International Progress Report

IPR-10-08

Äspö Hard Rock Laboratory

Hydro Monitoring Program

Report for 2009

Eva Wass Göran Nyberg GEOSIGMA Uppsala

May 2010

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co

Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00

Report no. No. $IPR-10-08 \hspace{1cm} F53$ Author Date $Eva \hspace{1cm} Wass \hspace{1cm} May \hspace{1cm} 2010$

Göran Nyberg

Checked by Date

Mansueto Morosini 2010-05-31

Approved Date

Mats Ohlsson 2010-05-31

Äspö Hard Rock Laboratory

Hydro Monitoring Program

Report for 2009

Eva Wass Göran Nyberg GEOSIGMA Uppsala

May 2010

Keywords: Groundwater, Borehole, Tunnel, Measurement methods, Äspö, HMS, AP TD F53-08-061

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Abstract

The Äspö island is situated close to the nuclear power plant of Simpevarp in south-eastern Sweden. As part of the pre-investigations preceding excavation of the Äspö Hard Rock Laboratory, registrations of the groundwater levels and electrical conductivity in packed-off borehole sections and levels in open boreholes started in 1987. The investigations are still ongoing and are planned to continue for a long period of time. As the tunnel excavation went on from the autumn 1990 and onwards, new boreholes were drilled in the tunnel and instrumented to enable groundwater pressure monitoring in packed-off sections. In addition, other hydro-related measurements such as water flow in the tunnel, electrical conductivity of tunnel water and inflow and outflow of water through tunnel pipes have been performed. This report is a summary of the monitoring during 2009.

In order to allow for comparison with factors that may influence the groundwater level/pressure and flow, meteorological data are also presented in the report.

From the end of 1991, the disturbance from the tunnel is the dominating factor influencing groundwater levels in the area. In one chapter, activities that may have an influence on the ground water situation are listed and briefly discussed.

Sammanfattning

Äspö ligger nära Oskarshamns kärnkraftverk i sydöstra Sverige. Som en del av förundersökningarna inför anläggningen av Äspölaboratoriet påbörjades 1987 registrering av grundvattennivå och elektrisk konduktivitet i avmanschetterade borrhålssektioner och nivå i öppna borrhål. Nivåmätningarna pågår fortfarande och planeras fortgå under lång tid framöver. Från hösten 1990, under det att tunneln drevs, borrades nya hål i tunneln som instrumenterades för att möjliggöra mätningar av grundvattentrycket i avmanschetterade sektioner. Därtill har andra hydrorelaterade mätningar gjorts i tunneln såsom vattenflöde i tunneln, grundvattnets elektriska ledningsförmåga samt in- och utflöde av vatten i tunnelledningar. Denna rapport sammanfattar mätningar som gjorts under 2009.

För att kunna relatera förändringar till faktorer som kan påverka grundvattnets nivå/tryck och flöde presenteras även meteorologiska data i rapporten.

Från och med 1991, ett år efter det att tunneldrivningen startade, är störningen från tunneldrivningen den faktor som har störst påverkan på grundvattenytan i området. I ett kapitel redovisas och diskuteras översiktligt sådana aktiviteter som kan påverka grundvattnet.

Executive Summary

The construction of the Äspö Hard Rock Laboratory started in October 1990. The laboratory consists of an extensive tunnel system excavated down to a depth of 460 m below the ground surface. A 3.6 km long entrance tunnel to the laboratory, starting at the ground surface close to the nuclear power plant on the Simpevarp peninsula, has been excavated. Vertical shafts, connecting the laboratory with the ground surface of Äspö, were also drilled.

Extensive pre-investigations (e.g. aerial and ground geophysical surveys, mapping of solid rocks and borehole investigations) have been performed on:

- Äspö
- Ävrö
- Bockholmen
- Mjälen
- in the Laxemar area at the mainland west of Äspö

A large number of core and percussion boreholes have been drilled in these areas. One important part of the pre-investigations has been hydrogeological borehole investigations, such as different types of hydraulic tests, hydrochemical investigations, tracer tests and groundwater level registrations.

The objectives of the geohydrological investigations are 1) to document the groundwater conditions before, during and after excavating the laboratory tunnel system, 2) to obtain a data set of hydraulic, transport and chemical parameters and 3) to meet the regulations imposed by the water rights court. The obtained parameters are essential in order to improve predictions of transient processes, e.g. predictions of groundwater level changes, which is one consequence of the tunnel excavation.

The groundwater level registrations were initiated in 1987, before the start of the tunnel excavation. The results of these registrations have consecutively been presented in annual reports (Nyberg, et al, 1991-2009). Earlier reports only comprised data collected in surface boreholes but as from the annual report for 1995, data collected from measurements in the tunnel were also included. The present paper is the annual report covering the year 2009. The following data have been collected:

- 1. Groundwater level in surface boreholes
- 2. Groundwater pressure in tunnel boreholes
- 3. Water flow in tunnel
- 4. Water flow in tunnel pipes
- 5. Electrical conductivity of tunnel water
- 6. Temperature, humidity and pressure of tunnel air

- 7. Precipitation
- 8. Air temperature
- 9. Potential evaporation

From 2006, the meteorological data are collected at the SKB meteorological station Norra Äspö situated in the northern part of Äspö. Up to 2005, the meteorological data were collected at the SMHI (Swedish Meteorological and Hydrological Institute) stations situated closest to the investigation area.

During 2009, there were 132 boreholes involved in the hydro-monitoring program within the four investigation areas and in the tunnel. Most of the boreholes are equipped with one or several rubber packers, which isolate up to ten borehole sections.

In the tunnel, 25 gauging boxes equipped with a v-notch weir are installed for flow measurements. Electrical conductivity of tunnel water has been measured at eleven locations. Water flow out of the tunnel in the discharge pipe is measured at 0/700 m tunnel length. Temperature, humidity and pressure of tunnel air are also measured at several positions in the tunnel.

During the spring of 1991, the tunnel excavation began to affect the groundwater level in many surface boreholes. During 1992 and 1993 the effect of the tunnel was evident in all investigation areas except at Laxemar. In areas on Äspö located near the tunnel spiral, the drainage caused by the tunnel has resulted in dramatic effects in many boreholes. In some borehole sections, the level has declined as much as 100 metres. Since 1994 the levels have gradually stabilised and during the last years the level decline in most boreholes has been within some metre. During 2009, the level changes were relatively small, within ± 1 m in most boreholes. Even if the changes are rather small, the long-term overall picture is that a small decrease is still ongoing in many boreholes on the Äspö island as a result of the excavation of the Äspö HRL. During certain periods this decrease may be balanced by meteorological conditions resulting in increasing groundwater levels.

In most tunnel boreholes, the pressure was still decreasing (about 10-100 kPa, i.e. 1-10 m) during 2009, but there were also sections with increasing pressure. Due to a lot of activities in the tunnel during the year (e.g. drilling, packer expansion and releases, opening, closing and pumping various boreholes), it is difficult to say whether the pressure changes are "natural" or caused by the activities.

The flow in most gauging boxes has decreased if one compares the mean flow for the period October – December for the latest fifteen years. A few exceptions to this, especially in the deepest parts of the tunnel system, can be related to various activities. During the comparison period October – December, 1518 m³/d was pumped out from the tunnel during 2009, which is approximately 168 m³/d less than during the same period 2008.

The total amount of precipitation during 2009 was 594 mm (Norra Äspö), which is 41 mm more than the mean for the comparison period 1961-90 (Oskarshamn). Large amounts were measured in May, July and November while the precipitation in April and September were only 2 mm and 22 mm, respectively.

Contents

1	Introduction	11
2	Boreholes	15
2.1	.1 Surface boreholes	15
2.2	.2 Tunnel boreholes	18
3	Measurement methods	21
3.1		21
3.2		23
	3.2.1 Monitoring in surface boreholes	23
	3.2.2 Absolute pressure in borehole sections	24
	3.2.3 Calibration method	26
3.3	1	26
	3.3.1 Monitoring in tunnel boreholes	26
3.4		31
	3.4.1 Instrumentation	31
	3.4.2 Methods	33
	3.4.3 Accuracy	33
3.5	.5 Water flow in tunnel pipes	33
	3.5.1 Methods	33
3.6	3	34
	3.6.1 Methods	35
	3.6.2 Accuracy	35
3.7	1 , 5 1	35
3.8		36
	3.8.1 Precipitation	36
	3.8.2 Temperature	36
	3.8.3 Potential Evapotranspiration	36
4	Summary of activities influencing groundwater levels, pressure	and flow 37
4.1		37
4.2	1	37
4.3	1 C	41
4.4	1	42
4.5	.5 Drilling	45
46	6 Tests	48

5	Results		51			
5.1	General		51			
5.2	Groundy	vater levels in surface boreholes	51			
5.3	5.3 Groundwater pressure in tunnel boreholes					
5.4	Water flo	ow in the tunnel	52			
		ow in tunnel pipes	53			
		ll conductivity of tunnel water	54			
	-	ture, humidity and pressure of tunnel air	54			
	Precipita		55			
	Air temp		56			
5.10	Potential	l evapotranspiration	57			
6 References						
App	endices a	attached on CD				
App	endix 1	Groundwater levels in surface boreholes				
App	endix 2	Groundwater pressure in tunnel boreholes				
App	endix 3	Water flow in the tunnel				
App	endix 4	Water flow in tunnel pipes				
App	endix 5	Electrical conductivity of tunnel water				
App	endix 6	Temperature, humidity and pressure of tunnel air				

1 Introduction

Since October 1990, construction work for the Äspö Hard Rock Laboratory, situated a few kilometres north of the nuclear power plant of Simpevarp in south-eastern Sweden (Figure 1-1), are in progress. The laboratory extends to a depth of 460 m below the ground surface of the small island of Äspö. The entrance tunnel, starting at the ground surface on the mainland close to the nuclear power plant, has a length of about 3.6 km. Three vertical shafts (one elevator and two ventilation shafts), which connect the laboratory with the ground surface of Äspö, have been excavated. A large number of surface boreholes have been drilled on Äspö and on the adjacent islands of Ävrö, Bockholmen and Mjälen and in the Laxemar area on the mainland west of Äspö (Figure 1-2).

The groundwater level investigations in surface boreholes performed to this date have been described in several progress reports. The groundwater level registrations are ongoing since 1987. The measurements have continued during the entire period of tunnel excavation and will go on for a long period afterwards. The registrations are presented in annual reports (Nyberg et al, 1991-2009). The first report, however, contained groundwater level data from three years: 1987-89 (Nyberg et al, 1991). As from the report for 1995, tunnel data are also included. The objective with the present report is to account for data collection and measurement system of the hydrogeological monitoring of the Äspö Hard Rock Laboratory covering the year 2009. The following data have been collected:

- 1) groundwater level in surface boreholes
- 2) groundwater pressure in tunnel boreholes
- 3) water flow in tunnel
- 4) water flow in tunnel pipes
- 5) electrical conductivity of tunnel water
- 6) temperature, humidity and pressure of tunnel air

Background data considered necessary for interpreting changes of groundwater levels are also presented in the report. This includes:

- 7) precipitation from northern Äspö
- 8) air temperature from northern Äspö
- 9) potential evapotranspiration from northern Äspö

The work was carried out in accordance with activity plan SKB AP TD F53-08-061. The monitoring reports, Table 1-1, present the results from the quality check performed once every four months.

Table 1-1. Monitoring reports.

Reports (in Swedish)	Number	
Slutförvarsteknik Äspölaboratoriet. Kommentarer vid granskning av HMS-data Period: december 2008 – maj 2009	TD-10-02	
Slutförvarsteknik Äspölaboratoriet. Granskning av moniteringsdata, maj – september 2009	TD-09-03	
Slutförvarsteknik Äspölaboratoriet. Kommentarer vid granskning av HMS-data Period: september 2009 – januari 2010	TD-10-03	

Figure 1-1. Location of the Äspö Hard Rock Laboratory area and of the stations used to collect background data. Gladhammar, Målilla and Oskarshamn are SMHI's meteorological stations used in the report.

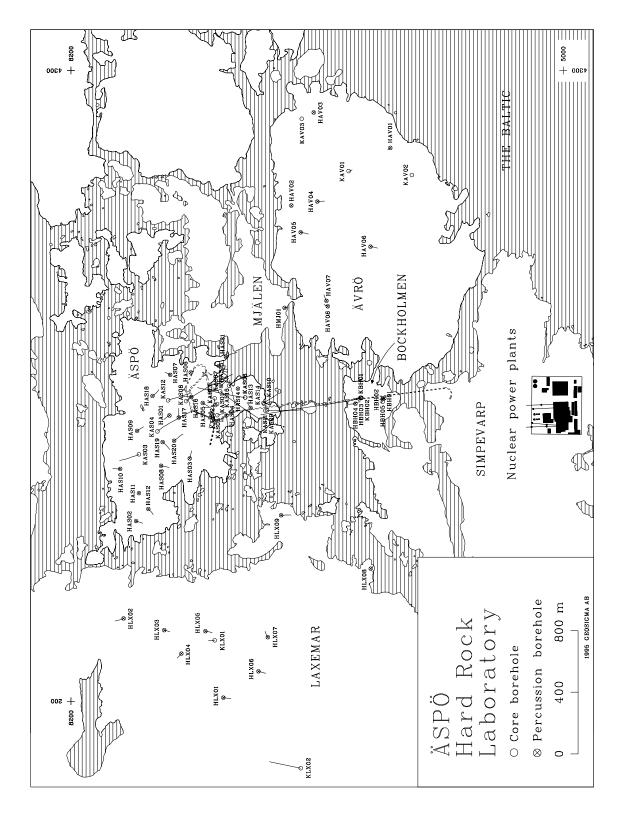


Figure 1-2. The investigation area with borehole locations.

2 Boreholes

2.1 Surface boreholes

The locations of the boreholes are shown in Figure 1-2. The extent of the monitoring program for surface boreholes during 2009 is shown in Table 3-3.

Table 2-1 presents borehole orientation (inclination and bearing), borehole length, elevation of the top of casing, length of casing and the date for completion of drilling for each surface borehole.

The height above ground for the top of casing is normally less than half a meter, typically about 30 cm.

Table 2-1. Borehole deviation, length, elevation of top of casing, length of casing and date for the completion of drilling.

HAS01	(°)	ground (°)	length (m)	Elevation ** at top of casing (m.a.s.l)	Length of casing (m)	Drilling completed (yymmdd)
	-60.7	327	100.0	6.38	1.2	870807
HAS02	-55.4	198	93.0	2.11	1.6	870801
HAS03	-55.6	108	100.0	2.36	1.6	870803
HAS04	-61.2	257	201.0	6.26	1.4	870804
HAS05	-58.1	207	100.0	6.31	1.4	870806
HAS06	-88.1	261	100.0	4.80	1.0	870806
HAS07	-61.5	30	100.0	3.76	2.0	870801
HAS08	-58.0	189	125.0	6.62	1.5	880319
HAS09	-59.3	150	125.0	7.84	1.5	880320
HAS10	-60.6	2	125.0	6.35	1.5	880322
HAS11	-89.3	356	125.0	5.59	1.5	880323
HAS12	-59.9	222	125.0	2.88	1.5	880325
HAS13	-60.3	60	100.0	2.05	3.0	881211
HAS14	-88.0	255	100.0	1.67	1.5	890117
HAS15	-60.0	136	120.0	4.19		890419
HAS16	-60.0	5	120.0	4.36		890415
HAS17	-60.0	90	120.0	7.89		890417
HAS18	-62.2	147	150.0	7.54	6.0	900319
HAS19	-57.3	220	150.0	8.97	6.0	900313
HAS20	-60.5	142	150.0	6.24	6.0	900319
HAS21	-60.0	151	148.0	3.04	3.0	911106
HAV01	-88.6	334	175.0	9.27		860813
HAV02	-89.1	137	163.0	6.08		860821
HAV03	-88.0	160	134.2	9.17		860824
HAV04	-60.1	180	100.0	7.97	0.4	870724
HAV05	-54.5	191	100.0	6.83	1.0	870728
HAV06	-59.5	190	100.0	12.39	1.2	870730
HAV07	-56.2	66	100.0	4.14	4.0	870728
HAV08	-61.9	28	63.0	7.05		870909
HBH01	-58.5	352	50.6	4.71	3.0	910220
HBH02	-47.5	346	32.4	4.68	3.0	910221
HBH03	-58.2	356	100.0	5.92	1.2	910306
HBH04	-59.7	356	90.4	5.52	5.1	920506
HBH05	-45.0	347	22.0	2.97	6.7	920601
HLX01	-59.4	190	100.63	8.87	3.0	871021
HLX02	-59.3	339	132.0	9.01	0.6	871027

Borehole	Inclination at ground (°)	Bearing * at ground (°)	Borehole length (m)	Elevation ** at top of casing (m.a.s.l)	Length of casing (m)	Drilling completed (yymmdd)
HLX03	-63.1	200	100.0	10.43	1.4	871104
HLX04	-65.2	316	125.0	10.33	1.2	871106
HLX05	-59.9	188	100.0	15.68	0.6	871105
HLX06	-58.6	195	100.0	15.45	1.0	871030
HLX07	-60.8	62	100.0	8.58	1.0	871103
HLX08	-47.8	134	40.0	2.19	6.0	911114
HLX09	-61.3	178	151.0	3.28	3.0	911121
HMJ01	-60.0	182	46.0	1.39	6.0	911030
KAS01	-85.0	330	101.00	8.18	1.00	871029
KAS02	-84.5	331	924.04	7.68	1.05	871221
KAS03	-82.9	339	1002.26	8.79	1.11	880407
KAS04	-59.9	141	480.98	11.66	100.70	880501
KAS05	-84.9	164	549.60	8.68	1.05	890226
KAS06	-59.6	8	602.94	5.16	1.30	890128
KAS07	-59.1	218	603.88	4.58	1.15	890105
KAS08	-59.0	146	601.49	7.66	100.00	881223
KAS09	-59.9	182	450.62	4.08	100.65	891121
KAS10	-60.0	162	99.93	3.72	2.50	891023
KAS11	-88.7	35	248.90	4.22	6.00	900220
KAS12	-69.9	162	380.48	4.83	6.00	900319
KAS13	-62.2	281	406.95	3.84	6.00	900313
KAS14	-61.3	149	211.85	3.35	6.00	900511
KAS16	-84.5	139	548.46	3.66	6.00	920902
KAV01	-89.2	237	502.20			770516
			744.60			861116
			757.31	14.07	68.04	961127
KAV02	-89.5	39	97.10	7.52	12.40	770531
KAV03	-89.4	146	248.40	8.71	2.80	861005
KBH02	-45.0	348	706.35	5.50	5.50	900517
KLX01	-85.3	1	702.11 1077.99	16.74	0-101.30 268.3-702.1	880205 900804
KLX02	-85.0	9	1700.50	18.37	202.95	921129

 $^{^{\}star}$ Degrees (0-360) measured clockwise in local system ÄSPÖ96. Magnetic bearing is obtained by subtracting 11.8°.

The borehole diameters are presented in Table 2-2. Most boreholes are enlarged in the uppermost part to allow for installation of casing. All core boreholes except four are "telescope drilled"; i.e. the diameter of the upper part is larger than below. Exceptions are KAS01 and KAS10, where drilling was unsuccessful, and KAV02 and KAV03, which were not telescope drilled. Normally, the enlarged part has a length of approximately 100 m. All telescope drilled core boreholes have an enlargement (approximately 1 m long) where the diameter changes to make room for a funnel-shaped pipe, which gives a smooth transition between the two borehole diameters.

^{**} Measured in local system ÄSPÖ96. Elevation in RT90-RHB70 is obtained by adding 0.03 m.

Table 2-2. Borehole diameters.

Borehole	Length	of borehole	Nominal		Borehole	Length o	Length of borehole		of borehole Nominal	Nominal
	from	to	diameter			from	to	diameter		
	(m)	(m)	(mm)	-		(m)	(m)	(mm)		
HAS01	0.00	100.00	115		KAS01	0.00	101.00	115		
HAS02	0.00	93.00	115		KAS02	0.00	93.35	155		
HAS03	0.00	100.00	115			93.35	924.04	56		
HAS04	0.00	201.00	115		KAS03	0.00	1.11	?		
HAS05	0.00	100.00	115			1.11	100.80	164		
HAS06	0.00	100.00	115			100.80	1002.26	56		
HAS07	0.00	100.00	115		KAS04	0.00	100.70	155		
HAS08	0.00	125.00	115			100.70	480.98	56		
HAS09	0.00	125.00	115		KAS05	0.00	150.00	164		
HAS10	0.00	125.00	115			150.00	549.60	76		
HAS11	0.00	125.00	115		KAS06	0.00	100.00	164		
HAS12	0.00	125.00	115			100.00	602.94	56		
HAS13	0.00	100.00	115		KAS07	0.00	100.00	164		
HAS14	0.00	100.00	115			100.00	603.88	56		
HAS15	0.00	120.00	115		KAS08	0.00	100.00	164		
HAS16	0.00	120.00	115			100.00	601.49	56		
HAS17	0.00	120.00	115		KAS09	0.00	100.65	167		
HAS18	0.00	6.00	250			100.65	450.62	56		
	6.00	150.00	162		KAS10	0.00	99.93	56		
HAS19	0.00	6.00	250		KAS11	0.00	40.40	160		
	6.00	150.00	158			40.40	248.90	56		
HAS20	0.00	6.00	250		KAS12	0.00	100.05	167		
	6.00	150.00	152			100.05	380.48	56		
HAS21	0.00	148.00	115		KAS13	0.00	100.20	162		
						100.20	104.35	56		
HAV01	0.00	175.00	110			104.35	257.45	76		
HAV02	0.00	163.00	110			257.45	406.95	56		
HAV03	0.00	134.20	110		KAS14	0.00	100.44	164		
HAV04	0.00	100.00	115			101.40	211.85	56		
HAV05	0.00	100.00	115		KAS16	0.00	100.00	164		
HAV06	0.00	100.00	115			100.00	548.46	56		
HAV07	0.00	100.00	115							
HAV08	0.00	63.00	76		KAV01	0.00	68.74	200		
						68.74	68.84	165		
HBH01	0.00	50.60	115			68.84	70.04	76		
HBH02	0.00	32.40	115			70.04	757.31	56		
HBH03	0.00	100.00	115		KAV02	0.00	97.10	56		
HBH04	0.00	90.40	115		KAV03	0.00	248.40	56		
HBH05	0.00	22.00	115							
					KBH02	0.00	101.50	165		
HLX01	0.00	100.63	115			101.50	706.35	56		
HLX02	0.00	132.00	115		KLX01	0.00	1.00	?		
HLX03	0.00	100.00	115			1.00	101.30	155		
HLX04	0.00	125.00	115			101.30	702.11	76		
HLX05	0.00	100.00	115			702.11	1077.99	56		
HLX06	0.00	100.00	115							
HLX07	0.00	100.00	115		KLX02	0.40	3.00	304		
HLX08	0.00	40.00	115			3.00	200.80	215		
HLX09	0.00	151.00	115			200.80	201.00	165		
						201.00	202.95	92		
HMJ01	0.00	46.00	115			202.95	1700.50	76		

2.2 Tunnel boreholes

The borehole orientation (inclination and bearing), borehole length, borehole diameter, elevation of the starting point at the tunnel wall, length of casing and the date for completion of drilling for tunnel boreholes are presented in Table 2-3. Only those boreholes that have been monitored within the HMS during 2009 are listed.

Many boreholes are enlarged in the outermost (closest to the tunnel) 2 - 2.5 metres to enable installation of casing. Except for HA1283B and KA3065A03, which were lengthened with a smaller diameter, the diameter inside the casing enlargement does not vary. During 2007, over-core drilling was performed in borehole KA3065A03.

Table 2-3. Borehole deviation, length, minimum diameter, elevation at tunnel wall, length of casing and date for the completion of drilling.

Borehole	Inclination at top of	Bearing * at top of	Borehole length	Minimum diameter	Elevation** at tunnel	Length of	Drilling completed
	b.h.	b.h.	istigui	Manietti	wall	casing	Completed
	(°)	(°)	(m)	(mm)	(m.a.s.l.)	(m)	(yymmdd)
HA1273A	10.7	351.3	30.0	57	-174.23	2.00	920423
HA1278A	4.3	304.8	29.0	57	-175.68	2.00	920910
HA1279A	2.8	311.6	24.0	57	-175.65	2.00	920910
HA1283B	-8.0	352.7	35.5	57	-176.55	2.00	920415
			40.2	51			
HA1327B	-0.5	140.0	29.5	57	-182.81	2.00	920911
HA1330B	-0.5	100.0	32.5	57	-182.99	No c.	920911
HD0025A	7.0	88.7	15.0	57	-416.70	No c?	941111
KA1061A	0.6	349.6	208.5	56	-144.93	2.00	920123
KA1131B	-12.9	0.5	203.1	56	-155.30	2.00	920212
KA1751A	5.2	274.2	149.91	56	-237.56	2.00	930504
KA1754A	-26.2	299.9	159.88	56	-237.84	2.00	930519
KA1755A	-19.9	339.4	320.58	56	-237.80	2.42	940406
KA2048B	-10.6	190.9	184.45	56	-275.43	2.00	930216
KA2050A	-53.5	55.3	211.57	56	-275.79	2.50	931102
KA2162B	-15.2	272.2	288.1	56	-289.87	2.50	930401
KA2511A	-33.3	234.8	293.0	56	-335.88	2.50	930905
KA2563A	-42.5	237.2	363.43	56	-340.79	2.05	960924
KA2598A	-32.2	292.6	300.77	56	-342.39	No c?	930928
KA2858A	-4.3	287.0	59.7	56	-379.38	2.50	950115
KA2862A	-8.0	15.9	15.98	56	-379.54	2.50	950125
KA3005A	-4.5	299.1	58.11	56	-399.86	2.50	941205
KA3010A	-4.7	99.5	60.66	56	-399.87	2.50	941208
KA3065A02	-5.1	59.8	69.95	76	-408.25	2.55	990422
KA3065A03	-4.5	55.8	9.20	300	-408.09	?	
			10.40	196			000206
			11.35	36			011003
			0 - 12.11	300			070503
KA3067A	-4.7	98.4	40.05	56	-408.59	2.50	941211
KA3068A	2.8	113.8	16.85	86	-408.38	No c?	940603
KA3105A	-4.7	102.5	68.95	56	-413.68	2.50	941215
KA3110A	-5.4	238.3	26.83	56	-413.71	2.50	941217
KA3385A	-4.1	176.2	34.18	56	-445.99	No c.	950110
KA3386A01	-1.9	219.9	65.11	76	-446.11	2.51	020615
KA3510A	-30.1	255.3	150.06	76	-448.70	2.35	960909
KA3539G	-80.5	274.2	30.01	76	-449.19	No c.	980513
KA3542G01	-44.9	188.7	30.04	76	-449.07	No c.	980603
KA3542G02	-44.2	6.3	30.01	76	-449.07	No c.	980605
KA3543A01	-0.8	234.1	2.06	56	-446.80	No c.	001005
KA3543I01	70.5	195.5	2.06	56	-444.08	No c.	001011
KA3544G01	-90.0	0.0	12.0	76	-448.95	No c.	980325
KA3546G01	-89.8	194.0	12.0	76	-448.89	No c.	980324
KA3548A01	-3.1	188.3	30.0	76	-446.58	2.50	980628

Borehole	Inclination	Bearing *	Borehole	Minimum	Elevation**	Length	Drilling
	at top of	at top of	length	diameter	at tunnel	of	completed
	b.h. (°)	b.h. (°)	(m)	(mm)	wall	casing	(vermedd)
KA3548D01	2.7	52.6	(m) 2.06	(mm) 56	(m.a.s.l.) -445.87	(m) No c.	(yymmdd) 001006
KA3548G01	-89.7	75.8	12.01	76	-449.00	No c.	980323
KA3550G01	-89.2	249.0	12.03	76	-448.77	No c.	980322
KA3550G05	-89.2	25.0	3.0	56	-448.96	No c.	001030
KA3551G05	-89.9	356.1	3.1	56	-448.91	No c.	001027
KA3552A01	-2.8	233.6	2.06	56	-446.62	No c.	000928
KA3552G01	-89.5	130.6	12.01	76	-448.77	No c.	980321
KA3552H01	58.2	267.7	2.1	56	-443.98	No c.	001012
KA3553B01	-37.7	8.1	2.02	56	-446.55	No c.	001004
KA3554G01	-45.0 -45.0	188.2 8.2	30.01	76 76	-448.83	No c.	980607
KA3554G02 KA3557G	- 4 5.0 -81.5	o.∠ 271.2	30.01 30.04	76 76	-448.82 -448.85	No c. No c.	980606 980512
KA3563A01	-01.5 -7.7	233.8	2.06	56	-447.06	No c.	000922
KA3563D01	2.5	53.7	2.00	56	-446.15	No c.	000925
KA3563G	-79.9	277.9	30.0	76	-448.69	No c.	980507
KA3563I01	73.0	235.9	2.15	56	-443.64	No c.	001011
KA3566C01	3.5	232.3	2.1	56	-445.56	No c.	000920
KA3566G01	-44.9	188.8	30.01	76	-448.57	No c.	980609
KA3566G02	-43.8	7.7	30.01	76	-448.57	No c.	980610
KA3568D01	-2.3	54.4	2.3	56	-445.83	No c.	000925
KA3572G01	-89.6	225.0	12.0	76	-448.51	No c.	980320
KA3573A	-2.1	188.3	40.07	76	-446.07	2.65	970911
KA3573C01	34.9	232.3	2.05	56	-445.13	No c.	000926
KA3574D01	12.6	55.5	2.05	56	-445.12	No c.	000926
KA3574G01	-89.2	249.0	12.0	76 76	-448.33	No c.	980428
KA3576G01 KA3578C01	-89.2 -5.4	213.7 232.4	12.01 2.09	76 56	-448.27 -445.34	No c. No c.	980426 000928
KA3578G01	-3. 4 -89.0	252. 4 252.7	12.58	76	-445.34 -448.38	No c.	980319
KA3578H01	59.1	266.7	1.9	56	-443.38	No c.	001002
KA3579D01	-1.0	54.2	2.0	56	-445.43	No c.	000922
KA3579G	-89.4	296.6	22.65	76	-448.37	No c.	971008
KA3584G01	-89.2	212.5	12.0	76	-448.25	No c.	980319
KA3588C01	-4.0	232.8	2.04	56	-445.44	No c.	000926
KA3588D01	-1.8	55.0	1.9	56	-445.24	No c.	000925
KA3588I01	65.6	5.2	1.96	56	-443.34	No c.	001019
KA3590G01	-44.4	186.7	30.06	76	-448.06	No c.	980623
KA3590G02	-43.8	7.9	30.05	76 50	-448.08	No c.	980616
KA3592C01	4.4 -79.8	233.8	2.1	56 76	-445.25	No c.	000926
KA3593G KA3597D01	-79.8 3.1	275.2 53.5	30.02 2.22	76 56	-448.07 -445.10	No c. No c.	980504 001004
KA3597D01 KA3597H01	55.1	248.8	2.22	56 56	-443.18	No c.	001004
KA3600F	-1.7	248.4	50.1	76	-445.58	2.65	970924
KF0051A01	29.9	310.3	11.70	76	-451.38	2.50	980527
KF0069A01	-1.8	28.9	70.09	76	-454.82	2.54	020521
KG0021A01	17.7	220.1	48.82	76	-445.15	2.50	980708
KG0048A01	14.0	222.4	54.69	76	-444.49	2.42	980804
KI0023B	-20.7	214.6	200.71	76	-447.69	2.65	971120
KI0025F	-20.2	187.1	193.8	76	-448.23	2.50	970425
KI0025F02	-25.5	200.0	204.18	76	-448.53	2.65	980825
KI0025F03	-29.8	206.9	141.72	76	-448.08	2.50	990813
KXTT1	-45.6	61.5	28.76	56	-392.12	2.50	950518
KXTT2	-44.5	61.2	18.3	56 76	-392.42	2.50	950522
KXTT5	-14.9 10.5	47.7	25.85	76 57	-390.30	2.55 No. 22	990505
SA3045A	-10.5	132.2	20.7	57	-405.42	No c?	940227

<sup>Degrees (0-360) measured clockwise in local system ÄSPÖ96. Magnetic bearing is obtained by subtracting 11.8°.
** Measured in local system ÄSPÖ96. Elevation in RT90-RHB70 is obtained by adding 0.03 m.</sup>

3 Measurement methods

3.1 Data collection

All data are collected by means of different types of pressure transducers connected to different types of logger units or by manual levelling.

In the tunnel, pressure in borehole sections are measured either via a hydraulic multiplexer or by individual transducers for each section connected directly to a Borre logger, a Datascan unit or a Datataker logger. The hydraulic multiplexer holds a pressure transducer connected to a Borre logger of a type that can operate the magnetic valves on the multiplexer.

Below follows a summary of the units that are used.

BorreR is a logger with a 16 bits A/D converter. This logger communicates with a measurement station either by radio or via the power line. Used at the ground surface only.

BorreT is a logger with a 16 bits A/D converter communicating with a measurement station in a Borre data network. This logger, which can operate magnetic valves on a hydraulic multiplexer, is used in the tunnel only.

Datascan has a 16 bits A/D converter. This unit has no data storing facility and is connected directly to a measurement station. It is used in the tunnel only.

DataTaker is a data logger connected on-line to a measurement station by means of radio or network. The logger has 42 channels and is used in the tunnel only.

The logger types used for surface boreholes are presented in Table 3-1.

In Table 3-2, the data-collecting units used for pressure measurements in borehole sections in the tunnel are presented.

Table 3-1. Monitoring equipment in surface boreholes.

Borehole	Sect.	Equipment	Date		Borehole	Sect.	Equipment	Date	
	no		from	to		no		from	to
HAS01	1	BorreR	91-09		HAV03	1	Manually	000917	
HAS02	1	Manually	970320		HAV04	1	Manually	000917	
HAS03	1	Manually	981018		HAV08	1	Manually	060504	
HAS05	1	Manually	970320		HBH01	1	Manually	040101	
HAS06	1	BorreR	91-09		HBH02	1	Manually	040101	
HAS07	1	BorreR	970218		HBH04	1	Manually	050530	
HAS08	1	Manually	970130			2	Manually	91-03	
HAS09	1	Manually	970320		HLX03	1	Manually	000917	
HAS10	1	Manually	970320		HLX04	1	Manually	970129	
HAS11	1	Manually	060504		HLX05	1	Manually	050530	
HAS12	1	Manually	970320		KAS03	1-6	BorreR	91-09	09-
HAS13	1	BorreR	91-09		KAS04	1	Manually	970320	
HAS14	1	Manually	970320		KAS07	1	Manually	970220	
HAS15	1	Manually	041002		KAS09	1-5	BorreR	91-09	09-
HAS16	1	BorreR	91-09		KAS10	1	BorreR	91-09	09-
HAS17	1	Manually	050419			1	Manually	09-04	
HAS18	1	Manually	970227		KAS11	1	Manually	970320	
HAS19	1	Manually	050419		KAS14	1	Manually	970320	
HAS20	1	Manually	970130		KAS16	1	Manually	92-10	
HAS21	1	BorreR	970130			2-4	Manually	041002	
HAV01	1	Manually	000917		KBH02	3-6	Manually	050530	

Note - Data not relevant for 2009 is to be found in earlier annual reports.

Table 3-2. Monitoring equipment in tunnel boreholes.

Borehole	Sect. no	Equipment	Date from	to	Borehole	Sect. no	Equipment	Date from	to
HA1273A	1	HM*+BorreT		090318	KA3068A	1	DataTaker	080123	
	1	DataTaker	090327		KA3105A	1-5	Datataker	061128	
HA1278A	1	HM*+BorreT		090318	KA3110A	1-2	Datataker	061128	
	1	DataTaker	090327		KA3385A	1-2	Datascan	970701	
HA1279A	1	HM*+BorreT		090318	KA3386A01	1	Datascan	030415	
	1	DataTaker	090327		KA3510A	1-3	Datascan	981027	
HA1283B	1	HM*+BorreT		090318		4-5	Datascan	010518	
	1	DataTaker	090327		KA3539G	1-4	Datascan	030508	
HA1327B	1	HM*+BorreT		090318	KA3542G01	1-5	Datascan	030508	
	1	DataTaker	090327		KA3542G02	1-5	Datascan	030508	
HA1330B	1	HM*+BorreT		090318	KA3543A01	1	Datascan	030508	
	1	DataTaker	090327		KA3543I01	1	Datascan	030508	
HD0025A	1	Datascan	990602		KA3544G01	1-3	Datascan	030508	
KA1061A	1	HM*+BorreT		090318	KA3546G01	1-3	Datascan	030508	
	1	DataTaker	090327		KA3548A01	1-4	Datascan	030508	
KA1131B	1	HM*+BorreT		090318	KA3548D01	1	Datascan	030508	
	1	DataTaker	090327		KA3548G01	1-2	Datascan	030508	
KA1751A	1-3	DataTaker	071106		KA3550G01	1-3	Datascan	030508	
KA1754A	1-2	DataTaker	071106		KA3550G05	1	Datascan	030508	
KA1755A	1-4	DataTaker	071106		KA3551G05	1	Datascan	030508	
KA2048B	1-4	DataTaker	080206		KA3552A01	1	Datascan	030508	
KA2050A	1-3	DataTaker	080206		KA3552G01	1-3	Datascan	030508	
KA2162B	1-4	DataTaker	080206		KA3552H01	1	Datascan	030508	
KA2511A	1-6	Datascan	970701		KA3553B01	1	Datascan	030508	
	7-8	Datascan	990316		KA3554G01	1-5	Datascan	030508	
KA2563A	1-5	Datascan	961120		KA3554G02	1-5	Datascan	030508	
KA2598A	1	Datascan	990512		KA3557G	1-2	Datascan	030508	
KA2858A	2	Datascan	011024		KA3563A01	1	Datascan	011219	
KA2862A	1	Datascan	011024		KA3563D01	1	Datascan	011219	
KA3005A	2-5	Datascan	011024		KA3563G	1-4	Datascan	011219	
KA3010A	2	Datascan	011024		KA3563I01	1	Datascan	010921	
KA3065A02	1-4	DataTaker	080117		KA3566C01	1	Datascan	011114	
KA3065A03	1	DataTaker	080123		KA3566G01	1-5	Datascan	011217	
KA3067A	1-4	DataTaker	080117		KA3566G02	1-5	Datascan	011217	

Borehole	Sect.	Equipment	Date		Borehole	Sect.	Equipment	Date	
	no		from	to		no		from	to
KA3568D01	1	Datascan	010926		KA3592C01	1	Datascan	011219	
KA3572G01	1-2	Datascan	011217		KA3593G	1-4	Datascan	011015	
KA3573A	1-5	Datascan	011217		KA3597D01	1	Datascan	010918	
KA3573C01	1	Datascan	011219		KA3597H01	1	Datascan	011015	
KA3574D01	1	Datascan	011219		KA3600F	1-4	Datascan	011015	
KA3574G01	1-3	Datascan	011217		KF0051A01	1-4	Datascan	980612	
KA3576G01	1-3	Datascan	010918		KF0069A01	1	Datascan	030417	
KA3578C01	1	Datascan	011106		KG0021A01	1-5	Datascan	010530	
KA3578G01	1-2	Datascan	010918		KG0048A01	1-5	Datascan	010529	
KA3578H01	1	Datascan	011219		KI0023B	1-9	Datascan	980216	
KA3579D01	1	Datascan	010920		KI0025F	1-6	Datascan	970710	
KA3579G	1-3	Datascan	011217		KI0025F02	1-10	Datascan	981027	
KA3584G01	1-2	Datascan	010918		KI0025F03	1-9	Datascan	991013	
KA3588C01	1	Datascan	011101		KXTT1	1-4	Datascan	011024	
KA3588D01	1	Datascan	011219		KXTT2	1-5	Datascan	011024	
KA3588I01	1	Datascan	011101		KXTT5	1-4	Datascan	011024	
KA3590G01	1-3	Datascan	011217		SA3045A	1-3	DataTaker	080117	
KA3590G02	1-4	Datascan	011217						

^{*} HM=Hydraulic Multiplexer Note - Data not relevant for 2009 is to be found in earlier annual reports.

3.2 Groundwater level measurements in surface boreholes

3.2.1 Monitoring in surface boreholes

Measurements of the groundwater level are normally made with eight minutes intervals. Measured values are not stored unless they differ from the previously stored value by more than 0.2 m. In addition to this, a value is stored every two hours.

In Table 3-3, lengths along the borehole to top and bottom of each section as well as elevation of the top of section are presented. If no end date is given, the borehole was equipped in the same way at the end of 2009. However, the period when some of the boreholes were open to enable re-instrumentation (summer 1991) is not included in the table.

Table 3-3. Monitored sections in surface boreholes.

Borehole	Section	Section insta	alled	Borehole	length		of section*
	no	from	to	from	to	at top	at middle
				(m)	(m)	(masl)	(masl)
HAS01	1	1988-08-01		0	100	6.38	-37.41
HAS02	1	1995-08-25		0	93	2.11	-36.87
HAS03	1	1997-02-05		0	100	2.36	-39.41
HAS05	1	1993-03-31		0	100	6.31	-36.70
HAS06	1	2003-09-23		0	100	4.80	-45.12
HAS07	1	1997-02-18		0	100	3.76	-41.45
HAS08	1	1997-01-30		0	125	6.62	-48.20
HAS09	1	1995-08-14		0	125	7.84	-47.69
HAS10	1	1995-08-14		0	125	6.35	-49.32
HAS11	1	2003-05-21		0	125	5.59	-56.81
HAS12	1	1995-08-15		0	125	2.88	-52.78
HAS13	1	2003-05-21		0	100	2.05	-42.01
HAS14	1	1995-08-14		0	100	1.67	-48.30
HAS15	1	2001-05-15		0	120	4.19	-47.77
HAS16	1	2003-09-23		0	120	4.36	-47.60
HAS17	1	2005-04-19		0	120	7.89	-44.07
HAS18	1	1997-02-27		0	150	7.54	-59.72
HAS19	1	2005-04-19		0	150	8.97	-55.65

Borehole	Section no	Section insta	alled to	Borehole from	length to	Elevation at top	of section* at middle
				(m)	(m)	(masl)	(masl)
HAS20	1	2003-07-03		0	150	6.24	-57.68
HAS21	1	1997-01-30		0	148	3.04	-60.98
HAV01	1	2000-09-17		0	175	9.27	-77.88
HAV03	1	2000-09-17		0	134	9.17	-57.78
HAV04	1	2000-09-17		0	100	7.97	-35.78
HAV08	1	1987-09-05		0	63	7.05	-20.77
HBH01	1	2003-09-17		0	50.6	4.71	-17.16
HBH02	1	2003-09-17		0	32.4	4.68	-7.35
HBH04	1	1991-04-04		31	90.4	-21.27	-46.69
	2	1991-04-04		0	30	5.52	-7.45
HLX03	1	2000-09-17		0	100	10.43	-35.07
HLX04	1	1997-01-29		0	125	10.33	-48.05
HLX05	1	1997-01-29		0	100	15.68	-28.54
KAS03	1	1996-04-27	2009-03-02	627	1002	-613.37	-798.89
	2	1996-04-27	2009-03-02	533	626	-520.23	-566.30
	3	1996-04-27	2009-03-02	377	532	-365.46	-442.37
	4	1996-04-27	2009-03-02	253	376	-242.42	-303.44
	5	1996-04-27	2009-03-02	107	252	-97.47	-169.46
	6	1996-04-27	2009-03-02	0	106	8.79	-43.85
KAS04	1	1993-06-04		0	480.98	11.66	-193.58
KAS07	1	1997-02-20		0	603.88	4.58	-253.44
KAS09	1	1990-01-01	2009-04-06	261	450	-220.08	-301.03
	2	1990-01-01	2009-04-06	241	260	-202.93	-211.08
	3	1990-01-01	2009-04-06	151	240	-125.97	-163.99
	4	1990-01-01	2009-04-06	116	150	-96.01	-110.58
	5	1990-01-01	2009-04-06	0	115	4.08	-45.66
KAS10	1	1989-10-23		0	99.93	3.72	-39.55
KAS11	1	1995-10-23		0	248.9	4.22	-120.21
KAS14	1	1995-10-24		0	211.85	3.35	-87.81
KAS16	1	1992-10-20		466	548.46	-452.88	-492.38
	2	1992-10-20		390	465	-379.57	-415.81
	3	1992-10-20		121	389	-116.36	-248.21
	4	1992-10-20		0	120	3.66	-55.96
KBH02	3	1991-09-18		261	326	-109.42	-117.31
	4	1991-09-18		151	260	-79.60	-95.04
	5	1991-09-18		106	150	-61.29	-71.08
	6	1991-09-18		0	105	5.50	-29.95

Note - Data not relevant for 2009 is to be found in earlier annual reports.

3.2.2 Absolute pressure in borehole sections

Sometimes it is of interest to determine the absolute pressure at the top of a packed-off section. This value can be calculated if the vertical distance from top of section to the water level in the tube connecting the section with the ground surface and the density of water in the tube are known.

The altitude at top of section is presented in Table 3-3.

Density

The density of the tube water is determined in the following way. When all packers in a core borehole are installed and inflated, water is flushed from all sections to the ground surface through the tubes. When at least two tube volumes have been discharged, a water sample from each tube is collected. The electrical conductivity of the sample is measured. On approximately 75 samples from 1988 and 1989, the density was laboratory-determined. The electrical conductivity of the samples ranged from 60 to 3400 mS/m. From these measurements a first order equation is set up, by means of the

^{*} Measured in local system ÄSPÖ96. Elevation in RT90-RHB70 is obtained by adding 0.03 m. Italics= This information is not found in the Sicada database

least square method (by Ann-Chatrin Nilsson, KTH, 1990, personal communication), which gives the density from the electrical conductivity (see note in Table 3-4). This equation is then used to calculate the density of any sample. The deviation from the straight line for a single value is at most 1.5 kg/m³, but normally less then 0.5 kg/m³.

A more difficult problem is to determine whether the water sample is representative for the water in the tube or not. For example, water with a different density than the sample might have entered into a part of the tube when the flushing was interrupted. Taking also this into account, the maximum error in the density is estimated to be $\pm 10 \text{ kg/m}^3$, corresponding to $\pm 1 \text{ m per } 100 \text{ m water column}$.

Calculated density values in the tubes and measured electrical conductivity values are found in Table 3-4. Measurements of the electrical conductivity in water samples were performed only in the core boreholes on Äspö, in KBH02 and in KLX01, beginning in 1988.

The values may differ from undisturbed values in the section. For example, if the sample was taken immediately after inflation of the packers, the electrical conductivity in the section may not have reached its natural value.

It can be mentioned that the electrical conductivity of the sea water east of Ävrö in August and September 1986 was 1180 and 1170 mS/m, respectively.

Table 3-4. Electrical conductivity and calculated density (at 25° C) of water in tubes between section and the ground surface.

Borehole	Sec.	Valid from	Electrical conduct. (mS/m)	Density (kg/m³)
KAS03	1	2007-09-27	275	999
	1	2009-02-18	1340	1004
	2	2005-10-06	824	1001
	3	1997-06-18	1790	1006
	4	1996-05-22	352	999
	5	2005-10-03	317	999
	5	2009-02-17	186	998
	6	1996-05-22	47	998
KAS09	1	1990-04-07	1600	1005
	2	1990-04-07	1600	1005
	3	1990-04-07	1600	1005
	4	2008-05-12	1010	1002
	4	2009-03-18	977	1002
	5	1990-04-07	1600	1005
KAS16	1	1992-10-20	1450	1004
	2	1992-10-20	1350	1004
	3	1992-10-20	800	1001
	4	1992-10-20	750	1001
KBH02	3	1992-05-14	970	1002
	4	1992-05-14	1090	1002
	5	1992-05-14	870	1001
	6	1992-05-14	530	1000

Density (kg/m³) = 997.3 + 0.00467 × Electrical conductivity (mS/m). Note - Data not relevant for 2009 is to be found in earlier annual reports.

3.2.3 Calibration method

Manual levelling of all borehole sections is made, normally once every month, in order to calibrate the registrations from the data loggers.

The logger data from the surface boreholes are converted to water levels by means of a linear calibration equation. It is also necessary to subtract the air pressure since all transducers give the absolute pressure. Converted logger data are compared with results from manual levelling. If the two differ, calibration constants (offset) are adjusted until an acceptable agreement is obtained.

3.3 Groundwater pressure in tunnel boreholes

3.3.1 Monitoring in tunnel boreholes

Normally, the level is scanned every 4th second but due to signal noise it has been necessary to increase this value up to 30 minutes in some boreholes. However, data are stored only once every two hours unless the change since the latest stored value exceeds a pre-defined limit. The limit is usually set to 1 kPa, but due to signal noise it has been necessary to increase this value in some boreholes to avoid sampling of too much data.

In Table 3-5 the length along the boreholes to top and bottom of each section and the elevation at the middle of section is presented. To enable calculations of absolute pressure at the middle of section, the level of the pressure transducer is also given.

Table 3-5. Monitored sections in tunnel boreholes.

Borehole	Section	Section inst	alled	Boreho	le length	Elevatio	n of *	
	no	from	to	from	to	SecTop	SecMid	Transducer
				(m)	(m)	(masl)	(masl)	(masl)
HA1273A	1	1992-03-12	2009-03-18	0.0	23.0	-174.23	-172.10	-163.34
	1	2009-03-27		0.0	23.0	-174.23	-172.10	-164.04
HA1278A	1	1992-09-10	2009-03-18	0.0	29.0	-175.68	-174.59	-163.34
	1	2009-03-27		0.0	29.0	-175.68	-174.59	-164.04
HA1279A	1	1992-09-10	2009-03-18	0.0	24.0	-175.65	-175.06	-163.34
	1	2009-03-27		0.0	24.0	-175.65	-175.06	-164.04
HA1283B	1	1992-04-15	2009-03-18	0.0	40.2	-176.55	-179.35	-163.34
	1	2009-03-27		0.0	40.2	-176.55	-179.35	-164.04
HA1327B	1	1992-09-11	2009-03-18	0.0	29.5	-182.81	-182.93	-163.34
	1	2009-03-27		0.0	29.5	-182.81	-182.93	-164.04
HA1330B	1	1992-09-11	2009-03-18	6.0	32.5	-183.04	-183.15	-163.34
	1	2009-03-27		6.0	32.5	-183.04	-183.15	-164.04
HD0025A	1	1999-06-02		0.0	15.0	-416.70	-415.79	-416.44
KA1061A	1	1992-01-14	2009-03-18	0.0	208.5	-144.93	-144.01	-163.34
	1	2009-03-27		0.0	208.5	-144.93	-144.01	-164.04
KA1131B	1	1992-02-02	2009-03-18	0.0	203.1	-155.30	-178.88	-163.34
	1	2009-03-27		0.0	203.1	-155.30	-178.88	-164.04
KA1751A	1	2007-11-06		99.0	150.0	-246.10	-248.20	-224.84
	2	2007-11-06		56.0	98.0	-242.50	-244.23	-224.84
	3	2007-11-06		6.0	55.0	-238.10	-240.25	-224.84
KA1754A	1	2007-11-06		75.0	159.87	-270.76	-289.21	-224.84
	2	2007-11-06		6.0	74.0	-240.49	-255.48	-224.84
KA1755A	1	2007-11-06		231.0	320.58	-318.23	-334.61	-224.84
	2	2007-11-06		161.0	230.0	-293.11	-305.47	-224.84
	3	2007-11-06		0.88	160.0	-267.53	-279.92	-225.08
	4	2007-11-06		6.0	87.0	-239.83	-253.50	-225.09

Borehole		Section installed	Borehol		Elevatio		
	no	from to	from	to	SecTop		Transducer
			(m)	(m)	(masl)	(masl)	(masl)
KA2048B	1	2008-02-06	149.5	184.45	-302.36	-305.35	-289.61
	2	2008-02-06	100.0	148.5	-293.69	-297.97	-289.61
	3	2008-02-06	50.5	99.0	-284.73	-289.16	-289.61
	4	2008-02-06	5.0	49.5	-276.35	-280.46	-289.90
KA2050A	1	2008-02-06	155.0	211.57	-400.25	-422.84	-289.90
	2	2008-02-06	102.0	154.0	-357.81	-378.65	-289.90
	3	2008-02-06	6.0	101.0	-280.61	-318.81	-289.90
KA2162B	1	2008-02-06	201.5	288.1	-342.47	-353.24	-289.61
	2	2008-02-06	143.0	200.5	-327.48	-334.87	-289.61
	3	2008-02-06	80.5	142.0	-311.17	-319.19	-289.61
KA0544A	4	2008-02-06	40.0	79.5	-300.49	-305.70	-289.61
KA2511A	1	1999-03-16	239.0	293.0	-467.14	-481.94	-335.24
	2	1999-03-16	171.0	238.0	-429.93	-448.25	-335.24
	3	1999-03-16	139.0	170.0	-412.40	-420.90	-335.24
	4	1999-03-16	111.0	138.0	-397.01	-404.44	-335.24
	5 6	1999-03-16	103.0	110.0	-392.62	-394.54	-335.24
	7	1999-03-16 1999-03-16	96.0 65.0	102.0	-388.77 -371.67	-390.42	-335.24
	8		65.0	95.0		-379.95 -355.13	-335.24
KA2563A	o 1	1999-03-16 1999-03-15	6.0 242.0	64.0 246.0	-339.17		-335.49
NAZ303A	2	1999-03-15	236.0	240.0	-501.36 -497.48	-502.65 -499.10	-335.48 -335.48
	3	1999-03-15	206.0	208.0	-497.46 -478.00	-499.10 -478.65	-335.48
	4	1999-03-15	187.0	190.0	-476.00 -465.58	-476.65 -466.56	-335.48
	5	1999-03-15	146.0	186.0	-438.64	-451.81	-335.48
KA2598A	1	1999-05-12	0.0	300.77	-342.39	-431.81 -421.96	-334.78
KA2858A	2	1995-02-23	39.77	40.77	-382.34	-382.37	-398.96
KA2862A	1	2002-03-22	0.0	15.98	-379.54	-380.66	-398.96
KA3005A	2	1995-12-07	46.78	50.03	-403.52	-403.64	-399.64
10 1000071	3	1995-12-07	44.78	45.78	-403.37	-403.41	-399.64
	4	1995-12-07	39.03	43.78	-402.94	-403.12	-399.64
	5	1995-12-07	6.53	38.03	-400.38	-401.64	-399.64
KA3010A	2	1995-02-23	8.56	15.06	-400.58	-400.86	-399.64
KA3065A02	1	2008-01-17	21.0	69.95	-410.06	-412.42	-407.47
	2	2008-01-17	14.0	20.0	-409.46	-409.72	-407.47
	3	2008-01-17	7.5	13.0	-408.90	-409.14	-407.47
	4	2008-01-17	4.0	6.5	-408.59	-408.71	-407.47
KA3065A03	1	2008-01-23	0.0	12.11	-408.09	-408.57	-407.50
KA3067A	1	2008-01-17	34.55	40.05	-411.50	-411.74	-407.16
	2	2008-01-17	30.55	33.55	-411.16	-411.29	-407.16
	3	2008-01-17	28.05	29.55	-410.95	-411.01	-407.16
	4	2008-01-17	6.55	27.05	-409.14	-410.00	-407.16
KA3068A	1	2008-01-23	0.0	16.85	-408.38	-407.97	-407.16
KA3105A	1	2006-11-28	53.01	68.95	-418.09	-418.81	-413.52
	2	2006-11-28	25.51	52.01	-415.78	-416.87	
	3	2006-11-28	22.51	24.51	-415.54	-415.62	-413.52
	4	2006-11-28	17.01	19.51	-415.09	-415.19	
	5	2006-11-28	6.51	16.01	-414.21	-414.61	-413.52
KA3110A	1	2006-11-28	20.05	26.83	-415.61	-415.94	
	2	2006-11-28	6.55	19.05	-414.32	-414.91	
KA3385A	1	1995-03-02	32.05	34.18	-448.30	-448.37	
	2	1995-03-02	7.05	31.05	-446.49	-447.36	-445.93
KA3386A01	1	2006-01-30	2.12	65.11	-446.18	-447.31	-446.08
KA3510A	1	2007-03-21	125.0	150.06	-511.24	-517.48	-447.66
	2	2007-03-21	110.0	124.0	-503.77	-507.26	-447.66
	3	2007-03-21	75.0	109.0	-486.30	-494.79	-447.66
	4	2007-03-21	51.0	74.0	-474.28	-480.04	-447.24
KA2E200	5	2007-03-21	4.5	50.0	-450.96	-462.38	-447.24 446.02
KA3539G	1	2002-12-02	18.6	30.0	-467.53	-473.16	-446.92
	2	2002-12-02	15.85	17.6	-464.82	-465.68	-446.71
	3 4	2002-12-02	10.0 4.0	14.85	-459.05	-461.44 455.60	-446.50
	7	2002-12-02	4.0	9.0	-453.14	-455.60	-446.28

Borehole		Section installed		le length	Elevatio		
	no	from to	from	to	SecTop		Transducer
			(m)	(m)	(masl)	(masl)	(masl)
KA3542G01	1	2002-11-13	27.0	30.0	-468.15	-469.21	-446.92
	2	2002-11-13	21.3	26.0	-464.12	-465.78	-446.71
	3	2002-11-13	18.6	20.3	-462.22	-462.82	-446.50
	4	2002-11-13	10.5	17.6	-456.49	-459.00	-446.28
KA0540000	5	2002-11-13	3.5	9.5	-451.55	-453.67	-446.07
KA3542G02	1 2	2002-11-20	28.2	30.01 27.2	-468.73	-469.36	-446.92
	3	2002-11-20 2002-11-20	25.6 21.5	27.2 24.6	-466.92 -464.06	-467.48 -465.14	-446.71 -446.50
	3 4	2002-11-20	9.0	20.5	-455.35	-459.36	-446.28
	5	2002-11-20	2.8	8.0	- 4 55.35	-459.36 -452.84	-440.26 -446.07
KA3543A01	1	2002-11-20	0.65	2.06	-446.81	-446.82	-445.42
KA3543I01	1	2002-01-30	0.65	2.06	-443.47	-442.81	-445.64
KA3544G01	1	2002-11-12	11.65	12.0	-460.60	-460.78	-446.07
10.0044001	2	2002-11-12	8.9	10.65	-457.85	-458.73	-445.86
	3	2002-11-12	3.5	7.7	-452.45	-454.55	-445.64
KA3546G01	1	2002-11-07	9.3	12.0	-458.19	-459.54	-446.92
10.0010001	2	2002-11-07	6.75	8.3	-455.64	-456.42	-446.71
	3	2002-11-07	1.5	5.75	-450.39	-452.52	-446.50
KA3548A01	1	2002-11-28	21.5	30.0	-447.74	-447.97	-446.91
10 100 107 10 1	2	2002-11-28	11.75	20.5	-447.21	-447.45	-446.70
	3	2002-11-28	8.8	10.75	-447.05	-447.11	-446.49
	4	2002-11-28	3.0	7.8	-446.74	-446.87	-446.28
KA3548D01	1	2002-01-30	0.65	2.06	-445.83	-445.80	-445.42
KA3548G01	1	2002-01-29	6.0	12.0	-455.00	-458.00	-445.85
	2	2002-01-29	2.0	5.0	-451.00	-452.50	-445.54
KA3550G01	1	2002-11-06	8.3	12.03	-457.07	-458.93	-445.85
	2	2002-11-06	2.0	7.3	-450.77	-453.42	-445.64
	3	2002-11-06	1.8	4.2	-450.57	-451.77	-445.64
KA3550G05	1	2002-01-29	1.5	3.0	-450.46	-451.21	-446.06
KA3551G05	1	2002-01-29	1.5	3.1	-450.41	-451.21	-446.27
KA3552A01	1	2002-01-30	0.65	2.06	-446.65	-446.69	-445.64
KA3552G01	1	2003-04-27	7.05	12.01	-455.82	-458.30	-446.91
	2	2003-04-27	4.35	6.05	-453.12	-453.97	-446.70
	3	2003-04-27	1.5	3.35	-450.27	-451.20	-446.49
KA3552H01	1	2003-04-27	0.0	2.1	-443.98	-443.09	-445.64
KA3553B01	1	2002-01-30	0.65	2.02	-446.95	-447.37	-445.42
KA3554G01	1	2002-11-27	25.15	30.01	-466.63	-468.35	-446.92
	2	2002-11-27	22.6	24.15	-464.82	-465.37	-446.70
	3	2002-11-27	14.0	21.6	-458.74	-461.43	-446.48
	4	2002-11-27	5.0	13.0		-455.20	
	5	2002-11-27	1.5	4.0	-449.90	-450.78	
KA3554G02	1	2002-11-25	22.0	30.01	-464.37	-467.21	-446.91
	2	2002-11-25	15.9	21.0	-460.06	-461.86	-446.70
	3	2002-11-25	13.2	14.9	-458.15	-458.75	-446.49
	4	2002-11-25	10.5	12.2	-456.24	-456.84	-446.28
VA05570	5	2002-11-25	1.5	9.5	-449.88	-452.71	-446.06
KA3557G	1	2002-01-29	15.0	30.04	-463.68	-471.12	-446.92
VA2E62A01	2	2002-01-29	1.5	14.0	-450.33	-456.51	-446.70
KA3563A01 KA3563D01	1	2001-04-02	0.65	2.06 2.0	-447.15	-447.24	-445.50
	1	2001-04-02 2001-03-27	0.65 15.0	30.0	-446.13	-446.10	-445.49
KA3563G	1 2	2001-03-27	10.0	13.0	-463.46 -458.54	-470.85 -460.02	-445.93 -446.72
	3	2001-03-27	4.0	8.0	-456.54 -452.63	-460.02 -454.60	-446.72 -445.93
	4	2001-03-27	1.5	3.0	-452.03 -450.17	-454.00 -450.91	-445.72
KA3563I01	1	2001-03-27	0.65	2.15	-430.17 -443.02	-442.30	-445.72 -445.71
KA3566C01	1	2001-04-03	0.65	2.13	-445.52	-442.30 -445.48	-445.92
KA3566G01	1	2001-04-02	23.5	30.01	-445.52 -465.14	-445.46 -467.44	-445.92 -446.99
1.0.0000001	2	2001-03-20	20.0	21.5	-462.68	-463.20	-446.78
	3	2001-03-20	12.0	18.0	-457.03	- 4 59.15	-446.57
	4	2001-03-20	7.3	10.0	-453.72	- 4 53.13	-446.36
	5	2001-03-20	1.5	6.3	-449.62	-451.32	-446.14
	•			2.5		.51.02	

Borehole		Section installed		le length	Elevatio		_
	no	from to	from	to	SecTop	SecMid	Transducer
1/4050000		0004 00 00	(m)	(m)	(masl)	(masl)	(masl)
KA3566G02	1	2001-03-20	19.0	30.01	-461.72	-465.53	-446.57
	2	2001-03-20	16.0	18.0	-459.64 456.07	-460.34	-446.35
	3 4	2001-03-20	12.0 8.0	14.0 11.0	-456.87	-457.57 -455.14	-446.14
	4 5	2001-03-20 2001-03-20	6.0 1.5	6.0	-454.11 -449.61	-455.14 -451.16	-445.93 -446.72
KA3568D01	1	2001-03-20	0.65	2.3	-449.81 -445.86	-445.89	-445.49
KA3572G01	1	2001-04-02	7.3	12.0	-445.80 -455.81	-445.09 -458.16	-445.49 -446.99
10A3372G01	2	2001-03-21	2.7	5.3	-451.21	-452.51	-446.78
KA3573A	1	2001-03-29	26.0	40.07	-447.03	-447.29	-446.35
101007071	2	2001-03-29	21.0	24.0	-446.84	-446.90	-446.14
	3	2001-03-29	14.5	19.0	-446.60	-446.68	-445.93
	4	2001-03-29	10.5	12.5	-446.45	-446.49	-446.71
	5	2001-03-29	3.4	8.5	-446.19	-446.28	-445.50
KA3573C01	1	2001-04-02	0.65	2.05	-444.76	-444.36	-445.71
KA3574D01	1	2001-04-02	0.65	2.05	-444.98	-444.83	-445.92
KA3574G01	1	2001-03-07	8.0	12.0	-456.33	-458.33	-446.98
	2	2001-03-07	5.1	7.0	-453.43	-454.38	-446.78
	3	2001-03-07	1.8	4.1	-450.13	-451.28	-446.56
KA3576G01	1	2001-03-07	7.87	12.01	-456.14	-458.21	-446.55
	2	2001-03-07	3.87	5.87	-452.14	-453.14	-446.34
	3	2001-03-07	1.37	2.87	-449.64	-450.39	-446.13
KA3578C01	1	2001-04-03	0.65	2.09	-445.40	-445.47	-445.49
KA3578G01	1	2001-03-08	6.5	12.58	-454.88	-457.92	-446.98
KA0570LI04	2	2001-03-08	4.3	5.5	-452.68	-453.28	-446.77
KA3578H01	1 1	2001-04-03	0.65 0.65	1.9 2.0	-442.82	-442.28	-445.70
KA3579D01 KA3579G	1	2001-04-03 2001-03-08	14.7	2.0 22.65	-445.44 -463.07	-445.45 -467.04	-445.92 -446.56
NA30/9G	2	2001-03-08	12.5	13.7	-463.07 -460.87	-461.47	-446.34
	3	2001-03-08	2.5	11.5	-450.87	-455.37	-446.13
KA3584G01	1	2001-03-00	7.0	12.0	-455.25	-457.75	-446.98
10 1000-1001	2	2001-03-19	1.4	5.0	-449.65	-451.45	-446.77
KA3588C01	1	2001-04-03	0.65	2.04	-445.49	-445.54	-445.49
KA3588D01	1	2001-04-03	0.65	1.9	-445.26	-445.28	-445.70
KA3588I01	1	2001-04-03	0.65	1.96	-442.75	-442.15	-445.92
KA3590G01	1	2001-02-28	16.0	30.06	-459.26	-464.18	-446.98
	2	2001-02-28	7.0	15.0	-452.96	-455.76	-446.77
	3	2001-02-28	1.5	6.0	-449.11	-450.69	-446.56
KA3590G02	1	2001-03-06	25.65	30.05	-465.84	-467.36	-446.98
	2	2001-03-06	15.35	23.65	-458.71	-461.58	-446.77
	3	2001-03-06	12.05	13.35	-456.42	-456.87	-446.55
	4	2001-03-06	1.65	10.05	-449.22	-452.13	
KA3592C01	1	2001-04-03	0.63	2.1	-445.20	-445.15	-445.49
KA3593G	1	2001-02-27	25.2	30.02	-472.88	-475.25	-446.98
	2	2001-02-27	23.5	24.2	-471.21	-471.55	-446.77
	3	2001-02-27	9.0	22.5	-456.93	-463.58	-446.55
I/A0507D04	4	2001-02-27	3.0	7.0	-451.03	-452.99	-446.34
KA3597D01	1	2001-04-03	0.65	2.22	-445.06	-445.02	-445.70
KA3597H01	1	2001-04-03	0.65	2.06	-442.64	-442.07 -446.96	-445.92 -446.98
KA3600F	1 2	2001-03-28 2001-03-28	43.0 40.5	50.1 42.0	-446.86 -446.79	-446.96 -446.81	-446.96 -446.76
	3	2001-03-28	20.0	42.0 39.5	-446.79 -446.18	-446.47	-446.76 -446.55
	4	2001-03-28	3.4	18.0	-445.69	-445.91	-446.34
KF0051A01	1	2006-04-19	10.55	11.7	-446.12	-445.84	-452.18
11. 000 1701	2	2006-04-19	8.85	9.55	-446.97	-446.80	-452.18
	3	2006-04-19	6.26	7.85	-448.26	-447.87	- 4 52.18
	4	2006-04-19	4.66	5.26	-449.06	-448.91	- 4 52.18
KF0069A01	1	2002-05-21	0.0	70.09	-454.82	-455.97	-454.62
KG0021A01	1	2001-05-30	42.5	48.81	-432.25	-431.29	-447.00
y— - · · ·	2	2001-05-30	37.0	41.5	-433.92	-433.24	-446.79
	3	2001-05-30	35.0	36.0	-434.53	-434.38	-446.58
	5						
	4	2001-05-30	19.0	34.0	-439.39	-437.11	-446.37

Borehole	Sectio	n Section installed	Borehole	e length	Elevatio	n of *	
	no	from to	from	to	SecTop		Transducer
			(m)	(m)	(masl)	(masl)	(masl)
KG0048A01	1	2001-05-29	49.0	54.69	-432.63	-431.95	-447.00
	2	2001-05-29	34.8	48.0	-436.07	-434.47	-446.79
	3	2001-05-29	32.8	33.8	-436.55	-436.43	-446.58
	4	2001-05-29	13.0	31.8	-441.34	-439.07	-446.36
	5	2001-05-29	5.0	12.0	-443.27	-442.43	-446.16
KI0023B	1	2007-03-21	113.7	200.71	-488.30	-503.59	-448.09
	2	2007-03-21	111.25	112.7	-487.43	-487.69	-447.83
	3	2007-03-21	87.2	110.25	-478.84	-482.97	-447.83
	4	2007-03-21	84.75	86.2	-477.96	-478.22	-447.83
	5	2007-03-21	72.95	83.75	-473.73	-475.67	-447.83
	6	2007-03-21	70.95	71.95	-473.01	-473.19	-447.83
	7	2007-03-21	43.45	69.95	-463.15	-467.89	-447.83
	8	2007-03-21	41.45	42.45	-462.43	-462.61	-447.83
	9	2007-03-21	4.6	40.45	-449.32	-455.68	-447.83
KI0025F	1	2007-03-21	170.5	193.8	-502.58	-506.04	-448.09
11100201	2	2007-03-21	165.5	169.5	-501.08	-501.68	-448.09
	3	2007-03-21	90.5	164.5	-478.18	-489.62	-448.09
	4	2007-03-21	87.5	89.5	-477.24	-477.55	-448.09
	5	2007-03-21	42.5	86.5	-462.70	-469.91	-448.09
	6	2007-03-21	5.0	41.5	-449.95	-456.23	-448.09
KI0025F02	1	2007-03-21	140.05	204.18	-506.37	-518.94	-447.13
K10025F02	2	2007-03-21	135.1	139.05	-500.57 -504.41	-505.20	-447.13 -447.13
	3	2007-03-21	129.2	134.1	-502.07	-503.20	-447.13 -447.13
	4	2007-03-21	100.25	128.2	-490.40	-496.07	-447.13 -447.13
	5	2007-03-21	93.35	99.25	-490.40 -487.58	-490.07 -488.78	-447.13 -447.13
	6	2007-03-21	78.25	92.35	-481.36	-484.26	-447.13 -447.13
	7	2007-03-21	73.3	77.25	-479.31	-480.13	-447.13 -447.13
	8	2007-03-21	64.0	77.25	-479.31 -475.45	- 4 60.13	-447.13 -447.13
	9	2007-03-21	56.1	63.0	-473.43 -472.17	-477.10 -473.61	-447.13 -447.13
	10	2007-03-21	3.4	55.1	-472.17 -450.00	-473.01 -460.97	-447.13 -447.13
KI0025F03		2007-03-21	135.03	141.72	- 4 30.00	- 4 00.97	
K10025F05	1 2						-477.66
	3	2007-03-21	129.03	134.03 128.03	-511.06	-512.25	-477.66
	3 4	2007-03-21	123.03		-508.20	-509.39 -500.89	-477.66
	4 5	2007-03-21	93.53	122.03	-494.02		-477.66
		2007-03-21	89.03	92.53	-491.84	-492.69	-477.66
	6	2007-03-21	75.03	88.03	-485.04	-488.20	-477.66 477.66
	7 8	2007-03-21	66.53	74.03	-480.89	-482.72	-477.66
		2007-03-21	59.53	65.53	-477.46	-478.93	-477.66 477.66
LVTT4	9	2007-03-21	55.03	58.53	-475.26	-476.11	-477.66
KXTT1	1	1995-12-07	17.0	28.76		-408.48	
	2	1995-12-07	15.0	16.0	-402.84	-403.20	-398.96
	3	1995-12-07	7.5	11.5	-397.48	-398.91	-398.96
L()/TTO	4	1995-12-07	3.0	6.5	-394.26	-395.51	-398.96
KXTT2	1	1995-12-06	16.55	18.3	-404.01	-404.63	-398.96
	2	1995-12-06	14.55	15.55	-402.61	-402.96	-398.96
	3	1995-12-06	11.55	13.55	-400.51	-401.21	-398.96
KXTT5	4	1995-12-06	7.55	10.55	-397.72	-398.77	-398.96
	5	1995-12-06	3.05	6.55	-394.56	-395.79	-398.96
	1	1999-12-14	10.81	25.85	-393.09	-395.05	-399.64
	2	1999-12-14	9.61	9.81	-392.78	-392.81	-399.64
	3	1999-12-14	6.11	8.61	-391.88	-392.20	-399.64
SA3045A	4	1999-12-14	3.11	5.11	-391.10	-391.36	-399.64
	1	2008-01-16	9.0	20.7	-407.05	-408.12	-407.16
	2	2008-01-16	6.0	8.0	-406.51	-406.69	-407.16
	3	2008-01-16	2.5	5.0	-405.87	-406.10	-407.16

Note - Data not relevant for 2009 is to be found in earlier annual reports.

* Measured in local system ÄSPÖ96. Elevation in RT90-RHB70 is obtained by adding 0.03 m.

3.4 Water flow in tunnel

3.4.1 Instrumentation

For a detailed description of instrumentation, see "Manual för HMS (del 3:4), 1994" (SKB internal controlling document).

The tunnel sections, given as metres from the tunnel entrance, draining water to the various measurement ditches are listed in Table 3-6. The tunnel drainage system is illustrated in Figure 3-1. Normally, the gauging box is placed some 10 metres downward from the measurement ditch crossing the tunnel. Special arrangements are used to collect the water from the side tunnels containing the elevator and the ventilation shafts.

Table 3-6. Water flow measurements in tunnel segments.

Table 3-0. Water now measurements in turner segments.						
Gauging box	Upper section (m)	Lower section (m)				
MA0682G	0	682				
MA1033G	682	1033				
MA1232G	1033	1232				
MA1372G	1232	1372				
MA1584G	1372	1584				
MA1659G	Water from the elevator shaft (TH: 0-213 m), from the ventilation shaft for incoming air (TV: 0-213 m) and from a sump inside the gate in the side tunnel at 1659 m.					
MA1745G	1584	1745				
	Water from the side tunnel collected at MA1659G is not included.					
MA1883G	1745	1883				
MA2028G	1883	2028				
MA2178G	2028	2178				
MA2357G	2178	2357				
MA2496G	2357	2496				
MA2587G	Water from the elevator shaft (TH: 220-333 m) and from a sump inside the gate in the side tunnel at 2587 m.					
MA2699G	2496	2699				
	Water from the side tunnel collection	Water from the side tunnel collected at MA2587G is not included.				
MA2840G	2699	2840				
MA2994G	2840	2994				
MA3179G	2994	3179				
MA3384G	Water from the elevator shaft (TH: 340-450 m), from the ventilation shaft for incoming air (TV: 220-450 m) and from the ventilation shaft for outgoing air (TW: 0-450 m)					
MA3411G	3179	3426				
	Water from the side tunnel collection	cted at MA3384G is not included.				
MA3426G	3426	3600				
	Water from tunnel I and parts of tunnel J is included					
MA3515G	3515	3525				
MA3525G	3525	3535				
MA3535G	3535	3600				
MF0061G	Water from tunnel F 0-61 m and parts of tunnel J					
MG0004G	Water from tunnel G					

Note – The water from MA3515G, MA3525G and MA3535G is collected in MA3426G.

HMS - WATER FLOW IN TUNNEL

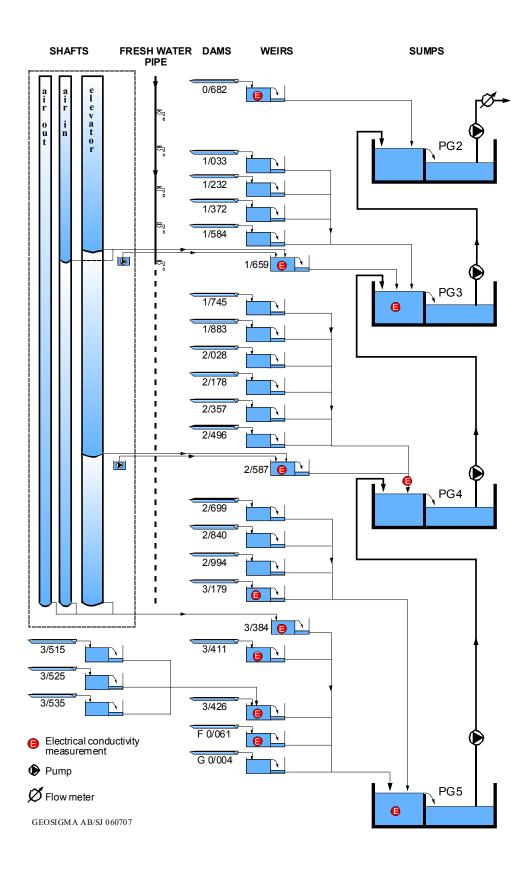


Figure 3-1. Schematic picture showing the tunnel drainage system.

3.4.2 Methods

Water levels in the gauging boxes are used in the HMS to calculate flow rates by means of a discharge equation expressing flow rate as a function of the water level. Normally, the level is measured every 10th second but stored only once every hour unless the change since the latest stored value exceeds a pre-defined limit. The limit is usually set to 1 mm, but due to oscillating levels in some gauging boxes it has been necessary to increase this value to avoid sampling of too much data.

Initially, the discharge equation for a weir is determined. The flow rate is measured at four different levels on a ruler. The level indicator is then calibrated against the ruler by altering the level in the box. This two-step procedure is used to avoid a new determination of the discharge equation every time a level indicator has to be replaced and to make the discharge equation independent of changes in the calibration of the transducers.

The levels in the gauging boxes are manually read once every month to enable adjustments of the calibration constants for the level indicators. The discharge equations were checked using field measurements 2009.

3.4.3 Accuracy

If the flow rate does not differ too much from the flow interval for which the measurement points were selected to determine the calibration equation, the error is within approximately five percent.

However, maintenance of the v-notch weir is important. If there are obstacles or coatings on the weir, the relation between level and flow rate is disturbed.

3.5 Water flow in tunnel pipes

For a detailed description on instrumentation, see "Manual för HMS (del 3:4), 1994" (SKB internal controlling document).

The flow in the pipe for pumped-out drainage water is measured with an acoustic "clamp-on" type flow meter. The sensor is situated approximately 700 m from the tunnel entrance. Until the end of June 1999, the flow of incoming consumption water was measured in the same way, but after a failure in the flow meter a decision was taken to not continue these measurements.

3.5.1 Methods

The calibration constants given by the manufacturer do not provide the required accuracy. It is necessary to use material constants for different pipes and the errors caused by using the wrong constants are unknown. The pipes consist of different material layers, and might be coated on the inside. Therefore, due to these uncertainties, the flow meter is calibrated by measuring level changes in the uppermost pumping sump. There are five sumps in the tunnel and the drainage water is pumped upwards from sump to sump until it is pumped out of the tunnel.

The flow is measured at a location some 10 metres above the top sump. The pump in each sump is working at maximum capacity until the sump is emptied and starts again when the sump is filled to a certain level. This means that the flow rate is either zero or at the maximum capacity of the pump. The flow meter was calibrated 2009 by measuring level changes per time in the sump. By knowing the water surface area in the sump at different levels one can calculate the discharged water volume.

The flow meter measurements are very frequent, every five seconds for discharged water, but the values are stored only once every 30 minutes unless a certain change has taken place.

3.6 Electrical conductivity of tunnel water

For a detailed description of instrumentation, see "Manual för HMS (del 3:4), 1994" (SKB internal controlling document).

Electrical conductivity is measured with a four-electrode conductivity meter, consisting of a housing with an electronic unit and an integrated sensor. The manufacturer gives an inaccuracy of maximum 0.5 % of the measured value plus 0.5 % of the measurement range. This gives a maximum error of 20 mS/m for most of the sensors.

The meter is mounted either in a gauging box for flow measurements, on the discharge pipe leading water from the gauging boxes to the pumping sumps, or in a sump.

In Table 3-7, the tunnel parts from which water originates at the different measurement points are listed, c.f. Figure 3-1. Length to section is given in metres from the tunnel entrance.

Table 3-7. Electrical conductivity of water in tunnel segments.

Measurement point	Upper section (m)	Lower section (m)	
EA0682G	0	682	
EA1584T	682	1584	
	Water from the gauging box MA165	9G is included (see below).	
EA1659B	Water from the elevator shaft (TH: 0-213 m), from the ventilation shaft for incoming air (TV: 0-220 m) and from a sump inside the gate in the side tunnel at 1659 m.		
EA2496T	1584	2496	
	Water from the gauging box MA165 water from the gauging box MA258		
EA2587G	Water from the elevator shaft (TH: 220-333 m) and from a sump inside the gate in the side tunnel at 2587 m.		
EA3179G	2994	3179	
EA3384G	Water from the elevator shaft (TH: 340-450 m), from the ventilation shaft for incoming air (TV: 220-450 m) and from the ventilation shaft for outgoing air (TW: 0-450 m).		
EA3411G	3179	3426	
	Water from the gauging box MA338	4G is excluded (see above).	
EA3426G	3426	3600	
	Water from tunnel I and parts of tun	nel J is included.	
EF0061G	Water from tunnel F 0-61 m and parts of tunnel J.		
EPG5	Water below section 2496 m, excluding the water from the gauging box MA2587G, including the water from the gauging box MA3384G (see above).		

3.6.1 Methods

Measurements of the electrical conductivity are normally made with ten-minute intervals but the values are stored only once every two hours unless a certain change has taken place.

The four gauging boxes MA3384G, MA3411G, MA3426G and MF0061G are all situated near the sump PG5 in the bottom part of the tunnel, and a single electrical conductivity meter is used periodically in the different boxes and the sump.

The conductivity meters were calibrated 2009 by measuring three buffer fluids having well-defined electrical conductivity.

3.6.2 Accuracy

No careful error calculations have been carried out, but from the annual calibrations the uncertainty can be estimated to be approximately ± 5 % of measured values. This includes all types of errors, for example coatings on the sensor, drift in calibration constants, error in the electrical conductivity of the buffer solutions, etc.

3.7 Temperature, humidity and pressure of tunnel air

Places in the tunnel where air temperature, air humidity and air pressure are measured are listed in Table 3-8.

Measurements of temperature, humidity and pressure of tunnel air are normally made with two to ten seconds intervals, but the values are stored only once every two hours unless a certain change has taken place.

Table 3-8. Monitored temperature, relative humidity and pressure of tunnel air.

Tunnel	Position	Parameters	Measured	
			from	to
A	0111B	Temp & RH	2009-10-30	
Α	1198A	Temp & RH	2007-03-30	
Α	1354B	Temp & RH	2007-03-30	
Α	1624A	Temp & RH	2007-11-08	
Α	2513A	Temp & RH	2006-11-10	
Α	2714A	Temp & RH	2006-11-10	
Α	3134A	Temp & RH	2006-11-28	
Α	3134A	Air pressure	2007-03-30	
D	0042A	Temp & RH	2006-11-29	
E	0008A	Temp & RH	2006-11-10	
F	0070B	Temp & RH	2006-11-10	
G	0047A	Temp & RH	2006-11-10	
J	0015A	Temp & RH	2006-11-10	
J	0049A	Temp & RH	2006-11-10	
Q	0054B	Temp & RH	2006-11-10	
S	0040A	Temp & RH	2009-12-16	
Incoming air	TV (above ground)	Temp & RH	2007-12-06	
Incoming air	TV (above ground)	Air pressure	2007-12-06	
Outgoing air	TW (above ground)	Temp & RH	2007-12-06	
Outgoing air	TW (above ground)	Air pressure	2007-12-06	

3.8 Meteorological data

From 2006 the station used to collect meteorological data is a SKB station, Norra Äspö, situated in the northern part of Äspö. Data are quality checked by SMHI.

During 1987-2005 the meteorological data were collected from different SMHI stations. The stations used were Oskarshamn, Gladhammar, Ölands norra udde and Målilla.

3.8.1 Precipitation

All types of errors cause precipitation to be underestimated. All precipitation values in this report are measured values, without any corrections.

3.8.2 Temperature

The areal representativity for temperature is normally quite good. Therefore, the Oskarshamn measurements some 25 km away can be regarded as good estimates of the temperature at Äspö, especially since both sites are near-coastal and at nearly the same altitude.

3.8.3 Potential evapotranspiration

Although actual evapotranspiration can show a rather large areal variation on the local scale, the potential evapotranspiration, depending mainly upon meteorological factors, does not vary that much. For long periods the actual evapotranspiration is almost the same as the potential, but during the summer months it does not reach the potential rate. The difference between the two very much depends on vegetation, ground conditions and the wetness situation.

4 Summary of activities influencing groundwater levels, pressure and flow

4.1 General

One utilisation of monitoring data is to relate the long-term effects of the tunnel excavations to the groundwater situation in the area. Therefore, activities that might influence the groundwater pressure, groundwater levels and groundwater inflow to the tunnel are presented. The character and magnitude of the disturbances depend on the type of activity. Some activities might influence the groundwater pressure/level in many surrounding boreholes while other have influence only in the borehole where the activity takes place.

During the spring of 1991, the tunnel excavation began to have a visible effect on the groundwater level in many surface boreholes, especially on Äspö and Bockholmen. Later on most boreholes, except those on Laxemar, were influenced by the tunnel activities. From late 1991, the tunnel had a dominating influence on the groundwater levels in the area. One particular activity affecting the groundwater levels in many boreholes on Äspö was the drilling of the first of two raise-drilled ventilation shafts at the end of October 1992. After this event, the groundwater levels continued to decline in many borehole sections, but nothing as spectacular as in the late 1992 has occurred. Since 1996, the levels in most surface boreholes seem to have stabilised and the changes during 2009 were relatively small, within some metre in most boreholes. In the tunnel, the pressure in most of the borehole sections decreased by about 10 - 100 kPa (1-10 m) during 2009, but there were also sections with increasing pressure during the year.

A large number of activities, which may or may not have influenced the groundwater level/pressure and inflow to the tunnel, have been carried out during 2009. Over 6400 entries during 2009 can be found in the activity table in the SKB database SICADA. One should also expect that there are activities influencing groundwater conditions that are missing in the database. Because of the great number of activities in the database, only a selection of activities is presented in the following tables.

The activities, obtained from the SKB database SICADA, are listed in Tables 4-1 to 4-6. The dates stated in the tables are the dates for the actual activity. However, the influence on groundwater levels/pressures may last 5-10 times the length of the activity.

4.2 Tunnel excavation and permanent reinforcement

These activities, presented in Table 4-1, may have a substantial influence on ground water levels and pressures.

Table 4-1. Tunnel excavation and permanent reinforcements.

Ctort		Idoodo	Coour /m'	Cooley (ms)	Activity
Start 2000-08-22	Stop 2009-08-22	TASR	Secup (m) 507.00	Seclow (m) 507.00	Activity Round
2000-08-22	2009-08-22	TASR	507.00	507.00	Round
2000-08-22	2009-08-22	TASR	507.00	507.00	Round
2000-08-22	2009-08-22	TASR	507.00	507.00	Round
2008-11-26	2009-01-13	TASE	0.00	20.00	Bolting
2008-11-26	2009-01-13	TASE	0.00	20.00	Bolting
2009-01-14	2009-01-14	NASA0408A			Additional scaling
2009-01-19	2009-01-29	TASA	2940.00	2960.00	Bolting
2009-01-19	2009-01-29	TASA	2960.00	2980.00	Bolting
2009-01-28	2009-02-05	TASA	2280.00	2300.00	Bolting
2009-01-29	2009-02-02	TASA	2260.00	2280.00	Bolting
2009-01-29	2009-01-29	TASA	2340.00	2360.00	Bolting
2009-02-03	2009-02-03	TASA	3020.00	3040.00	Bolting
2009-02-05	2009-02-05	TASA	2260.00	2280.00	Bolting
2009-02-05	2009-02-05	TASA	2280.00	2300.00	Bolting
2009-02-05 2009-02-09	2009-02-05 2009-02-09	TASA TASA	3040.00 1883.00	3060.00	Bolting
2009-02-09	2009-02-09	TASA	2940.00	1883.00 2960.00	Bolting Additional scaling
2009-02-09	2009-02-10	TASA	2960.00	2980.00	Additional scaling
2009-02-11	2009-02-10	TASA	2360.00	2380.00	Bolting
2009-02-14	2009-02-14	TASA	2380.00	2400.00	Bolting
2009-02-14	2009-02-14	TASA	2400.00	2420.00	Bolting
2009-02-16	2009-03-11	TASA	2980.00	3000.00	Additional scaling
2009-02-16	2009-02-18	TASA	3000.00	3020.00	Additional scaling
2009-02-26	2009-02-26	TASR			Additional scaling
2009-02-26	2009-02-26	TASR			Bolting
2009-03-02	2009-03-02	TASA	2940.00	2960.00	Bolting
2009-03-03	2009-03-12	TASA	2961.00	2961.00	Bolting
2009-03-24	2009-04-01	TASA	2960.00	2980.00	Bolting
2009-04-02	2009-04-02	NASA0408A	0745.00	0745.00	Bolting
2009-04-18	2009-04-20	TASA	2715.00	2715.00	Bolting
2009-04-21	2009-04-21	TASA	3000.00	3020.00	Bolting
2009-04-21 2009-04-22	2009-04-21 2009-04-22	TASA TASA	3060.00 2580.00	3080.00 2600.00	Bolting Bolting
2009-04-22	2009-04-22	TASA	2940.00	2960.00	Bolting
2009-04-22	2009-04-22	TASA	2960.00	2980.00	Bolting
2009-04-23	2009-04-27	TASA	3000.00	3200.00	Rock reinforcement - net
2009-05-05	2009-05-06	TASA	2960.00	3000.00	Rock reinforcement - net
2009-05-19	2009-05-19	TASA	0.00	173.00	Bolting
2009-05-26	2009-05-26	TASA	220.00	1265.00	Bolting
2009-05-27	2009-05-27	TASA	1265.00	2700.00	Bolting
2009-05-28	2009-05-28	TASA	2700.00	3200.00	Bolting
2009-06-25	2009-06-25	TASS	10.00	55.00	Bolting
2009-08-18	2009-08-18	TASA	200.00	220.00	Additional scaling
2009-08-18	2009-08-18	TASA	220.00	240.00	Additional scaling
2009-08-18	2009-08-18	TASA	2720.00	2740.00	Additional scaling
2009-08-19 2009-08-19	2009-08-19 2009-08-19	TASA TASA	2740.00	2760.00	Additional scaling Additional scaling
2009-08-19	2009-08-19	TASA	2760.00 2780.00	2780.00 2800.00	Additional scaling Additional scaling
2009-08-19	2009-08-19	TASA	2800.00	2820.00	Additional scaling
2009-08-19	2009-08-19	TASA	3380.00	3400.00	Additional scaling
2009-08-20	2009-08-20	TASA	2740.00	2760.00	Additional scaling
2009-09-02	2009-09-02	TASA	2760.00	2780.00	Additional scaling
2009-09-02	2009-09-02	TASA	2780.00	2800.00	Additional scaling
2009-09-03	2009-09-03	TASA	2800.00	2820.00	Additional scaling
2009-09-03	2009-09-03	TASA	2820.00	2840.00	Additional scaling
2009-09-04	2009-09-04	TASA	2840.00	2860.00	Additional scaling
2009-09-05	2009-09-14	TASA	2860.00	2880.00	Additional scaling
2009-09-14	2009-09-14	TASA	2880.00	2900.00	Additional scaling
2009-09-15	2009-09-17	TASA	2520.00	2540.00	Additional scaling
2009-09-15	2009-09-17	TASA	2540.00	2560.00	Additional scaling
2009-09-15	2009-09-17	TASA	2560.00	2580.00	Additional scaling
2009-09-15	2009-09-17	TASA	2580.00	2600.00	Additional scaling
2009-09-15	2009-09-17	TASA	2600.00	2620.00	Additional scaling

2009-09-15	2009-09-17	TASA	2620.00	2640.00	Additional scaling
					•
2009-09-15	2009-09-17	TASA	2640.00	2660.00	Additional scaling
2009-09-15	2009-09-17	TASA	2660.00	2680.00	Additional scaling
2009-09-15	2009-09-15	TASA	2900.00	2920.00	Additional scaling
2009-09-21	2009-09-21	TASA	2260.00	2280.00	Additional scaling
		_			
2009-09-21	2009-09-21	TASA	2280.00	2300.00	Additional scaling
2009-09-21	2009-09-21	TASA		2320.00	•
			2300.00		Additional scaling
2009-09-21	2009-09-21	TASA	2320.00	2340.00	Additional scaling
2009-09-21	2009-09-21	TASA			
			2340.00	2360.00	Additional scaling
2009-09-21	2009-09-21	TASA	2360.00	2380.00	Additional scaling
2009-09-21	2009-09-21	TASA	2380.00	2400.00	Additional scaling
2009-09-21	2009-09-21	TASA	2400.00	2420.00	Additional scaling
2009-09-21	2009-09-21	TASA	2420.00	2440.00	Additional scaling
2009-09-21	2009-09-21	TASA	2440.00	2460.00	Additional scaling
		TASA	2460.00		•
2009-09-21	2009-09-21			2480.00	Additional scaling
2009-09-21	2009-09-21	TASA	2480.00	2500.00	Additional scaling
					•
2009-09-21	2009-09-21	TASA	2500.00	2520.00	Additional scaling
2009-09-22	2009-09-22	TASA	2040.00	2060.00	Additional scaling
2009-09-22	2009-09-22	TASA			
			2060.00	2080.00	Additional scaling
2009-09-22	2009-09-22	TASA	2080.00	2100.00	Additional scaling
	2009-09-22	TASA			
2009-09-22			2100.00	2120.00	Additional scaling
2009-09-22	2009-09-22	TASA	2120.00	2140.00	Additional scaling
2009-09-22	2009-09-22	TASA	2140.00	2160.00	Additional scaling
2009-09-22	2009-09-22	TASA	2160.00	2180.00	Additional scaling
		TASA			•
2009-09-22	2009-09-22		2180.00	2200.00	Additional scaling
2009-09-22	2009-09-22	TASA	2200.00	2220.00	Additional scaling
2009-09-22	2009-09-22	TASA	2220.00	2240.00	Additional scaling
2009-09-22	2009-09-22	TASA	2240.00	2260.00	Additional scaling
2009-09-23	2009-09-23	TASA	1840.00	1860.00	Additional scaling
					•
2009-09-23	2009-09-23	TASA	1860.00	1880.00	Additional scaling
2009-09-23	2009-09-23	TASA	1880.00	1900.00	Additional scaling
2009-09-23	2009-09-23	TASA	1900.00	1920.00	Additional scaling
2009-09-23	2009-09-23	TASA	1920.00	1940.00	Additional scaling
2009-09-23	2009-09-23	TASA	1940.00	1960.00	Additional scaling
2009-09-23	2009-09-23	TASA	1960.00	1980.00	Additional scaling
2009-09-23	2009-09-23	TASA		2000.00	Additional scaling
			1980.00		
2009-09-23	2009-09-23	TASA	2000.00	2020.00	Additional scaling
2009-09-23	2009-09-23	TASA	2020.00	2040.00	Additional scaling
2009-09-24	2009-09-24	TASA	1500.00	1520.00	Additional scaling
2009-09-24	2009-09-24	TASA	1520.00	1540.00	Additional scaling
2009-09-24	2009-09-24	TASA	1540.00	1560.00	Additional scaling
2009-09-24	2009-09-24	TASA	1560.00	1580.00	Additional scaling
					•
2009-09-24	2009-09-24	TASA	1580.00	1600.00	Additional scaling
2009-09-24	2009-09-24	TASA	1600.00	1620.00	Additional scaling
					•
2009-09-24	2009-09-24	TASA	1620.00	1640.00	Additional scaling
2009-09-24	2009-09-24	TASA	1640.00	1660.00	Additional scaling
2009-09-24		TASA	1660.00		
	2009-09-24			1680.00	Additional scaling
2009-09-24	2009-09-24	TASA	1680.00	1700.00	Additional scaling
2009-09-24	2009-09-24	TASA	1700.00	1720.00	Additional scaling
2009-09-24	2009-09-24	TASA	1720.00	1740.00	Additional scaling
2009-09-24	2009-09-24	TASA	1740.00	1760.00	Additional scaling
2009-09-24	2009-09-24	TASA	1760.00	1780.00	Additional scaling
2009-09-24	2009-09-24	TASA	1780.00	1800.00	Additional scaling
2009-09-24	2009-09-24	TASA	1800.00	1820.00	Additional scaling
2009-09-24	2009-09-24	TASA	1820.00	1840.00	Additional scaling
					•
2009-09-28	2009-09-28	TASA	1040.00	1060.00	Additional scaling
2009-09-28	2009-09-28	TASA	1060.00	1080.00	Additional scaling
					•
2009-09-28	2009-09-28	TASA	1080.00	1100.00	Additional scaling
2009-09-28	2009-09-28	TASA	1100.00	1120.00	Additional scaling
2009-09-28	2009-09-28	TASA	1120.00	1140.00	Additional scaling
					•
2009-09-28	2009-09-28	TASA	1140.00	1160.00	Additional scaling
2009-09-28	2009-09-28	TASA	1160.00	1180.00	Additional scaling
2009-09-28	2009-09-28	TASA	1180.00	1200.00	Additional scaling
2009-09-28	2009-09-28	TASA	1200.00	1220.00	Additional scaling
2009-09-28	2009-09-28	TASA	1220.00	1240.00	Additional scaling
2009-09-28	2009-09-28	TASA	1240.00	1260.00	Additional scaling
		TASA			
2009-09-28	2009-09-28	IASA	1260.00	1280.00	Additional scaling

2009-09-28	2009-09-28	TASA	1280.00	1300.00	Additional scaling
					•
2009-09-28	2009-09-28	TASA	1300.00	1320.00	Additional scaling
2009-09-28	2009-09-28	TASA	1320.00	1340.00	Additional scaling
2009-09-28	2009-09-28	TASA	1340.00	1360.00	Additional scaling
2009-09-28	2009-09-28	TASA	1360.00	1380.00	Additional scaling
		-			
2009-09-28	2009-09-28	TASA	1380.00	1400.00	Additional scaling
2009-09-28	2009-09-28	TASA	1400.00	1420.00	Additional scaling
2009-09-28	2009-09-28	TASA	1420.00	1440.00	Additional scaling
2009-09-28	2009-09-28	TASA	1440.00	1460.00	Additional scaling
					•
2009-09-28	2009-09-28	TASA	1460.00	1480.00	Additional scaling
2009-09-28	2009-09-28	TASA	1480.00	1500.00	Additional scaling
2009-09-29	2009-09-29	TASA	0.00	20.00	Additional scaling
2009-09-29	2009-09-29	TASA	20.00	40.00	Additional scaling
2009-09-29	2009-09-29	TASA	40.00	60.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	60.00	80.00	Additional scaling
2009-09-29	2009-09-29	TASA	80.00	100.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	100.00	120.00	Additional scaling
2009-09-29	2009-09-29	TASA	120.00	140.00	Additional scaling
2009-09-29	2009-09-29	TASA	140.00	160.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	160.00	180.00	Additional scaling
2009-09-29	2009-09-29	TASA	180.00	200.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	200.00	220.00	Additional scaling
2009-09-29	2009-09-29	TASA	220.00	240.00	Additional scaling
2009-09-29	2009-09-29	TASA	240.00	260.00	Additional scaling
2009-09-29	2009-09-29	TASA	260.00	280.00	Additional scaling
2009-09-29	2009-09-29	TASA	280.00	300.00	Additional scaling
2009-09-29	2009-09-29	TASA	300.00	320.00	Additional scaling
2009-09-29	2009-09-29	TASA	320.00	340.00	Additional scaling
2009-09-29	2009-09-29	TASA	340.00	360.00	Additional scaling
2009-09-29	2009-09-29	TASA	360.00	380.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	380.00	400.00	Additional scaling
2009-09-29	2009-09-29	TASA	400.00	420.00	Additional scaling
2009-09-29	2009-09-29	TASA	420.00	440.00	Additional scaling
2009-09-29	2009-09-29	TASA	440.00	460.00	Additional scaling
2009-09-29	2009-09-29	TASA	460.00	480.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	480.00	500.00	Additional scaling
2009-09-29	2009-09-29	TASA	500.00	520.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	520.00	540.00	Additional scaling
2009-09-29	2009-09-29	TASA	540.00	560.00	Additional scaling
2009-09-29	2009-09-29	TASA	560.00	580.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	580.00	600.00	Additional scaling
2009-09-29	2009-09-29	TASA	600.00	620.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	620.00	640.00	Additional scaling
2009-09-29	2009-09-29	TASA	640.00	660.00	Additional scaling
2009-09-29	2009-09-29	TASA			
			660.00	680.00	Additional scaling
2009-09-29	2009-09-29	TASA	680.00	700.00	Additional scaling
2009-09-29	2009-09-29	TASA	700.00	720.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	720.00	740.00	Additional scaling
2009-09-29	2009-09-29	TASA	740.00	760.00	Additional scaling
2009-09-29	2009-09-29	TASA	760.00	780.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	780.00	800.00	Additional scaling
2009-09-29	2009-09-29	TASA	800.00	820.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	820.00	840.00	Additional scaling
2009-09-29	2009-09-29	TASA	840.00	860.00	Additional scaling
2009-09-29	2009-09-29	TASA		880.00	
			860.00		Additional scaling
2009-09-29	2009-09-29	TASA	880.00	900.00	Additional scaling
2009-09-29	2009-09-29	TASA	900.00	920.00	Additional scaling
					•
2009-09-29	2009-09-29	TASA	920.00	940.00	Additional scaling
2009-09-29	2009-09-29	TASA	940.00	960.00	Additional scaling
2009-09-29	2009-09-29	TASA	960.00	980.00	Additional scaling
2009-09-29	2009-09-29	TASA	980.00	1000.00	Additional scaling
2009-09-29	2009-09-29	TASA	1000.00	1020.00	Additional scaling
2009-09-29	2009-09-29	TASA	1020.00	1040.00	Additional scaling
2009-10-05	2009-10-05	NASA0748A			Additional scaling
2009-10-05	2009-10-05	NASA1049A			Additional scaling
2009-10-05	2009-10-05	NASA1194A			Additional scaling
2009-10-05	2009-10-05	NASA1757A			Additional scaling
					aa.aaraa aaaan ig

2009-10-05	2009-10-05	NASA2050A			Additional scaling
2009-10-05	2009-10-05	NASA2376A			Additional scaling
2009-10-05	2009-10-05	NASA3009A			Additional scaling
2009-10-05	2009-10-05	TASA	2440.00	2460.00	Additional scaling
2009-10-06	2009-10-06	NASA0907A			Additional scaling
2009-10-06	2009-10-06	NASA1637A			Additional scaling
2009-10-06	2009-10-06	NASA2567A			Additional scaling
2009-10-12	2009-10-12	TASA	2720.00	2740.00	Additional scaling
2009-10-14	2009-10-14	TASA	2500.00	2520.00	Additional scaling
2009-10-14	2009-10-14	TASA	2520.00	2540.00	Additional scaling
2009-10-14	2009-10-14	TASA	2540.00	2560.00	Additional scaling

4.3 Opening of valves in tunnel boreholes

The main reason for valve openings in boreholes is water sampling for chemical analyses. Usually, before water samples are taken from a tunnel borehole section, a certain amount of water is discharged to assure that the water is representative for that section. Typically, for chemical sampling, a volume corresponding to five section volumes is discharged. When a valve is opened, the flow rate may vary a lot from section to section due to varying transmissivity and pressure. Normally, this type of valve opening has only a minor influence on other boreholes. Therefore, only openings and closures in borehole sections included in the monitoring program are listed in Table 4-2, in which the periods when valves have been open are specified. In some cases, due to missing data records, only start or stop date is listed. Since the opening and closing of a valve are un-coupled activities in the database it is also possible, if two successive data records are missing, that the "from" and "to" dates do not match.

Table 4-2. Open valves in tunnel boreholes.

From	То	Borehole:sec	From	То	Borehole:sec
2009-01-23	2009-01-23	KA1061A:1	2009-08-27	2009-08-27	KA1061A:1
2009-01-23	2009-01-23	KA3110A:1	2009-08-28		KA3600F:2
2009-01-23	2009-01-23	KA3510A:1	2009-09-10	2009-09-10	HD0025A:1
2009-02-03	2009-02-03	KA3110A:2	2009-09-14	2009-09-14	SA3045A:1
2009-02-17	2009-02-17	HD0025A:1	2009-09-14	2009-09-16	KA1061A:1
2009-03-06	2009-03-09	KA1061A:1	2009-09-17	2009-09-17	HD0025A:1
2009-03-09	2009-03-09	KA3510A:	2009-09-21	2009-09-21	KA3110A:1
2009-07-30	2009-07-30	HD0025A:1	2009-09-21	2009-09-21	KA3385A:1
2009-07-30	2009-07-30	KA1755A:1	2009-09-21	2009-09-22	KA1755A:1
2009-07-30	2009-07-30	KA2050A:1	2009-09-22	2009-09-22	KA2162B:1
2009-07-30	2009-07-30	KA2162B:1	2009-09-23	2009-09-23	KA3600F:1
2009-07-30	2009-07-30	KA2862A:1	2009-09-23	2009-09-23	KA3600F:2
2009-07-30	2009-07-30	KA3110A:1	2009-09-23		KA2862A:1
2009-07-30	2009-07-30	KA3385A:1	2009-09-30	2009-09-30	KA2511A:1
2009-07-30	2009-07-30	KA3573A:1	2009-09-30	2009-09-30	KA2511A:7
2009-07-30	2009-07-30	KA3573A:2	2009-09-30	2009-09-30	KA2598A:1
2009-07-30	2009-07-30	KA3600F:1	2009-09-30	2009-09-30	KA2858A:1
2009-07-30	2009-07-30	KA3600F:2	2009-09-30	2009-09-30	KA3005A:4
2009-07-30	2009-07-30	SA3045A:2	2009-09-30	2009-09-30	KA3005A:5
2009-08-21	2009-08-21	KA3539G:2	2009-09-30	2009-09-30	KA3105A:1
2009-08-21	2009-08-21	KA3542G01:3	2009-10-05	2009-10-07	KA2598A:1
2009-08-21	2009-08-21	KA3542G02:5	2009-10-23	2009-10-23	KA3542G01:3
2009-08-21	2009-08-21	KA3548A01:3	2009-10-23	2009-10-23	KA3600F:
2009-08-21	2009-08-21	KA3554G01:2	2009-10-27	2009-10-27	KA3005A:2
2009-08-21	2009-08-21	KA3554G02:4	2009-10-27	2009-10-27	KA3005A:3
2009-08-21	2009-08-21	KA3566G02:2	2009-10-27	2009-10-27	KA3067A:2
2009-08-21	2009-08-21	KA3572G01:2	2009-10-27	2009-10-27	KA3067A:3
2009-08-21	2009-08-21	KA3590G01:2	2009-10-27	2009-10-27	KA3105A:2
2009-08-21	2009-08-21	KG0021A01:3	2009-10-27	2009-10-27	KA3105A:4
2009-08-21	2009-08-21	KG0048A01:3	2009-10-27	2009-10-27	KA3542G01:3

From	То	Borehole:sec	From	То	Borehole:sec
2009-11-09	2009-11-09	KA3539G:2	2009-11-11	2009-11-11	KA3548A01:3
2009-11-09	2009-11-09	KA3542G02:5	2009-11-12	2009-11-12	KA3542G02:5
2009-11-09	2009-11-09	KA3554G01:2	2009-11-12	2009-11-12	KA3542G02:5
2009-11-09	2009-11-09	KA3590G02:1	2009-11-17	2009-11-17	KA3554G01:2
2009-11-09	2009-11-09	KG0021A01:3	2009-11-17	2009-11-17	KA3554G01:2
2009-11-09	2009-11-09	KG0048A01:3	2009-11-18	2009-11-18	KG0021A01:3
2009-11-10	2009-11-10	KA3539G:2	2009-11-18	2009-11-18	KG0021A01:3
2009-11-10	2009-11-10	KA3539G:2	2009-11-19	2009-11-19	KA3590G02:1
2009-11-11	2009-11-11	KA3548A01:3	2009-11-19	2009-11-19	KA3590G02:

4.4 Packer expansion and release

Packers often isolate different fractures or fracture zones from each other in order to prevent flow along the borehole, which otherwise may act as a connection between fractures or zones. Therefore, release and expansion of packers may have an influence on the groundwater system. The dates for packer expansion/release in surface boreholes are listed in Table 4-3 (this refers to the large borehole packers and not the PEMpackers). Surface boreholes not included in the table have no packers.

In Table 4-4, dates for packer expansion and release in tunnel boreholes are presented.

Table 4-3. Packer expansion and release in surface boreholes.

Borehole	Expansion	Release
HBH04	2002-02-28	
KAS03	1996-04-27	2009-03-02
KAS09	1990-01-01	2009-04-06
KAS16	1992-10-20	
KBH02	1992-05-07	

Table 4-4. Packer expansion and release in tunnel boreholes.

Borehole	Expansion	Release	Borehole	Expansion	Release
HA1273A	1992-03-12		KA3067A	2002-06-29	2009-07-12
HA1278A	1992-09-10			2009-09-03	2009-10-01
HA1279A	1992-09-10			2009-10-06	
HA1283B	1992-04-15		KA3068A	2002-06-29	
HA1327B	1992-09-11		KA3105A	2001-12-19	
HA1330B	1992-09-11		KA3110A	2004-06-29	
HD0025A	1996-06-02		KA3385A	2003-05-06	
KA1061A	1992-01-14		KA3386A01	2006-01-30	
KA1131B	1992-02-02		KA3510A	2001-05-09	
KA1751A	2002-01-30		KA3539G	2002-12-03	
KA1754A	2002-01-30		KA3542G01	2003-04-26	
KA1755A	2003-05-06		KA3542G02	2003-04-26	
KA2048B	2002-01-11		KA3543A01	2002-01-30	
KA2050A	2001-12-13		KA3543I01	2002-01-30	
KA2162B	1999-10-28		KA3544G01	2002-11-12	
KA2511A	2007-03-19		KA3546G01	2003-04-26	
KA2563A	2007-03-19		KA3548A01	2003-04-26	
KA2598A	2007-03-19		KA3548D01	2002-01-30	
KA2858A	2002-01-11		KA3548G01	2002-01-30	
KA2862A	2002-03-22		KA3550G01	2003-04-27	
KA3005A	2001-11-07		KA3550G05	2002-01-29	
KA3010A	2004-06-29	2009-04-28	KA3551G05	2003-04-27	
	2009-04-29		KA3552A01	2002-01-30	
KA3065A02	2002-06-29		KA3552G01	2000-06-07	
KA3065A03	2002-06-28		KA3552H01	2002-12-01	
			KA3553B01	2002-01-30	
			KA3554G01	2003-04-27	

Borehole	Expansion	Release
KA3554G02	2003-04-27	
KA3557G	2002-01-29	
KA3563A01	2001-04-02	
KA3563D01	2001-04-02	
KA3563G	2001-03-27	
KA3563I01	2001-04-03	
KA3566C01	2001-04-02	
KA3566G01	2001-03-20	
KA3566G02	2001-03-20	
KA3568D01	2001-04-02	
KA3572G01	2001-03-21	
KA3573A	2001-03-29	
KA3573C01	2001-04-02	
KA3574D01	2001-04-02	
KA3574G01	2001-03-07	
KA3576G01	2001-03-07	
KA3578C01	2001-04-03	
KA3578G01	2001-03-08	
KA3578H01	2001-04-03	
KA3579D01	2001-04-03	
KA3579G	2001-03-08	
KA3584G01	1999-02-03	
KA3588C01	2001-04-03	
KA3588D01	2001-04-03	
KA3588I01	2001-04-03	
KA3590G01	2001-02-28	
KA3590G02	2001-03-06	
KA3592C01	2001-04-03	
KA3593G	2001-02-27	
KA3597D01	2001-04-03	
KA3597H01	2001-04-03	
KA3600F	2001-03-28	
KF0051A01	2006-04-19	
KF0069A01	2002-05-21	
KG0021A01	2001-05-30	
KG0048A01	2001-05-29	
KI0023B	1998-06-17	
KI0025F	1999-07-28	
KI0025F02	2003-09-02	
KI0025F03	2003-06-25	
KXTT1	2001-11-07	
KXTT2	2005-11-18	
KXTT5	2004-06-30	
SA3045A	2002-06-29	

4.5 Drilling

Only tunnel boreholes have been drilled during 2009 within the Äspö Hard Rock Laboratory.

During drilling, water is injected under high pressure into the borehole, and the effect at different locations in the borehole may be either injection or removal of water. During drilling interruptions, water flows out of the borehole and the net result on pressure registrations mainly seems to be a pumping effect. In Table 4-5, dates when boreholes were drilled, borehole length and type of drilling are presented. Drilling before rounds and drilling for bolting are not included in the table.

Table 4-5. Drilling

Table 4-5. Drill	iiig			
Start	Stop	Borehole	Borehole length	Type of drilling
			(m)	
2009-01-19	2009-01-19	SS0080F01	16.00	Percussion drilling
2009-01-19	2009-01-19	SS0080F03	16.00	Percussion drilling
2009-01-19	2009-01-19	SS0080F02	16.00	Percussion drilling
2009-01-19	2009-01-19	SS0080F04	16.00	Percussion drilling
2009-01-21	2009-01-21	SS0076G04	1.75	Percussion drilling
2009-01-21	2009-01-21	SS0076G03	1.50	Percussion drilling
2009-01-21	2009-01-21	SS0076G02	1.50	Percussion drilling
2009-01-21	2009-01-21	SS0076G01	1.50	Percussion drilling
2009-02-25	2009-02-25	HA0412A01	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0411A02	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0411A01	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0410A05	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0410A04	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0410A03	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0410A02	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0410A01	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0409A02	4.00	Percussion drilling
2009-02-25	2009-02-25	HA0409A01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0414I01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0413H01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0413I02	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0412H02	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0413I01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0412I01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0412H01	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0414I02	4.00	Percussion drilling
2009-02-27	2009-02-27	HA0413H02	4.00	Percussion drilling
2009-02-28	2009-02-28	KS0037A01	0.50	Core drilling
2009-02-28	2009-02-28	KS0037B03	0.50	Core drilling
2009-02-28	2009-02-28	KS0039A01	0.50	Core drilling
2009-02-28	2009-02-28	KS0039B03	0.50	Core drilling
2009-02-28	2009-02-28	KS0040B03	0.50	Core drilling
2009-02-28	2009-02-28	KS0041A01	0.50	Core drilling
2009-02-28	2009-02-28	KS0042A01	0.50	Core drilling
2009-02-28	2009-02-28	KS0044B03	0.50	Core drilling
2009-02-28	2009-02-28	KS0044A01	0.50	Core drilling
2009-02-28	2009-02-28	KS0044B04	0.50	Core drilling
2009-02-28	2009-02-28	KS0045A01	0.50	Core drilling
2009-03-02	2009-03-02	HA0411H01	4.00	Percussion drilling
2009-03-11	2009-03-11	SS0048A10	10.00	Percussion drilling
2009-03-11	2009-03-11	SS0048B07	10.00	Percussion drilling
2009-03-11	2009-03-11	SS0048B09	14.00	Percussion drilling
2009-03-11	2009-03-11	SS0048G07	10.00	Percussion drilling
2009-03-23	2009-03-23	SS0042A01	10.00	Percussion drilling
2009-03-23	2009-03-23	SS0042A02	10.00	Percussion drilling
2009-03-23	2009-03-23	SS0042A03	10.00	Percussion drilling

011	01.	B	5 1 1 1	T (1.1111
Start	Stop	Borehole	Borehole length (m)	Type of drilling
2009-03-23	2009-03-23	SS0042B01	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0042B02	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0042B03	10.00	Percussion drilling
2009-03-23	2009-03-23	SS0042G01	10.00	Percussion drilling
2009-03-23	2009-03-23	SS0042G02	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0042G03	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0042G04	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0042G05	14.00	Percussion drilling
2009-03-23 2009-03-23	2009-03-23	SS0042G06	14.00	Percussion drilling Percussion drilling
2009-03-23	2009-03-23 2009-03-23	SS0048A09 SS0048A11	10.00 10.00	Percussion drilling Percussion drilling
2009-03-23	2009-03-23	SS0048B08	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0048G08	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0048G09	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0048G10	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0048G11	14.00	Percussion drilling
2009-03-23	2009-03-23	SS0048G12	14.00	Percussion drilling
2009-03-29	2009-03-29	SS0045A01	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045A02	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045A03	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045A04	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045B01	13.00	Percussion drilling
2009-03-29	2009-03-29	SS0045B02	13.00	Percussion drilling
2009-03-29	2009-03-29	SS0045B03	13.00	Percussion drilling
2009-03-29	2009-03-29	SS0045B04	13.00	Percussion drilling
2009-03-29	2009-03-29	SS0045G01	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045G02	9.00	Percussion drilling
2009-03-29	2009-03-29	SS0045G03	9.00	Percussion drilling
2009-03-29 2009-03-29	2009-03-29 2009-03-29	SS0045G04 SS0045G05	13.00 13.00	Percussion drilling
2009-03-29	2009-03-29	SS0045G05 SS0036A01	10.00	Percussion drilling Percussion drilling
2009-04-05	2009-04-05	SS0036A01	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036A03	10.00	Percussion drilling
2009-04-05	2009-04-05	SS0036A04	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036B01	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036B02	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036B03	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036B04	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036G01	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036G02	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036G03	14.00	Percussion drilling
2009-04-05	2009-04-05	SS0036G04	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029A01	10.00	Percussion drilling
2009-04-07 2009-04-07	2009-04-07	SS0029A02	10.00 10.00	Percussion drilling
2009-04-07	2009-04-07 2009-04-07	SS0029A03 SS0029A04	10.00	Percussion drilling Percussion drilling
2009-04-07	2009-04-07	SS0029B01	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029B02	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029B03	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029B04	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029G01	10.00	Percussion drilling
2009-04-07	2009-04-07	SS0029G02	10.00	Percussion drilling
2009-04-07	2009-04-07	SS0029G03	14.00	Percussion drilling
2009-04-07	2009-04-07	SS0029G04	14.00	Percussion drilling
2009-04-16	2009-04-16	SS0031A01	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0031A02	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0031A03	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0031A04	9.00	Percussion drilling
2009-04-16	2009-04-16 2009-04-16	SS0031B01	13.00	Percussion drilling
2009-04-16 2009-04-16	2009-04-16	SS0031B02 SS0031B03	13.00 13.00	Percussion drilling Percussion drilling
2009-04-16	2009-04-16	SS0031B03	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0031G01	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0031G02	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0031G03	9.00	Percussion drilling
		-		5

			5	
Start	Stop	Borehole	Borehole length (m)	Type of drilling
2009-04-16	2009-04-16	SS0031G04	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0031G05	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038A01	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0038A02	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0038A03	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0038A04	9.00	Percussion drilling
2009-04-16	2009-04-16	SS0038B01	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038B02	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038B03	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038B04	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038G01	9.00	Percussion drilling
2009-04-16 2009-04-16	2009-04-16 2009-04-16	SS0038G02 SS0038G03	9.00 9.00	Percussion drilling Percussion drilling
2009-04-16	2009-04-16	SS0038G03	13.00	Percussion drilling
2009-04-16	2009-04-16	SS0038G05	13.00	Percussion drilling
2009-04-28	2009-04-28	SS0036H02	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036A05	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036I02	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036B05	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036D01	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036I01	14.00	Percussion drilling
2009-04-28	2009-04-28	SS0036H01	10.00	Percussion drilling
2009-04-28	2009-04-28	SS0036C01	10.00	Percussion drilling
2009-04-29	2009-04-29	SS0043A01	10.00	Percussion drilling
2009-04-29	2009-04-29	SS0043C01	10.00	Percussion drilling
2009-04-29	2009-04-29	SS0043H02	10.00	Percussion drilling
2009-04-29	2009-04-29	SS0043H01	10.00	Percussion drilling
2009-04-29	2009-04-29	SS0043I01	14.00	Percussion drilling
2009-04-29	2009-04-29	SS0043I02	14.00	Percussion drilling
2009-04-29	2009-04-29	SS0043D01	14.00	Percussion drilling
2009-04-29 2009-05-03	2009-04-29 2009-05-11	SS0043B01 KQ0032G01	14.00	Percussion drilling
2009-05-05	2009-05-11	SS0040H01	9.00	Various drilling Percussion drilling
2009-05-05	2009-05-05	SS0040101	13.00	Percussion drilling
2009-05-05	2009-05-05	SS0040I02	13.00	Percussion drilling
2009-05-05	2009-05-05	SS0040B02	13.00	Percussion drilling
2009-05-05	2009-05-05	SS0040H02	9.00	Percussion drilling
2009-05-05	2009-05-05	SS0040H03	9.00	Percussion drilling
2009-05-05	2009-05-05	SS0040A02	9.00	Percussion drilling
2009-05-11	2009-05-11	SS0049I02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0049B01	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0049A02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0049H02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0049B02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0049D01	14.00	Percussion drilling
2009-05-11 2009-05-11	2009-05-11 2009-05-11	SS0049I01 SS0049C01	14.00 10.00	Percussion drilling Percussion drilling
2009-05-11	2009-05-11	SS0049C01	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0049A01	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0055I01	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0055I02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0055D01	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0055B01	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0055B02	14.00	Percussion drilling
2009-05-11	2009-05-11	SS0055H01	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0055H02	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0055C01	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0055A02	10.00	Percussion drilling
2009-05-11	2009-05-11	SS0055A01	10.00	Percussion drilling
2009-05-13	2009-05-13	SS0046H01	10.00	Percussion drilling
2009-05-13	2009-05-13	SS0046I01	13.00	Percussion drilling
2009-05-13 2009-05-13	2009-05-13 2009-05-13	SS0046I02 SS0046B01	13.00	Percussion drilling
2009-05-13	2009-05-13	SS0046B01 SS0046B02	13.00 13.00	Percussion drilling Percussion drilling
2009-05-13	2009-05-13	SS0046H02	9.00	Percussion drilling
_300 00 10	_500 00 10	2300 101102	3.30	. Stodoslott drilling

Start	Stop	Borehole	Borehole length (m)	Type of drilling
2009-05-13	2009-05-13	SS0046H03	9.00	Percussion drilling
2009-05-13	2009-05-13	SS0046A01	9.00	Percussion drilling
2009-05-13	2009-05-13	SS0046A02	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0052I01	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0052101	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0052B01	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0052B02	13.00	Percussion drilling
2009-05-18	2009-05-18	KQ0046G08	1.63	Core drilling
2009-05-18	2009-05-18	SS0052A02	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0052A01	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0052H03	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0052H02	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0052H01	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0058H01	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0058I01	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0058I02	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0058B01	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0058B02	13.00	Percussion drilling
2009-05-18	2009-05-18	SS0058A02	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0058A01	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0058H03	9.00	Percussion drilling
2009-05-18	2009-05-18	SS0058H02	9.00	Percussion drilling
2009-05-19	2009-05-19	KQ0047G03	2.50	Core drilling
2009-05-25	2009-05-25	KQ0047G04	3.30	Core drilling
2009-05-25	2009-05-25	KQ0045G02	1.15	Core drilling
2009-05-25	2009-05-26	KQ0044G02	2.23	Core drilling
2009-05-26	2009-05-27	KQ0044G01	3.00	Core drilling
2009-09-24	2009-09-25	TASI	0.50	Various drilling

4.6 Tests

During 2009 only pressure build-up tests and injection tests have been performed.

In a pressure build-up test the borehole is discharged between 30 minutes and a few hours before the valve is closed and the pressure recovery is studied.

An injection test is a hydraulic test where water is injected in a test section of a borehole under either constant pressure or constant flow rate.

Table 4-6. Tests

From	То	Borehole:sec	Borehole length (m)		Activity
			from	to	
2009-01-21	2009-01-21	SS0076G01:	0.30	1.50	Pressure Build Up Test (PBT)
2009-01-21	2009-01-21	SS0076G02:	0.30	1.50	Pressure Build Up Test (PBT)
2009-01-21	2009-01-21	SS0076G03:	0.30	1.50	Pressure Build Up Test (PBT)
2009-01-21	2009-01-21	SS0076G04:	0.30	1.75	Pressure Build Up Test (PBT)
2009-03-05	2009-03-05	HA0411A02:	0.50	4.00	Pressure Build Up Test (PBT)
2009-06-01	2009-06-01	KQ0044G01:	2.80	2.90	Injection test
2009-06-01	2009-06-01	KQ0044G01:	2.98	3.00	Injection test
2009-06-01	2009-06-01	KQ0044G01:	2.98	3.00	Injection test
2009-06-01	2009-06-01	KQ0044G01:	2.90	3.00	Injection test
2009-06-01	2009-06-01	KQ0044G01:	2.70	2.80	Injection test
2009-06-01	2009-06-01	KQ0044G01:	2.50	3.00	Injection test
2009-06-01	2009-06-01	KQ0044G02:	1.70	2.20	Injection test
2009-06-01	2009-06-01	KQ0044G02:	0.70	2.20	Injection test
2009-06-02	2009-06-02	KQ0045G02:	0.60	1.10	Injection test
2009-06-02	2009-06-02	KQ0045G02:	0.90	1.00	Injection test
2009-06-02	2009-06-02	KQ0045G02:	1.07	1.10	Injection test
2009-06-02	2009-06-02	KQ0045G02:	0.97	1.10	Injection test

From	То	Borehole:sec	Boreho	le length (m)	Activity	
			from	to	•	
2009-06-02	2009-06-02	KQ0045G02:	0.77	0.87	Injection test	
2009-06-02	2009-06-02	KQ0045G02:	0.83	0.93	Injection test	
2009-06-02	2009-06-02	KQ0045G02:	0.80	1.10	Injection test	
2009-06-02	2009-06-02	KQ0046G08:	1.30	1.60	Injection test	
2009-06-02	2009-06-02	KQ0047G03:	2.30	2.50	Injection test	
2009-06-02	2009-06-02	KQ0047G03:	2.10	2.20	Injection test	
2009-06-02	2009-06-02	KQ0047G04:	2.90	3.30	Injection test	
2009-06-02	2009-06-02	KQ0047G04:	1.30	3.30	Injection test	
2009-06-03	2009-06-03	KQ0047G03:	2.00	2.50	Injection test	
2009-06-03	2009-06-03	KQ0047G03:	0.50	2.50	Injection test	
2009-06-03	2009-06-03	KQ0045G02:	0.90	1.10	Injection test	
2009-06-03	2009-06-03	KQ0045G02:	0.30	1.10	Injection test	
2009-06-03	2009-06-03	KQ0045G02:	0.30	1.10	Injection test	
2009-06-03	2009-06-03	KQ0044G02:	1.70	2.20	Injection test	
2009-06-03	2009-06-03	KQ0047G03:	2.00	2.50	Injection test	

5 Results

5.1 General

Original data are stored in the primary database Sicada. Data are traceable in Sicada by the Activity Plan number (AP TD F53-08-061).

Annual diagrams are presented in Appendices 1 - 6. Daily values are presented for each section in the diagrams. The data point shown is the first stored data point after midnight. When registrations are missing, manually levelled data, if available, are inserted.

Sometimes it is difficult to differentiate registrations from individual sections in the diagrams. However, since the main purpose of this report is to present an overall view of the long-term variations, it was not found advantageous to show more detailed diagrams from individual sections. Detailed diagrams during test periods are presented in reports from the various tests.

For more comments on the diagrams, see Monitoring reports, Table 1-1.

5.2 Groundwater levels in surface boreholes

Annual diagrams of groundwater levels are presented in Appendix 1.

In most surface boreholes, there have only been small changes in groundwater levels during 2009. In most of the borehole sections, the change over the year is within some metre with both increasing and decreasing levels.

The response to precipitation varies from borehole to borehole. In some boreholes, there is a fairly quick response with pronounced peeks after each rain (for example HAS01 and HAS13). In other boreholes, the response is more or less dampened, while in some sections it is difficult to see any responses to rain at all. The dominating features of the seasonal variation during 2009 are high precipitation during May, July and November and low precipitation in April and September (see Figure 5-2).

In the short term, the groundwater levels in surface boreholes seem to be influenced mainly by variations in climate factors. However, in borehole HAS06 a pronounced effect from tunnel activities can be seen. As seen earlier, the groundwater level in HAS06 responds to activities in the tunnel borehole KA3065A03 and its surrounding boreholes. During 2009, major responses were seen in HAS06 from the middle of July to the beginning of September and also in the beginning of October when packer releases occurred in the tunnel borehole KA3067A. In addition, there are probably minor responses also in other boreholes due to tunnel activities.

5.3 Groundwater pressure in tunnel boreholes

Annual diagrams of groundwater pressure in tunnel borehole sections are presented in Appendix 2.

In the tunnel, the pressure in most of the borehole sections decreased by about 10 - 100 kPa (1-10 m) during 2009. However, there were also sections with increasing pressure during the year. Due to a lot of activities in the tunnel (for example drilling, packer expansion and release, opening, closing and pumping various boreholes), it is difficult to say whether the pressure changes are "natural" or due to the activities. Seen over the last years, pressures have been steadily decreasing in most of the boreholes except during 2003 when many borehole sections showed increasing pressure.

Some activities during the year causing major disturbances, as seen in many boreholes, in the tunnel were:

- Packer release and removal with subsequent re-installation and expansion in borehole KA3010A at the end of April.
- Due to a communication error between the Datascan units and the measurement station (HMSE), data are missing from the end of May to the beginning/middle of June for the boreholes connected to this station.
- Packer release occurred in borehole KA3067A at the beginning of July. In the
 beginning of September it was found that the valve connecting the packers to the
 packer inflation system was closed. The valve was then opened and the packers
 were expanded.
- Another packer release occurred in borehole KA3067A at the beginning of October due to a damaged hose in the packer inflation system.

5.4 Water flow in the tunnel

Annual diagrams of water flow in the tunnel, measured at gauging boxes at different tunnel lengths, are presented in Appendix 3.

The flow in the gauging boxes is shown in Figure 5-1 as daily mean values during October - December 2009. For comparison, data for the corresponding period during the years 1995-2008 are also illustrated. Although data is missing for some boxes for certain periods (especially during 1995 and 1996), the diagram gives realistic values since the flow has been fairly constant during the period.

Figure 5-1 shows that, seen over all years, the mean flow for the comparison period October – December has decreased at most locations. However, during 2007 there was an increase in some of the gauging boxes, especially the ones located in the deepest part of the tunnel. This may be a result of the excavation of a new side tunnel and drilling of new boreholes, plus the addition of external water in connection to these and other activities.

In January 2002, a new gauging box, MG0004G, was installed. The water from the G-tunnel, earlier collected in the gauging box MF0061G, was now lead to MG0004G. As a result, a flow decrease in MF0061G was noted and this also explains the low values for the year 2002 and forward in Figure 5-1.

In February 2004, measurements were started in three new weirs, MA3515G, MA3525G and MA3535G. These weirs collect water from various sections in the Prototype repository tunnel. The accuracy of the flow calculations for these weirs is very low, the error may be on the order of a factor 10 and almost always resulting in flow values that are too high. However, the water passing the three new weirs flows into gauging box MA3426G, as it was before the new weirs were installed.

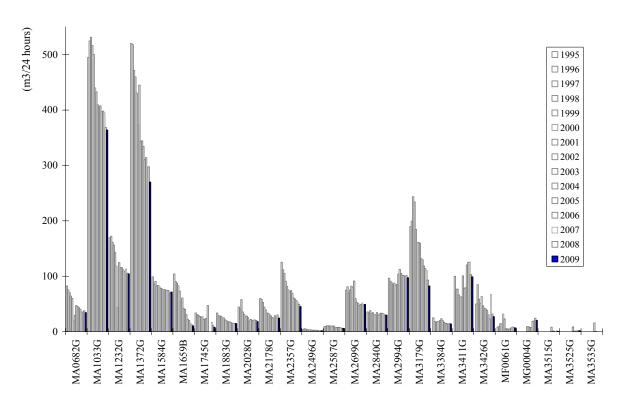


Figure 5-1. Water flow in gauging boxes as a mean during October - December.

5.5 Water flow in tunnel pipes

Annual diagram of the flow rate of water pumped out from the tunnel is presented in Appendix 4.

The pumped flow rate out from the tunnel has been decreasing steadily since 1995, except during 2007 when the flow increased. This increase can be related to various activities in the deepest parts of the tunnel system.

Values for the mean daily flow of water in the pipes during October - December for the last fifteen years are given in Table 5-1.

Table 5-1. Water flow in tunnel pipes, October - December.

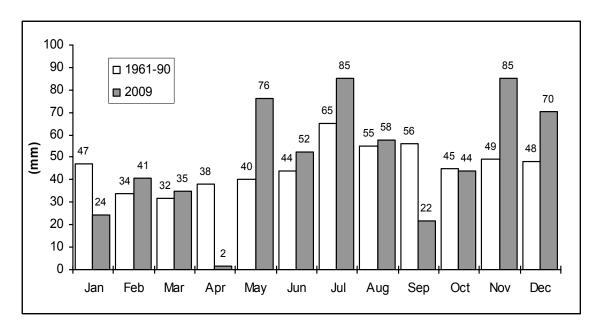
Year	Water in (m ³ /d)	Water out (m³/d)
1995	4.4	2479
1996	9.6	2438
1997	11.0	2393
1998	9.2	2268
1999	_	2105
2000	_	1930
2001	_	1848
2002	_	1821
2003	_	1748
2004	_	1730
2005	_	1697
2006	_	1686
2007	_	1702
2008	_	1686
2009	_	1518

5.6 Electrical conductivity of tunnel water

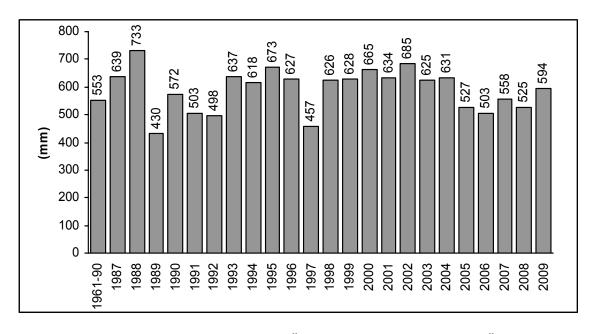
Annual diagrams of electrical conductivity of tunnel water are presented in Appendix 5.

Electrical conductivity of tunnel water has been measured in eight gauging boxes for flow measurements, at one location along the discharge pipe leading water from the gauging boxes to one of the sumps and in two of the sumps (see section 3.6).

The same electrical conductivity meter is used for periods in the four gauging boxes MA3384G, MA3411G, MA3426G, MF0061G and in the sump PG5, all in the deepest part of the tunnel system.

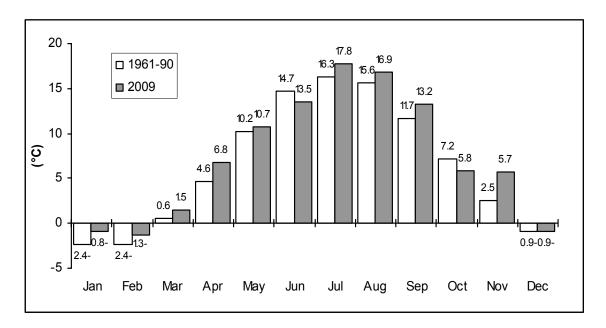

5.7 Temperature, humidity and pressure of tunnel air

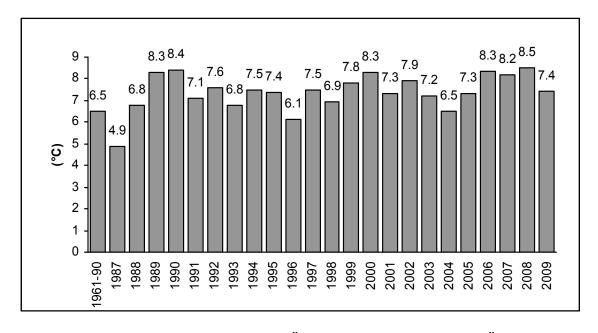
Annual diagrams of temperature, humidity and pressure of tunnel air are presented in Appendix 6.


Temperature and relative humidity of tunnel air are measured at fifteen places in the Äspö tunnel, starting in November 2006 (see section 3.7). Also, measurements are made of incoming and outgoing air in the ventilation shafts. At three of these positions air pressure is also measured.

5.8 Precipitation

Precipitation values at the SKB station Norra Äspö for 2006-2009 and at the SMHI station in Oskarshamn for 1987-2005, as well as means for Oskarshamn for the period 1961-1990, are presented in Figures 5-2 and 5-3. All precipitation values are measured values without any corrections. See also section 3.8.1.


Figure 5-2. Precipitation at Oskarshamn/Äspö: Monthly values for Norra Äspö 2009 and monthly means for Oskarshamn 1961 - 1990.


Figure 5-3. Precipitation at Oskarshamn/Äspö. Yearly values for Norra Äspö 2006 - 2009 and for Oskarshamn 1987 - 2005 and yearly mean for Oskarshamn for the period 1961 - 1990.

5.9 Air temperature

Values of temperature at the SKB station Norra Äspö for 2006-2009 and at the SMHI station in Oskarshamn for 1987-2005, as well as means for Oskarshamn for the period 1961-1990, are presented in Figures 5-4 and 5-5. See also section 3.8.2.

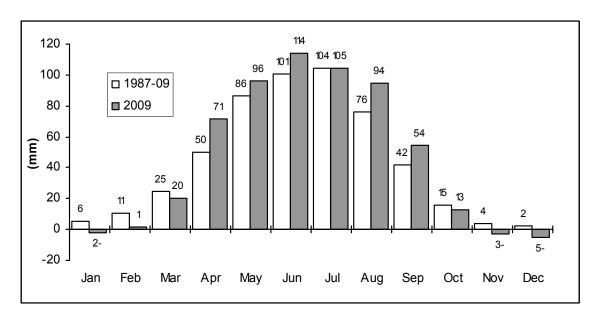

Figure 5-4. Temperature at Oskarshamn/Äspö: Monthly values for Norra Äspö 2009 and monthly means for Oskarshamn 1961 – 1990.

Figure 5-5. Temperature at Oskarshamn/Äspö. Yearly values for Norra Äspö 2006 - 2009 and for Oskarshamn 1987 - 2005 and yearly mean for Oskarshamn for the period 1961 - 1990.

5.10 Potential evapotranspiration

Values of potential evapotranspiration at the SKB station Norra Äspö for 2006-2009 and at the SMHI stations in Gladhammar and Ölands Norra Udde for 1987-2005, as well as means for Norra Äspö, Gladhammar and Ölands Norra Udde for the period 1987-2009, are presented in Figures 5-4 and 5-5. See also section 3.8.3.

Figure 5-6. Potential evapotranspiration. Monthly values for Norra Äspö 2009 and monthly means from Norra Äspö, Gladhammar and Ölands Norra Udde 1987 – 2009.

Figure 5-7. Potential evapotranspiration. Yearly values for Norra Äspö 2006 - 2009, for Gladhammar and Ölands Norra Udde 1987 - 2005 and yearly mean for the period 1987 - 2009.

6 References

Nyberg, G., Jönsson, S., Ekman, L., 1991. Äspö Hard Rock Laboratory. Groundwater level program. Report for the Period 1987-1989. SKB Progress Report PR 25-90-18.

Nyberg, G., Jönsson, S., Ekman, L., 1992a. Äspö Hard Rock Laboratory. Groundwater level program. Report for 1990. SKB Progress Report PR 25-91-19.

Nyberg, G., Jönsson, S., Ekman, L., 1992b. Äspö Hard Rock Laboratory. Groundwater level program. Report for 1991. SKB Progress Report PR 25-92-16.

Nyberg, G., Jönsson, S., Ekman, L., 1993. Äspö Hard Rock Laboratory. Groundwater level program. Report for 1992. SKB Progress Report PR 25-93-09.

Nyberg, G., Jönsson, S., Ekman, L., 1994. Äspö Hard Rock Laboratory. Groundwater level program. Report for 1993. SKB Progress Report PR 25-94-23.

Nyberg, G., Jönsson, S., Ekman, L., 1995. Äspö Hard Rock Laboratory. Groundwater level program. Report for 1994. SKB Progress Report PR 25-95-08.

Nyberg, G., Jönsson, S., Ekman, L., 1996. Äspö Hard Rock Laboratory. Hydro monitoring system. Report for 1995. SKB Progress Report PR HRL-96-17.

Nyberg, G., Jönsson, S., Ekman, L., 1997. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 1996. SKB Progress Report PR HRL-97-17.

Nyberg, G., Jönsson, S., Ekman, L., 1998. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 1997. SKB Progress Report PR HRL-98-19.

Nyberg, G., Jönsson, S., Onkenhout, J., 1999. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 1998. SKB International Progress Report IPR-99-20.

Nyberg, G. and Jönsson, S., 2000. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 1999. SKB International Progress Report IPR-00-17.

Nyberg, G., Jönsson, S., Wass, E., 2001. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2000. SKB International Progress Report IPR-01-29.

Nyberg, G., Jönsson, S., Wass, E., 2002. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2001. SKB International Progress Report IPR-02-56.

Nyberg, G., Jönsson, S., Wass, E., 2003. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2002. SKB International Progress Report IPR-03-33.

Nyberg, G., Jönsson, S., Wass, E., 2004. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2003. SKB International Progress Report IPR-04-46.

Nyberg, G., Jönsson, S., Wass, E., 2005. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2004. SKB International Progress Report IPR-05-26.

Nyberg, G., Jönsson, S., Wass, E., 2006. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2005. SKB International Progress Report IPR-06-14.

Nyberg, G., Jönsson, S., Wass, E., 2007. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2006. SKB International Progress Report IPR-07-10.

Nyberg, G., Wass, E., 2008. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2007. SKB International Progress Report IPR-08-19.

Nyberg, G., Wass, E., 2009. Äspö Hard Rock Laboratory. Hydro monitoring program. Report for 2008. SKB International Progress Report IPR-09-11.