R-09-45

Hydraulic Features of the Excavation Disturbed Zone - Laboratory investigations of samples taken from the Q- and S-tunnels at Äspö HRL

Lars O. Ericsson, Petra Brinkhoff, Gunnar Gustafson, Sara Kvartsberg Division of GeoEngineering, Department of Civil and Environmental Engineering, Chalmers University of Technology

December 2009

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co

Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00

ISSN 1402-3091 SKB Rapport R-09-45

Hydraulic Features of the Excavation Disturbed Zone – Laboratory investigations of samples taken from the Q- and S-tunnels at Äspö HRL

Lars O. Ericsson, Petra Brinkhoff, Gunnar Gustafson, Sara Kvartsberg Division of GeoEngineering, Department of Civil and Environmental Engineering, Chalmers University of Technology

December 2009

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions.

A pdf version of this document can be downloaded from www.skb.se.

Preface

The project "Hydraulic features in EDZ – Laboratory investigations and introductory field measurements" was part of the overall SKB programme ZUSE (*störda Zonens mekaniska och hydraUliSka Egenskaper*-'Mechanical and hydraulic features of the excavation disturbed zone') in order to increase our understanding of the mechanical and hydraulic features in the zone around a tunnel affected by blasting. This report is the concluding report in this sub-project.

The majority of the work has been carried out at the Division of GeoEngineering at the Department of Civil and Environmental Engineering at Chalmers University of Technology, Gothenburg. For those parts of the project that dealt with analysis of microfracturing, the services of Dr. Urban Åkesson at SP in Borås were enlisted. *In situ* measurements in the form of single-hole tests were made in co-operation with POSIVA, Finland and within the framework of the Tunnel Sealing Project at Äspö. Core-drilling at Äspö was carried out by Miro Diamantborrning. Scoping calculations on rock stresses surrounding the Q- and S-tunnels at Äspö Hard Rock Laboratory were performed by Dr. I. Olofsson and Prof. D. Martin.

There has been close co-operation between the project at Chalmers and another sub-project within the ZUSE programme, the aim of which was to provide a better understanding of the geometrical spread of a disturbed or damaged zone, both radially and axially. This second sub-project, which was run by Swebrec and Golder Associates, involved sawing blocks from the tunnel wall, measuring the blocks, sawing the blocks into slabs, fracture detection with the aid of penetrants, positioning and photographing of the slabs, digitisation and 3-D modelling of the fractures. Furthermore close co-operation has been taking place with a separate ZUSE-project on international EDZ-experiences /Bäckblom 2008/.

Gothenburg, October 21, 2009

Lars O. Ericsson Project Leader

Contents

1	Introduction	7
2	Objectives	9
3 3.1 3.2	Sampling locations The Q-tunnel The S-tunnel	11 11 13
4 4.1 4.2 4.3 4.4	Laboratory testing of fracture transmissivity Triaxial cell Permeameter Test method Confining pressure Flow measurements	17 18 18 19 20
5 5.1 5.2 5.3 5.4 5.5	Drilling and sampling Drilling of Q-tunnel samples Drilling of S-tunnel samples Rock samples from the Q-tunnel 5.3.1 Smaller samples 5.3.2 Larger samples Rock samples from the S-tunnel Ultrasonic scanlines in the Q-tunnel and S-tunnel	21 21 22 22 22 23 24 24
6	Hydraulic tests in S-tunnel	25
7 7.1 7.2	Brief descriptions of the analysis methodsTransmissivity calculations7.1.1Laboratory testing7.1.2In situ testingMicrofracturing7.2.1Ultrasonics7.2.2Matrix porosity7.2.3Microscoping	27 27 27 27 27 27 27 29 29
7.3	QA checks and uncertainties	29
8 8.1	ResultsTransmissivities in the disturbed zone8.1.1Q-tunnel8.1.2S-tunnel8.1.3Hydromechanical coupling	31 31 31 32 33
8.2	<i>In situ</i> measurements in the S-tunnel 8.2.1 Transmissivities for all boreholes 8.2.2 Transmissivities for all test sections 8.2.3 Water pressure in the boreholes	37 37 38 40
8.3	Microfracturing 8.3.1 Ultrasonics 8.3.2 Matrix porosity, Q-tunnel 8.3.3 Microscoping	40 40 44 45
9	Discussion and conclusions	47
Refe	erences	51

Appendix 1	Investigations in the Q-tunnel Äspö HRL. Database	53
Appendix 2	Investigations in the S-tunnel Äspö HRL, Database	61
Appendix 3	Field investigations in the S-tunnel Äspö HRL. Database	89
Appendix 4	Characterisation of micro cracks in EDZ	91
Appendix 5	Investigation of natural fracture traces used in EDZ 3D-model	97
Appendix 6	Survey of natural fractures in EDZ slabs	105
Appendix 7	Length of fractures in EDZ 3D model	119
Appendix 8	Length of the sorted natural fractures	125

1 Introduction

During underground work the prevailing features in the bedrock in the immediate vicinity of a tunnel or a facility for nuclear waste are affected in terms of the mechanical stress distribution and the groundwater conditions. If conventional tunnelling is used, with charge drilling and subsequent blasting, a damaged zone or disturbed zone may be created in the tunnel perimeter. The extent of the zone depends, among other things, on the drilling precision, specific charge and the shape of the tunnel cross-section. A general conceptual understanding of hydraulic conditions in the zone is essential when describing the ground-water flows and possible nuclide transport around a nuclear waste repository /see e.g. Hudson et al. 2009/.

In order to increase our understanding of the mechanical and hydraulic features in the zone around a tunnel affected by blasting SKB initiated a R&D activity: ZUSE (*störda Zonens mekaniska and hydraUliSka Egenskaper-* 'Mechanical and hydraulic features of the excavation disturbed zone'). The activity has comprised literature surveys /Bäckblom 2008/, extensive geometrical fracture mapping and 3D-modelling on slabs from a tunnel wall /Olsson et al. 2009/, hydraulic a hydrochemical modelling /Laaksoharju et al. 2009/.

Furthermore and consequently, a separate project focusing on hydraulic features in the immediate zone along a tunnel wall was carried out within the ZUSE program. Examinations of rock samples have been carried out in the laboratory. In addition, *in situ* measurements were made in the form of hydraulic tests directly in the tunnel wall. In the project, samples and drilling cores were taken from slabs sawn out of the tunnel walls in the Q- and S-tunnels at the Äspö Hard Rock Laboratory, HRL, in Oskarshamn. The samples were examined at the laboratory with regard to fracture transmissivity, microfracturing and matrix porosity.

2 Objectives

The general aim of the project has been to contribute to the SKB safety and assessment analysis with realistic figures of hydraulic properties in an excavation disturbed zone. The project had the following more detailed objectives:

- Develop a laboratory method to determine fracture transmissivity under water-saturated conditions.
- Provide magnitudes for realistic values for fracture transmissivity in the disturbed or damaged zone due to excavation.
- Map micro cracks radially from the tunnel wall.
- Map the spread of matrix porosity radially from the tunnel wall.
- Develop single-hole hydraulic testing methodology in tunnel wall for saturated conditions.
- Integration of fracture geometries and transmissivity investigations for conceptual hydraulic modelling of the bedrock along a tunnel wall.

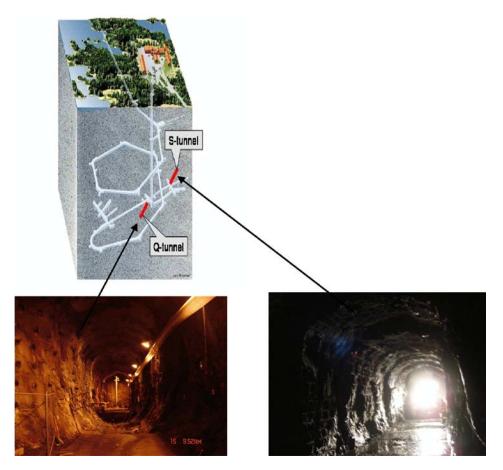
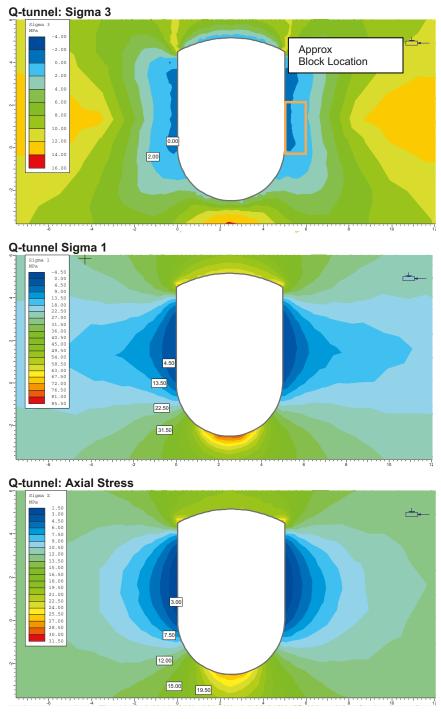
3 Sampling locations

The samples, i.e. drill cores investigated in this project, were taken from rock slabs originating in the Q- and S-tunnels at Äspö HRL, see Figure 3-1. The bedrock at the Äspö HRL consists of diorite, intersected by granitic and pegmatitic dykes. The rock slabs from the Q-tunnel are described in more detail in /Olsson et al. 2004/. The samples from the rock slabs taken from the S-tunnel were drilled out *in situ* at Äspö in December 2008. For further information about the rock slabs in the S-tunnel, reference can be made to /Olsson et al. 2009/.

3.1 The Q-tunnel

The Q-tunnel was blasted in a particular way to create high *in situ* stress between the test holes in the tunnel floor. This was achieved by making the quotient between height and width large and by creating a semicircular floor /Andersson 2007/. A simple numerical model of the stress situation in the tunnel is shown in Figure 3-2. There were strict demands regarding the blasting of the tunnel to minimise the excavation disturbed or damaged zone using careful blasting, which made extraordinary demands on the location and charging of the charge boreholes /Olsson et al. 2004/.

In order to study the damage to the remaining rock, a number of sections were sawn out from the tunnel wall – five vertical slots and one horizontal. Slabs were then sawn out from each vertical slot, making a total of 15 slabs. The sides of the slabs were then mapped with the aid of penetrant fluid to determine the type of fractures and their spread from the tunnel wall or the blasting core. A section was also sawn in the floor. The fractures were categorised as natural, blast-induced and directly from the charge borehole. The results are presented in /Olsson et al. 2004/.

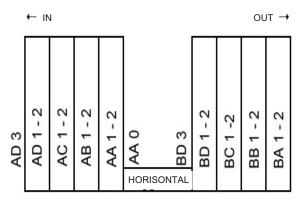

Figure 3-1. Location of the Q- and S-tunnels at Äspö HRL.

Figure 3-2. The stress situation in the *Q*-tunnel, which shows the vertical stress Sigma 3, the horizontal stress Sigma 1 and the axial stress.

Six of the slabs were examined by /Olsson et al. 2008/ as part of a method study for documentation and 3-D modelling of blast-induced fractures. In the present investigation, five vertical slabs and one horizontal slab were used, AD-AA and BD (see Figure 3-3). Four of the slabs are from test area 2 (the so-called A group) and one from test area 3 (the so-called B group), see also /Olsson et al. 2008/.

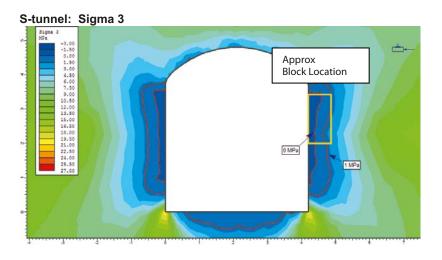
In the present project partial use was made of the same slabs that were used in the method study by /Olsson et al. 2008/. Table 3-1 shows which slabs are common to the two studies and additional slabs in this study.

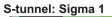
Figure 3-3. The principle behind which slabs in the method study for documentation and 3-D modelling of blast-induced cracks are sawn out from the tunnel wall and into the rock /from Olsson et al. 2008/.

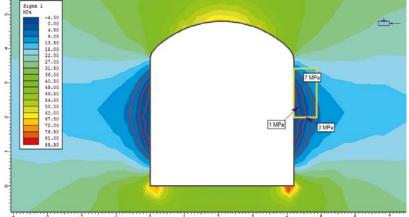
Table 3-1. Slabs which are common to the study in the Q-tunnel by /Olsson et al. 2008/ and the id of other slabs in this study.

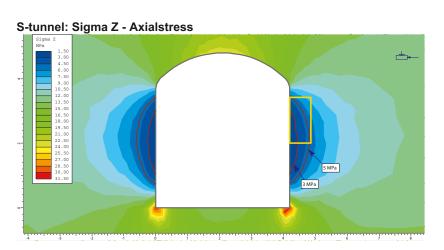
Common slabs	Other slabs in this project			
AA 1-2	BC 1-2			
AB 1-2	BB 1-2			
AC 1-2	4:1 lower			
BD 1-2	2:2:2			
	XX			

3.2 The S-tunnel


The primarily objective with the S-tunnel was to develop strategies and technology for grouting a tunnel to meet high demands on restricted inflow. The secondary objective was to explore how high requirements on smooth and careful blasting are feasible to achieve. High effort was put on the drilling of the contour and helper holes. Furthermore the excavation was based on recent research on parameters of importance for careful blasting findings. This included use of electronic detonators to reduce damage in the contour.


The S-tunnel is located at 450 m depth. The crystalline rock mass is dominated by diorite and cross-cut by two sub-vertical joint sets, trending NW and NE. The S-tunnels is aligned in a large angle to the NW joint set, which is also found to be the most water bearing set. In addition, there is also a gently dipping joint set. The rock quality is good, average RMR value for the tunnel is 70.4, ranging between 66 and 81. The uniaxial strength is in the range of 210–225 MPa, and a Young's modulus of 75–80 GPa.


The major horizontal stress is in the order of 28–30 MPa at the 450-m level, trending NW–SE, subparallel to the NW joint set and consequently perpendicular to the tunnel. The minor horizontal stress and the vertical stress are both close to the the weight of the overburden, 12–13 MPa.


The S-tunnel was blasted in a traditional horseshoe shape as opposed to the Q-tunnel. General numerical modelling of the stress situation in the tunnel is shown in Figure 3-4.

In the tunnel, eight blocks, each 1.5 m high, 1 m wide and 0.6–1.0 m deep, were sawn from the tunnel wall using a diamond wire saw to allow the zone of expected disturbance or damage to be studied in more detail. The blocks were then sawn into 75 slabs in order to categorise, using a penetrant fluid and photography, direct blast induced fractures from charge holes and induced and natural fractures in the surroundings of the tunnel. The categorisation resulted in a 3-D image of the spread of the fractures and the connectivity in the rock mass. Figure 3-5 shows a 3-D model of fractures in the block from the S-tunnel, /Olsson et al. 2009/. In order to distinguish between different kinds of natural fractures a succeeding mapping survey was performed. Thus the natural fractures were divided into healed, closed/ tight and open fractures (See Appendices 5–8).

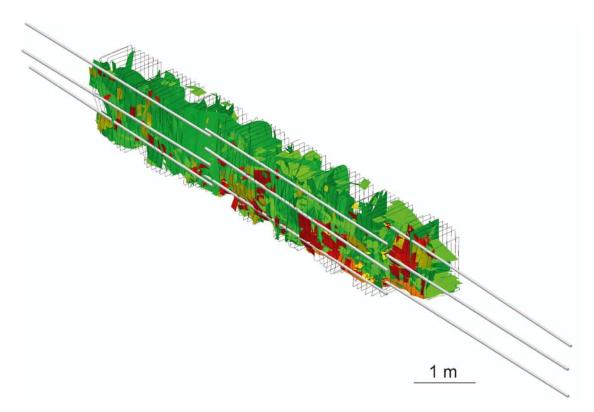


Figure 3-4. Estimated stress situation in the S-tunnel based on elastic assumptions, material properties and in situ stresses as in Figure 3-2; vertical stress Sigma 3, horizontal stress Sigma 1 and axial stress.

Figure 3-5. A 3-D model of the fractures in the block sawn from the S-tunnel. The figure shows the slabs and contour holes as well as interpreted natural fractures (green), induced fractures (yellow) and direct blast-induced fractures (red) / from Olsson et al. 2009/.

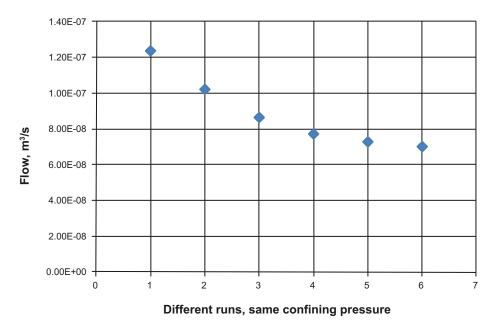
4 Laboratory testing of fracture transmissivity

The test equipment in the laboratory is purposely built and comprised a triaxial cell permeameter, a water container, a graduated measuring glass where the water that passes through the permeameter is collected, a pressure tube with compressed air as well as pipes. The pipes connect the water container to the permeameter and then the permeameter to the measuring glass. The pressure of the air that is forced into the triaxial cell but outside the sample membrane is measured using a manometer. Figures 4-1 and 4-2 show the test equipment. In total, 11 rock samples from the Q-tunnel and 19 from the S-tunnel were tested. For further information about the rock samples and other conditions in conjunction with the tests, see Appendices 1 and 2.

Figure 4-1. Equipment used for testing rock samples from the *Q*- and *S*-tunnel. The red vertical line represents the fall in pressure, dh, through the sample.

Figure 4-2. To the left is the triaxial cell permeameter and its different parts and to the right is a sample placed on the bottom plate. The sample is surrounded by double rubber membranes and a total of four o-rings.

4.1 Triaxial cell Permeameter


The permeameter which makes it possible to examine cores with a diameter of 200 mm and height approximately 100 mm, was made at the Division of GeoEngineering at Chalmers University of Technology. The cell is triaxial and is set up for pressures of up to 4 MPa. In the triaxial cell the radial and axial load were the same. The maximum confining pressure in this case was 2.5 MPa. The cell comprises:

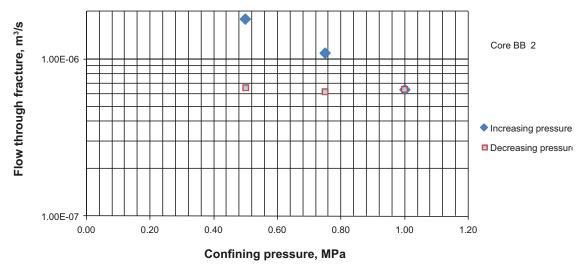
- a bottom plate with a net,
- a top plate with a net as a holding tool with a steel pipe to channel the water out of the cell,
- a steel cylinder,
- a steel lid,
- 12 long, threaded bolts.

In addition to the above there are two rubber membranes and 4–6 o-rings, which are placed around/ on the drilling core to keep it tight against the compressed air inside the cell. The water that enters the cell should only pass through the core and not between the core and the membrane. Nor should it leak out through the membrane, hence the use of a double membrane, see Figure 4-2.

4.2 Test method

Following an initial test of the methodology, the test equipment was adjusted to optimise the measurements (three tests for samples from the Q-tunnel were carried out using a simplified test arrangement). The test arrangement meant that the water that was used first was boiled in a vacuum for at least 1.5 hours to reduce the volume of air. The air proved to be a probable reason for the reduced flow over time during the methodology test (see Figure 4-3).

Figure 4-3. The graph shows the flow through a rock sample in conjunction with six different measurements and under constant confining pressure. The flow decreased in conjunction with each measurement despite a constant confining pressure.


The core itself was subjected to vacuum suction for 20–30 minutes after being placed in the cell. This was done to remove as much air as possible. The de-aerated water was then sucked into the core under vacuum conditions before measurement commenced. To maintain a constant gradient across the sample, the water tank was placed on a pallet truck, which was raised as the water in the tank fell. The water tank also had a plastic lid to prevent contact between the air and the water inside the tank.

Due to the very low porosity figures, it was necessary in the case of 11 of the rock samples from the S-tunnel to further modify the test method. The (incoming) water pressure to the sample was increased to approximately 0.35 MPa with the aid of air forced into the water tank, which was transformed into a sealed vessel.

4.3 Confining pressure

Based on the general numerical calculations, presented in Chapters 3.1 and 3.2, the tests were conducted with generalised confining pressures, i.e. corresponding fracture normal stresses of **0.5** and **1.0** MPa /Larsson 1997/. The stress levels were deliberately chosen to reflect a conservative flow situation, i.e. an over-estimation of the fracture transmissivities in fractures close to a tunnel wall. The flow estimations in the test procedure are in accordance with increased normal stress from 0.5 to 1.0 MPa.

By performing a sequence of measurements with more stress-levels and where the confining pressure first increased and then decreased, it however became clear that the fractures are unable to revert to their original width once the stress is decreased. In Figure 4-4 this can be seen clearly as the flow in conjunction with stress relief remains largely the same or is marginally higher compared with the maximum confining flow figure. A number of separate test series have been conducted to study the change in stiffness with regard to load cycles through an individual fracture, see Section 8.1.3.

Figure 4-4. Diagram showing the flow through a rock sample at different confining pressures. The sample is first exposed to increasing stress and then decreasing stress.

4.4 Flow measurements

Normally, the flow through the permeameter is measured with the aid of a graduated measuring glass with a resolution of one millilitre. In those cases where the flow was very small, a time estimate for filling a certain small volume was applied.

5 Drilling and sampling

5.1 Drilling of Q-tunnel samples

The rock samples from the Q-tunnel slabs were drilled at Chalmers University of Technology. Two different drilling arrangements were used: one for the smaller samples (diameter 42 mm), see Figure 5-1 and the description in Section 5.3.1, and one for the larger rock samples (diameter 200 mm). For the larger rock samples no protective plate was used at first over the rock sample although later on drilling took place with a steel plate attached to the rock surface to avoid the fracture opening up during drilling (see Figure 5-2).

Figure 5-1. Drilling of smaller samples from slab BC.

Figure 5-2. Drilling of a larger sample (diameter 200 mm) with a protective steel plate.

5.2 Drilling of S-tunnel samples

The rock samples from the S-tunnel were drilled at Äspö where the rock slabs are stored. The preparatory work included selecting fractures varying in origin from the rock slabs. Fractures with *one* clear vertical spread were chosen where possible.

5.3 Rock samples from the Q-tunnel

For the slabs from the Q-tunnel, the sampling can be regarded as random across available individual fractures. Two sample sizes were drilled from slab BC, three small and one large. From the remaining slabs only large samples were drilled. A total of seven small rock samples were taken, see Table 5-1, as well as 11 large rock samples, see Table 5-2.

5.3.1 Smaller samples

A smaller borehole (designated h) with a diameter of 42 mm was drilled in rock slab BC at right angles to the direction of the tunnel. The sample was drilled from the charge borehole marking and into the slab, which is the same as into the tunnel wall. The total length was 40.5 cm, see Figure 5-3. It was not possible to extract the core fully intact. The first 16 cm were broken up into a large number of small parts, see Figure 5-4. The remaining part of the core was in two parts. Samples varying in length were made from these.

A further two smaller samples were drilled from slab BC (see Figure 5-5). These were drilled in the direction of the tunnel (designated v), one closer to the charge borehole and one farther away. The samples were thus cylindrical in shape with ground, intact ends.

Table 5-1. The ID of the smaller samples from slab BC and also the direction in which they were
drilled in relation to the blasting direction.

Sample ID, small cores	Location in the slab			
v1a	Core in the direction of the tunnel, 20 cm from tunnel wall			
v1b	Core in the direction of the tunnel, 34.5 cm from tunnel wall			
h1a	Core at right angles to the direction of the tunnel			
h1b	Core at right angles to the direction of the tunnel			
h1c	Core at right angles to the direction of the tunnel, approx. 16 cm			
h1d	Core at right angles to the direction of the tunnel, approx. 25 cm			
h1e	Core at right angles to the direction of the tunnel, approx. 35 cm			

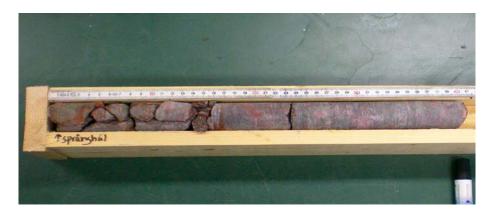


Figure 5-3. The whole of the first core taken from slab BC1-2, total 40.5 cm.

Figure 5-4. A close-up of the damaged part closest to the charge borehole, the first 16 cm.

Figure 5-5. Drilled cores v1a and v1b from slab BC.

5.3.2 Larger samples

A total of 11 larger rock samples with a diameter of 200 mm and a height of approximately 100 mm were taken from slabs BC 1-2, BB 1-2, BD1-2, AB1-2, AC1-2, AA 1-2, 4:1 lower, 2.2.2 and XX. The ID of the rock samples is related to the ID listed in Table 5-2.

The samples BD1–BD2, 2:AB1–AB2, 3:AC1–AC2, 1:4 upper, 2:2:2 and XX were drilled in a different way compared to the BC and BB cores. As samples BC and BB tended to disintegrate, a stabilising steel plate was placed over the fracture before drilling the slab. This was done to avoid the fracture opening up during drilling. The cores could thus be kept intact prior to the permeameter tests, see Figure 5-2.

The larger samples were drilled parallel to the blast holes. In those cases where the ends of the large samples were damaged, these were filled in with silicone. Silicone was also used to fill in the holes that arose when attaching the protective plate.

Sample ID, larger rock samples	Slab
BC	BC 1-2
BB1	BB 1-2
BB2	BB 1-2
BB3	BB 1-2
BD1–BD2	BD 1-2
2, AB1–AB2	AB 1-2
3, AC1–AC2	AC 1-2
1:4 upper	AA 1-2
4:1 lower	4:1 lower
2:2:2	2:2:2
XX	XX

Table 5-2. The ID of the larger rock samples and the slabs from the Q-tunnel.

5.4 Rock samples from the S-tunnel

A total of 21 rock samples with a diameter of 190–200 mm and varying in height were drilled out from the slabs from the S-tunnel, see Table 5-3. **PS** stands for **P**rov i **S**kiva (sample in slab) the number after 00 is the number of the block (= number of running metres into the tunnel) and the second to last figure is the running number of the slab in each block. The last figure is the running number of the sample taken from the slab. Two rock samples were destroyed after extraction and are not included in the examination as they were too damaged to be tested in the permeameter. These are rock samples PS0037071 and PS0037091. Classified sampling of fractures was carried out on the S-tunnel block. The fractures were interpreted as natural /Olsson et al. 2009/ divided into healed, tight/closed and open (see Appendices 5–8).

The samples in the S-tunnel were also drilled in parallel to the blast holes (the tunnel). In those cases where the ends of the large samples were damaged, these were filled in with silicone. Silicone was also used to fill in the holes that arose when attaching the protective plate.

The location of the samples was determined using the internal co-ordinate system in the Äspö project. An account can found in Appendix 2.

Table 5-3. ID of samples from the S-tunnel included in the examination.

ID, samples from slabs from the S-tunnel							
PS0036091	PS0037061	PS0039013	PS0039051	PS0040042			
PS0037051	PS0037062	PS0039021	PS0039061	PS0040071			
PS0037052	PS0039011	PS0039022	PS0039071	PS0040072			
PS0037053	PS0039012	PS0039023	PS0040041				

5.5 Ultrasonic scanlines in the Q-tunnel and S-tunnel

Ultrasonic examinations were made directly of slab BC from the Q-tunnel.

An ultrasonic examination of slabs from the S-tunnel was carried out *in situ* at Äspö. The scan lines are designated **LS** for Line in the slab, see Table 5-4 for the scan lines included in the examination and Appendix 2 for the location of the slabs. The scan lines were determined using the Äspö project's own co-ordinate system, Appendix 2.

Table 5-4. ID of the scan lines in the ultrasonic examination from the S-tunnel.

ID, lines in slabs from the S-tunnel				
LS0036041	LS0040071			
LS0039061	LS0040041			
LS0039062	LS0040061			

6 Hydraulic tests in S-tunnel

In the S-tunnel, Äspö HRL, 11 short investigation holes were drilled to check the hydraulic features in the excavation disturbed or damaged zone. The drill holes were 50–60 cm deep. The aim was to make a comparison with the data obtained from the permeameter tests using the cores taken from the blocks that were sawn from the tunnel wall on the right-hand side. Five of the tests were carried out on the same wall as the block extraction, known as the right-hand wall, and six tests were carried out on the opposite tunnel wall in the same section.

The tests were carried out with the aid of single-packer equipment where pressure and water flow to and from the boreholes could be measured with a high degree of accuracy. In each borehole the tests commenced with static water pressure (after 15 minutes) and the inflow into the tunnel with an open valve was then registered for five minutes. This provides a good starting point for the subsequent water injection measurements (see Figures 6-1, 6-2).

In the boreholes one or several water injection measurements were then made by stepwise moving the packer into the borehole and injecting water under pressure for each measurement step. The injected water volume and injection pressure were registered during the test. The test results and raw data can be seen in Appendix 3.

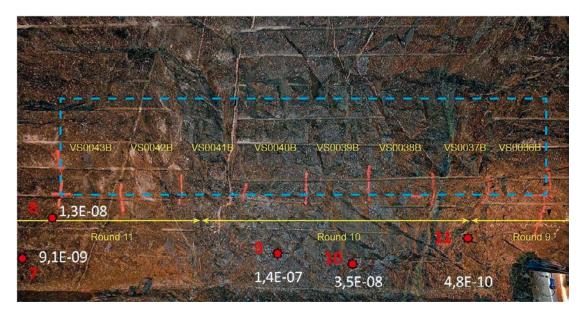

The different test locations in the right-hand wall of the S-tunnel can be seen in Figure 6-3.

Figure 6-1. Drilling, diameter 32 mm, for the purpose of single-hole testing.

Figure 6-2. Equipment for single-hole testing.

Figure 6-3. Single-hole testing – Borehole positions, right-hand wall as well as determined total borehole values of transmissivity in the disturbed zone.

7 Brief descriptions of the analysis methods

All methods used in the laboratory study were first tested on slab BC from the Q-tunnel and were then evaluated to determine whether they were suitable for continued use in the project.

7.1 Transmissivity calculations

7.1.1 Laboratory testing

With the aid of a triaxial cell permeameter the fracture transmissivity was analysed for the larger rock samples from the Q-tunnel and S-tunnel. The flow through the drilling core takes place mainly in a single fracture or, in some cases, in several fractures. The flow was measured with the core fixed firmly in the permeameter, which is described in Sections 4.1 and 4.2. If an average value is calculated for the trace length B (m) and if the flow length (L) and the pressure difference (dh) in the sample are determined it is possible to recalculate the flow to the transmissivity $T = Q/B \cdot (dh/L)$. The input parameters for evaluating fracture transmissivities are stated in Appendix 1 for the Q-tunnel and in Appendix 2 for the S-tunnel. The measurement limit for the determination of the transmissivity is estimated to $5 \cdot 10^{-12} \text{ m}^2/\text{s}$.

7.1.2 In situ testing

When calculating the water recharges to the zone nearby the wall in the S-tunnel, the injected water volume and injection pressure were registered. Data has been evaluated in such a way that specific capacity, Q/dh, was calculated for each measurement step. This value has proved to be a good approximation for the transmissivity value for the section for these short test periods /Gustafson 2009/. The measurement limit for the determination of the transmissivity is estimated to $1\cdot10^{-11}$ m²/s.

7.2 Microfracturing

7.2.1 Ultrasonics

Microfracturing can be analysed by measuring the time it takes for a compression wave to pass through rock with a specific geometry. The travelling time is then related to the thickness of the rock. Using this method, the velocity of the wave through the rock is calculated. The velocity differences can be attributed to the varying mechanical characteristics of the rock. A more fractured section in the rock could produce lower throughflow velocities. This method is for comparison purposes only, which means that the results can only be interpreted within the group of samples/slabs examined in this study.

Ultrasonic scanlines, Q-tunnel

When measuring directly on the BC slab from the Q-tunnel, a surface area was first marked out on each side of the slab using a ruler and a spirit level. The surface area was equivalent to the diameter of an envisaged sample, approximately 2.17 cm. The surfaces overlap each other to provide more measurements (in effect running averages), see Figure 7-1. To ensure optimum contact, a contact gel was used on the surfaces of the sensor and the receiver.

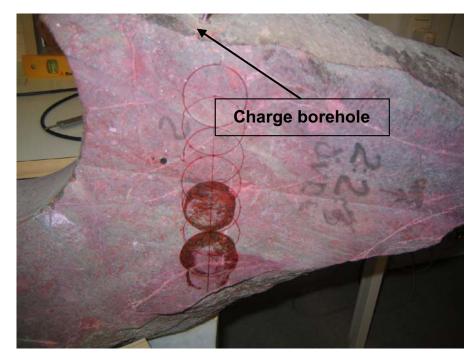


Figure 7-1. Slab BC with surfaces marked for ultrasonic measurement.

Ultrasonic scanlines, S-tunnel

A number of slabs were selected in accordance with Chapter 5.5 and placed in such a way that the sensor and receiver could be fixed with the aid of a constructed steel frame on either side of the slab, see Figure 7-2. To keep the sensor and receiver in the steel frame, each slot was milled to half the length of the sensor. Measurement can thus be carried out every half-sensor length, 2.05 cm, and upwards. To ensure optimum contact, a contact gel was used on the surfaces of the sensor and receiver.

Figure 7-2. The steel frame placed on the slab so that the sensor and the receiver of the compression wave are fixed, both in relation to the scan line and to each other.

7.2.2 Matrix porosity

The varying porosity could tell us something about possible blast-induced damage to the rock. With an increase in fracture frequency one might expect an increase in porosity. The porosity determinations should be regarded as comparative in the same way as the ultrasonic examinations.

The matrix porosity is the relationship between the total volume of the sample and the pore volume. The pore volume was determined using vacuum chamber technology. A sample was weighed following drying at 105°C for 24 h to a level of accuracy of 0.01 g. The sample was then treated in a vacuum for 90 minutes. This was done to extract the air from the pores. The core was then saturated with distilled water in a vacuum for 5.5 hours. Following the vacuum treatment, the sample was reweighed. The difference in weight before and after the vacuum treatment produces the weight of the water that has penetrated the pores. Knowing the density of the water, the volume of the penetrating water and thus the volume of the pores in the core can be calculated.

To obtain the volume of irregular samples comprising pieces of stone fractions, the Archimedes principle is used. The weight of the displaced fluid and the density of the water are used to determine the volume of the sample pieces. In the case of pore volumes in the irregular samples, the same method was used as for the intact cores.

7.2.3 Microscoping

A characterisation in a microscope of micro cracks from drilling cores extracted from the stone slabs in the Q-tunnel was also analysed, see Chapter 5.3.1. Five samples were analysed, of which three were placed at right angles to the tunnel wall (the h-samples). These samples were taken consecutively from the same drilling core. Two samples were placed parallel to the tunnel wall (the v-samples). The relative distances between the samples and the tunnel wall are shown in Table 7.1.

The samples were sawn up and a thin section, placed parallel to the drilling core, was made from each sample. In order to detect micro cracks, the samples were vacuum-impregnated with fluorescent epoxy.

Table 7.1. The relative distances to the tunnel wall of the microscoped samples.

Sample	Relationship to the tunnel wall		
h1 C	Closest, approx. 16 cm		
h1 D	Middle, approx. 25 cm		
h1 E	Farthest away, approx. 35 cm		
v1 A	Closest, approx. 20 cm		
v1 B	Farthest away approx. 34.5 cm		

7.3 QA checks and uncertainties

In order to verify that the permeameter was sealed and that no air has entered the sample through the cell membrane and that no water has infiltrated between the sample and the membrane, the permeameter was tested using a plastic dummy at confining pressures of 0.5 and 1.0 MPa. The dummy test was conducted for pressure differences across the sample of dh = 0.64 m.vp and dh = 35 m.vp. It was confirmed that the permeameter was tight.

The ultrasonic measurements were carried out by one person and as the method is for comparison purposes only this was deemed satisfactory for measurement accuracy. If any type of incorrect reading occurred it was probably the same in all measurements.

Ultrasonic measurements of small sample pieces or relatively thin sections can be problematic as larger, individual mineral grains can either increase or decrease the velocity. This could, in turn, mean that the measurement does not present a representative picture of the part of the rock being studied and simply reflects the mineral content.

Measurement accuracy when measuring the length of smaller samples was checked through repeated measurement (8) of both the height and width. For the height the deviation was at most 0.41% and the width 0.3%.

Regarding the in situ transmissivity determinations by means of single hole testing it was observed that the pressure was zero in approximately 50% of the boreholes. Thus underpressures in some testholes may have occurred but not been registered. The transmissivity determinations could thus be underestimated slightly as they possibly not represented water-saturated conditions (see Section 8.2.3).

8 Results

8.1 Transmissivities in the disturbed zone

In the light of the previously described methods and sampling, the transmissivity values listed below for the Q-tunnel and the S-tunnel were obtained. For the S-tunnel, the results from single-hole tests carried out in the field are also presented.

8.1.1 Q-tunnel

Tables 8-1 shows the transmissivity values for the samples analysed in the permeameter cell from the slabs from the Q-tunnel. See also Appendix 1. For the slabs from the Q-tunnel, the sampling can be regarded as random across available individual fractures. Log distributions for the resulting values are shown in Figure 8-1. In summary, the following was obtained:

At confining pressure 0.5 MPa – Mean value [log]: $T = 3.1 \cdot 10^{-7} \text{ m}^2/\text{s}$, STD[log] = 0.62At confining pressure 1.0 MPa – Mean value [log]: $T = 1.7 \cdot 10^{-7} \text{ m}^2/\text{s}$, STD[log] = 0.62

By comparison, it can be noted that for a corresponding rock volume under undisturbed conditions, the preliminary examinations produced a Mean value [log]: $T = 4.9 \cdot 10^{-8} \text{ m}^2/\text{s}$, STD[log] = 0.78 /Hernqvist et al. 2009/.

Table 8-1. Transmissivity values, samples from the Q-tunnel. Confining pressure 0.5 and 1.0 MPa.

Sample ID	T, m²/s at 0.5 MPa	T, m²/s at 1.0 MPa	Comments
BB1	5.922E-07	3.258E-07	One main fracture
BB3	0.000E+00	0.000E+00	No visible fracture
BC1	2.583E-06	1.575E-06	Confining pressure 0.6 MPa, One main fracture
BD1–BD2	5.449E-08	2.946E-08	Complex system of fractures
2, AB1–AB2	1.899E-07	9.585E-08	One fracture
3, AC1–AC2	3.641E-07	2.573E-07	One main fracture
1:4 upper	1.725E-06	1.050E-06	One main fracture
4:1 lower	0.000E+00	0.000E+00	Healed fractures
2.2.2	1.302E-07	9.223E-08	Complex system of fractures
Core XX	3.901E-07	1.651E-07	One main fracture
BB2	1.604E-06	5.723E-07	One main fracture, spline

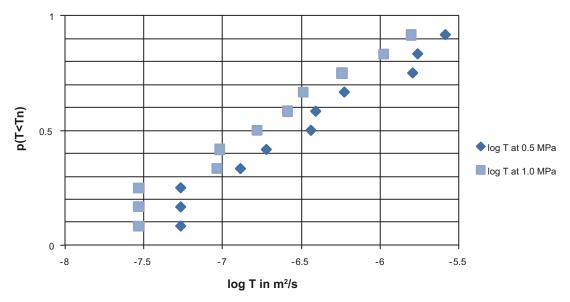


Figure 8-1. Cumulative distribution, fracture transmissivities in the wall, Q-tunnel.

8.1.2 S-tunnel

Table 8-2 shows the transmissivity values for the samples analysed in the permeameter cell from the slabs taken from the S-tunnel (see also Appendix 2). Classified sampling of fractures was carried out on the S-tunnel block. The fractures were interpreted as induced or natural /Olsson et al. 2009/ divided into healed, tight/closed and open (see Appendices 5–8). Figures 8-2 and 8-3 show the transmissivity values for the confining pressures 0.5 and 1.0 MPa as a function of the distance to the tunnel wall. If one regards the naturally open fractures as being taken from an undifferentiated population, a distribution graph according to Figure 8-4 is obtained. For the open, natural fractures:

At confining pressure 0.5 MPa – Mean value: $T = 3.7 \cdot 10^{-6} \text{ m}^2/\text{s}$, STD[log] = 0.31At confining pressure 1.0 MPa – Mean value: $T = 2.1 \cdot 10^{-6} \text{ m}^2/\text{s}$, STD[log] = 0.34

Sample ID	T, m²/s at 0.5 MPa	T, m²/s at 1.0 MPa	Fracture type	Comments	Distance to wall, mm
PS0036091	4.84E-09	6.28E-10	Induced open (1/2)	Complex	138
PS0037051	0.00E+00	0.00E+00	Natural healed		325
PS0037052	0.00E+00	0.00E+00	Natural healed		50
PS0037053	3.46E-06	1.66E-06	Natural open		150
PS0037061	5.59E-06	2.71E-06	Natural open		75
PS0037062	3.32E-10	2.67E-10	Natural closed	Two fractures	538
PS0039011	0.00E+00	0.00E+00	Induced closed		53
PS0039012	1.36E-06	7.31E-07	Natural open		453
PS0039013	2.00E-09	5.69E-10	Natural closed		466
PS0039021	8.63E-11	5.00E-11	Induced open (1/2)		66
PS0039022	2.33E-06	1.33E-06	Natural open		413
PS0039023	5.68E-10	2.52E-10	Natural healed		493
PS0039051	1.12E-05	7.58E-06	Natural open	Three fractures	26
PS0039061	4.07E-06	2.23E-06	Natural open		280
PS0039071	4.69E-09	2.19E-09	Natural closed		333
PS0040041	4.79E-09	2.98E-09	Natural healed		31
PS0040042	0.00E+00	0.00E+00	Natural closed		354
PS0040071	0.00E+00	0.00E+00	Natural healed		280
PS0040072	5.67E-11	6.60E-12	Natural closed		173

Table 8-2. Transmissivity values, samples from the S-tunnel. Confining pressure 0.5 and 1.0 MPa.	Table 8-2.	Transmissivit	y values, sam	ples from the	S-tunnel.	Confining p	pressure 0.	5 and 1.0 MPa.
--	------------	---------------	---------------	---------------	-----------	-------------	-------------	----------------

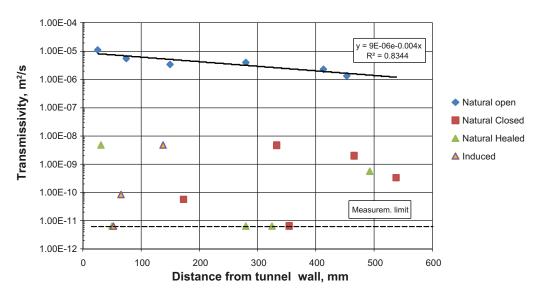


Figure 8-2. Transmissivity for different fracture types vs distance from the tunnel wall, confining pressure 0.5 MPa.

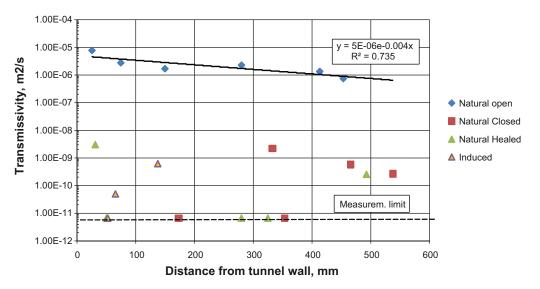


Figure 8-3. Transmissivity for different fracture types vs distance from the tunnel wall, confining pressure 1.0 MPa.

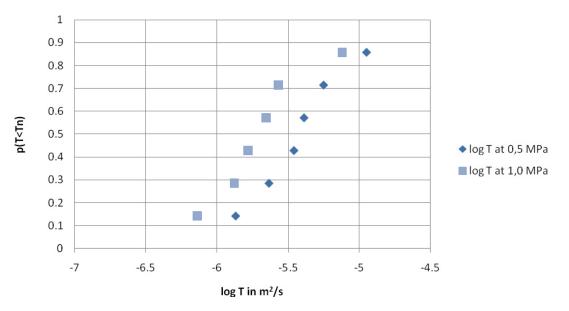
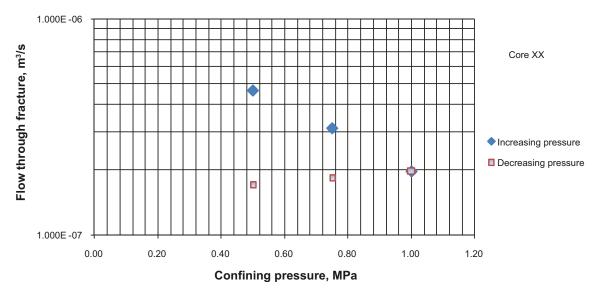
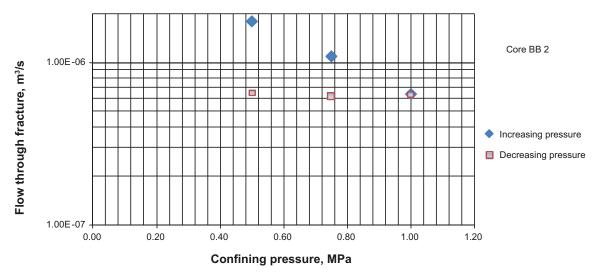



Figure 8-4. Cumulative distribution, Fracture transmissivities in natural, open fractures in the wall for the S-tunnel.


8.1.3 Hydromechanical coupling

The tests were conducted under the generalised normal stresses of **0.5** and **1.0** MPa, see Chapter 4.3. It is known that the fracture stiffness and thus the resulting fracture apertures can be stress-dependent. This applies in particular to low stress levels. The purpose of achieving a qualitative image of the hydromechanical conditions in conjunction with an increasing load and a decreasing load, flow tests were carried out on a number of samples in conjunction with a stepwise increase in load with a subsequent decrease, see Figures 8-5, 8-6, 8-7. Tests were also carried out with two and three loading and unloading cycles respectively, see Figures 8-8 and 8-9. It can be seen from the figures that the fractures are closed non-linearly in conjunction with increasing confining stress. It can also be seen from Figures 8-8 and 8-9 that an incomplete hysteresis appears. Clear consolidation has taken place of the fracture apertures following discrete loading levels.

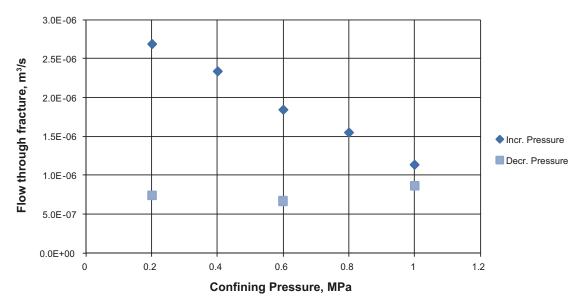
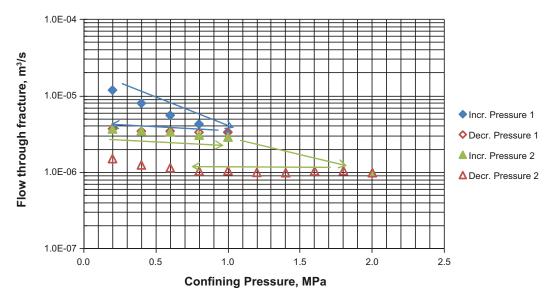
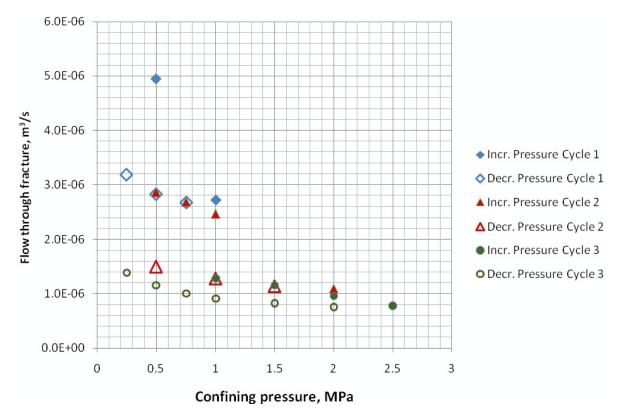
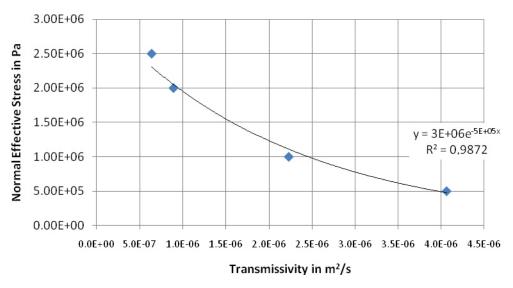

Based on the test with the three cycles, Figure 8-9, the fracture transmissivities and corresponding fracture apertures ('cubic law') can be calculated easily using the maximum values of the loading steps and a graph can be obtained according to Figures 8-10 and 8-11 for the links to interpreted normal stresses. The hydraulic aperture changes for normal stress increases to 1.0, 2.0 and 2.5 MPa approximately correspond to the normal stiffnesses 16, 27 and 46 GPa/m see e.g. /Fransson 2009/.

Figure 8-5. Results showing fracture flow changes during stepwise increased and decreased confining pressure, sample XX from the Q-tunnel.

Figure 8-6. Results showing fracture flow changes during stepwise increase and decreased confining pressure, sample BB2 from the Q-tunnel.

Figure 8-7. Results showing fracture flow changes during stepwise increased and decreased confining pressure, sample BC1 from the Q-tunnel.

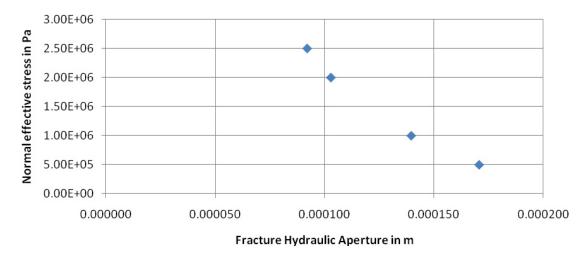

Figure 8-8. Two stepwise loading cycles of the permeameter cell, sample no. PS0037061 from the S-tunnel.

Figure 8-9. Three stepwise loading cycles (in bars) of the permeameter cell, sample no. PS0039061 from the S-tunnel.

Figure 8-10. Change in the transmissivity in the light of the load cycle's maximum values for an open fracture in sample no. PS0039061 from the S-tunnel.

Figure 8-11. The change in the fracture aperture in the light of the load cycle's maximum values for an open fracture in sample PS003906 from the S-tunnel. The apertures are calculated using the cubic law.

8.2 *In situ* measurements in the S-tunnel

As stated previously in Chapter 6, single-hole field tests were carried out in the S-tunnel using water injection to determine fracture transmissivities and general transmissivity values in the tunnel wall. Below is a presentation of both transmissivity estimates for the whole length of the boreholes tested, i.e. approximating to the whole disturbed zone, as well as for individual, transmissive fractures in the zone.

8.2.1 Transmissivities for all boreholes

The measurement using the outer packer position, which in effect is the transmissivity for the whole borehole, ought to provide the total transmissivity for the disturbed zone in the proximity. The Table 8-3 contains a summary of these.

A cumulative distribution graph for these is shown below in Figure 8-12. The median, which can be seen as a characteristic value for the whole of the disturbed zone, is $9.2 \cdot \text{E-9} \text{ m}^2/\text{s}$ and the spread is approximately 10^3 .

Test no.	Max. Depth Packer Position (cm)	Total borehole depth (cm)	Test interval L (m)	T = Q/dh (m²/s)	p(T <t<sub>n)</t<sub>
1_1	7.3	59	0.517	4.24E-09	0.33
2_2	1.9	53	0.511	8.51E-09	0.42
3_1	2.3	54	0.517	1.58E-09	0.25
4_1	3.4	53	0.496	2.8E-07	0.92
5_1	2.6	58	0.554	4.74E-08	0.75
6_2	21.4	52	0.306	4.45E-10	0.08
7_1	3.6	60	0.564	9.16E-09	0.50
8_1	4	60	0.56	1.32E-08	0.58
9_1	2.3	60	0.577	1.48E-07	0.83
10_1	4	52	0.48	3.59E-08	0.67
11_2	13.8	53	0.392	4.83E-10	0.17

Table 8-3. Transmissivity determinations for water injection tests in a tunnel wall. The transmissivities are based on values for tests using packer positions close to the tunnel wall. $p(T < T_n)$ expresses the probability for the value of being less than the actual value.

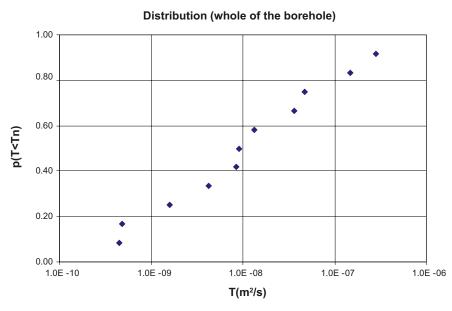
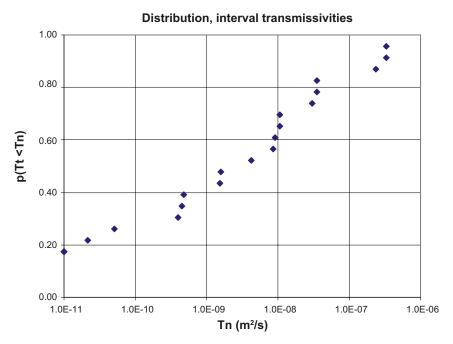


Figure 8-12. Cumulative distribution, Transmissivities based on single-hole testing in the wall of the S-tunnel.

8.2.2 Transmissivities for all test sections


The packer was put in another position according to the occurrence of inferred single fractures in the drill-cores. The transmissivity for the different test intervals was thus calculated in such a way that the difference in transmissivity between two packer positions in the same borehole was calculated and was assumed to represent the transmissivity for this interval. For the innermost interval, the transmissivity for the innermost packer position was used directly. Data is reported in Table 8-4 below.

Test no.	Upper limit interval (cm)	Lower limitinterval (cm)	Average depth (cm)	Interval length (m)	T = Q/dh for the interval (m²/s)	Log T
1_1	7.3	21.2	14.25	0.52	4.19E-09	-8.37824
1_2	21.2	59	40.1	0.38	5.14E-11	-10.2889
2_2	1.9	14.7	8.3	0.51	8.49E-09	-8.07098
2_3	14.7	53	33.85	0.38	2.16E-11	-10.6661
3_1	2.3	3.4	2.85	0.52	1.58E-09	-8.80169
4_1	3.4	24.5	13.95	0.50	3.02E-08	-7.52063
4_2	24.5	30.5	27.5	0.29	2.40E-07	-6.62066
4_4	30.5	53	41.75	0.23	1.06E-08	-7.97317
5_1	2.6	11.2	6.9	0.55	1.53E-09	-8.81558
5_2	11.2	20.8	16	0.47	3.53E-08	-7.45172
5_3	20.8	31.1	25.95	0.37	1.05E-08	-7.97756
5_4	31.1	58	44.55	0.27	1.00E-11	-11
6_2	21.4	52	36.7	0.31	4.45E-10	-9.35187
7_1	3.6	60	31.8	0.56	9.16E-09	-8.03792
8_1	4	60	32	0.56	3.32E-07	-6.47845
9_1	2.3	10	6.15	0.58	1.00E-11	-11
9_2	10	24.5	17.25	0.50	1.00E-11	-11
9_3	24.5	42.7	33.6	0.36	3.32E-07	-6.47898
9_4	42.7	60	51.35	0.17	4.00E-10	-9.39811
10_1	4	23.7	13.85	0.48	3.54E-08	-7.4507
10_2	23.7	13.8	18.75	0.28	1.00E-11	-11
11_2	13.8	53	33.4	0.39	4.83E-10	-9.31568

Table 8-4. Transmissivity determinations for water injection tests in a tunnel wall. The transmissivities are based on values for each test interval.

A cumulative distribution graph for these values is shown in Figure 8-13 below. The transmissivities can to some extent be said to better represent the fracture transmissivities in the boreholes. The median value is $2.9 \cdot \text{E-9} \text{ m}^2$ /s. For comparison the corresponding rock volume under undisturbed conditions in the pre-investigation produced a median value of T = $8 \cdot 10^{-10} \text{ m}^2$ /s for the fracture transmissivities /Funehag 2008/.

Using this data as a starting point, an attempt has been made to evaluate whether the interval transmissivities decrease with the depth of the borehole. This ought to be expected if the blast disturbance or damage decreases with the distance outside the tunnel wall. In Figure 8-14 below, a logarithm for the interval transmissivity has been plotted as a function of the depth to the outer packer position. As can be seen from the figure, there is considerable spread and the transmissivity has a vague decreasing trend with the depth of the borehole. However, due to the large spread the significance is very low.

Figure 8-13. Cumulative distribution of transmissivities for all test intervals in all injection test holes in the walls of the S-tunnel.

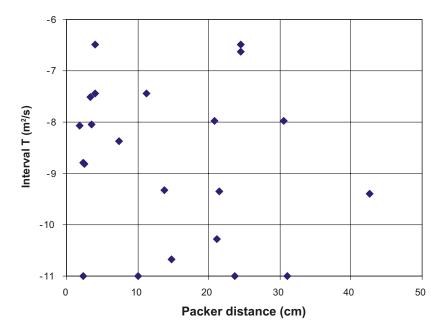


Figure 8-14. Transmissivities in sealed-off test intervals vs. "upper" packer distances from the tunnel wall.

8.2.3 Water pressure in the boreholes

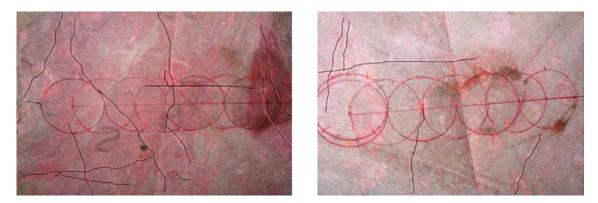
Prior to each test the static water pressure in the boreholes was measured. Preliminary modelling /Christiansson et al. 2009/ has shown that the water pressure in the disturbed zone and the tunnel wall ought to be low or even negative. As Table 8-5 shows, the pressure is zero in approximately 50% of the boreholes. There could very well also be underpressure as negative pressure was not registered. In the light of the recorded pressure measurements, the transmissivity determinations could thus be underestimated slightly as they have not always represented water-saturated conditions.

Borehole no.	Packer distance (cm)	Borehole depth (cm)	Interval length (m)	Static pressure (bar)
1	7.3	59	0.517	0.2
2	1.9	53	0.511	0
3	2.3	54	0.517	0
4	3.4	53	0.496	0
5	2.6	58	0.554	0
6	21.4	52	0.306	0.4
7	3.6	60	0.564	0.5
8	4	60	0.56	0.5
9	2.3	60	0.577	0
10	4	52	0.48	0
11	13.8	53	0.392	0.1

 Table 8-5. Initial water pressure in each borehole.

8.3 Microfracturing

An analysis of microfracturing, as presented earlier, was conducted using ultrasonic measurements, analysis of matrix porosity and microscoping. The extent of the work varied with the aim of establishing a focus prior to mapping the occurrence of the disturbed zone.


8.3.1 Ultrasonics

Q-tunnel

For the Q-tunnel a measurement was made on slab BC using a ¹/₂-sensor length between the measurements, see Figures 8-15 and 8-16 below. For further information, see Appendix 1.

The P-wave velocity shows an increasing trend the further away one measures into the rock and away from the tunnel wall. The velocity varies from approximately 5,700 m/s to approximately 6,000 m/s.

In total, it can be said that the measurements indicate that there are more micro cracks at the beginning of the scan line than in the latter part. The results thus indicate a disruption in the microporosity at a distance of approximately 25–35 cm from the tunnel wall.

Figure 8-15. Ultrasonic scan line on slab BC. The beginning of the scan line is to the left in both images. The fractures are marked with black lines.

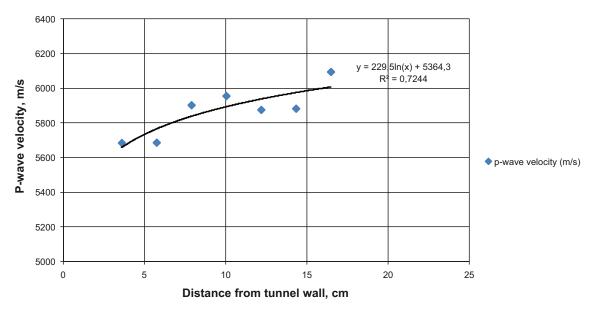


Figure 8-16. P-wave velocity vs distance from the tunnel wall and into the rock for slab BC in the Q-tunnel.

S-tunnel

Six measurements were performed for the S-tunnel on five slabs, see Table 5-4 for the scan line designations. The distance between the values varies in length from $\frac{1}{2}$ -1 sensor, i.e. 2.05 cm to 4.1 cm. There are measurements both from the tunnel wall and into the rock as well as parallel to the tunnel wall. For further information, see Appendix 2. Figures 8-17 to 8-22 below show the ultrasonic results for each scan line.

The starting point for *LS0036041* is a short distance from the tunnel wall and the end-point is in the rock. The P-wave velocity increases for the first three values and then remains relatively stable. The velocity varies from approximately 4,600 m/s to approximately 5,700 m/s. The slab also shows a larger number of fractures at the beginning of the scan line, see Appendix 2.

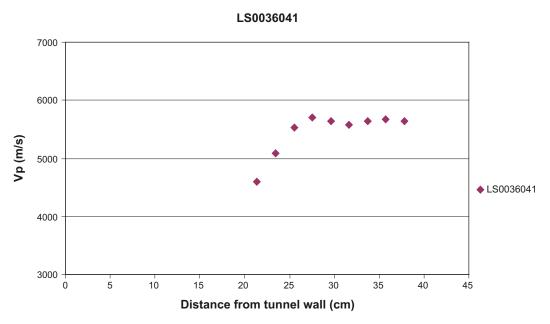


Figure 8-17. P-wave velocity as a function of the distance from the tunnel wall for line LS0036041.

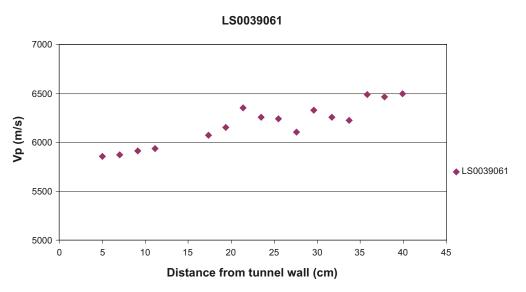


Figure 8-18. The P-wave distance as a function of the distance from the tunnel wall for line LS0039061.

The P-wave distance for line *LS0039061* shows a tendency towards an increase in velocity the farther one moves from the tunnel wall into the rock. The velocity varies from approximately 5,800 m/s to approximately 6,500 m/s. The slab also reveals greater fracturing at the beginning of the scan line, see Appendix 2.

The P-wave velocity for line *LS0039062* varies from approximately 5,400 m/s to 5,900 m/s. The graph does not show any tendency towards an increase in velocity the farther one moves from the starting point for the measurement. The scan line follows the length of the tunnel wall. The fracturing in the slab, along the scan line, also varies, see Appendix 2. The velocity is generally even.

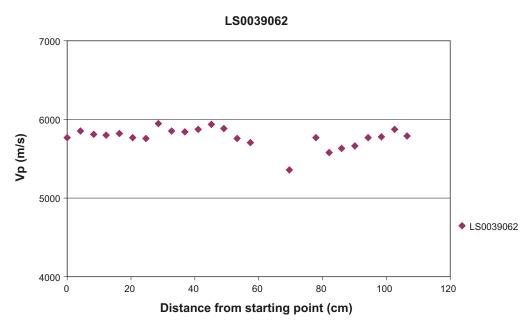


Figure 8-19. P-wave velocity vs distance from the measurement starting point for line LS0039062.

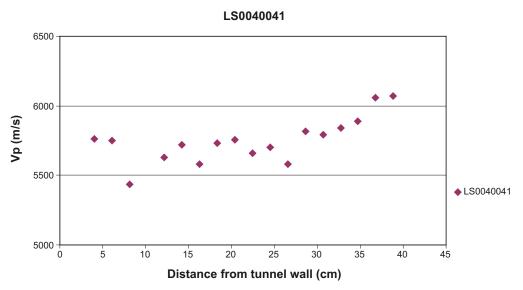


Figure 8-20. P-wave velocity as a function of the distance from the tunnel wall for line LS0040041.

The P-wave velocity for line *LS0040041* varies from approximately 5,400 m/s to 6,000 m/s. A weak tendency towards an increase in velocity can be seen in the graph from the starting point of the measuring line at the tunnel wall and into the rock. Two measuring values are distinctly lower than the values around them, at 4.1 cm and 22.55 cm from the starting point of the scan line. These concur with two fractures that traverse the scan line, see Appendix 2.

The p-wave velocity for line *LS0040061* varies from approximately 5,500 m/s to 5,900 m/s. There is no visible increase in velocity from the starting point at the tunnel wall and into the rock due to several natural open fractures in parallel with the scanline.

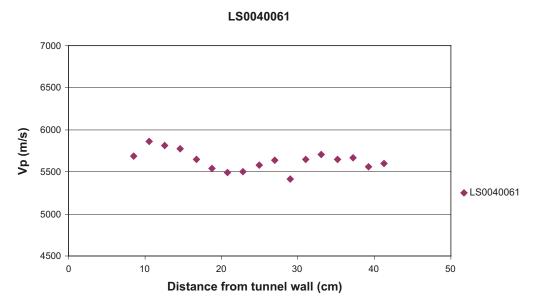
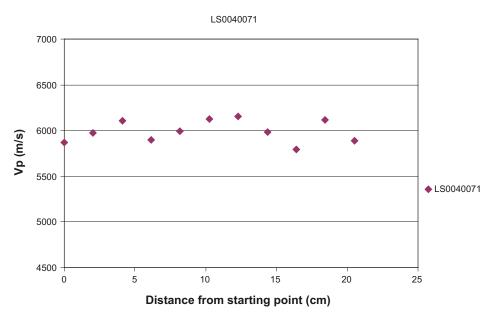
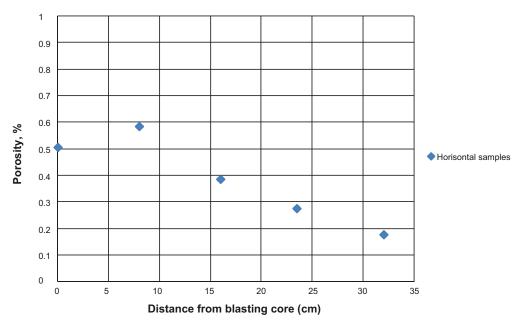


Figure 8-21. The p-wave velocity as a function of the distance from the tunnel wall for line LS0040061.




Figure 8-22. The P-wave velocity vs the distance from the measurement starting point for line LS0040071.

The P-wave velocity for line *LS0040071* varies from approximately 5,900 m/s to 6,150 m/s from the starting point to the end. The scan line extends some way into the rock and follows the line of the tunnel wall. The velocity is generally high and even.

In summary, the ultrasonic measurement of slabs from the S-tunnel indicates that a minor change in microporosity has taken place up to a distance of approximately 25–35 cm from the tunnel wall.

8.3.2 Matrix porosity, Q-tunnel

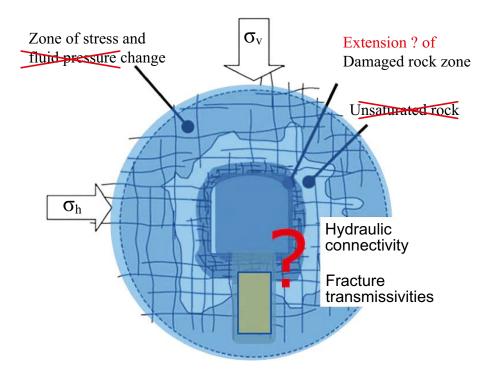
The matrix porosity has been calculated for the smaller samples h1a to h1e from slab BC, taken from the Q-tunnel. The samples extend from the tunnel wall into the rock. The porosity decreases from the charge borehole and into the rock with the exception of one value, see Figure 8-23. The results for the porosity change are thus comparable with the results from the ultrasonic investigation, which is shown in Figure 8-16. For further information, reference can be made to Appendix 1.

Figure 8-23. Porosity vs distance in a core from the tunnel wall into the rock. The samples are taken from the Q-tunnel, slab BC, h1a–h1e.

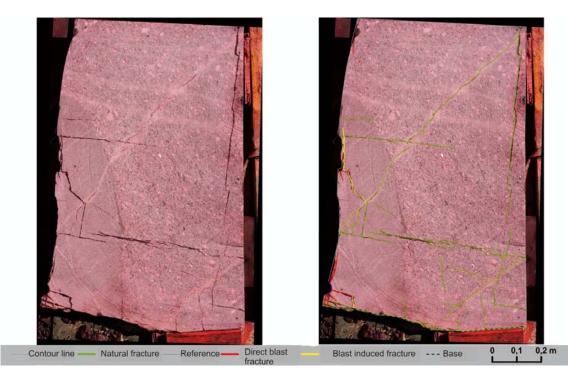
8.3.3 Microscoping

Thin section analysis in a microscope shows that the rock that was analysed had very few natural micro cracks. Samples were analysed from the Q-tunnel and one example is showed in Figure 8-24. An alteration of feldspars and the relatively low quartz content are considered to be the primary reasons for the scarcity of micro cracks. Normally, micro cracks appear in grain borders and as intragranular fractures along a plane of weakness in the middle.

The very few blast-induced micro cracks were found in the thin section from all samples apart from sample v1b although they were so few in number that no quantitative measurement could be made. This observation indicates a local influence of disturbance in the Q-tunnel equivalent to 30–35 cm. The majority of the micro cracks that were discovered were mainly old, healed cracks that had been reopened. In a small number of samples, new micro cracks had been formed as transgranular cracks (cutting through several mineral grains). For further information, reference can be made to Appendix 4.


Figure 8-24. The figure shows a feldspar crystal in the specimen hlc from the Q-tunnel in a combined fluorescent and polarised image. The image size is 5.5×4.2 mm. The open micro cracks in green are mainly related to old sealed micro cracks and only a few new micro cracks have been created.

9 Discussion and conclusions


The overall aim of this work has been to examine hydraulic conditions and possible effects of blasting on the transmissive features closest to a tunnel in a post-closure phase of a nuclear waste repository. Schematically, the issues can be seen in Figure 9-1.

In /Bäckblom 2008/ it is stated and assumed that site-specific relations are created between damage and density of explosive charge as the basic parameter for estimation of damage extent and properties. Such relations need to be established for different rock types and fracturing. Thus large-scale sampling and geometrical modelling of the fractured rock in the disturbed zone in the S-tunnel at Äspö HRL was carried out by /Olsson et al. 2009/. Careful blasting was found to create a discontinuous distribution of blast-induced fractures. Current data of direct blast-induced fractures and induced fractures indicate that the axial fracture connectivity is estimated to be insignificant due to the sparse distribution of these visible fractures, see Figure 9-2. This conclusion is supported by the results from the detailed fracture mapping of the slabs respectively. Figure 9-3 shows the length distribution with natural fractures. Natural open fractures are more elongated compared to direct blast-induced and induced fractures in the slabs.

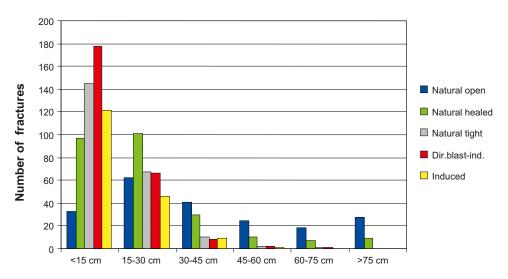

Even though careful blasting was used there is an indication of sparsely distributed micro fracturing up to a distance of 250–350 mm from the tunnel wall. The microfracturing has been determined by means of ultrasonic measurements and microscopic analyses. Furthermore, a small matrix porosity increase, from approximately 0.2% to 0.5%, has been observed close to the wall. As regards micro cracking, similar results have been observed in a previous ultrasonic borehole measurement study in the Q-tunnel at Äspö /Schuster 2007/.

Figure 9-1. Post-closure condition of a nuclear waste repository. The host rock is saturated with no pressure change compared to undisturbed conditions. Rock stresses may be different due to excavation and we may also consider a disturbed and a damaged rock zone with a certain extension which surrounds the tunnel. Hydraulic issues mainly concern the connectivity of the flow paths and the fracture transmissivities (figure modified from /Rutqvist and Stephansson 2003/).

Figure 9-2. The picture exemplifies a conceptual 2D image of the occurrence of fractures perpendicular to the wall in a tunnel with careful blasting. The distribution of blast fractures is discontinuous and connected to the charge boreholes. There are secondary blast-induced fractures which terminate against natural fractures. An increased axial fracture connectivity due to blast and blast-induced fractures is estimated to be insignificant due to the sparse distribution of these visible fractures. Natural fractures may be effected at the tunnel perimeter. Even when careful blasting is used there may be sparsely distributed micro cracking at a distance of 250–350 mm from the tunnel wall. The micro cracking most probably have insignificant influence on the major hydraulic conditions.

Figure 9-3. Length distribution with natural fractures (separated into open, tight and healed), direct blastinduced fractures and induced fractures as mapped on all the 75 slabs from S-tunnel.

In /Bäckblom 2008/ typical EDZ assessing tests are suggested within the area of the deposition holes. These tests are: ultrasonic measurements, testing of hydraulic transmissivity by multipackers and laboratory permeameter tests on rock cores. The present project has comprised these types of investigations.

A triaxial cell permeameter was developed in order to determine saturated fracture transmissivities in relatively large samples with a diameter of 200 mm and a height of 100 mm. The equipment has been found to be a robust method for fracture transmissivity determination. However, proper sampling is crucial for the reliability of the results. For the testing procedures the fracture normal stress levels were set at 0.5 MPa and 1.0 MPa and equal to the axial stress. The stress levels were chosen according to scoping numerical calculations of the stress regimes that surround the tunnels at a depth of 450 m at Äspö.

The methodology for hydraulic testing with the permeameter equipment was first developed using samples from the Q-tunnel. Then 19 samples from a sampling campaign on slabs from the S-tunnel were analysed. In order to improve the understanding of the hydraulic regime surrounding a tunnel there was a need for a reclassification of the fractures in the geometrical model. Together with the direct blast and blast-induced fractures the so-called natural fractures were subdivided into natural open, natural closed/tight and natural healed fractures.

In summary, the permeameter results show the following:

- Generally, the normal stress of 0.5 MPa generates transmissivity values half an order of magnitude higher compared to the 1.0 MPa stress level.
- Conspicuous, single-induced fractures show low transmissivity values T< $5 \cdot 10^{-9}$ m²/s although the sample is small: only three specimens.
- Natural tight/closed and natural healed fractures have low transmissivity values, approximately $T < 5 \cdot 10^{-9} \text{ m}^2/\text{s}.$
- Considering the natural open fractures from a statistical population, the confining pressure of 0.5 MPa will give a mean value $T = 3.7 \cdot 10^{-6} \text{ m}^2/\text{s}$ and a standard deviation $\text{STD}[\log] = 0.31$. At a confining pressure of 1.0 MPa the mean value is $T = 2.1 \cdot 10^{-6} \text{ m}^2/\text{s}$ and $\text{STD}[\log] = 0.34$.
- During the methodology development of the triaxial cell permeameter it is obvious that there are uncertainties regarding representative normal stress levels when running the equipment. The *in situ* results indicate a normal stress level in the laboratory determinations that was slightly too low. Figure 8-10 shows that the stress level ought to be approximately 2.0–3.0 MPa in order to simulate similar *in situ* open natural fractures (preliminary interpretation based on 32 mm drill cores from test holes) experienced from the single hole testings in the tunnel wall.

Using additional single-hole testing equipment (Diameter 32 mm, hole depth ~ 0.5 m) it has been possible to compare the laboratory data with *in situ* results. Eleven water injection tests were performed in the S-tunnel below the block excavation site and at the opposite wall in the S-tunnel. In summary the *in situ* results show:

- The single-hole hydraulic test close to the tunnel contour is a robust method to determine the range of transmissivity values, although there is a need for improvement regarding initial pressure conditions since half of the tests indicated zero or negative initial water pressures (unsaturated). These circumstances may imply transmissivity determinations that were slightly too low.
- Based on the water injection tests the median value considered as a characteristic transmissivity value of the disturbed zone around the S-tunnel was determined at $T = 9.2 \cdot 10^{-9} \text{ m}^2/\text{s}$ and the distribution interval covers approximately three orders of magnitude.
- Sections sealed off with packers were chosen according to the occurrence of fractures in the drilling cores. Considering all sealed-off sections as representative for single fractures the fracture transmissivity median was determined to be $T = 2.9 \cdot 10^{-9} \text{ m}^2/\text{s}$. The distribution interval covers approximately four orders of magnitude.

A generalised conclusion from the field study at Äspö and the laboratory tests at Chalmers indicates the following:

- Natural open fractures are the dominating hydraulic features that surround the tunnel if the excavation has been carefully blasted similar to what was done in the S-tunnel at Äspö HRL.
- The excavation disturbed zone as indicated by micro cracks has an extension of 250–350 mm into the tunnel wall.
- There is no significant axial hydraulic connectivity due to few blast-induced fractures.
- A typical in situ mean transmissivity determined from slim boreholes in the excavation disturbed zone is $T = 10^{-8} \text{ m}^2/\text{s}$ and the values may be distributed over three orders of magnitude. If fracture transmissivities in the zone are considered, typical values equal $T = 3 \cdot 10^{-9} \text{ m}^2/\text{s}$ and the range interval may be even larger.
- If the features in the tunnel wall are classified into induced, natural open, natural closed and healed fractures and combined with representative T-values determined in permeameters, the DFN-modelling in the engineered barrier may be improved.

References

Andersson C, 2007. Äspö Pillar Stability Experiment, Final Report. Rock mass response to coupled mechanical thermal loading. SKB TR-07-01, Svensk Kärnbränslehantering AB.

Bäckblom G, 2008. Excavation damage and disturbance in crystalline rock – results from experiments and analyses. SKB TR-08-08, Svensk Kärnbränslehantering AB.

Christiansson R, Ericsson L O, Gustafson G, 2009. Hydraulic characterisation and conceptual modelling of the Excavation Disturbed Zone (EDZ). Proceedings from SINOROCK 2009, International Symposium on Rock Mechanics "Rock Characterization, Modelling and Engineering Design Methods" 19–22 May 2009, Hong Kong.

Fransson Å, 2009. Literature survey: Relations between stress change, deformation and transmissivity for fractures and deformation zones based on *in situ* investigations. SKB R-09-13, Svensk Kärnbränslehantering AB.

Funehag J, 2008. Injekteringen av TASS-tunneln. Delresultat t o m september 2008. SKB R-08-123, Svensk Kärnbränslehantering AB.

Gustafson G, 2009. Hydrogeologi för bergbyggare. Formas. Stockholm.

Hernqvist L, Fransson Å, Gustafson G, Emmelin A, Eriksson M, Stille H, 2009. Analyses of the grouting results for a section of the APSE tunnel at Äspö Hard Rock Laboratory. International Journal of Rock Mechanics & Mining Sciences 46, 2009. 439–449.

Hudson JA, Backstrom A, Rutqvist J, Jing L, Backers T, Chijimatsu M, Christiansson R, Feng XT, Kobayashi A, Koyama T, Lee HS, Neretnieks I, Pan PZ, Rinne M, Shen BT, 2009. Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal, Environmental Geology, 57 (6), 1275–1297.

Laaksoharju M, Gimeno M, Auqué L, Gómez J, Acero P, Pedersen K, 2009. Hydrogeochemical and microbiological effects on fractures in the Excavation Damaged Zone (EDZ). SKB R-09-05, Svensk Kärnbränslehantering AB.

Larsson E, 1997. Groundwater flow through a natural fracture. Flow experiments and numerical modelling. Licentiate degree thesis, Report A 82, Dep. of Geology, Chalmers University of Technology. Göteborg.

Olsson M, Niklasson B, Wilson L, Andersson C, Christiansson R, 2004. Experience of blasting of the TASQ tunnel. SKB R-04-73, Svensk Kärnbränslehantering AB.

Olsson M, Markström I, Pettersson A, 2008. Methodology study for documentation and 3D modelling of blast induced fractures. SKB Rapport R-08-90, Svensk Kärnbränslehantering AB.

Olsson M, Markström I, Pettersson A, Sträng M, 2009. Examination of the Excavation Damaged Zone in the TASS tunnel, Äspö HRL. SKB R-09-39, Svensk Kärnbränslehantering AB.

Rutqvist J, Stephansson O ,2003. The role of hydromechanical coupling in fractured rock engineering. Hydrogeology Journal, Vol 11 (1), 7–40.

Schuster, 2007. Äspö Hard Rock Laboratory-DECOVALEX-Ultrasonic borehole measurements in the TASQ tunnel (450 m level) at Äspö HRL performed by BGR in November 2006.

Appendix 1

Sample-ID	BB1	BB2	BB3
Air temp (°C)	20	21.1	20
Water temp (°C)	14	Room temperature	14
Sample height (m)	0.112	0.115	0.117
Dh (mvp)	0.64	0.64	0.64
a) Trace length of fractures, upper side (m)	1a) 0.134 m <i>(o).</i> 2a) 0.173 m <i>(o)</i> .	1a) 0.195 <i>(o</i>). 2a) 0.135 <i>(o</i>).	No visible fracture
o – open 1/2-o: half-open c – closed h – healed	3a) 0.08 m <i>(o)</i> . 4a) 0.05 m <i>(o)</i>	3a) 0.07 <i>(o)</i>	
b) Trace length of fractures, bottom side (m)	2b) 0.17 (c).	1b) 0.185 <i>(o)</i> 2b) 0.10 <i>(o)</i>	No visible fracture
o – open 1/2-o: half-open c – closed h – healed	3b) 0.06 <i>(c)</i>	3b) 0.185 <i>(c)</i>	
Combination of fractures	1a and 1b is the same fracture.	1a and 1b is the same fracture.3a and 2b is the same fracture.	_
Interpr. mean trace length for flow (m)	0.216 m	0.2 m	0.2 m
Fracture type	-	-	_
Flow path length (m)	-	-	-
Flow path length, calc. (m)	0.114 (h = 0.112)	0.116 (h = 0.115)	-

Investigations in the Q-tunnel Äspö HRL. Database

Sample-ID BB1

•							
Pressure (bar)				5			
Time (c)	1,242	1,457	1,690	1,916	2,070	2,250	2,400
Q (m³/s)	8.052E-07	6.863E-07	5.917E-07	5.219E-07	4.831E-07	4.444E-07	4.167E-07
Pressure (bar)				10			
Time (c)	2,610	2,648	2,772	2,852	3,064	3,2	260
Q (m³/s)	3.831E-07	3.776E-07	3.608E-07	3.506E-07	3.264E-07	3.067	7E-07
Sample-ID BB2							
Pressure (bar)		5	5			7.5	
Time (c)	560	560	5	50	950	920	930
Q (m³/s)	1.786E-06	1.786E-06	1.81	8E-06	1.053E-06	1.087E-06	1.075E-06
Pressure (bar)		1	0			7.5	
Time (c)	1,560	1,570	1,5	570	1,620	1,620	1,620
Q (m³/s)	6.410E-07	6.369E-07	6.36	9E-07	6.173E-07	6.173E-07	6.173E-07
Pressure (bar)		5	5				
Time (c)	1,500	1,530	1,550	1,530			
Q (m³/s)	6.667E-07	6.536E-07	6.452E-07	6.536E-07			
Sample-ID BB3							
Pressure (bar)	5						
Time (c)	59,400						
Q (m³/s)	0.00E+00						

Sample-ID	BC
Air temp (°C)	1) 20.7 (2008-09-03) 2) 19.8 (2008-09-04) 3) 19.5 (2008-09-16) 4) 20.3 (2008-09-18) 5) 15.5 (2008-09-19)
Water temp (°C)	1) 18 (2008-09-03) 2) 18 (2008-09-04)
	3) 16 (2008-09-16) 4) 15 (2008-09-18)
	5) 20 (2008-09-19)
Sample height (m)	0.091
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.18 m <i>(o)</i> 2a) 0.195 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed	3a) 0.255 (h)
b) Trace length of fractures, bottom side (m)	1b) 0.135 (o) 2 b) 0.03 (1/2-ö)
o – open 1/2-o: half-open c – closed h – healed	3b–7b varying length of closed fractures
Combination of fractures	1a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0.115 m
Fracture type	-
Flow path length (m)	-
Flow path length, calc. (m)	0.102 (h = 0.091)

					1) 0					
40.69	40.34	39.5	39.22	39.03	38.57	38.28	38.07	38	37.62	37.75
2.458E-05	2.479E-05	2.532E-05	2.550E-05	2.562E-05	2.593E-05	2.612E-05	2.627E-05	2.632E-	05 2.658E-05	2.649E-05
		1) 2					1) 4		
380	373	373	373	373	421	426	427		427	429
2.632E-06	2.681E-06	2.681E-06	2.681E-06	2.681E-06	2.375E-06	2.347E-06	2.342E-	06	2.342E-06	2.331E-06
2) 6					2) 8					
524	534	523	526	532	544	544	621	634	642	647
1.908E-06	1.873E-06	1.912E-06	1.901E-06	1.880E-06	1.838E-06	1.838E-06	1.610E-06	1.577E-06	1.558E-06	1.546E-06
	3) 10					4)) 10			
876	877	883	1,	050	1,083	1,	119	1,136	1,	160
1.142E-06	1.140E-06	1.133E-06	9.52	4E-07	9.234E-07	8.93	7E-07	8.803E-07	8.62	1E-07
5) 6							ŧ	5) 2		
1,294	1,306	1,366	1,420	1,484	1,502	1,348	1	,362	1,360	1,352
7.728E-07	7.657E-07	7.321E-07	7.042E-07	6.739E-07	6.658E-07	7.418E-0	7.34	12E-07	7.353E-07	7.396E-07
	2.458E-05 380 2.632E-06 524 1.908E-06 876 1.142E-06 1,294	2.458E-05 2.479E-05 380 373 2.632E-06 2.681E-06 524 534 1.908E-06 1.873E-06 3) 10 3) 10 876 877 1.142E-06 1.140E-06 1,294 1,306	2.458E-05 2.479E-05 2.532E-05 1) 2 380 373 373 2.632E-06 2.681E-06 2.681E-06 2.632E-06 2.681E-06 2.681E-06 524 534 523 1.908E-06 1.873E-06 1.912E-06 3876 877 883 1.142E-06 1.140E-06 1.133E-06 1.294 1,306 1,366	2.458E-05 2.479E-05 2.532E-05 2.550E-05 1) 2 380 373 373 373 2.632E-06 2.681E-06 2.681E-06 2.681E-06 2.632E-06 2.681E-06 2.681E-06 2.681E-06 524 534 523 526 1.908E-06 1.873E-06 1.912E-06 1.901E-06 876 877 883 1, 1.142E-06 1.140E-06 1.133E-06 9.52 5.26 1.306 1,366 1,420	2.458E-052.479E-052.532E-052.550E-052.562E-05 $1) 2$ $1) 2$ 3803733733732.632E-062.681E-062.681E-062.681E-062.681E-062.632E-062.681E-062.681E-062.681E-062.681E-065245345235265321.908E-061.873E-061.912E-061.901E-061.880E-06876877883 $1,01E-06$ 9.524E-071.142E-061.140E-061.133E-069.524E-071,2941,3061,3661,4201,484	40.69 40.34 39.5 39.22 39.03 38.57 $2.458E-05$ $2.479E-05$ $2.532E-05$ $2.550E-05$ $2.562E-05$ $2.593E-05$ $1)2$ $1)2$ 102 102 102 380 373 373 373 373 421 $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ 524 534 523 526 532 544 $1.908E-06$ $1.873E-06$ $1.912E-06$ $1.901E-06$ $1.880E-06$ $1.838E-06$ 876 877 883 1.050 1.083 $1.142E-06$ $1.140E-06$ $1.133E-06$ $9.524E-07$ $9.234E-07$ 1.294 1.306 1.366 1.420 1.484 1.502	40.69 40.34 39.5 39.22 39.03 38.57 38.28 $2.458E-05$ $2.479E-05$ $2.532E-05$ $2.550E-05$ $2.562E-05$ $2.593E-05$ $2.612E-05$ $1) 2$ $1) 2$ $2.562E-05$ $2.593E-05$ $2.612E-05$ 380 373 373 373 373 421 426 $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ 524 534 523 526 532 544 544 $1.908E-06$ $1.873E-06$ $1.912E-06$ $1.880E-06$ $1.838E-06$ $1.838E-06$ $3)10$ $1.912E-06$ $1.901E-06$ $1.830E-06$ $1.083E-06$ $1.838E-06$ $1.142E-06$ $1.140E-06$ $1.133E-06$ $9.524E-07$ $9.234E-07$ 8.93 1.294 1.306 1.366 1.420 1.484 1.502 1.348	40.69 40.34 39.5 39.22 39.03 38.57 38.28 38.07 $2.458E-05$ $2.479E-05$ $2.532E-05$ $2.550E-05$ $2.562E-05$ $2.593E-05$ $2.612E-05$ $2.627E-05$ $1)2$ $1)2$ $2.550E-05$ $2.593E-05$ $2.612E-05$ $2.627E-05$ 380 373 373 373 373 421 426 427 $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ $2.342E-06$ $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ $2.342E-06$ 524 534 523 526 532 544 544 621 $1.908E-06$ $1.873E-06$ $1.912E-06$ $1.901E-06$ $1.838E-06$ $1.838E-06$ $1.838E-06$ $1.610E-06$ 876 877 883 $1,050$ $1,083$ $1,119$ $1.142E-06$ $1.140E-06$ $1.133E-06$ $9.524E-07$ $9.234E-07$ $8.93T-7$ 1.294 $1,306$ $1,366$ $1,420$ $1,484$ $1,502$ $1,348$ 1	40.69 40.34 39.5 39.22 39.03 38.57 38.28 38.07 38.28 $2.458E-05$ $2.479E-05$ $2.532E-05$ $2.550E-05$ $2.562E-05$ $2.593E-05$ $2.612E-05$ $2.627E-05$ $2.632E-05$ $1)2$ $1)2$ $2.532E-06$ $2.631E-06$ $2.631E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ $2.342E-05$ $2.342E-05$ $2.632E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.681E-06$ $2.375E-06$ $2.347E-06$ $2.342E-05$ $2.342E-05$ 524 534 523 526 532 544 544 621 634 $1.908E-06$ $1.873E-06$ $1.912E-06$ $1.901E-06$ $1.880E-06$ $1.838E-06$ $1.838E-06$ $1.610E-06$ $1.577E-06$ 310 $1.912E-06$ $1.901E-06$ $1.880E-06$ $1.838E-06$ $1.838E-06$ $1.610E-06$ $1.577E-06$ 310 $1.912E-06$ $1.901E-06$ $1.830E-06$ $1.838E-06$ $1.838E-06$ $1.610E-06$ $1.577E-06$ 310 $1.912E-06$ $1.912E-06$ $9.524E-07$ $9.234E-07$ $8.83T-07$ $8.803E-07$ $8.803E-07$ 516 $9.52E-07$ $9.234E-07$ $8.93E-07$ $8.803E-07$ 1.294 1.306 1.366 1.420 1.484 1.502 1.348 1.362	40.69 40.34 39.5 39.22 39.03 38.57 38.28 38.07 38.07 38 37.62 $2.458E-05$ $2.632E-05$ $2.502E-05$ $2.632E-05$ $2.342E-06$ $2.342E-$

Sample-ID	No.	Midpoint. 1/2 transmitter length (cm)	Mean diameter	Time (µs)	V_p (m/s)
Slab BC	1	3.6	93.18	16.393	5,684
	2	5.75	93.18	16.386	5,686
	3	7.9	93.18	15.788	5,902
	4	10.05	93.18	15.648	5,955
	5	12.2	93.18	15.86	5,875
	6	14.35	93.18	15.84	5,882
	7	16.5	93.18	15.289	6,094

Slab BC	Sample-ID	Distance from contour hole in cm	Length (cm)	Time (µs)	V _p (m/s)
	v1a	20	8.552	15.149	5,645
	v1b	34.5	8.528	14.361	5,938
	h1c	16	5.853	10.659	5,491
	h1d	23.5	8.553	15.845	5,398
	h1e	32.05	6.771	11.803	5,737

Slab BC	Sample-ID	Length (cm)	Initial weight (g)	Porosity %	Density (g/cm³)	Weight in water (g)	Final weight (g)	Radius (cm)
	v1a	8.552	339.27	0.157229	2.69409	_	339.468	2.165
	v1b	8.528	342.894	0.170578	2.720469	-	343.109	2.169
	h1a	_	254.223	0.504762	_	161.308	254.692	_
	h1b	_	277.137	0.583995	_	175.595	277.730	_
	h1c	5.853	233.907	0.384046	2.715325	-	234.238	2.165
	h1d	8.553	339.771	0.273169	2.691393	-	340.116	2.168
	h1e	6.771	257.854	0.174353	2.585075	-	258.028	2.166

Slab BC	Sample-ID	Density (kg/m³)	Vp (m/s)	E-modulus (GPa)
	v1a	2,694	5,645	86
	v1b	2,720	5,938	96
	h1c	2,715	5,491	82
	h1d	2,691	5,398	78
	h1e	2,585	5,737	85

Sample-ID	BD1–BD2
Air temp (°C)	20.6
Water temp (°C)	Room temperature
Sample height (m)	0.110
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.066 <i>(o)</i> 2a) 0.102 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	3a) 0.045 (c) 4a) 0.11 (c) 5a) 0.09 (c) + a number of smaller closed fractures
b) Trace length of fractures, bottom side (m) o – open 1/2-o: half-open c – closed h – healed	1b) 0.107 <i>(o)</i> 2b) 0.097 <i>(1/2-o)</i> 3b) 0.12 <i>(1/2-o)</i> 4b) 0.095 <i>(1/2-o)</i> 5b) 0.175 <i>(1/2-o)</i>
Combination of fractures	Complex system. 1) 1a and 3b is the same fracture. 2) 2a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0.404 m
Fracture type	-
Flow path length (m)	-
Flow path length, calc. (m)	1) 0.121 (h = 0.11) 2) 0.124 (h = 0.11)

Sample-ID BD1-BD2

Pressure (bar)		5					
Time (c)	8,090	9,795	11,570	12,950	13,740	14,260	
Q (m³/s)	1.236E-07	1.021E-07	8.643E-08	7.722E-08	7.278E-08	7.013E-08	
Pressure (bar)		10					
Time (c)	17,480	18,12	20 19,	,540 2	22,000	23,930	
Q (m³/s)	5.721E-08	5.519E	-08 5.11	8E-08 4.5	545E-08	4.179E-08	

____ ____

Sample-ID	2. AB1-AB2
Air temp (°C)	20.1
Water temp (°C)	Room temperature
Sample height (m)	0.101
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	0.195 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m)	0.197 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	1a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0,196 m
Fracture type	-
Flow path length (m)	Sample height
Flow path length, calc. (m)	-

Sample-ID 2.AB1-AB2

Pressure (bar)				5		
Time (c)	4,170	4,240	4,470	4,570	4,560	4,560
Q (m³/s)	2.398E-07	2.358E-07	2.237E-07	2.188E-07	2.193E-07	2.193E-07
Pressure (bar)				10		
Time (c)	8,370		8,400	8,420	8	3,450
Q (m³/s)	1.195E-07	1.1	90E-07	1.188E-07	1.1	83E-07

Sample-ID	3.AC1–AC2
Air temp (°C)	20.4
Water temp (°C)	Room temperature
Sample height (m)	0.099
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.187 <i>(o)</i> 2a) 0.12 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m)	1b) 0.185 (o) 2b) 0.08 (1/2-o)
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	1a and 1b is the same fracture. 2a and 2b is the same fracture
Interpr. mean trace length for flow (m)	0.226 m
Fracture type	-
Flow path length (m)	Sample height
Flow path length, calc. (m)	-

Sample-ID 2.AB1-AB2

Pressure (bar)		5			10	
Time (c)	1,890	1,880	1,870	2,600	2,660	2,660
Q (m³/s)	5.291E-07	5.319E-07	5.348E-07	3.846E-07	3.759E-07	3.759E-07

Sample-ID	1.4 övre
Air temp (°C)	20.1
Water temp (°C)	Room temperature
Sample height (m)	0.076
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.187 <i>(o)</i> 2a) 0.032 (1/2-o)
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m) o – open 1/2-o: half-open c – closed h – healed	1b) 0.12 (<i>o</i>) There is a cavity in the fracture from the bottom side and up into the rock sample. The cavity is 0.067 m long and elongated in the fracture direction, with a widening in the middle.
Combination of fractures	1a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0.17 m
Fracture type	-
Flow path length (m)	Sample height
Flow path length, calc. (m)	

Sample-ID 1.4 övre

Pressure (bar)		5			10	
Time (c)	400	405	405	655	665	665
Q (m³/s)	0.0000025	2.469E-06	2.469E-06	1.527E-06	1.504E-06	1.504E-06

Sample-ID	4.1 undre
Air temp (°C)	20.8
Water temp (°C)	Room temperature
Sample height (m)	0.083
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.134 <i>(1/2-o)</i> 2a) 0.067 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m)	_
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	_
Interpr. mean trace length for flow (m)	0.070 m
Fracture type	_
Flow path length (m)	_
Flow path length, calc. (m)	-

Sample-ID 4.1 undre

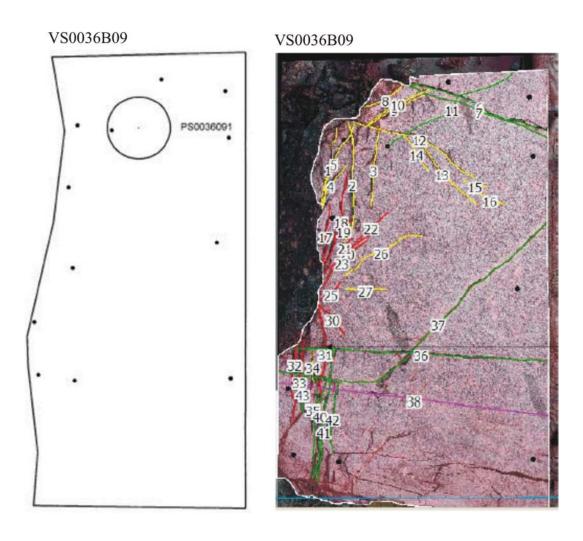
Pressure (bar)	5
Time (c)	1,800
Q (m³/s)	0.000E+00

Sample-ID	2.2.2
Air temp (°C) Water temp (°C) Sample height (m) Dh (mvp) (mvp)	21.1 Room temperature 0.108–0.117 0.64
a) Trace length of fractures, upper side (m) o – open 1/2-o: half-open c – closed h – healed	1a) 0.177 <i>(c)</i> 2a) 0.13 <i>(o)</i> 3a) 0.144 <i>(o)</i> 4a) 0.044 <i>(1/2-o)</i> 5a) 0.027 <i>(o)</i>
b) Trace length of fractures, bottom side (m) o – open 1/2-o: half-open c – closed h – healed	1b) 0.186 <i>(o)</i> 2b) 0.13 <i>(c)</i> 3b) 0.077 <i>(c)</i>
Combination of fractures	1b och 2a is the same fracture. It crosses through the whole rock sample only on one edge. 5a looks like it crosses through the whole sample but there is no fracture on the b-side corresponding to 5a. Complex system.
Interpr. mean trace length for flow (m) Fracture type Flow path length (m) Flow path length, calc. (m)	0.458 m - - -

Sample-ID 2.2.2

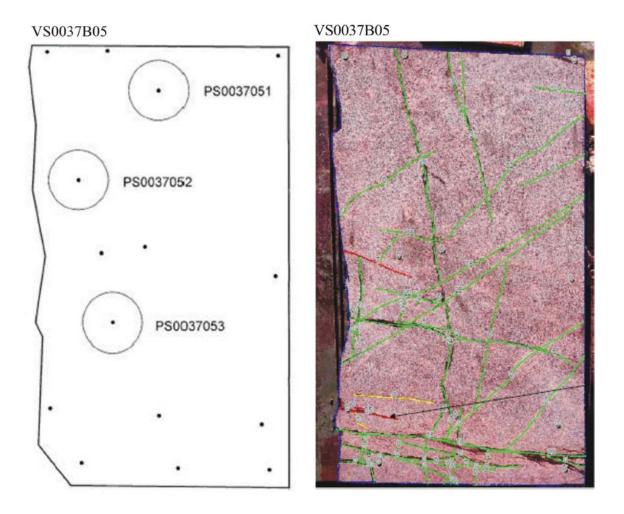

Pressure (bar)		5			10	
Time (c)	2,980	2,960	2,980	4,070	4,180	4,190
Q (m³/s)	3.356E-07	3.378E-07	3.356E-07	2.457E-07	2.392E-07	2.387E-07

Sample-ID	XX
Air temp (°C)	21.2
Water temp (°C)	Room temperature
Sample height (m)	0.102
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.195 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m)	1b) 0.186 (o) 2b) 0.15 (o) 3b) 0.095 (o) 4b) 0.06 (o)
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	1a and 1b–3b is the same fracture.
Interpr. mean trace length for flow (m)	0.19 m
Fracture type	-
Flow path length (m)	Sample height
Flow path length, calc. (m)	-


Sample-ID XX

Pressure (bar)		ŧ	5			7.	.5	
Time (c)	2,090	2,	150	2,160	3,110	3,210	3	,510
Q (m³/s)	3.356E-07	3.37	8E-07	3.356E-07	2.457E-07	2.392E-07	2.38	37E-07
Pressure (bar)		10		7	.5		5	
Time (c)	4,730	5,080	5,230	5,400	5,440	5,390	5,880	5,970
Q (m³/s)	2.114E-07	1.969E-07	1.912E-07	1.852E-07	1.838E-07	1.855E-07	1.701E-07	1.675E-07

Investigations in the S-tunnel Äspö HRL, Database


Scanline-ID	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V _p (m/s)	Comments
LS0036041	0	0	90	_	_	No signal
	1	2.05	90.2	_	_	No signal
	2	4.1	90.3	_	_	No signal
	3	6.15	90.5	_	_	No signal
	4	8.2	90.6	_	_	No signal
	5	10.25	90.8	_	_	No signal
	6	12.3	90.9	_	-	No signal
	7	14.35	91.1	_	-	No signal
	8	16.4	91.3	19.818	4,604	Weak signal
	9	18.45	91.4	17.979	5,084	Weak signal
	10	20.5	91.6	16.582	5,522	-
	11	22.55	91.7	16.096	5,698	Good signal
	12	24.6	91.9	16.295	5,638	Good signal
	13	26.65	92.0	16.497	5,579	-
	14	28.7	92.2	16.346	5,640	
	15	30.75	92.3	16.283	5,671	
	16	32.8	92.5	16.4	5,640	
	17	34.85	92.7	_	_	No signal

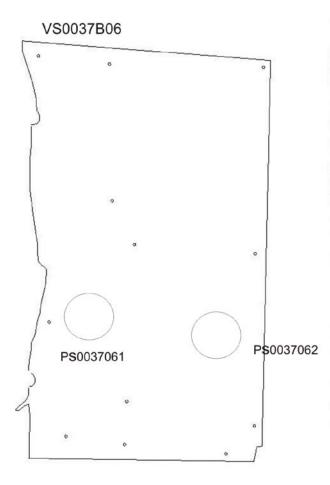
Sample-ID	PS0036091
Air temp (°C)	20
Water temp (°C)	Room temperature
Sample height (m)	0.13-0.135
Dh (mvp) (mvp)	35.1
a) Trace length of fractures, upper side (m)	1a) 0.145 <i>(1/2-o)</i>
o – open	2a) 0.175 <i>(h)</i>
1/2-o: half-open	
c – closed	
h – healed	
b) Trace length of fractures, bottom side (m)	1b) 0.15 <i>(1/2-o)</i> 2b) 0.107 3b) 0.07 4b) 0.055 5b) 0 075
o – open	6b) 0.07 7b) 0.12 8b) 0.06
1/2-o: half-open	9b) 0.03
c – closed h – healed	2b-9b (h)
Combination of fractures	1b and 2b meet at side and emerge in 1a. 1b is same fracture as 2a. Complex system.
Interpr. mean trace length for flow (m)	0,1475
Fracture type	induced
Flow path length (m)	_
Flow path length, calc. (m)	-

Pressure (bar)	5			10	1	0*
Time (s)	4,200	5,250	5,390	15,950	161	163
Q (m³/s)	2.381E-07	1.905E-07	1.855E-07	6.270E-08	2.44E-08	2.41E-08

 * Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID	PS0037051	PS0037052	PS0037053
Air temp (°C)	20.6 20.6 20.6	20	20.6
Water temp (°C)	Room temperature	Room temperature	Room temperature
Sample height (m)	0.091-0.093	0.094	0.093
Dh (mvp) (mvp)	0.64	35.1	0.64
a) Trace length of fractures, upper side (m)	1a) 0.19 <i>(h)</i>	1a) 0.19 <i>(h)</i>	1a) 0.195 <i>(o)</i> 2a) 0.18 <i>(1/2-o)</i> 3 a) 0.18 <i>(h</i>)
o – open 1/2-o: half-open c – closed h – healed			
b) Trace length of fractures, bottom side (m)	1b) 0.135 <i>(h)</i> 2 b) 0.05 <i>(h)</i>	1b) 0.13 <i>(h)</i>	1b) 0.19 (o) 2b) 0.18 (h) 3b) 0.1 (h) 4 b) 0.07 (h)
o – open 1/2-o: half-open c – closed h – healed	3 b) 0.05 <i>(h)</i>		
Combination of fractures	-	1a and 1b is the same fracture. 1 b is located further to the side than 1a which crosses at the centre of the upper side of the rock sample The fracture is in an oblique angle.	1a and 1b is the same fracture. 3a and 3b is the same fracture
Interpr. mean trace length for flow (m)	0,1625	0,16	0,1925
Fracture type	natural	natural	natural
Flow path length (m)	_	_	Sample height
Flow path length, calc. (m)	_	0.110 (h = 0.094)	-

Pressure (bar)	5	10	
Time (s)	780	600	
Q (m³/s)	0.00E+00	0.000E+00	


Sample-ID PS0037052

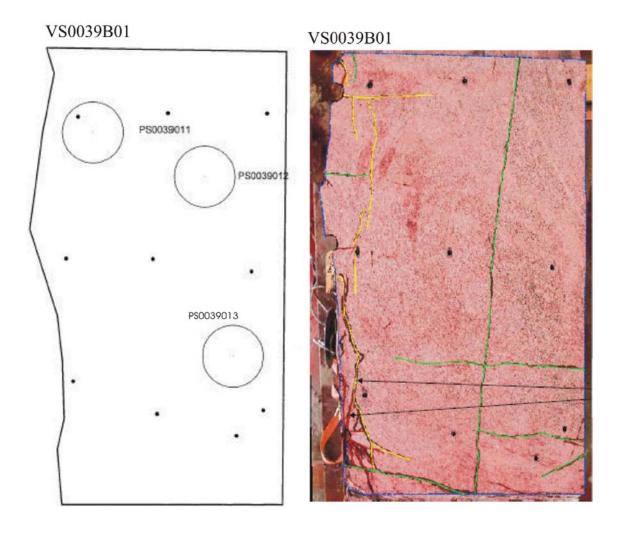
Pressure (bar)	5	10*
Time (s)	-	3,600
Q (m³/s)	-	0.000E+00

 * Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID PS0037053

Pressure (bar)	Ę	5			
Time (s)	216	218	440	450	455
Q (m³/s)	4.630E-06	4.587E-06	2.273E-06	2.222E-06	2.198E-06

VS0037B06


Sample-ID	PS0037061	PS0037062
Air temp (°C)	20.6	20
	20.6	
	20.6	
Water temp (°C)	Room temperature	Room temperature
Sample height (m)	0.1 is the thickest point and 0.09 is the thinnest.	0.09–0.099
	sprickans utgång och 0.09 m på det tunnaste stället	
Dh (mvp) (mvp)	0.64	35.3–35.8
a) Trace length of fractures, upper side (m)	1a) 0.19 <i>(o</i>) 2a) 0.185 <i>(h)</i> 3a) 0.145 <i>(h)</i>	1a) 0.185 <i>(c)</i> 2a) 0.13 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed		
b) Trace length of fractures, bottom side (m)	1b) 0.19 <i>(o)</i> 2 b) 0.102 m <i>(1/2-o)</i>	1b) 0.165 <i>(c)</i> 2b) 0.14 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed		
Combination of fractures	1a and 1b is the same fracture. 2a and 2b is the same fracture.	1a and 1b is the same fracture. 2a and 2b is the same fracture.
Interpr. mean trace length for flow (m)	0,19	0,31
Fracture type	natural	natural
Flow path length (m)	-	Sample height
Flow path length, calc. (m)	0.091 (h = 0.09) 0.096 (h = 0.095) 0.101 (h = 0.1)	-

Cample-ID 1 0000	/001									
Pressure (bar)	2				4			6		
Time (s)	84 84		120	125	125	180	1	80		
Q (m³/s)	1.190E-05 1.190E-05		8.333E-06	8.000E-06	8.000E-06	5.556E-06	5.55	6E-06		
Pressure (bar)			8			10			8	
Time (s)	2	35	:	235	290	300	300	295	295	300
Q (m³/s)	4.25	5E-06	4.25	55E-06	3.448E-06	3.333E-06	3.333E-06	3.390E-06	3.390E-06	3.333E-06
Pressure (bar)			6			4			2	
Time (s)	290 290		285		290	265	2	.70		
Q (m³/s)	3.448E-06 3.448E-06		3.509E-06	6 3.4	48E-06	3.774E-06	3.70	4E-06		
Pressure (bar)	4			6				8		
Time (s)	2	85	:	285	300		295	320	325	325
Q (m³/s)	3.509	9E-06	3.50	09E-06	3.333E-06	6 3.3	90E-06	3.125E-06	3.077E-06	3.077E-06
Pressure (bar)		10		20			18			
Time (s)	345	3	50	345	1,000 1,010		950 950			
Q (m³/s)	2.899E-0	6 2.85	7E-06	2.899E-06	1.000E-06 9.901E-07		1.053E-06 1.053E-06			
Pressure (bar)			16		14		12			
Time (s)	9:	50	(960	1,000		1,010	990	1,	000
Q (m³/s)	1.053	3E-06	1.00	00E-06	1.000E-06	6 9.9	01E-07	1.010E-06	1.00	0E-06
Pressure (bar)			10			8			6	
Time (s)	990	970	940	950	1,000		960	960	890	870
Q (m³/s)	1.010E-06	1.031E-06	1.064E-06	1.053E-06	1.000E-06	6 1.0	00E-06	1.042E-06	1.124E-06	1.149E-06
Pressure (bar)			4			2				
Time (s)	79	90	8	300	660		660			
Q (m³/s)	1.266	6E-06	1.25	50E-06	1.515E-06	6 1.5	15E-06			

Sample-ID PS0037062

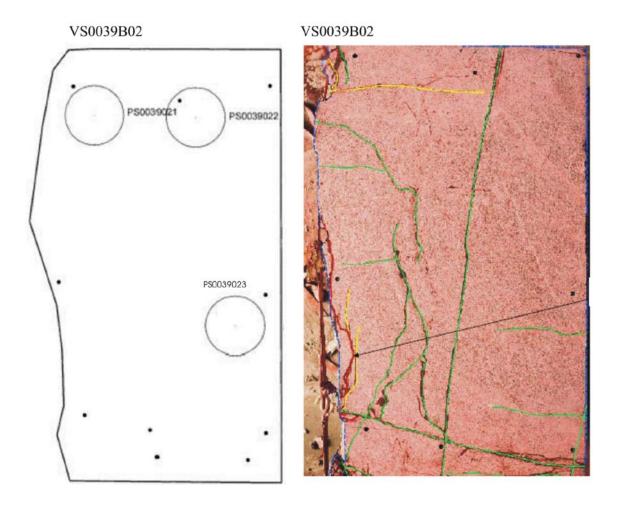
Pressure (bar)	5	;*	10*		
Time (s)	102.59	102.13	126.25	126.78	
Q (m³/s)	3.828E-08	3.845E-08	3.110E-08	3.097E-08	

* Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID	PS0039011	PS0039012	PS0039013
Air temp (°C)	20 20.6	20.6	20
Matan tanan (90)	20.6		
Water temp (°C)	Room temperature	Room temperature	0.000.0.000
Sample height (m)	0.061–0.073 sprickans utgång och 0.09 m på det tunnaste stället	0.085–0.079	0.096–0.099
Dh (mvp) (mvp)	35.1	0.64	34.8
a) Trace length of fractures, upper side (m)	1a) 0.17 <i>(c)</i>	1a) 0.19 <i>(o)</i>	1a) 0.195 <i>(1/2-o).</i> 0.07 m of 1a is <i>(h)</i>
o – open 1/2-o: half-open c – closed h – healed			
b) Trace length of fractures, bottom side (m)	1 b) 0.19 <i>(c)</i>	1b) 0.165 <i>(o)</i>	1b) 0.1 $(c-h)$ 2b) 0.19 $(c-h)$ a very weak indication of a fracture.
o – open 1/2-o: half-open c – closed h – healed			
Combination of fractures	1a and 1b is the same fracture	1a and 1b is the same fracture.	1a and 1b is the same fracture but 1a has also contact with the very weakly indicated 2b.
Interpr. mean trace length for flow (m)	0,18 <i>(c)</i>	0,18	0,19
Fracture type	induced	natural	_
Flow path length (m)	_	_	-
Flow path length, calc. (m)	0.061 (h = 0.061) 0.067 (h = 0.067) 0.073 (h = 0.073)	0.099 (h = 0.085) 0.096 (h = 0.082) 0.093 (h = 0.079)	0.113 (h = 0.096) 0.116 (h = 0.099)

Pressure (bar)	5*
Time (s)	3,600
Q (m³/s)	0.00E+00

* Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.


Sample-ID PS0039012

Pressure (bar)			1	0		
Time (s)	580	580 590 610 615				1,140
Q (m³/s)	1.72E-06	1.70E-06	1.64E-06	1.63E-06	8.85E-07	8.77E-07

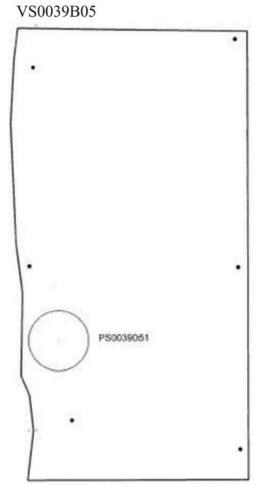
Sample-ID PS0039013

Pressure (bar)	5		10	10*	
Time (s)	7,700	8,700	26,580	120	
Q (m³/s)	1.299E-07	1.149E-07	3.762E-08	3.27E-08	

 * Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID	PS0039021	PS0039022	PS0039023
Air temp (°C)	20 20.6 20.6	20.6	20.6
Water temp (°C)	Room temperature	Room temperature	Room temperature
Sample height (m)	0.090-0.096	0.094	0.09
Dh (mvp) (mvp)	35.1	0.64	35.1
a) Trace length of fractures, upper side (m)	1 a) 0.19 m (1/2-o) 2a) 0.106 m <i>(h)</i>	1 a) 0.19.5 m (o) 2a) 0.095 (1/2-o)	1a) 0.19 <i>(h)</i>
o – open 1/2-o: half-open c – closed h – healed			
b) Trace length of fractures, bottom	1 b) 0.185 <i>(1/2-o)</i> 2 b) 0.19 <i>(h)</i>	1 b) 0.135 m <i>(o)</i> 2 b) 0.03 <i>(1/2- o)</i>	1b) 0.165 <i>(h)</i>
side (m) o – open 1/2-o: half-open c – closed h – healed	3b) 0.16 <i>(h</i>) 4b) 0.045 <i>(h)</i> 5b) 0.095 <i>(h)</i>	3b–7b varying sizes of healed fractures.	
Combination of fractures	1a and 1b is the same fracture.	1a and 1b is the same fracture. 2a and 2b is the same	1a and 1b is the same fracture
		fracture. It starts at 1 a and 1b and runs vertically to the edge of the sample.	
Interpr. mean trace length for flow (m)	0,19	0,165	0,18 <i>(h)</i>
Fracture type	induced	natural	natural
Flow path length (m)	-	-	-
Flow path length, calc. (m)	0.093 (h = 0.09) 0.096 (h = 0.093) 0.099 (h = 0.96)	0.112 (h = 0.094) 0.091 (h = 0.082) 0.089 (h = 0.079)	0.096 (h = 0.09)

Pressure (bar)		5*			10*	
Time (s)	863	771	776	967	1,067	1,118
Q (m³/s)	4.550E-09	5.093E-09	5.061E-09	4.061E-09	3.680E-09	3.513E-09

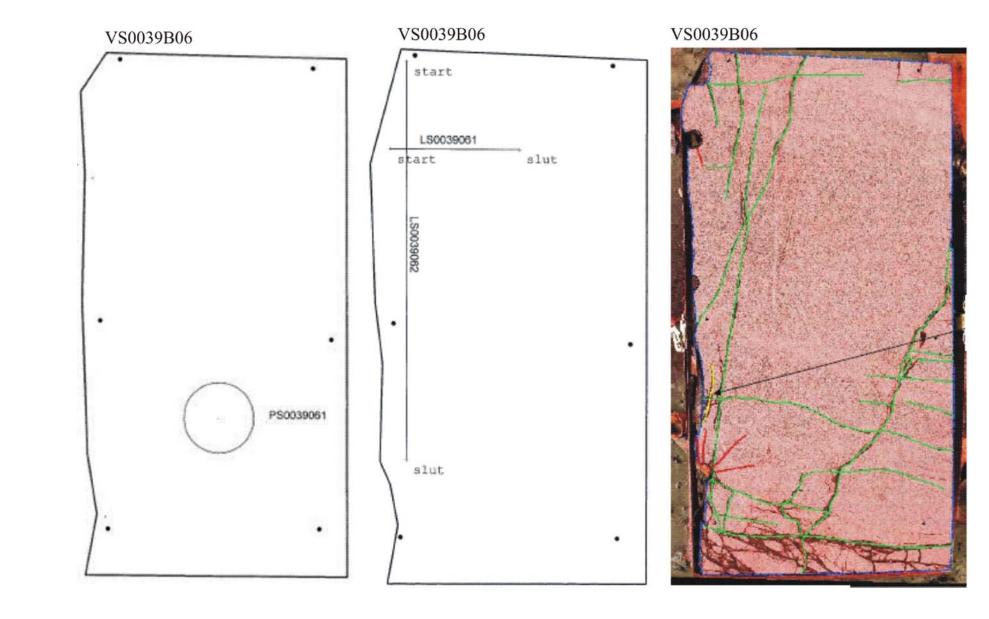

* Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID PS0039022

Pressure (bar)	5			10			
Time (s)	435	460	455	700	750	770	800
Q (m³/s)	2.299E-06	2.174E-06	2.198E-06	1.429E-06	1.333E-06	1.299E-06	1.250E-06

Sample-ID PS0039023

Pressure (bar)	5					10	
Time (s)	90	94	106	105	210	250	237
Q (m³/s)	4.36E-08	4.18E-08	3.70E-08	3.74E-08	1.87E-08	1.57E-08	1.66E-08



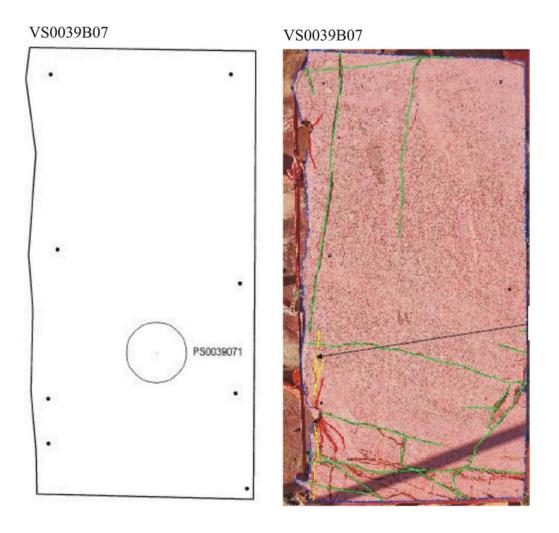
VS0039B05

Sample-ID	PS0039051
Air temp (°C)	20 Room tomporature
Water temp (°C) Sample height (m)	Room temperature 0.093
Dh (mvp)	0.64
(mvp)	0.04
a) Trace length of fractures, upper side (m)	1a) 0.195 <i>(o)</i> 2a) 0.093 <i>(o)</i>
o – open	3a) 0.098 (1/2-o)
1/2-o: half-open	
c – closed	
h – healed	
b) Trace length of fractures, bottom side (m)	
o – open	3b) 0.1 <i>(1/2-o)</i>
1/2-o: half-open	
c – closed h – healed	
Combination of fractures	1a and 1b is the same fracture 2a and 2b is the same
	fracture. It starts at 1a and 1b and runs vertically to the
	edge of the sample. 3a and 3b is the same fracture.
Interpr. mean trace length for flow (m)	0,37
Fracture type	-
Flow path length (m)	-
Flow path length, calc. (m)	0.102 (h = 0.093)
· · · · · · · · · · · · · · · · · · ·	

Pressure (bar)	ł	5	10		
Time (s)	39.8	38.3	56.7	56.85	
Q (m³/s)	2.513E-05	2.611E-05	1.764E-05	1.759E-05	

Sample-ID	PS0039061
Air temp (°C)	20
Water temp (°C)	Room temperature
Sample height (m)	0.09
Dh (mvp) (mvp)	0.64
a) Trace length of fractures, upper side (m)	1a) 0.19 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
b) Trace length of fractures, bottom side (m)	1b) 0.18 <i>(o)</i>
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	1a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0,19
Fracture type	natural
Flow path length (m)	-
Flow path length, calc. (m)	0.100 (h = 0.09)

Sample-ID	PS0039061
-----------	-----------

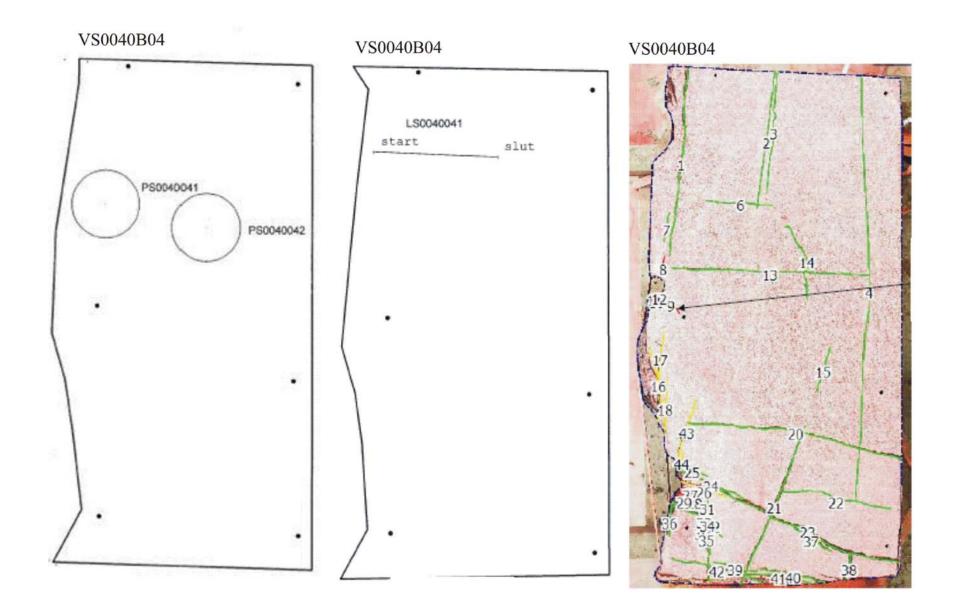

Sample-ID F 5005	0001									
Pressure (bar)		5			10			7.5		
Time (s)	205.3	3	202.2	370		368.8	371.3	362.8	375	
Q (m³/s)	4.871E-	-06	4.946E-06	2.703E-0	06	2.711E-06	2.693E-06	2.756E-06	2.667E-06	
Pressure (bar)		5			2.5			5		
Time (s)	352.8	345.7	354.7	326.6	310	314.7	351.6		350	
Q (m³/s)	2.834E-06	2.893E-06	2.819E-06	3.062E-06	3.226E-06	6 3.178E-06	2.844E-0	6 2.	857E-06	
Pressure (bar)		7.5			10			20		
Time (s)	378.5	370.6	373.7	404.4		405.5	924.4		920.3	
Q (m³/s)	2.642E-06	2.698E-06	2.676E-06	2.473E-0	06	2.466E-06	1.082E-0	6 1.	087E-06	
Pressure (bar)	15			10			5			
Time (s)	884.4	Ļ	881	793.2		783	688.5	664.7	668.7	
Q (m³/s)	1.131E-	-06	1.135E-06	1.261E-0	06	1.277E-06	1.452E-06	1.504E-06	1.495E-06	
Pressure (bar)		10		15			20			
Time (s)	772.1		777.1	859.3		866.5	992.5	1,039.4	1,040.6	
Q (m³/s)	1.295E-	-06	1.287E-06	1.164E-0	06	1.154E-06	1.008E-06	9.621E-07	9.610E-07	
Pressure (bar)		25		20			15			
Time (s)	1,247.2	1,299.1	1,285	1,344.6	1,296.3	1,320	1,214		,210.3	
Q (m³/s)	8.018E-07	7.698E-07	7.782E-07	7.624E-07	7.714E-07	7.576E-07	8.237E-0	7 8.	262E-07	
Pressure (bar)		10		7.5		5				
Time (s)	1,093.	4	1,099.7	1,001.9	1	996.9	856.9		865.4	
Q (m³/s)	9.146E-	-07	9.093E-07	9.981E-0)7	1.003E-06	1.167E-0	6 1.	156E-06	
Pressure (bar)		2.5								
Time (s)	717.2	2	721.9							
Q (m³/s)	1.394E-	-06	1.385E-06							

Scanline-ID	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V_p (m/s)	Comments
LS0039061	0	0	93.5	15.965	5,857	
	1	2.05	93.9	15.985	5,873	
	2	4.1	94.3	15.934	5,916	
	3	6.15	94.6	15.952	5,933	
	4	8.2	95.0	_	-	No contact
	5	10.25	95.4	_	_	No contact
	6	12.3	95.8	15.775	6,073	
	7	14.35	96.2	15.642	6,149	
	8	16.4	96.6	15.197	6,354	
	9	18.45	96.9	15.49	6,258	
	10	20.5	97.3	15.593	6,241	
	11	22.55	97.7	16.001	6,106	
	12	24.6	98.1	15.497	6,329	
	13	26.65	98.5	15.746	6,254	
	14	28.7	98.9	15.881	6,225	
	15	30.75	99.2	15.301	6,486	
	16	32.8	99.6	15.402	6,468	
	17	34.85	100.0	15.399	6,494	

Value with half length of transmitter, 2.05 cm.

Scanline-ID	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V _p (m/s)	Comments
LS0039062	0	0	93	16.132	5,765	
	1	4.1	93	15.893	5,852	
2	8.2	92.6	15.936	5,811		
3	12.3	92.6	15.968	5,799		
4	16.4	93	15.98	5,820		
5	20.5	93	16.134	5,764		
6	24.6	93.3	16.207	5,757		
7	28.7	93.5	15.718	5,949		
8	32.8	93	15.9	5,849		
9	36.9	93	15.933	5,837		
10	41	93	15.847	5,869		
11	45.1	92.6	15.597	5,937		
12	49.2	92.2	15.675	5,882		
13	53.3	92	15.97	5,761		
14	57.4	91	15.95	5,705		
15	61.5	90.6	-	_		Fracture in middle of line
16	65.6	90.9	-	_		No contact
17	69.7	90.3	16.848	5,360		
18	73.8	90.2	_	-		No contact
19	77.9	90.1	15.632	5,764		One transmitter of line away from wall.
20	82	90.1	16.157	5,577		One transmitter of line away from wall.
21	86.1	90	15.987	5,630		
22	90.2	89.9	15.879	5,662		
23	94.3	89.7	15.542	5,771		
24	98.4	89.2	15.444	5,776		No good contact
25	102.5	88.8	15.113	5,876		1/2 transmitter of line against tunnel wall
26	106.6	88.6	15.302	5,790		

Value with one length of transmitter, 4.1 cm.



Sample-ID	PS0039071
Air temp (°C)	20
Water temp (°C)	Room temperature
Sample height (m)	0.098
Dh (mvp) (mvp)	35.1
a) Trace length of fractures, upper side (m)	1a) 0.19 <i>(c)</i>
 o - open 1/2-o: half-open c - closed h - healed b) Trace length of fractures, bottom side (m) 	1b) 0.19 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed	
Combination of fractures	1a and 1b is the same fracture.
Interpr. mean trace length for flow (m)	0,19
Fracture type	Natural
Flow path length (m)	Sample height
Flow path length, calc. (m)	_

Sample-ID PS0039071

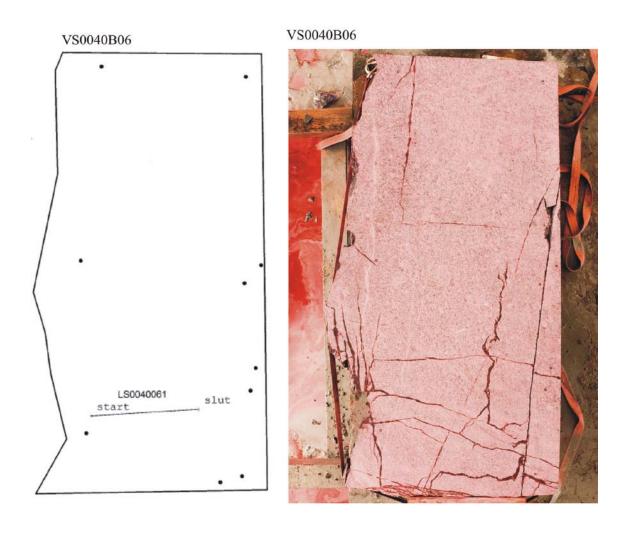
Pressure (bar)	5	10*		
Time (s)	31,385	258	263	
Q (m³/s)	3.19E-08	1.52E-08	1.49E-08	

* Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID	PS0040041	PS0040042
Air temp (°C)	20	20
	20.6	
	20.6	
Water temp (°C)	Room temperature	Room temperature
Sample height (m)	0.09	0.091
Dh (mvp) (mvp)	35.1	35.1
a) Trace length of fractures, upper side (m)	1a) 0.145 <i>(h)</i>	1a) 0.135 <i>(c)</i>
o – open 1/2-o: half-open c – closed h – healed		
b) Trace length of fractures, bottom side (m)	1b) 0.19 <i>(h)</i>	-
o – open 1/2-o: half-open c – closed h – healed		
Combination of fractures	1a and 1b is the same fracture. 1b is located further to the edge than 1a which, on the upper side, runs through the centre of the sample. The fracture is in an oblique angle.	No fracture on the bottom side
Interpr. mean trace length for flow (m)	0,17	0,091
Fracture type	natural	natural
Flow path length (m)	-	_
Flow path length, calc. (m)	0.104 (h = 0.09)	-

Sample-ID PS0040041

Pressure (bar)	5		10	10*
Time (s)	3,620	3,640	5,645	23
Q (m³/s)	2.762E-07	2.747E-07	1.771E-07	1.71E-07


 * Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m³.

Sample-ID PS0040042

· · · · · · · · · · · · · · · · · · ·	
Pressure (bar)	5
Time (s)	3,360
Q (m³/s)	0.00E+00

Scanline-ID	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V_p (m/s)	Comments
LS0040041	0	0	92	15.961	5,764	
	1	2.05	92	15.998	5,751	
	2	4.1	92	16.929	5,434	
	3	6.15	92	_	-	No contact
	4	8.2	92	16.344	5,629	
	5	10.25	92	16.092	5,717	
	6	12.3	92	16.477	5,584	
	7	14.35	92	16.046	5,734	
	8	16.4	92	15.99	5,754	
	9	18.45	92	16.255	5,660	
	10	20.5	92	16.132	5,703	
	11	22.55	92	16.477	5,584	
	12	24.6	92	15.817	5,817	
	13	26.65	92	15.887	5,791	
	14	28.7	93	15.929	5,838	
	15	30.75	94	15.965	5,888	
	16	32.8	95	15.683	6,058	
	17	34.85	96	15.817	6,069	

Value with half length of transmitter, 2.05 cm.

Scanline-ID LS0040061	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V _p (m/s)	Comments
	0	0	94.8	16.684	5,682	
	1	2.05	94.8	16.159	5,867	
	2	4.1	92.8	15.952	5,817	
	3	6.15	92.8	16.059	5,779	
	4	8.2	90.5	16.014	5,651	
	5	10.25	90.5	16.346	5,537	
	6	12.3	90.5	16.482	5,491	
	7	14.35	90.5	16.463	5,497	
	8	16.4	90.5	16.225	5,578	
	9	18.45	90.5	16.049	5,639	
	10	20.5	90.5	16.723	5,412	
	11	22.55	90.5	16.013	5,652	
	12	24.6	90.5	15.871	5,702	
	13	26.65	90.5	16.013	5,652	
	14	28.7	90.5	15.956	5,672	
	15	30.75	90.5	16.269	5,563	
	16	32.8	92.5	16.511	5,602	

Value with half length of transmitter, 2.05 cm.

VS0040B07

VS0040B07

Sample-ID	PS0040071	PS0040072
Air temp (°C)	20	20
	20.6	
	20.6	
Water temp (°C)	Room temperature	Room temperature
Sample height (m)	0.09	0.085 m
Dh (mvp) (mvp)	35.1	1) 6.5 2) 35.1
a) Trace length of fractures, upper side (m)	1a) 0.195 <i>(h)</i>	1a) 0.194 <i>(1/2-o to c)</i>
o – open 1/2-o: half-open c – closed h – healed		
b) Trace length of fractures, bottom side (m)	1b) 0.115 <i>(h)</i> 2 b) 0.15 <i>(o)</i> 3b) 0.07 <i>(h)</i>	1b) 0.164 <i>(1/2-o to c)</i>
o – open 1/2-o: half-open c – closed h – healed		
Combination of fractures	1a and 1b is the same fracture. 3b is an off- shoot from 1b. 2b does not cross through the sample. It ends on one edge of the sample.	1a and 1b is the same fracture
Interpr. mean trace length for flow (m)	0,155	0,18
Fracture type	-	_
Flow path length (m)	_	_
Flow path length, calc. (m)	_	0.098 (h = 0.085)

Sample-ID PS0040071

Pressure (bar)	5
Time (s)	7,200
Q (m³/s)	0.00E+00

Sample-ID PS0040072

Pressure (bar)	1) 5	2) 5*	2) 10**
Time (s)	4,200	1,075	2,771
Q (m³/s)	0.00E+00	3.6530E-09	4.2515E-10

 * Method of measurement with 5 cm rubber hose. Volume 3.93E-06 m $^{3}.$

 * *Method of measurement with 1.5 cm rubber hose. Volume 1.18E-06 m³.

Scanline-ID	No.	Distance from start (mm)	Diameter (mm)	Time (µs)	V_p (m/s)	Comments
LS0040071	0	0	91	15.497	5,872	
	1	2.05	91.55	15.322	5,975	
	2	4.1	92.1	15.082	6,107	
	3	6.15	92.65	15.711	5,897	
	4	8.2	93.2	15.548	5,994	
	5	10.25	93.75	15.31	6,123	
	6	12.3	94.3	15.33	6,151	
	7	14.35	94.85	15.858	5,981	
	8	16.4	95.4	16.467	5,793	
	9	18.45	95.95	15.692	6,115	
	10	20.5	96.5	16.387	5,889	
	11	22.55	96.5	-	_	No contact
	12	24.6	96.5	_	_	No contact
	13	26.65	96.5	_	_	No contact

Appendix 3

Field investigations in the S-tunnel Äspö HRL. Database

Data and interpreted transmissivities (**Q**/**Dh**) for all Single Hole Tests in EDZ in TASS-tunnel. Äspö HRL.

Test id	Packer- depth	Borehole- depth	Sealed off- interval	Dh	Injected volume	Duration of test	Q	Q/Dh	
	(cm)	(cm)	(m)	(m)	(ml)	(min)	(m³/s)	(m²/s)	
1_1	7.3	59	0.517	91.9197	116.84	5.0	3.89E-07	4.24E-09	
1_2	21.2	59	0.378	89.4672	11.04	40.0	4.6E-09	5.14E-11	
2_2	1.9	53	0.511	31.4901	131.1	8.2	2.68E-07	8.51E-09	
2_3	14.7	53	0.383	47.3823	1.84	30.0	1.02E-09	2.16E-11	
2_4	14.7	53	0.383	96.2361	2.3	15.0	2.56E-09	2.66E-11	
3_1	2.3	54	0.517	48.8538	131.1	28.3	7.71E-08	1.58E-09	
3_2	2.3	54	0.517	95.0589	123.74	11.4	1.81E-07	1.9E-09	
4_1	3.4	53	0.496	19.4238	125.12	0.4	5.44E-06	2.8E-07	
4_2	24.5	53	0.285	18.9333	127.88	0.5	4.74E-06	2.5E-07	
4_4	30.5	53	0.225	1.7658	33.81	30.0	1.88E-08	1.06E-08	
4_5	30.5	53	0.225	31.392	124.2	3.0	6.9E-07	2.2E-08	
5_1	2.6	58	0.554	22.563	128.34	2.0	1.07E-06	4.74E-08	
5_2	11.2	58	0.468	22.563	124.2	2.0	1.04E-06	4.59E-08	
5_3	20.8	58	0.372	22.563	128.3	9.0	2.38E-07	1.05E-08	
5_4	31.1	58	0.269	27.7623	0	5.0	0	0	
5_5	31.1	58	0.269	13.5378	5.28	10.0	8.8E-09	6.5E-10	
5_6	31.1	58	0.269	100.062	1.38	10.0	2.3E-09	2.3E-11	
6_2	21.4	52	0.306	24.1326	6.44	10.0	1.07E-08	4.45E-10	
6_3	21.4	52	0.306	50.031	35.88	30.0	1.99E-08	3.98E-10	
7_1	3.6	60	0.564	22.1706	121.9	10.0	2.03E-07	9.16E-09	
8_1	4	60	0.56	14.8131	52.9	4.5	1.96E-07	1.32E-08	
8_2	4	60	0.56	20.2086	129.26	17.5	1.23E-07	6.09E-09	
9_1	2.3	60	0.577	25.1136	111.78	0.5	3.73E-06	1.48E-07	
9_2	10	60	0.5	20.0124	128.8	0.5	4.67E-06	2.33E-07	
9_3	24.5	60	0.355	17.1675	131.1	0.4	5.7E-06	3.32E-07	
9_4	42.7	60	0.173	21.0915	5.06	10.0	8.43E-09	4E-10	
9_5	42.7	60	0.173	51.6987	10.58	10.0	1.76E-08	3.41E-10	
10_1	4	52	0.48	21.7782	117.3	2.5	7.82E-07	3.59E-08	
10_2	23.7	52	0.283	21.4839	6.9	17.0	6.76E-09	3.15E-10	
10_3	23.7	52	0.283	48.6576	34.96	40.0	1.46E-08	2.99E-10	
10_4	23.7	52	0.283	99.3753	7.36	3.0	4.09E-08	4.11E-10	
11_2	13.8	53	0.392	19.0314	2.76	5.0	9.2E-09	4.83E-10	
11_3	13.8	53	0.392	47.8728	32.66	35.0	1.56E-08	3.25E-10	
11_4	13.8	53	0.392	92.6064	7.36	3.0	4.09E-08	4.42E-10	

Characterisation of micro cracks in EDZ

Date Reference 2009-09-03 P803489

Page 2 (8)

Handled by Urban Åkesson Material, Borås 010-516 51 48, Urban.Akesson@cbi.se

Chalmers Tekniska Högskola Lars O Ericsson 412 96 GÖTEBORG

Characterisation of micro cracks in EDZ

Commission

The commission include characterisation of micro cracks on drill cores drilled from rock slabs, taken from EDZ.

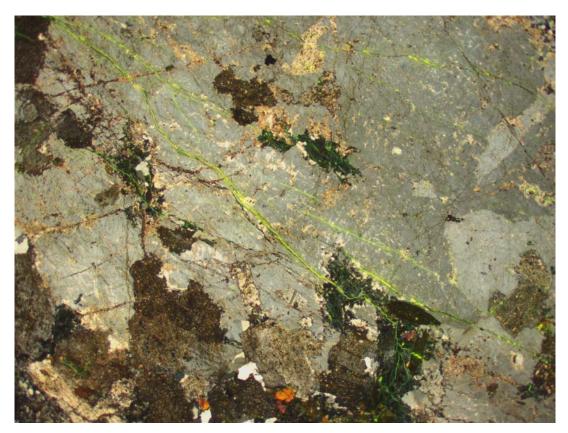
Specimen data and sample preparation

Five specimens have been analysed, three specimens are oriented perpendicular to the tunnel wall (H-specimen) and the other two are oriented parallel to the tunnel wall (V-specimen).

Specimen	Relation to the tunnel wall
H1 C	Far
H1 D	Middle
H1 E	Far
V1 A	Close
V1 B	Far

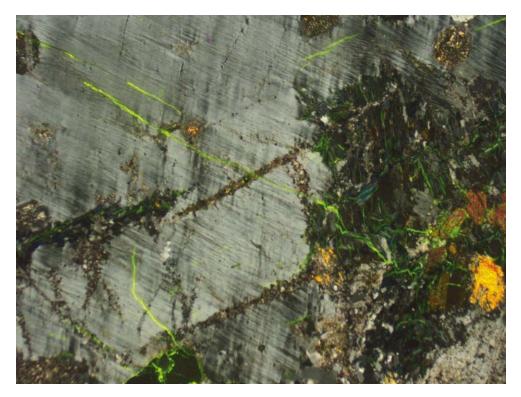
The specimens were cut into two half and one thin section, oriented parallel to the drill-core axis was made from each specimen. To detect the micro cracks, the specimen was vacuum impregnated with epoxy containing fluorescent dye.

Results


The thin sections show that the analysed rock type is extremely few existing micro cracks. This is mainly due to the extensive alteration of feldspars and the relatively low content of quartz. Normally, existing micro cracks appears in grain boundaries and as intragranular cracks in the crystal planes within the minerals.

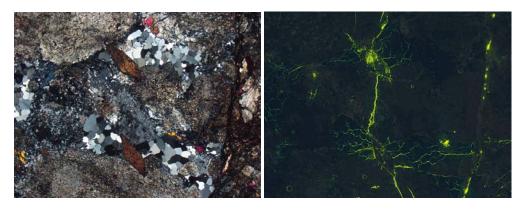
Blast induced micro cracks appears in all specimens except V1 B, but they very few so no quantitative analyses have been possible to do. Most of the micro cracks are old sealed cracks that have been reopened after the blast. Just in a few specimens have new micro cracks formed, and these cracks are transgranular (cutting several minerals).

Specimen H1 C

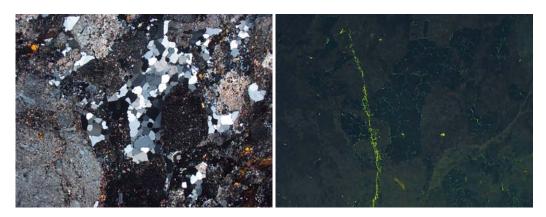

The figures show a feldspar crystal from specimen H1 C in polarised and fluorescent light, the image size is 5.5×4.2 mm. Here it is possible to see that the open micro cracks mainly are related to old sealed micro cracks, a few new micro cracks have also been formed. The image below is a combined fluorescent and polarised image.

Specimen H1 D

The figures of specimen H1 D also shows a feldspar crystal in polarised and fluorescent light. The image size is 2.8×2.1 mm. The combined image below shows that it is an old crack who has reopened and propagate into a matrix of iotite and epidote.


Specimen H1 E

The figures show specimen H1 E in polarised and fluorescent light. The image size is 2.8×2.1 mm. The combined image below show a newly formed transgranular crack.


Specimen V1 A

The figures show specimen V1 A in polarised and fluorescent light, and a combined image below. The image size is 5.4×4.2 mm. The images show an example how a transgranular crack have formed between two titanite grains who has a higher e-modulus compared to the surrounding minerals.

Specimen V1 B

The figures show specimen V1 B in polarised and fluorescent light, and a combined image below. The image size is 5.4 x 4.2 mm. This open system of grain boundary micros cracks are probably existing micro cracks. If it had been blast induced crack it should occur as transgranular crack cutting all the crack-filled minerals.

CBI Swedish Cement and Concrete Research Institute Material - Materials, Borås

Urban Åkesson Technical Manager/Officer

Investigation of natural fracture traces used in EDZ 3D-model

Sara Kvartsberg, Chalmers University of Technology, October 2009

A5.1 Introduction

A5.1.1 Background

To increase the understanding of Excavation Damage Zone (EDZ) in tunnels, a project was initiated to examine a section of the wall in the TASS-tunnel and create a 3D-model of the fractures in this section. The examination was performed by cutting slabs from a section of the wall, spray a dye penetrant on the surfaces to make the fractures appear clearly, digitize the fractures appearing on the photographs and create a 3D-model of those fractures.

The test section was 8 m long, 1.5 m high and 0.7 m deep. Eight blocks were excavated, and from these a total of 75 slabs were wire sawed. The penetrant fluid was able to detect fractures down to 20 µm and the visible fractures were vectorized, generating 2D DWG-files as output. The vectorized fractures were then moved to MicroStation[®]/RVS where a 3D-model was made and the fracture traces were connected into undulating fracture planes. A number of fracture traces were only found once in the slabs and in order to get a complete model regarding the number of fractures, these single fracture traces were modelled simplified as rectangular planes /Olsson et al. 2009/.

All modelled fractures were classified into three different types of fractures: direct blast induced fractures, induced fractures and natural fractures. Direct blast-induced fractures are fractures formed by the blasting process and these fractures originate from the borehole. Induced fractures are also caused by the blasting although they do not originate from the borehole itself. Natural fractures are fractures that existed in the rock before the blasting /Olsson et al. 2008/. In the 3D-model, created for this section of the TASS-tunnel, there are a total of 1,223 modelled fractures. Of these, 777 are modelled natural fractures, 261 direct blast-induced fractures and 185 induced fractures.

A5.1.2 Scope of the study

The purpose of this project "Investigation of natural fracture traces used in EDZ 3D- model" was to perform a more detailed study of the condition of the natural fracture traces used in the 3D-model mentioned above. In this investigation, the EDZ slabs excavated from the TASS-tunnel in 2008 were surveyed with the intention to classify these natural fractures into **open** fractures, **healed** fractures and **tight/closed** fractures. Other fracture characteristics, such as mineral fillings, were investigated to some extent.

Information concerning the length of the all the fracture traces in the 2D DWG-files has also been used in this project to obtain length distributions of the natural-, induced- and direct blast-induced fractures modelled in the 3D-model.

A5.2 Method

The methodology used in this investigation comprised the following steps: use the 2D DWG-files for the identification of natural fractures, survey these fractures on the slabs, update information of the natural fractures in the 3D model and compile this information with together with the fracture length statistics.

A total of 75 slabs were examined. These slabs are labelled with a number from which of the eight blocks they originated (named 36 to 43) and a number describing their position in the block (1 to 10). The slabs are about 1.5 m high, 0.7 m wide and 0.1 m deep and are stored in a machine hall near the entrance to the Äspö underground laboratory. In order to identify the natural fractures used in the 3D-model on the surface of the slabs, 2D DWG-files with vectorized fractures were used; see an example of these DWG-files in Figure A5-1. A total of 1,801 natural fractures were, if possible, to be examined with the purpose to classify these into one of the following categories: open fractures (partly or wide open fractures), healed fractures (closed with mineral fillings) and tight fractures (closed with no visible mineral filling). Also fracture properties such as mineral fillings and oxidation were studied to some extent.

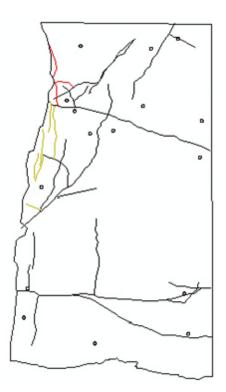


Figure A5-1. Digitized slab surface with fractures, 36B-05. Natural fractures are black.

The information obtained from the survey was then incorporated into the 3D model. The 1,801 natural fracture traces from the slab surfaces corresponds to 777 natural fractures in the 3D model, since many traces were connected into undulating fracture planes. Natural fractures modelled from fractures traces found in several slabs have the prefix N followed by a serial number starting from 001 and running upwards in the order they were modelled. Fractures found in several slabs are also called "large" fractures. Natural fractures modelled from single fracture traces have the prefix **n** followed by a serial number starting from 501 and running upwards in the order they are modelled from single fracture traces have the prefix **n** followed by a serial number starting from 501 and running upwards in the order they were modelled /Olsson et al. 2009/. These single trace fractures are also called "small".

The classification of n-fractures came from a single observation, but in the classification of N-fractures, several observations were combined into one resulting description. The result from the survey can be found in appendix 6. In the cases when the survey gave contradictive observations about the N-fractures, the most frequent observation, or a combination of them, were used. An example of this could be an N-fracture surveyed as open in two slabs, and healed in a third. The combined picture gives an open fracture and this is how it is modelled, although it could be healed in some parts. The fractures surveyed as open were coloured blue in the 3D model, the healed were coloured green and the tight fractures grey.

The length of all the fracture traces identified in slabs was measured when creating the 2D DWGfiles in the investigation performed by /Olsson et al. 2009/. This length information has been used in this project to compile length distributions for the natural fractures (open, healed or tight) but also to compare the distribution for direct blast-induced, induced- and natural fractures. Since the length information was given for the 2,509 fracture traces on the slabs, the lengths had to be converted to somehow match the 1,223 modelled fractures. The length of each modelled fracture is therefore described by the longest fracture trace from which the fracture plane originates.

A5.3 Result

The result from this project is separated into two parts; in the first part the classification of natural fractures originating from the survey of the slabs is presented. This includes distributions of open, healed and tight fractures and a revising of the natural fractures in the 3D-model. In the second part, results from the length distribution of the fractures are presented.

A5.3.1 Classification of natural fractures

A total number of 777 natural fractures are modelled as planes in the 3D model. After the survey, 713 of these could be classified into open, healed or tight fractures; see Table A5-1. Information was missing for 64 fractures due to broken slabs or other difficulties in finding them. As can be seen in Figure A5-2, most of the unknown fractures are n-fractures.

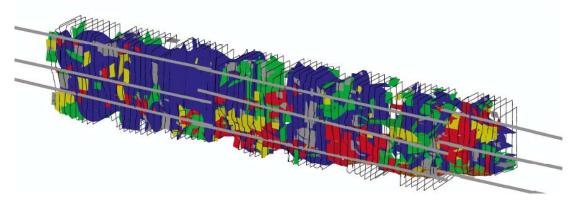

Classification	All fractures	N-fractures	n-fractures
Open	214 (28%)	176 (41%)	38 (11%)
Healed	261 (34%)	158 (37%)	103 (29%)
Tight	238 (31%)	79 (19%)	159 (45%)
Unknown	64 (8%)	13 (3%)	51 (15%)
Total	777 (100%)	426 (100%)	351 (100%)

Table A5-1. Classification of natural fractures.

Figure A5-2. Classification of all natural fractures, and with a separation into N-fractures and n-fractures.

The natural fractures were reclassified in the MicroStation[®]/RVS 3D-model, a model which describes the fractures in an 8 m long section of the TASS-tunnel wall. In Figure A5-3 to A5-5, fracture planes are shown together with the blast holes and the 75 slab outlines. In Figure A5-3 all 1,223 modelled fractures are shown, with open fractures coloured in blue, healed fractures in green and tight fractures in grey. Direct blast-induced fractures are shown in red and induced fractures in yellow. In Figure A5-4 only the natural fractures are shown and in Figure A5-5, only "large" fractures are displayed.

Figure A5-3. All modelled fractures, slab outlines and blast holes. Natural fractures are either open (blue) healed (green) or tight (grey). Direct blast-induced fractures are displayed in red and induced fractures in yellow.

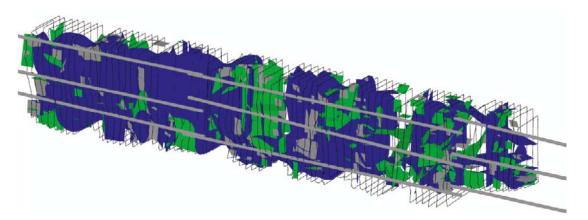


Figure A5-4. Open (blue), healed (green) and tight (grey) fractures.

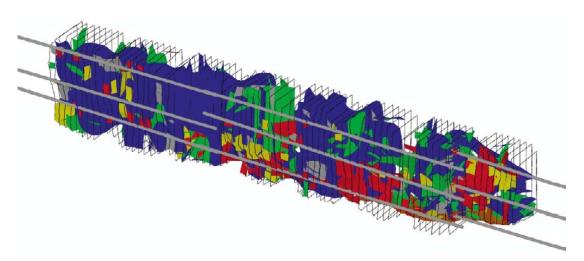
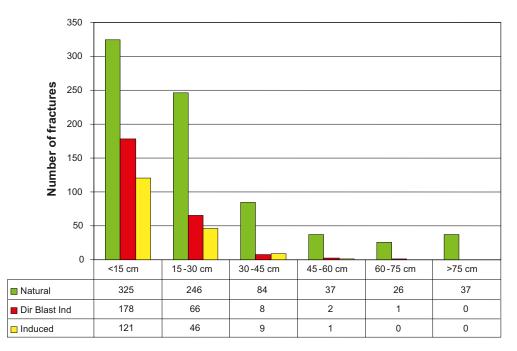


Figure A5-5. Only "large" fractures.

A5.3.2 Length distribution of fractures in the 3D-model

The length information of the fractures traces have been used to create length distributions for the fractures in the 3D-model. The length of each modelled fracture is described by the longest fracture trace that describes the fracture plane. In the first part of this section, the fractures are only described as natural, direct blast-induced or induced. In the second part, the natural fractures are also described by the classification into open, healed or tight fractures.

Distribution of natural-, direct blast-induced and induced fractures


There are a total of 1,223 fractures in the 3D-model. Length information is found for 1,187 of these, see Table A5-2.

The fractures with length information have been divided into six length categories; < 15 cm, 15–30 cm, 30–45 cm, 45–60 cm, 60–75 cm and < 75 cm. The upper limit is set because the slabs are around 70–80 cm wide. The length data can be found in Appendix 7. As can be seen in Figure A5-6, which displays the fractures divided into the above mentioned length categories; most fractures have a maximum fracture length of less than 15 cm.

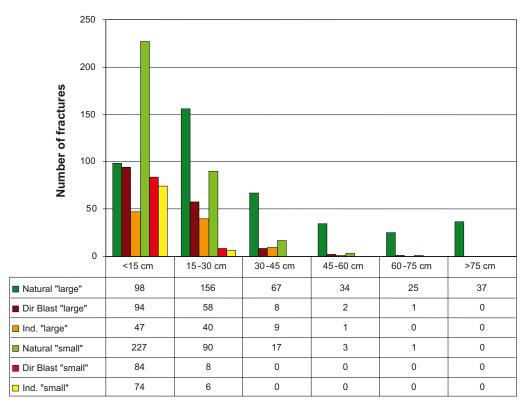

If the fractures are separated in "large" and "small" fractures, as in Figure A5-7, it can be seen that almost all of the small fractures are less than 30 cm.

Table A5-2. Fractures in 3D-model with length information assigned, separated in large and small fractures for natural-, direct blast-induced and induced fractures.

Description	Natural fractures	Direct blast-induced fractures	Induced fractures
Large fractures	417 (54%)	163 (62%)	97(53%)
Small fractures	338 (43%)	92 (35%)	80 (43%)
No information	21 (3%)	6 (3%)	8 (4%)
Total	777	261	185

Figure A5-6. Length distribution of natural (green), direct blast-induced (red) and induced (yellow) fractures in the 3D-model.

Figure A5-7. Length distribution of natural, direct blast-induced and induced fractures, separated in large and small fractures.

Distribution of natural fractures classified into open, healed and tight

Of the 777 natural fractures in the model, 713 of them were possible to classify into open, healed and tight. Fracture traces with length information given from the previous investigation was found for 685 of these, see Table A5-3. Figure A5-8 shows the length distribution of these natural fractures with respect to their classification, and in Figure A5-9, direct blast-induced and induced fractures have been included. The length data for the sorted natural fractures can be found in Appendix 8.

 Table A5-3. Natural fractures in the 3D-model with length information, separated into open, healed and tight fractures.

Description	Open fractures	Healed fractures	Tight fractures
Large fractures	169 (79%)	154 (59%)	74 (31%)
Small fractures	37 (17%)	100 (38%)	151 (63%)
No information	8 (4%)	7 (3%)	13 (5%)
Total	214	261	238

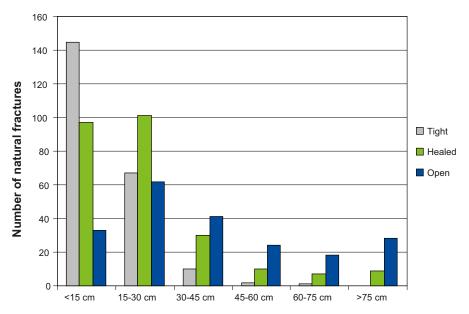
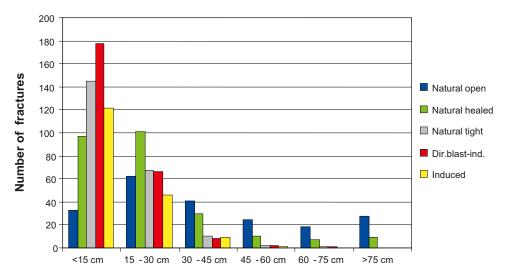



Figure A5-8. Length distribution of natural fractures, separated into tight, healed and open fractures.

Figure A5-9. Length distribution with natural fractures (separated into open, tight and healed), direct blast-induced fractures and induced fractures.

A5.4 Discussion

It was possible to find the natural fractures in the slabs by using the 2D DWG-files and then convert the results of the survey into a classification of the natural fractures in the 3D-model. Describing a natural fracture as either open, healed or tight can give useful information about the fracture and this property can be determined quite easily.

The conditions for the survey were somewhat restricted because the slabs used in this study were over one year old, and in some cases damaged with pieces missing. About eight percent of the fractures used in the model were not found in the survey of the slabs. Some slabs were heavily coloured from the earlier use of penetrant, making it hard to survey mineral fillings, which means that some of fractures classified as tight fractures could have had small amounts of mineral fillings and should therefore have been classified as healed. Some of the "large" fractures (existing in several slabs) were surveyed with contradictive observations; the fracture could be described as open in one slab and healed in another. An interpretation of the results had to be made, which introduced even more uncertainty to the final classification result. Another aspect mentioned in earlier investigations is the fact that the tight and healed natural fractures only were modelled to some extent because of shortcomings in the penetration and vectorization. Fractures visible on the slabs were not included in the 3D-model because they were not penetrated and visible on the photographs or they were lost in the vectorization process. As a result, the proportion of open fractures in this study can be expected to be larger than the actual proportion. The fractures could also have been influenced by the transportation process, which could have open up old fractures that were healed *in situ*.

References

Olsson M, Markström I, Pettersson A, 2008. Methodology study for documentation and 3D modelling of blast induced fractures. SKB R-08-90, Svensk Kärnbränslehantering AB.

Olsson M, Markström I, Pettersson A, Sträng M, 2009. Examination of the Excavation Damaged Zone in the TASS tunnel, Äspö HRL. SKB R-09-39. Svensk Kärnbränslehantering AB.

Appendix 6

Survey of natural fractures in EDZ slabs

HEALED	158	37%
TIGHT	79	19%
UNKNOWN	13	3%

n-fractures

TOTAL	351	
OPEN	38	11%
HEALED	103	29%
TIGHT	159	45%
UNKNOWN	51	15%

Mapping form

Mapping form is influenced by the Tunnel Mapping System TMS

Descriptions:

Open - Truly open natural fracture Healed - Closed natural fracture with fracture filling

Tight - Closed natural fracture without fracture filling

Classification confidence:

- A Certain
- B Probable

PR - Prehnite QZ - Quartz RF - Red feldspar EP - Epidote CA - Calcite OX- Oxidation around fracture XX - Unidentified filling

Fracture filling:

CL - Chlorite

FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	OPEN	HEALED	TIGHT	MINERAL FILL	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
N001	0.6306	В			Y	CL	PR	EP	CA	OX	
N002	0.5063	В			Y	EP	CA				
N003	0.8116	В			Y	CL	CA	PR			
N004	0.6234	В			Y	PR	CA	CL	EP		
N005	0.6577	В			Y	CL	PR	CA	EP	OX	
N006	0.6473	В			Y	PR	CL	CA			
N007	0.0689	В			Y	PR	EP	OX			
N008	0.2059	В			Y	PR	EP	CL			
N009	0.1195		Α		Y	CL					
N010	0.2489		Α		Y	EP	CL				
N011	0.3625		Α		Y	EP	CA	CL	PR	OX	
N012	0.0716		Α		Y	CL					
N013	0.2998		Α		Y	CA	CL	OX			
N014	0.2409	В			Y	PR	CL	CA			
N015	0.241	В			Y	CA	CL	RF			
N016	0.2481		В		Y	CL	CA	ОХ			
N017	0.6038		Α		Y	EP	CL	ОХ			
N018	0.2516		Α		Y	PR	QZ				
N019	0.8175	В			Y	CL					

FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	OPEN	HEALED	THOIT	MINERAL FILL	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
N020											No information
N021 N022											No information
N022 N023	0.6258		A		Y	EP	CL	OX			No information
N024	0.9106		A		Ý	CL	EP	OX			
N025	0.941		Α		Y	CL	EP	PR	CA	OX	
N026	0.6829		Α		Y	EP	CL	OX	CA		
N027	0.2885			A	N						
N028 N028b	0.2726	B			Y Y	CL CL	PR				
N0280 N029	0.1859	D	В		Y		FN	-	-		
N030	0.3316		D	А	N	02					
N031	0.5179	В			Y	CL	PR				
N032	0.3806		Α		Y	CL	PR				
N033	0.308	B			Y	CL				 	
N034 N035	0.2165	В	A		Y Y	CL CA	PR RF	ох			
N035	0.2185		A		Y	CL	PR	EP	CA	ОХ	
N037	0.2695		A		Y	CL	L		Ĺ	Ĺ	
N038	0.2195	В			Y	CL	PR				
N039	0.258		A		Y	PR	0	<u>.</u>]
N040 N041	0.3964		A		Y Y	EP CL	CL	CA			
N041 N042	0.2446		A		Y Y	CL	OX PR	EP	ОХ	CA	
N042	0.1633	В			Ý	CL	1			0/1	
N045	0.344		Α		Y	CL					
N046	0.1819		Α		Y	CL	PR				
N048	0.1881		A		Y	CA					
N049 N050	0.1284			B A	N N						
N052	0.0859		A	~	Y	CL					
N053	0.3015	В			Y	CL	CA	PR			
N055	0.1023		Α		Y	EP					
N056 N057	0.1084 0.296			A	N N						
N057 N058	0.296	В		A	Y	CL					
N059a	0.7342	B			Ý	CL	CA				
N059b	0.1371			Α	Ν						
N060	0.2356		Α		Y	CL	_				
N061	0.223		A B		Y Y	RF EP	OX				
N062a N062b	0.2233	В	В		Y Y	EP	CL OX	CL			
N063a	0.0000	5	А		Y	CL		02			
N063b	0.2189		Α		Y	CL	PR				
N064	0.2825			A	N						
N065	0.1612		п	A	N	C				<u> </u>	
N066 N067	0.082		B		Y Y	CL CL	PR	-	-		
N068		В			Y	CL					
N069			В		Y	CA	PR				
N070		В		_	Y	CL	PR				
N071	0.0050		^	A	N	C 4				<u> </u>	
N072 N073	0.0959		A	A	Y N	CA	CL			<u> </u>	
N073 N074	0.2061		A	~	Y	EP	1	1	1		
N075I	0.2195	В			Ŷ	CL					
N075u	0.2892		Α		Y	CL					
N076	0.544		A		Y	EP	CL	OX			
N077 N078	0.4062		A	٨	Y N	EP		 			
N078 N079			A	A	N Y	CL	PR				<u> </u>
N075	0.231		A		Y	PR	CL	CA			
N081	0.1153		Α		Y	CL	EP				
N082	0.4841		Α		Y	PR	CL	OX			

			r —		,	1	1	1	1	1	
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL						
FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[~		ц	Ξ	L2	L3	4	L5	
DI Q	HTUT		HEALED	_	RA	MINERAL	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
AC.	AC	EN	IV	H	Ē	E	E	EE	E	E	MA
24 Z	E	OPEN	HH	TIGHT	Ę	Ē	Ē	Ē	Ē	Ē	SE
N083	0.1574	<u> </u>		A	N	-	_		-		_
N084	0.0294		А	~	Y	EP					
N085	0.0294		A		Y	RF	OV	-	-	-	
			A			RF	OX				
N086	0.0811			A	N	<u>.</u>					
N087	0.527	В			Y	CL					
N088a						<u> </u>		<u> </u>			No information
N088b											No information
N089	0.1741	В			Y	CL	PR	EP			
N090	0.0549			A	Ν						
N091	0.1316			Α	N						
N092	0.2171		В		Y	CL	CA				
N093	0.1269		А		Y	PR	CL				
N094	0.0691		Α		Y	CL			1		
N095	0.2274	В	1	l	Ŷ	EP	PR	CA	CL	ΟХ	
N096	0.2645		А	1	Y	PR	CL	1	1	1	
N097	0.1677		A	1	Ý	PR	CL	1	1	1	
N098	0.37	В			Ý	CA	CL	1	1	1	
N098	0.2191	5	В		Y	CL	EP	<u> </u>	<u> </u>	<u> </u>	
	0.2191				Y Y			┣──	┣──	┣──	
N100	0.2218		A			OX		<u> </u>	<u> </u>	<u> </u>	
N101	0.1683		<u> </u>	A	N	01	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
N102	0.1033		A		Y	OX			<u> </u>		
N103	0.8208		A		Y	EP	CA		<u> </u>	<u> </u>	
N104	0.2358	В			Y	CL					
N105	0.2738	В			Y	CL					
N106	0.1545		А		Y	CL					
N107	0.2793		А		Y	EP			1		
N108	0.1472		А		Y	EP	OX				
N109	0.3196		A		Ŷ	CL	PR	1	i		
N110	0.1707			А	N	02	<u> </u>				
N111	0.2191		В	~~~	Y	EP			1		
N112	0.2191		A		Y	CL	PR				
			A		Y	CL	-	<u> </u>	-	-	
N113I	0.5102	B					PR	CA			
N113u	0.6514	В			Y	PR	CL	EP			
N114I	0.3122		A		Y	CA					
N114u	0.339			A	Ν						
N115	0.4063			A	Ν						
N116	0.5656		A		Y	RF	CA	ОХ			
N117	1.5241	В			Y	CL	PR	OX			
N118	1.566	В			Y	PR	CL	CA			
N119	0.3422		Α		Y	CA	CL	RF	ΟХ		
N120	0.405	В			Y	CA					
N120b	0.1098		А	l	Ŷ	CA		İ 👘	1		
N121	0.7836	В	1	1	Ý	CL	PR	CA	t	t	1
N122	0.3146	_	А	İ	Ý	CL	EP	OX	1	1	
N123	0.6666		A		Ý	CA	<u> </u>				
N123	0.0000		B		Y	CA	+	<u> </u>	<u> </u>	<u> </u>	
				Λ		UA	<u> </u>	<u> </u>	┣──		
N125	0.2925	P	 	A	N	<u> </u>	07				
N126	0.117	В	<u> </u>	ļ	Y	CA	OX	 	I	 	
N127	0.1677		A		Y	CL		ļ	ļ	ļ	
N128	0.1213		В	l	Y	CL	OX		<u> </u>		
N129	0.2623	В			Y	CL	PR				
N130	0.2751		А		Y	PR					
N131	0.1373		В		Y	CL					
NIST	0.3422		В	ľ	Y	EP					
N132	0.0122	_			Y	CL	PR	CA			
-	0.6954	В			Ŷ	CL	PR	İ 🗌	İ 👘	İ 🗌	
N132	0.6954	B						1			
N132 N133 N134	0.6954 0.7835	В				CA	PR				
N132 N133 N134 N135	0.6954 0.7835 1.7463	B B			Y	CA CI	PR PR				
N132 N133 N134 N135 N136	0.6954 0.7835 1.7463 0.4915	В			Y Y	CL	PR	C^			
N132 N133 N134 N135 N136 N137	0.6954 0.7835 1.7463 0.4915 0.4207	B B B	A		Y Y Y	CL PR	PR CL	CA			
N132 N133 N134 N135 N136 N137 N138	0.6954 0.7835 1.7463 0.4915 0.4207 0.5374	B B			Y Y Y Y	CL PR CL	PR	CA CA			
N132 N133 N134 N135 N136 N137 N138 N139	0.6954 0.7835 1.7463 0.4915 0.4207 0.5374 0.0577	B B B	A		Y Y Y Y Y	CL PR	PR CL				
N132 N133 N134 N135 N136 N137 N138 N139 N140	0.6954 0.7835 1.7463 0.4915 0.4207 0.5374 0.0577 0.0468	B B B	A	A	Y Y Y Y N	CL PR CL CL	PR CL				
N132 N133 N134 N135 N136 N137 N138 N139	0.6954 0.7835 1.7463 0.4915 0.4207 0.5374 0.0577	B B B			Y Y Y Y Y	CL PR CL	PR CL				

0	6				Ļ						
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL	-	2	ę	4	5	
FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[ED	<u>ц</u>	RAI	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
VS-N	ENG	OPEN	HEALED	TIGHT	INE	INE	INE	INE	INE	INE	EMA
		ō		IT	Z Y		Σ	Σ	Σ	Σ	R
N143 N144	0.2792 0.1278	В	A		Y Y	EP CL					
N145	0.1054		Α		Ŷ	EP	CL				
N146	0.1038	В	_		Y	CL	PR				
N147 N148	0.0839	В	В		Y Y	PR CL					
N149	0.118	D	Α		Y	CL	CA				
N150	0.3815		Α		Y	CL					
N151 N152	0.2963		A		Y Y	CA RF	PR CA	ОХ			
N152 N153	0.3826		A	A	N	ηΓ	UA	0^			
N154	0.2451	В			Y	PR	CL				
N155	0.1979		A		Y	CA					
N156 N157	0.2823	В	А		Y Y	CL CL					
N158	0.1866		B		Y	PR					
N159	0.2409	В			Y	PR	CL				
N160 N161	0.2206	В	A		Y Y	PR CA	CL	ОХ			┟────┤
N162	0.2769	B			Y	PR		0.			
N163	0.1407			В	Ν						
N164	0.0401	B			Y	CA	CL	<u></u>			
N165 N166	0.3431 0.7602	В	A		Y Y	PR RF	CL CA	CA OX			
N167	0.411		A		Ŷ	CL	CA	0/1			
N168	0.4415	В			Y	KL					
N169 N170	0.7335 0.3706	B			Y Y	CL CL	PR	CA			
N170 N171	0.3706	B			Y Y	CL	EP				
N172	0.4669	В			Y	CL	PR	CA			
N173	0.8609	В			Y	CL	EP	PR	CA	OY	
N174 N175	0.6435	B			Y Y	CL CL	PR CA	EP OX	CA	ОХ	
N176	0.2323	B			Ŷ	EP	PR	OX	CL		
N177	0.4016	В			Y	CL	PR				
N178 N179	0.6651	В		A	Y N	CA	CL				
N180	0.0671	В		~	Y	PR					
N181	0.2827			Α	Ν						
N182 N183	0.3993		В	٨	Y N	PR	CA				
N184	0.1443			A	N						
N185	0.4297	В			Y	CL	PR	CA			
N186	0.2201		^	A	N	<u> </u>	ļ	ļ			
N187 N188	0.1751		A	A	Y N	CA					╂────┤
N189	0.4383	В			Y	CL	PR	ОХ			
N190	0.5887	_	A		Y	CL					
N191I N191u	0.62 0.764	B			Y Y	CL CL	PR CA	EP	CA		<u> </u>
N1910	1.4828	B			Y	CL	PR	EP	CA		
N193	1.4508		Α		Y	EP	CL	PR			
N194 N195	1.2449 0.4034		A	٨	Y N	EP	PR	CL			┨────────────────────────
N195 N196	0.4034	В		A	N Y	CL	ОХ	FE			┼───┤
N197	0.6557	_	А		Ý	CL	EP	PR	ОХ		
N198	0.08	-	A		Y	CL	OY				
N199 N200	0.5858 0.1855	В	В		Y Y	CL CL	OX EP				╂─────┤
N201	0.1833		A		Y	CL	OX				
N202	0.2517	В	_		Y	CL					
N203	0.1129		В	٨	Y N	EP					<u> </u>
N204a N204b	0.1433 0.2164		А	A	N Y	CL	RF	ОХ			┼───┤

1 T			r	T		1	1	1	T	1	1
Α,	[u				MINERAL FILL						
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				E	5	2	ŝ	4	S	
КÖ	Н О		A		AL	AL	AL	AL	AL	AL	K
-F A	55	Z	F	Ę	ER	Ш	ΕH	ER	ER	ER	[AF
VS	RA	OPEN	HEALED	TIGHT	Z	MINERALI	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
	ΞE	Ö	Ξ			М	М	М	Σ	М	R
N205				Α	N						
N206	0.2964	В			Y	CL					
N207	0.2809	-	Α		Y	PR					
N208											No information
N209	0.0993			А	N				1		
N210	0.0000	_		~							No information
	0.100		Δ		Y	CL	DD				NO INICINALION
N211	0.199		A			CL	PR	-			
N212	0.2565	В			Y	PR					
N213	0.0808		A		Y	PR					
N214		В			Y	CL					
N215	0.1198	В			Y	CL	CA				
N216	0.2208		Α		Y	CL	PR				
N217	0.5068	В			Y	CL	PR	EP	CA		
N218	0.1564			А	Ν				1		
N219	0.1297			В	N	1	<u> </u>	<u> </u>	1	1	1
N220	0.2953		А		Y	KL	ОХ	PR	KA	<u> </u>	+
		Б	~		Y Y		0^	r n	IVA		
N221	0.3517	B		<u> </u>		CL		<u> </u>		<u> </u>	
N222	0.2248	В		 	Y	CL	EP	<u> </u>	 	<u> </u>	ļ
N223	0.5554	В			Y	CL	PR				
N224	0.4058	В			Y	CL	EP				
N225	0.1577			Α	Ν						
N226	0.0817		Α		Y	CL	EP	OX			
N227	0.3142	В			Y	CL			1		
N228	0.2004		В		Ý	PR					
N229	0.1104			А	Ň						
N230			A	~	Y	EP					
	0.3223		A				0				
N231	1.0112	B			Y	CA	CL				
N232											No information
N233	0.5874	В			Y	CL					
N234	0.1912	В			Y	CL	PR	CA	EP		
N235	0.0959			Α	N						
N236	0.3897		Α		Y	CL	PR	OX	EP	CA	
N237	1.0176		В		Y	PR					
N238	1.0306	В			Y	PR	CA	CL			
N238b	0.5882	В			Y	CL	-	-			
N238u	0.0002	B			Ý	CL					
N239	0.9916	B			Ý	EP	PR	CL			
		B					гn	0L			
N240	0.3164				~ ~						
N241					Y	CA	CL				
N242	0.1349			A	Ν		CL				
	0.3697	В		A	N Y	CL					
N243				A	N Y Y		CL OX				
N243 N244	0.3697	В		A	N Y	CL					
	0.3697	B B		A	N Y Y	CL CL	OX				
N244	0.3697 0.4846	B B B		A	N Y Y Y	CL CL CA	OX CL				
N244 N245 N246	0.3697 0.4846 1.043 0.4728	B B B A B		A	N Y Y Y Y Y	CL CL CA CL CL	OX CL CA CA				
N244 N245 N246 N247	0.3697 0.4846 1.043 0.4728 0.5174	B B B A		A	N Y Y Y Y Y	CL CL CA CL CL OX	OX CL CA				
N244 N245 N246 N247 N248	0.3697 0.4846 1.043 0.4728 0.5174 0.2295	B B B A B	A		N Y Y Y Y Y Y	CL CL CA CL CL	OX CL CA CA				
N244 N245 N246 N247 N248 N249	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185	B B B A B		A	N Y Y Y Y Y Y Y Y Y N	CL CA CL CL OX OX	OX CL CA CA				
N244 N245 N246 N247 N248 N249 N250	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877	B B B A B	A		N Y Y Y Y Y Y N Y	CL CA CL CL OX OX XX	OX CL CA CA				
N244 N245 N246 N247 N248 N249 N250 N251	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223	B B A B B			N Y Y Y Y Y N Y Y	CL CL CL CL OX OX OX XX CL	OX CL CA CA CA				
N244 N245 N246 N247 N248 N249 N250 N251 N252	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529	B B B A B	A		N Y	CL CL CL CL OX OX OX CL CL	OX CL CA CA CA CA				
N244 N245 N246 N247 N248 N249 N250 N251	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223	B B A B B	A		N Y Y Y Y Y N Y Y	CL CL CL CL OX OX OX XX CL	OX CL CA CA CA	PR			
N244 N245 N246 N247 N248 N249 N250 N251 N252	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529	B B A B B B	A		N Y	CL CL CL CL OX OX OX CL CL	OX CL CA CA CA CA	PR			
N244 N245 N246 N247 N248 N249 N250 N251 N251 N252 N253	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675	B B A B B B B B B	A		N Y Y Y Y Y N Y Y Y Y	CL CL CL CL OX OX OX CL CL CL	OX CL CA CA CA CA	PR PR	EP		
N244 N245 N246 N247 N248 N249 N250 N251 N252 N253 N254 N255	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387	B B A B B B B B B B B	A		N Y Y Y Y Y Y Y Y Y Y	CL CA CL CL OX OX CL CL CL CL CL CL CL	OX CL CA CA CA CA CA CA CA CA CA				
N244 N245 N246 N247 N248 N249 N250 N251 N251 N252 N253 N254 N255 N256	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063	B B A B B B B B B B	A		N Y	CL CL CL CL CL OX OX OX CL CL CL CL CL	OX CL CA CA CA CA CA CA		EP		No information
N244 N245 N246 N247 N248 N249 N250 N250 N250 N252 N253 N254 N255 N255 N256 N257	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9063 0.3387 0.3387 0.3332	B B A B B B B B B B B	A	A	N Y	CL CA CL CL OX OX CL CL CL CL CL CL CL	OX CL CA CA CA CA CA CA CA CA CA		EP		No information
N244 N245 N246 N247 N248 N249 N250 N250 N251 N252 N253 N254 N255 N256 N256 N257 N258	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3387 0.3332	B B A B B B B B B B	A		N Y N	CL CA CL CL OX OX OX CL CL CL CL CL CL	OX CL CA CA CA CA CA CA CA CA CA CA		EP		No information
N244 N245 N246 N247 N248 N250 N251 N252 N252 N253 N254 N255 N256 N256 N257 N258 N259	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3332 0.3332	B B A B B B B B B B B B	A	A	N Y	CL CA CL CL CL CX OX OX CL CL CL CL CL CA	OX CL CA CA CA CA CA CA CA CA CA CA CL				No information
N244 N245 N246 N247 N248 N250 N251 N252 N253 N254 N255 N256 N257 N258 N259 N260	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3332 0.3332 0.3183 0.3093 0.4294	B B A B B B B B B B	A	A A A A	N Y	CL CA CL CL OX OX OX CL CL CL CL CL CL	OX CL CA CA CA CA CA CA CA CA CA CA		EP		No information
N244 N245 N246 N247 N248 N250 N251 N252 N255 N255 N256 N257 N258 N259 N260 N261	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3387 0.3332 0.3332 0.3183 0.3093 0.4294 0.2017	B B A B B B B B B B B B	A B 	A	N Y N Y N	CL CA CL CL CL CL CX CL CL CL CL CL CL CA CL	OX CL CA CA CA CA CA CA CA CA CA CA CA CL PR		EP		No information
N244 N245 N246 N247 N248 N250 N251 N252 N253 N254 N255 N256 N257 N258 N259 N260	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3332 0.3332 0.3183 0.3093 0.4294	B B A B B B B B B B B B	A	A A A A	N Y	CL CA CL CL CL CX OX OX CL CL CL CL CL CA	OX CL CA CA CA CA CA CA CA CA CA CA CL		EP		No information
N244 N245 N246 N247 N248 N250 N251 N252 N255 N255 N256 N257 N258 N259 N260 N261	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3387 0.3332 0.3332 0.3183 0.3093 0.4294 0.2017	B B A B B B B B B B B B	A B 	A A A A	N Y N Y N	CL CA CL CL CL CL CX CL CL CL CL CL CL CA CL	OX CL CA CA CA CA CA CA CA CA CA CA CA CL PR				No information
N244 N245 N246 N247 N248 N250 N251 N252 N253 N255 N256 N257 N258 N259 N260 N261 N262	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3387 0.3332 0.3387 0.3332 0.3183 0.3093 0.4294 0.2017 0.2461	B B A B B B B B B B B B	A B 	A A A A A B	N Y N Y N Y N Y N Y N Y	CL CA CL CL CL CL CX CL CL CL CL CL CL CA CL	OX CL CA CA CA CA CA CA CA CA CA CA CA CL PR		EP CA		No information
N244 N245 N246 N247 N248 N250 N251 N252 N253 N254 N255 N256 N257 N258 N259 N260 N261 N262 N263 N264	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3387 0.3382 0.3382 0.3383 0.3393 0.4294 0.2017 0.2461 0.2301 0.6471	B B B B B B B B B B B B B B B B B	A B 	A A A A A B	N Y N Y N Y N	CL CL CL CL CL OX OX CL CL CL CL CL CL CL CA CA CA CA CL CA	OX CL CA CA CA CA CA CA CA CA CA CL PR OX	PR			No information
N244 N245 N246 N247 N248 N249 N250 N251 N252 N253 N254 N255 N256 N257 N258 N259 N260 N261 N262 N263	0.3697 0.4846 1.043 0.4728 0.5174 0.2295 0.185 0.5877 0.4223 0.3529 0.9675 0.9063 0.3087 0.3382 0.3382 0.3382 0.3183 0.3093 0.4294 0.2017 0.2461 0.2301	B B B B B B B B B B B B B B B B B B B	A B 	A A A A A B	N Y N Y N Y N Y	CL CL CL CL OX OX CL CL CL CL CL CL CL CL CL CL CL CL CL	OX CL CA CA CA CA CA CA CA CA CA CL PR OX	PR			No information

Image: Construction of the second	r			1	1	T	T	T	1	1	I	
N286 0.5315 B Y EP PR CL N269 0.7583 A Y PR CL CL N270 1.2009 B Y PR CL CL N2710 0.9922 A Y EP PR KL OX N2711 0.4701 A Y EP PR KL OX N2710 0.6292 B Y CL N2710 0.6292 B Y CL N275 0.1652 B Y CL N276 0.7818 B Y CL N276 0.2863 B Y CL N279 0.32515 B N N284 0.1695 A N <	Α.	Ē				E						
N287 0.5315 B Y EP PR CL N288 0.5827 B Y EP PR CL Image: Constraint of the second seco	포펍)F Elı				ΕI	-	5	3	4	5	
N287 0.5315 B Y EP PR CL N288 0.5827 B Y EP PR CL Image: Constraint of the second seco	ВG	UR C		A		٩L	ΨΓ	A L	₫L	٩Ľ	٩Ľ	¥
N287 0.5315 B Y EP PR CL N288 0.5272 B Y EP PR CL Image: Constraint of the second seco	ΕŬ	E E	7	ĽΗ	E	R.	R.	R.	R.	R.	R.	AR
N287 0.5315 B Y EP PR CL N288 0.5272 B Y EP PR CL Image: Constraint of the second seco	VS-	SNG KA	Ē	EA	ΞĐ	Ż	Ē	Ē	Ż	Z	Ē	ME
N268 0.5270 B Y PP PR CL Image: CL	R' FR		IO	н	Ē			Σ	Σ	Σ	Ξ	RE
N268 0.5270 B Y P P R CL Image: CL <th< td=""><td>N267</td><td>0.5315</td><td>В</td><td></td><td></td><td>Y</td><td>EP</td><td>PR</td><td></td><td></td><td></td><td></td></th<>	N267	0.5315	В			Y	EP	PR				
N269 0.7883 A Y PR CL Image: Close of the state o		0.5279	В			Y			CL			
N270 1.2009 B Y CL Image: state of the s									-			
N271u 0.9922 A Y EP PR KL OX N271 0.6292 B Y EP CL OX PR N273 0.6292 B Y CL Image: Constraint of the second s	N270	1 2009					CI	02				
N271 0.4701 A Y EP CL OX PR N273 0.6292 B Y CL Image: Constraint of the second sec			D	٨				DD	KI	OY		
N272 1.023 B Y CL Image: Constraint of the second secon												
N273 0.6292 B Y CL Image: Constraint of the second seco				A				GL	08	РК		
N274 0.703 B Y CL CA Image: Constraint of the second sec												
N275 0.1652 B Y CL CA PR N276 0.7816 B Y CA PR Image: Constraint of the c												
N276 0.7818 B Y CL CA PR Image: constraint of the second			В									
N277 0.2838 B Y CA N N278 0.0989 A N Image: Constraint of the second s	N275	0.1652	В			Y	CL	CA				
N277 0.2838 B Y CA N N278 0.0989 A N Image: Constraint of the second s	N276	0.7818	В			Y	CL	CA	PR			
N278 0.03256 B A N V CL Image: Constraint of the second	N277		В			Y	CA					
N279 0.3256 B Y CL Image: Close of the second seco					Α	N						
N280 0.4089 B Y CL Image: Close of the system of			В				CI					
N281 0.5215 B N Image: constraint of the system of								<u> </u>	<u> </u>			
N282 0.2223 A N Image: Constraint of the second sec			U		Р							
N283 0.1491 A N Image: state of the state of							<u> </u>	<u> </u>				
N284 0.1265 A Y XX Image: Constraint of the second seco							<u> </u>	<u> </u>	<u> </u>	<u> </u>		
N285 0.1694 A N Image: constraint of the system of					A		<u> </u>	<u> </u>	I	I		
N286 0.1695 A N Image: constraint of the system of		0.1265		A			XX					
N287 0.1065 A N CL PR N288 0.1172 B Y CL PR N289 0.7094 B Y CA CL N290 0.1109 A N N291 0.1536 A N N292 0.4043 B Y CL N293 0.2655 A N N293 0.1813 B Y CL N295 0.181 B Y CL N296 0.176 A N N2980 0.184 A Y CL OX N2980 0.148 A Y CL PR N2990 0.1949 B Y CL												
N287 0.1065 A N CL PR N288 0.1172 B Y CL PR N289 0.7094 B Y CA CL N290 0.1109 A N N291 0.1536 A N N292 0.4043 B Y CL N293 0.2655 A N N293 0.1813 B Y CL N295 0.181 B Y CL N296 0.176 A N N2980 0.184 A Y CL OX N2980 0.148 A Y CL PR N2990 0.1949 B Y CL					Α	Ν						
N288 0.1172 B Y CL PR Image: Close of the state o												
N289 0.7094 B Y CA CL Image: Close of the system of the sys			В			Y	CL	PR				
N290 0.1109 A N Image: square												
N291 0.1536 A N Image: constraint of the system of					Δ		0/1	02				
N292 0.4043 B Y CL Image: Close of the system of t												
N293 0.2655 A N CL Image: Constraint of the system					~		0	-				
N294 0.3747 B Y CL Image: Close of the system of			В				GL	-				
N295 0.1861 B Y CL Image: Close of the system of t					A							
N296 0.1391 B Y CL Image: Close of the system of												
N297 0.1813 B Y CL Image: Close of the system of t												
N298a 0.176 A N Image: constraint of the second sec												
N298b 0.086 A N Image: constraint of the state of the sta	N297	0.1813	В			Y	CL					
N298b 0.086 A N Image: constraint of the state of the sta	N298a	0.176			Α	N						
N298c 0.1533 A N Image: constraint of the system of												
N298d 0.148 A Y CL OX Image: constraint of the state		0 1533										
N299 1.0981 B Y CL EP CA Image: CA N299b 0.1349 B Y CL PR Image: CA Ima				Δ			CI	ΟX				
N299b 0.1349 B Y CL PR Image: constraint of the state of the s			D	~					C 4			
N299c 0.1189 B Y CL Image: Close of the system o									CA			
N300 0.1279 A N C C C N301 1.1566 B Y CL EP Image: Constraint of the state of the sta								РК				
N301 1.1566 B Y CL EP Image: Constraint of the state			В				CL					
N302 0.2338 A Y CA PR EP OX N303 0.4776 B Y CL PR Image: Constraint of the state of	N300	0.1279			A	N						
N303 0.4776 B Y CL PR Image: Constraint of the state			В					EP				
N304 0.3046 B Y CL Image: Constraint of the stress of the strest	N302	0.2338		A		Y	CA	PR	EP	OX		
N304 0.3046 B Y CL Image: Constraint of the stress of the strest	N303	0.4776	В			Y	CL	PR				
N305 0.1762 A N CA PR EP CA N306 0.4208 B Y CA PR EP CA N307 0.1685 A Y PR CA PR EP CA N308 0.3396 B Y EP OX CA CA CA CA N309a 0.151 A Y CA			В	ľ	ľ	Y						
N306 0.4208 B Y CA PR EP Image: Constraint of the state of the s					А		İ 🗌	İ 👘		<u> </u>		
N307 0.1685 A Y PR Image: Constraint of the state of th			В	1	1		CA	PR	EP			
N308 0.3396 B Y EP OX Image: Constraint of the state			2	Δ				<u> </u>	<u> </u>			
N309a 0.151 A Y CA No No information N309b N309b No No No No Information N310 0.6625 B Y CA CL PR No N311 0.1934 A Y CA CL PR No N312 0.2414 A Y CL CL N313 0.1385 A N N314 0.1193 A Y EP PR </td <td></td> <td></td> <td>P</td> <td>~</td> <td></td> <td></td> <td></td> <td>07</td> <td><u> </u></td> <td><u> </u></td> <td></td> <td></td>			P	~				07	<u> </u>	<u> </u>		
N309b No information N310 0.6625 B Y CA CL PR No information N311 0.1934 A Y CA CL PR No information N312 0.2414 A Y CA Image: CA <			D	٨				0.	<u> </u>	<u> </u>		
N310 0.6625 B Y CA CL PR Image: Constraint of the state of the s		0.151		A		Ϋ́	0A					No information
N311 0.1934 A Y CA Image: Constraint of the state of th				_			<u>.</u>	0.				ino information
N312 0.2414 A Y CL Image: Close of the state of the s					l			CL	PR			
N313 0.1385 A N Image: Constraint of the system of												
N314 0.1193 A Y EP PR Image: Constraint of the state of the st	N312	0.2414		A		Y	CL					
N315 0.2333 A Y EP Image: Constraint of the system of the syst	N313	0.1385			Α	Ν						
N315 0.2333 A Y EP Image: Constraint of the system Image: C	N314	0.1193		Α		Y	EP	PR	I	I		
N316 0.1799 B Y CL PR Image: Constraint of the state of the st								Ì		1		
N317 0.2729 B Y CL Image: Classical system of the system of th			В	· ·				PR	t –	t –		
N318 1.2287 B Y CL Image: Classical system Classical system								<u> </u>				
N319 0.3251 B Y KL Image: Klock of the state of the s												
N320 0.243 B Y CL								┣──	<u> </u>			
N321 0.09 A N				ļ	ļ			I	<u> </u>	I		
			В				CL	<u> </u>	I	I		
					A							
	N322	0.1119	В			Y	CL					
N323 0.347 B Y CL OX PR	N323	0.347	В			Y	CL	OX	PR			

			-	1		r –	-	1	1	1	1
	6				Ę						
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL	_	01	~	-		
FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[0		F	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	\mathbf{x}
AC TC	ËE		HEALED	<u> </u>	RA	RA	RA	RA	RA	RA	J RI
AC S-1	AC	B	IV	H	Ë	Ë	巴	Ë	Ë	Ë	₩
R/ SV	E E	OPEN	HH	TIGHT	Ę	Ę	Ę	Ę	Ę	Ę	REMARK
				-	Y			~	~	~	μ.
N324	0.5495	В				CL	PR				
N325	0.4232	В			Y	CL	PR				
N326	0.1605	В			Y	PR					
N327	0.1641	В			Y	CL					
N328	0.8647	В			Y	CL	CA	ОХ	1		
N329	0.5443	D	А		Ý	EP	CL	OX	1		
							0L	0^			
N330	0.1279		A		Y	CL					
N331	0.0882		A		Y	CA					
N332	0.1068	В			Y	EP	CL				
N333	1.0378	В			Y	CL	CA				
N333b	0.2709	В			Y	XX					
N334	0.6998		Α		Ý	EP	ОХ	CA			
	0.5157	D	~		Ý	EP		PR			
N335		B					OX	Γħ	┣───		
N336	0.2353	В	ļ	ļ	Y	CL	I	<u> </u>	<u> </u>	ļ	
N337	0.1203			A	N						
N338	0.1816		В		Y	PR	CL				
N339	0.2067		Α	ľ	Y	CL	PR		1	Ι	
N340	0.0861	В			Ý	CL	1	1	1	1	1
N341	0.1635	B			Y	PR	CL	+	+		
									 		
N342	0.1066	В	ļ	<u> </u>	Y	CL	I	ļ	 	ļ	
N343	0.1501		<u> </u>	A	Ν						
N344	0.0574	В			Y	CA					
N345	0.3566			Α	Ν						
N346	0.2597			Α	Ν	İ.		İ.	1		
N347	0.2038	В			Y	CL	-	1	1		
							<u>0</u> ¥	D D			
N348	0.5915	В			Y	CL	OX	PR			
N349	0.2134		A		Y	CL	QZ	CA	EP		
N350	1.2317		Α		Y	CL	EP	OX			
N351	0.7415	В			Y	CL	PR				
N352	0.6071	В			Y	CL	PR			İ –	
N353	0.6012			Α	Ň						
N354		В		~	Y	EP	CL				
	0.7766	D				EP	GL				
N355	0.3358			A	Ν						
N356	0.4619		В		Y	PR	OX				
N358	0.2728	В			Y	CL					
N359	0.5257	В			Y	PR					
N360	0.5934		Α		Y	CL	EP	ΟХ			
N361	0.241	В			Ý	CL		0/1			
		Б	Б		Y			-			
N362	0.1179		В			PR					
N363	0.1512		A		Y	PR	ļ	<u> </u>	<u> </u>	L	
N364	0.1606		В		Y	EP	PR				
N365	0.3893		Α		Y	CL	PR				
N366	0.2652		Α		Y	EP	1			1	
N367	0.1889		1	Α	Ň	1	1	1	1	i	
N368	0.3064		А		Y	PR	<u> </u>	+	+		
							חם				
N369	0.3518		A		Y	CL	PR	0.7	ļ	I	
N370	0.19		A	l	Y	CL	EP	OX	<u> </u>		
N371	0.1625			Α	Ν						
N372	0.2181			Α	Ν						
N373	0.1123	В	1	1	Y	KL	1	Î	1	Î	1
N374	0.2204	-	В		Ý	CL	1	1	1	1	1
N375	0.2204	P			Y	PR	CI	C 4	 		
		В				гп	CL	CA	┣───		
N376	0.1953			A	N	L		L	 	ļ	
N377	0.3624		A		Y	CL	PR	OX			
N378	0.1424		Α		Y	CL	CA				
N379	0.2706		Α		Y	CA	CL			Ι	
N380	0.0794		A		Ý	CA	CL	EP	1	1	1
		р	~		Y	CL	PR		07		
N381	0.2477	B	 	 				CA	OX		
N382	0.5632	B		ļ	Y	EP	CL	CA	ОХ	ļ	
N383	0.4387	В			Y	CL	CA				
N384					_						No information
N385											No information
N386	0.1347		В		Y	CL			1		
				-	Y	EP	1	ł	1		
N387	0.1606		A								

II II<	HEVIED B HEVIED A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	Y Y X Y X X X X X X X X X X X X X X X X	D P P D P P UNREALI	A MINERAL2	X S MINERAL3	MINERAL4	MINERALS	REMARK
N388 0.2185 N389 0.0997 N390 0.3347 N391 0.2304 N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N405 0.1801 N406 0.0888 N406 0.2891 N408 0.2354	B B A A A A A B	A A A A A A	N Y Y Y N Y N Y Y Y Y Y Y	PR PR PR CL CL PR CL CL	EP EP CA EP	CA	MINERAL4	MINERALS	REMARK
N388 0.2185 N389 0.0997 N390 0.3347 N391 0.2304 N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	B B A A A A A B	A A A A A A	N Y Y Y N Y N Y Y Y Y Y Y	PR PR PR CL CL PR CL CL	EP EP CA EP	CA	MINERAL	MINERAL	REMARK
N388 0.2185 N389 0.0997 N390 0.3347 N391 0.2304 N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	B B A A A A A B	A A A A A A	N Y Y Y N Y N Y Y Y Y Y Y	PR PR PR CL CL PR CL CL	EP EP CA EP	CA	MINER	MINER	REMAR
N388 0.2185 N389 0.0997 N390 0.3347 N391 0.2304 N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N405 0.1801 N405 0.1801 N406 0.0888 N407 0.22591 N408 0.2354	B B A A A A A B	A A A A A A	N Y Y Y N Y N Y Y Y Y Y Y	PR PR PR CL CL PR CL CL	EP EP CA EP	CA	MINI	INIW	
N388 0.2185 N389 0.0997 N390 0.3347 N391 0.2304 N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N405 0.1801 N405 0.1801 N406 0.0888 N407 0.22591 N408 0.2354	B B A A A A A B	A A A A A A	N Y Y Y N Y N Y Y Y Y Y Y	PR PR PR CL CL PR CL CL	EP EP CA EP	CA	M	M	
N389 0.0997 N390 0.3347 N391 0.2304 B N392 0.2692 B N393 0.2795 B N394 0.1796 B N395 0.1855 B N396 0.1231 B N397 0.0656 B N398 0.1126 B N399 0.0944 D N400 0.1035 D N401 0.2708 B N402 0.2002 D N403 0.1021 D N405 0.1801 B N406 0.0888 B N407 0.2591 D N408 0.2354 D	A A A A A A B	A A A A A	Y Y Y Y N Y Y Y Y Y Y	CL PR PR CL CL PR CL	EP CA EP				
N389 0.0997 N390 0.3347 N391 0.2304 B N392 0.2692 B N393 0.2795 B N394 0.1796 B N395 0.1855 B N396 0.1231 B N397 0.0656 B N398 0.1126 B N399 0.0944 D N400 0.1035 D N401 0.2708 B N402 0.2002 D N403 0.1021 D N405 0.1801 B N406 0.0888 B N407 0.2591 D N408 0.2354 D	A A A A A A B	A A A A	Y Y Y Y N Y Y Y Y Y Y	CL PR PR CL CL PR CL	EP CA EP				
N390 0.3347 N391 0.2304 B N392 0.2692 N393 N393 0.2795 N394 N394 0.1796 N395 N395 0.1855 N396 N397 0.0656 N398 N399 0.1126 B N399 0.0944 N400 N401 0.2708 B N402 0.2002 N403 N404 0.0729 B N406 0.1801 B N406 0.2888 B N407 0.22591 N408	A A A A A A B	A A A A	N Y Y N Y N Y Y Y Y	CL PR PR CL CL PR CL	EP CA EP				
N391 0.2304 B N392 0.2692 1 N393 0.2795 1 N394 0.1796 1 N395 0.1855 1 N396 0.1231 B N397 0.0656 1 N398 0.1126 B N399 0.0944 1 N400 0.1035 1 N401 0.2708 B N402 0.2002 1 N403 0.1021 1 N405 0.1801 B N406 0.0888 B N407 0.2591 1 N408 0.2354 1	A	A A A A	Y Y N N Y N Y Y N Y	PR PR CL CL PR CL	CA EP				
N392 0.2692 N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N404 0.0729 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	A	A A A	Y N N Y N Y Y N Y Y	PR PR CL CL PR CL	CA EP				
N393 0.2795 N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N404 0.0729 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	A	A A A	Y N Y N Y Y Y N Y	PR CL CL PR CL	CA EP				
N394 0.1796 N395 0.1855 N396 0.1231 N397 0.0656 N398 0.1126 N399 0.0944 N400 0.1035 N401 0.2708 N402 0.2002 N403 0.1021 N404 0.0729 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	A	A A A	N Y N Y Y Y N Y	CL CL PR CL	EP				
N395 0.1855 N396 0.1231 B N397 0.0656 B N398 0.1126 B N399 0.0944 B N400 0.1035 C N401 0.2708 B N402 0.2002 C N403 0.1021 C N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408	A B	A A A	N Y N Y Y Y N Y	CL PR CL					
N396 0.1231 B N397 0.0656 N398 0.1126 B N399 0.0944 N400 0.1035 N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408 0.2354	A B	A	Y N Y Y Y N Y	CL PR CL					
N397 0.0656 N398 0.1126 B N399 0.0944 N400 N400 0.1035 N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408 0.2354	A B	A	N Y Y Y N Y	CL PR CL					
N398 0.1126 B N399 0.0944 N400 0.1035 N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408 0.2354	A B	A	Y N Y Y N Y	PR CL	CL				
N398 0.1126 B N399 0.0944 N400 0.1035 N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408 0.2354	A B		N Y Y N Y	PR CL	CL				
N399 0.0944 N400 0.1035 N401 0.2708 B N402 0.2002 N403 N403 0.1021 N404 N405 0.1801 B N406 0.0888 B N407 0.2591 N408	A B		Y Y N Y	CL	CL				
N400 0.1035 N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591	A B		Y Y N Y	CL	CL				
N401 0.2708 B N402 0.2002 N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591	A	A	Y N Y	CL					
N402 0.2002 N403 0.1021 N404 0.0729 N405 0.1801 N406 0.0888 N407 0.2591 N408 0.2354	B	A	N Y						
N403 0.1021 N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408	B	~	Y						
N404 0.0729 B N405 0.1801 B N406 0.0888 B N407 0.2591 N408	B					<u> </u>			+
N405 0.1801 B N406 0.0888 B N407 0.2591 N408 0.2354				CL		<u> </u>			╂─────
N406 0.0888 B N407 0.2591			Y	CL					<u> </u>
N407 0.2591 N408 0.2354			Y	CL					L
N408 0.2354			Y	CL	PR				
	Δ		Y	CL					
	~		Y	EP	CA				
	А		Y	CL	EP				
N410				-					No information
n501 0.5587		А	N						
n502 0.1876		A	N						
n502 0.1878		A	N						
	^	A	Y						
	A			CL					
	A		Y	EP					
	A		Y	CL					
	Α		Y	CA	RF				
	В		Y	CL	PR	CA			
n509 0.0852		Α	Ν						
n510 0.1225		Α	Ν						
	A		Y	EP					
	A		Ŷ	CL					
n513 0.1355	~	А	N	0L					
n513 0.1355		A	N						
n515 0.1325		А	Ν						
n516									No information
n517 0.3826		A	Ν						
n518									No information
n519a									No information
n519b									No information
n520 0.134	В		Y	CL					
	B		Ŷ	CL					1
	A		Ý	CA					1
n523 0.1301	` 	А	N	<u> </u>					†
	A	~	Y	ОХ	EP				+
	~		ſ	07	CP'				No information
n525									No information
n526									No information
n527									No information
	Α]	Y	EP					
n529									No information
n530 0.0783		Α	Ν						
	A		Y	RF	CA	OX			1
	A		Ŷ	RF	CA	OX			1
	A		Ý	RF	CA			-	1
	A		Y	CA	0,1				+
n532	~		1	57					No information
		_	NI						No information
n533 0.2226		A	N			<u> </u>			L
n534 0.109		А	Ν						
n535									No information
n536 0.0527		А	Ν						
n537 0.0687		Α	Ν						

-			1		-	r	-	r –			
\Box	6				Ļ						
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL	_		~	-	10	
FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[0		F	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	\mathbf{x}
JT OM	ËE		HEALED	Ē	RA	RA	RA	RA	RA	RA	REMARK
AC S-I	AC	B	IV	H	Ë	Ë	Ë	Ë	Ë	Ë	V
R/	E P	OPEN	Ξ	TIGHT	Ę	Æ	Æ	Æ	Æ	Æ	E
		0		-		~	~	~	~	~	ц
n538	0.0544			A	Ν						
n539	0.0853			Α	N						
n540	0.1062		Α		Y	EP					
n541				Α	N						
n542	0.1086			A	N						
				~			<u></u>	<u>0</u> ¥			
n543	0.2992	В		-	Y	CL	CA	ОХ			
n544	0.0841			A	N						
n545	0.0658			Α	N						
n546				Α	Ν						
n547	0.0974		Α		Y	PR	CL				
n548	0.0823			Α	Ň						
n549	0.0020			A	N						
	0.2			A							
n550	0.3877		A		Y	EP					
n551	0.1161		Α		Y	EP					
n552	0.0666			Α	Ν		1				
n553	0.0685		İ	A	N	i	1	1	1		1
	0.1857		В	- ^`	Y	CL	1	1			1
n554			Ď			0L	<u> </u>	 			
n555	0.1299			A	N		ļ	L			
n556	0.0879		A		Y	PR	<u> </u>				
n557	0.0833			Α	Ν		1				
n558	0.1947		Α		Y	CL	1	1			
n559	0.0734		<u> </u>	Α	N		1	1			1
				~		DD					
n560	0.1194		A	— <u> </u>	Y	PR	ļ	 			
n561	0.1998			A	N						
n562	0.0735			Α	N						
n563	0.1192		Α		Y	CL					
n564						-					No information
n565											No information
n566											No information
n567											
n568			Α		Y	CL	CA				
n569	0.0987	В			Y	CL					
n570	0.085	_	Α		Ý	CL	PR				
n571	0.1378		A	-	Y	EP					
n572	0.0879			A	Ν						
n573	0.0995			Α	N						
n574	0.1236			Α	Ν						
n575	0.0964			Α	Ν						
n576			۸	~	Y	хх					
	0.095		A			~~					
n577	0.0715			A	Ν						
n578											No information
n579											No information
n580	0.0601			Α	N		1	1			
n581							1	1			No information
n582											
				-			-				No information
n583	0.1584		l	A	Ν						
n584	I T		Α		Y	CL					
											No information
n585											
n585 n586	0 2347		Α		Y	EP					
n586	0.2347		A		Y	EP OX	CI				
n586 n587	0.1678		А		Y	OX	CL				
n586 n587 n588	0.1678 0.0749				Y Y	OX CL	CL EP	ОХ			
n586 n587	0.1678 0.0749 0.2176	В	А		Y Y Y	OX	4	ОХ			
n586 n587 n588	0.1678 0.0749	В	А		Y Y	OX CL	4	OX			
n586 n587 n588 n589 n590	0.1678 0.0749 0.2176 0.1072		A A		Y Y Y	OX CL CL CA	EP	OX			
n586 n587 n588 n589 n590 n591	0.1678 0.0749 0.2176 0.1072 0.4254	B	A A B		Y Y Y Y Y	OX CL CL CA CL	EP OX	OX			
n586 n587 n588 n589 n590 n591 n592	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619		A A		Y Y Y Y Y Y	OX CL CL CA	EP	OX			
n586 n587 n588 n589 n590 n591 n592 n593	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416		A A B		Y Y Y Y Y N	OX CL CL CA CL	EP OX	OX			
n586 n587 n588 n589 n590 n591 n591 n592 n593 n594	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851		A A B		Y Y Y Y Y Y	OX CL CL CA CL	EP OX	OX			
n586 n587 n588 n589 n590 n591 n592 n593	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851		A A B		Y Y Y Y Y N	OX CL CL CA CL	EP OX	OX			
n586 n587 n588 n590 n590 n591 n592 n593 n594 n595	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159		A A B A	Α	Y Y Y Y Y N N N	OX CL CA CL EP	EP OX CL	OX			
n586 n587 n588 n590 n591 n592 n593 n594 n595 n596	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366		A A B A A B	Α	Y Y Y Y Y N N N Y	OX CL CA CL EP CL	EP OX CL OX	OX			
n586 n587 n588 n590 n591 n592 n593 n594 n595 n596 n597	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366 0.0794	В	A A B A	Α	Y Y Y Y Y N N N Y Y	OX CL CA CL EP CL CL	EP OX CL OX OX EP	OX			
n586 n587 n588 n590 n590 n591 n592 n593 n594 n595 n596 n597 n598	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366 0.0794 0.2797	В	A A B A A B	Α	Y Y Y Y N N N Y Y	OX CL CA CL EP CL CL CL	EP OX CL OX EP PR	OX			
n586 n587 n588 n590 n591 n592 n593 n594 n595 n596 n597	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366 0.0794	В	A A B A A B	Α	Y Y Y Y N N N V Y Y	OX CL CA CL EP CL CL CL CL CL	EP OX CL OX OX EP	OX OX			
n586 n587 n588 n590 n590 n591 n592 n593 n594 n595 n596 n597 n598	0.1678 0.0749 0.2176 0.1072 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366 0.0794 0.2797	В	A A B A A B	Α	Y Y Y Y N N N Y Y	OX CL CA CL EP CL CL CL	EP OX CL OX EP PR				
n586 n587 n588 n590 n591 n592 n593 n594 n595 n596 n597 n598 n599	0.1678 0.0749 0.2176 0.4254 0.1619 0.1416 0.0851 0.1159 0.1366 0.0794 0.2797 0.2578	В	A A B A B A	Α	Y Y Y Y N N N V Y Y	OX CL CA CL EP CL CL CL CL CL	EP OX CL OX EP PR	OX			

					1	r	1	r		r	1
Α	ਿ				Н						
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL	_	2	ŝ	4	ŝ	
R G	ЧĔ		Ð		Ϋ́Γ	4L	AL.	Υ.	Ť	Ϋ́Γ	×
FRACTURE-	LENGTH OF FRACTURE[1	7	HEALED	E	IR/	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
/S-	ž Š	OPEN	EA	TIGHT	Ż	Ż	z	z	Ĩ	z	W.
R' FR	E E	OF	Η	ĨL		Ξ	Ξ	Ξ	W	Ξ	RE
n602	0.0842			Α	Ν						
n603	0.0862			Α	Ν						
n604	0.1095			A	N						
n605	0.2107			A	N						
n606	0.2107			B	N						
	0.1625	D		D							
n607		В			Y	ΧХ					
n608					_						No information
n609	0.1612		A		Y	CA	OX				
n610	0.1692		A		Y	CL					
n611	0.159			Α	Ν						
n612	0.2035		Α		Y	EP	OX				
n613	0.1478		Α		Y	CA					
n614	0.1023			Α	N						
n615	0.1019			A	N						
n616	0.1019			A	N						
n617	0.1622	В			Y	CL					
n618	0.1302	5	В		Y	CL					
n010							PR				
n619	0.2216		A		Y	CA					
n620	0.0961		A		Y	CL	PR				
n621	0.0804			A	Ν						
n622	0.0848			A	Ν						
n623	0.3127	В			Y	CL					
n624	0.3219	В			Y	CL	CA	OX			
n625	0.06			Α	N						
n626	0.1755			Α	Ν						
n627	0.2223		Α		Y	CA					
n628l	0.3049	В	~~~~		Ŷ	CA	CL				
n628u	0.3049	B			Y	CA	CL				
					Y Y						
n629	0.1946	В				CA	CL				
n630	0.1279			A	Ν						
n631	0.138			A	N						
n632	0.0573			Α	Ν						
n633	0.0611			Α	Ν						
n634	0.1015			Α	Ν						
n635	0.099		В		Y	PR					
n636	0.2632	В			Y	CA	CL				
n637	0.3363		А		Y	PR	EP				
n638	0.1056			А	N						
n639	0.0857			A	N						
n640		P	<u> </u>	А	N Y	C 4					
n640	0.5498	В				CA					
n641	0.2559		B		Ŷ	PR	EP	CA			
n642	0.3869		A		Y	PREP					
n643	0.4467	В			Y	CA	PR				
n644	0.1259	В			Y	PR	CL	CA			
n645	0.148	В			Y	CL	PR				
n646	0.0968			Α	Ν	Γ					
n647	0.1318		Α		Y	CA	RF				
n648	0.3598			А	N						
n649	0.3024		А		Y	PR	CL	CA			
n650	0.1688			Α	N		<u> </u>	5/1			
	0.1666				N						
n651				A		0		 			
n652	0.1027		В	<u> </u>	Y	CL					
n653	0.1339			A	N						
n654	0.1075			A	Ν						
n656	0.1239	В			Y	CL	PR				
n657	0.2274			Α	Ν						
n658	0.1311		Α		Y	CL					
n659	0.1926		A		Ŷ	CL					
n660	0.1069			А	N						
n661	0.0832			A	N						
		В		~	Y	CL					<u> </u>
n662	0.0936	D	۸								
n663	0.1055	_	A		Y	CL					
n664 n665	0.1249	В			Y	CL					
	0.1017			Α	N						

Baseline Baseline RACLINGE-ID Baseline RASCTURE-ID Constraint RASCTURE-ID Constraint	63 84 47 08 B	HEALED	Z	< MINERAL FILL	MINERAL1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
n666 0.08 n667 0.09 n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	75 B 63 84 47 08 B	HEALED	A	Y	MINERAL1	NERAL2	VERAL3	IERAL4	ERAL5	ARK
n666 0.08 n667 0.09 n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	75 B 63 84 47 08 B	HEALE	A	Y	MINER	NER.	VER.	ER.	ER.	AR
n666 0.08 n667 0.09 n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	75 B 63 84 47 08 B	HE/	A	Y	MIN	z	7			·
n666 0.08 n667 0.09 n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	75 B 63 84 47 08 B		A	Y	4		E	Į	NIV	TEN
n667 0.09 n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	63 84 47 08 B				CL	2	2	2	2	~
n668 0.08 n669 0.10 n670 0.2 n671 0.07 n672 0.1	84 47 08 B			Ν						
n669 0.10 n670 0.2 n671 0.07 n672 0.1	47 08 B		А	N						
n671 0.07 n672 0.1			А	Ν						
n672 0.1	37			Y	CL					
			А	Ν						
	08		A	N						
n673 n674	_									No information
n675 0.06	80		A	N					-	No information
n676 0.00			A	N						
n677 0.14			A	N						
n678 0.14		А		Y	CL					
n679 0.26		В		Y	CL			İ.		
n680a 0.19	18		А	Ν						
n680b 0.19			А	Ν						
n681 0.0		А		Y	CL	PR	I			
n682 0.07	36		A	N						No information
n683 n684 0.14	75	٨		Y	CL	OX				No information
n684 0.14 n685 0.16		A		Y Y	CL	0.				
n686 0.09				Y	CL	1	1			
n687 0.10			А	Ň						
n688 0.12		Α		Y	CL					
n689 0.09		Α		Y	CL					
n690 0.22			А	Ν						
n691 0.12	05	Α		Y	CL	OX				
n692		A		Y	EP					
n693	70	D	A	N	0	OV				
n694 0.19 n695 0.25		B B		Y Y	CL EP	OX	EP			
n696 0.07		D	В	N						
n697 0.14		А	D	Y	CL	ОХ	PR			
n698 0.08			А	Ν	-	-				
n699 0.07			А	Ν						
n700										No information
n701									_	No information
n702 0.08	93		A	N						No. 1. for some officer
n703	_									No information
n704 n705										No information No information
	26		В	N						
n707 0.10			A	N	1	1	1	1		1
n708 0.10			А	Ν						
n709 0.06	41		А	Ν						
n710										No information
n711										No information
n712	14		٨	N						No information
n713 0.09 n714 0.09			A	N N						
n715 0.06			A	N		<u> </u>	<u> </u>	<u> </u>		
n716										No information
n717										No information
n718 0.12	08		А	Ν						
n719										No information
n720 0.14	65		А	N						
n721	00									No information
n722 0.19			A	N						
n723 0.07 n724 0.08			A	N N		<u> </u>	<u> </u>			
n725 0.09			A	N						
n726 0.09			A	N		<u> </u>	<u> </u>			
n727 0.18		А		Y	EP	PR	CL	OX		1
n728 0.10			А	Ν	1	1	1	1		l

E-ID EL)F [E[m]				FILL	1	2	e.	4	5	
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	OPEN	HEALED	TIGHT	MINERAL FILL	MINERAL 1	MINERAL2	MINERAL3	MINERAL4	MINERAL5	REMARK
⊡ ≃ n729	,	B	Ŧ	E	Σ Υ		Σ	Σ	Σ	Σ	2
n729 n730	0.3791 0.1027	В		A	Y N	XX					
n731	0.1027			A	N						
n732	0.0921	В			Y	PR					
n733	0.0836			Α	Ν						
n734	0.0685			Α	Ν						
n735	0.0734			A	N						
n736 n737	0.1057 0.0639			A	N N						
n738	0.0039			A	IN						No information
n739	0.2276		A		Y	CL					No mornation
n740	0.0599			Α	Ν	-					
n741	0.087			Α	Ν						
n742	0.273			A	N						
n743 n744	0.1008			A	N						├
n744 n745	0.2626			A	N N						
n745 n746	0.2996			A	N						
n747	0.0786			A	N						
n748	0.1551			Α	Ν						
n749	0.1233			Α	Ν						
n750	0.0716			Α	Ν						
n751	0.0581		A		Y	CL					
n752	0.0717			A	N						
n753 n754	0.1879 0.2222	В	В		Y Y	CL CA	PR				
n755	0.2222		B		Y	CA	PR				
n756	0.2834			Α	N	0/1					
n757	0.4113		В		Y	PR	EP				
n758	0.166			Α	Ν						
n759	0.119		Α		Y	EP					
n760	0.1298			A	N						
n761 n762	0.2349 0.077	В		^	Y N	PR	CL				
n763	0.1049			A	N						
n764	0.1045										No information
n765	0.1313		Α		Y	CA	RF	CL			
n766	0.1074			Α	Ν						
n767	0.1125		A		Y	EP					
n768	0.1572		В		Y	CL					
n769	0.0858		В		Y	CL	<u></u>				
n770 n771	0.0865 0.0658	В	A		Y Y	CL OX	CA RF				
n772	0.1652		A		Y	EP	CL				
n773							-				No information
n774											No information
n775	0.1358			А	Ν						
n776	0.1079			A	N	<u> </u>	<u> </u>			 	ļ
n777 n779	0.1051			A	N	DD					
n778 n779	0.1755		A	A	Y N	PR					
n780	0.2207				1 N						No information
n781	0.2294			А	N						
n782	0.1197			Α	Ν						
n783	0.089			Α	Ν						
n784	0.0902	В			Y	PR	CL				
n785	0.0944		В		Y	PR					ļ
n786 n787	0.1631 0.141		A	A	N Y	PR	CL				
n787 n788	0.141		A		Y Y	CL					+
n789	0.2030		A		Y	EP					
n790	55				·						No information
n791	0.1504			Α	Ν						
n792	0.1027			Α	Ν						

					. 1		1	1			
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				MINERAL FILL						
FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[D		T LI	MINERALI	MINERAL2	MINERAL3	MINERAL4	MINERAL5	×
DTC M-	ELES LES	7	HEALED	E	ER/	ΞR∕	∃R⊅	∃R/	ER/	₩,	REMARK
VS-	BNG	OPEN	ΕA	TIGHT	Z	Ž	Ī	Ī	Ī	Ξ	EM
	, , ,	Ö		Τ			Σ	Σ	М	Σ	R
n793	0.0868		Α		Y	EP					
n794	0.0828			A	Ν						
n795	0.116			Α	N						
n796	0.2565			A	N	<u>.</u>					
n797	0.1479		A		Y	CL					
n798	0.1002			A	N						
n799	0.1089			A	N						
n800	0.1036			A	N						
n801	0.2177			A	N						
n802	0.1561		A		Y	CL		01/			
n803	0.4702		A		Y	EP	CL	OX	PR		
n804	0.1064			A	N	<u> </u>			<u> </u>		
n805	0.0457	-		A	N		<u> </u>	<u> </u>	<u> </u>		
n806	0.2457	B			Y	CL					No. 12 Course 11
n807	0.000.1										No information
n808	0.2831	_	A		Y	CA					Nie lafense it
n809	0.1001		60								No information
n810	0.1691	-	B?		Y	CL	 	 			
n811	0.2034	В			Y	CL					
n812	0.1265		_	A	N						
n813	0.1998		A		Y	CL	EP				
n814				A	N	<u>.</u>					
n815	0.3173	В			Y	CL	CA				
n816	0.2807	В			Y	CL					
n817				A	N						
n818				A	Ν						
n819				A	Ν						
n820	0.0671			A	N						
n821	0.2042			A	Ν						
n822											No information
n823											No information
n824	0.122	В			Y	CL					
n825											No information
n826	0.281			В	N						
n827	0.1288			A	N						
n828				-							No information
n829	0.1422			A	N		<u> </u>	<u> </u>		L	
n830	0.0959		В		Y	PR	<u> </u>	<u> </u>	<u> </u>		
n831	0.1964			A	N	-	L	<u> </u>		L	
n832	0.2586	B			Y	CL	OX PR		<u> </u>		
n833	0.2869	В			Y	CL	PR	CA			
n834											No information
n835											No information
n836	0.0912		A		2	KL	I	I			
n837	0.255		В		Y	PR					
n838	0.1532		A		Y	PR	CA				
n839	0.1361		A		Y	CL	CA	<u> </u>			
n840	0.0948		A		Y	PR					
n841	0.1262		A		Y	CL	I	I			
n842	0.1572		A		Y	EP	PR	I			
n843	0.1468		Α		Y	EP					
n844											No information
n845											No information
n846	0.6154	В			Y	PR	CA	CL	EP		

Length of fractures in EDZ 3D model

Total number model TOTAL NATURAL FR/ DIRECT BLAS INDUCED	ACTURE	S	1223 777 262 184	Length 1187 755 255 177	informatio	on available
Large fracture	es in 3D-	model		Length	informatio	on available
TOTAL			695	677		
NATURAL FR			426	417		
DIRECT BLAS	T INDUC	ED	169	163		
INDUCED			100	97		
Small fracture	es in 3D-i	model		Length	informatio	n available
TOTAL			528	510		
NATURAL FR/	ACTURES	S	351	338		
DIRECT BLAS	T INDUC	ED	93	92		
INDUCED			84	80		
Length distrib					I and indu -75 cm >75	
Natural	325	246	84	37	26	37
Direct blas	178	66	8	2	1	0
Induced	121	46	9	1	0	0
Length distrib	cm 15-	30 cm 30	-45 cm 45	-60 cm 60	-75 cm >75	5 cm
Natural	227	90	17	3	1	0
Direct bla:	84	8	0	0	0	0
Induced	74	6	0	0	0	0
Length distrib <15					ced and in -75 cm >75	
Natural	98	156	67	34	25	37
Direct bla:	94	58	8	2	1	0
Induced	47	40	9	1	0	0

Natural fractures

Natura	<u>i fractur</u>	es	-	-			-	-	
FRACTURE-ID R VS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]
N001	0.6306	N058	0.2009	N107	0.2793	N158	0.1866	N210	0.1217
N002	0.5063	N059a	0.7342		0.1472				0.199
N003	0.8116		0.1371	N109	0.3196		0.2206		0.2565
N004	0.6234	N060	0.2356	N110		N161	0.2769	N213	0.0808
N004	0.6577	N061	0.223	N111		N162	0.1486	N214	NO INFO
N005	0.6473	N062a	0.2233	N112		N163	0.1400	N215	0.1198
N007	0.0689	N062b	0.3559	N113I	0.5102		NO INFO	N216	0.2208
N008		N063a	NO INFO	N113u	0.6514		0.3431	N217	0.5068
N009	0.1195		0.2189		0.3122		0.7602		0.1564
N010	0.2489	N064	0.2825		0.339		0.411		0.1297
N011	0.3625	N065	0.1612		0.4063		0.4415		0.2953
N012	0.0716		0.082	N116	0.5656				0.3517
N013	0.2998	N067	0.263	N117	1.5241	N170	0.3706	N222	0.2248
N014	0.2409	N068	0.2632	N118	1.566	N171	0.8552	N223	0.5554
N015	0.241	N069	0.2426	N119		N172	0.4669	N224	0.4058
N016	0.2481	N070	0.3145	N120	0.405	N173	0.8609	N225	0.1577
N017	0.6038	N071	0.2752	N120b	0.1098	N174	0.6435	N226	0.0817
N018	0.2516	N072	0.0959	N121	0.7836	N175	0.7801		0.3142
N019	0.8175	N073	0.2061	N122	0.3146	N176	0.2323		0.2004
N020	0.1287	N074	0.0925	N123	0.6666		0.4016		0.1104
N021	0.1482	N075I	0.2195	N124	0.4406			N230	0.3223
N022	0.092	N075u	0.2892	N125	0.2925	-	0.2127	N231	1.0112
N022	0.6258	N076	0.544			N180	0.0671	N232	0.0905
N023	0.9106	N077	0.4062	N127	0.1677		0.2827	N233	0.5874
N024 N025	0.9100	N077	0.4002	N127	0.1213		0.2027		0.1912
	0.6829	N078 N079	0.2898		0.1213		0.3993		
N026 N027	0.8829	N079 N080	0.2696	N129 N130	0.2623		0.1443	N236	0.0959
-									0.3897
N028	0.2726	N081	0.1153	N131	0.1373		0.4297	N237	1.0176
N028b	0.1859	N082	0.4841	N132		N186	0.2201	N238	1.0306
N029	0.2544		0.1574		0.6954		0.1751	N238b	0.5882
N030	0.3316		0.0294		0.7835		0.1227	N238u	0.5105
N031	0.5179	N085	0.2066		1.7463			N239	0.9916
N032	0.3806		0.0811	N136	0.4915		0.5887	N240	0.3164
N033	0.308		0.527	N137	0.4207		0.62		0.1349
N034	NO INFO	N088a	NO INFO	N138	0.5374		0.764		0.3697
N035	0.2165		NO INFO	N139		N192	1.4828		0.4846
N036	0.3488	N089	0.1741	N140		N193	1.4508	N244	NO INFO
N037	0.2695			N141	0.1581		1.2449		1.043
N038	0.2195		0.1316		0.264		0.4034		0.4728
N039	0.258	N092	0.2171		0.2792	N196	0.2864	N247	0.5174
N040	0.3964	N093	0.1269	N144	0.1278		0.6557	N248	0.2295
N041	0.2446	N094	0.0691	N145	0.1054	N198	0.08	N249	0.185
N042	0.0908	N095	0.2274	N146	0.1038	N199	0.5858	N250	0.5877
N043	0.1633	N096	0.2645	N147	0.0839	N200	0.1855	N251	0.4223
N045	0.344	N097	0.1677	N148	0.1959	N201	0.1918	N252	0.3529
N046	0.1819	N098		N149	0.118		0.2517		0.9675
N048		N099	0.2191		0.3815		0.1129		0.9063
N049		N100	0.2218		0.2963		0.1433		0.3387
N050	0.1284		0.1683		0.3826		0.2164		0.3332
									1
N052	0.0859		0.1033		0.2667		0.0811		0.1277
N053	0.3015	N103	0.8208		0.2451	N206	0.2964	N258	0.3183
N055	0.1023	N104	0.2358	N155	0.1979	N207	0.2809	N259	0.3093
N056	0.1084	N105	0.2738	N156	0.2823	N208	0.0877	N260	0.4294
N057	0.296		0.1545		0.2951		0.0993		0.2017
1007	0.230		0.1040	11107	0.2001		0.0000	14201	0.2017

Natural fractures

Natural	Iractur	es							
A.D	m]	A . 1	Ш.	A.	Е	A.,	Е	A.	<u>n</u>
FR ACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID R VS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]
10 10	н	IUI	ΗD	IOI	ΗĒ	IOI	HI	10 I	HI DI
AC' S-N	NG' AC'	AC S-N	A C.	AC S-N	AC	AC' 'S-N	AC	AC S-N	AC
RV	LEI FR	FR. RV	EE FR	FR. RV	E E	FR R V	E E	FR.	LEI FR
N262	0.2461	N309b	0.1387	N363	0.1512	n507	0.0771	n557	0.0833
N263		N310	0.6625	N364	0.1606			n558	0.1947
N264	0.6471	N311	0.1934	N365	0.3893	n509	0.0852	n559	0.0734
N265	0.3298	N312	0.2414	N366	0.2652	n510	0.1225	n560	0.1194
N266		N313	0.1385	N367	0.1889	n511	0.1352	n561	0.1998
N267		N314	0.1193	N368	0.3064		0.264		0.0735
N268	0.5279	N315	0.2333	N369	0.3518	n513	0.1355	n563	0.1192
N269	0.7583		0.1799		0.19	n514		n564	0.2183
N270		N317	0.2729	N371	0.1625	n515	0.1325	n565	NO INFO
N271n		N318	1.2287	N372	0.2181	n516	0.064	n566	0.061
N271u		N319	0.3251	N373	0.1123	n517	0.3826		0.0556
N272		N320	0.243		0.2204	n518			0.3739
N273		N321		N375	0.3734	n519a	0.1668	n569	0.0987
N274	0.703		0.1119		0.1953	n519b	0.1668	n570	0.085
N275		N323	0.347	N377	0.3624	n520	0.134	n571	0.1378
N276	0.7818	N324	0.5495	N378	0.1424	n521	0.1342	n572	0.0879
N277	0.2883	N325	0.4232	N379	0.2706	n522	0.1264	n573	0.0995
N278	0.0989	N326	0.1605	N380	0.0794	n523	0.1301	n574	0.1236
N279	0.3256	N327	0.1641	N381	0.2477	n524	0.2843	n575	0.0964
N280		N328	0.8647	N382	0.5632	n525	0.1239	n576	0.095
N281	0.5215		0.5443		0.4387	n526		n577	0.0715
N282		N330	0.1279		NO INFO	n527			NO INFO
		N331							NO INFO
N283			0.0882	N385	0.0685	n528			
N284	0.1265		0.1068		0.1347	n529			0.0601
N285	0.1694		1.0378		0.1606		0.0783		NO INFO
N286		N333b	0.2709		0.2185	n531	0.0826	n582	NO INFO
N287	0.1065		0.6998		0.0997	n531b			0.1584
N288	0.1172	N335	0.5157	N390	0.3347	n531c	0.1089	n584	0.0806
N289	0.7094	N336	0.2353	N391	0.2304	n531d	0.1982	n585	NO INFO
N290	0.1109	N337	0.1203	N392	0.2692	n532	0.1215	n586	0.2347
N291	0.1536	N338	0.1816	N393	0.2795	n533	0.2226	n587	0.1678
N292	0.4043	N339	0.2067	N394	0.1796	n534	0.109	n588	0.0749
N293	0.2655	N340	0.0861	N395	0.1855	n535	0.0634	n589	0.2176
N294		N341	0.1635	N396	0.1231	n536	0.0527	n590	0.1072
N295		N342	0.1066		0.0656		0.0687	n591	0.4254
N296	0.1391		0.1501		0.1126		0.0544		0.1619
N297	0.1813		0.0574		0.0944				
							0.0853		0.1416
N298a	0.176		0.3566		0.1035		0.1062		0.0851
N298b	0.086		0.2597		0.2708		NO INFO	n595	0.1159
N298c	0.1533		0.2038		0.2002		0.1086		0.1366
N298d	0.148		0.5915		0.1021		0.2992	n597	0.0794
N299	1.0981	N349	0.2134	N404	0.0729		0.0841	n598	0.2797
N299b	0.1349	N350	1.2317	N405	0.1801	n545	0.0658	n599	0.2578
N299c	0.1189	N351	0.7415	N406	0.0888	n546	NO INFO	n600	0.06
N300	0.1279	N352	0.6071	N407	0.2591	n547	0.0974	n601	0.1373
N301	1.1566	N353	0.6012	N408	0.2354	n548	0.0823	n602	0.0842
N302	0.2338		0.7766		0.1532			n603	0.0862
N303	0.4776		0.3358		0.1869		0.3877		0.1095
N304	0.3046		0.3330		0.1003		0.1161		0.2107
N305	0.1762		0.2728		0.1876		0.0666		0.1625
N306	0 4208	N359	0.5257	11503	0.093	11553	0.0685	11607	0.207
				- 504	0 1000		0 1055		0.0000
N307	0.1685	N360	0.5934		0.1008		0.1857		0.0388
N307 N308 N309a		N360 N361		n505	0.1008 0.1049 0.1154	n555	0.1857 0.1299 0.0879	n609	0.0388 0.1612 0.1692

Natural fractures

Natural	fractur	es							
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FR ACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]
n611	0.159	n665	0.1017	n718	0.1208	n772	0.1652	n826	0.281
n612	0.2035		0.0875	1	0.0483		0.0567	n827	0.1288
n612	0.1478		0.0963		0.1465		0.0678		NO INFO
n614	0.1023		0.0884		0.1417		0.1358		0.1422
n615	0.1019		0.1047		0.1963		0.1079		0.0959
n616	0.1019		0.208		0.0799			n831	0.1964
n617	0.1622	n671	0.0737		0.0843		0.1755		0.2586
n618	0.1302		0.108		0.0987		0.2237	n833	0.2869
n619	0.2216		0.0692		0.0993		0.3347	n834	0.2
n620	0.0961	n674	0.0627		0.1813		0.2294		0.0654
n621	0.0804		0.0689		0.1079		0.1197	n836	0.0912
n622	0.0848		0.1176		0.3791		0.089		0.255
n623	0.3127		0.1498		0.1027		0.0902	n838	0.1532
n624	0.3219	n678	0.1497	1	0.1	n785	0.0944		0.1361
n625		n679	0.2613	n732	0.0921		0.1631	n840	0.0948
n626	0.1755	n680a	0.1918	n733	0.0836	n787	0.141	n841	0.1262
n627	0.2223	n680b	0.1918	n734	0.0685	n788	0.2036	n842	0.1572
n628l	0.3049	n681	0.082	n735	0.0734	n789	0.13	n843	0.1468
n628u	0.3049	n682	0.0736	n736	0.1057	n790	NO INFO	n844	0.0806
n629	0.1946	n683	0.0658	n737	0.0639	n791	0.1504	n845	0.165
n630	0.1279	n684	0.1475	n738	0.0497	n792	0.1027	n846	0.6154
n631	0.138	n685	0.1684	n739	0.2276	n793	0.0868		
n632	0.0573	n686	0.0934	n740	0.0599	n794	0.0828		
n633	0.0611	n687	0.1013	n741	0.087	n795	0.116		
n634	0.1015	n688	0.1238	n742	0.273	n796	0.2565		
n635	0.099	n689	0.0994	n743	0.1008	n797	0.1479		
n636	0.2632	n690	0.2284	n744	0.2626	n798	0.1002		
n637	0.3363	n691	0.1205	n745	0.2996	n799	0.1089		
n638	0.1056	n692	NO INFO	n746	0.079	n800	0.1036		
n639	0.0857	n693	NO INFO	n747	0.0786		0.2177		
n640	0.5498		0.1973		0.1551		0.1561		
n641	0.2559	n695	0.2543		0.1233		0.4702		
n642	0.3869	n696	0.0731		0.0716		0.1064		
n643	0.4467		0.1418		0.0581		0.0629		
n644	0.1259		0.0845		0.0717		0.2457		
n645	0.148		0.0723	1	0.1879		0.1739		
n646	0.0968		0.0642		0.2222		0.2831		
n647	0.1318 0.3598		0.0539		0.2222		NO INFO		
n648 n649	0.3598		0.0893		0.2834 0.4113		0.1691		
n650	0.3024		0.0602		0.4113		0.2034		
n651	0.1000		0.0602	1	0.100		0.1203		
n652	0.1027			n760	0.1298		0.1330		
n653	0.1339		0.1011		0.2349		0.3173		
n654	0.1075		0.1071		0.2343		0.2807		
n656	0.1239		0.0641		0.1049		0.171		
n657	0.2274		0.092		0.0616		0.162		
n658	0.1311		0.032		0.1313		0.1047		
n659	0.1926		0.0708		0.1074		0.0671		
n660	0.1069		0.0914		0.1125		0.2042		
n661	0.0832		0.0935	1	0.1572		0.0762		
n662	0.0936		0.0664		0.0858		0.0638		
		-			-				
n663	0.1055	n716	0.0687	n770	0.0865	n824	0.122		

Direct blast induced fractures

Direct	plast inc	aucea ir	actures						
ц	F 3[പ്	표 岡	ц	E El	ц	표 岡	ц	H H
JRE	H O JRI	IRI	0 H	JRI	H O IN	JRI	0 F E	JRI	0 R
L SV	ELS ILS	E S H	ES ES	LACTU RVS- DEL	ĒĒ	LL -S - T	E E	US-	EE
FRACTURE- ID RVS- MODEL	LENGTH OF FRACTURE[n]	FRACTURE- ID RVS- MODEL	LENGTH OF FRACTURE[n]	FRACTURE- ID RVS- MODEL	LENGTH OF FRACTURE[n]	FRACTURE- ID RVS- MODEL	LENGTH OF FRACTURE[n]	FRACTURE- ID RVS- MODEL	LENGTH OF FRACTURE[n]
M D H	EE EB	ЧЭМ	LE FR m]	HR MO	ET FI	H U M	LE FF	H D M	m] FF
A001	0.1504	B019	0.2105	E007	0.1016	F032	0.1366	f514	0.0572
A002	0.1721	B020	0.0629	E008	0.0537	F033	0.1712	f517	0.0792
A003		B021	0.1946			F034	0.1416		0.0339
A004		B022	1	E010	0.1027	F035	0.0538		0.196
A005	0.1385		1	E011	0.1007	F036	0.1302		0.1122
A006	0.2009		NO INFO	E012	0.0983		0.1546		0.1122
A007	0.1476	b502	0.178	E013	0.0693	F038	0.1057	f523	0.0858
A008	0.1984	b503	0.0733	E014	0.5688	F039	0.0787	f524	0.0281
A009	0.1973	b504	0.0913	E015	0.2517	F040	0.0227	f525	0.0499
A010	0.1218	b505	0.149	E016	0.0844	F041	0.0795	f526	0.0472
A011	0.1191		0.2285			F042	0.2143		0.0771
A012	0.1006		0.0865			F043	0.0698		0.0485
			Î						
A013	0.1612		0.2623			F044	0.1329		0.0653
a501	0.0973		0.0706		0.0419		0.1959		0.1692
a502	0.1478	b513	NO INFO	e503	0.0566	F046	0.0831	G002	0.1117
a503	0.0437	b514	0.1473	e504	0.1033	F047	0.0806	G003	0.1284
B001	0.1723	C001	0.0834	e506	0.1006	F048	0.246	G004	0.0782
B002	0.0897	C002	0.1835	e507	0.0683		0.1261	G005	NO INFO
B003	0.1985	ci501	1	e508	0.0799		0.1316		0.0428
B004	0.2443		0.0743			F051	0.0346		0.0389
B005	0.1467			e510	0.0369		NO INFO	g503	0.034
B006	0.2298	D003	0.0402	e511	0.1506	F053	0.2122	g504	0.0499
B007	0.0993	d501	0.0432	e512	0.0498	F054	0.0712	g505	0.0406
B008	0.1462	d502	0.0526	F001	0.0845	F055	0.3052	H002	0.1386
B009		d503			0.1276		0.1449		0.1889
B010	0.2309		0.0498		0.2605		0.0868		0.1073
B011	0.155	d505	0.0359		0.1305		0.0871		0.1011
B012		d506	0.0692		0.2015		0.1529		0.0652
B013	0.1838		0.2456		0.163		0.1804		0.1473
B014	0.0784	E002	0.0573	F007	0.0984	F061	0.2075	h505	0.108
B015	0.1666	E003	0.0413	F008	0.1321	F062	0.0574	h506	0.0554
B016	0.4056	E004	0.0299	F009	0.2663	F063	0.0241	1001	0.1801
B017		E005	0.522		0.1491	F064	0.1942	1002	0.0697
B018	0.1034	E006			0.1244	F065			NO INFO
F012	0.266		0.2429		0.0338		0.1475		
									0.1223
F013	0.0446		0.2905		0.1489		NO INFO	1005	0.1768
F014	0.1284		0.4283		0.0738			1006	0.1107
F015	0.3462	F069	0.3754	f534	0.0531	F094	0.1203	1007	0.2367
F016	0.142	F070	0.2423	f535	0.0491	F095	0.0554	i501	0.0528
F017	0.152	F071	0.1357	f536	0.0626	F096	0.0611	i502	0.016
F018	0.3959		0.0477		0.0373		0.0674		0.1086
F019	0.3738		0.1249		0.0070		0.0074		0.0266
F020	0.2546		0.1249		0.0351				0.0200
							0.1289		
F021	0.0934	F075	0.1266		0.1108		NO INFO	i506	0.1264
F022				+= 10	0.0687	t501	0.0514	i507	0.0819
	0.0723		0.2026						
F023			0.2026 0.1414		0.1139	f503	0.0876	i511	0.056
	0.0723	F077		f543	0.1139 0.0974		0.0876 0.0853		0.056
F023 F024	0.0723 0.1301 0.2379	F077 F080	0.1414 0.1805	f543 f544	0.0974	f504	0.0853		0.056
F023 F024 F026	0.0723 0.1301 0.2379 0.1768	F077 F080 F081	0.1414 0.1805 0.049	f543 f544 f545	0.0974 0.0333	f504 f505	0.0853 0.0995		0.056
F023 F024 F026 F027	0.0723 0.1301 0.2379 0.1768 0.1672	F077 F080 F081 F082	0.1414 0.1805 0.049 0.1129	f543 f544 f545 f546	0.0974 0.0333 0.1654	f504 f505 f507	0.0853 0.0995 0.0354		0.056
F023 F024 F026 F027 F028	0.0723 0.1301 0.2379 0.1768 0.1672 0.1104	F077 F080 F081 F082 F083	0.1414 0.1805 0.049 0.1129 0.1213	f543 f544 f545 f546 f547	0.0974 0.0333 0.1654 0.2469	f504 f505 f507 f508	0.0853 0.0995 0.0354 0.0773		0.056
F023 F024 F026 F027 F028 F029	0.0723 0.1301 0.2379 0.1768 0.1672 0.1104 0.1597	F077 F080 F081 F082 F083 F084	0.1414 0.1805 0.049 0.1129 0.1213 0.1359	f543 f544 f545 f546 f547 f548	0.0974 0.0333 0.1654 0.2469 0.0702	f504 f505 f507 f508 f510	0.0853 0.0995 0.0354 0.0773 0.1018		0.056
F023 F024 F026 F027 F028	0.0723 0.1301 0.2379 0.1768 0.1672 0.1104	F077 F080 F081 F082 F083 F084	0.1414 0.1805 0.049 0.1129 0.1213	f543 f544 f545 f546 f547 f548	0.0974 0.0333 0.1654 0.2469	f504 f505 f507 f508 f510	0.0853 0.0995 0.0354 0.0773		0.056
F023 F024 F026 F027 F028 F029	0.0723 0.1301 0.2379 0.1768 0.1672 0.1104 0.1597	F077 F080 F081 F082 F083 F084 F085	0.1414 0.1805 0.049 0.1129 0.1213 0.1359	f543 f544 f545 f546 f547 f548 f549	0.0974 0.0333 0.1654 0.2469 0.0702	f504 f505 f507 f508 f510 f511	0.0853 0.0995 0.0354 0.0773 0.1018		0.056

Induced fractures

Al005 0.142 di511 0.0885 Fl021 0.1034 fi534 0.1029 Al006 0.2091 di512 0.066 Fl022 0.1601 fi535 0.1597 Al007 0.2109 di513 0.0563 Fl023 0.1137 fi536 0.0845 Al008 0.1585 El001 0.3748 Fl024 0.2243 fi540 0.0666 Al009 0.1825 El002 0.0664 Fl025 0.1805 fi541 0.0607 Al010 0.2565 El003 0.098 Fl026 0.0608 fi542 NO INFO Al011 0.3144 El004 0.0882 Fl027 0.557 fi543 0.0828 Al012 0.2005 El009 0.25 Fl028 0.256 fi544 0.0906 Al013 0.2276 El010 0.1439 Fl029 0.0715 fi545 0.1087 ai502 0.1943 El012 0.0636 Fl031 0.1381 Gl001 0.	induce	a tractu	res					
Al001 0.1338 disor 0.0617 FI017 0.0903 fis29 0.0623 Al002 0.2645 dis508 0.0483 FI018 0.1398 fis530 0.0483 Al003 0.101 dis509 0.11 FI019 0.0736 fis532 0.0484 Al004 0.142 dis11 0.0865 FI021 0.1601 fis534 0.1029 Al006 0.2091 dis12 0.0666 FI022 0.1601 fis534 0.0845 Al007 0.2109 dis13 0.0537 FI023 0.1805 fis41 0.0666 Al009 0.1825 El001 0.03748 FI022 0.1805 fis41 0.0667 Al011 0.3148 El004 0.0882 FI027 0.557 fis43 0.0980 Al011 0.3148 El004 0.0882 FI027 0.557 fis43 0.0890 Al012 0.2026 El004 0.3103 If544 0.0990 Al013	ACTURE-ID S-MODEL	NGTH OF ACTURE[m]	ACTURE-ID S-MODEL	VGTH OF ACTURE[m]	ACTURE-ID S-MODEL	VGTH OF ACTURE[m]	ACTURE-ID S-MODEL	VGTH OF ACTURE[m]
A1002 0.2465 di509 0.0438 FI018 0.1398 fi532 0.0482 A1003 0.110 di509 0.11 FI019 0.0736 fi532 0.0482 A1004 0.1943 di511 0.0865 FI021 0.1034 fi533 0.0771 A1005 0.1422 di511 0.0865 FI022 0.1601 fi535 0.1597 A1007 0.2109 di513 0.0573 fi623 0.1137 fi536 0.0686 A1008 0.1585 E1002 0.0684 FI025 0.1805 fi541 0.0666 A1010 0.2565 E1002 0.0684 FI028 0.2561 fi544 0.9090 A1011 0.1414 E1004 0.882 FI028 0.2561 fi544 0.9090 A1012 0.2276 E1010 0.1439 FI028 0.2561 fi544 0.9090 A1013 0.2276 E1010 0.1636 FI031 0.1381 Gi001	FR/ RV	E E	FR/	FE E	FR/ RV	FR.	FR/ RV	E E
A1002 0.2465 di509 0.0438 FI018 0.1398 fi532 0.0482 A1003 0.110 di509 0.11 FI019 0.0736 fi532 0.0482 A1004 0.1943 di511 0.0865 FI021 0.1034 fi533 0.0771 A1005 0.1422 di511 0.0865 FI022 0.1601 fi535 0.1597 A1007 0.2109 di513 0.0573 fi623 0.1137 fi536 0.0686 A1008 0.1585 E1002 0.0684 FI025 0.1805 fi541 0.0666 A1010 0.2565 E1002 0.0684 FI028 0.2561 fi544 0.9090 A1011 0.1414 E1004 0.882 FI028 0.2561 fi544 0.9090 A1012 0.2276 E1010 0.1439 FI028 0.2561 fi544 0.9090 A1013 0.2276 E1010 0.1636 FI031 0.1381 Gi001	,	0 1338		0.0617		0 0903	fi529	0.0623
A1003 0.101 di50 0.11 FI019 0.0736 fi532 0.0482 A1004 0.1943 di510 0.0885 FI021 0.1034 fi534 0.0777 A1005 0.0124 di511 0.0685 FI021 0.1034 fi534 0.0123 A1006 0.2091 di512 0.0685 FI022 0.1611 fi534 0.0845 A1007 0.2109 di513 0.0563 FI022 0.1615 fi541 0.0684 A1008 0.1825 E1002 0.0684 FI025 0.1805 fi541 0.0623 A1011 0.3144 E1004 0.882 FI028 0.256 fi543 0.0823 A1012 0.2005 E1009 0.251 F1028 0.02715 fi543 0.0902 A1013 0.2276 E1011 0.1603 0.3103 fi546 NO INFO al504 0.0501 E1013 0.0922 F1032 0.0476 G10002 0.1371								
Al004 0.1943 (b11 0.0865 Fi021 0.3002 fi533 0.0717 Al005 0.2091 (d511 0.0865 Fi022 0.1601 fi535 0.1597 Al007 0.2109 (d513 0.0563 Fi023 0.1137 fi536 0.0845 Al008 0.1885 El001 0.3748 Fi024 0.2243 fi541 0.0666 Al009 0.1825 El002 0.0684 Fi025 0.1605 fi541 0.0666 Al011 0.3144 El004 0.0825 Fi027 0.557 fi543 0.0876 Al012 0.2005 El009 0.25 Fi028 0.256 fi544 0.0906 Al012 0.2005 El010 0.1439 Fi029 0.0715 fi545 0.1087 Al012 0.2005 El010 0.1439 Fi029 0.0713 fi346 NO INFO al502 0.1943 El011 0.1803 0.1821 Gi002 0.1371								
A005 0.142 di511 0.085 Fi021 0.1031 fi534 0.1023 A1006 0.2091 di512 0.066 Fi022 0.1601 fi535 0.0845 A1007 0.2109 di513 0.0563 F1023 0.1137 fi536 0.0864 A1009 0.1585 E1001 0.3748 F1026 0.0600 fi541 0.0607 A1011 0.3144 E1004 0.0822 F1027 0.557 fi543 0.0828 A1012 0.2005 E1009 0.25 F1028 0.256 fi544 0.0906 A1013 0.2276 E1010 0.1439 F1029 0.0715 fi545 0.1087 al502 0.1943 E1011 0.1801 F1033 0.1821 G1002 0.1371 al504 0.0501 E1013 0.0724 F1034 0.0642 gi501 0.1481 B1001 NO INFO F1034 0.1642 gi501 0.2433 B1004 </td <td>Al004</td> <td></td> <td></td> <td>0.106</td> <td></td> <td></td> <td></td> <td>0.0717</td>	Al004			0.106				0.0717
Al006 0.2091 di612 0.0666 Fl022 0.11137 fi535 0.1587 Al007 0.2109 di513 0.0563 Fl023 0.11137 fi536 0.0868 Al008 0.1885 El001 0.3748 Fl024 0.2243 fi540 0.0666 Al001 0.2565 El003 0.098 Fl026 0.0608 fi542 NO INFO Al011 0.3144 El004 0.0828 Fl027 0.557 fi543 0.0828 Al012 0.2005 El010 0.1439 Fl029 0.0715 fi545 0.0828 Al012 0.2205 El010 0.1439 Fl029 0.0715 fi545 0.0828 Al012 0.2276 El011 0.1801 Fl032 0.0476 Gl002 0.1313 Bi504 0.0501 El013 0.0723 Fl033 0.1824 Gl003 0.2424 Bi001 NO INFO el501 0.0734 Fl034 0.0642 gl501	AI005						fi534	0.1029
Al008 0.1585 El001 0.3748 Fl024 0.2243 fi540 0.0666 Al009 0.1825 El002 0.0664 Fl025 0.1605 fi541 0.0606 Al011 0.2565 El003 0.098 Fl026 0.0505 fi543 0.0828 Al012 0.2005 El009 0.255 Fl028 0.256 fi544 0.0928 Al013 0.2276 El010 0.1439 Fl029 0.0715 fi545 0.1087 al502 0.1943 El011 0.1801 Fl028 0.0476 Gl002 0.1371 al504 0.0601 El015 0.1028 Fl033 0.1821 Gl002 0.1371 al504 0.0562 Fl033 0.1821 Gl003 0.242 Bl001 NO INFO el504 0.0562 Fl037 0.3448 Hl001 0.243 Bl006 0.2732 el504 0.1564 Fl038 0.1209 Hl001 0.2475 Bl00	AI006	0.2091	di512	0.066	FI022		fi535	
Al009 0.1825 El002 0.0664 Fl025 0.1805 fi541 0.0607 Al011 0.2565 El003 0.089 Fl026 0.0608 fi542 NO INFO Al012 0.2005 El009 0.25 Fl028 0.256 fi543 0.0828 Al013 0.2276 El010 0.1439 Fl029 0.715 fi545 0.1087 al502 0.1943 El011 0.1801 Fl030 0.3103 fi546 NO INFO al504 0.0501 El013 0.0972 Fl032 0.0476 Gl002 0.1321 al506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.2423 Bl001 NO INFO el501 0.0769 Fl037 0.3448 Hl001 0.2433 Bl007 0.2302 el504 0.0562 Fl037 0.3448 Hl001 0.2433 Bl007 0.2303 el504 0.1204 Fl038 0.1204 Hl021 <t< td=""><td>Al007</td><td>0.2109</td><td>di513</td><td>0.0563</td><td>FI023</td><td>0.1137</td><td>fi536</td><td>0.0845</td></t<>	Al007	0.2109	di513	0.0563	FI023	0.1137	fi536	0.0845
Al010 0.2565 El003 0.098 Fl026 0.0608 fi542 NO INFO Al011 0.3144 El004 0.0882 Fl027 0.557 fi543 0.0828 Al012 0.2026 El010 0.1439 Fl029 0.0715 fi545 0.1087 Al012 0.2036 Fl028 0.0715 fi545 0.1087 Al012 0.1943 El011 0.1801 Fl030 0.3103 fi545 0.1087 Al004 0.0601 El013 0.0972 Fl032 0.0476 Gl002 0.1371 al506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.242 Bl001 NO INFO el501 0.0769 Fl038 0.1693 gl502 0.0929 Bl006 0.2732 el504 0.0562 Fl037 0.3448 Hl001 0.2433 Bl007 0.2405 el505 NO INFO Fl038 0.1209 Hl040 0.2995	Al008	0.1585	El001	0.3748	FI024	0.2243	fi540	0.0666
Al011 0.3144 El004 0.0882 Fl027 0.557 fi543 0.0826 Al012 0.2005 El009 0.256 Fl028 0.266 fi544 0.0906 Al013 0.2276 El011 0.1439 Fl029 0.0715 fi545 0.1087 al502 0.1943 El011 0.1801 Fl030 0.3103 fi546 NO INFO al504 0.0455 El012 0.0636 Fl031 0.1381 Gl001 0.1282 Bl004 0.01161 el503 0.0724 Fl034 0.0642 gl501 0.1848 Bl004 0.1161 el503 0.0734 Fl036 0.1695 gl502 0.0929 Bl006 0.1575 el506 0.121 Fl038 0.1209 Hl001 0.2433 Bl007 0.2405 el505 NO INFO Fl038 0.1209 Hl002 0.4016 Bl008 0.1575 el506 0.121 Fl033 0.2203 Hl001 <t< td=""><td>AI009</td><td>0.1825</td><td></td><td>0.0664</td><td>FI025</td><td>0.1805</td><td>fi541</td><td>0.0607</td></t<>	AI009	0.1825		0.0664	FI025	0.1805	fi541	0.0607
Al012 0.2005 El009 0.25 FI028 0.256 fi544 0.0906 Al013 0.2276 El010 0.1439 Fl029 0.0715 fi545 0.1097 al502 0.1943 El011 0.1801 Fl030 0.3103 fi546 NO INFO al504 0.0501 El013 0.0972 Fl032 0.0476 Gl002 0.1371 al506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.242 Bl001 NO INFO el501 0.0769 Fl034 0.642 gj501 0.1846 Bl004 0.1161 el503 0.0734 Fl036 0.1695 gj502 0.0929 Bl006 0.2722 el504 0.0552 Fl037 0.3448 Hl001 0.2433 Bl007 0.2405 el505 NO INFO Fl038 0.1204 0.2337 Bl008 0.1575 el506 0.1234 Fl040 0.0363 Hi502 0.0478	Al010	0.2565	EI003	0.098	FI026	0.0608	fi542	NO INFO
Al013 0.2276 El010 0.1439 Fl029 0.0715 fi545 0.1087 al502 0.1943 El011 0.1801 Fl030 0.3103 fi545 NO INFO al503 0.0495 El012 0.0636 Fl031 0.1381 Gl001 0.1282 al504 0.0501 El015 0.1028 Fl033 0.1821 Gl002 0.1371 al506 0.0703 El015 0.1028 Fl033 0.1821 Gl002 0.232 BI001 NO INFO ei501 0.0769 Fl033 0.1821 Gl002 0.0929 BI006 0.2732 ei504 0.0562 Fl037 0.3448 HI001 0.2433 BI007 0.2405 ei505 NO INFO Fl038 0.1209 0.4016 BI008 0.1775 ei506 0.1204 Fl041 0.2337 hi501 0.2217 BI010 0.1766 ei510 0.0672 Fl043 0.2203 hi502 0.0478 <		0.3144	El004		FI027	0.557	fi543	0.0828
ai502 0.1943 El011 0.1801 Fl030 0.3103 fi546 NO INFO ai503 0.0495 El012 0.0636 Fl031 0.1381 Gl001 0.1282 ai504 0.0501 El015 0.1072 Fl032 0.0476 Gl002 0.1371 ai506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.242 Bl004 0.1161 el503 0.0734 Fl036 0.1695 gl502 0.0929 Bl006 0.2732 el504 0.0562 Fl037 0.3448 Hl001 0.2433 Bl007 0.2405 el505 NO INFO Fl038 0.1209 Hl004 0.2911 Bl008 0.1575 el506 0.1214 Fl039 0.2811 Hl003 0.2078 Bl010 0.1706 el508 0.1564 Fl041 0.2337 hl501 0.2217 Bl011 0.2038 el511 0.0367 Fl043 0.2203 hl503	Al012	0.2005	EI009	0.25	FI028	0.256	fi544	0.0906
ai503 0.0495 El012 0.0636 Fl031 0.1381 Gl001 0.1262 ai504 0.0501 El013 0.0972 Fl032 0.0476 Gl002 0.1371 ai506 0.0703 El015 0.1028 Fl033 0.1821 Gl002 0.1371 ai506 0.0703 El015 0.1028 Fl033 0.1821 Gl002 0.2425 Bl004 0.1161 ei501 0.0734 Fl036 0.1695 gi502 0.0929 Bl006 0.2732 ei504 0.0562 Fl037 0.3448 Hl001 0.2433 Bl007 0.2405 ei505 NO INFO Fl038 0.1209 Hl002 0.4016 Bl008 0.1575 ei506 0.121 Fl040 0.0363 Hl004 0.2295 Bl010 0.1706 ei508 0.1564 Fl041 0.2337 hi501 0.2217 Bl011 0.2038 ei513 0.0929 Fl042 0.0818 hi502	Al013	0.2276	El010	0.1439	FI029	0.0715	fi545	0.1087
ai504 0.0501 El013 0.0972 Fl032 0.0476 Gl002 0.1371 ai506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.242 Bl001 NO INFO ei501 0.0734 Fl036 0.1695 gi502 0.0292 Bl006 0.2732 ei504 0.0562 Fl037 0.3448 Hl001 0.2433 Bl007 0.2405 ei505 NO INFO Fl038 0.1209 Hl002 0.4016 Bl008 0.1575 ei505 NO INFO Fl039 0.2811 Hl003 0.2078 Bl009 0.133 ei507 0.123 Fl040 0.0363 Hl004 0.2995 Bl010 0.1706 ei508 0.1564 Fl041 0.2377 hi501 0.2217 Bl011 0.2038 ei511 0.0376 Fl043 0.2203 hi502 0.0478 Bl012 0.1747 ei510 0.0376 Fl043 0.2203 hi503	ai502	0.1943	El011	0.1801	FI030	0.3103	fi546	NO INFO
ai506 0.0703 El015 0.1028 Fl033 0.1821 Gl003 0.242 BI001 NO INFO ei501 0.0769 Fl034 0.0642 gi501 0.1846 BI004 0.1161 ei503 0.0734 Fl036 0.1695 gi501 0.1846 BI006 0.2732 ei504 0.0562 Fl037 0.3448 HI001 0.2433 BI007 0.2405 ei505 NO INFO Fl038 0.1209 HI002 0.4016 BI008 0.1575 ei506 0.121 Fl040 0.0363 HI004 0.2237 BI010 0.1706 ei509 0.1204 Fl041 0.2337 hI501 0.2217 BI011 0.2003 ei509 0.1204 Fl042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 Fl043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0323 Fl046 0.0893 Bi011	ai503	0.0495	El012	0.0636	FI031			0.1262
BI001 NO INFO ei501 0.0769 FI034 0.0642 gi501 0.1846 BI004 0.1161 ei503 0.0734 FI036 0.1695 gi502 0.0293 BI006 0.2732 ei504 0.0562 FI037 0.3448 HI001 0.2433 BI007 0.2405 ei506 0.121 FI038 0.1209 HI002 0.4016 BI009 0.133 ei507 0.123 FI040 0.0383 HI004 0.2293 BI010 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0938 ei511 0.0923 FI044 0.1878 li001 0.417 BI014 0.1716 ei514 0.0156 FI047 0.3428 BI017 <t< td=""><td>ai504</td><td>0.0501</td><td></td><td>0.0972</td><td>FI032</td><td>0.0476</td><td>GI002</td><td>0.1371</td></t<>	ai504	0.0501		0.0972	FI032	0.0476	GI002	0.1371
BI004 0.1161 ei503 0.0734 FI036 0.1695 gi502 0.0929 BI006 0.2732 ei504 0.0562 FI037 0.3448 HI001 0.2435 BI007 0.2405 ei505 NO INFO FI038 0.1209 HI002 0.4016 BI008 0.1575 ei506 0.121 FI039 0.2811 HI003 0.2078 BI009 0.133 ei507 0.123 FI040 0.0363 HI004 0.2995 BI010 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.203 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0376 FI044 0.1878 HI001 0.2395 BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.9938 ei514 0.0156 FI047 0.3428 BI021 <td< td=""><td>ai506</td><td>0.0703</td><td>El015</td><td></td><td></td><td>0.1821</td><td>GI003</td><td>0.242</td></td<>	ai506	0.0703	El015			0.1821	GI003	0.242
BI006 0.2732 ei504 0.0562 FI037 0.3448 HI001 0.2433 BI007 0.2405 ei505 NO INFO FI038 0.1209 HI002 0.4016 BI008 0.1575 ei506 0.121 FI039 0.2811 HI003 0.2078 BI009 0.133 ei507 0.123 FI040 0.0363 HI004 0.2995 BI010 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0938 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.993 ei513 0.0923 FI046 0.0893 BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei5	BI001	NO INFO	ei501	0.0769	FI034	0.0642	gi501	0.1846
BI007 0.2405 ei505 NO INFO FI038 0.1209 HI002 0.4016 BI008 0.1575 ei506 0.121 FI039 0.2811 HI003 0.2078 BI009 0.133 ei507 0.123 FI040 0.0363 HI004 0.2995 BI01 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0387 FI044 0.1878 II001 0.4017 BI015 0.0983 ei513 0.0923 FI046 0.0803 Bi501 0.0239 Bi017 0.1716 ei514 0.0166 FI047 0.3428 BI017 0.1121 ei515 0.0376 FI048 0.112 Bi503 0.0305 Bi503 0.0305	BI004	0.1161		0.0734		0.1695	gi502	0.0929
Bi008 0.1575 ei506 0.121 Fi039 0.2811 Hi003 0.2078 Bi009 0.133 ei507 0.123 Fi040 0.0363 Hi004 0.2995 Bi010 0.1706 ei508 0.1564 Fi041 0.2337 hi501 0.2217 Bi011 0.2003 ei509 0.1204 Fi042 0.0818 hi502 0.0478 Bi012 0.1747 ei510 0.0672 Fi043 0.2203 hi503 NO INFO Bi013 0.0936 ei511 0.0337 Fi044 0.1878 li001 0.4017 Bi014 0.2789 ei512 0.1418 Fi045 0.0761 ii501 0.0239 Bi016 0.1716 ei515 0.0376 Fi048 0.112 Bi019 0.0801 ei517 0.0177 fi502 0.0468 Bi020 0.1146 ei518 0.0839 fi503 0.0305 Bi021 NO INFO ei519 0.0363 fi505 <t< td=""><td>BI006</td><td></td><td>ei504</td><td></td><td>FI037</td><td></td><td></td><td>0.2433</td></t<>	BI006		ei504		FI037			0.2433
Bi009 0.133 ei507 0.123 Fi040 0.0363 HI004 0.2995 BI010 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0337 FI044 0.1878 lil001 0.4017 BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI016 0.1716 ei513 0.0923 FI046 0.0893 BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI022 0.2184 ei520 0.0527 fi508 0.1288 BI024 0.1093 ei522 0.047	BI007		ei505	NO INFO	FI038	0.1209	HI002	0.4016
BI010 0.1706 ei508 0.1564 FI041 0.2337 hi501 0.2217 BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0837 FI044 0.1878 II001 0.4017 BI015 0.0938 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI016 0.1716 ei514 0.0156 FI047 0.3428 0.0121 0.0909 0.0239 BI018 0.1121 ei515 0.0376 FI048 0.112 0.0239 BI019 0.0801 ei517 0.0177 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi503 0.0305 BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi509 0.0283 bi503 0.1248 <t< td=""><td>BI008</td><td>0.1575</td><td>ei506</td><td>0.121</td><td></td><td></td><td></td><td>0.2078</td></t<>	BI008	0.1575	ei506	0.121				0.2078
BI011 0.2003 ei509 0.1204 FI042 0.0818 hi502 0.0478 BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0387 FI044 0.1878 II001 0.4017 BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.0983 ei513 0.0923 FI046 0.0893 BI016 0.1716 ei514 0.0156 FI047 0.3428 BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei516 0.0878 fi501 0.0909 BI019 0.801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI021 NO INFO ei519 0.03	BI009	0.133	ei507	0.123	FI040	0.0363	HI004	0.2995
BI012 0.1747 ei510 0.0672 FI043 0.2203 hi503 NO INFO BI013 0.0936 ei511 0.0387 FI044 0.1878 II001 0.4017 BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.0983 ei513 0.0923 FI046 0.0893 BI016 0.1716 ei514 0.0156 FI047 0.3428 BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei516 0.0878 fi501 0.0909 BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei519 0.0363 fi505 0.0188 BI021 NO INFO ei521 0.0139 fi508 0.1288 BI021 NO INFO ei521 0.0139 fi510 0.0354 bi503 0.1935 FI002 0.0934 fi511 0.1	BI010	0.1706	ei508	0.1564	FI041	0.2337	hi501	0.2217
BI013 0.0936 ei511 0.0387 FI044 0.1878 II001 0.4017 BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.0983 ei513 0.0923 FI046 0.0893 BI016 0.1716 ei514 0.0156 FI047 0.3428 BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei516 0.0878 fi501 0.0909 BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0627 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 FI002 0.0934 fi511 0.1569 bi505 0.0743 FI003 0.1802 fi512 0.1083 bi506 <td>BI011</td> <td></td> <td></td> <td></td> <td></td> <td>0.0818</td> <td></td> <td>0.0478</td>	BI011					0.0818		0.0478
BI014 0.2789 ei512 0.1418 FI045 0.0761 ii501 0.0239 BI015 0.0983 ei513 0.0923 FI046 0.0893 BI016 0.1716 ei514 0.0156 FI047 0.3428 BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei516 0.0878 fi501 0.0909 BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 FI002 0.0934 fi511 0.1569 bi505 0.0743 FI003 0.1802 fi515 0.1268 bi506 0.0428 FI004 <td>BI012</td> <td>0.1747</td> <td></td> <td></td> <td></td> <td></td> <td>hi503</td> <td>NO INFO</td>	BI012	0.1747					hi503	NO INFO
Bi015 0.0983 ei513 0.0923 Fl046 0.0893 Bi016 0.1716 ei514 0.0156 Fl047 0.3428 Bi017 0.1912 ei515 0.0376 Fl048 0.112 Bi018 0.1121 ei516 0.0878 fi501 0.0909 Bi019 0.0801 ei517 0.0177 fi502 0.0468 Bi020 0.1146 ei518 0.0839 fi503 0.0305 Bi021 NO INFO ei519 0.0363 fi505 0.0188 Bi022 0.2184 ei520 0.0527 fi507 0.0485 Bi023 0.1982 ei521 0.0139 fi508 0.1288 Bi024 0.1093 ei522 0.0479 fi510 0.0354 bi503 0.1268 Fl001 0.2718 fi511 0.1569 bi504 0.1093 Fl002 0.0934 fi515 0.1268 bi505 0.0743 Fl003 0.1802 fi515 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4017</td>								0.4017
BI0160.1716ei5140.0156FI0470.3428BI0170.1912ei5150.0376FI0480.112BI0180.1121ei5160.0878fi5010.0909BI0190.0801ei5170.0177fi5020.0468BI0200.1146ei5180.0839fi5030.0305BI021NO INFOei5190.0363fi5050.0188BI0220.2184ei5200.0527fi5070.0485BI0230.1982ei5210.0139fi5080.1288BI0240.1093ei5220.0479fi5100.0354bi5030.1269FI0010.2718fi5100.0354bi5040.1093FI0020.0934fi5120.1083bi5050.0743FI0030.1802fi5170.1388bi5060.0428FI0040.0723fi5150.1268bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123							ii501	0.0239
BI017 0.1912 ei515 0.0376 FI048 0.112 BI018 0.1121 ei516 0.0878 fi501 0.0909 BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 Fl001 0.2718 fi510 0.0354 bi504 0.1093 Fl002 0.0934 fi511 0.1569 bi505 0.0743 Fl003 0.1802 fi515 0.1268 bi507 0.0625 Fl005 0.2081 fi517 0.1388 bi508 0.0484 Fl008 0.079 fi520						0.0893		
BI0180.1121ei5160.0878fi5010.0909BI0190.0801ei5170.0177fi5020.0468BI0200.1146ei5180.0839fi5030.0305BI021NO INFOei5190.0363fi5050.0188BI0220.2184ei5200.0527fi5070.0485BI0230.1982ei5210.0139fi5080.1288BI0240.1093ei5220.0479fi5090.0283bi5030.1269Fl0010.2718fi5100.0354bi5040.1093Fl0020.0934fi5120.1083bi5050.0743Fl0030.1802fi5150.1268bi5060.0428Fl0040.0723fi5150.1268bi5080.0484Fl0080.079fi5200.0763bi5090.1395Fl0090.0732fi5210.1262Dl0010.07Fl0100.0938fi5220.0663Dl0030.0556Fl0110.2317fi5230.1311Dl0040.0979Fl0120.1416fi5240.1127di5010.0836Fl0130.094fi5250.0609di5020.0455Fl0140.0695fi5260.0577di5040.1158Fl0150.3156fi5270.123								
BI019 0.0801 ei517 0.0177 fi502 0.0468 BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 Fl001 0.2718 fi510 0.0354 bi504 0.1093 Fl002 0.0934 fi512 0.1083 bi505 0.0743 Fl003 0.1802 fi512 0.1083 bi506 0.0428 Fl004 0.0723 fi515 0.1268 bi507 0.0625 Fl005 0.2081 fi517 0.1388 bi508 0.0484 Fl008 0.079 fi520 0.0763 bi509 0.1395 Fl009 0.0732 fi521 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
BI020 0.1146 ei518 0.0839 fi503 0.0305 BI021 NO INFO ei519 0.0363 fi505 0.0188 BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 Fl001 0.2718 fi510 0.0354 bi504 0.1093 Fl002 0.0934 fi512 0.1083 bi505 0.0743 Fl003 0.1802 fi512 0.1083 bi506 0.0428 Fl004 0.0723 fi515 0.1268 bi507 0.0625 Fl005 0.2081 fi517 0.1388 bi508 0.0484 Fl008 0.079 fi520 0.0763 bi509 0.1395 Fl009 0.0732 fi521 0.1262 DI001 0.07 Fl010 0.0938 fi522								
BI021NO INFOei5190.0363fi5050.0188BI0220.2184ei5200.0527fi5070.0485BI0230.1982ei5210.0139fi5080.1288BI0240.1093ei5220.0479fi5090.0283bi5030.1269Fl0010.2718fi5100.0354bi5040.1093Fl0020.0934fi5110.1569bi5050.0743Fl0030.1802fi5120.1083bi5060.0428Fl0040.0723fi5150.1268bi5070.0625Fl0050.2081fi5170.1388bi5080.0484Fl0080.079fi5200.0763bi5090.1395Fl0090.0732fi5210.1262Dl0010.07Fl0100.0938fi5220.0663Dl0030.0556Fl0110.2317fi5230.1311Dl0040.0979Fl0120.1416fi5240.1127di5010.0836Fl0130.094fi5250.0609di5020.0455Fl0140.0695fi5260.0577di5040.1158Fl0150.3156fi5270.123								
BI022 0.2184 ei520 0.0527 fi507 0.0485 BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 Fl001 0.2718 fi510 0.0354 bi504 0.1093 Fl002 0.0934 fi511 0.1569 bi505 0.0743 Fl003 0.1802 fi512 0.1083 bi506 0.0428 Fl004 0.0723 fi515 0.1268 bi507 0.0625 Fl005 0.2081 fi517 0.1388 bi508 0.0484 Fl008 0.079 fi520 0.0763 bi509 0.1395 Fl009 0.0732 fi521 0.1262 DI001 0.07 Fl010 0.0938 fi522 0.0663 DI003 0.0556 Fl011 0.2317 fi523 0.1311 DI004 0.0979 Fl012 0.1416 fi525								
BI023 0.1982 ei521 0.0139 fi508 0.1288 BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 FI001 0.2718 fi510 0.0354 bi504 0.1093 FI002 0.0934 fi511 0.1569 bi505 0.0743 FI003 0.1802 fi512 0.1083 bi506 0.0428 FI004 0.0723 fi515 0.1268 bi507 0.0625 FI005 0.2081 fi517 0.1388 bi508 0.0484 FI008 0.079 fi520 0.0763 bi509 0.1395 FI009 0.0732 fi521 0.1262 DI001 0.07 FI010 0.0938 fi522 0.0663 DI003 0.0556 FI011 0.2317 fi523 0.1311 DI004 0.0979 FI012 0.1416 fi524 0.1127 di501 0.0836 FI013 0.094 fi525								
BI024 0.1093 ei522 0.0479 fi509 0.0283 bi503 0.1269 FI001 0.2718 fi510 0.0354 bi504 0.1093 FI002 0.0934 fi511 0.1569 bi505 0.0743 FI003 0.1802 fi512 0.1083 bi506 0.0428 FI004 0.0723 fi515 0.1268 bi507 0.0625 FI005 0.2081 fi517 0.1388 bi508 0.0484 FI008 0.079 fi520 0.0763 bi509 0.1395 FI009 0.0732 fi521 0.1262 DI001 0.07 FI010 0.0938 fi522 0.0663 DI003 0.0556 FI011 0.2317 fi523 0.1311 DI004 0.0979 FI012 0.1416 fi524 0.1127 di501 0.0836 FI013 0.094 fi525 0.0609 di502 0.0455 FI014 0.0695 fi526								
bi5030.1269Fl0010.2718fi5100.0354bi5040.1093Fl0020.0934fi5110.1569bi5050.0743Fl0030.1802fi5120.1083bi5060.0428Fl0040.0723fi5150.1268bi5070.0625Fl0050.2081fi5170.1388bi5080.0484Fl0080.079fi5200.0763bi5090.1395Fl0090.0732fi5210.1262Dl0010.07Fl0100.0938fi5220.0663Dl0030.0556Fl0110.2317fi5230.1311Dl0040.0979Fl0120.1416fi5240.1127di5010.0836Fl0130.094fi5250.0609di5020.0455Fl0140.0695fi5260.0577di5040.1158Fl0150.3156fi5270.123								
bi5040.1093FI0020.0934fi5110.1569bi5050.0743FI0030.1802fi5120.1083bi5060.0428FI0040.0723fi5150.1268bi5070.0625FI0050.2081fi5170.1388bi5080.0484FI0080.079fi5200.0763bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
bi5050.0743FI0030.1802fi5120.1083bi5060.0428FI0040.0723fi5150.1268bi5070.0625FI0050.2081fi5170.1388bi5080.0484FI0080.079fi5200.0763bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
bi5060.0428FI0040.0723fi5150.1268bi5070.0625FI0050.2081fi5170.1388bi5080.0484FI0080.079fi5200.0763bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
bi5070.0625FI0050.2081fi5170.1388bi5080.0484FI0080.079fi5200.0763bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
bi5080.0484FI0080.079fi5200.0763bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
bi5090.1395FI0090.0732fi5210.1262DI0010.07FI0100.0938fi5220.0663DI0030.0556FI0110.2317fi5230.1311DI0040.0979FI0120.1416fi5240.1127di5010.0836FI0130.094fi5250.0609di5020.0455FI0140.0695fi5260.0577di5040.1158FI0150.3156fi5270.123								
DI001 0.07 FI010 0.0938 fi522 0.0663 DI003 0.0556 FI011 0.2317 fi523 0.1311 DI004 0.0979 FI012 0.1416 fi524 0.1127 di501 0.0836 FI013 0.094 fi525 0.0609 di502 0.0455 FI014 0.0695 fi526 0.0577 di504 0.1158 FI015 0.3156 fi527 0.123								
DI003 0.0556 FI011 0.2317 fi523 0.1311 DI004 0.0979 FI012 0.1416 fi524 0.1127 di501 0.0836 FI013 0.094 fi525 0.0609 di502 0.0455 FI014 0.0695 fi526 0.0577 di504 0.1158 FI015 0.3156 fi527 0.123								
DI004 0.0979 FI012 0.1416 fi524 0.1127 di501 0.0836 FI013 0.094 fi525 0.0609 di502 0.0455 FI014 0.0695 fi526 0.0577 di504 0.1158 FI015 0.3156 fi527 0.123								
di501 0.0836 FI013 0.094 fi525 0.0609 di502 0.0455 FI014 0.0695 fi526 0.0577 di504 0.1158 FI015 0.3156 fi527 0.123								
di502 0.0455 FI014 0.0695 fi526 0.0577 di504 0.1158 FI015 0.3156 fi527 0.123								
di504 0.1158 Fl015 0.3156 fi527 0.123								
ai506 0.0445 F1016 NO INFO ti528 0.049								
	a1506	0.0445	FI016	NO INFO	11528	0.049		

Length of the sorted natural fractures

Total number of sorted natural

fractures in 3D-model		Length information available
TOTAL	713	685
OPEN	214	206
HEALED	261	254
TIGHT	238	225
Leves control motional functions		
Large sorted natural fractures		Length information available
TOTAL	413	Length information available 397
3	413 176	3
TOTAL		397

Small sorted natural fracturesLength information availableTOTAL300288OPEN3837HEALED103100TIGHT159151

Length d	istribution	; all natur	al fracture	es		
	<15 cm	15-30 cm	30-45 cm	45-60 cm	60-75 cm	>75 cm
Tight	145	67	10	2	1	0
Healed	97	101	30	10	7	9
Open	33	62	41	24	18	28
Length d	istribution	; large na	tural fract	ures		
	<15 cm	15-30 cm	30-45 cm	45-60 cm	60-75 cm	>75 cm
Tight	28	36	8	1	1	0
Healed	38	67	24	9	7	9
Open	21	46	34	23	17	28
Length d	istribution	; small na	itural fract	ures		

-	<15 cm	15-30 cm	30-45 cm	45-60 cm	60-75 cm	>75 cm
Tight	117	31	2	1	0	0
Healed	59	34	6	1	0	0
Open	12	16	7	1	1	0

Open natural fractures

Openi	ialurai i	actures	>				
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]
E E	N I I I I I I I I I I I I I I I I I I I	E E	R O	DE	I O I	ER ED	I O RE
FRACTURE-I RVS-MODEL	JENGTH OF	FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[FRACTURE-I RVS-MODEL	LENGTH OF FRACTURE[FRACTURE- RVS-MODEJ	LENGTH OF FRACTURE[
AC S-I	AC	AC 'S-I	NG	AC S-I	AC	AC 'S-I	NG
RV	FR E	FR	FR FR	FR	LE FR	FR	LE FR
N001	0.6306	N168	0.4415	N268	0.5279	N361	0.241
N002	0.5063		0.7335		0.7583	N373	0.1123
N003	0.8116		0.3706			N375	0.3734
N004	0.6234	N171	0.8552	N272		N381	0.2477
N005	0.6577	N172	0.4669	N273			0.5632
N006	0.6473	N173	0.8609			N383	0.4387
N007	0.0689	N174	0.6435	N275	0.1652	N391	0.2304
N008	0.2059	N175	0.7801	N276	0.7818	N396	0.1231
N014		N176		N277		N398	0.1126
N015	0.241	N177	0.4016	N279	0.3256	N401	0.2708
N019	0.8175	N178	0.6651	N280		N404	0.0729
N028	0.2726	N180	0.0671	N288		N405	0.1801
N028b		N185	0.4297	N289	0.7094	N406	0.0888
N0200	0.5179	N189	0.4383	N292	0.4043	n543	0.2992
N033	0.308	N191I	0.4303	N294		n543 n569	0.2352
N034	NO INFO	N191u	0.764	N295	0.1861	n589	0.2176
N034 N038	0.2195	N1910	1.4828	N295 N296	0.1391	n591	0.4254
N043	0.1633		0.2864			n598	0.2797
N043	0.3015	N199		N299	1.0981	n599	0.2578
N058	0.2009	N202	0.2517	N299b		n607	NO INFO
N059a	0.2009	N202		N2990 N299c	0.1349	n617	0.1622
N062b	0.7542	N212	0.2565	N301	1.1566	n623	0.1022
N0620	NO INFO	N212	NO INFO	N303	0.4776	n624	0.3127
N070	NO INFO	N214 N215	0.1198			n628l	0.3219
N075I	0.2195	N213 N217	0.5068			n628u	0.3049
N0731	0.2193	N2217		N308		n629	0.3049
N089	0.1741	N222		N316	0.3390	n636	0.1940
N005	0.1741	N223	0.2248	N317	0.1733	n640	0.2032
N098	0.2274	N223		N318	1.2287	n643	0.4467
N104	0.2358	N227	0.3142	N319	0.3251	n644	0.1259
N105	0.2738	N231	1.0112	N320	0.243	n645	0.1200
N113I	0.5102	N233	0.5874	N322	0.1119	n656	0.1239
N113u	0.6514	N234	0.1912	N323	0.347	n662	0.0936
N117	1.5241	N238	1.0306	N324	0.5495	n664	0.1249
N118	1.566	N238b	0.5882	N325	0.4232	n666	0.0875
N120	0.405	N239	0.9916	N326	0.1605	n670	0.208
N121	0.7836	N240	0.3164	N327	0.1641	n685	0.1684
N126	0.117	N240	0.3697	N328	0.8647	n686	0.0934
N129		N243	0.3037	N332	0.1068	n732	0.0921
N133	0.6954		NO INFO	N333	1.0378		0.1879
N134	0.7835			N333b	0.2709		0.2349
N135	1.7463		0.4728		0.5157		0.0865
N136	0.4915		0.5174		0.2353		0.0003
N136	0.4915		0.3529		0.2353		0.0902
N144	0.1278		0.9675		0.1635		0.2034
INH 4C	0.1038	11/204	0.9063		0.1066 0.0574		0.3173
N146				111 3444	005/4		0.2807
N148	0.1959	N255	0.3387				
N148 N154	0.1959 0.2451	N255 N256	0.3332	N347	0.2038	n824	0.122
N148 N154 N156	0.1959 0.2451 0.2823	N255 N256 N259	0.3332 0.3093	N347 N348	0.2038 0.5915	n824 n832	0.122 0.2586
N148 N154	0.1959 0.2451	N255 N256 N259	0.3332	N347 N348	0.2038	n824 n832	0.122
N148 N154 N156	0.1959 0.2451 0.2823	N255 N256 N259 N260	0.3332 0.3093	N347 N348 N351	0.2038 0.5915	n824 n832 n833	0.122 0.2586
N148 N154 N156 N159	0.1959 0.2451 0.2823 0.2409	N255 N256 N259 N260 N264	0.3332 0.3093 0.4294	N347 N348 N351 N352	0.2038 0.5915 0.7415	n824 n832 n833	0.122 0.2586 0.2869
N148 N154 N156 N159 N161 N162	0.1959 0.2451 0.2823 0.2409 0.2769 0.1486	N255 N256 N259 N260 N264 N265	0.3332 0.3093 0.4294 0.6471 0.3298	N347 N348 N351 N352 N354	0.2038 0.5915 0.7415 0.6071 0.7766	n824 n832 n833	0.122 0.2586 0.2869
N148 N154 N156 N159 N161	0.1959 0.2451 0.2823 0.2409 0.2769	N255 N256 N259 N260 N264 N265 N266	0.3332 0.3093 0.4294 0.6471	N347 N348 N351 N352 N354 N358	0.2038 0.5915 0.7415 0.6071	n824 n832 n833	0.122 0.2586 0.2869

Healed natural fractures

nealeu	natural	tracture	35						-
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]
	,	,	,						В
N009	0.1195	N106	0.1545	N237	1.0176	n508	0.2469	n679	0.2613
N010	0.2489	N107	0.2793		0.2295	n511	0.1352	n681	0.082
N011			0.1472		0.5877	n512	0.264	n684	0.1475
N012	0.0716	N109	0.3196		0.4223	n520	0.134	n688	0.1238
N013	0.2998		0.2191		0.2461	n521	0.1342		0.0994
N016				N271n	0.4701	n522	0.1264		0.1205
N017		Î	0.3122		0.9922	n524	0.2843		NO INFO
N018			0.5656		0.1265	n528	0.1276		0.1973
N023	0.6258		0.3422		0.148		0.0826		0.2543
N024	0.9106		0.1098		0.2338	n531b	0.0964		0.1418
N025	0.941	N122	0.3146		0.1685		0.1089		0.1813
N026				N309a		n531d	0.1982		0.3791
N029	0.2544		0.4406		0.6625		0.1062		0.2276
N032			0.1677	N311	0.1934		0.0974		0.0581
N035	0.2165	1	0.1213		0.2414		0.3877		0.2222
N036			0.2751		0.1193		0.1161		0.2222
N037	0.2695		0.1373		0.2333	n554	0.1857		0.4113
N039	0.258		0.3422	N329	0.5443	n556	0.0879		0.119
N040			0.4207		0.1279		0.1947		0.1313
N041			0.0577	N331	0.0882	n560	0.1194		0.1125
N042	0.0908		0.1581	N334	0.6998	n563	0.1192		0.1572
N045			0.2792		0.1816		NO INFO	n769	0.0858
N046	0.1819		0.1054		0.2067	n570	0.085		0.0658
N048	0.1881	N147	0.0839	N349	0.2134		0.1378		0.1652
N052		N149	0.118		1.2317		0.095		0.1755
N055		N150	0.3815		0.4619		NO INFO	n785	0.0944
N060	0.2356	N151	0.2963	N360	0.5934		0.2347		0.141
N061	0.223	N152	0.3826		0.1179	n587	0.1678		0.2036
N062a	0.2233	N155	0.1979		0.1512	n588	0.0749		0.13
N063a	NO INFO	N157	0.2951	N364	0.1606		0.1072		0.0868
N063b		N158	0.1866		0.3893		0.1619		0.1479
N066	0.082 NO INFO		0.2206		0.2652		0.1366		0.1561
N067	NO INFO	N166	0.7602		0.3064		0.0794		0.4702
N069		N167	0.411		0.3518			n808	
N072 N074	0.0959		0.3993 0.1751		0.19	n601	0.1373		0.1691 0.1998
N074 N075u	0.0923		0.5887		0.2204		0.1612		0.1998
N0750 N076		N190	1.4508		0.3024		0.1092		0.0939
N070	0.4062		1.2449		0.1424		0.1478		0.0312
N079	NO INFO	N197	0.6557		0.0794		0.1302		0.1532
N080		N198		N386	0.1347		0.1002		0.1361
N081	0.1153		0.1855		0.1606		0.0961		0.0948
N082	0.4841		0.1918		0.0997		0.2223		0.1262
N084	0.0294		0.1129		0.2692		0.099		0.1572
N085		N204b	0.2164		0.2795		0.3363		0.1468
N092	0.2171		0.2809		0.1035		0.2559		0.1100
N093	0.1269			N403	0.1021		0.3869		
N094	0.0691		0.0808		0.2591		0.1318		
N096	0.2645		0.2208		0.2354		0.3024		
N097	0.1677	1	0.2953		0.1532		0.1027		
N099	0.2191		0.0817		0.1002		0.1311		
N100	0.2131		0.2004		0.1000		0.1926		
N102	0.1033		0.3223		0.1043		0.1055		
N102	0.8208	1	0.3223		0.0771		0.1033		
	0.0200		0.0007		5.0771		5.1457	1	

Tight natural fractures

- ingine in	atural fr	aciures							
Ê J	LENGTH OF FRACTURE[m]	Ð ,	B	<u> A</u>	Е	Ê ,	E I	ê J	LENGTH OF FRACTURE[m]
FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]	FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[
5 Q	LUI LUI	[2] [Q	HI IUI	5 Q	HI	Ð Q	LUI LUI	Ð Q	I'H I'U'I
S-N	AC.	S-N	D O	S-N	D O	S-N	DV C	S-N	D D
R/ ₹V	EL Z	₹R/	E R	₹V S	E P	₹V,	E E	SV: K/	E Z
		N293		· · ·	_ <i>_</i>			, , , , ,	
N027	0.2885		0.2655		0.1998		0.1998		0.2284
N030			0.176	1	0.0735	n562	0.0735		
N049	NO INFO	N298b	0.086		0.0879	n572	0.0879	n696	0.0731
N050	0.1284	N298c	0.1533	n573	0.0995	n573	0.0995	n698	0.0845
N056	0.1084	N300	0.1279	n574	0.1236	n574	0.1236	n699	0.0723
N057	0.296	N305	0.1762	Î	0.0964		0.0964		0.0893
N059b	0.1371	N313	0.1385		0.0715		0.0715		0.26
N064	0.2825	N321	0.09	n580	0.0601	n580	0.0601		0.1011
				1					
N065	0.1612	N337	0.1203		0.1584	n583	0.1584		0.1072
N071	NO INFO	N343	0.1501	n593	0.1416		0.1416		0.0641
N073	0.2061	N345	0.3566	n594	0.0851	n594	0.0851	n713	0.0914
N078	NO INFO	N346	0.2597	n595	0.1159	n595	0.1159	n714	0.0935
N083	0.1574	N353	0.6012	n602	0.0842	n602	0.0842	n715	0.0664
N086	0.0811	N355	0.3358	n603	0.0862	n603	0.0862	n718	0.1208
N090	0.0549		0.1889		0.1095		0.1095		0.1465
N091	0.1316		0.1625	1	0.2107			n722	
				Î					0.1963
N101	0.1683	N372	0.2181	n606	0.1625	n606	0.1625		0.0799
N110	0.1707		0.1953		0.159		0.159		0.0843
N114u	0.339	N388	0.2185	n614	0.1023	n614	0.1023	n725	0.0987
N115	0.4063	N390	0.3347	n615	0.1019	n615	0.1019	n726	0.0993
N125	0.2925	N394	0.1796	n616	0.1019	n616	0.1019	n728	0.1079
N140	0.0468	N395	0.1855	n621	0.0804	n621	0.0804	n730	0.1027
N142	NO INFO	N397	0.0656		0.0848		0.0848		0.1
N153	0.2667	N399	0.0030			n625		n733	0.0836
N163	0.1407		0.2002		0.1755		0.1755		0.0685
N179	0.2127	n501	0.5587	n630	0.1279	n630	0.1279		0.0734
N181	0.2827	n502	0.1876	n631	0.138	n631	0.138	n736	0.1057
N183	0.1443	n503	0.093	n632	0.0573	n632	0.0573	n737	0.0639
N184	0.1241	n509	0.0852	n633	0.0611	n633	0.0611	n740	0.0599
N186	0.2201		0.1225		0.1015	n634	0.1015	n741	0.087
N188	0.1227		0.1355	1	0.1056		0.1056		0.273
N195	0.4034	n514	0.1152	n639	0.0857	n639	0.0857	n743	0.1008
			0.11325	n646	0.0057		0.0007		0.2626
N204a	0.1433					n646			
N205	NO INFO	n517	0.3826		0.3598	n648	0.3598		0.2996
N209	0.0993		0.1301	n650	0.1688	n650	0.1688		0.079
N218	0.1564	n530	0.0783	n651	0.075	n651	0.075	n747	0.0786
N219	0.1297	n533	0.2226	n653	0.1339	n653	0.1339	n748	0.1551
N225	0.1577	n534	0.109	n654	0.1075	n654	0.1075	n749	0.1233
N229	0.1104		0.0527	n657	0.2274		0.2274		0.0716
N235	0.0959		0.0687		0.1069		0.1069		0.0717
N241	0.1349				0.1009				0.2834
			0.0544	1			0.0832		
N249	0.185		0.0853		0.1017		0.1017		0.166
N258	0.3183		NO INFO	n667	0.0963		0.0963		0.1298
N261	0.2017	n542	0.1086	n668	0.0884	n668	0.0884	n762	0.077
N263	0.2301	n544	0.0841	n669	0.1047	n669	0.1047	n763	0.1049
N278	0.0989	n545	0.0658	n671	0.0737	n671	0.0737	n766	0.1074
N281	0.5215		NO INFO	n672	0.108		0.108		0.1358
N282	0.2223		0.0823	1	0.0689		0.0689		0.1000
N283	0.1491			n676	0.1176		0.1176		0.1051
N285	0.1694		0.0666	1	0.1498		0.1498		0.2237
N286	0.1695		0.0685		0.1918		0.1918	n781	0.2294
N287	0.1065	n555	0.1299	n680b	0.1918	n680b	0.1918	n782	0.1197
			0 0000	n600	0.0706	2600	0.0726	n783	0.089
N290	0.1109	n557	0.0833	11002	0.0736	11002	0.0736	11/05	0.069

Tight natural fractures

FRACTURE-ID RVS-MODEL	LENGTH OF FRACTURE[m]				
n791	0.1504				
n792	0.1027				
n794	0.0828				
n795	0.116				
n796	0.2565				
n798	0.1002				
n799	0.1089				
n800	0.1036				
n801	0.2177				
n804	0.1064				
n805	NO INFO				
n812	0.1265				
n814	NO INFO				
n817	NO INFO				
n818	NO INFO				
n819	NO INFO				
n820	0.0671				
n821	0.2042				
n826	0.281				
n827	0.1288				
n829	0.1422				
n831	0.1964				