	8	-2.2
2200.4	7840.9	-1500.0	7682.6	16999.2	8.8	42012.9	840.8	3.2	-10.1	89.4	12.5	0	0	118.8	-247	-3.3	36.5
2200.4	7840.9	-1331.1	6238.8	13100.8	16.3	32942.1	724.7	4.2	-11	70.5	23.7	2.1	1.7	195.8	-498.8	2.3	77.2
2200.4	7840.9	-1162.2	4847.8	9224.7	23.1	23979.4	614.9	5.4	-11.9	51.6	35.1	5.4	5.7	278.1	-748.6	5.7	116.9
2200.4	7840.9	-993.3	3712.8	5901.3	29.9	16340.2	528.6	6.7	-12.6	35.4	44.3	7.1	11.3	343.1	-949 .1	6.8	147.9
2200.4	7840.9	-824.4	2984.1	3570.3	36.7	11026.3	479.7	8.3	-12.9	23.9	49.7	6.8	18.5	365.9	-1061.6	5.5	165.5
2200.4	7840.9	-655.6	2794.8	2382.5	49	8467	489.5	10.3	-12.4	17.7	50.4	1.2	30.1	336.9	-1063.3	2.9	170.5
2200.4	7840.9	-486.7	3565.4	2114.2	91.7	8609.2	634.7	13.3	-10.4	15.3	46.1	0	62.5	272.9	-943	1.2	166.3
2200.4	7840.9	-317.8	4884.1	1608.3	175.9	8740.5	835.5	15	-6.5	11. 2	34.6	0	100	170.9	-745.2	7.4	111.5
2200.4	7840.9	-148.9	5508.8	700.6	241.5	7285.4	906	17.2	-5	4.4	15.8	0	100	60.2	-402.4	14.7	32.4
2200.4	7840.9	20.0	710.7	30.1	41.2	798	118.2	22	-9.3	0	0	77.7	22.5	-1.1	2.5	-1.8	-1
2200.4	8121.0	-1500.0	7655.2	16822.8	16.3	41614.7	839	3.7	-10	88.3	11.8	0	1.5	103	-222.5	0	31.3
2200.4	8121.0	-1331.1	6269.6	13010.8	26.2	32778	728.1	4.8	-10.8	69.7	22.4	1.4	5.4	172.4	-456.3	6.4	68
2200.4	8121.0	-1162.2	4958.3	9233.2	36.8	24095.7	626.4	6	-11.5	51.3	32.9	3.1	11.2	243.3	-682.4	10.7	102.5
2200.4	8121.0	-993.3	3939.3	5996	49.5	16744.3	553.7	7.4	-11.9	35.3	41	2	20.2	294.7	-852.7	13	127
2200.4	8121.0	-824.4	3387.1	3656.6	67.4	11576.9	528	8.9	-11.7	23.5	45.2	0	34	308.7	-929.3	13.4	135.7
2200.4	8121.0	-655.6	3447.1	2254.2	97.4	8809.5	573.4	10.8	-10.5	15.9	44.6	0	57.1	281.9	-898.7	12.9	128.6
2200.4	8121.0	-486.7	4320.9	1570.1	152.8	8207	731.7	13.3	-7.8	11.3	38.8	0	98.7	223.5	-765.9	11.6	109.8
2200.4	8121.0	-317.8	5607.4	1116.7	225.9	8406.5	906	16.1	-5	7.4	27.4	0	100	142.7	-546.8	10.8	74.2
2200.4	8121.0	-148.9	5881.7	614	255.5	7436.4	906	19.1	-5	3.1	12.2	0	100	57.5	-254.7	8.1	29.2
2200.4	8121.0	20.0	2193.5	129.7	102.8	2504.5	363.1	22.3	-6.7	0	0	32.1	69.1	-3.2	27.1	-3	-1.4
2617.1	5600.0	-1500.0	8302.2	18637.4	10.8	45734.7	897.7	3.9	-9.3	97.1	3.6	0	0.5	36.3	-83.7	-3.5	15.7
2617.1	5600.0	-1331.1	6535.9	13641.2	15.6	34195.5	766	5	-10.6	73.1	19.5	1.7	4.6	173.6	-464.4	-1.6	79
2617.1	5600.0	-1162.2	4638.9	8276.3	19	21800.4	622.4	6.2	-12.2	47.4	36.9	5.9	8.8	329.7	-881.6	-1.2	146.3

SO4 De	ICO3 Dev	Ca Dev I	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
185.	5.6	-1183.9	428	12.1	12.3	48.5	26.3	-13.2	7.5	487.7	11709	28.9	3983.2	3046.1	-993.3	5600.0	2617.1
171.	26.6	-1256	406.8	14.1	21.8	48.9	14.2	-13	9.1	375	6210.5	53.2	1814.9	2065.4	-824.4	5600.0	2617.1
127.	51.6	-1178.6	317.4	15.7	32.4	42.6	8.3	-12.2	11	285.4	3678.8	81.9	1018	1518.5	-655.6	5600.0	2617.1
76.	69.3	-1023.7	204.9	18.4	41.7	33.4	5.3	-11	13.1	221.7	2561.7	104.6	838.7	1239.5	-486.7	5600.0	2617. 1
31.	70.7	-803.8	89.1	24.6	47.6	22.8	3.8	-9.7	15.9	196.1	2167.3	114.9	820.3	1196.4	-317.8	5600.0	2617.1
4.	51.8	-465.8	-0.3	43.2	42.6	11.1	2.4	-8.1	19.5	253.7	2246	121.3	573.4	1573.5	-148.9	5600.0	2617.1
-0.	1.6	22.5	-8.2	73.1	27.9	0	0	-6.5	22.3	384.1	2539.5	111.5	72.8	2310.0	20.0	5600.0	2617.1
22	-3.5	-146.2	54.6	1.1	0	5.6	96.1	-9.2	3.3	898.7	45256.1	11.3	18395	8255.3	-1500.0	5880.1	2617.1
81.	-0.1	-514	180.8	5	0	20.6	73	-10.5	4.2	769.4	34149.1	17.5	13592.7	6543.3	-1331.1	5880.1	2617.1
14	3.6	-909.7	319.9	8.9	3.7	36.5	48.6	-11.9	5.3	628.9	22411.3	24.1	8525.7	4730.0	-1162.2	5880.1	2617.1
175	14.7	-1203.2	406.8	12	10.5	47.2	28.3	-12.8	6.6	495	12766.7	38.4	4438.9	3191.8	-993.3	5880.1	2617.1
163	39.3	-1306.5	397.1	14	19.8	48.6	15.6	-12.7	7.9	379.2	6954.5	66.3	2141.6	2169.4	-824.4	5880.1	2617.1
119	72.3	-1260.2	319	15.8	30.2	43.1	8.9	-11.9	9.4	284.1	4120.6	103.1	1262	1579.9	-655.6	5880.1	2617.1
6	100.9	-1132.5	210.5	18.5	39.3	34.5	5.9	-10.7	11	214.7	2975	136.3	1217.3	1300.7	-486.7	5880.1	2617.1
9	102.5	-966.1	89.5	24.4	44.2	24.7	5	-9.5	13.1	184.4	2749.9	145.9	1515.1	1294.6	-317.8	5880.1	2617.1
-23	63.7	-699.9	-26.8	38.5	42.3	13.7	4.4	-8	17.1	219.8	2830.2	126.1	1286.9	1572.1	-148.9	5880.1	2617.1
-15	5.8	-117.4	-48.6	58.5	40.1	0.4	0.7	-7	22.2	300.4	2197.5	96.1	58.5	1874.5	20.0	5880.1	2617.1
3	-4.8	-210.2	72.9	1.2	0	7.6	94.6	-9.4	2.8	892.7	44522.5	9.6	18047.5	8146.7	-1500.0	6160.2	2617.1
81	0.4	-544.9	178.9	4.6	0	20.9	73.2	-10.4	3.7	769	34267	17.4	13626	6547.5	-1331.1	6160.2	2617.1
130	7.4	-892.2	289.3	7. 9	3.7	34.2	51.3	-11.5	4.8	637	23765.3	27.2	9109.7	4901.6	-1162.2	6160.2	2617.1
157	21.7	-1162.5	360.1	10.8	10.6	43.2	32.6	-12.2	5.9	509.7	14897.6	44.5	5358.9	3471.8	-993.3	6160.2	2617.1
150	48.7	-1292.3	363.6	13	19.7	45.4	19.4	-12.2	7	395.5	8857.6	74.8	2935.5	2428.1	-824.4	6160.2	2617.1
112	90.7	-1277.8	309.6	15.1	30.1	41.2	11.6	-11.6	8.1	297	5489.4	120.2	1810.5	1771.3	-655.6	6160.2	2617.1
55	139.1	-1157.9	228.6	18.1	39.1	33.3	7.6	-10.5	8.9	221.1	4006.6	172.6	1711.9	1452.6	-486.7	6160.2	2617.1
-0	156.6	-1001.2	141.4	24.7	42.3	25.1	6.5	-9.3	9.2	190.1	3683.7	197	2365	1480.5	-317.8	6160.2	2617.1
-33	88.5	-767.7	40.7	45	32	16.3	6	-7.9	11.6	258.9	3866.9	155.6	2761.2	1978.4	-148.9	6160.2	2617.1
-11	-16.5	-60.5	-22.2	80.7	18.4	0.4	0.6	-6.1	22	419.9	2996.4	102.8	313	2594.8	20.0	6160.2	2617.1
33	-6.3	-245	79.5	0.6	0	8.6	93.9	-9.5	2.5	887	44172.9	7	17880.8	8077.2	-1500.0	6440.3	2617.1
. 79	-0.4	-553.9	171.3	3.6	0	20.6	73.9	-10.4	3.4	768.9	34591.9	15.3	13756	6570.6	-1331.1	6440.3	2617.1
122	7.5	-869.5	264.5	6.8	4.3	32.1	53.8	-11.3	4.5	646.1	24972.2	25.7	9619.6	5053.3	-1162.2	6440.3	261 7.1
	21.4	-1127.7	326	9.8	11.1	40.1	36.3	-11.9	5.7	529.1	16680.1	42.6	6092.6	3719.1	-993.3	6440.3	2617.1
	47.6	-1275	334.4	12.4	19.7	42.3	23.2	-11.9	6.9	424.3	10636.7	72.1	3603.3	2698.5	-824.4	6440.3	2617.1

SO4 De	ICO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
	94.8	-1280.3	295.8	15.2	30	38.3	14.6	-11.2	8	331.9	6927.1	122.7	2221.4	2018.2	-655.6	6440.3	2617.1
66	166.5	-1136.9	245.9	19.1	39.8	30.1	9.5	-10.1	8.6	254.7	5032.1	197.4	1776.9	1660.9	-486.7	6440.3	2617.1
15	230.7	-906.1	198.2	24.9	45.2	22	7	-8.9	7.9	211.5	4154.6	261.9	1953	1575.2	-317.8	6440.3	2617.1
4	195.9	-676.7	58.7	30	48.8	15.6	5.2	-8.4	8.3	212.3	3025.3	229.1	1892.4	1448.6	-148.9	6440.3	2617.1
	17.2	-106.1	-23.8	24.3	72.5	2.6	0.8	-9.1	19.3	141.5	955.4	54.7	541	810.2	20.0	6440.3	2617.1
35	-7.6	-260.1	82.4	0	0	9.2	93.6	-9.7	2.3	881.2	43995.1	4.3	17801.1	8025.1	-1500.0	6720.4	2617.1
79	-2	-553.9	168.4	2.5	0.1	20.5	74.5	-10.5	3.3	767.5	34809.5	11.9	13844.2	6577.0	-1331.1	6720.4	2617.1
121	4.5	-854.8	256.7	5.8	4.9	31.3	55.3	-11.4	4.5	653.2	25655.3	21.1	9894.1	5140.7	-1162.2	6720.4	2617.1
15	15	-1111.3	316	9.3	10.8	38.8	38.5	-11.9	5. 9	549.4	17702.2	34.8	6474.3	3885.9	-993.3	6720.4	2617.1
160	34.4	-1278.9	322.7	13	18.4	40.8	25.8	-11.8	7.6	462.9	11779.6	57.8	3958.1	2927.7	-824.4	6720.4	2617.1
	72.8	-1317.5	279.8	17.3	28.1	35.9	17.2	-11	9.4	391.3	8008.4	100.3	2403.8	2294.0	-655.6	6720.4	2617.1
	145	-1168.9	240.9	24	37.9	25.6	11.5	-9.5	11	328.3	5863.5	177.4	1569.2	1976.4	-486.7	6720.4	2617.1
	232.3	-829.5	238.7	35.9	40.8	15.5	7.2	-7.9	11.6	297.6	4694.2	267.1	1091.2	1979.0	-317.8	6720.4	2617.1
29	202.7	-508.4	112.4	55.3	31.1	9.5	3.9	-6.8	13.7	360.1	3662.7	251.5	542.3	2188.3	-148.9	6720.4	2617.1
5	-11.3	0.5	1.9	49.8	50.7	0	0	-7.7	22.4	269.7	1752.4	59.9	70.4	1581.2	20.0	6720.4	2617.1
37	-8.4	-270.9	91.8	0	0	10	93	-9.8	2.3	872.7	43666.8	2.1	17663.4	7950.3	-1500.0	7000.6	2617.1
81	-3.6	-556.5	177.9	1.5	0.8	21.2	74.2	-10.7	3.4	761.6	34645.8	8.7	13771.5	6529.2	-1331.1	7000.6	2617.1
124	1.1	-849.5	268.6	5.1	5	31.9	55.4	-11.5	4.7	653.9	25677.5	16.2	9884.1	5140.1	-1162.2	7000.6	2617.1
158	7.1	-1105.2	334	9.7	9.5	39.5	39	-12.1	6.4	563.6	17889.2	26.4	6498.3	3956.1	-993.3	7000.6	2617.1
178	16.4	-1289.7	343	14.9	15	41.6	26.9	-12	8.6	500.9	12194.3	40.7	4016.2	3101.3	-824.4	7000.6	2617.1
174	35.1	-1380.1	285.5	21.1	22.8	35.6	19.3	-11	11.5	462.2	8776.2	65.6	2512.8	2600.7	-655.6	7000.6	2617.1
129	83.1	-1292.7	224.7	31.6	33	21	13.7	-8.9	15	422.2	6660.5	125	1533.6	2395.7	-486.7	7000.6	2617.1
; e	159.5	-824.5	240.9	54.4	29.6	8.1	7.5	-6.4	18.6	418.8	5289.9	224.4	793.9	2602.5	-317.8	7000.6	2617.1
28	143.9	-357.2	147.9	100	0	5.1	2.9	-5	20.2	596.4	5058.8	270.7	373.9	3641.3	-148.9	7000.6	2617.1
0	-5.2	41.5	6.4	57.9	43.7	0	0	-7.3	22.9	302.1	1904.3	81.4	20.9	1814.4	20.0	7000.6	2617.1
40	-8.1	-2 78.7	106	0	0	11.1	92	-10	2.5	861.8	43167.6	1.3	17458	7853.4	-1500.0	7280.7	2617.1
84	-3.9	-560.4	194.6	0.6	1.4	22.5	73.1	-10.9	3.5	750.5	34130.8	7.2	13553.3	6429.4	-1331.1	7280.7	2617.1
i 12	-0.6	-847.6	290	4.7	5	33.5	54.3	-11.8	4.9	645.9	25156.5	13.7	9649.3	5054.5	-1162.2	7280.7	2617.1
165	2.4	-1094.5	365.4	10.5	7.8	41.7	38	-12.4	6.9	565.7	17425.6	22.2	6261.6	3926.9	-993.3	7280.7	2617.1
	4.8	-1269.5	386.5	18	9.9	44.4	26.4	-12.3	9.5	526.1	12043.4	32.3	3873.7	3203.1	-824.4	7280.7	2617.1
	8.9	-1363.3	330.4	26.5	13.1	38.8	20.7	-11.2	13.3	528.8	9481.3	46.1	2688.4	2932.1	-655.6	7280.7	2617.1
	31.5	-1326.2	247.2	39.5	19.9	22.9	17.1	-8.8	18.8	532.1	8218.6	86.4	2037.9	2953.3	-486.7	7280.7	2617.1

SO4 Dev	CO3 Dev	Ca Dev HO	Na Dev	Marine	Meteoric	Glacial	Brine	018	H3	SO4	CI	HCO3	Са	Na	Elevation	Northing	Easting
mg/l	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
102.9	79	-863.1	199.3	65.5	16.9	7.7	9.5	-5.9	27.1	534.5	6148.3	168.9	1064.4	3084.1	-317.8	7280.7	2617.1
37.1	80.8	-436.9	73.8	100	0	6.9	3.6	-5	22.6	742.2	5764.9	255.1	461.9	4437.4	-148.9	7280.7	2617.1
-1.2	-4.2	16.7	-0.3	2 7.9	72.8	0	0	-8.9	22.3	145.5	920.5	45.3	20.8	873.9	20.0	7280.7	2617.1
40	-6.5	-271.6	112.9	0	0	11.7	91.1	-10	2.7	852.5	42758.1	2.9	17298.9	7777.8	-1500.0	7560.8	2617.1
85.4	-2.4	-553.7	204.6	0.3	1.9	23.5	71.9	-11	3.7	738.4	33560.4	8.6	13318	6324.3	-1331.1	7560.8	2617.1
130.9	0.1	-839.2	303.2	4.7	5	35.1	52.6	-11.9	5.2	632.5	24406.3	14.7	9324.4	4925.2	-1162.2	7560.8	2617.1
168.1	1.4	-1071.4	380.1	11.7	6.2	43.8	36.2	-12.5	7.1	558.1	16701.5	23	5930.2	3829.4	-993.3	7560.8	2617.1
1 93.4	1.1	-1208	404	21.8	4.4	47.2	25.2	-12.4	9.9	536.7	11679.3	34	3670.7	3236.1	-824.4	7560.8	2617.1
207.6	0.1	-1229.7	363	35.9	0	43.8	20.3	-11.4	14	581.1	9806.1	50.1	2734.4	3230.5	-655.6	7560.8	2617.1
202.5	5.8	-1098.8	292	57.6	0	34.2	19	-9.2	20	678.5	10050.5	84.6	2651.2	3739.2	-486.7	7560.8	2617.1
136.4	25.3	-870	189	95.7	0	20.9	13.9	-6	23.2	766.2	9058.1	156.8	1949	4409.8	-317.8	7560.8	2617.1
41.2	35.5	-471.9	61.8	100	0	9.4	5.2	-5	20.7	906	7425.2	254.7	773.7	5549.4	-148.9	7560.8	2617.1
-1.9	-4.1	26.8	-2.7	48.8	52.2	0	0	-7.8	22.2	254	1653.7	73.9	53.6	1529.8	20.0	7560.8	2617.1
36.1	-3.7	-243	105.8	0	0	11.3	90.7	-10	3.1	848.7	42602.5	7.4	17250.3	7758.6	-1500.0	7840.9	2617.1
81.6	0.4	-526.1	199.3	1.3	2	23.4	71	-11	4.1	731.8	33215.9	13.6	13178.3	6274.4	-1331.1	7840.9	2617.1
127.7	2.8	-813	299.1	6.2	4.6	35.7	51.1	-12	5.5	623.3	23786.8	20.4	9050.5	4836.2	-1162.2	7840.9	2617.1
163	3.7	-1029.9	371.3	14.9	4	44.7	34.3	-12.5	7.3	552.9	16034.3	30.7	5614	3763.2	-993.3	7840.9	2617.1
180.8	3.4	-1122.9	388.5	29.3	0	48.1	23.3	-12.1	9.9	546.4	11219.9	47.5	3407.7	3298.7	-824.4	7840.9	2617.1
183.4	2.5	-1084.6	351.2	51.8	0	45.5	17.7	-10.8	13.3	617	9362.8	75.3	2406.9	3504.1	-655.6	7840.9	2617.1
167.5	3.8	-928	278.8	87.6	0	38	15	-8.2	17.2	764.2	9392.9	124.3	2092.1	4334.7	-486.7	7840.9	2617.1
112.9	9.7	-694.7	176.6	100	0	25.8	10.6	-5	19.4	906	9200.9	198.5	1572.8	5447.8	-317.8	7840.9	2617.1
40.8	12	-347.1	67.2	100	0	11.1	4.2	-5	20.2	906	7649.7	249.5	743.6	5869.9	-148.9	7840.9	2617.1
-0.5	-1.1	5.6	-0.8	16.1	84.1	0	0	-9.6	22.1	85.4	568.5	33.2	21.3	509.1	20.0	7840.9	2617.1
29.9	-1	-203.6	90.1	0.6	0	10.3	90.2	-9.9	3.6	850.4	42516.9	14	17216	7778.5	-1500.0	8121.0	2617.1
73.4	3.6	-475.9	179.7	4.4	1.7	22.2	70.6	-10.8	4.6	736.2	33202.1	21.9	13163.5	6320.0	-1331.1	8121.0	2617.1
117.2	6.3	-751.2	274.9	10.6	3.1	34.2	50.5	-11.7	6	631.1	23789.1	31.1	9024.9	4907.5	-1162.2	8121.0	2617.1
148.3	7.6	-947.6	340	21.8	0.2	42.9	33.7	-12	7.7	568.5	16110.9	45.6	5593.4	3896.6	-993.3	8121.0	2617.1
158.3	8	-1008.7	350.6	40.7	0	45.7	22.4	-11.4	9.9	575.8	11386.2	69.7	3382.2	3549.0	-824.4	8121.0	2617.1
149.8	7.9	-942.5	312.5	69.3	0	42.8	15.9	-9.7	12.7	658.7	9307.9	107.1	2228	3864.7	-655.6	8121.0	2617.1
125.7	8.2	-779.5	243	100	0	35.3	11.7	-7	15.6	806.7	8821.8	161.2	1650.2	4709.9	-486.7	8121.0	2617.1
	9	-544.1	154.3	100	0	24	7.6	-5	18.1	906	8567	221.9	1170.3	5647.4	-317.8	8121.0	2617.1
	7.4	-252.3	63.4	100	0	10.6	3.1	-5	20.1	906	7124.7	239.7	618.1	5569.0	-148.9	8121.0	2617.1

SO4 De	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
-2.0	-2.2	28.4	-5	81.7	19.7	0	0	-6	22.3	426.2	2814.6	119.5	108	2574.4	20.0	8121.0	2617.1
15.8	-3.1	-85.3	36.7	0.6	0	3.7	96.9	-9.2	3.9	897	45693.4	11.3	18615.1	8294.3	-1500.0	5600.0	3033.8
79	-2	-466.6	175.9	4.7	1.5	19.6	73.2	-10.6	4.9	766.6	34342.1	15.3	13648.6	6543.3	-1331.1	5600.0	3033.8
146.3	-1.1	-884.4	331.5	8.9	5.7	36.8	47.4	-12.2	6.2	622.6	22067.5	19.2	8270.7	4640.9	-1162.2	5600.0	3033.8
185.	5.1	-1183.4	427.7	12.1	12.3	48.4	26.2	-13.2	7.5	486.4	12059	28.3	3952.4	3035.7	-993.3	5600.0	3033.8
171.	19.2	-1241.8	404.9	13.3	22.7	48.7	14.6	-13.1	9.1	373.7	6752.3	44.4	1820.2	2067.1	-824.4	5600.0	3033.8
127.	38.2	-1143.6	311.7	14.1	34.3	42.1	8.8	-12.4	10.9	282.6	4281.2	66	999.5	1509.6	-655.6	5600.0	3033.8
78.	54.3	-959.8	197.4	16.7	44.6	32.5	5.5	-11.3	13.2	217.2	3023.2	86.7	715. 2	1197.0	-486.7	5600.0	3033.8
37.	55.8	-707.4	94.5	22.3	51.7	21.8	3.5	-10.1	16	186.5	2314.9	96.7	590.8	1096.1	-317.8	5600.0	3033.8
11.:	34.8	-374.9	28.4	27.2	59.9	10.5	1.6	-9.2	19.1	169.9	1635.4	83.1	350.5	1029.6	-148.9	5600.0	3033.8
0.	-4.7	0.7	5.6	3.9	96.1	0.2	0	-10.3	22.1	20.9	74.6	12.9	0.2	115.8	20.0	5600.0	3033.8
23.	-4	-157.5	56.5	1.2	0	5.9	95.6	-9.3	3.2	895.4	45054.1	10.7	18284.2	8216.5	-1500.0	5880.1	3033.8
81.	-1.7	-524.3	184.3	5.1	0	20.9	72.8	-10.5	4.1	767.8	34166.8	15.9	13529.3	6529.8	-1331.1	5880.1	3033.8
141.	0.9	-917.5	322.8	9	3.6	36.6	48.5	-11.9	5.2	627.6	22619.3	21.3	8482	4727.0	-1162.2	5880.1	3033.8
173.	9.2	-1204.9	407	11.9	10.6	47.1	28.3	-12.8	6.4	492.5	13123	32.2	4392.9	3187.5	-993.3	5880.1	3033.8
161 .	26.7	-1294.8	392	13.1	20.9	48.4	15.9	-12.8	7.7	374.1	7441.3	51.8	2079.6	2154.8	-824.4	5880.1	3033.8
117.	53.8	-1224.2	300.2	13.8	32.9	42.5	9.1	-12.1	9.4	273.4	4578.5	81	1086.2	1512.5	-655.6	5880.1	3033.8
64.	83.1	-1051.3	173.4	16.3	43.7	33.1	5.4	-11	11.5	199.6	3174.6	114.7	788.6	1147.9	-486.7	5880.1	3033.8
20.	92.2	-809	60.1	23.4	49.1	22.6	3.4	-9.8	14	174.9	2483.8	134	758.2	1090.5	-317.8	5880.1	3033.8
-2.	59.1	-464.1	-3.3	34.7	51	11.3	1.7	-8.6	17.6	196.3	1944.7	117.2	490.5	1241.5	-148.9	5880.1	3033.8
-5 .	-4.3	-14.7	-12.1	32.5	67.7	0	0	-8.6	22.2	160.8	858.2	52.1	0.2	968.0	20.0	5880.1	3033.8
5 32.	-6.5	-233.7	78.7	1.2	0	8.4	93.6	-9.5	2.8	886.6	44129.2	7.6	17832.2	8074.3	-1500.0	6160.2	3033.8
8 81.	-2.8	-564.9	185.7	4.7	0	21.4	72.7	-10.5	3.6	765.4	34139.4	13.9	13483.4	6513.7	-1331.1	6160.2	3033.8
128 .	1.8	-905.1	294.4	8.2	3.5	34.3	51.2	-11.6	4.5	635	23921.3	21.3	9035.3	4901.5	-1162.2	6160.2	3033.8
' 153.	11.7	-1166	361.7	10.8	10.7	43.1	32.7	-12.3	5.6	507.1	15273.4	33.6	5313.9	3487.4	-993.3	6160.2	3033.8
3 144 .	31.3	-1284.4	357.3	12.4	20.6	45.2	19.7	-12.4	6.7	388.4	9323.1	55.2	2841.5	2422.2	-824.4	6160.2	3033.8
105 .	66.3	-1250.8	277.3	13.1	32.9	40.7	11.5	-11.8	8.1	279.1	5835.3	91.8	1521.9	1666.9	-655.6	6160.2	3033.8
51.	118.1	-1086.9	140.3	14.7	45.5	31.7	6.5	-10.8	10	189.4	3959.4	145.9	1015	1161.1	-486.7	6160.2	3033.8
	153	-862.4	17.8	20.7	51.3	22.5	4.1	-9.6	11.3	158.6	2919.2	188.8	976.3	1026.9	-317.8	6160.2	3033.8
	119.4	-537	-45.7	34.8	48.8	12.9	2.4	-8.5	13.7	203.2	2160.2	176.3	688.1	1264.4	-148.9	6160.2	3033.8
	16.1	-17.2	-31.7	43	56.8	0.5	0	-8.1	20.7	222.2	1151	87.2	0.2	1290.8	20.0	6160.2	3033.8
	-8.6	-281	90.8	0.8	0	9.8	92.5	-9.7	2.5	878.9	43570.3	4.5	17561.3	7975.5	-1500.0	6440.3	3033.8

th	ning	Elevation		Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
	m	m		mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
4	10.3	-1331.1	65	18.9	13531.6	11.3	34297.8	763.9	3.3	-10.5	73	21.3	0	4.1	182	-583.8	-4.2	80.7
4	10.3	-1162.2	50	55.7	9505.9	19.6	25044.4	643.9	4.3	-11.4	53.5	32.2	4	7.4	270.8	-887.1	1.5	119.6
4	0.3	-993.3	37	56.8	6041.1	32.8	17035.4	527.3	5.4	-11.9	36.4	39.7	10.7	10.6	326.6	-1130.5	11.8	141.4
4	10.3	-824.4	27	28.0	3511.3	56.1	11088.9	418.4	6.6	-11.9	23.4	41.7	19.6	13.1	326.2	-1263.5	32.5	137.1
4	10.3	-655.6	19	951.6	1937.1	99.2	7232.5	314.9	8	-11.3	14.3	37.6	31.2	15.2	256.4	-1254.3	73.5	104.8
4	10.3	-486.7	13	872.3	1129.8	173.7	4904.2	222.3	9.7	-10.3	8.3	28.8	44.2	17.3	120.6	-1095.1	146.6	54.7
4	10.3	-317.8	10)53.9	842.2	250.5	3255.5	172.6	9.1	-9.3	5.2	21.3	52.5	20	-17	-894.8	221.7	18.8
4	10.3	-148.9	6	634.7	433.5	267.9	1327.6	127.1	6.8	-9.4	3.6	16.6	63.9	15.3	-154.8	-701	240.2	12.7
4	10.3	20.0	1	69.8	0.2	121.9	0.2	53	15.5	-10	0.6	4.6	87.3	7.6	-118.2	-182.9	97	7.4
2	20.4	-1500.0	79	8.800	17417.4	2	43257.5	872.5	2.4	-9.8	91.9	10.6	0	0	97.5	-304.2	-9.8	39.9
2	20.4	-1331.1	65	518.4	13569.2	8.9	34404.4	762.7	3.3	-10.6	73.3	21.3	0	3.3	181	-590.1	-5.2	80.8
2	20.4	-1162.2	51	52.0	9760.9	17.5	25674.1	652.5	4.4	-11.3	54.9	31.1	4.2	7.2	260.8	-874.1	0.3	117.4
2	20.4	-993.3	39	954.6	6435.8	30.9	18059.1	550.9	5.8	-11.7	38.6	37.7	9.7	11.5	310.9	-1108.4	9.9	140.5
2	20.4	-824.4	30	21.3	3906.6	55.1	12257.6	462.7	7.5	-11.5	25.8	39	16.7	16.3	308.9	-1248.4	29.5	142.2
2	20.4	-655.6	23	362.1	2217.6	101.2	8354.7	386.9	9.6	-10.7	16.7	34.2	25.4	22.1	245.8	-1254.8	70.1	118.6
2	20.4	-486.7	19	963.0	1207	179.7	5882.4	328.8	11.6	-9.3	10.2	25.1	33.3	30.2	139.3	-1105.1	141.5	75.8
2	20.4	-317.8	18	808.1	645.5	266.5	4121.4	306.9	11.6	-7. 9	6.1	17.4	35.5	40.1	21.8	-873.8	218.5	38.6
2	20.4	-148.9	14	61.7	209.7	291.3	2229.3	268.8	10.1	-7.8	3.7	13.3	42.3	40.3	-126.8	-645.7	236	21.9
2	20.4	20.0	6	681.7	0.2	131.8	424.3	132.1	17.7	-9.1	0.6	3.1	73	23.4	-112.4	-158	85	2.9
00	0.6	-1500.0	78	851.0	17319.9	0.5	43013.7	866	2.4	-9.9	91.5	11.1	0	0	104	-311.7	-10	41.7
00	0.6	-1331.1	64	185.7	13524	7.1	34290.8	759.1	3.4	-10.7	73.1	21.6	0.5	2.6	186.7	-590.8	-5.7	82.6
)(0.6	-1162.2	51	69.8	9772.6	15.6	25723.7	656.8	4.8	-11.3	55	31.2	4.1	7.1	266.7	-867.6	-0.9	120.5
)(0.6	-993.3	40	060.9	6499.2	28.7	18297.5	571.5	6.6	-11.7	39.1	37.5	7.8	13.2	318.2	-1097.5	6.7	147.3
)(0.6	-824.4	32	272.5	4024.9	51.4	12738.2	511.6	9	-11.3	26.8	38.4	11.6	21.2	318	-1239.9	21.4	156.1
)(0.6	-655.6	28	337.4	2388.1	92.4	9120.9	477.8	12.2	-10.1	18.2	32.6	15.4	32.3	261.8	-1259	51	141.5
)(0.6	-486.7	27	752.5	1351.6	160.3	6863.2	472	15.6	-8.1	11.9	21.9	15.9	49.2	179.5	-1110.2	100.7	103.8
)(0.6	-317.8	30	031.8	681.1	235.9	5380	513.9	17.9	-5.9	6.7	12.3	5.6	74.5	99.5	-794.7	146.6	59.5
)(0.6	-148.9	33	327.2	279.3	247.5	4247.9	561.9	18.9	-5	2.7	6.4	0	97.1	13.4	-415.4	122.7	25
)(0.6	20.0	19	910.5	0.2	105.1	1728.6	321.2	21.9	-7	0	0	38.9	61.8	-27.2	-5.7	15	-2
28	30.7	-1500.0	78	305.5	17272.8	0.5	42851.2	859.6	2.6	-10	91.2	11.4	0	0	108.5	-303.7	-9	42.2
28	30.7	-1331.1	64	18.9	13408.2	6.7	33981.1	751.9	3.7	-10.8	72.6	22.3	1.2	1.8	196.2	-585.7	-5	85.1
28	80.7	-1162.2	50	96.7	9566.2	14.7	25236.6	652.7	5.2	-11.5	54	32.4	4	7	283.5	-866	-1.3	126.3

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	τu	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3033.8	7280.7	-993.3	4048.6	6265.2	27.5	17803.7	581	7.3	-11.8	38	39.2	5.5	15	342.5	-1092.8	3.7	157.4
3033.8	7280.7	-824.4	3429.5	3892.8	48.3	12565.7	550.9	10.3	-11.3	26.3	40.2	5.1	26.6	348.8	-1223.9	12.3	171.9
3033.8	7280.7	-655.6	3272.6	2469.5	82.8	9557.8	564	14.3	-9.8	18.8	34.2	2.3	43.3	299.6	-1232	28.5	165.1
3033.8	7280.7	-486.7	3513.7	1617.7	137.2	7878	612.2	19.2	-7.4	13.4	22.8	0	67.7	223.5	-1076.5	55.1	133.4
3033.8	7280.7	-317.8	4053.4	934.7	198.9	6511.1	693.1	22.9	-5	7.8	11.8	0	100	144.7	-741.1	77.1	83.9
3033.8	7280.7	-148.9	4200.0	411	201.2	4843	705.7	22.9	-5	2.9	4.9	0	100	60.2	-341.4	56.3	33.7
3033.8	7280.7	20.0	1363.3	0.2	38.3	637.4	227.3	22.8	-8	0	0	57.4	43.9	1.2	22.2	-5	-1.2
3033.8	7560.8	-1500.0	7809.5	17367.2	2.5	42983	856.5	2.9	-10	91.5	10.8	0	0	103.7	-271.5	-6.8	39.2
3033.8	7560.8	-1331.1	6348.2	13309.4	8.1	33681.2	743	3.9	-10.9	71.9	22.7	2	1	200.8	-567.4	-3.2	85.7
3033.8	7560.8	-1162.2	4937.4	9194.2	15.4	24338.5	639	5.5	-11.8	52.1	34.3	4.5	6.5	301.6	-867.1	-0.4	132.4
3033.8	7560.8	-993.3	3895.4	5759.5	28	16646.9	573.9	7.7	-12.1	35.5	42.2	4	16.1	370.5	-1095.2	2.4	167.5
3033.8	7560.8	-824.4	3450.7	3512.4	49.7	11776.1	570.7	10.9	-11.5	24.2	43.5	0	31.8	380.4	-1196.5	6.6	183.2
3033.8	7560.8	-655.6	3593.4	2363.2	83.3	9516.7	629.4	15	-9.8	17.9	38.2	0	54.7	334.4	-1160.8	13.7	178.9
3033.8	7560.8	-486.7	4170.7	1787.7	131.9	8629.4	732.1	19.8	-7.1	13.7	28	0	86.4	257.1	-987.2	25.1	152.5
3033.8	7560.8	-317.8	4919.5	1202	187	7612.3	844.4	22.8	-5	8.8	16.5	0	100	164	-694.2	34.8	100.8
3033.8	7560.8	-148.9	4952.4	553.8	192.7	5518.4	832.8	22.7	-5	3.4	6.8	0	100	67.5	-326.6	26.2	40.6
3033.8	7560.8	20.0	1668.5	20.4	36.1	569.2	278.6	22.5	-7.5	0	0	47.4	53.5	0.6	19.2	-4.7	-0.5
3033.8	7840.9	-1500.0	7907.9	17688.6	7	43621.7	861.1	3.2	-9.8	92.8	8.8	0	0	83.4	-207	-3.7	30.6
3033.8	7840.9	-1331.1	6332.0	13334.8	12	33661.2	738.4	4.3	-10.8	71.8	22.1	2.8	1.1	193	-526.3	-0.3	81.9
3033.8	7840.9	-1162.2	4743.8	8753	18.1	23279.4	620.6	5.7	-12	49.8	36.1	5.6	6.2	313.5	-864.4	1.4	136.4
3033.8	7840.9	-993.3	3633.6	5044.7	31.2	15004.5	553	7.8	-12.5	31.8	45.5	3.8	17	394.2	-1105.2	2.9	175.5
3033.8	7840.9	-824.4	3379.4	2970.5	57	10616.4	573.8	10.8	-11.6	21.2	46.5	0	37.2	397.9	-1162.6	5	185.8
3033.8	7840.9	-655.6	3792.1	2059.9	95.6	9031.9	666.8	14.5	-9.6	15.8	41.2	0	66.3	345	-1073.5	8	174.7
3033.8	7840.9	-486.7	4588.4	1612.4	146.4	8604	801.3	18.2	-6.8	12.1	31.8	0	100	263.5	-881.8	12.5	145.8
3033.8	7840.9	-317.8	5393.8	1133.3	199.3	7971.2	906	20.6	-5	7.9	20.3	0	100	166.1	-613.2	16.3	96.8
3033.8	7840.9	-148.9	5226.1	534.9	206.9	6056.7	879.3	21.5	-5	3	8.7	0	100	68.8	-288.1	12.9	40.3
3033.8	7840.9	20.0	2054.5	11.7	72.1	1422.3	343.4	22.4	-6.8	0	0	34.8	66.1	-0.4	17.4	-3.5	-0.3
3033.8	8121.0	-1500.0	8029.7	17970.7	13.1	44218.3	870.2	3.8	-9.6	93.8	6.6	0	0	58.9	-137.3	-1	20.7
3033.8	8121.0	-1331.1	6404.0	13455.8	18.7	33915.2	744	4.8	-10.7	72.1	20.6	3	3.3	173.9	-465.3	2.2	73.7
3033.8	8121.0	-1162.2	4719.4	8602.5	25	22939.1	618.7	6.1	-12	48.7	35.7	5.7	8.6	304.4	-821.3	3.5	131.7
3033.8	8121.0	-993.3	3553.1	4691.3	39.1	14230.8	547.2	8	-12.5	29.7	46.1	3.1	20.1	391.9	-1068.5	4.5	172.2
3033.8	8121.0	-824.4	3451.8	2789.8	69.6	10303	584	10.6	-11.4	19.7	46.3	0	43.7	385.3	-1085	5.9	174.9

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/i	mg/l	τυ	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3033.8	8121.0	-655.6	3977.9	1971	112	8995.7	687.7	13.7	-9.2	14.6	40.6	0	75.8	326.7	-963.6	7.5	156.2
3033.8	8121.0	-486.7	4749.5	1495.7	162	8537.1	816.4	16.7	-6.5	10.8	31.7	0	100	246.3	-768.2	9.3	125
3033.8	8121.0	-317.8	5362.2	1046	207.3	7930.1	906	19.1	-5	6.9	20.7	0	100	155.2	-519.5	10.3	82.1
3033.8	8121.0	-148.9	5013.2	536.3	212.3	6277.5	840.5	20.7	-5	2.8	9.2	0	100	66	-239	7.9	35.3
3033.8	8121.0	20.0	2661.7	112.1	118.5	2823.7	441.7	22.3	-5.9	0	0	16.8	84.3	-1.5	24.8	-3.5	-0.9
3450.6	5600.0	-1500.0	8499.9	19299.6	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.6	5600.0	-1331.1	6584.2	13831.8	13.9	34881.7	764.7	5.3	-10.6	74	18.1	3.6	4.1	163.7	-432	-2.8	72.5
3450.6	5600.0	-1162.2	4648.9	8341.9	17	22488.3	619.4	6.5	-12.2	47.7	35.8	7.7	8.4	324.3	-856.7	-2.8	142.3
3450.6	5600.0	-993.3	2819.6	3253	25.2	10952.5	475.8	8	-13.6	23.1	51	13	12.6	458.7	-1226	2	200.1
3450.6	5600.0	-824.4	2117.0	2048.9	33.8	7751.8	371.5	9.5	-13.2	16	46.7	25.8	11.6	387.5	-1175	10.9	164.9
3450.6	5600.0	-655.6	1552.7	1286.7	48.6	5511.5	277	11.4	-12.6	10.8	39.4	39.2	10.9	287.6	-1047.5	25.2	120.9
3450.6	5600.0	-486.7	1131.6	850.6	65	3962.9	199.6	13.9	-11.7	7	30.1	52.1	11.2	176.6	-849.4	39.8	76
3450.6	5600.0	-317.8	836.7	585.1	70.7	2758.7	143	16.6	-10.9	4.3	19.8	64.1	12.1	84.4	-595.8	43.4	39.2
3450.6	5600.0	-148.9	514.8	325.7	52.4	1512.6	85.8	19.4	-10.4	2.1	9.6	78.8	9.6	29.1	-301.6	27.7	14.9
3450.6	5600.0	20.0	0.4	0.4	12.2	0.2	1.4	22	-10.5	0	0	100	0	0	0	0	0
3450.6	5880.1	-1500.0	8186.3	18244.5	9.3	45033	889.3	3.6	-9.4	95.4	5.4	0	0.9	51.6	-145.4	-4.9	20.5
3450.6	5880.1	-1331.1	6534.2	13580.9	13.5	34441.9	763.4	4.4	-10.5	73	19.9	1	4.8	176.2	-501	-3.5	76.5
3450.6	5880.1	-1162.2	4756.2	8595.8	17.6	23154.9	624.5	5.5	-11.9	49.1	35.2	5.5	8.6	311.1	-882	-2.3	134.2
3450.6	5880.1	-993.3	3221.3	4507.2	24.8	13801.4	489.7	6.7	-12.8	29	45.6	12.6	11.3	393.6	-1158.2	2.6	166.7
3450.6	5880.1	-824.4	2214.3	2296.2	36.5	8500.7	370.7	8.1	-12.9	17.4	46.1	23.9	11.6	369.3	-1218.8	13.6	151.8
3450.6	5880.1	-655.6	1510.0	1205.9	57.1	5631.7	262.4	10	-12.4	10.6	40	38	10.7	269	-1123	34	109.3
3450.6	5880.1	-486.7	977.8	643.9	88	3850.2	170.7	12.9	-11.5	6	30.2	52.7	10.5	131.2	-917.4	63.7	59.9
3450.6	5880.1	-317.8	687.0	385.9	107.7	2564	117.8	15.8	-10.6	3.2	19.7	64.1	12.3	25.6	-650.8	79.9	23.1
3450.6	5880.1	-148.9	509.8	173.8	83.7	1370.2	86.1	18.8	-10	1.2	9.6	75.4	13.1	-10.7	-340.1	54.2	4.9
3450.6	5880.1	20.0	145.4	0.2	16.1	174.3	25.2	22.4	-10.2	0	0	94.8	5.7	-5.1	10.3	-4	-2.8
3450.6	6160.2	-1500.0	7996.0	17626.1	5.1	43772.7	877.6	3.1	-9.7	92.7	8.5	0	1.2	80.9	-238.3	-8.6	31.7
3450.6	6160.2	-1331.1	6496.1	13433.1	10.6	34214.3	759.8	3.9	-10.6	7 2 .5	20.8	0.4	4.8	181.9	-551.3	-5.9	77.6
3450.6	6160.2	-1162.2	4943.1	9138.7	15.9	24448.4	632.5	4.8	-11.6	51.8	32.9	5.2	8.2	282.9	-869	-3.2	120.1
3450.6	6160.2	-993.3	3567.3	5508.2	23.3	16140.5	506.1	5.8	-12.3	33.9	41.2	12.3	10.7	344.2	-1108.4	2	142.1
3450.6	6160.2	-824.4	2500.7	3016.4	34.7	10330.9	385.6	6.8	-12.4	21.1	43.2	22.6	11.6	337.7	-12 10.7	12.2	132.8
3450.6	6160.2	-655.6	1654.3	1497.7	55.5	6700.9	265.2	8.4	-12.1	12.6	39.1	36.8	10.5	251.9	-1165.6	33.1	95.3
3450.6	6160.2	-486.7	832.7	575.9	110.5	4412.9	137.5	12.3	-11.2	6.2	28.2	56.9	8	53.1	-938.3	89.7	38.4

SO4 De	CO3 Dev	Ca Dev H	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/l	mg/l	mg/l	mg/l	m	m	m
6.	142.6	-664.1	-72	9	69.1	18.2	2.9	-10.4	15.1	81.1	2771.9	165.4	268	461.0	-317.8	6160.2	3450.6
1.1	116.7	-408.4	-74.5	10.2	77.2	10.4	1.5	-10	16.5	70.6	1348.5	141.9	140.9	379.8	-148.9	6160.2	3450.6
-0.8	-0.9	4.8	-2	2	98.2	0	0	-10.4	22.1	10.2	68.4	14	0.2	53.5	20.0	6160.2	3450.6
37.4	-11	-291.4	95.5	1	0	10.2	91.3	-9.8	2.8	870.1	43113.4	1.9	17302.3	7889.4	-1500.0	6440.3	3450.6
76.	-7.5	-576.2	181	4.6	0.5	20.9	72.6	-10.6	3.6	758.8	34253	8	13421.4	6496.1	-1331.1	6440.3	3450.6
111.	-3.8	-855.4	261.4	8.2	5	31	53.9	-11.3	4.6	642.5	25451	14.6	9553.4	5099.5	-1162.2	6440.3	3450.6
12	2.2	-1074.7	310.7	11.5	11.4	37.9	37.3	-11.8	5.6	528	17783	23.6	6185.4	3848.6	-993.3	6440.3	3450.6
122.	13	-1191.6	309.8	13.9	20	40.1	24.5	-11.9	6.6	418.1	11953	37	3633.7	2829.8	-824.4	6440.3	3450.6
i 91.	33.5	-1183.8	243.5	14.7	32	37.2	15.1	-11.6	7.7	306.3	7952.6	58.9	1876.6	1992.6	-655.6	6440.3	3450.6
28.	112.7	-945.6	-14.2	11.8	55.6	24.9	7.1	-10.6	12.6	155.6	5262.9	135.7	589.5	961.0	-486.7	6440.3	3450.6
2 3.	209.2	-692.9	-145.6	12.1	66.8	16.9	3.5	-9.9	14.2	101	3189.1	232.8	204.3	539.4	-317.8	6440.3	3450.6
. 12.	236.2	-606.4	-164.4	7.2	75.9	13.7	2.9	-9.9	11.1	77.8	1170.4	255.3	86	309.3	-148.9	6440.3	3450.6
5 11.	141.5	-264.2	-110.1	0	95.9	5.4	1.3	-10.5	15.1	12.9	0.2	151.1	0.2	0.4	20.0	6440.3	3450.6
4 0.	-12	-316.7	102.8	0.7	0	10.9	90.7	-9.9	2.8	865.1	42779.2	0	17145.7	7828.7	-1500.0	6720.4	3450.6
77.	-8.1	-585.4	180.2	4.4	0.8	20.8	72.7	-10.6	3.6	759.3	34306.6	6.6	13434.6	6501.8	-1331.1	6720.4	3450.6
i 108 .	-3.6	-844.6	250.7	8.7	4.6	29.7	55	-11.2	4.7	653.4	26002.4	14.7	9777.7	5205.4	-1162.2	6720.4	3450.6
) 126.	3.9	-1050.5	292	13.8	9.4	35.7	39.3	-11.5	6.1	554.6	18714	26.7	6552.6	4064.1	-993.3	6720.4	3450.6
) 123.	18.9	-1162.6	284.6	19.3	15.5	37	26.5	-11.3	7.7	466.3	13021.9	47.2	4017.3	3152.6	-824.4	6720.4	3450.6
' 97.	51.7	-1144.9	208.1	25.3	23.7	33	16.9	-10.6	9.8	384.9	8988.2	86.2	2198.2	2445.4	-655.6	6720.4	3450.6
5 5.	119.6	-970.6	51.6	31.9	33.7	24	9.6	-9.4	12.9	311.3	6222.4	161.3	992	1876.9	-486.7	6720.4	3450.6
27.	196.1	-762.6	-80.4	38.7	38.7	16.6	5.3	-8.3	13.7	280.5	4128.8	247	394.1	1600.4	-317.8	6720.4	3450.6
3 20 .	233.3	-619.8	-154.9	35.9	47.6	12.7	3.5	-8.2	12	242.3	2151	286.5	147.7	1284.2	-148.9	6720.4	3450.6
7 9.	145.7	-274.5	-130.6	23.3	70.6	5.1	1.5	-9.1	15.5	147	555	189.6	0.2	736.7	20.0	6720.4	3450.6
′ 41.	-11.7	-321.3	106.6	0.1	0	11.2	90.4	-10	2.9	861.3	42622.5	0	17088	7792.6	-1500.0	7000.6	3450.6
5 78.	-7.6	-585	183.1	4.1	1.1	20.9	72.7	-10.6	3.8	758.8	34239.9	6.3	13414.1	6488.8	-1331.1	7000.6	3450.6
) 111.	-2.9	-838	252.7	9.5	4	29.6	55.2	-11.2	5.2	661.4	26055.5	15.5	9800	5242.6	-1162.2	7000.6	3450.6
) 13	4.9	-1036.7	293.1	16.8	6.6	35.1	39.7	-11.3	6.9	580	18925.7	30.1	6623.6	4195.9	-993.3	7000.6	3450.6
2 134.	20.2	-1140.5	285.2	26.6	8.8	35.7	27.2	-10.8	9.3	521.8	13439.4	55.2	4148.6	3445.9	-824.4	7000.6	3450.6
116 .	49.4	-1118.4	222.1	39.7	10.1	31	18	-9.7	12.2	488.7	9640.5	97.7	2412.6	3011.0	-655.6	7000.6	3450.6
38	93.3	-960.9	120.9	56.8	8.3	22.7	11.2	-8	15.2	484.5	7105.9	159.8	1288.6	2876.5	-486.7	7000.6	3450.6
5 4	128.5	-710.1	24.7	77	1.4	14.5	6.3	-6.3	17	512.3	5312	218.3	630.7	3004.8	-317.8	7000.6	3450.6
i 21.	106.4	-393.6	-28.5	92.9	0	7.6	2.8	-5.2	18.4	537	3999.6	222.2	294.5	3161.7	-148.9	7000.6	3450.6

Eacting	Northing	Elevation	Ne	 	ЦСОЗ				040		<u> </u>						
Easting	•		Na ma/l	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	ICO3 Dev	
m	m 7000.6	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3450.6		20.0	2824.3	109.9	127	2958.6	468.4	22.1	-5.6	0	0	11.5	89.5	-7.6	24.5	-1.7	-1.8
3450.6	7280.7	-1500.0	7785.3	17140.6	0	42673.5	858.8	3.1	-10	90.6	10.9	0	0	105.7	-304.7	-10.3	41.3
3450.6	7280.7	-1331.1	6451.3	13367.8	6.8	34069.2	755.5	4.1	-10.7	72.4	21.1	1.7	3.5	188.1	-575.3	-6.3	81.1
3450.6	7280.7	-1162.2	5187.6	9621.6	16.3	25603.7	661.2	5.6	-11.3	54.3	30.5	3.7	9.8	266	-837.6	-2.1	118
3450.6	7280.7	-993.3	4199.3	6390	32.1	18388.1	594.2	7.7	-11.4	38.5	36.4	4	19.4	313.4	-1036.9	4.4	143.2
3450.6	7280.7	-824.4	3628.1	3999.8	58.1	13152.3	567.1	10.5	-10.7	26.5	36.9	1.5	33.6	311.2	-1128.9	15.8	149.9
3450.6	7280.7	-655.6	3485.5	2440.2	97.4	9819.2	581.1	14	-9.2	18	31.9	0	53.3	259.9	-1092.2	34.6	136.6
3450.6	7280.7	-486.7	3690.8	1465.2	146.5	7706.3	629.1	17.5	-7	11.9	23.2	0	78.8	179.9	-923.4	58	106.4
3450.6	7280.7	-317.8	4057.6	828.1	182.5	6016.5	689.3	20	-5	6.8	14	0	100	98.2	-644.3	69.3	67.1
3450.6	7280.7	-148.9	4048.7	405.8	157.2	4006.2	679.5	21.4	-5	2.7	6	0	100	36.7	-299.9	44.2	28.2
3450.6	7280.7	20.0	2625.2	104.6	44.8	1078.3	434	22.7	-5.9	0	0	18.5	83.1	1.2	37.3	-9.6	-2.1
3450.6	7560.8	-1500.0	7845.8	17401.1	2.1	43160.1	860.7	3.3	-9.9	91.6	9.6	0	0	94	-257.8	-7.9	36.5
3450.6	7560.8	-1331.1	6411.8	13368.5	8.3	33966.9	750.1	4.4	-10.8	72.2	21.1	2.7	2.7	189.4	-550.8	-4.2	81.7
3450.6	7560.8	-1162.2	5019.4	9242.9	16.8	24653.8	648.4	6	-11.5	52.3	32.4	4.6	9	286.5	-846.1	-1	126.7
3450.6	7560.8	-993.3	4013.1	5803.7	32.5	17000.4	587	8.2	-11.7	35.5	39.6	3	20.3	347.8	-1058.6	3.3	157.8
3450.6	7560.8	-824.4	3622.6	3539.1	59.4	12115	587.9	11.1	-10.8	24	40.1	0	38.8	348.8	-1128.2	10.3	165.8
3450.6	7560.8	-655.6	3767.6	2255.5	97.2	9497.2	642.9	14.7	-9	16.8	34.7	0	64.2	298.4	-1058.3	20.6	152.2
3450.6	7560.8	-486.7	4230.4	1499.4	139.9	7970.9	727.7	18.2	-6.6	11.7	25.8	0	95	220.7	-872.2	31.6	121.7
3450.6	7560.8	-317.8	4686.7	939.5	166.7	6443.8	797.9	20.7	-5	7	15.8	0	100	135.2	-596.9	35.4	79.2
3450.6	7560.8	-148.9	4473.7	468.9	132.1	3888.8	751.5	21.7	-5	2.8	6.8	0	100	56.7	-275.4	22.6	33.9
3450.6	7560.8	20.0	2765.9	112.9	8.9	0.2	458	22.3	-5.7	0	0	13.5	87.6	-2.7	29.1	-5.1	-2
3450.6	7840.9	-1500.0	8051.6	18049	6.6	44501.1	873.5	3.7	-9.6	94.4	6.3	0.4	0	62	-163.3	-4.4	24.1
3450.6	7840.9	-1331.1	6432.1	13540.9	11.3	34240.4	748.3	4.7	-10.7	72.8	20.1	3.9	2.1	179.1	-499.9	-1.5	77.7
3450.6	7840.9	-1162.2	4749.4	8690.4	17	23289.8	623.2	6.2	-12	49.5	34.9	7	7.3	309.9	-863.9	0.2	136.1
3450.6	7840.9	-993.3	3573.9	4771.8	31	14562.7	550.5	8.2	-12.4	30.4	44.6	5.2	18.6	395.6	-1117.4	2.6	176.5
3450.6	7840.9	-824.4	3437.2	2843.6	61.3	10523.5	581.7	11.1	-11.2	20.4	44	0	41.5	385.3	-1136.8	6.6	178.2
3450.6	7840.9	-655.6	3877.1	1972.9	101.6	8947.6	671.3	14.5	-9.1	15	37.4	0	71.7	322.2	-1013.2	11.9	157.6
3450.6	7840.9	-486.7	4498.8	1437.3	144	8038.2	775.3	17.7	-6.5	10.9	28.2	0	100	239.1	-808.7	17	124.4
3450.6	7840. 9	-317.8	4944.3	962.3	172.8	6871.2	841.2	20	-5	6.8	17.8	0	100	149.3	-545.7	18.6	81.2
3450.6	7840.9	-148.9	4565.6	478.9	156.4	4725.4	767.5	21.3	-5	2.7	7.9	0	100	64.3	-253.8	12.3	35.6
3450.6	7840.9	20.0	2688.7	102.2	67.3	1532	446.5	22.4	-5.8	0	0	16	85	0.3	20.6	-5.1	-0.2
3450.6	8121.0	-1500.0	8499.9	19299.6	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0.1	0.2
											•	-	5	5	0	Ŭ	J

- 44

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev I	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
3450.6	8121.0	-1331.1	6542.5	13823.4	16.6	34820.9	756.2	5.2	-10.6	73.8	18.1	4.5	3.4	158.7	-427.8	0.5	69.1
3450.6	8121.0	-1162.2	4621.7	8398.5	20.1	22570.8	610.9	6.5	-12.2	47.8	35.6	8.9	7.5	315.5	-845	1.1	137.5
3450.6	8121.0	-993.3	2867.3	3277.1	26.5	11043	483.4	8.1	-13.5	23.2	51.3	11.8	13.8	458.5	-1222.3	1.9	200.5
3450.6	8121.0	-824.4	3366.6	2541.6	66.1	9837	577.2	11.1	-11.4	18.6	45.2	0	43.9	393.5	-1097.2	4.7	177.6
3450.6	8121.0	-655.6	3971.6	1985.7	108.3	9034.5	681.8	14.1	-9.1	14.6	37.6	0	75.9	318.4	-932.1	7.6	149.8
3450.6	8121.0	-486.7	4578.4	1534.3	149.6	8372.3	780.1	16.9	-6.6	10.9	28.4	0	100	235	-724.2	9.9	115.4
3450.6	8121.0	-317.8	4904.2	1087.9	179.4	7403.5	827	19.2	-5	7.1	18.3	0	100	147.8	-480.4	10.4	75
3450.6	8121.0	-148.9	4470.4	599.9	179.1	5693.4	746.6	20.8	-5	3.2	8.2	0	100	64.2	-219.9	7	33
3450.6	8121.0	20.0	2910.1	157.3	129.4	3179.3	480.7	22.2	-5.5	0	0	9.6	91.7	-4.6	27.2	-2.8	-2.6

Appendix 7: Boundary conditions and initial conditions prior to tunnel construction

SO4 De	HCO3 Dev	Ca Dev	Na Dev	Marine	Meteoric	Glacial	Brine	O18	H3	SO4	CI	HCO3	Ca	Na	Elevation	Northing	Easting
mg	mg/l	mg/l	mg/l	%	%	%	%	d %o	TU	mg/l	mg/i	mg/l	mg/l	mg/l	m	m	m
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	5600	-300
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	6400	-300
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7200	-300
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	8121	-300
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	8121	400
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	8121	1000
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	8121	1800
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	8121	2600
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	8121	3450.44
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7500	3450.44
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	7500	2700
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	6800	2700
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	6200	2700
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	5600	2700
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	7000	3450.44
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	6200	3450.44
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	5600	3450.44
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	5600	2200
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	5600	1400
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	5600	600
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	7200	1070
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	6200	1070
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	6200	1000
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	6200	2100
	0	0	0	100	0	0	0	-5	22	527	3534	146	152	3180	0	5900	2200
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	6650	2100
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	8100	1000
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	8013	1331
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7915	1389
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7994	2022
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7919	2059
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7877	2682
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7648	2635
	0	0	Ō	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7676	2374
	0	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7572	2450
	-	0	0	0	100	0	0	-10.5	22	1.4	0.23	12.2	0.24	0.4	20	7390	2411

Boundary conditions and initial conditions prior to tunnel construction

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2500	7385	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2495	7313	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2452	7310	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2441	7175	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2379	7198	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2216	7306	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2319	7035	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2081	6837	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2013	6987	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2094	7076	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1885	7223	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1725	7163	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1621	7195	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1696	7340	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1456	7416	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1638	7480	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1554	7580	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1370	7500	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1070	8121	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1342	8024	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1400	7926	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2033	8005	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2070	7930	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2694	7889	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2647	7636	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2390	7665	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2465	7572	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2422	7401	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2511	7395	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2506	7312	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2464	7299	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2452	7164	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2379	7187	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2235	7285	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2330	7035	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2081	6816	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2002	6987	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev	HCO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/i	mg/l	mg/l
2083	7076	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1885	7212	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1725	7152	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1610	7190	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1685	7330	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1435	7416	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1617	7485	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1554	7569	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1359	7480	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
-300	5600	-900	103	83	202	175	48.3	11	-10.4	3.2	17	76.6	3.2	-272.2	-541.5	187.5	1.2
-300	8121	-900	103	83	202	175	48.3	11	-10.4	3.2	17	76.6	3.2	-272.2	-541.5	187.5	1.2
2200	5600	-1000	3000	3830	11	9900	519	0.2	-13.1	26.6	50.6	11.4	11.4	375.8	-1321.2	-10.88	217.4
-300	5600	-1000	2460	3590	53	9900	645	10. 1	-11.9	22.5	45.6	16	16	42.6	-769.3	24.5	356.8
-300	8121	-1000	2460	3590	53	9900	645	10.1	-11.9	22.5	45.6	16	16	42.6	-769.3	24.5	356.8
3450.44	5600	-1000	3000	3830	11	11100	519	0.2	-13.1	26.6	50.6	11.4	11.4	375.8	-1321.2	-10.88	217.4
3450.44	8121	-1000	3000	3830	11	11100	519	0.2	-13.1	26.6	50.6	11.4	11.4	375.8	-1321.2	-10.88	217.4
2800	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2800	6600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2800	7400	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1980	7580	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2200	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300	8121	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.44	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.44	8121	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
1575	6860	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0

Appendix 8: Boundary conditions and initial conditions after the tunnel construction

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev HC	O3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	ΤU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
-300	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
-300	6400	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
-300	7200	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
-300	8121	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
400	8121	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1000	8121	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1800	8121	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2600	8121	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
3450.44	8121	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
3450.44	7500	0	3180	152	12.2	0.23	527	22	-5	0	0	0	100	0	0	0	0
2700	7500	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2700	6800	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2700	6200	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2700	5600	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
3450.44	7000	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
3450.44	6200	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
3450.44	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2200	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1400	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
600	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1070	7200	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1070	6200	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1000	6200	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2100	6200	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2200	5900	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2100	6650	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1091	8100	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1331	8013	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1389	7915	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2022	7994	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	C
2059	7919	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	C
2682	7877	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2635	7648	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	C
2374	7676	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	Ċ
2450	7572	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2411	7390	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0

Boundary conditions and initial conditions after the tunnel construction

Easting	Northing	Elevation	Na	Ca	HCO3	Cl	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev HC	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/l	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2500	7385	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2495	7313	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2452	7310	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2441	7175	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2379	7198	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2216	7306	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2319	7035	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2081	6837	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2013	6987	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2094	7076	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1885	7223	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1725	7163	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1621	7195	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1696	7340	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1456	7416	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1638	7480	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1554	7580	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1370	7500	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1070	8121	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1342	8024	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1400	7926	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2033	8005	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2070	7930	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2694	7889	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2647	7636	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2390	7665	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2465	7572	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2422	7401	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2511	7395	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2506	7312	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2464	7299	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2452	7164	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2379	7187	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2235	7285	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2330	7035	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2081	6816	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
2002	6987	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0

Easting	Northing	Elevation	Na	Ca	HCO3	CI	SO4	H3	O18	Brine	Glacial	Meteoric	Marine	Na Dev	Ca Dev H	CO3 Dev	SO4 Dev
m	m	m	mg/l	mg/i	mg/l	mg/l	mg/l	TU	d %o	%	%	%	%	mg/l	mg/l	mg/l	mg/l
2083	7076	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1885	7212	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1725	7152	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1610	7190	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1685	7330	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1435	7416	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1617	7485	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1554	7569	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
1359	7480	0	3180	152	146	3534	527	22	-5	0	0	0	100	0	0	0	0
-300	5600	-900	50.3	38.1	215	35.4	13.3	27	-10	2	12.7	83.2	2	-188.6	-359.4	201.6	-17.2
-300	8121	-900	50.3	38.1	215	35.4	13.3	27	-10	2	12.7	83.2	2	-188.6	-359.4	201.6	-17.2
2200	5600	-1000	2850	3310	25	9900	480	8	-13.6	23.4	51.5	12.5	12.6	460.9	-1226.5	1.8	201.3
-300	5600	-1000	57.5	53.4	217	83.4	14.8	28	-9.5	2.1	11.1	84.6	2.1	-191.3	-360.6	203.3	-16.9
-300	8121	-1000	57.5	53.4	217	83.4	14.8	28	-9.5	2.1	11.1	84.6	2.1	-191.3	-360.6	203.3	-16.9
3450.44	5600	-1000	2850	3310	25	11100	480	8	-13.6	23.4	51.1	12.5	12.6	460.9	-1226.5	1.8	201.3
3450.44	8121	-1000	2850	3310	25	11100	480	8	-13.6	23.4	51.5	12.5	12.6	460.9	-1226.5	1.8	201.3
2800	5600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2800	6600	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2800	7400	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
1980	7580	20	0.4	0.24	12.2	0.23	1.4	22	-10.5	0	0	100	0	0	0	0	0
2200	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
-300	8121	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.44	5600	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
3450.44	8121	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0
1575	6860	-1500	8500	19300	14.1	47200	906	4.2	-8.9	100	0	0	0	0	0	0	0