International Progress Report

IPR-03-21

## **Äspö Hard Rock Laboratory**

### **Prototype Repository**

# Instrumentation of buffer and backfill in Section II

Lennart Börgesson Torbjörn Sandén

Clay Technology AB

January 2003

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel +46 8 459 84 00 Fax +46 8 661 57 19



Äspö Hard Rock Laboratory

### PROTOTYPE REPOSITORY

## **PROTOTYPE REPOSITORY**

## Deliverable D 3 & D8

Instrumentation of buffer and backfill in section II

> Lennart Börgesson Torbjörn Sandén Clay Technology AB

> > January 2003

## EC Contract FIKW-2000-00055

EC-5<sup>th</sup> EURATOM Framework programme 1998-2002 Key Action: Nuclear Fission

| Report no.        | No.        |
|-------------------|------------|
| IPR-03-21         | F63K       |
| Author            | Date       |
| Lennart Börgesson | 2003-01-25 |
| Torbjörn Sandén   |            |
| Checked by        | Date       |
| Christer Svemar   | 2003-04-09 |
| Approved          | Date       |
| Christer Svemar   | 2003-04-09 |

## Äspö Hard Rock Laboratory

### **Prototype Repository**

# Instrumentation of buffer and backfill in Section II

Lennart Börgesson Torbjörn Sandén Clay Technology AB

January 2003

*Keywords:* Instrumentation, total pressure, pore pressure, temperature, relative humidity, displacements, sampling, bentonite, backfill

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

## Abstract

This report describes the instrumentation of the buffer and backfill for measurement of thermal, hydraulic, mechanical and chemical processes in section 2 of the Prototype Repository. Instrument type and exact position of each instrument is given and a description of the measuring technique and the motive for the installation is given where appropriate.

The table below yields a summary of the instruments in section 2

| Measure-<br>ment    | Supplier               | Principle          | -                 | Number of | sensors         |                 |
|---------------------|------------------------|--------------------|-------------------|-----------|-----------------|-----------------|
|                     |                        |                    | Tunnel Dep. holes |           | Rock<br>surface | Sum             |
| Tempe-              | Pentronic              | Thermocouple       | 16                | 64        |                 | 80              |
| rature              | BICC                   | FTR                |                   | 8 cables  |                 | 8               |
| Total               | Geokon                 | Vibrating wire     | 8                 | 29        | 3               | 40              |
| pressure            | Kulite                 | Piezoresistive     | 8                 | 22        |                 | 30              |
| Water               | Geokon                 | Vibrating wire     | 12                | 11        | 1               | 24              |
| pressure            | Kulite                 | Piezoresistive     | 6                 | 14        | 2               | 22              |
| Relative            | Vaisala                | Capacitive         |                   | 38        | 2               | 40              |
| humidity            | Rotronic               | Capacitive         |                   | 33        | 1               | 34              |
|                     | Wescor                 | Psychrometer       | 32                | 35        | 9               | 76              |
| Water content       | GRS <sup>1)</sup>      | Resistivity chains | 1 chain           | 3         | $(3)^{2)}$      | 4               |
| Water/gas           | СТ                     | Active sampling    | 4                 | 4         |                 | 8               |
| .sampling           | СТ                     | Passive sampling   |                   | 24        |                 | 24              |
| Copper<br>corrosion |                        |                    |                   | 3         |                 | 3               |
| Canister            | AITEMIN/               | Fibre optic        |                   | 6         |                 | 6 <sup>1)</sup> |
| displace-           | Rocktest <sup>1)</sup> |                    |                   |           |                 |                 |
| ments               |                        |                    |                   |           |                 |                 |
| Buffer              | CT/Druck               | Head measurement   |                   | 2         |                 | 2               |
| swelling            |                        | /strain gauges     |                   |           |                 |                 |
| Sum                 |                        |                    | 87                | 296       | 21              | 401             |

#### Instruments used in the buffer and backfill in section 2

<sup>1)</sup> described in a separate report

 $^{2)}$  in the rock between holes 5 and 6  $\,$ 

## Sammanfattning

Denna rapport beskriver instrumentering av buffert och återfyllning för mätning av termiska, hydrauliska, mekaniska och kemiska processer i sektion 2 av Prototypförvaret. Instrumenttyper och exakt position av varje instrument anges och i förekommande fall ges en beskrivning av mättekniken och motiv för installationen.

Nedanstående tabell är en sammanfattning av instrumenteringen i sektion 2.

| Mätning             | Leverantör             | Mätprincip         | Antal sensorer |          |               |                 |  |  |  |
|---------------------|------------------------|--------------------|----------------|----------|---------------|-----------------|--|--|--|
|                     |                        |                    | Tunnel         | Dep. hål | Berg-<br>ytan | Summa           |  |  |  |
| Tempe-              | Pentronic              | Termoelement       | 16             | 64       |               | 80              |  |  |  |
| ratur               | BICC                   | FTR                |                | 8 cables |               | 8               |  |  |  |
| Total-              | Geokon                 | Vibrerande sträng  | 8              | 29       | 3             | 40              |  |  |  |
| tryck               | Kulite                 | Piezoresistiv      | 8              | 22       |               | 30              |  |  |  |
| Vatten-             | Geokon                 | Vibrerande sträng  | 12             | 11       | 1             | 24              |  |  |  |
| tryck               | Kulite                 | Piezoresistiv      | 6              | 14       | 2             | 22              |  |  |  |
| Relativ             | Vaisala                | Kapacitiv          |                | 38       | 2             | 40              |  |  |  |
| fuktighet           | Rotronic               | Kapacitiv          |                | 33       | 1             | 34              |  |  |  |
|                     | Wescor                 | Psykrometer        | 32             | 35       | 9             | 76              |  |  |  |
| Vatteninnehål       | IGRS <sup>1)</sup>     | Resistivitetskedja | 1 kedja        | 3        | $(3)^{2)}$    | 4 <sup>1)</sup> |  |  |  |
| Vatten/gas          | CT                     | Aktiv provtagning  | 4              | 4        |               | 8               |  |  |  |
| .provtagning        | CT                     | Passiv provtagning |                | 24       |               | 24              |  |  |  |
| Koppar<br>korrosion |                        |                    |                | 3        |               | 3               |  |  |  |
| Kapsel-             | AITEMIN/               | Fiberoptik         |                | 6        |               | 6 <sup>1)</sup> |  |  |  |
| förskjutning        | Rocktest <sup>1)</sup> |                    |                |          |               |                 |  |  |  |
| Buffert-            | CT/Druck               | Nivåmätning/Tråd-  |                | 2        |               | 2               |  |  |  |
| svällning           |                        | töjningsgivare     |                |          |               |                 |  |  |  |
| Summa               |                        |                    | 87             | 296      | 21            | 401             |  |  |  |

#### Instrumentering av buffert och återfyllning i section 2

<sup>1)</sup> described in a separate report

<sup>2)</sup> in the rock between holes 5 and 6

## Contents

|                                                              | Abstract                                                                                                                                                                                                                                                                                                           | 5                                                   |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                              | Sammanfattning                                                                                                                                                                                                                                                                                                     | 7                                                   |
| 1                                                            | Introduction                                                                                                                                                                                                                                                                                                       | 11                                                  |
| <b>2</b><br>2.1                                              | <b>Instruments and measuring principles</b><br>General                                                                                                                                                                                                                                                             | <b>13</b><br>13                                     |
| 2.2<br>2.3<br>2.4<br>2.5                                     | Buffer displacement measurements<br>Sample collectors for water and gas sampling<br>In situ measurements of corrosion                                                                                                                                                                                              | 13<br>14<br>16<br>16                                |
| 2.5.1<br>2.5.2<br>2.6                                        | Equipment<br>Installation<br>Desaturation of the rock close to the buffer                                                                                                                                                                                                                                          | 16<br>16<br>17                                      |
| 3                                                            | Location of instruments for standard measurement of                                                                                                                                                                                                                                                                |                                                     |
| 3.1<br>3.2<br>3.2.1<br>3.2.2<br>3.2.3<br>3.2.4<br>3.3<br>3.4 | <b>THM-processes in the bentonite</b> IntroductionOverviewMeasurements of temperatureMeasurement of total pressureMeasurement of pore water pressureMeasuring of the water saturation processStrategy for describing the position of each devicePosition of the instruments in the bentonite in hole 5 (DA3551G01) | <b>19</b><br>19<br>19<br>19<br>20<br>20<br>20<br>21 |
| 3.5<br>4                                                     | Position of the instruments in the bentonite in hole 6 (DA3545G01)                                                                                                                                                                                                                                                 | 27                                                  |
| 7                                                            | THM-processes in the backfill                                                                                                                                                                                                                                                                                      | 37                                                  |
| 4.1<br>4.2<br>4.3<br>5                                       | Brief description of instruments<br>Strategy for describing the position of each device<br>Position of each instrument in the backfill<br><b>Location of instruments for special measurements</b>                                                                                                                  | 37<br>37<br>37<br><b>43</b>                         |
| 5.1<br>5.2<br>5.3                                            | Buffer displacement measurement<br>Water and gas sampling<br>In situ measurement of copper corrosion                                                                                                                                                                                                               | 43<br>43<br>47                                      |
| 5.4.1<br>5.4.2<br>5.4.3                                      | Introduction<br>THM-processes at the bentonite rock interface<br>Desaturation of the rock                                                                                                                                                                                                                          | 47<br>47<br>47<br>48                                |
| 6                                                            | Cable protection and position                                                                                                                                                                                                                                                                                      | 50                                                  |
| 7                                                            | Summary of instruments                                                                                                                                                                                                                                                                                             | 53                                                  |
|                                                              | References                                                                                                                                                                                                                                                                                                         | 55                                                  |

## 1 Introduction

The Prototype Repository /1-1/ is located in the innermost part of the TBM-tunnel. Figure 1-1 shows the layout of the test. The test is divided into two sections, which are separated by a plug. This report deals with the instrumentation in section 2.

The Prototype Repository consists of six full-scale deposition holes, copper canisters equipped with electrical heaters, bentonite blocks (cylindrical and ring shaped) and a deposition tunnel backfilled with a mixture of bentonite and crushed rock and ends with a concrete plug. Temperature, water pressure, relative humidity, total pressure and displacements etc. are measured in numerous points in the test. The cables from the transducers are lead through the rock in watertight tubes to the data collection systems in the adjacent G-tunnel.



Figure 1-1. Schematic view of the layout of the Prototype Repository.

The basic instrumentation of the buffer and backfill in the Prototype Repository is described in a separate report /1-2/. Choice and measuring principles of transducers for measuring relative humidity, temperature, total pressure and pore pressure are described in that report as well as the location of the transducers. That report concerns mainly section 1.

The present report describes the instrumentation in section 2, with a description of the location of the instruments and measuring principles as well as the motivation of the choice. Since many instruments are the same as in section 1 the description of measuring principle and the motivation of the choice of instrument are not included for those instruments that are identical to the ones in section 1 and were reported in /1-2/.

Two instrument types are not included in either report. Measurement of canister displacement, which is done in deposition hole 6, and resisitivity measurements, which are done in deposition hole 6, is described in separate reports.

One type of rock instrumentation is included in this report as well since it actually concerns the hydraulic interaction between the buffer and the rock. For this instrumentation 6 sensors for measuring the relative humidity in the rock have been installed very close to the surface of deposition hole 6.

## 2 Instruments and measuring principles

## 2.1 General

The major part of the instruments in section 2 are measuring temperature, pressure and relative humidity and are identical to the instruments described in the report for section 1/1-2/. Those instruments will not be further described in this report. The measurements are:

- Temperature measured with thermocouples
- Temperature on the canister surface measured with fibre optical cables
- Relative humidity of the buffer measured with capacitive sensors
- Relative humidity of the backfill measured with psychrometers
- Pore pressure and total pressure measured with piezoresistive sensors
- Pore pressure and total pressure measured with vibrating wire sensors

Several additional measurements with techniques that were either changed, used in another environment, not used or otherwise not described in /1-2/ will be used in section 2. Those techniques are described in this chapter.

## 2.2 Psychrometers

Psychrometers are used for measuring relative humidity above 95 %, which means that they are very well suited for measurements in the backfill where the relative humidity is higher than 97 % already from start. The reason is that the initial water ratio 12 % corresponds to a very high clay water ratio, yielding a high relative humidity. In the buffer material, however, the initial water ratio 17 % corresponds to a relative humidity of about 70 %, which is far from the measuring range of the instrument. This is the reason that these transducers were not installed in the buffer but only in the backfill in section 1. However, a number of psychrometers were installed in the buffer in the Canister Retrieval Test and seem to very accurately measure the end of the saturation process. Psychrometers will therefore be used as complement to the capacitive sensors from Rotronic and Vaisala. Altogether 38 psychrometers will be installed in the buffer in the buffer in depositions 5 and 6.

In addition 6 psychrometers will be placed in the rock surface of hole 6 in dry parts of the rock close to the buffer in order to try to measure if there is any de-saturation of the rock by the strong suction of the bentonite. Preliminary measurements of the retention curve of the rock imply that the 95 %-100 % relative humidity of the rock correspond to 50%-100% degree of saturation, which means that psychrometers should be very well suited for measurements in the rock (see chapter 2.6).

Protection tubes of titanium will be used for the psychrometers. They will be furnished with titanium housing (including filter) which will be welded to the tubes.

### 2.3 Buffer displacement measurements

The surface between the buffer and the backfill will be displaced upwards when the buffer gets saturated. This depends partly on the swelling pressure of the buffer that will compress the backfill material and partly on the fact that the buffer during a limited time may be swelling before the backfill material is in position. A technique for measuring that displacement has been developed, and devices were installed in all 4 holes in section 1 and will be installed in deposition holes 5 and 6 in section 2.

The displacement is registered by measuring the height of an oil column between an oil volume placed in a vessel that is positioned on the buffer surface (Figure 2-1) and a pressure transducer placed outside the test site. Two tubes are led out from the vessel; one leading oil and the other one leading "atmospheric air pressure". When the buffer swells, the vessel will follow and the height of the oil column will increase. By use of a pressure gauge with high accuracy the displacement can be calculated with an accuracy of 1mm. In section 1, water was used instead of oil, but problems originating from vaporization of the water in the vessel and corresponding condensation in the air tube, has lead to a decision to use oil instead of water.



*Figure 2-1.* Schematic view showing how the displacement of the surface between bentonite and backfill is measured.

### Equipment

The equipment needed for this measurement is the following:

- Specially designed vessels (see Figure 2-2) made of stainless steel
- Pressure gauges (Druck PTX 610; range 0-100 mbar)
- Polyamide tubes 6/3. The tubes will be led through the flange at one of the lead throughs.
- A panel with pressure gauges and valves placed in the TASF tunnel.

### Installation

The installation will be done just before the backfilling takes place. It will be done as follows:

- The tubes through the rock will be installed in advance together with other cables and tubes passing through the lead through.
- The assembled vessel will be placed on the surface of the upper bentonite block. The tubes can then be connected to the vessel. The tube leading oil will be connected to the bottom of the vessel and the tube leading "atmospheric air pressure" will be connected to the top of the vessel.
- Paraffin oil will then slowly be pushed through the tube leading oil from the low point in the TASF. The tube connected to the top of the vessel will be loosened and an indicator rod will be used to measure the level in the vessel. The surface of the oil in the vessel will be set about 4 cm from the bottom.
- The tube, used at the filling of oil will then be connected to a pressure gauge by turning a three-way valve. The registration of the pressure will start immediately.





*Figure 2-2.* Vessel used for displacement measurements. 1: Steel cover. 2: Bolts. 3: O-ring. 4: Steel plate.

## 2.4 Sample collectors for water and gas sampling

Cups for collecting pore water and gas in the buffer and backfill will be installed. Two types of sample collectors will be used; one that allows sampling of water and gas during the test and one that collects water that will be analyzed after excavation.

- 1. 12 isolated sample collectors will be placed in the bentonite in each deposition hole. A sample collector consists of a titanium cup with a titanium filter placed on the top. Pore water from the bentonite will after saturation of the material, flow through the filter and into the cup. When the test is over and the excavating of the bentonite has started, the cups will be located and the water will be analyzed. The cups have an inner diameter of 15 mm and an inner height of 14 mm.
- 8 additional sample collectors that are connected to tubes leading out of the site will be installed; 4 in the backfill, 2 in the interface rock/bentonite at the top of deposition hole 6 and 2 in the interface rock/bentonite at the top of deposition hole 5. The same equipment will be used as for the isolated cups, except for a tube made of PEEK that will be connected to the bottom of the cup. This makes it possible to take water and gas samples during the test period.

## 2.5 In situ measurements of corrosion

A method for measuring corrosion in situ is to measure the electric-chemical noise. The method has been tested in one of the parcels in the LOT-project and seems feasible. This equipment will be installed in the buffer in deposition hole 5, which yields possibility to at a later stage decide if measurements will be done or not.

### 2.5.1 Equipment

In the upper block (C4) in deposition hole 5, three copper electrodes with the diameter 60 mm and a length of 100 mm will be installed. From each electrode, two copper cables will be led in polyamide tubes. The copper cables will be soldered to the electrodes. In order to get a secure sealing when the copper cables are led into the polyamide tube, a Swagelok ferrule connection will be mounted on the top of the electrode. A distance casing, made of PEEK, will be placed on the top of the electrode in order to isolate the ferrule connection from the copper electrode.

### 2.5.2 Installation

The electric cables will be led in polyamide tubes (10mm/6mm) in advance. The tubes will be led through the flange at one lead through. The copper cables coming from the polyamide tubes will be connected to the electrodes by tin soldering. Each copper electrode will be connected to two copper cables. Holes with a diameter of 60 mm and with a depth of 250 mm will be drilled in the bentonite block. The electrodes will be placed in the holes and the remaining space will be filled with bentonite powder.

### 2.6 Desaturation of the rock close to the buffer

In dry parts of the rock close to the deposition hole, there is a risk of desaturation if the loss of water to the bentonite caused by the suction of the bentonite is faster than the supply of water from fractures around the hole. An attempt will be made to measure if desaturation occurs by placing psychrometers in boreholes in the rock close to the deposition hole surface.

32 mm boreholes have been drilled in the rock from the surface of the deposition hole at different angles in order to place the sensors at different distances from the rock surface (25, 50 and 100 mm) as shown in Figure 2-3. Each sensor will be sealed against the deposition hole by an O-ring mounted around the sensor body. The outer part of the hole will then be filled with cement. A small chamber (measuring volume), isolated from external disturbances by the O-ring and the cement, will be left, where the relative humidity in the chamber may be in equilibrium with the relative humidity in the rock.



Figure 2-3. Installation of relative humidity sensors in the rock surface.

## 3 Location of instruments for standard measurement of THM processes in the bentonite

## 3.1 Introduction

Standard measurements of thermo-hydro-mechanical (THM) processes will be done in both hole 5 and 6. Standard refer to temperature, relative humidity, water pressure and total pressure. This chapter describes the location of the sensors and the type of instrument used for these measurements.

## 3.2 Overview

Standard measurement of THM-processes in the bentonite buffer in the deposition holes will be done by several instrument types. An overview of the instruments is given in this section. A more detailed description is given in the instrument report for section 1/1-2/

### 3.2.1 Measurements of temperature

Thermocouples from Pentronic will be used to measure the temperature. Measurements will be done in 32 points in each deposition hole. In addition, temperature gauges are built in into the capacative relative humidity sensors (37 pcs) as well as in the pressure gauges of vibrating wire type (13 pcs). Temperature is also measured with the psychrometers. In addition temperature will be measured on the surface of the canister with optical fiber cables /1-2/.

### 3.2.2 Measurement of total pressure

Total pressure is the sum of the effective stress and the pore water pressure. It will be measured with the following instrument types:

- Geokon total pressure cells with vibrating wire transducers. 18 and 14 cells respectively of this type will be installed in each test hole.
- Kulite total pressure cells with piezo resistive transducers. 13 and 9 cells respectively of this type will be installed in each test hole.

Total pressure will be measured in totally 27 points in each test hole.

#### 3.2.3 Measurement of pore water pressure

Pore water pressure will be measured with the following instrument types:

- Geokon pore pressure cells with vibrating wire transducers. 6 cells of this type will be installed in each test hole.
- Kulite pore pressure cells with piezo resistive transducers. 8 cells of this type will be installed in each test hole.

Pore pressure will be measured in totally 14 points in each test hole.

#### 3.2.4 Measuring of the water saturation process

The water saturation process will be measured with the following techniques:

- Vaisala relative humidity sensors of capacitive type. 20 cells of this type will be installed in each test hole.
- Rotronic relative humidity sensors of capacitive type. 17 cells of this type will be installed in each test hole.
- Wescor psychrometers. 34 sensors of this type will be installed in deposition hole 6 and 10 sensors in deposition hole 5.

These devices measure the relative humidity in the pore system. The relative humidity will be measured in totally 47 points in deposition hole 5 and in 71 points in deposition hole 6.

### 3.3 Strategy for describing the position of each device

Every instrument is named with a unique name consisting of 1 letter describing the type of measurement, 1 letter describing where the measurement takes place (buffer, backfill, rock or canister), 1 figure denoting the deposition hole (1-6) or A for the main tunnel, and 2 figures specifying the position in the buffer according to a seperate list (see Table 3-1 to 3-8). Every instrument position is described with three coordinates according to Figure 3-1. The r-coordinate is the horizontal distance from the center of the hole and the z-coordinate is the height from the bottom of the hole (the block height is set to 500mm). The  $\alpha$ -coordinate is the angle from the vertical direction A (headed against the end of the tunnel i.e. almost to the west).



*Figure 3-1.* Figure describing the coordinate system used when determining the instrument positions.

## 3.4 Position of the instruments in the bentonite in hole 5 (DA3551G01)

The instrumented deposition holes in section 2 are termed DA3551G01 (hole 5) and DA3545G01 (hole 6) according to Figure 1-1. Deposition hole 5 will be instrumented in the same way as the two inner deposition holes, 1 and 3 i.e. measurements will be done in four vertical sections A, B, C and D according to Figure 3-2.

Direction A and C are placed in the tunnel axial direction with A headed against the end of the tunnel i.e. almost to the west, see Figure 3-1. The bentonite blocks are called cylinders and rings. The cylinders are numbered C1-C4 and the rings R1-R10 respectively (Figure 3-2).



*Figure 3-2.* Schematic view over the instruments positions in deposition hole 5. The instruments are placed in four vertical sections. The figure also shows the block designati

The instruments are located in three main levels in the blocks, 50 mm, 160 mm and 250 mm, from the upper surface. The thermocouples are mostly placed in the 50mm level and the other gauges in the 160 mm level except for the Rotronic humidity sensors and the Geocon pore pressure sensors, which are placed in the 250 mm level depending on the size of the sensor house.

The position of ten Wescor psychrometers has been based on the distribution of water inflow on the surface of the deposition hole. The water inflow has been determined by help of diapers and the positions of these sensors are based on the results from these measurements.

The positions of each instrument, the cable length and the corresponding lead through connections are described in Tables 3-1 to 3-5.

#### Table 3-1 Numbering and position of instruments for measuring temperature (T)

| Prototype Repository, Instrumentation |              |  |  |  |  |  |  |  |  |  |
|---------------------------------------|--------------|--|--|--|--|--|--|--|--|--|
| Instrument type                       | Thermocouple |  |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 5            |  |  |  |  |  |  |  |  |  |
| Lead through, No                      | LT52         |  |  |  |  |  |  |  |  |  |
| Length of lead through                | 36,3         |  |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10,0         |  |  |  |  |  |  |  |  |  |
| Estimated length in backfill, m       | 10.0         |  |  |  |  |  |  |  |  |  |

|       |         | Instrum   | ent pos | ition in | block | Cable dir. |           |        | Cable lengths  | Remark |             |
|-------|---------|-----------|---------|----------|-------|------------|-----------|--------|----------------|--------|-------------|
| Mark  | Block   | Direction | α       | r        | Ζ     | α          | Fabricate | Buffer | In test volume | Total  |             |
|       |         |           | degree  | mm       | mm    | degree     |           | m      | m              | m      |             |
| TB501 | Cyl. 1  | Center    | 270     | 50       | 50    | 344        | Pentronic | 7,9    | 18             | 64     |             |
| TB502 | Cyl. 1  | Center    | 270     | 60       | 250   | 342        | Pentronic | 7,9    | 18             | 64     |             |
| TB503 | Cyl. 1  | Center    | 270     | 70       | 450   | 340        | Pentronic | 7,8    | 18             | 64     |             |
| TB504 | Cyl. 1  | А         | 355     | 525      | 450   | 358        | Pentronic | 7,4    | 17             | 64     | On canister |
| TB505 | Cyl. 1  | Α         | 355     | 685      | 450   | 356        | Pentronic | 7,2    | 17             | 64     |             |
| TB506 | Cyl. 1  | В         | 85      | 685      | 450   | 84         | Pentronic | 7,2    | 17             | 64     |             |
| TB507 | Cyl. 1  | С         | 175     | 685      | 450   | 176        | Pentronic | 7,2    | 17             | 64     |             |
| TB508 | Cyl. 1  | D         | 270     | 585      | 450   | 274        | Pentronic | 7,3    | 17             | 64     |             |
| TB509 | Cyl. 1  | D         | 270     | 685      | 450   | 272        | Pentronic | 7,2    | 17             | 64     |             |
| TB510 | Cyl. 1  | D         | 270     | 785      | 450   | 270        | Pentronic | 7,1    | 17             | 63     |             |
| TB511 | Ring 5  | А         | 0       | 525      | 2950  | 42         | Pentronic | 4,9    | 15             | 61     | On canister |
| TB512 | Ring 5  | А         | 0       | 685      | 2950  | 38         | Pentronic | 4,7    | 15             | 61     |             |
| TB513 | Ring 5  | В         | 85      | 585      | 2950  | 88         | Pentronic | 4,8    | 15             | 61     |             |
| TB514 | Ring 5  | В         | 85      | 685      | 2950  | 90         | Pentronic | 4,7    | 15             | 61     |             |
| TB515 | Ring 5  | В         | 85      | 785      | 2950  | 92         | Pentronic | 4,6    | 15             | 61     |             |
| TB516 | Ring 5  | С         | 175     | 585      | 2950  | 152        | Pentronic | 4,8    | 15             | 61     |             |
| TB517 | Ring 5  | С         | 175     | 685      | 2950  | 154        | Pentronic | 4,7    | 15             | 61     |             |
| TB518 | Ring 5  | С         | 175     | 735      | 2950  | 156        | Pentronic | 4,6    | 15             | 61     |             |
| TB519 | Ring 5  | D         | 270     | 585      | 2950  | 290        | Pentronic | 4,8    | 15             | 61     |             |
| TB520 | Ring 5  | D         | 270     | 635      | 2950  | 288        | Pentronic | 4,7    | 15             | 61     |             |
| TB521 | Ring 5  | D         | 270     | 685      | 2950  | 286        | Pentronic | 4,7    | 15             | 61     |             |
| TB522 | Ring 5  | D         | 270     | 735      | 2950  | 284        | Pentronic | 4,6    | 15             | 61     |             |
| TB523 | Ring 5  | D         | 270     | 785      | 2950  | 282        | Pentronic | 4,6    | 15             | 61     |             |
| TB524 | Ring 10 | Α         | 0       | 525      | 5250  | 18         | Pentronic | 2,3    | 12             | 59     | On canister |
| TB525 | Ring 10 | Α         | 0       | 685      | 5450  | 14         | Pentronic | 2,2    | 12             | 58     |             |
| TB526 | Ring 10 | D         | 270     | 585      | 5450  | 260        | Pentronic | 2,3    | 12             | 59     |             |
| TB527 | Ring 10 | D         | 270     | 685      | 5450  | 262        | Pentronic | 2,2    | 12             | 58     |             |
| TB528 | Ring 10 | D         | 270     | 785      | 5450  | 264        | Pentronic | 2,1    | 12             | 58     |             |
| TB529 | Cyl. 3  | А         | 0       | 785      | 6250  | 22         | Pentronic | 1,3    | 11             | 58     |             |
| TB530 | Cyl. 3  | В         | 95      | 585      | 6250  | 102        | Pentronic | 1,5    | 12             | 58     |             |
| TB531 | Cyl. 3  | С         | 185     | 585      | 6250  | 204        | Pentronic | 1,5    | 12             | 58     |             |
| TB532 | Cyl. 4  | А         | 0       | 785      | 6950  | 24         | Pentronic | 0,5    | 11             | 57     |             |

## Table 3-2 Numbering and position of instruments for measuring total pressure (P)

| Prototype Repository, Instrumentation |                |  |  |  |  |  |  |  |  |  |
|---------------------------------------|----------------|--|--|--|--|--|--|--|--|--|
| Instrument type                       | Total Pressure |  |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 5              |  |  |  |  |  |  |  |  |  |
| Lead through, No                      | LT52           |  |  |  |  |  |  |  |  |  |
| Length of lead through                | 36,3           |  |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10,0           |  |  |  |  |  |  |  |  |  |
| Estimated length in backfill, m       | 10.0           |  |  |  |  |  |  |  |  |  |

|       |         | Instrum   | ent posi | ition in | block | Cable dir. |           | Cable lengths |     |                | Remark |             |
|-------|---------|-----------|----------|----------|-------|------------|-----------|---------------|-----|----------------|--------|-------------|
| Mark  | Block   | Direction | α        | r        | Ζ     | α          | Fabricate | But           | fer | In test volume | Total  |             |
|       |         |           | degree   | mm       | mm    | degree     |           | m             | m   | m              | m      |             |
| PB501 | Cyl. 1  | Center    | 0        | 0        | 0     | 4          | Geokon    | 7,9           | 8,0 | 18             | 64     | Bottom      |
| PB502 | Cyl. 1  | Center    | 0        | 100      | 500   | 346        | Geokon    | 7,8           | 8,0 | 18             | 64     |             |
| PB503 | Cyl. 1  | A         | 5        | 585      | 360   | 30         | Kulite    | 7,3           | 8,0 | 17             | 64     | Vertical    |
| PB504 | Cyl. 1  | A         | 5        | 685      | 360   | 28         | Kulite    | 7,2           | 8,0 | 17             | 64     | Vertical    |
| PB505 | Cyl. 1  | Α         | 5        | 785      | 360   | 94         | Kulite    | 7,1           | 8,0 | 17             | 63     | Vertical    |
| PB506 | Cyl. 1  | В         | 95       | 635      | 500   | 118        | Geokon    | 7,3           | 8,0 | 17             | 64     |             |
| PB507 | Cyl. 1  | В         | 105      | 735      | 500   | 106        | Geokon    | 7,2           | 8,0 | 17             | 63     |             |
| PB508 | Cyl. 1  | С         | 185      | 635      | 500   | 184        | Geokon    | 7,3           | 8,0 | 17             | 64     |             |
| PB509 | Cyl. 1  | С         | 195      | 735      | 500   | 194        | Geokon    | 7,2           | 8,0 | 17             | 63     |             |
| PB510 | Ring 5  | А         | 10       | 535      | 2840  | 44         | Kulite    | 4,8           | 6,0 | 15             | 61     | In the slot |
| PB511 | Ring 5  | Α         | 5        | 685      | 3000  | 40         | Geokon    | 4,7           | 5,0 | 15             | 61     | Delivery1   |
| PB512 | Ring 5  | А         | 5        | 825      | 2840  | 36         | Kulite    | 4,6           | 6,0 | 15             | 61     | In the slot |
| PB513 | Ring 5  | В         | 95       | 635      | 3000  | 98         | Geokon    | 4,7           | 5,0 | 15             | 61     | Delivery1   |
| PB514 | Ring 5  | В         | 95       | 785      | 3000  | 96         | Geokon    | 4,6           | 5,0 | 15             | 61     | Delivery1   |
| PB515 | Ring 5  | С         | 185      | 635      | 3000  | 198        | Geokon    | 4,7           | 5,0 | 15             | 61     | Delivery1   |
| PB516 | Ring 5  | С         | 190      | 825      | 2840  | 186        | Kulite    | 4,6           | 6,0 | 15             | 61     | In the slot |
| PB517 | Ring 10 | Center    | 0        | 50       | 5500  | 8          | Geokon    | 2,8           | 4,0 | 13             | 59     |             |
| PB518 | Ring 10 | Α         | 10       | 585      | 5360  | 20         | Kulite    | 2,3           | 4,0 | 12             | 59     | Vertical    |
| PB519 | Ring 10 | А         | 10       | 685      | 5360  | 16         | Kulite    | 2,2           | 4,0 | 12             | 58     | Vertical    |
| PB520 | Ring 10 | Α         | 10       | 785      | 5360  | 12         | Kulite    | 2,1           | 4,0 | 12             | 58     | Vertical    |
| PB521 | Ring 10 | В         | 95       | 635      | 5500  | 124        | Geokon    | 2,2           | 4,0 | 12             | 59     |             |
| PB522 | Ring 10 | В         | 105      | 735      | 5500  | 120        | Geokon    | 2,1           | 4,0 | 12             | 58     |             |
| PB523 | Ring 10 | С         | 180      | 635      | 5500  | 210        | Geokon    | 2,2           | 4,0 | 12             | 59     |             |
| PB524 | Ring 10 | С         | 190      | 735      | 5500  | 214        | Geokon    | 2,1           | 4,0 | 12             | 58     |             |
| PB525 | Cyl. 3  | Center    | 0        | 100      | 6500  | 48         | Geokon    | 2,0           | 4,0 | 12             | 58     |             |
| PB526 | Cyl. 3  | А         | 5        | 585      | 6500  | 34         | Geokon    | 1,5           | 4,0 | 12             | 58     |             |
| PB527 | Cyl. 4  | Center    | 0        | 100      | 7000  | 56         | Geokon    | 1,2           | 4,0 | 11             | 58     |             |

## Table 3-3Numbering and position of instruments for measuring pore water<br/>pressure (U)

| Prototype Repository, Instrumentation |               |  |  |  |  |  |  |  |  |  |
|---------------------------------------|---------------|--|--|--|--|--|--|--|--|--|
| Instrument type                       | Pore Pressure |  |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 5             |  |  |  |  |  |  |  |  |  |
| Lead through, No                      | LT52          |  |  |  |  |  |  |  |  |  |
| Length of lead through                | 36,3          |  |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10,0          |  |  |  |  |  |  |  |  |  |
| Estimated length in backfill, m       | 10.0          |  |  |  |  |  |  |  |  |  |

|       |         | Instrum   | ent pos | ition in | block | Cable dir. | Cable lengths |     |      |                |       | Remark      |
|-------|---------|-----------|---------|----------|-------|------------|---------------|-----|------|----------------|-------|-------------|
| Mark  | Block   | Direction | α       | r        | Z     | α          | Fabricate     | Bu  | ffer | In test volume | Total |             |
|       |         |           | degree  | mm       | mm    | degree     |               | m   |      | m              | m     |             |
| UB501 | Cyl. 1  | Center    | 90      | 50       | 250   | 166        | Kulite        | 7,9 | 8,0  | 18             | 64    |             |
| UB502 | Cyl. 1  | Center    | 90      | 100      | 50    | 168        | Geokon        | 7,8 | 8,0  | 18             | 64    |             |
| UB503 | Cyl. 1  | A         | 355     | 585      | 250   | 0          | Geokon        | 7,3 | 8,0  | 17             | 64    |             |
| UB504 | Cyl. 1  | А         | 355     | 785      | 340   | 354        | Kulite        | 7,1 | 8,0  | 17             | 63    |             |
| UB505 | Ring 5  | A         | 355     | 585      | 2750  | 332        | Geokon        | 4,8 | 6,0  | 15             | 61    |             |
| UB506 | Ring 5  | A         | 355     | 785      | 2840  | 338        | Kulite        | 4,6 | 6,0  | 15             | 61    |             |
| UB507 | Ring 5  | В         | 85      | 535      | 2840  | 68         | Kulite        | 4,8 | 6,0  | 15             | 61    | In the slot |
| UB508 | Ring 5  | В         | 85      | 825      | 2840  | 74         | Kulite        | 4,6 | 6,0  | 15             | 61    | In the slot |
| UB509 | Ring 5  | С         | 175     | 535      | 2750  | 150        | Geokon        | 4,8 | 6,0  | 15             | 61    | In the slot |
| UB510 | Ring 5  | С         | 175     | 825      | 2750  | 158        | Geokon        | 4,6 | 6,0  | 15             | 61    | In the slot |
| UB511 | Ring 10 | A         | 355     | 585      | 5340  | 322        | Kulite        | 2,3 | 4,0  | 12             | 59    |             |
| UB512 | Ring 10 | А         | 355     | 785      | 5340  | 328        | Kulite        | 2,1 | 4,0  | 12             | 58    |             |
| UB513 | Cyl. 3  | Center    | 135     | 100      | 6250  | 52         | Kulite        | 2,0 | 4,0  | 12             | 58    |             |
| UB514 | Cyl. 4  | Center    | 90      | 100      | 6750  | 58         | Geokon        | 1,2 | 4,0  | 11             | 58    |             |

## Table 3-4 Numbering and position of instruments for measuring wetting (W)

| Prototype Repository, Instrumentation |                        |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|--|
| Instrument type                       | Relative Humidity      |  |  |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 5                      |  |  |  |  |  |  |  |  |  |  |
| Lead through, No(Rotronic)            | LT53                   |  |  |  |  |  |  |  |  |  |  |
| Lead through, No(Vaisala)             | LT61                   |  |  |  |  |  |  |  |  |  |  |
| Length of lead through LT53           | 33,5                   |  |  |  |  |  |  |  |  |  |  |
| Length of lead through LT61           | 33,8                   |  |  |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10,0                   |  |  |  |  |  |  |  |  |  |  |
| Length in backfill (LT53), m 8,2      |                        |  |  |  |  |  |  |  |  |  |  |
| Length in backfill (LT61), m          | 10,5                   |  |  |  |  |  |  |  |  |  |  |
| Inotru                                | mont position in block |  |  |  |  |  |  |  |  |  |  |

|       |         | Instrum   | ent pos | ition in | block | Cable dir |           | Cable lengths |     |                |       | Remark      |
|-------|---------|-----------|---------|----------|-------|-----------|-----------|---------------|-----|----------------|-------|-------------|
| Mark  | Block   | Direction | α       | r        | Ζ     | α         | Fabricate | Titan         | ium | In test volume | Total |             |
|       |         |           | degree  | mm       | mm    | degree    |           | m             | m   | m              | m     |             |
| WB501 | Cyl. 1  | Center    | 180     | 50       | 250   | 160       | Rotronic  | 7,6           | 7,5 | 16             | 59    |             |
| WB502 | Cyl. 1  | Center    | 180     | 100      | 50    | 2         | Rotronic  | 7,6           | 7,5 | 16             | 59    |             |
| WB503 | Cyl. 1  | Center    | 0       | 400      | 250   | 164       | Rotronic  | 7,3           | 7,5 | 15             | 59    | Horizontal  |
| WB504 | Cyl. 1  | А         | 350     | 585      | 340   | 352       | Vaisala   | 7,1           | 7,5 | 18             | 61    |             |
| WB505 | Cyl. 1  | A         | 350     | 685      | 340   | 350       | Vaisala   | 7,0           | 7,5 | 17             | 61    |             |
| WB506 | Cyl. 1  | А         | 350     | 785      | 340   | 348       | Vaisala   | 6,9           | 7,5 | 17             | 61    |             |
| WB507 | Cyl. 1  | В         | 80      | 585      | 340   | 76        | Vaisala   | 7,1           | 7,5 | 18             | 61    |             |
| WB508 | Cyl. 1  | В         | 80      | 685      | 250   | 78        | Rotronic  | 7,0           | 7,5 | 15             | 59    |             |
| WB509 | Cyl. 1  | В         | 80      | 785      | 250   | 80        | Rotronic  | 6,9           | 7,5 | 15             | 59    |             |
| WB510 | Cyl. 1  | С         | 170     | 585      | 250   | 174       | Rotronic  | 7,1           | 7,5 | 15             | 59    |             |
| WB511 | Cyl. 1  | С         | 170     | 685      | 250   | 172       | Rotronic  | 7,0           | 7,5 | 15             | 59    |             |
| WB512 | Cyl. 1  | С         | 170     | 785      | 250   | 170       | Rotronic  | 6,9           | 7,5 | 15             | 59    |             |
| WB513 | Ring 5  | A         | 350     | 585      | 2840  | 330       | Vaisala   | 4,5           | 4,5 | 15             | 59    |             |
| WB514 | Ring 5  | A         | 350     | 685      | 2840  | 334       | Vaisala   | 4,4           | 4,5 | 15             | 59    |             |
| WB515 | Ring 5  | A         | 350     | 785      | 2840  | 336       | Vaisala   | 4,3           | 4,5 | 15             | 59    |             |
| WB516 | Ring 5  | В         | 80      | 535      | 2750  | 66        | Rotronic  | 4,6           | 4,5 | 13             | 56    | In the slot |
| WB517 | Ring 5  | В         | 80      | 685      | 2750  | 70        | Rotronic  | 4,4           | 4,5 | 13             | 56    |             |
| WB518 | Ring 5  | В         | 80      | 785      | 2750  | 72        | Rotronic  | 4,3           | 4,5 | 13             | 56    |             |
| WB519 | Ring 5  | С         | 180     | 535      | 2840  | 196       | Vaisala   | 4,6           | 4,5 | 15             | 59    | In the slot |
| WB520 | Ring 5  | С         | 180     | 685      | 2840  | 192       | Vaisala   | 4,4           | 4,5 | 15             | 59    |             |
| WB521 | Ring 5  | С         | 180     | 785      | 2750  | 188       | Rotronic  | 4,3           | 4,5 | 13             | 56    |             |
| WB522 | Ring 10 | Center    | 180     | 50       | 5340  | 10        | Vaisala   | 2,5           | 2,5 | 13             | 57    |             |
| WB523 | Ring 10 | А         | 0       | 262      | 5340  | 6         | Vaisala   | 2,3           | 2,5 | 13             | 57    |             |
| WB524 | Ring 10 | А         | 350     | 585      | 5340  | 320       | Vaisala   | 2,0           | 2,0 | 13             | 56    |             |
| WB525 | Ring 10 | А         | 350     | 685      | 5340  | 324       | Vaisala   | 1,9           | 2,0 | 12             | 56    |             |
| WB526 | Ring 10 | A         | 350     | 785      | 5340  | 326       | Vaisala   | 1,8           | 2,0 | 12             | 56    |             |
| WB527 | Ring 10 | В         | 80      | 585      | 5250  | 86        | Rotronic  | 2,0           | 2,0 | 10             | 54    |             |
| WB528 | Ring 10 | В         | 80      | 685      | 5250  | 82        | Rotronic  | 1,9           | 2,0 | 10             | 54    |             |
| WB529 | Ring 10 | В         | 80      | 785      | 5250  | 80        | Rotronic  | 1,8           | 2,0 | 10             | 54    |             |
| WB530 | Ring 10 | С         | 170     | 585      | 5340  | 180       | Vaisala   | 2,0           | 2,0 | 13             | 56    |             |
| WB531 | Ring 10 | С         | 170     | 785      | 5250  | 182       | Rotronic  | 1,8           | 2,0 | 10             | 54    |             |
| WB532 | Cyl. 3  | Center    | 270     | 100      | 6250  | 50        | Vaisala   | 1,5           | 2,0 | 12             | 56    |             |
| WB533 | Cyl. 3  | Α         | 350     | 585      | 6250  | 32        | Vaisala   | 1,0           | 1,0 | 11             | 55    |             |
| WB534 | Cyl. 3  | В         | 90      | 585      | 6250  | 100       | Vaisala   | 1,0           | 1,0 | 11             | 55    |             |
| WB535 | Cyl. 3  | С         | 180     | 585      | 6250  | 202       | Rotronic  | 1,0           | 1,0 | 9              | 53    |             |
| WB536 | Cyl. 4  | Center    | 180     | 100      | 6840  | 224       | Vaisala   | 1,0           | 1,0 | 11             | 55    |             |
| WB537 | Cvl. 4  | Center    | 270     | 100      | 6680  | 228       | Vaisala   | 1.0           | 1.0 | 11             | 55    |             |

## Table 3-5 Numbering of instruments for measuring wetting (positions were determined after inflow measurements) (W)

| Prototype Repository, Instrumentation |                   |  |  |  |  |  |  |  |  |
|---------------------------------------|-------------------|--|--|--|--|--|--|--|--|
| Instrument type                       | Relative Humidity |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 5                 |  |  |  |  |  |  |  |  |
| Lead through, No(Wescor)              | Plug              |  |  |  |  |  |  |  |  |
| Length of lead through Plug           | 5.0               |  |  |  |  |  |  |  |  |
| Length outside Plug, m                | 10.0              |  |  |  |  |  |  |  |  |
| Length in backfill (PLUG), m          | 20.0              |  |  |  |  |  |  |  |  |

|       | •      | Instrument position in block |        |     |      | Cable dir | Cable lengths |       |     |                | Remark |  |
|-------|--------|------------------------------|--------|-----|------|-----------|---------------|-------|-----|----------------|--------|--|
| Mark  | Block  | Direction                    | α      | r   | Z    | α         | Fabricate     | Titan | ium | In test volume | Total  |  |
|       |        |                              | degree | mm  | mm   | degree    |               | m     | m   | m              | m      |  |
| WB538 | Ring 3 | C-D                          | 225    | 775 | 1600 | 225       | Wescor        | 5.4   | 7.5 | 25             | 40     |  |
| WB539 | Ring 3 | C-D                          | 235    | 680 | 1600 | 235       | Wescor        | 5.5   | 7.5 | 25             | 40     |  |
| WB540 | Ring 3 | C-D                          | 245    | 585 | 1600 | 245       | Wescor        | 5.6   | 7.5 | 26             | 41     |  |
| WB541 | Ring 3 | C-D                          | 255    | 680 | 1600 | 255       | Wescor        | 5.5   | 6.0 | 25             | 40     |  |
| WB542 | Ring 3 | C-D                          | 265    | 775 | 1600 | 265       | Wescor        | 5.4   | 6.0 | 25             | 40     |  |
| WB543 | Ring 8 | C-D                          | 225    | 775 | 1600 | 225       | Wescor        | 2.8   | 6.0 | 23             | 38     |  |
| WB544 | Ring 8 | C-D                          | 235    | 680 | 1600 | 235       | Wescor        | 2.9   | 3.0 | 23             | 38     |  |
| WB545 | Ring 8 | C-D                          | 245    | 585 | 1600 | 245       | Wescor        | 3.0   | 3.0 | 23             | 38     |  |
| WB546 | Ring 8 | C-D                          | 255    | 680 | 1600 | 255       | Wescor        | 2.9   | 3.0 | 23             | 38     |  |
| WB547 | Ring 8 | C-D                          | 265    | 775 | 1600 | 265       | Wescor        | 2.8   | 3.0 | 23             | 38     |  |

# 3.5 Position of the instruments in the bentonite in hole 6 (DA3545G01)

Deposition hole 6 will be instrumented according to another strategy. The instruments will be placed in eight directions, where four directions are represented in each instrumented block, see Figures 3- and 3-4.

The motivation for changing the instrument positions in hole 6 is the following:

There is a risk that a high concentration of transducers may influence the thermal and moisture transport, especially when the transducers are placed in radial direction since the transport of both heat and moisture mainly takes place in that direction. If moisture has to pass other transducers on its way, it may be delayed or accelerated.

The new strategy is to install only one set of instruments in the same radial direction. The instruments are placed at 7 locations, all with different distance to the canister surface, in 3 levels (upper, centre and lower part of the canister). The sets of instruments are separated 45 degrees tangentially. A set of instruments consists of transducers for measuring relative humidity, pore pressure and total pressure and since all these transducers also include temperature measurements no thermocouples will be installed in these directions. They will instead be placed in a separate direction.

The instruments will be placed in the centre of the bentonite rings, i.e. 25 cm from the horizontal surfaces. In order to avoid interferences as much as possible two rings will be used, i.e. every second set of instruments will be placed in the upper ring and every second in the lower ring. Rings 1 and 2, 4 and 5, and 8 and 9 will be used.

Another advantage of this constellation is that the results can be plotted with the assumption that there is axial symmetry around the canister axis. The scatter in results will then be a measure of the deviation from the symmetry.

Figures 3-3 and 3-4 show the instrument positions in the bentonite rings and the bottom block. The upper blocks, C2, C3 and C4 are instrumented in the same way as those in deposition hole 5.

10 additional Wescor psychrometers and 5 additional Vaisala relative humidity sensors have been placed in order to try to detect differences in behavior of the buffer at dry and wet conditions of the rock surface. The position of these sensors has been based on the distribution of water inflow determined by help of diapers.

The positions of each instrument, the cable length and the corresponding lead through connections are described in Tables 3-6 to 3-10.



*Figure 3-3.* Schematic view over the instruments positions in the bentonite rings in deposition hole 6. The instruments are placed in eight vertical sections, where four sections are represented in each instrumented block.



Figure 3-4. Instrument positions in the bottom block of hole 6.

## Table 3-6 Numbering and position of instruments for measuring temperature (T)

| Prototype Repository, Instrumentation |              |  |  |  |  |  |  |  |  |
|---------------------------------------|--------------|--|--|--|--|--|--|--|--|
| Instrument type                       | Thermocouple |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 6            |  |  |  |  |  |  |  |  |
| Lead through, No                      | LT62         |  |  |  |  |  |  |  |  |
| Length of lead through                | 33.7         |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10.0         |  |  |  |  |  |  |  |  |
| Estimated length in backfill, m       | 9.0          |  |  |  |  |  |  |  |  |

|       |        | Instrum   | ent posit | ion in b | lock | Cable dir. |           | Cable lengths |                |       | Remark      |
|-------|--------|-----------|-----------|----------|------|------------|-----------|---------------|----------------|-------|-------------|
| Mark  | Block  | Direction | α         | r        | Z    | α          | Fabricate | Buffer        | In test volume | Total |             |
|       |        |           | degree    | mm       | mm   | degree     |           | m             | m              | m     |             |
| TB601 | Cyl. 1 | Center    | 45        | 50       | 375  | 4          | Pentronic | 7.9           | 17             | 61    |             |
| TB602 | Cyl. 1 | Center    | 315       | 50       | 250  | 2          | Pentronic | 7.9           | 17             | 61    |             |
| TB603 | Cyl. 1 | Center    | 0         | 50       | 125  | 0          | Pentronic | 7.9           | 17             | 61    |             |
| TB604 | Ring 1 | D         | 270       | 535      | 750  | 282        | Pentronic | 6.9           | 16             | 60    |             |
| TB605 | Ring 1 | D         | 270       | 585      | 750  | 280        | Pentronic | 6.8           | 16             | 60    |             |
| TB606 | Ring 1 | D         | 270       | 635      | 750  | 278        | Pentronic | 6.8           | 16             | 59    |             |
| TB607 | Ring 1 | D         | 270       | 685      | 750  | 276        | Pentronic | 6.7           | 16             | 59    |             |
| TB608 | Ring 1 | D         | 270       | 735      | 750  | 274        | Pentronic | 6.7           | 16             | 59    |             |
| TB609 | Ring 1 | D         | 270       | 785      | 750  | 272        | Pentronic | 6.6           | 16             | 59    |             |
| TB610 | Ring 1 | D         | 270       | 875      | 750  | 270        | Pentronic | 6.5           | 16             | 59    | On rock     |
| TB611 | Ring 1 | D         | 275       | 525      | 750  | 284        | Pentronic | 6.9           | 16             | 60    | On canister |
| TB612 | Ring 5 | D         | 270       | 535      | 2750 | 294        | Pentronic | 4.8           | 14             | 58    |             |
| TB613 | Ring 5 | D         | 270       | 585      | 2750 | 292        | Pentronic | 4.8           | 14             | 57    |             |
| TB614 | Ring 5 | D         | 270       | 635      | 2750 | 290        | Pentronic | 4.7           | 14             | 57    |             |
| TB615 | Ring 5 | D         | 270       | 685      | 2750 | 288        | Pentronic | 4.7           | 14             | 57    |             |
| TB616 | Ring 5 | D         | 270       | 735      | 2750 | 286        | Pentronic | 4.6           | 14             | 57    |             |
| TB617 | Ring 5 | D         | 270       | 785      | 2750 | 284        | Pentronic | 4.6           | 14             | 57    |             |
| TB618 | Ring 5 | D         | 270       | 875      | 2750 | 270        | Pentronic | 4.5           | 14             | 57    | On rock     |
| TB619 | Ring 5 | D         | 275       | 525      | 2750 | 296        | Pentronic | 4.9           | 14             | 58    | On canister |
| TB620 | Ring 8 | D         | 270       | 535      | 4250 | 306        | Pentronic | 3.3           | 12             | 56    |             |
| TB621 | Ring 8 | D         | 270       | 585      | 4250 | 304        | Pentronic | 3.3           | 12             | 56    |             |
| TB622 | Ring 8 | D         | 270       | 635      | 4250 | 302        | Pentronic | 3.2           | 12             | 56    |             |
| TB623 | Ring 8 | D         | 270       | 685      | 4250 | 300        | Pentronic | 3.2           | 12             | 56    |             |
| TB624 | Ring 8 | D         | 270       | 735      | 4250 | 298        | Pentronic | 3.1           | 12             | 56    |             |
| TB625 | Ring 8 | D         | 270       | 785      | 4250 | 296        | Pentronic | 3.1           | 12             | 56    |             |
| TB626 | Ring 8 | D         | 270       | 875      | 4250 | 270        | Pentronic | 3.0           | 12             | 56    | On rock     |
| TB627 | Ring 8 | D         | 275       | 525      | 4250 | 308        | Pentronic | 3.3           | 12             | 56    | On canister |
| TB628 | Cyl. 3 | Α         | 0         | 785      | 6250 | 0          | Pentronic | 1.0           | 10             | 54    |             |
| TB629 | Cyl. 3 | В         | 95        | 585      | 6250 | 94         | Pentronic | 1.2           | 10             | 54    |             |
| TB630 | Cyl. 3 | С         | 185       | 585      | 6250 | 184        | Pentronic | 1.2           | 10             | 54    |             |
| TB631 | Cyl. 4 | Center    | 225       | 100      | 6950 | 224        | Pentronic | 1.2           | 10             | 54    |             |
| TB632 | Cyl. 4 | A         | 0         | 785      | 6950 | 2          | Pentronic | 0.5           | 10             | 53    |             |

## Table 3-7Numbering and position of instruments for measuring total pressure<br/>(P)

| Prototype Repository, | Instrumentation |
|-----------------------|-----------------|
| Instrument type       | Total Pressure  |

| Instrument type                 | Total F |
|---------------------------------|---------|
| Deposition hole, No             | 6       |
| Lead through, No                | LT62    |
| Length of lead through          | 33.7    |
| Length in G-tunnel, m           | 10.0    |
| Estimated length in backfill, m | 9.0     |
| la staroa                       |         |

|       |         | Instrum   | ent posit | ion in b | olock | Cable dir. |           | Cable lengths |      |                |       | Remark              |
|-------|---------|-----------|-----------|----------|-------|------------|-----------|---------------|------|----------------|-------|---------------------|
| Mark  | Block   | Direction | α         | r        | Ζ     | α          | Fabricate | But           | ffer | In test volume | Total |                     |
|       |         |           | degree    | mm       | mm    | degree     |           | m             | m    | m              | m     |                     |
| PB601 | Cyl. 1  | Center    | 315       | 210      | 500   | 314        | Geokon    | 7.7           | 8.0  | 17             | 60    |                     |
| PB602 | Cyl. 1  | В         | 80        | 685      | 250   | 70         | Kulite    | 7.2           | 8.0  | 16             | 60    | Vertical            |
| PB603 | Ring 1  | A         | 10        | 785      | 750   | 20         | Kulite    | 6.6           | 8.0  | 16             | 59    | Vertical            |
| PB604 | Ring 1  | В         | 80        | 685      | 750   | 68         | Kulite    | 6.7           | 8.0  | 16             | 59    | Vertical            |
| PB605 | Ring 1  | С         | 170       | 585      | 750   | 130        | Kulite    | 6.8           | 6.0  | 16             | 60    | Vertical            |
| PB606 | Ring 2  | AB        | 55        | 735      | 1500  | 80         | Geokon    | 6.2           | 8.0  | 15             | 59    |                     |
| PB607 | Ring 2  | BC        | 145       | 635      | 1500  | 178        | Geokon    | 6.3           | 8.0  | 15             | 59    |                     |
| PB608 | Ring 2  | CD        | 215       | 535      | 1250  | 216        | Kulite    | 6.4           | 6.0  | 15             | 59    | In the slot         |
| PB609 | Ring 2  | DA        | 325       | 875      | 1250  | 316        | Geokon    | 6.0           | 8.0  | 15             | 59    | At rock             |
| PB610 | Ring 5  | A         | 10        | 785      | 2750  | 44         | Kulite    | 4.6           | 6.0  | 14             | 57    | Vertical            |
| PB611 | Ring 5  | В         | 80        | 685      | 2750  | 66         | Kulite    | 4.7           | 4.0  | 14             | 57    | Vertical            |
| PB612 | Ring 5  | С         | 170       | 585      | 2750  | 136        | Kulite    | 4.8           | 4.0  | 14             | 57    | Vertical            |
| PB613 | Ring 6  | AB        | 55        | 785      | 3500  | 64         | Geokon    | 4.1           | 8.0  | 13             | 57    |                     |
| PB614 | Ring 6  | BC        | 145       | 635      | 3500  | 132        | Geokon    | 4.2           | 8.0  | 13             | 57    |                     |
| PB615 | Ring 6  | CD        | 215       | 535      | 3250  | 200        | Kulite    | 4.3           | 4.0  | 13             | 57    | In the slot         |
| PB616 | Ring 6  | DA        | 325       | 875      | 3250  | 318        | Geokon    | 4.0           | 6.0  | 13             | 57    | At rock             |
| PB617 | Ring 8  | Α         | 10        | 785      | 4250  | 22         | Kulite    | 3.1           | 4.0  | 12             | 56    | Vertical            |
| PB618 | Ring 8  | В         | 80        | 685      | 4250  | 70         | Kulite    | 3.2           | 4.0  | 12             | 56    | Vertical            |
| PB619 | Ring 8  | С         | 170       | 585      | 4250  | 132        | Kulite    | 3.3           | 4.0  | 12             | 56    | Vertical            |
| PB620 | Ring 9  | AB        | 55        | 735      | 5000  | 82         | Geokon    | 2.6           | 6.0  | 12             | 55    |                     |
| PB621 | Ring 9  | BC        | 145       | 635      | 5000  | 180        | Geokon    | 2.7           | 6.0  | 12             | 55    |                     |
| PB622 | Ring 9  | CD        | 215       | 535      | 4750  | 218        | Kulite    | 2.8           | 4.0  | 12             | 56    | In the slot         |
| PB623 | Ring 9  | DA        | 325       | 875      | 4750  | 318        | Geokon    | 2.5           | 5.0  | 11             | 55    | At rock, Delivery 1 |
| PB624 | Ring 10 | Center    | 270       | 50       | 5500  | 268        | Geokon    | 2.8           | 4.0  | 12             | 55    |                     |
| PB625 | Cyl. 3  | Center    | 0         | 100      | 6500  | 320        | Geokon    | 2.0           | 4.0  | 11             | 55    |                     |
| PB626 | Cyl. 3  | А         | 5         | 585      | 6500  | 324        | Geokon    | 1.5           | 4.0  | 11             | 54    |                     |
| PB627 | Cyl. 4  | Center    | 0         | 100      | 7000  | 326        | Geokon    | 1.2           | 4.0  | 10             | 54    |                     |

## Table 3-8Numbering and position of instruments for measuring pore water<br/>pressure (U)

| Prototype Repository, Instrumentation |               |  |  |  |  |  |  |  |  |
|---------------------------------------|---------------|--|--|--|--|--|--|--|--|
| Instrument type                       | Pore Pressure |  |  |  |  |  |  |  |  |
| Deposition hole, No                   | 6             |  |  |  |  |  |  |  |  |
| Lead through, No                      | LT62          |  |  |  |  |  |  |  |  |
| Length of lead through                | 33.7          |  |  |  |  |  |  |  |  |
| Length in G-tunnel, m                 | 10.0          |  |  |  |  |  |  |  |  |
| Estimated length in backfill, m       | 9.0           |  |  |  |  |  |  |  |  |
|                                       |               |  |  |  |  |  |  |  |  |

|       |        | Instrum   | ent posi | tion in l | olock | Cable dir. |           |     | Remark |                |       |             |
|-------|--------|-----------|----------|-----------|-------|------------|-----------|-----|--------|----------------|-------|-------------|
| Mark  | Block  | Direction | α        | r         | Z     | α          | Fabricate | Bu  | ffer   | In test volume | Total |             |
|       |        |           | degree   | mm        | mm    | degree     |           | m   |        | m              | m     |             |
| UB601 | Cyl. 1 | Center    | 280      | 210       | 250   | 268        | Kulite    | 7.7 | 8.0    | 19             | 62    |             |
| UB602 | Cyl. 1 | В         | 95       | 685       | 250   | 96         | Geokon    | 7.2 | 8.0    | 18             | 62    |             |
| UB603 | Ring 2 | CD        | 225      | 535       | 1250  | 226        | Geokon    | 6.4 | 8.0    | 17             | 61    | In the slot |
| UB604 | Ring 2 | DA        | 310      | 875       | 1250  | 310        | Kulite    | 6.0 | 8.0    | 17             | 61    | At the rock |
| UB605 | Ring 5 | С         | 190      | 585       | 2750  | 190        | Geokon    | 4.8 | 6.0    | 16             | 59    |             |
| UB606 | Ring 5 | A         | 350      | 785       | 2750  | 350        | Kulite    | 4.6 | 6.0    | 16             | 59    |             |
| UB607 | Ring 6 | AB        | 35       | 735       | 3250  | 40         | Kulite    | 4.1 | 6.0    | 15             | 59    |             |
| UB608 | Ring 6 | BC        | 125      | 635       | 3250  | 126        | Kulite    | 4.2 | 6.0    | 15             | 59    |             |
| UB609 | Ring 6 | CD        | 225      | 535       | 3250  | 226        | Geokon    | 4.3 | 6.0    | 15             | 59    | In the slot |
| UB610 | Ring 6 | DA        | 310      | 875       | 3250  | 312        | Geokon    | 4.0 | 6.0    | 15             | 59    | At the rock |
| UB611 | Ring 9 | CD        | 225      | 535       | 4750  | 222        | Geokon    | 2.8 | 4.0    | 14             | 58    | In the slot |
| UB612 | Ring 9 | DA        | 310      | 875       | 4750  | 308        | Kulite    | 2.5 | 4.0    | 13             | 57    | At the rock |
| UB613 | Cyl. 3 | Center    | 135      | 100       | 6250  | 134        | Kulite    | 2.0 | 4.0    | 13             | 57    |             |
| UB614 | Cyl. 4 | Center    | 90       | 100       | 6750  | 90         | Kulite    | 1.2 | 4.0    | 12             | 56    |             |

### Table 3-9 Numbering and position of instruments for measuring wetting (W)

| Prototype Repository, | Instrumentation   |
|-----------------------|-------------------|
| Instrument type       | Relative Humidity |

| Instrument type              | Relativ |
|------------------------------|---------|
| Deposition hole, No          | 6       |
| Lead through, No(Rotronic)   | LT65    |
| Lead through, No(Wescor)     | Plug    |
| Lead through, No(Vaisala)    | LT61    |
| Length of lead through LT65  | 32,2    |
| Length of lead through Plug  | 5,0     |
| Length of lead through LT61  | 33,8    |
| Length in G-tunnel, m        | 10,0    |
| Length in backfill (LT65), m | 11,0    |
| Length in backfill (Plug), m | 15,0    |
| Length in backfill (LT61), m | 9,0     |

|        |                   | Instrum   | ent pos | ition in | block | Cable dir. |           |             | Cabl | e lengths      |       | Remark       |
|--------|-------------------|-----------|---------|----------|-------|------------|-----------|-------------|------|----------------|-------|--------------|
| Mark   | Block             | Direction | α       | r        | Z     | α          | Fabricate | Titan       | ium  | In test volume | Total |              |
|        |                   |           | degree  | mm       | mm    | degree     |           | m           | m    | m              | m     |              |
| WB601  | Cyl. 1            | Center    | 135     | 50       | 250   | 134        | Rotronic  | 7,6         | 7,5  | 19             | 61    |              |
| WB602  | Cyl. 1            | Center    | 225     | 50       | 250   | 220        | Wescor    | 7,6         | 7,5  | 23             | 38    |              |
| WB603  | Cvl. 1            | Center    | 260     | 210      | 250   | 266        | Wescor    | 7.5         | 7.5  | 22             | 37    |              |
| WB604  | Cvl. 1            | Center    | 270     | 210      | 250   | 264        | Rotronic  | 7.5         | 7.5  | 18             | 61    |              |
| WB605  | Cvl. 1            | В         | 85      | 685      | 250   | 92         | Wescor    | 7.0         | 7.5  | 22             | 37    |              |
| WB606  | Cvl 1             | B         | 100     | 685      | 250   | 100        | Rotronic  | 7.0         | 7.5  | 18             | 60    |              |
| WB607  | Ring 1            | B         | 90      | 685      | 750   | 86         | Vaisala   | 6.5         | 6.5  | 15             | 59    |              |
| WB608  | Ring 1            | B         | 95      | 685      | 750   | 88         | Wescor    | 6.5         | 6.5  | 21             | 36    |              |
| WB609  | Ring 1            | Ċ         | 180     | 585      | 750   | 182        | Vaisala   | 6.6         | 6.5  | 16             | 59    |              |
| WB610  | Ring 1            | C<br>C    | 185     | 585      | 750   | 184        | Wescor    | 6,6         | 6.5  | 22             | 37    |              |
| WB611  | Ring 1            | Ā         | 355     | 785      | 750   | 358        | Wescor    | 6.4         | 6.5  | 21             | 36    |              |
| WB612  | Ring 1            | A         | 360     | 785      | 750   | 360        | Vaisala   | 6.4         | 6.5  | 15             | 59    |              |
| WB613  | Ring 2            | AB        | 40      | 735      | 1250  | 42         | Rotronic  | 5.9         | 6.0  | 17             | 59    |              |
| WB614  | Ring 2            | AB        | 45      | 735      | 1250  | 44         | Wescor    | 5.9         | 6.0  | 21             | 36    |              |
| WB615  | Ring 2            | BC        | 130     | 635      | 1250  | 126        | Rotronic  | 6.0         | 6.0  | 17             | 59    |              |
| WB616  | Ring 2            | BC        | 135     | 635      | 1250  | 128        | Wescor    | 6.0         | 6.0  | 21             | 36    |              |
| WB617  | Ring 2            | CD        | 230     | 535      | 1250  | 216        | Rotronic  | 6.1         | 6.0  | 17             | 59    | In the slot  |
| WB618  | Ring 2            | CD        | 235     | 535      | 1250  | 220        | Wescor    | 6.1         | 6.0  | 21             | 36    | In the slot  |
| WB619  | Ring 2            | DA        | 305     | 875      | 1250  | 312        | Wescor    | 5.8         | 6.0  | 21             | 36    | At rock      |
| WB620  | Ring 2            |           | 315     | 875      | 1250  | 316        | Rotronic  | 5.8         | 6.0  | 17             | 59    | At rock      |
| WB621  | Ring 2            | B         | 90      | 685      | 2750  | 100        | Rotronic  | <u> </u>    | 4 5  | 15             | 58    | ACTOOR       |
| WB622  | Ring 5            | B         | 95      | 685      | 2750  | 100        | Wescor    | 4,4         | 4,0  | 10             | 34    |              |
| WB622  | Ring 5            | C C       | 180     | 585      | 2750  | 186        | Rotronic  | 45          | 4,0  | 16             | 58    |              |
| WB624  | Ring 5            | C C       | 185     | 585      | 2750  | 188        | Wescor    | 4,5         | 4,5  | 20             | 35    |              |
| WB625  | Ring 5            | Δ         | 355     | 785      | 2750  | 350        | Wescor    | +,5<br>13   | 4,5  | 19             | 34    |              |
| WB626  | Ring 5            | Δ         | 360     | 785      | 2750  | 352        | Rotronic  | +,5<br>∕/ 3 | 4,5  | 15             | 58    |              |
| WB627  | Ring 5            |           | 40      | 735      | 3250  | 11         | Vaisala   | 7,0<br>30   | 4,5  | 13             | 57    |              |
| WB628  | Ring 6            |           | 40      | 735      | 3250  | 46         | Wescor    | 3.9         | 4,5  | 19             | 3/    |              |
| WB620  | Ring 6            | RC AD     | 130     | 635      | 3250  | 128        | Vaisala   | 3,3<br>4 0  | 4,5  | 13             | 57    |              |
| WB630  | Ring 6            | BC        | 135     | 635      | 3250  | 120        | Wescor    | 4,0         | 4,5  | 19             | 3/    |              |
| WB631  | Ring 6            |           | 230     | 535      | 3250  | 234        | Vaisala   | +,0<br>/ 1  | 4,5  | 13             | 57    | In the slot  |
| WB632  | Ping 6            | CD        | 235     | 535      | 3250  | 239        | Woscor    | +, I<br>4 1 | 4,5  | 10             | 34    | In the slot  |
| WB633  | Ring 0            |           | 205     | 975      | 3250  | 230        | Wescor    | 4,1         | 4,5  | 19             | 34    | At rock      |
| WB634  | Ring 0            |           | 315     | 875      | 3250  | 320        | Vaisala   | 3,7         | 4,5  | 13             | 57    | Atrock       |
| WB635  | Ring 0            |           | 00      | 685      | 4250  | 110        | Potronic  | 2.0         | 4,5  | 13             | 56    | ALTOCK       |
| WB636  | Ring 0            |           | 90      | 685      | 4250  | 110        | Wescor    | 2,9         | 3,0  | 14             | 33    |              |
| WB630  | Ring 0            | D<br>C    | 190     | 595      | 4250  | 200        | Detropio  | 2,9         | 3,0  | 10             | 55    |              |
| WB037  | Rilly o           |           | 100     | 505      | 4250  | 200        | Wooor     | 3,0         | 3,0  | 14             | 22    |              |
| WB030  | Rilly o           |           | 255     | 795      | 4250  | 212        | Wescor    | 3,0         | 3,0  | 10             | 33    |              |
| WB039  | Rilly o           | A         | 300     | 705      | 4250  | 350        | Detropio  | 2,0         | 3,0  | 10             | 55    |              |
| WB640  | Rilly o           |           | 300     | 700      | 4250  | 26         | Rotronic  | 2,0         | 3,0  | 14             | 50    |              |
| WB041  | Ring 9<br>Ding 0  |           | 40      | 735      | 4750  | 30         | Wescor    | 2,4         | 3,0  | 13             | 32    |              |
| WB042  | Ring 9<br>Ding 0  | AD<br>PC  | 40      | 625      | 4750  | 30         | Vescor    | 2,4         | 3,0  | 17             | 52    |              |
| WD643  | Ring 9            |           | 130     | 635      | 4750  | 120        | ValSala   | 2,5         | 3,0  | 11             | 20    |              |
| WB044  | Ring 9            | BC        | 135     | 635      | 4750  | 120        | Wescor    | 2,5         | 3,0  | 17             | 32    | المعام والمع |
| WB645  | Ring 9            |           | 230     | 535      | 4750  | 250        | Vaisala   | 2,6         | 3,0  | 12             | 55    | In the slot  |
| WB646  | Ring 9            |           | 235     | 535      | 4750  | 254        | Wescor    | 2,6         | 3,0  | 10             | 33    | In the slot  |
| W D047 | Ring 9            |           | 305     | 010      | 4750  | 214        | Veisela   | 2,2         | 3,0  | 17             | 32    | ALTOCK       |
| W D048 | Ring 9<br>Ding 10 | Contor    | 315     | 0/0      | 4/50  | 00         | Vaisala   | 2,2         | 3,0  | 11             | 55    | ALTOCK       |
| WB049  | Ring 10           | Center    | 90      | 00       | 5340  | 90         | Vaisala   | 2,5         | 3,0  | 12             | 55    |              |
| VVB050 | King 10           | Center    | 270     | 210      | 5340  | 270        | Vaisaia   | 2,4         | 3,0  | 11             | 55    |              |
| WB651  |                   | Center    | 225     | 100      | 0250  | 224        | Kotronic  | 1,5         | 3,0  | 12             | 55    |              |
| WB652  | Cyl. 3            | В         | 90      | 585      | 6250  | 88         | vaisaia   | 1,0         | 1,0  | 10             | 54    |              |
| WB653  | Cyl. 3            | C         | 180     | 585      | 6250  | 1/8        | Rotronic  | 1,0         | 1,0  | 12             | 54    |              |
| WB654  | Cyl. 3            | A         | 350     | 585      | 6250  | 350        | Vaisala   | 1,0         | 1,0  | 10             | 54    |              |
| WB655  | Cyl. 4            | Center    | 180     | 100      | 6680  | 190        | Rotronic  | 1.0         | 1,0  | 12             | 54    |              |

## Table 3-10 Numbering of instruments for measuring wetting (positions were<br/>determined after inflow measurements) (W)

#### Prototype Repository, Instrumentation Instrument type Relative Humidity

| Instrument type              | Relative H |
|------------------------------|------------|
| Deposition hole, No          | 6          |
| Lead through, No(Wescor)     | Plug       |
| Lead through, No(Vaisala)    | LT61       |
| Length of lead through Plug  | 5.0        |
| Length of lead through LT61  | 33.8       |
| Length in G-tunnel, m        | 10.0       |
| Length in backfill (Plug), m | 15.0       |
| Length in backfill (LT61), m | 9.0        |

|       |        | Instrum   | ent posi | tion in | block | Cable dir. |           | Cable lengths |     |                | Remark |  |
|-------|--------|-----------|----------|---------|-------|------------|-----------|---------------|-----|----------------|--------|--|
| Mark  | Block  | Direction | α        | r       | Z     | α          | Fabricate | Titan         | ium | In test volume | Total  |  |
|       |        |           | degree   | mm      | mm    | degree     |           | m             | m   | m              | m      |  |
| WB657 | Ring 6 | С         | 190      | 625     | 3250  | 190        | Wescor    | 4.0           | 7.5 | 19             | 34     |  |
| WB658 | Ring 6 | С         | 190      | 725     | 3250  | 190        | Wescor    | 3.9           | 7.5 | 19             | 34     |  |
| WB659 | Rock   | С         | 190      | 900     | 3100  | 190        | Wescor    | 3.7           | 7.5 | 19             | 34     |  |
| WB660 | Rock   | С         | 190      | 925     | 3250  | 190        | Wescor    | 3.7           | 6.0 | 19             | 34     |  |
| WB661 | Rock   | С         | 190      | 975     | 3400  | 190        | Wescor    | 3.6           | 6.0 | 19             | 34     |  |
| WB662 | Ring 8 | D         | 280      | 625     | 4250  | 280        | Wescor    | 3.0           | 6.0 | 18             | 33     |  |
| WB663 | Ring 8 | D         | 280      | 725     | 4250  | 280        | Wescor    | 2.9           | 3.0 | 18             | 33     |  |
| WB664 | Rock   | D         | 280      | 900     | 4100  | 280        | Wescor    | 2.7           | 3.0 | 18             | 33     |  |
| WB665 | Rock   | D         | 280      | 925     | 4250  | 280        | Wescor    | 2.7           | 3.0 | 18             | 33     |  |
| WB666 | Rock   | D         | 280      | 975     | 4400  | 280        | Wescor    | 2.6           | 3.0 | 18             | 33     |  |
| WB667 | Cyl.1  | D         | 280      | 685     | 250   | 280        | Vaisala   | 7.0           | 6.5 | 16             | 60     |  |
| WB668 | Ring 6 | С         | 200      | 625     | 3250  | 200        | Vaisala   | 4.0           | 4.5 | 13             | 57     |  |
| WB669 | Ring 6 | С         | 200      | 725     | 3250  | 200        | Vaisala   | 3.9           | 4.5 | 13             | 57     |  |
| WB670 | Ring 8 | D         | 290      | 625     | 4250  | 290        | Vaisala   | 3.0           | 3.0 | 12             | 56     |  |
| WB671 | Ring 8 | D         | 290      | 725     | 4250  | 290        | Vaisala   | 2.9           | 3.0 | 12             | 56     |  |

## 4 Location of instruments for standard measurements of THM-processes in the backfill

### 4.1 Brief description of instruments

All instruments will be of the same type as those in the bentonite (described in chapter 3 and /1-2/).

### 4.2 Strategy for describing the position of each device

The backfill will mainly be instrumented in vertical sections above and between the deposition holes (Figure 4-1 and 4-2). Every instrument will be named with a unique name according to the same system as described in chapter 3.2. Every instrument position is described with three coordinates. The x-coordinate is the horizontal distance from the center of the tunnel and the y-coordinate is the vertical distance from the center of the tunnel. The z-coordinate is the same as in the tunnel coordinate system, i.e. the coordinate 3599 corresponds to the end of the tunnel.

### 4.3 Position of each instrument in the backfill

Figure 4-1 shows the location of the vertical measuring sections and the position of the sensors between the deposition holes and the plugs. The instrumentation is very similar to the instrumentation in section 1. The instrumentation differs between section E located above the deposition holes and section F located between the deposition holes. Figure 4-2 shows the position of the sensors in these two sections. The exact positions of each instrument are described in Tables 4-1 to 4-4.



Figure 4-1. Schematic view over the instrumentation of the backfill



Figure 4-2. Schematic view over the sensors positions in the different sections.

#### Table 4-1 Numbering and position of instruments for measuring temperature (T)

| Drototypo | Popository | Instrumentation   |
|-----------|------------|-------------------|
| Prototype | Repository | , instrumentation |

| Instrument type               | Thermocouple |  |  |  |  |
|-------------------------------|--------------|--|--|--|--|
| Backfill                      |              |  |  |  |  |
| Lead through, No(TFA01-TFA07) | LT53         |  |  |  |  |
| Lead through, No(TFA08-TFA16) | LT62         |  |  |  |  |
| Length of lead through LT53   | 33,5         |  |  |  |  |
| Length of lead throughLT62    | 33,7         |  |  |  |  |
| Length in G-tunnel, m         | 10           |  |  |  |  |

|       | Instrument po               |       |       | Cable lengths |           | Remark         |       |  |
|-------|-----------------------------|-------|-------|---------------|-----------|----------------|-------|--|
| Mark  | Section                     | Х     | у     | Z             | Fabricate | In test volume | Total |  |
|       |                             | m     | m     | m             |           | m              | m     |  |
| TFA01 | E, over dep.hole 5          | 0     | 2,3   | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA02 | E, over dep.hole 5          | 0     | 1,25  | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA03 | E, over dep.hole 5          | 0     | -0,8  | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA04 | E, over dep.hole 5          | -0,5  | -2,6  | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA05 | E, over dep.hole 5          | 0,5   | -2,6  | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA06 | E, over dep.hole 5          | -1,25 | 0     | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA07 | E, over dep.hole 5          | 1,25  | 0     | 3551          | Pentronic | 15,0           | 58,5  |  |
| TFA08 | F, between dep.hole 5 and 6 | 0     | 1,25  | 3548          | Pentronic | 15,0           | 58,7  |  |
| TFA09 | F, between dep.hole 5 and 6 | 0     | -1,25 | 3548          | Pentronic | 15,0           | 58,7  |  |
| TFA10 | E, over dep.hole 6          | 0     | 2,3   | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA11 | E, over dep.hole 6          | 0     | 1,25  | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA12 | E, over dep.hole 6          | 0     | -0,8  | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA13 | E, over dep.hole 6          | -0,5  | -2,6  | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA14 | E, over dep.hole 6          | 0,5   | -2,6  | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA15 | E, over dep.hole 6          | -1,25 | 0     | 3545          | Pentronic | 15,0           | 58,7  |  |
| TFA16 | E, over dep.hole 6          | 1,25  | 0     | 3545          | Pentronic | 15,0           | 58,7  |  |

## Table 4-2Numbering and position of instruments for measuring total pressure<br/>(P)

| Prototype Repository, Instrumentation |                |  |  |  |  |  |
|---------------------------------------|----------------|--|--|--|--|--|
| Instrument type                       | Total Pressure |  |  |  |  |  |
| Backfill                              |                |  |  |  |  |  |
| Lead through, No(PFA01-PFA07)         | LT53           |  |  |  |  |  |
| Lead through, No(PFA08-PFA16)         | LT55           |  |  |  |  |  |
| Length of lead through LT53           | 33,5           |  |  |  |  |  |
| Length of lead throughLT55            | 35,3           |  |  |  |  |  |
| Length in G-tunnel, m                 | 10             |  |  |  |  |  |

|       | Instrument po               |      |       | Cable lengths |           | Remark         |       |  |
|-------|-----------------------------|------|-------|---------------|-----------|----------------|-------|--|
| Mark  | Section                     | х    | У     | Z             | Fabricate | In test volume | Total |  |
|       |                             | m    | m     | m             |           | m              | m     |  |
| PFA01 | Inner part                  | 0    | 0     | 3556          | Kulite    | 25,0           | 68,5  |  |
| PFA02 | E, over dep.hole 5          | 0    | 0     | 3551          | Geokon    | 15,0           | 58,5  |  |
| PFA03 | E, over dep.hole 5          | 0    | -1,75 | 3551          | Geokon    | 15,0           | 58,5  |  |
| PFA04 | E, over dep.hole 5          | 0    | -2,6  | 3551          | Geokon    | 15,0           | 58,5  |  |
| PFA05 | E, over dep.hole 5          | 0    | -3,15 | 3551          | Kulite    | 15,0           | 58,5  |  |
| PFA06 | E, over dep.hole 5          | -2,3 | 0     | 3551          | Kulite    | 15,0           | 58,5  |  |
| PFA07 | E, over dep.hole 5          | 0    | 2,3   | 3551          | Kulite    | 15,0           | 58,5  |  |
| PFA08 | F, between dep.hole 5 and 6 | 0    | 0     | 3548          | Geokon    | 15,0           | 58,5  |  |
| PFA09 | F, between dep.hole 5 and 6 | 0    | -2,3  | 3548          | Geokon    | 15,0           | 58,5  |  |
| PFA10 | E, over dep.hole 6          | 0    | 0     | 3545          | Kulite    | 15,0           | 60,3  |  |
| PFA11 | E, over dep.hole 6          | 0    | -1,75 | 3545          | Kulite    | 15,0           | 60,3  |  |
| PFA12 | E, over dep.hole 6          | 0    | -2,6  | 3545          | Kulite    | 15,0           | 60,3  |  |
| PFA13 | E, over dep.hole 6          | 0    | -3,15 | 3545          | Geokon    | 15,0           | 60,3  |  |
| PFA14 | E, over dep.hole 6          | -2,3 | 0     | 3545          | Geokon    | 15,0           | 60,3  |  |
| PFA15 | E, over dep.hole 6          | 0    | 2,3   | 3545          | Geokon    | 15,0           | 60,3  |  |
| PFA16 | In front of plug            | 0    | 0     | 3540          | Kulite    | 25,0           | 70,3  |  |

## Table 4-3Numbering and position of instruments for measuring pore water<br/>pressure (U)

#### Prototype Repository, Instrumentation

| Instrument type               | Pore Pressure |
|-------------------------------|---------------|
| Backfill                      |               |
| Lead through, No(UFA01-UFA08) | LT53          |
| Lead through, No(UFA09-UFA18) | LT62          |
| Length of lead through LT53   | 33,5          |
| Length of lead throughLT62    | 33,7          |
| Length in G-tunnel, m         | 10            |
|                               |               |

|       | Instrument position         |      |       |      |           | Cable len      | gths  | Remark |
|-------|-----------------------------|------|-------|------|-----------|----------------|-------|--------|
| Mark  | Section                     | Х    | У     | Z    | Fabricate | In test volume | Total |        |
|       |                             | m    | m     | m    |           | m              | m     |        |
| UFA01 | Inner part                  | 0    | 0     | 3556 | Kulite    | 25,0           | 68,5  |        |
| UFA02 | Inner part                  | 0    | 0     | 3554 | Geokon    | 20,0           | 63,5  |        |
| UFA03 | E, over dep.hole 5          | 0    | 0     | 3551 | Geokon    | 15,0           | 58,5  |        |
| UFA04 | E, over dep.hole 5          | 0    | -1,75 | 3551 | Kulite    | 15,0           | 58,5  |        |
| UFA05 | E, over dep.hole 5          | 0    | -2,6  | 3551 | Kulite    | 15,0           | 58,5  |        |
| UFA06 | E, over dep.hole 5          | 0    | -3,15 | 3551 | Kulite    | 15,0           | 58,5  |        |
| UFA07 | E, over dep.hole 5          | -2,3 | 0     | 3551 | Geokon    | 15,0           | 58,5  |        |
| UFA08 | E, over dep.hole 5          | 0    | 2,3   | 3551 | Geokon    | 15,0           | 58,5  |        |
| UFA09 | F, between dep.hole 5 and 6 | 0    | 0     | 3548 | Kulite    | 15,0           | 58,5  |        |
| UFA10 | F, between dep.hole 5 and 6 | 0    | -2,3  | 3548 | Geokon    | 15,0           | 58,5  |        |
| UFA11 | E, over dep.hole 6          | 0    | 0     | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA12 | E, over dep.hole 6          | 0    | -1,75 | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA13 | E, over dep.hole 6          | 0    | -2,6  | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA14 | E, over dep.hole 6          | 0    | -3,15 | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA15 | E, over dep.hole 6          | -2,3 | 0     | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA16 | E, over dep.hole 6          | 0    | 2,3   | 3545 | Geokon    | 15,0           | 58,7  |        |
| UFA17 | In front of plug            | 0    | 0     | 3542 | Kulite    | 20,0           | 63,7  |        |
| UFA18 | In front of plug            | 0    | 0     | 3540 | Geokon    | 25,0           | 68,7  |        |

## Table 4-4 Numbering and position of instruments for measuring relative humidity (W)

#### Prototype Repository, Instrumentation

| Instrument type               | Relative Humidity |
|-------------------------------|-------------------|
| Backfill                      | -                 |
| Lead through, No(WFA01-WFA13) | LT53              |
| Lead through, No(WFA14-WFA32) | LT62              |
| Length of lead through LT53   | 33,5              |
| Length of lead throughLT62    | 33,7              |
| Length in G-tunnel, m         | 10                |

|       | Instrument position         |       |       |      |           | Cable lengths  |       |  |  |
|-------|-----------------------------|-------|-------|------|-----------|----------------|-------|--|--|
| Mark  | Section                     | х     | у     | Z    | Fabricate | In test volume | Total |  |  |
|       |                             | m     | m     | m    |           | m              | m     |  |  |
| WFA01 | Inner part                  | 0     | 0     | 3556 | Wescor    | 25,0           | 68,5  |  |  |
| WFA02 | Inner part                  | 0     | 0     | 3554 | Wescor    | 20,0           | 63,5  |  |  |
| WFA03 | E, over dep.hole 5          | 0     | 2,3   | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA04 | E, over dep.hole 5          | 0     | 1,25  | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA05 | E, over dep.hole 5          | 0     | 0     | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA06 | E, over dep.hole 5          | 0     | -0,8  | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA07 | E, over dep.hole 5          | 0     | -1,75 | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA08 | E, over dep.hole 5          | 0     | -2,6  | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA09 | E, over dep.hole 5          | 0     | -3,15 | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA10 | E, over dep.hole 5          | -2,3  | 0     | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA11 | E, over dep.hole 5          | -1,25 | 0     | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA12 | E, over dep.hole 5          | 1,25  | 0     | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA13 | E, over dep.hole 5          | 2,3   | 0     | 3551 | Wescor    | 15,0           | 58,5  |  |  |
| WFA14 | F, between dep.hole 5 and 6 | 0     | 2,3   | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA15 | F, between dep.hole 5 and 6 | 0     | 1,25  | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA16 | F, between dep.hole 5 and 6 | 0     | 0     | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA17 | F, between dep.hole 5 and 6 | 0     | -0,8  | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA18 | F, between dep.hole 5 and 6 | -1,25 | 0     | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA19 | F, between dep.hole 5 and 6 | 1,25  | 0     | 3548 | Wescor    | 15,0           | 58,5  |  |  |
| WFA20 | E, over dep.hole 6          | 0     | 2,3   | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA21 | E, over dep.hole 6          | 0     | 1,25  | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA22 | E, over dep.hole 6          | 0     | 0     | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA23 | E, over dep.hole 6          | 0     | -0,8  | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA24 | E, over dep.hole 6          | 0     | -1,75 | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA25 | E, over dep.hole 6          | 0     | -2,6  | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA26 | E, over dep.hole 6          | 0     | -3,15 | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA27 | E, over dep.hole 6          | -2,3  | 0     | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA28 | E, over dep.hole 6          | -1,25 | 0     | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA29 | E, over dep.hole 6          | 1,25  | 0     | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA30 | E, over dep.hole 6          | 2,3   | 0     | 3545 | Wescor    | 15,0           | 58,7  |  |  |
| WFA31 | In front of plug            | 0     | 0     | 3542 | Wescor    | 20,0           | 63,7  |  |  |
| WFA32 | In front of plug            | 0     | 0     | 3540 | Wescor    | 25,0           | 68,7  |  |  |

# 5 Location of instruments for special measurements

### 5.1 Buffer displacement measurement

The displacement of the interface between the buffer material and the backfill will be measured in both deposition holes. The technique and locations of the measuring vessels are described in chapter 2.3.

## 5.2 Water and gas sampling

24 isolated water sample collectors (titanium cups) and 4 connected water/gas collectors will be placed in the bentonite buffer and 4 connected water/gas collectors will be placed in the backfill. The position of each titanium cup is described according to the same system as the THM sensors in the bentonite and backfill (chapters 3-3 and 4-2).

The locations of the titanium cups in the bentonite buffer are the same in holes 5 and 6. Measurements will be done in four vertical sections A, B, C and D according to Figure 5-1. Direction A and C are placed in the axial direction of the tunnel with A headed against the end of the tunnel i.e. almost towards the west.

The exact positions of each titanium cup in the buffer are described in Tables 5-1 and to 5-2.

- ⊗ hydrochemical sampling
- $\circ$  pore water pressure + temp.
- $\Box$  total pressure + temp.
- × temp.
- $\triangle$  relative humidity (+ temp.)



1m

**Figure 5-1.** Schematic view of the instruments in four vertical sections. The cups for water/gas sampling are denoted as a ring with a cross. The "C" beside two of the measuring points, indicates that the cups are only placed in measuring section C.

## Table 5-1Table showing the positions of the titanium cups that will be placed in<br/>deposition hole 5

| Instrument type                 | Hydrochemical sampling |
|---------------------------------|------------------------|
| Deposition hole, No             | 5                      |
| Lead through, No                | Plug                   |
| Length of lead through PlugA, m | 2                      |
| Length in G-tunnel, m           | 10                     |
| Length in backfill, m           | 11                     |

|       | ,      |           |          |          |       |           |           |        |                |       |           |                 |
|-------|--------|-----------|----------|----------|-------|-----------|-----------|--------|----------------|-------|-----------|-----------------|
|       |        | Instrum   | ent posi | ition in | block | Cable dir |           |        | Cable lengths  |       | Remark    | Installed       |
| Mark  | Block  | Direction | α        | r        | Z     | α         | Fabricate | Buffer | In test volume | Total |           | Signature /date |
|       |        |           | degree   | mm       | mm    | degree    |           | m      | m              | m     |           |                 |
| KB501 | Cyl. 1 | A         | 0        | 262      | 450   |           | СТ        |        |                |       |           |                 |
| KB502 | Cyl. 1 | С         | 180      | 262      | 450   |           | СТ        |        |                |       |           |                 |
| KB503 | R2     | A         | 0        | 685      | 1450  |           | СТ        |        |                |       |           |                 |
| KB504 | R2     | В         | 90       | 685      | 1450  |           | СТ        |        |                |       |           |                 |
| KB505 | R2     | С         | 180      | 685      | 1450  |           | СТ        |        |                |       |           |                 |
| KB506 | R2     | D         | 270      | 685      | 1450  |           | CT        |        |                |       |           |                 |
| KB507 | R8     | A         | 0        | 685      | 4450  |           | СТ        |        |                |       |           |                 |
| KB508 | R8     | В         | 90       | 685      | 4450  |           | СТ        |        |                |       |           |                 |
| KB509 | R8     | С         | 180      | 685      | 4450  |           | CT        |        |                |       |           |                 |
| KB510 | R8     | D         | 270      | 685      | 4450  |           | CT        |        |                |       |           |                 |
| KB511 | R10    | A         | 0        | 262      | 5450  |           | СТ        |        |                |       |           |                 |
| KB512 | R10    | С         | 180      | 262      | 5450  |           | СТ        |        |                |       |           |                 |
| KB513 | C4     | A         | 0        | 875      | 6950  | 334       | CT        |        |                |       | with tube |                 |
| KB514 | C4     | A         | 0        | 875      | 6950  | 334       | CT        |        |                |       | with tube |                 |

## Table 5-2Table showing the positions of the titanium cups that will be placed in<br/>deposition hole 6

| Instrument type                 | Hydrochemical sampling |
|---------------------------------|------------------------|
| Deposition hole, No             | 6                      |
| Lead through, No                | PlugA                  |
| Length of lead through PlugA, m | 2                      |
| Length in G-tunnel, m           | 10                     |

|       |        | Instrument position in block |        | Cable dir. |      | Cable lengths |           |        | Remark         | Installed |           |                 |
|-------|--------|------------------------------|--------|------------|------|---------------|-----------|--------|----------------|-----------|-----------|-----------------|
| Mark  | Block  | Direction                    | α      | r          | Z    | α             | Fabricate | Buffer | In test volume | Total     |           | Signature /date |
|       |        |                              | degree | mm         | mm   | degree        |           | m      | m              | m         |           |                 |
| KB601 | Cyl. 1 | A                            | 0      | 262        | 450  |               | CT        |        |                |           |           |                 |
| KB602 | Cyl. 1 | С                            | 180    | 262        | 450  |               | CT        |        |                |           |           |                 |
| KB603 | R2     | A                            | 0      | 685        | 1450 |               | CT        |        |                |           |           |                 |
| KB604 | R2     | В                            | 90     | 685        | 1450 |               | CT        |        |                |           |           |                 |
| KB605 | R2     | С                            | 180    | 685        | 1450 |               | CT        |        |                |           |           |                 |
| KB606 | R2     | D                            | 270    | 685        | 1450 |               | CT        |        |                |           |           |                 |
| KB607 | R9     | A                            | 0      | 685        | 4950 |               | СТ        |        |                |           |           |                 |
| KB608 | R9     | В                            | 90     | 685        | 4950 |               | CT        |        |                |           |           |                 |
| KB609 | R9     | С                            | 180    | 685        | 4950 |               | CT        |        |                |           |           |                 |
| KB610 | R9     | D                            | 270    | 685        | 4950 |               | CT        |        |                |           |           |                 |
| KB611 | R10    | A                            | 0      | 262        | 5450 |               | CT        |        |                |           |           |                 |
| KB612 | R10    | С                            | 180    | 262        | 5450 |               | CT        |        |                |           |           |                 |
| KB613 | C4     | A                            | 0      | 875        | 6950 | 334           | CT        | 0.5    | 25.0           | 37.0      | with tube |                 |
| KB614 | C4     | A                            | 0      | 875        | 6950 | 334           | CT        | 0.5    | 25.0           | 37.0      | with tube |                 |

The locations of the titanium cups in the backfill in section 2 are similar to the locations in section 1. The locations are shown in Figure 5-2 and the exact position of each cup is described in Table 5-3.

- hydrochemical sampling  $\otimes$
- pore water pressure + temp Ο
- total pressure + temp
- $\begin{array}{c} & \text{temp} \\ & \text{relative humidity} + 1 \\ & \text{E, F} \end{array}$ relative humidity + temp



*Figure 5-2. Figure showing the positions of the titanium cups in the backfill (denoted* as a ring with a cross).

#### Table 5-3 Table showing the positions of the titanium cups that will be placed in the backfill

| Prototype Repository, Instrumentation |                        |  |  |  |  |  |  |  |  |
|---------------------------------------|------------------------|--|--|--|--|--|--|--|--|
| Instrument type                       | Hydrochemical sampling |  |  |  |  |  |  |  |  |
| Backfill                              |                        |  |  |  |  |  |  |  |  |
| Lead through, No                      | PlugA                  |  |  |  |  |  |  |  |  |
| Length of lead throughLT-Plug         | 2                      |  |  |  |  |  |  |  |  |

|       | Instrument               | position | 1    |      |           | Cable lengths  | 6     | Remark | Installed       |
|-------|--------------------------|----------|------|------|-----------|----------------|-------|--------|-----------------|
| Mark  | Section                  | х        | У    | Z    | Fabricate | In test volume | Total |        | Signature /date |
|       |                          | m        | m    | m    |           | m              | m     |        |                 |
| KFA01 | Inner part               | 0        | 2.4  | 3556 | СТ        | 25.0           | 27    |        |                 |
| KFA02 | Inner part               | 0        | -2.4 | 3556 | СТ        | 25.0           | 27    |        |                 |
| KFA03 | Between dep.hole 5 and 6 | 0        | 2.4  | 3548 | СТ        | 25.0           | 27    |        |                 |
| KFA04 | Between dep.hole 5 and 6 | 0        | -2.4 | 3548 | CT        | 25.0           | 27    |        |                 |

### 5.3 In situ measurement of copper corrosion

Three copper electrodes will be placed in the top block (C4) of hole 5. The electrodes, with the diameter 60 mm and length 100 mm will be placed at the radius 625 mm in direction D at the depth 250 mm with the individual distance of 10 mm as shown in Figure 5-3.



Figure 5-3. Location of copper electrodes.

## 5.4 Measurement of bentonite/rock interaction

### 5.4.1 Introduction

In order to measure the interaction between the rock and the buffer material a number of sensors will be placed on the surface of deposition hole 6. 12 sensors for measuring THM-processes at the rock surface will be placed and 6 sensors for measuring the desaturation in the rock will be installed.

### 5.4.2 THM-processes at the bentonite rock interface

3 sensors for measuring total pressure perpendicular to the rock surface, 3 sensors for measuring pore water pressure and 6 sensors for measuring relative humidity will be placed in the rock surface of deposition hole 6 according to Figure 5-4. The sensors will be inserted in prepared notches in the rock. All sensors are of the same type as placed in the buffer (see chapter 2.1 and /1-2/. The exact location is described in Table 5-4 in the same coordinate system as the other sensors (chapter 3.3).

|       |        | Instrument position in block |     |     |      | Cable dir. Cable lengths |           |        |          |                |       | Remark  |
|-------|--------|------------------------------|-----|-----|------|--------------------------|-----------|--------|----------|----------------|-------|---------|
| Mark  | Block  | Direction                    | α   | r   | Z    | α                        | Fabricate | Buffer | Titanium | In test volume | Total |         |
|       |        |                              |     |     |      |                          |           |        |          |                |       |         |
| PB609 | Ring 2 | DA                           | 325 | 875 | 1250 | 316                      | Geokon    | 6,1    | 8,0      | 15             | 59    | At rock |
| PB616 | Ring 6 | DA                           | 325 | 875 | 3250 | 322                      | Geokon    | 4,0    | 6,0      | 13             | 57    | At rock |
| PB623 | Ring 9 | DA                           | 325 | 875 | 4750 | 318                      | Geokon    | 2,5    | 5,0      | 12             | 55    | At rock |
| UB604 | Ring 2 | DA                           | 310 | 875 | 1250 | 310                      | Kulite    | 6,1    | 8,0      | 17             | 61    | At rock |
| UB610 | Ring 6 | DA                           | 310 | 875 | 3250 | 312                      | Geokon    | 4,0    | 6,0      | 15             | 59    | At rock |
| UB612 | Ring 9 | DA                           | 310 | 875 | 4750 | 308                      | Kulite    | 2,5    | 4,0      | 14             | 57    | At rock |
| WB619 | Ring 2 | DA                           | 305 | 875 | 1250 | 324                      | Wescor    | 5,8    | 6,0      | 21             | 36    | At rock |
| WB620 | Ring 2 | DA                           | 315 | 875 | 1250 | 316                      | Rotronic  | 5,8    | 6,0      | 17             | 59    | At rock |
| WB633 | Ring 6 | DA                           | 305 | 875 | 3250 | 310                      | Wescor    | 3,7    | 4,5      | 19             | 34    | At rock |
| WB634 | Ring 6 | DA                           | 315 | 875 | 3250 | 320                      | Vaisala   | 3,7    | 4,5      | 13             | 57    | At rock |
| WB647 | Ring 9 | DA                           | 305 | 875 | 4750 | 304                      | Wescor    | 2,2    | 3,0      | 17             | 32    | At rock |
| WB648 | Rina 9 | DA                           | 315 | 875 | 4750 | 314                      | Vaisala   | 2.2    | 3.0      | 11             | 55    | At rock |

#### Table 5-4 Table showing the instruments in the rock surface in deposition hole 6

#### 5.4.3 Desaturation of the rock

Six psychrometers will be placed in the rock surface of deposition hole 6 in positions shown in Figure 5-4. The measuring chambers will be placed 2.5-10 cm from the rock surface according to chapter 2.6. The exact location is described in Table 5-5 in the same coordinate system as the other sensors (chapter 3.3).

## Table 5-5Table showing the instruments that will be placed in the rock in<br/>deposition hole 6

|       |       | Instrument position in block |     |     |      | Cable dir. |           | Cable lengths |     |                | Remark |  |
|-------|-------|------------------------------|-----|-----|------|------------|-----------|---------------|-----|----------------|--------|--|
| Mark  | Block | Direction                    | α   | r   | Z    | α          | Fabricate | Titan         | ium | In test volume | Total  |  |
| WB659 | Rock  | С                            | 190 | 900 | 3100 | 190        | Wescor    | 3,7           | 7,5 | 19             | 34     |  |
| WB660 | Rock  | С                            | 190 | 925 | 3250 | 190        | Wescor    | 3,7           | 6,0 | 19             | 34     |  |
| WB661 | Rock  | С                            | 190 | 975 | 3400 | 190        | Wescor    | 3,6           | 6,0 | 19             | 34     |  |
| WB664 | Rock  | D                            | 280 | 900 | 4100 | 280        | Wescor    | 2,7           | 3,0 | 18             | 33     |  |
| WB665 | Rock  | D                            | 280 | 925 | 4250 | 280        | Wescor    | 2,7           | 3,0 | 18             | 33     |  |
| WB666 | Rock  | D                            | 280 | 975 | 4400 | 280        | Wescor    | 2,6           | 3,0 | 18             | 33     |  |



**Figure 5-4.** Figure showing the positions of the instruments that will be placed in the rock and in the rock surface in deposition hole 6. The angle and depth of the six ø32mm holes for measuring desaturation of the rock are shown in Figure 2-3.

## 6 Cable protection and position

All cables and tubes, coming from the instruments in the bentonite blocks, the cables from the rock surface, the four optic cables from the canister and the three (3 x Ø32 mm) power cables also from the canister will be led up along the bentonite block periphery surface.

Since a lot of cables and tubes will be led in the gap between rock and bentonite in the deposition holes (about 120 units/hole) they will be distributed on the block periphery in a prescribed order. Every cable or tube has a  $\alpha$ -coordinate (Table 3-1 to 3-8), which is the angle from direction A (Figure 3-1). The cables will be led out to this position from the sensors position in pre-manufactured tracks on the blocks surface.

All instrument cables in the bentonite buffer are led in titanium tubes ( $\emptyset$  8 mm or  $\emptyset$  6 mm) except for the thermocouples ( $\emptyset$  4 mm, which are made of cupro-nickel. Tracks will be made on the block surface from the instrument position in the bentonite block to the decided position on the bentonite block periphery (Table 3-1 to 3-8), where the tubes will be bend and led axial along the bentonite blocks. Expandable strings will be placed on about every third block in order to fix he cables.

All cables in the backfill are led in polyamide tubes, which pass through a lead through connection leading the tubes either through the rock or through the plug.

## 7 Summary of instruments

The total number of instruments in the buffer and backfill in section 2 are 401. Table 7-1 yields a summary of the measurements, suppliers, measuring principles and number of sensors that will be used.

| Measure-<br>ment              | Supplier                           | Principle        | -       | Number of  | sensors         |                 |
|-------------------------------|------------------------------------|------------------|---------|------------|-----------------|-----------------|
|                               |                                    |                  | Tunnel  | Dep. holes | Rock<br>surface | Sum             |
| Tempe-                        | Pentronic                          | Thermocouple     | 16      | 64         |                 | 80              |
| Rapture                       | BICC                               | FTR              |         | 8 cables   |                 | 8               |
| Total                         | Geokon                             | Vibrating wire   | 8       | 29         | 3               | 40              |
| Pressure                      | Kulite                             | Piezoresistive   | 8       | 22         |                 | 30              |
| Water                         | Geokon                             | Vibrating wire   | 12      | 11         | 1               | 24              |
| Pressure                      | Kulite                             | Piezoresistive   | 6       | 14         | 2               | 22              |
| Relative                      | Vaisala                            | Capacitive       |         | 38         | 2               | 40              |
| Humidity                      | Rotronic                           | Capacitive       |         | 33         | 1               | 34              |
|                               | Wescor                             | Psychrometer     | 32      | 35         | 9               | 76              |
| Water content                 | GRS <sup>1)</sup>                  | Resistivity      | 1 chain | 3          | $(3)^{2)}$      | 4 <sup>1)</sup> |
| Water/gas                     | СТ                                 | Active sampling  | 4       | 4          |                 | 8               |
| .sampling                     | СТ                                 | Passive sampling |         | 24         |                 | 24              |
| Copper<br>corrosion           |                                    |                  |         | 3          |                 | 3               |
| Canister<br>displace-<br>ment | AITEMIN/<br>Rocktest <sup>1)</sup> | Fibre optic      |         | 6          |                 | 6 <sup>1)</sup> |
| Buffer                        | CT/Druck                           | Head measurment  |         | 2          |                 | 2               |
| swelling                      |                                    | /strain gauges   |         |            |                 |                 |
| Sum                           |                                    |                  | 87      | 296        | 21              | 401             |

 Table 7-1
 Instruments used in the buffer and backfill in section 2

<sup>1)</sup> described in a separate report

<sup>2)</sup> in the rock between holes 5 and 6

## References

- /1-1/ Svemar C. and Pusch R., 2000. Prototype Repository, Project description. ÄHRL IPR-00-30.
- /1-2/ **Pusch R. and Börgesson L., 2001**. Prototype Repository. Instrumentation of buffer and backfill in Section 1. ÄHRL IPR-01-60.