P-03-29

KFM 01A

Q-logging

Nick Barton, Nick Barton & Associates

March 2003

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-03-29

KFM 01A

Q-logging

Nick Barton, Nick Barton & Associates

March 2003

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Summary

The first Forsmark potential repository site borehole KFM 01A provided core from 101.8 to 1000.7 m depth. This was independently Q-logged by NB&A during a two-day period (19th-20th February, 2003), without access to BORMAP results or regional jointing frequencies or orientations. The Q-logging was intended to be an independent check for subsequent BORMAP-derived Q-parameter estimation.

The Q-logging was accomplished using the manually-recorded 'histogram method' which allows the logger to enter Q-parameter ranges and depths directly into the appropriate histograms, which facilitates subsequent data processing using Excel spreadsheets. Successive pairs of core boxes, which contain an average of 11 meters of core in ten rows, were the source of ten opinions of each of the six Q-parameters, giving a total of 4920 recordings of Q-parameter values for the 164 core boxes.

Data processing was divided into several parts, with successively increasing detail. The report therefore contains Q-histograms for the whole core, for four identified fracture(d) zones combined as if one unit, and then for the whole core minus these fracture(d) zones. This background rock mass quality is subsequently divided into nine depth zones or slices, and trends of variation with depth are tabulated. The four identified fracture(d) zones, which are actually of reasonable quality, are also analysed separately, and similarities and subtle differences are discerned between them.

The overall quality of this first core is very good to excellent, with Q(mean) of 48.4, and a most frequent Q-value of 100. The range of quality is from 2.1 to 2130, which is the complete upper half of the six order of magnitude Q scale. Even the relatively fracture(d) zones, representing some 13% of the 900 m cored, have a combined Q(mean) of 13.9 and a range of quality of 2.1 to 150.

Content

1	Introduc	ction	5
2	Q-loggi	ng methodology	7
3	Exampl	es of joint character	9
4	Overall	quality of KFM 01A	13
5	Charact	er of fracture(d) zones	15
6	Charact	er of KFM 01A minus fracture(d) zones	17
7	Individu	al character of fracture(d) zones	19
8	General	variation with depth (minus fractured zones)	25
9	Conclus	sions	31
10	Recomm	nendations	33
Refe	rence		34
Арре	endix A	 Nine hand-filled Q-histogram logging sheets containing the raw data from which subsequent EXCEL calculations were performed. One hand-filled Q-histogram of numbers-of-observations for the nine "slices" of "background" rock mass quality with the 	35
		four fracture(d) zones subtracted.	
Арре	endix B	Q-logging ratings for RQD, J_n , J_r , J_a , J_w and SRF /Barton, 2002/	47

1 Introduction

The writer performed Q-logging of 900 m of core from the first site characterization borehole KFM 01A on 19th and 20th February. This work was requested by Rolf Christiansson, for the purpose of supplementing the more detailed BORMAP geological logging.

It is intended that this Q-logging can provide an independent check of BORMAPderived Q-parameter data, which is under preparation following geological logging of this first deep borehole-core.

2 Q-logging methodology

It was the intention of SKB that this Q-logging should be of an 'overview' character. For this reason time was limited, and the 900 m approx. of core (from 101.8 to 1001.7 m depth) was Q-logged using the 'histogram method' /Barton et al, 1992/. The 900 m was logged in about 12 hours.

The procedure used was to log two core boxes at a time. Due to the 1.1 m approx. length of the boxes, there were a total of 82 pairs of core boxes, giving close to 11 m of core on average.

The Q-histogram logging method, described recently in some detail by /Barton, 2002/, consists of making estimates of the variability of each of the six Q-parameters. Each of the Q-parameters are defined, and complete ratings listed, in Appendix B at the end of this report.

For each pair of core boxes, imagining there was the normal 1.0 m of core length, a total of 10 opinions were recorded concerning the visible variability of each of the the six Q-parameters. In many cases, such as RQD = 100% in excellent rock, there was of course little variation, and logging could proceed much faster. In Appendix A, scanned copies of the nine hand-filled Q-histogram logging sheets will be found. These will be seen to contain numerous entries 111111, 22222, 666, 777, 999999 etc. in the appropriate boxes. Each number, from 1 through 9, is related to a specific core depth, as listed in the left margin of each sheet. Each number is also placed in the Q-parameter box appropriate to the observed/estimated quality (or lack of quality, as the case may be). For 900 m of core, with 10 opinions of each of the six Q-parameters, there were a resulting total of 10 x 6 x 82 or nearly five thousand Q-parameter estimates.

The result is overall histograms of variability (or similarity, at deeper levels in the rock mass) plus the depth-related variability from which depth logs can be extracted if desired.

It will be noted that there are several footnotes written beneath most of the scanned logging sheets. Of particular importance is to note the *assumption* of a 'residual' one joint set plus random ($J_n = 3$) even for massive sections of core, due to the reasonable assumption of biased sampling (or lack of sampling) of a presumed predominant subvertical NW-SE trending set of joints. This assumption is carried through until the depth is reached that no more joints of any orientation are encountered in the core.

Comparison of logging sheets 8 and 9 show the dramatic improvement in the *assumed* 'joint-free' Q-value for the depth interval 884 to 1001 m (approx.), assuming that this assumption is valid.

In view of the present uncertainty caused by vertical hole orientation, there are three important question marks written next to J_n , J_r and J_a on this final depth interval. Each of these parameters are involved when 'achieving' the best possible Q-quality of 2130 for unjointed, massive rock. These are irrelevant under 3D confinement, prior to excavation, i.e. irrelevant for the presently reported *characterization*.

Emphasis here has been to *characterize* the overall variability of the rock mass, especially of the different joint sets, as opposed to a specific tunnel-related *classification* for estimating rock reinforcement and support needs. In the latter, the least favourable J_r/J_a ratio is considered, together with the tangential stress effect of the tunnel. The term SRF is evaluated considering the ratio σ_c/σ_1 when support design is the objective. When excavations are considered at this depth, there may be a significant reduction in Q-value to the *Q*-classification value, due to low potential σ_c/σ_1 ratios and elevated SRF values.

The final purpose of the *characterization* performed, is to apply empirical linkages between Q-values (more specifically Q_c values) and engineering parameters such as deformation modulus, cohesion, friction and uniaxial rock mass strengths – to the extent that these 'continuum' concepts apply.

3 Examples of joint character

A by-product of the logging was the recording of joint roughness traces for representative examples of each joint set. For present purposes, prior to obtaining joint orientation data, the jointing was categorised into three classes, namely 'sub-horizontal', ' $+/-45^{\circ}$ dip', and 'steeply dipping' (including occasional sub-vertical joints that are poorly sampled).

Physical examples of joint roughness numbers J_r equal to 1.5 and 2 (the most commonly observed) are given in Figure 3-1. These are also examples of '+/- 45° dip' and 'steeply dipping' joints respectively.

Figure 3-2 shows a typical $J_r = 3$ joint, which were commonly of 'steeply dipping' orientation. This figure also shows a discontinuity with a thin over-consolidated filling $(J_a = 4)$, and joint wall roughness J_r of 1.0 to 1.5, in the '+/- 45° dip' orientation class. This example is from the fourth identified fracture(d) zone, termed FZ 4 here, which extends from roughly 651 to 683 m depth, judging from reduced Q-parameter qualities in this region of the hole.

Beneath several of the scanned logging sheets (Nos. 5, 7, 8 and 9 in Appendix A) another footnote will be seen concerning the Q-logging instruction to compensate (increase) the effective frictional strength of the rock mass for the case of widely spaced joints. Appendix B, Table 3 Joint Roughness, shows the empirically-derived instruction to increase by 1.0 the J_r value of the relevant joint set, if its average spacing is greater than 3 m.

This adjustment is applied later, when the Q-values of specific 100 m intervals are analysed. Its minor effects are demonstrated, with some improvement in Q_{mean} and sometimes also some improvement in $Q_{typical minimum}$.

Figure 3-1. a) Example of joint roughness $J_r = 1.5$ and b) $J_r = 2$ (the most frequent), and of '+/- 45° dip' and 'steeply dipping' joints.

Figure 3-2. a) Example of joint roughness $J_r = 3$ (typical of 'steep dipping' joints) and b) of $J_r = 1.0$ to 1.5 in the case of a thinly filled discontinuity (with $J_a = 4$). The latter is from the fourth identified fracture(d) zone, termed FZ 4 here.

4 Overall quality of KFM 01A

The first procedure of Q-histogram analysis was to count all recordings of quality, including those of obvious fracture(d) zones, and produce Q-parameter histograms for the complete 900 m of core to 1000.7 m depth. The result is shown in Figure 4-1.

As expected, the most frequent quality is very good to exceptionally good with $(Q_{most frequent}) = 100$. The weighted mean (weighted downwards by four distinct fracture(d) zones) shows $Q_{mean} = 48.4$ (also described as very good). Typical minimum and maximum values range from about 2.1 to 2130 - poor to exceptionally good.

Figure 4-1. Q-parameter histograms for the complete KFM 01A core, from 101.8 to 1000.7 m depth.

5 Character of fracture(d) zones

Inspection of the character and distribution of individual Q-parameters – particularly lower-valued 'tails' of RQD, and higher-valued 'tails' of J_n and J_a – give a strong indication of fractured zones, which subsequently may receive the tentative notation *fracture zone*. The Q-parameter histograms for these zones show lower quality tails in the distribution that all trend to the left. Higher qualities trend only to the right. There are both skewed distributions (e.g. RQD = 100% dominating), and more normal distributions (i.e. $J_n = 2$ to 4 dominating).

In the present report we have identified four zones of noticeably increased fracturing, where presumably both the BORMAP geologists and the Q-logger had to take more time due to all the details of jointing and fracturing to be recorded. The present Q-parameter based identification, which is entirely independent of the geological logging assessment (whose result is unknown to the undersigned), is as follows :

FZ 1	depth 166 to 199 m (approx.)	sheet 1, ref. 7,8,9	Appendix A
FZ 2	depth 265 to 297 m (approx.)	sheet 2, ref. 7,8,9	Appendix A
FZ 3	depth 385 to 407 m (approx.)	sheet 3, ref. 9	Appendix A
		sheet 4, ref. 1	Appendix A
FZ 4	depth 651 to 683 m (approx.)	sheet 6, ref. 7,8,9	Appendix A

These have first been assembled as a typical 'unit' (combining the characteristics of all four zones) prior to individual histogram representation, which obviously is more correct. The preliminary combined result is shown in Figure 5-1.

The summary statistic of the combined FZ zones is as follows, giving immediately the (correct) impression that the rock mass quality is actually quite reasonable as jointed rock goes, but of distinctly lesser quality than the extremely good quality of the remainder. It is this contrast that is noticeable, not poor quality per se.

$Q_{most frequent} = 33.3$	(good)
$Q_{\text{mean}} = 13.9$	(good)
$Q_{typ. min.} = 2.1$	(poor)
$Q_{typ. max.} = 150$	(extremely good)

Figure 5-1. Q-parameter histograms for the four identified fracture(d) zones.

6 Character of KFM 01A minus fracture(d) zones

By counting overall Q-parameter observation totals ($10 \ge 6 \ge 22$) recorded numbers in Appendix A) and subtracting the eleven 'lines' of fracture(d) zone recordings listed above (giving $10 \ge 6 \ge 11 = 660$ observations) we obtain the 'net result' for rock mass minus fracture(d) zones. The above numbers suggest that about $660/4920 \ge 13.4\%$ is significantly fractured, *as measured in a down-hole direction*. If, as may be assumed, some of the zones have significant dip angles, then this percentage would be reduced with respect to perpendicular measurement.

The 'net rock mass' result is shown in Figure 6-1, and clearly demonstrates the excellent general quality. The following Q statistics can be noted:

 $\begin{aligned} Q_{most frequent} &= 100 \quad (very to extremely good) \\ Q_{mean} &= 60.4 \quad (very good) \\ Q_{typ. min.} &= 2.3 \quad (poor) \\ Q_{typ. max.} &= 2130 \quad (exceptionally good) \end{aligned}$

Figure 6-1. Q-parameter histograms for the 'average' rock mass, with the four fracture(d) zones excluded.

7 Individual character of fracture(d) zones

As suggested earlier, it is artificial to combine four fracture(d) zones as in Section 5. In this next section we therefore investigate possible differences in character, which may be useful when subsequent deep boreholes are compared and 'cross-correlated' – if this proves possible. Figures 7-1, 7-2, 7-3 and 7-4 show individual Q-parameter histograms of the presently identified fracture(d) zones FZ 1, FZ 2, FZ 3 and FZ 4.

Two photographic examples of these fracture(d) zones, taken from FZ 1 and FZ 4 are shown in Figure 7-5. (We saw a detail of thinly filled discontinuities, also from FZ 4, in Figure 3-2b). A fairly rare occurrence of an intersected sub-vertical joint is also seen in Figure 7-5, from FZ 1.

There are in fact *some* similarities between the fracture(d) zones, and *some distinct differences*. Firstly, FZ 1 and FZ 2 have similar RQD 'tails', (or skewed distributions) with mostly RQD = 100%. They have J_a 'tails' (or skewed distributions) representing relatively few clay-coatings and thin fillings, that are also similar, with 'unaltered' joint walls ($J_a = 1$) as the most common condition.

Turning to FZ 3 and FZ 4, we see a more 'normal' type of RQD distribution, with 75, 85 or 95% more common than 100%. There is a correspondingly greater tendency for three joint sets plus random ($J_n = 12$). There is also a greater relative proportion of clay coatings and thin fillings ($J_a = 4$). Possibly because of their greater depth, FZ 3 and FZ 4 nevertheless have highest $Q_{typ. max}$ values and highest $Q_{mean values}$. By chance, identical Q_{mean} values of 18.97 are seen in FZ 3 and FZ 4, almost twice as high as in the case of FZ 1 ($Q_{mean} = 10.9$) and FZ 2 ($Q_{mean} = 11.5$).

Fracture(d) zone	Qmost frequent	Q _{mean}	Q _{typ. min.}	Q _{typ. max.}
FZ 1	16.7	10.9	1.0	100
FZ 2	22.0	11.5	1.8	75
FZ 3	20.9	19.0	2.7	200
FZ 4	37.8	19.0	2.3	200

Table 7-1. Q-statistics for four fracture(d) zones identified from Q-parameter changes.

Thus although these identified fracture(d) zones are easy to see when surveying the core, and would presumably have resulted in lower terrain if intersecting the ground surface, they are in fact relatively moderate reductions in quality, and perhaps would result in no more than about 1 km/s reduction in P-wave velocity in relation to 'background' qualities. This may well be the reason for the distinctive and rather limited height differences in the local ground surface, despite glaciation scouring.

Figure 7-1. Individual character of FZ 1 (166–199 m).

Figure 7-2. Individual character of FZ 2 (265–297 m).

Figure 7-3. Individual character of FZ 3 (385–407 m).

Figure 7-4. Individual character of FZ 4 (651–683 m).

Figure 7-5. Examples from FZ 1 and FZ 4.

8 General variation with depth (minus fractured zones)

Since the fracture(d) zones have been analysed in some detail above, it is logical to finally separate them from the remaining 87% (approx.) of the better quality core, and investigate if there are significant trends of variation in the 'background rock quality' with depth. This can be done at this stage only in relation to the Q-logging. Geological variation, and rock type changes (i.e. also potential strength changes) cannot be evaluated at this stage.

The procedure adopted to extract the required 'background rock mass quality' data, was to take each Q-logging sheet in turn (approx. 100 m of core per sheet, see Appendix A) and subtract the Q-parameter recordings of the four identified fracture(d) zones as appropriate. An example of the raw data has been scanned and is presented as the last sheet of Appendix A.

The results of key Q-value statistics for the nine '100 m thick' slices down the borehole are presented in Table 8-1. Each logging sheet represents a maximum of about 100 m of core, from which the four fracture(d) zones are subtracted as they occur. This means that some of the nine 'slices' are reduced to only about 70 m in (down-hole measured) thickness, due to the maximum 32 m lengths of identified fracture(d) zones. The typical appearance of a small part of the 'background rock mass' is shown in Figure 8-1. The depth shown is 357 to 369 m (approx.) where the local Q-parameters were estimated to be:

 $Q = (100 / 4) \times (1.5 / 1) \times (1 / 0.5) = 75$ (i.e. 'very good' in Q-system terminology)

This local characterization assumes the near-by presence of sub-vertical jointing, hence the 'elevated' J_n value in relation to the observable, sparse jointing in these two particular core boxes. When performing the Q-logging, this knowledge of adjacent steeply dipping joints carries over from observation of adjacent core boxes.

Judging by the values of Q_{mean} in Table 8-1, there is a mid-depth zone of very good rock, in which even the weighted mean values are consistently high, with values of 73, 65 and 89 (approx.). This rock is found at 297 to 585 m depth. Even typical minimum values are of 'fair' to 'good' quality, with only one relatively narrow fracture(d) zone from 385 to 407. Q-parameter histograms for these three excellent quality mid-depth 'slices' are given in Figures 8-2, 8-3 and 8-4. The narrowest fracture(d) zone FZ 3 (Figure 7-3) is also within this mid-depth region.

As discussed earlier, there is considerable uncertainty concerning the Q-values appropriate to the last 115 m (sheet 9, Appendix A). However if the rock mass is free of joints for e.g. distances of many tens of meters, the effective quality as regards rock mass parameters appropriate to engineering-scale problems is likely to be of this order.

Depth down hole	\mathbf{Q}_{most} frequent	Q _{mean}	Qtyp. min.	Qtyp. max.
102–166 m	10.7	11.2	1.2	200
199–265 m	37.5	18.5	1.1	150
297–385 m	75.0	73.0	9.4	200
407–496 m	75.0	65.3	4.7	200
496–585 m *	75.0	88.6	11.9	267
		(76.9)		
585–651 m	100	52.0	7.0	267
683–784 m *	58.3	53.1	4.7	100
		(43.5)		
784–884 m **	133	68.4	21.3	200
		(58.7)	(15.9)	
884–1001 m **	2000	672	33.3	2130
		(657)	(25)	

Table 8-1. Variations with depth for 'background rock mass qualities' (minus FZ 1–4).

Notes on Table 8-1 (* **)

Where mean joint spacing has appeared to be at least 3 meters in deeper sections of the core, the Q-system footnote referred to earlier (adding 1.0 to J_r) has been tested in the data set presented in Table 8-1. This has been applied to data sheets 5, 7, 8 and 9 (Appendix A). It was not required for sheet 6 (585.1 to 683.1 m) due to the generally closer spacing of joints. For obvious reasons, this correction to J_r was not usually applied to the most frequently occurring joint set, but to the less frequent ones, because of their larger spacing. These subjective judgements resulted in modestly increased values of Q_{mean} in each case (uncorrected values of Q given in parentheses in Table 8-1). In deepest parts of the core, $Q_{typ.min}$ was also affected, due to the estimation that all the sets had spacing greater than 3 meters.

Figure 8-1. Example of 'background rock mass quality', from 357 to 369 m.

Figure 8-2. Q-histograms for mid-depth 'slice' 297–385 m.

Figure 8-3. Q-histograms for mid-depth 'slice' 407–496 m.

Figure 8-4. Q-histograms for mid-depth 'slice' 496–585 m.

9 Conclusions

- Q-logging using the histogram method is found to be an efficient way of collecting the extensive range of rock mass characteristics represented in 900 m of core. Eighty two pairs of core boxes, each containing 11 m of core, were logged with ten allowable opinions of the local (+/- a few meters) rock mass conditions. Since there are six Q-parameters, this data set consists of 10 x 6 x 82 = 4920 observations. Concerning RQD, the ten data per pair of core boxes related to each 1.1 m length of core.
- 2. The hand-recorded data, giving depth and joint character in each box of the histograms, required nine data sheets, one for each 100 m of core. This was processed in Excel spreadsheet format. The data was initially divided into three parts, namely the whole core, the four identified fracture(d) zones termed FZ 1 to 4, and the whole core minus FZ 1 to 4.
- 3. The whole core displayed very good to excellent quality $Q_{mean} = 48.4$, and $Q_{most freq.}$ equal to 100. The four identified fracture(d) zones, if treated as one unit, showed Q_{mean} and $Q_{most freq.}$ as high as 13.9 and 33.3. These fracture(d) zones constituted some 13% of the core, and when excluded, the remaining 87% or 780 m of core showed $Q_{mean} = 60.4$. The typical range of Q-values for the whole core was about 2.1 to 2130, the latter based on the assumption of no jointing or healed jointing in the lowest portions of the hole.
- 4. Individual histogram treatment of the four fracture(d) zones revealed that the two shallowest zones, at approximately 166 to199 m (FZ 1) and 265 to 297 m (FZ 2) had skewed distributions of RQD and J_a, with most frequent values of 100% and 1.0 (unaltered) respectively. By comparison, FZ 3 (385 to 407 m) and FZ 4 (651 to 683 m) had more normal distributions of RQD and J_a. Values of RQD were typically 75, 85 or 95%, and J_a were frequently 4 (thinly clay-filled), 3 (coated) and 2 (stained/altered).
- 5. Perhaps due to greater depth and good rock incorporated in the zones, the Q_{mean} of these two deepest fracture(d) zones was 19.0 (both cases), which is about twice that of FZ 1(10.9) and FZ 2(11.5). The terminology 'fracture(d) zone' is therefore a relative term, as lowest values of Q are no lower than about 1 or 2 for any of the zones, and due to over-consolidated clay fillings, permeability is expected to be low.

- 6. The whole core mean value of J_w was 0.95, and for the four fracture(d) zones 0.86. The 87% of background rock mass therefore had an estimated J_w of 0.96, which is still closer to 'dry excavations or minor inflow' in the context of tunnel excavation. There is a recent Q-logging 'footnote' /Barton, 2002/ relevant for *characterization* (distant from excavations) for potential reduction of J_w with successive depth zones. If RQD/ J_n values had been as low as the stipulated range (0.5 to 25) to imply good connectivity, such reductions could have been applied here.
- 7. For the most part RQD/J_n was greater than 25, and most commonly was 33. Largely for this reason of generally poor connectivity, J_w was not given lower values than 0.66. There could be exceptions to this in portions of fracture(d) zones not containing clay fillings. The mean fracture(d) zone ratio of RQD/J_n was 90/6.3 or 14.3, which, *in the absence of clay fillings*, could imply sufficient local connectivity for wet conditions. Since hole KFM 01A was reportedly dry, making water sampling impossible, the clay sealing has obviously been very effective.

10 Recommendations

In fact for the empirical Q-system correlations to rock mass properties that are to be assessed in later reports, it is essential to have some level of knowledge of rock strength variation down the length of the core, so that the presently reported Q-value variations can be converted to Q_c values, which forms the main basis of full characterization and rock mass property estimation (where $Q_c = Q \ge \sigma_c/10$). It should be sufficient to utilize estimates of σ_c from point load or even Schmidt hammer testing, once reliable site specific correlations to σ_c are determined or agreed.

If using BORMAP to develop a Q-rating after the geological logging, the equivalent operation to estimate J_n would presumably be to look up the *local* joint-pole stereogram.

Reference

Barton N, 2002. Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. & Min. Sci. 39, 185–216, Pergamon.

Appendix A

Numbers	Q (ty	pical ran	ge) = [10	(mean)	=			(most	t freq.) =	
or	()x(-		-)x(-) (-)x	()x(\rightarrow)×(-)x(
under- ine, or	BLOCK	Ve	y Poor	T	Poo	r	97	Fair 8 3556	9 568 1345	Good	7889 6777 66777 6666 6555 74 666 6555 74 666 7356 7356 7356 7356 7356 7356 7356	Exc. 99999 5889 5555 13230 2356 1111223 1011223	RQD % Core piece: ≧ 10 cm
=10[-8- 12-0 =112-0-	S - Z E S	Earth	Four 15	12	4993 977 6663 5566 5556 344 3322 11/2 9	819 8766 445 11234 6	9 8889 8889 4556 23744 4	889 772 7345 3	One 2.338 1/2.2 2	1	None 0.5		J _n Number of joint sets
112.7 122.7 133.6 133.6 144.6 155.1 155.1 165.9 165.9 176.6 176.6 187.5 187.5 187.5 187.5	FRICTION	Fills 1.0	Thick F	0.5	Planar	9999 9264 5556 1244 222 1.5 Thin	5 15 F#S	Undulati 92.76 55.66 55.66 55.66 55.66 2.3.33 1112.2 2 Co	077 5564 11835 3 ated 77.055 2564	Un1 9094 7-828 7-827 7-707 7-707 7-707 7-707 7-707 7-707 7-707 7-707 7-707 7-707 7-707 7-7	Disc. 5 4 Hed 27983 6622 5 5 6622 22313 722233	Heal	J, Joint roughness - least favourable J_ Joint alteration - least favourable
Or Sketch	ACTIVE STRESS	20 13 E 0.05 Squ	0.1	0.2	0.33 Swell	0.5	Faults	4 4 Weet 4 889 91 6555666 5555666 5555666 1555566 1555566 1555566 1555566 1555566 1555566 1555566 1555566 1555566 1555556 1555556 1555556 1555556 1555556 1555556 1555556 1555	Stre	2 Dry 9 977739 6558.6 645452 1035122 1035121 11 1 5575tren	1 RQD J _a J _a (mo 888 777 777 888 777 777 888 777 777 888 777 777 888 777 777 888 777 777 888 777 777 777 777 777 888 777 777 777 888 7777 777 888 7777 888 7777 7777 777 77777 77777 7777 77777 77777 77777 777777	0.75	J _w Joint water pressure SRF Stress reduction factor

lumbers	O (fur	nical ran	ae = f			100	mean)	=) (mos	t freq) =	
)r	6 (0))v/	907 - L	141			ly		14/		a (mos	1104.	IV/
omains,	()^()^(11)^	(1~(11	N		/^(
ore oxes, innel ingths inder- ne, or	BLOCK		ry Poor		Poo		5	Par	783	9 8 8 4 1 2 6 7	9999 2998 678 4456 3334 1112	200 8 8 9 999 7 7 7 7 7 6666666 55 5 5 5 6666666 6 6 5 5 5 6 6 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 5 5 5 6 6 6 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6	RQD % Core piecet ≧ 10 cm
pecity)		0 1	0 2	0 3	SU 4	10 5	Two	1 00	0 8	0 8	Noon	100 100	
	S-ZES		Four		niee	4999 5388	9 999 8777 7		Une		Redite		J _n Number of
=198-5- 209-5				3	8887 7777 4333 11121	5677 6605 445 4433 1122	2333	09 5560 3445 11121	,				Jour sets
770-5		20	15	12	9	6	4	3	2	1	0.5		
= 220-5- 231-4 = 231-4- 242-6 = 242-6-	FR	Fills			Planar	49 6888 66373 55666 5444 5334		7999999 8388 77778 6666 5555 444	99 7788 5677 4455		Disc.		J, Joint roughness - least favourable
=253.6- 264.6 =264.6- 275.3	CTON	1.0	Thick Fi	0.5		1.5 Thin J	1.5	2 2 Co	IZZ 3 ated	Unf	4 91999 93885	Heal	J _a
= 275.3 - 285.6 = 285.6- 296.6		20 13	12 10	8 6		2 8	7	88 7774 4433 4	9887 6667 3345 1122 3	99	5555555 14666 3323 122322 111111 1	0.75	alteration - least favourable
or Sketch	ACTIVE	E	xc. Inflov	vs	High	Press		Wet # 9449 88898 27728 55662 4455 4455 1,666 3,383 2771 27728		Dry 9779872 665727 665727 665227 665227 665227 665227 665227 1055666 6555555 665227 10556666 10555555 10555555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 10555555 10555555 10555555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 1055555 10555555 1055555555 10555555 10555555 10555555 105555555555	RQD J _a	st freq.)	J _w Joint water pressure
	STRESS	0.05 Squ 20 15	0.1 eeze 10 5	20 1:	0.33	0,5	S 5 2	0.66	Stres	1 s/Streng	th 9997 9997 6666 8555 6666 85555 65555 65555 65555 65555 10000000000	250 250 44 250 44 250 44 250 44 250 44 255 2.5	SRF Stress reduction factor

· 1, 2 - first intact 1-1m core sticks since 100m depth.

· set SRF = 0.5 for H > 300 m - corresponds to more massive rock.

Key	0.0	1			1.0	1100			-100		0.1000	r age.	0
or	C (typ	sical ran	iĝe) = [1100	mean)	=		-11	u (mos	a neq.) =	
omains,	(—)X(—)X(-	-) (-)x)×(()X()X(
ore oxes, innel ingths inder- ne, or	BLOCK	Ve	ry Poor		Poo			Fair	9	G000	999 9888 66557 4211	Exc. 9 888865999 66666666 65555555 844444 133143112 2222222 22222222 1011(11)	RQD % Core piece ≧ 10 cm
pecify)		0 1	0 2	D .	30 4	+U 3	999	0 /	0 0	0 5	10 10	100 100	
= 296.6- 307-6 = 307.6-	SIZES	Earth	Four	9	Three 99999	999	1wo 888888 33255 44465 33444 32223 111223 111223	888 7777 55566 646 1/23	One		None		J _a Number o joint sets
318-5	-	20	15	12	Dianar	-	4	Joch diatie	2	1	Disc	1	-
= 318-5- 329-7		Fills			Panar	8999 89988 77777					USC		J
= 329.7- 340.8 = 140.8-	FR					555666 555666 5330069 233333		84999 777.88 5566 3334	899		_		- least favourable
= 351.7- 362.9 = 262.9-	I C T I O	1.0	Thick Fi	0.5		1.5 Thin	1.5 Fills	2112 2 CQ	2567 7444 3 ated	Unt	825-4200 Elect 99 979272	8 Heal	24 J.
374-1 = 374-1- 385-3 = 385-3- 396-0	N						4	99	98	99999	CCCCCC CCCCCCC 755555 GGG44 3446666 2513100 1212232 12123232	6.75	Joint alteration - least favourabl
Photos		20 13	12 10	8 0	D High	Drace	0 4	4	3	Z	1	0.75	
or Sketch	ACT-VE	0.05	0.1	0.2	0.33	0.5		9 97999449 8.8 0.66		999 8888949 7717777 6644666 5553555 6644666 5553555 153333 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 133444 1334444 133444 133444 133444 133444 1334444 1334444 1334444 1334444 1334444 1334444 13344444 1334444 133444444 13344444 133444444 13344444444	RQD ++ J _a 	st freq.)	J _w Joint water pressure
	S T R E	Squ	eeze		Swell	I	Faults		Stre	ss/Stren	alh 4	Ŧ	SRF
	SS	20 15									60437		reduction factor

Key		1	JAN	111-1	10	A	Con	from	~ 396	·0 6	, 496.	O Page	Ð
umbers	Q (ty	pical rang	ge) = [2002		0(mean)	=			Q (mos	t freq.) =	-
omains,	(—)×(-		–)x(–) (-)xi	-)×(—	\rightarrow	()x(-)×(
ore oxes, unnel engths under-	BLOC	Ven	y Poor		Poor			Fair		Goo	9742	Exc. 77777777 6070676 57777777 6000000 5555555 6000000 737337 73232223	RQD % Core piece ≧ 10 cm
pecify)	к	0 10	20) 3	0 4	0 5	0 6	0 7	8 0	0	90 1	00 100	
= 396-0-	S I Z E S	Earth	Four		Three	98 776 544	Two 99 99988 89299 97777 16666 5555 66666 2,333	99 8899 66677 55555 6066 33333	One		None		J _n Number o joint sets
407-1					7	1111	1111	1222			1		
=4-07-1-		20	15	12	9	6	4	3	2	1	0.5		-
$= 4_{1}(8^{-3} - 4_{2}^{-8} - 9)$ $= 4_{2}(8^{-9} - 4_{4}^{-2} - 2^{-6})$ $= 4_{5}(-3) -$	FRICTION	1.0	Thick Fit	0.5 Is 8 6	1	9999 97777 77777 66666 5555 7223334 7223334 7223334 717122 1.5 Thin 1.5 Thin 228	1.5 EIIS 4	9999 8828 7237 666 555 555 744 9444 9444 9223 200 200 200 200 200 200 200 200 200	899 667 3345 3345 3345 3345 3345 3345 3345 334	Ur 8760 463 112 2	994+11 Filed 555566 4662747 555666 466255 555666 466255 555666 466255 55555 55566 125555 246465 246455 246465 246455 246555 246455 246455 246455 246455 246455 246455 246455 246455 246455 246555 246455 246455 246455 246455 246455 246455 246455 246455 246555 246455 246455 246555 246555 246455 247555 246455 24755 246455 24755 246555 246455 246555 246555 246555 246555 246555 246555 246555 246555 246555 246555 246555 247555 246555 247555 247555 247555 247555 247555 247555 247555 247555 247555 247555 247555 247555 247555 2475555 2475555 2475555 2475555 2475555 24755555 24755555 247555555 2475555555555	9.9 Heal 0.75	J, Joint roughness - least favourable J, a J, a J, a J, a J, a J, a J, a S, J, a S, J, a S, J, a S, J, a S, a S
or Sketch	ACT-VE STD	0.05	0.1	0.2	0.33 well	0.5	Eaults	9 87756 11112.4 0.66	Stre	Dry 999999 2015 10 7793 7 40466 (2 5155 55 4 46, 46 10,001 235 2 1101 1 1 55/Stref 1 55/Stref	BOD 585 J 344 5555 5555 244 J 222 (mo	est freq.)	J _w Joint water pressure
	ESS										Mur Propedo		Stress reduction factor

Key	Locati	on: FD	RSMAR	K 1	OLA	Depth	/ chair	1age: 585-	1 to	683-	/ Page:	6
lumbers	Q (typ	oical rang	e) = [-	7 0	mean)	=			Q (mos	t freq.) =	
omaine	()×()x(-	-) (-)x	()×(\rightarrow	()×()x(
ore oxes,	-	Very	Poor	Po	or		Fair	Î.	Goo	d	Exc.	ROD W
inder- ne, or pecify)	BLOCK	0 10	20	30	40		9	9 8887 7777	29 2888 277 63 2 50	90 1	7-999 66666666 5555555 66666666 33333533 22222323 111(1111) 100 100	Core piece ≧ 10 cm
=585·1~ 546-1	SIZES	Earth	Four	1 Three	8 8 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 8 7	Two 8999 8988 66667 55565 65555 66557 65555 65555 64555 707	9 5641 6455 6465 13333 2212 13333 22212	One		None		J _n Number (joint sets
=596-1-		20	15 12	9	6	4	3	2	1	0.5	-	
$= 607 \cdot 1 - 618 \cdot 1 - 618 \cdot 1 - 629 \cdot 1 - 629 \cdot 1 - 629 \cdot 1 - 629 \cdot 1 - 659 \cdot 7 - 659 \cdot 7 - 659 \cdot 9 - 65$	FRICTION	1.0	0.1 hick Fills	5 1	199 588 7777 6566 5555 6666 5533 100 100 100 100 100 100 100 100 100 1	1.5 Filts	99190 88800 777 555 66555 1346 1117 2 1117 2 0 0	94 785 77 56 334 1122 3 ated	Un	3 4 filled 99 8297 7397 66260	Heat	J, Joint roughnes - least favourabl Jan Joint alteration
672-1- 672-1- 672-1- 672-1-		20 13 1 Ex	12 10 8 c. Inflows	6 5 Hig	12 8 h Press	6 4	7 66 7 44 7 2 7 2 1 4 Wet	3	7 6 554 2 1 2 Dry	555553 044444 111111 111111 1	0.75	- least favourabl
or Sketch	A C T I V E	0.05	0,1 0.2	2 0.33	3 0.5		888 7776 53* 2 0.66		99979 646666 55555 64666 55555 64666 53333 720112 720112 11111111 1	RQD 555 555 555 555 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 555 1 5 555 1 5 555 1 5	st freq.)	J _w Joint water pressure
	STR	Sque	ze	Swell		Faults		Stre	ss/Strer	gth 8		SRF
	E S S									1054		Stress reduction factor
		20 15	10 5 20	15 10	5 10 7	7.5 5 2	2.5 100	50 20	5 2	2 0.5 1	2.5	

Note: #8,9. Expansive Coumantite, has reduced RQD. Be conservative.

Kou	Locat	ion: FC	DRSM	ARK	K	FM	Depth	hand	cac.	E	683-	Page:	B
umbare	0.0	nical rea	(no) - [10	10	moon	=	203.1		O Imon	t from) -	
umbera K	La (a)	picarran	ide) - L			114	meany			-1	ce (mos	a neq.) -	
omains,	()X(-		-)X(-) (-)X	()×(()X(-)×(
xe		Ve	ry Poor	1	Poor			Fair		Good	1	Exc.	
nnel		_							-				ROD
ngths		-						-				7999	Core pied
	8	-		_	-	-	-	-		-		5555555	≧ 10 cm
	L	-				-				89	99	444666	1244
nder-	C C	-		_	1	-			8887	777	197	22222323	
e, or ecify)	K	0 1	0 2	0 3	17 4	0 5	0 0	19	1777	632	16531	00 100	
cony/	8	Earth	Four		Three		Two	1	One		None	1	
	i			_		_	IIIs	-		-			
	Z	-		_			844				-		J.
	S	-		-		283	8888	5644	-	-	-		Number
						27	55561	4455			-		joint sets
585-1-				-	9999	66	4433	1333333					
CA/-1-		-		87	887	3211	22	11/1122		-			
607.1		20	15	12	9	6	4	3	2	1	0.5		
(12.1-		Fills			Planar			Undulati	ng		Disc.		1
619-1						199		99999		1			J
618-1-		-		-		7777		777	1		-		Joint
679-1		-				6666		16666	24				roughne
629-1-	F					66644		6455	77	1			- least favourab
639-7	R	-				2222	-	2222	334		-		
639-7-	c	10	1 1	0.5	1	15	15	2	1122	1	3	1	
650.9		-	Thick Fi	ts	Ξr	Thin	Filts	Co	ated	Unt	filled	Heal	
650-9-	0			-	FIF		-	-		-	2200		Ja
661-4	N				FIF			0.0	0.0	090	7777		Joint
661.4					FIF		80	7 66	18	76	222222		- least
672.1					ĦF	11	12	744	88	554	33333333		favourab
683.1					1 1		12	72	24	2	222221		
hotos		20 13	12 10	8 6	5 1	12 8	6 4	4	3	2	1	0.75	
notos		E	xc. Infloy	vs	High	Press		Wet		Dry			
or				-					1	BRIDAR	ROD		1
iketch	A	-						-		than	66		Joint
	c	-				-		-		55555	ec		water
	T				-		1	888		44444	64		pressure
	v	-		-				532		22(212)	22		
	E	0.05	0.1	0.2	0.33	0.5	1	0.66	1	1	(mo	st freq.)	-
	S	Squ	eeze]	S	well		aults		Stres	ss/Stren	gth		
	R										~		SRF
	E						++				7		Stress
	S					IFF					8		reduction
				F		III	11				4		sactor
		H									2		
		20 15	10 5	20 1	5 10 5	10 7	5 5 3	2.5 100	50 20	5 2	0.5 1	2.5	
0.000	1	11.0.0	-		· · · · ·		10.00	1	1			2	

Kev	Locati	on: Fo	RSMI	RK	Ko	FM	Depth	1 chair	nage: 683-/	to	784.	Date: Page	20/2/03
lumbers	O (tvr	oical ran	ae) = [710	(mean)	=			Q (mos	t freq.) =	
or	1	-)×(-	9-7 L	-)×(-		16		<u> </u>)×((<u> </u>)x()×(
lomains,	1	101	er Daer	1	Dag	11	1	Eair	1~1	/1 Car	1	I Em]	141
oxes, unnel engths	в		Y P 001									11111111111111111111111111111111111111	eq RQD % Core piece ≥ 10 cm
inder- ne, or pecify)	L O C K	0 1	0 2	0	30	40 5	50 0	30 7	10 8	2	3	5113333 5111111 00 100	33
= 685-1-	S I Z E S	Earth	Four		Three		Two 9965 5555 4	889299 993839 9732399 663222 664444 555555 44444 335333	One		None		J _n Number o joint sets
-101-1-					3	3	1122	11/1/11	-		-		
2-205-5	-	20	15	12	9	6	4	3	2	1	0.5	-	
$= \frac{705 \cdot 5}{7(6 \cdot 8)}$ $= \frac{716 \cdot 8}{728 \cdot 1}$ $= \frac{728 \cdot 1}{739 \cdot 3}$ $= \frac{739 \cdot 3}{750 \cdot 3}$ $= \frac{739 \cdot 3}{750 \cdot 3}$ $= \frac{750 \cdot 3}{761 \cdot 6}$ $= \frac{761 \cdot 6}{772 \cdot 9}$ $= \frac{722 \cdot 9}{722 \cdot 9}$ Photos	FRICTION	1.0	Thick F	0.5 #s 8 6	55	999999 9882 2004 555555 4444 115 Thin 1.5 Thin 12 8	1.5 Fills	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	889 77 45 45 12 3 3 ated 89 2 65555 2 3		4- 994999 8800 88889 88889 88889 88889 88889 889 89	Heal	J, Joint roughness - least favourable Ja Joint alteration - least favourable
110100		E	xc. Inflov	VS.	High	Press	-	Wet		Dry			
or Sketch	A C T									4444441 921873 737973 666666 513555 400060 333331	ROD 7777 7777 7777 7777 7777 7777 7777 7		J _w Joint water pressure
	VESTRESS	0.05	0.1	0.2	0.33 Swell	0.5	Faults	0.66	Stre	1 ss/Stren	alh 9	ist freq.)	SRF Stress reduction factor
	TRESS	20 15	10 5	20 1	5 10 5	5 10	7.5 5	2.5 100	50 20	5 2	7001004 mpl 1	2.5	Stress reduct factor

Note: 5 publishes > 3 m. See Q-system note on ratings adjustment

· One 35° joint at 954-3m

Appendix B

1. Rock Quality Designation		RQD (%)
A	Very poor	0-25
В	Poor	25-50
С	Fair	50-75
D	Good	75-90
E	Excellent	90-100

Notes:i) Where RQD is reported or measured as ≤ 10 (including 0), a nominal value of 10 is used to evaluate Q.

ii) RQD intervals of 5, i.e., 100, 95, 90, etc., are sufficiently accurate.

2. Joint set number		Jn
A	Massive, no or few joints	0.5-1
В	One joint set	2
С	One joint set plus random joints	3
D	Two joint sets	4
E	Two joint sets plus random joints	6
F	Three joint sets	9
G	Three joint sets plus random joints	12
	Four or more joint sets, random, heavily	100000
H	jointed, 'sugar-cube', etc.	15
J	Crushed rock, earthlike	20

Notes: i) For tunnel intersections, use (3.0 × Jn). ii) For portals use (2.0 × Jn).

3. Joint	roughness number	J,
a) Rock-wall contact, and b) Rock-wall contact before 10 cm		
A	Discontinuous joints	4
В	Rough or irregular, undulating	3
С	Smooth, undulating	2
D	Slickensided, undulating	1.5
E	Rough or irregular, planar	1.5
F	Smooth, planar	1.0
G	Slickensided, planar	0.5

Notes: I) Descriptions refer to small-scale features and intermediate scale features, in that order.

b) No rock-wall contact when sheared		
10	Zone containing clay minerals thick enough	
Н	to prevent rock-wall contact.	1.0
	Sandy, gravely or crushed zone thick enough	
J	to prevent rock-wall contact	1.0

Notes:ii) Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m.

iii) $J_r = 0.5$ can be used for planar, slickensided joints having lineations, provided

the lineations are oriented for minimum strength.

iv) J_{μ} and J_{μ} classification is applied to the joint set or discontinuity that is least

favourable for stability both from the point of view of orientation and shear resistance, τ

(where $\tau \approx \sigma_{\rm p} \tan^{4} (J_{\rm p}/J_{\rm p})$.

		φr		
Joint alteration number		арргох.	J,	
a) Rock-v	vall contact (no mineral fillings, only coatings)			
٨	Tightly healed, hard, non-softening,		3	
~	impermeable filling, i.e., quartz or epidote.		0.75	
В	Unaltered joint walls, surface staining only.	25-35°	1.0	
	Slightlyaltered joint walls. Non-softening			
С	mineral coatings, sandy particles, clay-free			
	disintegrated rock, etc.	25-30°	2.0	
D	Silty-orsandy-claycoatings,small clayfraction		5708-00	
1.77.1	(non-softening).	20-25°	3.0	
	Softening or low friction claymineral coatings,			
F	i.e. , kaolinite or mica. Also chlorite , talc,			
	gypsum, graphite, etc., and small quantities of	121722	100	
	swelling clays.	8-16°	4.0	
b) Rock-v	vall contact before 10 cm shear (thin mineral filling	ngs).		
F	Sandy particles, clay-free disintegrated rock,			
10	etc.	25-30°	4.0	
-	Strongly over-consolidated non-softening clay			
G	mineral fillings (continuous , but < 5 mm	40.040		
	thickness).	16-24°	6.0	
11	lvedium or low over-consolidation, softening,			
н	ciaymineral fillings (continuous, but < 5 mm	10.100	0.0	
	thickness). Outline staufilines is mentantillevite	12-16*	8.0	
	Swelling-clay tillings , i.e., montmonitonite			
J	(continuous, but < 5 mm thickness). Value of Ja			
	depends on per cent of swelling clay-size	0.400	0.41	
	particles, and access to water, etc.	6-12*	8/dez	
c) No roc	k-wall contact when s heared (thick mineral filling	F)		
KLM	rock and clay (see G, H, J for description of clay	*	6,8, or	
20230-022	condition).	6-24°	8/dez	
Ν	Zones or bands of silty- or sandy-clay, small			
	claytraction (non-softening).	(5.0	
OPR	Thick, continuous zones or bands of clay (see		10,13,0	
2.200.000	G, H, J for description of claycondition).	6-24°	13-20	

	5. Joint water reduction factor	approx. water pres. (kg/cm²)	J _w
А	Dry excavations or minor inflow , i.e., < 5 l/min locally.	< 1	1.0
В	Medium inflow or pressure, occasional outwash of joint fillings.	1-2.5	0.66
С	Large inflow or high pressure in competent rock with unfilled joints.	2.5-10	0.5
D	Large inflow or high pressure, considerable outwash of joint fillings.	2.5-10	0.33
E	Exceptionally high inflow or water pressure at blasting, decaying with time.	> 10	0.2-0.1
F	Exceptionally high inflow or water pressure continuing without noticeable decay.	> 10	0.1-0.05

Notes: () Factors C to F are crude estimates. Increase J_w if drainage measures are installed.

ii) Special problems caused by ice formation are not considered.

iii) For general **characterization** of rock masses distant from excavation influences, the use of Jw = 1.0, 0.66, 0.5, 0.33 etc. as depth increases from say 0-5m, 5-25m, 25-250m to >250m is recommended, assuming that RQD /Jn is low enough (e.g. 0.5-25) for good hydraulic connectivity. This will help to adjust Q for some of the effective stress and water softening effects, in combination with appropriate **characterization** values of SRF. Correlations with depth-dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed.

6. Stress	Reduction Factor	SRF		
a) Weakness zones intersecting excavation, which may cause loosening				
А	Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock (any depth).	10		
в	Single weakness zones containing clay or chemically disintegrated rock (depth of excavation ≤ 50 m).	5		
С	Single weakness zones containing clay or chemically disintegrated rock (depth of excavation > 50 m).	2.5		
D	Multiple shear zones in competent rock (clay- free), loose surrounding rock (any depth).	7.5		
E	Single shear zones in competent rock (clay- free), (depth of excavation ≤ 50 m).	5.0		
F	Single shear zones in competent rock (clay- free), (depth of excavation > 50 m).	2.5		
G	Loose, open joints, heavily jointed or 'sugar cube', etc. (any depth)	5.0		

Notes: i) Reduce these values of SRF by 25-50% if the relevant shear zones only influence but do not intersect the excavation. This will also be relevant for **characterization**.

i) Competent rock, rock stress problems		σ₀/σ₁	$\sigma_{\theta} l \sigma_{c}$	SRF
н	Low stress, near surface, open joints.	> 200	< 0.01	2.5
J	Medium stress, favourable stress condition.	200-10	0.01-0.3	1
к	High stress, verytight structure. Usually favourable to stability, m ay be un favourable for wall stability.	10/m.ai	0.3-0.4	0.5-2
L	Moderate slabbing after > 1 hour in massive rock.	5/m.ar	0.5-0.65	mai/50
м	Slabbing and rock burst after a few minutes in massive rock.	3/fev	0.65-1	50-200
N	Heavyrock burst (strain-burst) and immediate dynamic de formations in massive rock.	< 2	>1	200-400

Notes: ii) For strongly anisotropic virgin stress field (if measured): When $5 \le \sigma 1 / \sigma 3 \le 10$, reduce σc to 0.75 σc . When $\sigma 1 / \sigma 3 > 10$, reduce σc to 0.5 σc , where σc = unconfined compression strength, $\sigma 1$ and $\sigma 3$ are the major and minor principal stresses, and $\sigma \theta$ = maximum tangential stress (estimated from

elastic theory). iii) Few case records available where depth of crown below surface is less than span width Suggest an SRF increase from 2.5 to 5 for such cases (see H).

iv) Cases L, M, and N are usually most relevant for support design of deep tunnel excavations in hard massive rock masses, with RQD /Jn ratios from about 50 to 200.

v) For general characterization of rock masses distant from excavation influences, the use of SRF = 5, 2.5, 1.0, and 0.5 is recommended as depth increases from say 0-5m, 5-25m, 25-250m to >250m. This will help to adjust Q for some of the effective stress effects, in combination with appropriate characterization values of Jw. Correlations with depth - dependent static deformation modulus and seismic velocity will then follow the practice used when these were developed.