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Summary

Hydrochemical evaluation is a complex type of work that is carried out by specialists. The out-
come of this work is generally presented as qualitative models and process descriptions of a site. 
To support and help to quantify the processes in an objective way, a multivariate mathematical 
tool entitled M3 (Multivariate Mixing and Mass balance calculations) has been constructed. The 
computer code can be used to trace the origin of the groundwater, and to calculate the mixing 
proportions and mass balances from groundwater data.

The M3 code is a groundwater response model, which means that changes in the groundwater 
chemistry in terms of sources and sinks are traced in relation to an ideal mixing model. The com-
plexity of the measured groundwater data determines the configuration of the ideal mixing model. 
Deviations from the ideal mixing model are interpreted as being due to reactions. Assumptions 
concerning important mineral phases altering the groundwater or uncertainties associated with 
thermodynamic constants do not affect the modelling because the calculations are solely based 
on the measured groundwater composition.

M3 uses the opposite approach to that of many standard hydrochemical models. In M3, mixing is 
evaluated and calculated first. The constituents that cannot be described by mixing are described 
by reactions. The M3 model consists of three steps: the first is a standard principal component 
analysis, followed by mixing and finally mass balance calculations. The measured groundwater 
composition can be described in terms of mixing proportions (%), while the sinks and sources 
of an element associated with reactions are reported in mg/L.

This report contains a set of verification and validation exercises with the intention of building 
confidence in the use of the M3 methodology. At the same time, clear answers are given to ques-
tions related to the accuracy and the precision of the results, including the inherent uncertainties 
and the errors that can be made when using M3 outside its realm of applicability.

The verification exercises are designed to test the correct functioning of each part of the M3 
code (Principal Components Analysis, mixing routines, mass balance routines, End-member 
Selection Module, and End-member Variability Module). Each test focuses on a particular 
algorithm or module. Synthetic datasets have been used in many tests as this is the best way 
to verify the results when dealing with mixing proportions and mass balance calculations. All 
the verification tests have been passed by M3, except the one dealing with the two-principal com-
ponent mixing routine. This way of computing mixing proportions only gives consistent results 
with three end-members, and should not be used for cases with four or more end-members. 

The validation exercises go one step forward and test the ability of M3 methodology to solve 
mixing and reaction problems. Some tests focus on the uncertainties in the mixing proportions 
and others on the uncertainties in the calculated mass balances. Many validation exercises use 
a number of synthetic water samples inserted in a real groundwater dataset from the Laxemar-
Simpevarp area in Sweden in order to assess the accuracy of the computed mixing proportions 
and deviations, to determine the limits of M3 applicability. In this respect, several validation 
exercises give clear indications that an incorrect use of M3 (i.e. for systems in which mixing 
is not the dominant process controlling the chemistry of the waters) can give rise to erroneous 
results. Most tests insist on the need for an independent assessment of the validity of the results 
given by M3 using, for example, expert judgment, other geochemical codes, or several lines 
of reasoning. In general, M3 deals successfully with most validation tests, although several 
clearly indicate where the limits of applicability are. This is particularly evident when chemical 
reactions significantly change the composition of the resulting mixed water. When reactions are 
more important than mixing, the computed mixing proportions may differ significantly from the 
real ones. However, checking the deviations between computed and real concentrations for the 
water conservative elements is the simplest way of assessing the quality of the computed mixing 
proportions.
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M3 is not the only code that can be used for mixing calculations with several (more than three) 
end-members. The performance of M3 against several other mixing codes has also been tested, 
and in all cases the accuracy of M3 has been as good as that achieved by the other codes. This 
is an important confidence assessment that supports the capabilities of M3. 
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1 Introduction

This report describes version 3.0 of the M3 code (Multivariate Mixing and Mass balance calcula-
tions). This method and the resulting computer code were developed by /Laaksoharju et al. 1995b, 
1999cd/ to trace mixing and reaction processes in groundwaters. The aim of the M3 concept is to 
decode the complex information often concealed in the groundwater analytical data. 

The present report (referred to hereinafter as Report 2) will gather a collection of validation and 
verification exercises, designed to test each part of the M3 code and to build confidence in its 
methodology. Two accompanying reports cover other aspects:

•	 Concepts, Methods, and Mathematical Formulation, /Gómez et al. 2006/ (referred to herein-
after as Report 1) gives a complete description of the mathematical framework of M3 and 
introduces concepts and methods useful for the end user.

•	 User’s Guide: includes detailed references to the abilities and limitations of the M3 program, 
installation procedures and all functions and operations that the program can perform. It also 
describes sample cases of how the program is used to analyse a test data set. This guide is 
part of the Help Files distributed together with M3 and is available as a report /Laaksoharju 
et al. 2009/.

The M3 method has been tested and modified over several years. The development work has 
been supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). The 
main test site for the model was the underground Äspö Hard Rock Laboratory (HRL), but it 
has also been extensively used at the Swedish sites in Forsmark, Simpevarp and Laxemar, as 
well as in Canada, Jordan, Gabon and Finland.

The groundwater composition at a given site is generally a result of mixing processes and 
water-rock interaction. Standard groundwater models based on thermodynamic laws may not 
be applicable in a normal temperature groundwater system where equilibrium with many of the 
bedrock minerals is not reached and where biological processes seem to play a central role in 
the groundwater alteration process. The major purpose of standard groundwater chemical codes 
is to describe the measured groundwater composition in terms of reactions. The constituents 
that cannot be described by reactions are described by mixing, possibly using a conservative1 
tracer. The M3 model uses an opposite approach compared to the standard method. In M3, the 
mixing processes are evaluated and calculated first. This is possible by the use of a multivariate 
technique (principal component analysis) to construct an ideal mixing model of a site. The 
constituents that cannot be described by mixing are described by reactions.

The M3 model consists of three steps: the first is a standard Principal Component Analysis (PCA), 
followed by mixing and finally mass balance calculations. In order to take into consideration as 
many relevant elements as possible, PCA is used to summarise and simplify the groundwater 
information. The M3 model compares the measured groundwater composition of each sample 
with known borehole-sampled waters or hypothetical extreme waters, referred to in this context 
as end-members. All the measured groundwater samples at a site are compared to these end-
members. The mixing calculations (i.e. mixing portions as a percentage of each selected end-
member) determine how much of the observed groundwater composition is due to mixing from 
the selected end-member. The mass balance calculations (reported in terms of sinks/sources of 
groundwater constituents in mg/L or molar) determine how many of the measured groundwater 
constituents are a result of water-rock interaction. Since the calculations are relative to the 
selected end-members, modelling can only describe changes in terms of mixing and reactions 
taking place between the end-members. The results can be used to describe the groundwater 

1  Here and elsewhere, the term “conservative” (as in conservative tracer, conservative element, etc) 
is applied to any dissolved element whose concentration depends linearly on the mixing proportions. 
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characteristics quantitatively rather than qualitatively as is often the case in a site description 
of the groundwater chemistry. However, as several of the following Test Cases clearly show, 
the robustness of the calculated mixing proportion is quite sensitive to using only conservative 
compositional variables or both conservative and non-conservative compositional variables. 
Mass balance calculations in M3 are much more sensitive to non-conservative compositional 
variables, and the recommendation here is not to use non-conservative variables with PCA-
based codes if any information is to be obtained about reactions. After computing mixing 
proportions with the conservative elements, the concentration of non-conservative elements 
can be calculated via the composition of the end-members, and the difference between these 
concentrations, where all elements are treated as conservative, and the actual ones can be used 
to infer chemical reactions. 

The M3 method can be used for tracing groundwater evolution, past-present mixing and 
water-rock interactions. The outcome of the modelling can be reported in non-hydrochemical 
terms such as changes in mixing portions or in gain/losses due to mass balance reactions. The 
comparison with hydrogeological models is easier since the results from the M3 model can be 
compared to the results from the hydrodynamic models. The effect on the groundwater composi-
tion observed from biological reactions such as organic decomposition or sulphate reduction can 
be traced. In groundwater, chemical response modelling such as M3, information concerning 
fracture mineralogy, thermodynamic data bases or groundwater flow directions are not included. 
The model concentrates solely on tracing changes in the measured groundwater composition 
which can be interpreted as a result of mixing and reactions. As with any groundwater models, 
the validity of the results must be examined carefully using expert knowledge in the areas of 
hydrochemistry, hydrogeology and alternative modelling.

The M3 computer program is a standalone program developed in the MATLAB 7.1 computation 
environment /MATLAB 2005a/. The M3 toolbox calculates and displays the results both as graphs 
and as numerical data. In addition, it offers the user several ways of examining and interpreting 
data.

Included with M3 is an online version of the reference manual, as well as Matlab libraries 
required to run the program. The M3 program has been tested on Windows 2000 and XP.
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2 Confidence building

The concept of confidence building is central to the reliable use of any piece of software, 
whether it be very simple or extremely complex. All developers, users and decision-makers 
will agree on this. But the agreement usually ends here, because the definition of “confidence 
building” is a complex matter.

There is extensive literature available on verification, validation and confidence building in 
connection with the Performance Assessment (PA) of deep geological repositories for high-
level radioactive wastes, including several PAs carried out by SKB or SKI, such as Project-90 
/SKI 1991, NEA/OECD 1992/, SKB-91 /SKB 1992/, SITE-94 /SKI 1996ab/, and SR-97 /SKB 
1999ab/. Although the opinions expressed in these assessments vary, they can be grouped into 
two extreme sides: (1) confidence building can demonstrate that an item of software is sound 
and delivers what it says; and (2) confidence building can never demonstrate that an item of 
software is sound and will deliver what it says. Between these two opposite views, there are, 
of course, opinions that try to go straight to the point and which are much more useful from a 
practical point of view. As /Zuidema 1995/) expressed the situation in GEOVAL’94 (the italics 
are ours):

“Absolute truth is not known, so we cannot of course provide a model which provides this. In 
practice, models will be used to support regulatory and legal decisions, and this will not change 
no matter how loudly and often it is proclaimed that it cannot be demonstrated that models 
represent the truth. Thus, our task should be to stop debating the impossibility of model valida-
tion in such an absolute sense, and to develop procedures whereby all involved parties can be 
reasonably assured that models are appropriate and are being used correctly to meet the needs 
of the problem at hand. Certainty cannot be achieved; we must and should be satisfied with 
engineering confidence – often it will be sufficient to provide confidence in our ability to bound 
the outcome of a specific phenomenon”.

The term “confidence building” is a later addition to the PA terminology which tries to acknowledge 
the intrinsic difficulties in demonstrating the soundness of any computer program. Before that, 
“validation” was the trigger word, and the discussion centred around the feasibility of validating 
a computer code /Greenwood 1989, Tsang 1991, Konikov and Bredehoeft 1992, Bredehoeft and 
Konikov 1993, McCombie and McKinley 1993, Bair 1994, Oreskes et al. 1994, Leijnse and 
Hassanizadeh 1994, Molnia 1996, Sargent 1999, Bredehoeft 2005/. The general conclusion was 
that a 100% validation was not possible, even recommendable, when the codes were expected 
to predict processes and whole-system behaviour in and around the repository in time spans of 
thousands of years. To modify the implications that the word “validation” had, the term “confi-
dence building” was coined for the process of gaining confidence in the workings of a computer 
program. Actually, the sentence written in italics in /Zuidema 1995/ citation could be used as a 
working definition of confidence building. 

Figure 2-1 summarises the actions involved in confidence building /Svensson et al. 2004/, 
from the most basic step (verification) to more complex measures (validation, certification, etc). 
Some steps are intrinsic to the computer code, but others, the most critical, depend also on the 
specific application at hand and cannot be carried out without a complete specification of the 
system, the problem to be solved, and the time and space framework in which the code should 
seek an answer.

In this context, the first two steps in the confidence building process have been formalised in 
terms of a series of verification and validation experiments. Actually, several of the exercises 
included under the heading of “Validation” go beyond the classical meaning of these terms and 
are more akin to what is called “Certification” in Figure 2-1. A validation exercise only tries 
to demonstrate that the right equations are solved, or in other words that the conceptual model 
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is correct as well as its translation to mathematical equations. When M3 is compared to other 
codes or ways of solving the same problem in Test Cases VE and VF (see Table 3-1), a validation 
of the code is being carried out. But when the limits of applicability of M3 are tested and an 
assessment of when things start to go wrong is made by evaluating the working procedures of 
the code, a certification procedure is at work. For example, Test Cases VC and VD (Table 3-1) 
have more the flavour of a certification than a validation. 

In addition to these three steps, Table 2-1 includes other elements in the process of confidence 
building, encapsulated under the common heading of “More”. Built into this overarching term 
are aspects such as the range of applicability of the code and the number of citations in inter-
national journals.The wider the range of applicability and the larger the number of papers in 
which the code has been used, the easier it is to have confidence in the correct functioning of the 
code. This is all common sense, because it is much easier to “trust” a code that has already been 
widely used by other researchers in many different applications than to use a code that is not 
particularly well known, poorly documented and only cited in a limited number of unpublished 
reports. So, apart from a well documented verification and validation report, a code also needs 
as much “visibility” as possible. How can “visibility” be quantified? Several criteria can be 
advanced, but the most important ones for codes used in the context of the underground disposal 
of radioactive wastes are /Gómez et al. 2000/:

1. Used in PA exercises, inter-comparison (IC) exercises, underground research laboratories 
(URL), and natural analogues (NA).

2. Represent the state of the art (i.e. codes that are being constantly revised and updated on 
a regular basis).

3. Well documented, transparent and with easy access to the documentation and/or the code. 
Transparent means that the code has been used in papers published in international journals, 
technical reports, conference proceedings, etc.

4. With independent verification and validation (i.e. verified and validated by third parties).

5. Included in catalogues and previous reviews.

Figure 2-1. Processes and actions involved in confidence building /Svensson et al. 2004/.
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Table 2-1 gives a summary of the visibility of the principal geochemical codes using the five 
criteria defined above. The table is arranged with the most visible codes at the top and the less 
visible ones at the bottom. As the table shows, the most popular geochemical codes have more 
visibility that M3 (this is especially true of PHREEQE, PHREEQC, EQ3/6 and WATEQ4F). 
M3 has been used in PAs, URLs and natural analogues, but it has not been adopted for use in 
inter-comparison exercises. M3 is updated regularly, it is well documented and, as shown below, 
only partly transparent, since it has mostly appeared in technical reports and only rarely in inter-
national journals (only 3 prior to 2006). M3 has been independently verified on one occasion. It 
has not been included in catalogues of numerical codes although it did recently appear in an SKI 
review of numerical codes /Hicks 2005/.

The M3 code has been tested and modified over several years on contract from the Swedish 
Nuclear Fuel and Waste Management Company (SKB). 

•	 The	main	test	site	for	the	model	has	been	the	underground	Äspö	Hard	Rock	Research	
Laboratory /Smellie and Laaksoharju 1992, Laaksoharju et al. 1995ab, Laaksoharju and 
Wallin 1997, Laaksoharju et al. 1999d, Svensson et al. 2002/. 

•	 M3	has	also	been	used	in	several	natural	analogues	such	as	Cigar	Lake,	Canada	/Smellie	and	
Karlsson 1996, Laaksoharju et al. 2000/, Maqarin, Jordan /Waber et al. 1998/, Oklo, Gabon 
/Gurban et al. 1998, 1999, 2003/, Palmottu, Finland /Laaksoharju et al. 1999a/ and Tono 
Mine, Japan /Yamamoto et al. 2005/. 

•	 More	recently,	M3	has	been	used	for	SKB’s	Site	Characterisation	Programme	in	Forsmark,	
Sweden /Laaksoharju and Gurban 2003, Laaksoharju et al. 2004b, Laaksoharju 2005/ and 
Laxemar, Sweden /Laaksoharju et al. 1995b, Laaksoharju 2004, Laaksoharju et al. 2004d, 
Laaksoharju 2006/. 

•	 M3	was	also	used	for	SKB’s	Performance	Assessment	SR-97	/SKB	1999ab/.	

•	 M3	has	also	been	used	in	inter-comparison	exercises	together	with	other	multivariate	 
statistical methods /Dershowitz et al. 2000, Rhén and Smellie 2003/.

•	 /Olofsson	et	al.	2005/	have	used	M3	to	trace	the	movement	of	leachates	at	waste	sites.

•	 Papers	and	reports	in	which	M3	is	documented	include:	/Laaksoharju	1990,	1999/,	
/Laaksoharju and Skårman 1995/, /Laaksoharju et al. 1999bc, 2004ac, 2008ab/ and 
/Gómez et al. 2008/.
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Table 2-1. Visibility of the main geochemical codes used in the field of geological disposal 
of high-level radioactive wastes /Gómez et al. 2000/.

Code Criteria
1 2 34) 4 5

PA1) IC2) URL AN3)

PHREEQE SITE-94 
Project-90 
AGP-granite 
AGP-clay 
SPA 
KRISTALLIN-I

CHEMVAL 
CHEMVAL-2 
MIRAGE

HADES 
(Belgium) 
 
Äspö (Sweden)

Koongarra, AU 
Cigar Lake, CAN 
El Berrocal, ES 
Poços de C., BR 
Oklo, GAB 
Needle’s Eye, UK 
Broubster, UK 
South Terra., UK 
Steenk., SA 
Tono Mine, JP 
Oman 
Maqarin, JOR

Yes ***** 4 Yes

EQ3/6 SITE-94 
AGP-clay 
SR-97 
TILA-99 
KRISTALLIN-I 
Project-90 
TSPA-VA 
ENRESA2000

CHEMVAL 
CHEMVAL-2 
MIRAGE

Äspö (Sweden) Koongarra 
El Berrocal 
Oklo 
Palmottu 
Maqarin 
Kinnekulle 
Santorini 
Poços de Caldas

Yes ***** 3 Yes

NETPATH SITE-94 
SR-97 
TILA-99

Äspö (Sweden) Cigar Lake 
Oklo 
El Berrocal 
Palmottu

Yes *** 3 Yes

MINEQL KRISTALLIN-I 
Project-90

CHEMVAL 
CHEMVAL-2 
MIRAGE

Mont Terry 
(Switzerland)

Poços de Caldas 
Maqarin 
Oman

No ** 2 Yes

PHREEQC SR-97 HADES 
(Belgium)

Oklo 
Palmottu 
El Berrocal 
Maqarin

Yes *** 3 Yes

WATEQ4F SITE-94 STRIPA El Berrocal 
Poços de Caldas 
Oklo

Yes **** 2 Yes

MINTEQA2 SITE-94 CHEMVAL-2 Koongarra Yes *** 4 Yes
WATEQF SITE-94 

SR-97
MIRAGE Cigar Lake No **** 2 Yes

HARPHRQ SPA Cigar Lake 
Poços de Caldas 
Maqarin 
El Berrocal

No *** 1 Yes

M3 SR-97 Äspö (Sweden) Cigar Lake 
Oklo 
Palmottu 
Tono Mine

Yes ** 1 Yes

REACT 
(Geochem. 
Workbench)

TSPA-VA Äspö (Sweden) 
 
Nevada Test 
Site (USA)

Oklo Yes ** 1 No

1) AGP-clay: /ENRESA 1999/, AGP-granite: /ENRESA 1997/, ENRESA2000: /Sánchez-Delgado 2000/,  
KRISTALLIN-I: /NAGRA 1994/, Project-90: /SKI 1991/, SITE-94: /SKI 1996a/, SPA: /Baudoin et al. 1999/,  
SR-97: /SKB 1999ab/, TILA-99: /Vieno and Nordman 1999/, TSPA-VA: /CRWMS M & O 1998/.
2) CHEMVAL: /Read and Broyd 1989, Read 1991/, CHEMVAL-2: /Read and Falck 1996/, MIRAGE: /Côme 1990/, 
/von Maravic 1995/.
3) For a summary of the location and main characteristics of each natural analogue see, for example,  
/Ruiz et al. 2004/. 

4) The number of stars is related to the quality and quantity of documentation.
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3 Verification of M3

The verification cases that have been conducted are summarised in Table 3-1. The cases 
tested show both “good results” and “bad results”, the latter mainly obtained when testing the 
two-principal component mixing routine (Report 1, Section 3.2.2) should be used and when not. 
“Good result” cases are those in which the comparison with the corresponding analytical solution, 
or another model study, is satisfactory. The potential M3 user is urged to consult Report 1 first 
in order to gain a detailed knowledge of the inner workings of M3. However, a brief summary of 
the theory is included in the introduction section to each test. Owing to the importance of the 
concept of end-member to the understanding of the following verification (and validation) tests, 
a brief summary of its meaning is included here.

The concept of end-member is a cornerstone of M3 methodology. The question of how many 
end-members are to be used and their particular chemical and isotopic composition is an aspect 
that in principle lies outside M3 methodology and should be decided (also in principle) by 
expert judgment after a careful geochemical and hydrological study of the system. However, 
this version of M3 includes a pseudo-automatic procedure (Report 1, Section 4.1) to select the 
proper set of end-members for a given dataset which is based on a geometrical property that 
applies only to the hyperspace mixing routine (Report 1, Section 3.2.3). 

Table 3-1. Summary of the verification tests.

Group Case Comments

A. Principal Component Analysis A1. Eigenvectors, eigenvalues and 
PC loadings.

Test of the mathematical routine that 
performs the Principal Component 
Analysis.

B. Mixing proportions B1. Mixing proportions when end-
members are fully known using the 
two-principal component mixing 
routine. 

B2. Mixing proportions when end-
members are fully known using the 
hyper-space mixing routine.

Test of the calculation of the mixing 
proportions from the Principal  
Components coordinates. Synthetic 
samples are used in all test cases. 

Both the two-principal component 
and hyper-space mixing routines 
are tested.

C. Mass balance C1. Test of absolute and relative 
deviations using synthetic samples.

Test of the mass balance calculations. 
As these deviations depend on the  
mixing routine used, they are tested 
with the output of both mixing routines 
(see group B tests).

D. End-member Selection Module D1. Test of the combinations  
generating routine.

D2. Test of ESM using as end-
members the same as the ones 
used to create the samples.

The main aim of these exercises is 
to test the routine that generates all 
the possible combinations of end-
members. 

E. End-member Variability Module E1. Test of random number generator.

E2. Construction of input probability 
distributions when lower and upper 
ranges are identical.

E3. Construction of input probability 
distributions when lower and upper 
ranges are different.

This is a complex module that has 
to be tested in parts, starting with 
the random number generation routine 
and following with the input probability 
distributions and ending with the 
output probability distributions.

F. Comparison with other analytical 
and numerical solutions of pure 
mixing problems.

F1. Linear mixing (no redundancy).

F2. Linear least squares (redundancy).

F3. PHREEQC in the pure mixing 
mode.

This set of tests will verify that M3 is 
able to solve pure mixing problems.
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All the measured groundwater compositions are compared to some well-sampled and analysed 
groundwater of the site or to a hypothetical (modelled) extreme water. In both cases, these 
waters are referred to as end-members2. The M3 method compares the measured groundwater 
composition of each sample to the selected end-member composition, and in this respect the 
modelling is always relative to the selected end-member composition just as a measured altitude 
is relative to a chosen fixed point. 

As a general rule, the number and type of end-members to be selected in the modelling depend 
on the aim of the modelling and the complexity of the site. The groundwater data used in the 
modelling determines the minimum number of end-members needed to describe the observed 
groundwater composition. Several of the verification and validation tests presented in the 
appendices try to assess the sensitivity of M3 to the proper selection of the end-members.

It may, however, be necessary to explain the objectives when selecting the test cases and the 
way in which the comparisons have been made.

•	 The	test	cases	should	include	all	the	parts	of	the	M3	methodology	(PCA,	mixing,	mass	
balance, End-member Selection Module, ESM, and End-member Variability Module, EVM).

•	 Each	test	should	focus	on	a	particular	algorithm	or	module.

•	 Synthetic	datasets	have	been	used	in	many	tests	as	this	is	the	best	way	to	validate	the	results	
when dealing with mixing proportions and mass balance calculations. 

Some verification studies are straightforward and test a specific algorithm, whereas others are 
more elaborate because they try to test longer pieces of the code.

2 The name “end-member” has been preferred to others such as “extreme water” or “reference water” 
/Laaksoharju et al. 1999bc/ because it has no genetic connotation regarding how it has been defined or 
selected. Also, in this way other non-hydrological applications of M3 can be better described in a neutral 
manner.
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4 Validation of M3

The validation cases are summarised in Table 4-1. To distinguish them from the verification 
tests, their names start with a V, followed by a letter of the alphabet. They are separated into 
seven groups, VA to VG. Test VA, VB1, VC check the behaviour of the computed mixing pro-
portions in several circumstances. Tests VB2 and VD check the computed deviations (difference 
between the real and the computed elemental concentrations). Test VE compares M3 results 
with PHREEQC. Test VF cross-checks M3 against other methods to compute mixing ratios 
and reactions (least squares, maximum likelihood, and classical mixing theory). Finally, test 
VG assesses the performance of M3 when solving mixing problems not related to groundwaters.

Table 4-1. Summary of the validation tests performed.

Group Case Comments

VA. Stability of  
mixing proportions

VA1. Stability check 1: dependence of mixing 
proportions on the number of samples in the 
dataset.
VA1.1. Only synthetic samples.
VA1.2. One synthetic sample inserted in 
a real-sample dataset.
VA2. Stability check 2: dependence of mixing 
proportions on the number of input variables.
VA2.1. Only synthetic samples.
VA2.2. One synthetic sample inserted in 
a real-sample dataset.
VA2.3. Special case: Only conservative 
elements.
VA3. Stability check 3: dependence of 
mixing props on the inclusion/exclusion 
of end-members

Synthetic samples are used in A1.1 and A1.2, 
and a real data set with one synthetic sample 
inserted in cases A1.2 and A2.2.

In case A2.3 only conservative elements are 
included among the variables. It is important 
to test the resolution of the method when only 
conservative elements are included. 

Stability check 3 tries to quantify the error  
introduced in the mixing proportions when the  
end-members are included in the dataset prior 
to the principal component analysis.

VB. End-member 
Variability Module

VB1. Output probability distributions.
VB1.1. When lower and upper ranges are 
identical.
VB2.2. When lower and upper ranges are 
different.
VB2. Testing mass balance in the case of  
variable end-member composition.

These tests will verify the effect of end-member 
compositional variability on the calculated mixing 
proportions. This variability could be intrinsic or 
due to analytical and/or sampling errors.

VC. End-member 
Selection Module

VC1. Test of ESM using end-members other 
than the ones used to generate the samples.

This test will verify the stability of the mixing 
proportions against a misidentification of end-
members: i.e. what would happen to the mixing 
proportions in the case of an erroneous selection 
of end-members (both in number and type)?

VD. Analysis of  
reactions

VD1. Test of absolute and relative deviations 
using one synthetic sample in a real dataset.
VD1.1. With conservative and non- 
conservative elements
VD1.2. Only with conservative elements.

These tests will verify the meaning of the 
deviations between real and computed elemental 
concentrations and whether this deviations could 
be used to identify chemical reactions and in which 
circumstances.

VE. Cross-check 
against other codes

VE1. Solve a mixing+reaction ?? problem 
with M3 and PHREEQC

This test will verify how the computed mixing pro-
portions deviate from the real mixing proportions as 
the importance of chemical reactions is increased.

VF. Cross-check 
against other methods 
of computing mixing 
ratios and reactions

This test will verify the capability of M3 to solve 
real, complex groundwater mixing problems by 
comparing its results with those obtained by other 
authors using alternative approaches.

VG. Ability to solve 
non-aqueous mixing 
problems 

This test will verify the capability of M3 to solve 
mixing problems outside the realm of water 
hydrogeochemistry.
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Some validation tests focus on the uncertainties in the mixing proportions while others focus 
on the uncertainties in the calculated mass balances. Many validation exercises use a few 
synthetic water samples inserted in a real groundwater dataset from the Laxemar-Simpevarp 
area of Sweden in order to assess the accuracy of the computed mixing proportions and the 
deviations. Here, the focus is not so much on the “good cases” as on identifying the limits at 
which M3 starts to become inapplicable. In this respect, several of the validation exercises give 
clear indications that a incorrect use of M3 (i.e. for systems in which mixing is not the dominant 
process that is controlling the chemistry of the waters) can give rise to erroneous results. 

Most tests indicate that the results of M3 require interpretation based on several lines of reason-
ing drawing on expert judgments and results from other codes.
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5 Conclusions

These conclusions pertain to the verification and validation test cases presented in Appendices 1 
and 2. They follow logically from them, and not from the material presented in the previous 
sections.

M3 version 3 is a Principal Components Analysis computer code to calculate mixing proportions 
of a large groundwater dataset from input compositional variables and a set of end-members. 
Once the mixing proportions have been computed, deviations from the actual composition of 
each sample are calculated by mass balance. These deviations can be interpreted in terms of 
chemical reactions if additional knowledge of the system under consideration is obtained. Both 
the mixing proportions and the deviations are subject to a series of uncertainties, depending 
on the system under study, the type of groundwaters, the number and composition of the end-
members, and the number of input compositional variables.

Any computer code should first be verified, in the sense that confidence should be gained in the 
correct implementation of the equations that translate the model into a computer language. Each 
module should be verified independently as well as the connections between modules. Only 
after this step has been successfully concluded can the validation part start. All the verification 
exercises shown here have increased the confidence in the correct functioning of M3 (except 
for the Two-Principal Components mixing algorithm, Test Case B1 in Table 3-1. Because of 
this, all the validation tests have been performed with the n-Principal Components mixing 
algorithm; see Report 1).

The validation exercises have explored the workings of M3 with real groundwater datasets, 
trying to determine its limits of applicability. The goal has been to establish the uncertainty in 
the calculated mixing proportions and deviations when the situation is not as clear-cut as with 
synthetic datasets. Here several limitations of M3 have emerged, mainly related to the inter-
pretation of mass balances in terms of chemical reactions (Test Cases VB2, VD1 and VE1; see 
Table 4-1). As for the mixing proportions, they have demonstrated robustness against changes 
in the number of input compositional variables (Test Case VA2; Table 4-1), and even to changes 
in the number and type of end-members (Test Case VC1; Table 4-1), although there is always 
a limit above which the computed mixing proportions are meaningless. The key element to 
a satisfactory inversion of mixing proportion is a correct selection of end-members (both in 
number and composition). In this respect, the End-member Selection Module (Test Case VC1; 
Table 4-1) and the End-member Variability Module (Test Cases VB1 and VB2; Table 4-1) have 
proven extremely useful in selecting the correct number of end-members and in assessing the 
uncertainty that the compositional variation of the end-members introduce into the computed 
mixing proportions and deviations. 
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Appendix 1

Verification tests

Group A tests: Verification of Principal Component Analysis.

Group B tests: Verification of mixing proportions.

Group C tests: Verification of mass balance.

Group D tests: Verification of the End-member Selection Module.

Group E tests: Verification of the End-member Variability Module.

Group F tests: Comparison with other analytical and numerical solutions of pure  
mixing problems.
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Test Case A1: Eigenvectors, eigenvalues and PC loadings
Introduction

The core of M3 is a Principal Component Analysis (PCA) routine that computes the Principal 
Component co-ordinates of a set of samples. Each sample is defined by n compositional 
variables (e.g. concentration of selected chemical elements). The procedure to compute the 
PC co-ordinates can be summarised as follows (Report 1, Section 3.1.1):

1. Get the data. The initial dataset is composed by m samples defined by n compositional 
(or other) variables, organised into a matrix x, where each column corresponds to a variable 
and each row to a sample. 

2. Normalise each variable of the dataset. For PCA to work properly, the variables should 
be normalised by subtracting the mean and dividing by the standard deviation:

 i

ik i
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x xx −′ =
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 where ix  is the mean value of variable xi and 
ixσ  is the standard deviation of variable xi. The 

index i runs from 1 to n, the total number of variables, and the index k from 1 to m, the total 
number of samples in the dataset.

3. Calculate the covariance matrix, cov(X) 
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 where E[] stands for the expected value. As the variables have been normalised, the diagonal 
of the covariance matrix has its entries all equal to one, [ ]E 1i ix x′ ′ = :
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4. Calculate the eigenvalues and eigenvectors of the covariance matrix. There are n eigen-
values	(λ1,	...,	λn) and n eigenvectors (V1, ..., Vn), that can be assembled into matrix form:

 

1 0

0 n

λ 
 =  
 λ 

D


  



, (A1-4)

 ( )1 n=V V V  (A1-5)

 Matrix D is diagonal (n×n) and has the eigenvalues in the main diagonal. Matrix V (n×n) has 
each eigenvector as a column vector, Vi (i = 1, …, n). V is usually called the matrix of basis 
vectors. These eigenvectors are unit eigenvectors i.e. their lengths are 1.
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5. Calculating the PC co-ordinates. In the jargon of PCA the eigenvectors are called principal 
components (PCs) and organized in order of decreasing size of the corresponding eigenvalue: 
the eigenvector with the largest eigenvalue is called the first principal component (usually 
abbreviated PC1), the eigenvector with the second largest eigenvalue is called the second prin-
cipal component (PC2), and so on. Thus, there are n principal components for a dataset with n 
variables. In PCA the elements of an eigenvector (its components in maths jargon) are called 
weights or loadings. The PC co-ordinates are computed multiplying each original variable 
by the loadings (components of the eigenvectors). With the loadings of the first eigenvector, 
the first PC co-ordinate is computed; with the loadings of the second eigenvector, the second 
PC co-ordinate is computed; and so on up to the nth eigenvector, which gives the last PC 
co-ordinate. In matrix form, the ith PC co-ordinate of sample k is computed as: 

 1

n
k
i ij jk

j
PC V x

=

′= ∑ , (A1-6)

 where Vi are the eigenvectors (column vectors organised into matrix V) and x′	the	matrix	
of reduced variables.

The only problematical step in the previous procedure is computing the eigenvectors and 
eigenvalues of the covariance matrix. There are several standard techniques to perform this 
calculation. Formally, the eigenvalues are computed through the characteristic equation 

( )det 0− λ =A I , (A1-7)

where A is an n×n square matrix and I is the identity matrix. In our case, matrix A is the 
covariance matrix cov(X). This equation is a polynomial of degree n and therefore has n roots, 
counted with multiplicity. Each root corresponds to one eigenvalue.

Once	the	eigenvalues	λi are known, the eigenvectors Vi can then be found by solving

( )i i− λ =A I V 0 . (A1-8)

In practice, eigenvalues and eigenvectors are not computed by solving a polynomial equation 
of degree n, as this is computationally expensive and prone to rounding errors (and small errors 
in the eigenvalues can lead to large errors in the eigenvectors). Therefore, general algorithms 
to find eigenvectors and eigenvalues are always iterative, using the QR and QL decompositions 
/Bowdler et al. 1968/, or the SVD (singular value decomposition) technique /Golub and Kahan 
1965/.

The test
M3 (via MATLAB) uses LAPACK routines to solve the eigenvalue problem (http://www.netlib.
org/lapack/lug/lapack_lug.html). For a real symmetric matrix (like the covariance matrix), 
the corresponding LAPACK routine employs a QR factorisation algorithm that returns the 
eigenvalues and, optionally, the eigenvectors. 

To verify M3’s Principal Component routine, it has been benchmarked against FORTRAN 
subroutine PCA written by F. Murtagh /Murtagh and Heck 1987/, available through the online 
statistical library Statlib (http://lib.stat.cmu.edu/), which uses the QL factorisation algorithm 
of /Bowdler et al. 1968/ to extract the eigenvalues and eigenvectors.

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.netlib.org/lapack/lug/lapack_lug.html
http://lib.stat.cmu.edu/
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The FORTRAN PCA subroutine has the following syntax:

PCA(N,M,DATA,METHOD,IPRINT,A1,W1,W2,W3,W4,A2,IERR) 

where

•	 N,M:	integer	dimensions	of	input	data	(N	samples	of	M	variables	each).

•	 DATA:	input	data.	On	output,	DATA	contains	in	the	first	7	columns	the	projections	of	the	
row-points on the first 7 principal components. 

•	 METHOD:	analysis	option.	For	the	test,	option	2	(PCA	on	correlation	matrix)	has	been	used.		

•	 IPRINT:	print	options.	For	the	test,	option	3	(full	printing	of	items	calculated)	has	been	used.	

•	 A1:	covariance	matrix	(METHOD=2),	of	dimensions	M×M.	On	output,	A1	contains	in	the	
first 7 columns the projections of the column-points on the first 7 principal components. 

•	 W1,W2,W3,W4	:	working	vectors	of	dimension	M	(W1,	W2)	and	N	(W3,	W4).	On	output,	
W1 contains the cumulative percentage variances associated with the principal components. 

•	 A2:	working	array	of	dimensions	M×M.	

•	 IERR:	error	indicator	(normally	zero).

The PCA routine calls first a module to reduce a real, symmetric matrix (the covariance matrix 
in this case) to a symmetric, tridiagonal form. The QL factorization is then performed by another 
subroutine on this transformed matrix.

Results and discussion
Test case A1.1. One thousand synthetic samples were generated according to the procedure 
described in Report 1, Section 3.2.2. To make the problem easily solvable by means of the 
characteristic equation, only three compositional variables were used. The covariance matrix 
is therefore a 3×3 matrix and has the form:

1 0.2280 0.9150
cov( ) 0.2280 1 0.1842

0.9150 0.1842 1

 
 = − 
 − 

x . (A1-9)

As expected, the diagonal entries are all equal to one. To compute the eigenvalues we solve the 
characteristic equation 

( )
1 0.2280 0.9150

det cov( ) det 0.2280 1 0.1842 0
0.9150 0.1842 1

− λ 
 − λ ≡ − λ − = 
 − − λ 

x I , (A1-10)

which can be expanded into a polynomial of degree 3,

6 2 3( ) 1.55559 10 2.076888 3p −λ = × − λ + λ − λ , (A1-11)

whose three roots are
λ1 = 1.91607,
λ2 =1.08393,
λ3 = 7.4900×10−7.
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The eigenvector associated with the first eigenvalues is:

( )1 1cov( ) − λ = ⇒x I V 0

12

13

1 1.91607 0.2280 0.9150 1 0
0.2280 1 1.91607 0.1842 0
0.9150 0.1842 1 1.91607 0

V
V

−    
    − − = ⇒    
    − −    

V11 = 1, V12 = 0.0501, V13 = 0.9887. Normalising to length one:

1

0.710654
0.0355852
0.702641

 
 =  
  

V .

Similarly, for the second and third eigenvectors we have

2 3

0.172703 0.682015
0.959338 , 0.280007
0.223258 0.675612

   
   = = −   
   − −   

V V .

Tables A1-1 and A1-2 summarise the results obtained with the benchmark FORTRAN routine 
PCA and with M3, together with the analytical results obtained above.

From the Tables it is obvious that the eigenvectors are identical in all three cases, except for 
the change of sign in the first eigenvector computed with the PCA routine. This is irrelevant as 
eigenvectors only give the orientation of the principal components with respect to the original 
variables,	and	orientations	(−0.71065,	−0.03559,	−0.70264)	and	(0.71065,	0.03559,	0.70264)	
are completely equivalent.

The discrepancy in the value of the third eigenvalue is easily understandable if we compare its 
magnitude	with	that	of	the	first	eigenvalue,	λ3/λ1 · 10–7 (from the analytical result). This ratio is 
almost zero, and the discrepancy is only due to rounding errors during operations. Also, when an 
eigenvalue is almost zero (in absolute value), its influence in the computation of the associated 
eigenvector	is	marginal	as	the	factor	(1−λ)	entering	the	calculation	(Eq.	1-8)	is,	in	any	case,	very	
close to 1; in other words, the difference in absolute value between eigenvectors is O(10–7).

Table A1-1. Eigenvalues of Test Case A1.1.

Analytic PCA M3

First 1.91607 1.91607 1.91607
Second 1.08393 1.08393 1.08393
Third 7.4900E-7 8.34465E-7 1.04916E-14

Table A1-2. Eigenvectors of Test Case A1.2.

First Second Third
Analytic PCA M3 Analytic PCA M3 Analytic PCA M3

0.7107 –0.7107 0.7107 0.1727 0.1727 0.1727 0.6820 0.6820 0.6820
0.03559 –0.03559 0.03559 0.9593 0.9593 0.9593 –0.2800 –0.2800 –0.2800
0.7026 –0.7026 0.7026 –0.2233 –0.2233 –0.2233 –0.6756 –0.6756 –0.6756
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Test case A1.2. Now, we use the same synthetic samples but with ten compositional variables 
(as in the example reported in Report 1, Section 3.2.2). In this case, the analytical solution by 
means of the characteristic equation is not practical, as it involves solving a polynomial equation 
of degree 10. So, we will compare the PC co-ordinates as computed with M3 and benchmark 
routine PCA. After having computed the eigenvalues and eigenvectors, PC co-ordinates are 
trivially computed with Eq. (1-6). Again, all discrepancies between both results are entirely 
due to the algorithm used to extract the eigenvalues and eigenvectors.

Figure A1-1 shows the result of the comparison. Red dots are the PC co-ordinates computed 
with the benchmark routine and open blue circles the PC co-ordinates computed with M3 after 
changing the sign of the first eigenvector (first principal component, PC1 in the axis’ plot). 
The absolute difference between M3’s and PCA’s values averaged over the 1,000 samples 
is 1.2×10–7, i.e. of the order of the numerical precision.

Conclusions
The first step in M3 calculations always involve computing the PC co-ordinates of a dataset. 
This, in turn, means computing the eigenvectors and eigenvalues of a covariance matrix. M3 
uses for that purpose a MATLAB function based on a LAPACK routine to extract the eigen-
values and eigenvectors of a real symmetric matrix. 

To verify the correctness of the M3 module that computes the PC co-ordinates, it has been 
benchmarked against a FORTRAN routine by F. Murtagh /Murtagh and Heck 1987/, available 
through the online statistical library Statlib (http://lib.stat.cmu.edu/). First, the benchmark routine 
(with the driver code) has been verified against the analytical solution of a simple 3-variable 
case (test case A1.1). The agreement is perfect up to the precision of the numerical calculations. 
The second test (test case A1.2) has verified that the PC-coordinates computed by M3 are identical 
to the ones computed by the benchmark routine, again up to the numerical precision. 

Figure A1-1. (Test Case A1.2.) PC co-ordinates of 1,000 synthetic samples computed with M3 (open 
blue circles) and with the Fortran benchmark routine (red dots). The average absolute difference 
between both datasets is 1.2×10−7. The dataset uses 10 compositional variables and was created from 
three end-members (dots located in the corners of the triangular shape outlined by the data points).
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Test Case B1: Mixing proportions when end-members are fully 
known: two-principal component mixing routine
Introduction
The calculation of the mixing proportions is carried out using the PC co-ordinates (see test A1). 
M3 calculates the mixing proportions by two different methods (Report 1, Section 3.2). One 
uses only the information stored in the first two principal components (two principal component 
mixing), while the other uses all the principal components (hyperspace or n-principal component 
mixing). This test “verifies” the two-principal component routine. 

Only when the end-members (their number and composition) are fully known, can a verifica tion 
of both mixing routines be made. In any other case, the uncertainty in the number and/or composi-
tion of the end-members introduces an associated error in the mixing proportions that have nothing 
to do with the proper implementation of the mathematical procedure (these are actually validation 
matters that are dealt with in the corresponding section of this report). This is why tests B1 and B2 
are performed exclusively with synthetic samples generated from fully known end-members.

By construction (Report 1, Section 3.2.2) the mixing proportions computed by the two-principal 
component mixing procedure are not unique if the number of end-members is greater than 3. In 
other words, there is an intrinsic error in the mixing proportions as computed by this routine for 
more than three end-members. As a result of this intrinsic inaccuracy, the kind of “verification” 
that would be performed in this section is not to prove that the procedure works properly, but 
to assess the degree of error involved in the calculation of the mixing proportions.

The test
Table B1-1 gives the composition of the four end-members that have been used to create the 
1,000 synthetic samples for the test3.

To construct a synthetic sample, a randomly generated mixing proportion is assigned to it 
using a random number generator. A random number uniformly distributed between 0 and 1 
is drawn for each end-member. These are then added together and each one divided by the sum 
and multi  plied by 100 to get a percentage. For example, from the random numbers 0.05596, 
0.40965, 0.68667, and 0.52717 (sum = 1.67939) mixing proportions Brine = 3.3%, Glacial = 24.4%, 
Littorina = 40.9%, and Rain60 = 31.4% are obtained.

Once a mixing proportion has been assigned, the composition of the synthetic sample is com-
puted by multiplying each end-member’s compositional variable by the corresponding mixing 
proportion and summing up the contribution of all end-members. For example, the amount of 
Na in the synthetic sample of the example above is

Br Gl Lit R60
Sample

Na 3.3% Na 24.4% Na 40.9% Na 31.4%Na 2254 mg/L
100

× + × + × + ×= = . (B1-1)

3  The end-members listed in Table B1-1 and in most examples used in other test cases are taken from 
studies of several groundwater systems in the Swedish Scandinavian Shield. A complete characterization 
of these end-members can be found in /Auqué et al. 2006/. For a summary of the geology, hydrogeology 
and hydrogeochemistry of the aquifer systems, see /Ström et al. 2008/ and /Laaksoharju et al. 2008/.

Table B1-1. Composition of the end-members.

End-
member

Na  
(mg/l)

K  
(mg/l)

Ca  
(mg/l)

Mg  
(mg/l)

HCO3 
(mg/l)

Cl  
(mg/l)

SO4 
(mg/l)

D 
(dev)

Tritium 
(TU)

O18 
(dev)

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0 –21
Littorina 3,674 134 151 448 93 6,500 890 –38 0 –4.7
Rain 60 0.4 0.29 0.24 0.1 12.2 0.23 1.4 –80 2,000 –10.5



34

The remaining compositional variables are obtained in the same way (delta values for isotopic 
variables, like concentrations, are treated as additive). The composition of the 1,000 samples 
so generated is fed into M3 and the mixing proportions calculated with the two-principal com-
ponent mixing routine. As the real mixing proportions are known, we can compare them with 
those computed by the mixing routine, thus enabling us to assess the accuracy of the method.

Results and discussion
A way to summarise the accuracy of the computed mixing proportions is by defining a generalised 
standard deviation (a.k.a. combined uncertainty) between the real and computed mixing proportions:

2 2 2 2
Real M3 Real M3 Real M3 Real M3StDev (Br Br ) (Gl Gl ) (Lit Lit ) (R60 R60 )= − + − + − + −  (B1-2)

In this expression BrReal refers to the known mixing proportion and BrM3 to the one calculated by 
M3’s two-principal component mixing routine. In Figure B1-1, where the results are graphically 
presented, each of the 1,000 samples is colour-coded with respect to the standard deviation. 
Maximum deviation is of the order of 85% and the mean standard deviation for the 1,000 samples 
is 17%. These deviations apply only to the particular combination of mixtures and end-members 
used here, and can be smaller (or larger) with a different combination.

Conclusions
As explained in detail in Report 1 (Section 3.2.2), the two-principal component mixing routine 
has an intrinsic inaccuracy coming from discarding the information contained in all the principal 
components except the first and the second. Geometrically, the error in the computed mixing 
proportions arises from the necessary (and arbitrary) choice that must be made regarding the 
composition of the barycentre of the mixing polygon. The alternative implemented in M3 is 
considering that the barycentre is a mixture in equal proportions of all end-members. 

As Figure B1-1 shows, the choice introduces an error that can be very high depending on both 
the position of the sample in the mixing polygon and the relative location of the end-members. 
No simple rule can be given to guess the amount of error of a specific sample. What is certain is 
that the error will be zero (see Test B2) for datasets generated from two or three end-members, 
because in these cases the first two principal components explain all the variance in the dataset 
/Gómez et al. 2008/. For four or more end-members, the safe option is using the hyperspace 
mixing routine, which is verified in the next test.
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Figure B1-1. Deviation of computed mixing proportions from real ones for 1,000 synthetic samples. 
M3’s two-principal component mixing routine has been used for the calculations.
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Test Case B2: Mixing proportions when end-members are fully 
known: hyper-space mixing routine
Introduction
The calculation of the mixing proportions is carried out using the PC co-ordinates (see test A1). 
M3 calculates the mixing proportions by two different methods (Report 1, Section 3.2). One 
uses only the information stored in the first two principal components (two principal component 
mixing), while the other uses all the principal components (hyperspace or n-principal compo-
nent mixing). This test verifies the hyperspace mixing routine. 

Only when the end-members (their number and composition) are fully known, can a verification 
of both mixing routines be made. In any other case, the uncertainty in the number and/or 
composition of the end-members introduces an associated error in the mixing proportions that 
have nothing to do with the proper implementation of the mathematical procedure (these are 
actually validation matters that are dealt with in the corresponding section of this report). This 
is why tests B1 and B2 are perform exclusively with synthetic samples generated from fully 
known end-members.

The hyperspace mixing routine (Report 1, Section 3.2.3) uses the information contained in all 
principal components to compute the mixing proportions. In that sense, it should give a zero 
deviation when using fully known end-members.

The tests
Two tests are carried out: test B2.1 is identical to previous test B1 (same end-members, same syn-
thetic samples) but solved using the hyperspace mixing routine; test B2.2 is devised to assess the 
resolution of the mixing proportions when the composition of two end-members get closer and closer.

Test B2.1. Table B1-1 in test B1 gives the composition of the four end-members that have been 
used to create the 1,000 synthetic samples for tests B1 and B2.1. The way the synthetic samples 
are constructed is explained in test B1 and would not be repeated here. The composition of the 
1,000 samples so generated is fed into M3 and the mixing proportions calculated with the hyper-
space mixing routine. As the real mixing proportions are known, we can compare them with 
those computed by the mixing routine, thus enabling us to assess the accuracy of the method.

Test B2.2. Table B2-1 gives the composition of the end-members for test B2.2. Three end-
members (Brine, Glacial, and Littorina) are identical to those in tests B1 and B2.1; the other 
end-member, called here EM4, is similar in composition to the Glacial end-member, with 
identical mayor elements and different values for the isotopes deuterium and oxygen-18. Two 
different sets of values for these isotopes are tested: one (EM4a in Table B2-1) is well separated 
from the Glacial end-member; the other (EM4b in Table B2-1) is very similar, thus making end-
members Glacial and EM4b almost identical in composition. The goal here is to assess whether 
M3 (hyperspace mixing routine) is able to reproduce correctly the known mixing proportions 
irrespective of the distance in compositional space between some of the end-members (provided 
the number and composition of the end-members id fully known and mixing is the sole process 
responsible for the composition of the samples).

Table B2-1. Composition of the end-members for test B2.2.

End-
member

Na  
(mg/l)

K  
(mg/l)

Ca  
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl  
(mg/l)

SO4 
(mg/l)

D 
(dev)

Tritium 
(TU)

O18 
(dev)

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0 –21
Littorina 3,674 134 151 448 93 6,500 890 –38 0 –4.7
EM4a 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –80 0 –10.5
EM4b 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –150 0 –20
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Results and discussion
Test B2.1. As was already done for the two-principal component mixing routine, Eq. (B1-2) is 
used to calculate the overall standard deviation. Maximum deviation for the hyperspace mixing 
routine is of the order of 2×10−5 % and the mean standard deviation for the 1,000 samples is 
7×10−6 % (to be compared with maximum deviation of 85% and mean deviation of 17% for 
the two-principal component mixing routine), as Figure B2-1 shows. This value is equal to 
the precision of the calculation (six significant digits for a single-precision real number). 

Test B2.2. In order to assess the ability of the hyperspace mixing routine to properly calculate 
mixing proportions when some end-members have similar compositions, two different simula-
tions have been performed with an end-member, EM4, close in composition to the Glacial 
end-member (Table B2-1). In the first simulation 1,000 synthetic samples were created by pure 
mixing of end-members Brine, Glacial, Littorina and EM4a. The position of these end-members 
in PC space (projected onto the PC1-PC2 plane) is shown in the left panel of Fig. B2-2. The 
second simulations created 1,000 synthetic samples by mixing end-members Brine, Glacial, 
Littorina and EM4b; their position is shown in the right panel of Fig. B2-2. Note the relative 
position of end-members EM4b and Glacial. They plot much closer in PC space than end-
members Glacial and EM4a, reflecting their compositional similarity (Table B2-1).

Figure B2-1. Deviation of computed mixing proportions from real ones for 1,000 synthetic samples. 
M3’s hyperspace mixing routine has been used for the calculations. Upper graph uses the same 0–100% 
scale as Figure B1-1 to facilitate comparison. Lower graph has a colour scale from 0 to 2×10−5 % to 
better appreciate how deviations are spread on the PCA plane.
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In spite of the compositional similarity, the hyperspace mixing routine calculates accurate and 
precise mixing proportions in both cases. Maximum deviations are of the order of 1.2×10−6	% 
for EM4a and 6×10−6	% for EM4b. The mean deviation (for the 1,000 synthetic samples) is 
4.8×10−7	% for EM4a and 2×10−6	% for EM4b. The mean deviation for the simulation with  
end-member EM4b is slightly larger, which can start to reflect a degradation of precision due 
to the proximity of end-members in PC space.

Conclusions
As expected, the hyperspace mixing routine has negligible error when computing mixing pro-
portions of synthetic samples. This is true irrespective of the “closeness” of the end-members 
in the PC space (i.e. end-members can have similar compositions and the computed mixing pro-
portions would still be correct). For two and three end-members the two-principal component 
and hyperspace mixing routines give identical results. On the other hand, for more than three 
end-members, the hyperspace mixing routine is the preferred choice.

Figure B2-2. Location of end-members (black circles) in PC space projected onto the PC1–PC2 plane. 
The left panel displays the position of the end-members in the simulation with EM4a and the right panel 
displays the position of the end-members in the simulation with EM4b. Note the closeness in PC space 
of EM4b and Gl. Samples are colour-coded with respect to their standard deviation (defined according 
to Eq. B1-2). Maximum deviations are of the order 1.2×10−6%.
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Test Case C1: Absolute and relative deviations using 
synthetic samples
Introduction
Once mixing proportions have been computed, M3 calculates the composition that a sample 
would have if mixing were the one and only process contributing to the chemical composition 
of the sample. This is done in the following straightforward way. For every sample:

•	 Take	the	mixing	proportions,	ξi (i = 1, ..., n), where n is the number of end-members).

•	 Take	the	composition	of	each	end-member	( i
jc , i = 1, ..., n; j = 1, ..., m; where n is the 

number of end-members and m the number of input compositional variables). With this  
terminology Litt

Nac  would be the Na content in the Littorina end-member and Br
18Oc  the 

content of 18O in the Brine end-member.

•	 Compute,	for	each	compositional	variable	j, the expression

Sample

1

ˆ
n

i
j j i

i
c c

=

= ×ξ∑ . (C1-1)

This gives the “theoretical” or computed composition of each sample (j = 1, ..., m), The word 
“theoretical” should be understood as “the composition of the sample in the case of pure conser-
vative mixing between the chosen end-members, and only between them”.

For real groundwater samples, the theoretical composition would rarely, if ever, be equal to 
the actual measured composition. But for synthetic samples generated from fully known end-
members both compositions, theoretical and measured (understanding by “measured” the known 
input composition) must be equal if the routine computing them is working properly. This test 
tries to demonstrate that this is indeed the case.

The test
One thousand synthetic samples were generated according to the procedure described in Report 1, 
Section 3.2.2 using the four end-members listed in Table B1-1 for Test Case B1. Then these 
same end-members were included in an M3 input file, together with the 1,000 synthetic samples. 
The n-pc	mixing	routine	was	used	to	compute	the	mixing	proportions	ξi (i = 1, ..., n).

Results and discussion
Figure C1-1 plots the true (“measured”) mixing proportion against the computed mixing proportion 
for the 1,000 synthetic samples. Each graph in Figure C1-1 plots the result for one of the nine 
input compositional variables. As can be seen, all the samples plot on the diagonal line, for which 
the true and the computed mixing proportions are identical. This proves that M3 can exactly 
reconstruct the composition of a sample when all the elements behave conservatively. In other 
words, deviations are zero. Actually, as Figure C1-2 shows, deviations are not strictly zero due 
to	computational	rounding	errors.	This	is	why	Figure	C1-2	has	a	scale	going	from	−5×10−6 to 
5×10−6. Apart from this technicality, deviations are zero. 

Conclusions
M3 can accurately reconstruct the composition of a sample when all input compositional 
variable behave conservatively (or alternatively, when no reactions have taken place) and the 
end-members are fully known. Again, this conclusion is true irrespective of the compositional 
similarity of the end-members (up to differences in PC space of the order of the accuracy of the 
computations).
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Figure C1-1. Comparison of the measured concentration and the computed concentration for 1,000 
synthetic samples.

Figure C1-2. Absolute deviations for the 1,000 synthetic samples.



40

Test Case D1: Test of the combinations generating routine
Introduction
The End-member Selection module of M3 (Report 1, Section 4.1) gives the percentage (coverage) 
of samples in a dataset that can be explained by pure mixing of the chosen end-members. The 
bigger the coverage, the better is the selected set of end-members in explaining, by pure mixing, 
the chemistry of the samples. To aid in the selection of end-members for a given dataset, the 
ESM performs a systematic search of all possible combinations of end-members, starting from 
two end-members and ending with the desired maximum number of end-members. The total 
number of combinations grows rapidly with this maximum number, and that is why 15 is a 
practical upper limit. From combinatorial theory, the number C of combinations of n elements 
taken r at a time is

!( , )
( )! !

n nC n r
r n r r

 
≡ =  − 

. (D1-1)

Here n is the maximum number of potential end-members, and r is the number of end-members 
of any particular combination, which goes from 3 (minimum number of end-members when 
working with M3) to n. So, the total number of combinations of n end-members taken from 
two at a time to n at a time is then

3

!( )
( )! !

n

r

nC n
n r r=

=
−∑ . (D1-2)

The test
The test is very simple. M3 uses MATLAB function nchoosek(v,r), where v is a row vector of 
length n, which creates a matrix whose rows consist of all possible combinations of the n ele-
ments of v taken r at a time. The matrix contains n!/((n–r)! r!) rows and r columns /MATLAB 
2005b/. This function is called by the ESM to compute the coverage of each combination of 
end-members. 

Figure D1-1 is an example of such an output. In the lower part is the actual combination of 
end-members. Selecting a different row in the “Sample coverage percentage” window a differ-
ent combination of end-members is selected. In Figure D1-1 six potential end-members were 
selected, so that the total number of combinations according to Eq. (D1-2) is 42 (20 for three 
end-members, 15 for four end-members, 6 for five end-members, and 1 for six end-members).

Figure D1-1. Screenshot of M3’s End-member Selection module.
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Results and discussion
Table D1-1 gives all the combinations of a maximum of six end-members as computed by the 
End-member Selection module of M3. The total number of combinations is 42. The number of 
combinations of three end-members is 20; the number of combinations of four end-members 
is 15; the number of combinations of five end-members is 6; and the number of combinations 
of six end-members is 1. This is the complete set of combinations, none is missing and none 
repeated.

Conclusions
As expected, the ESM gives the correct number of combinations of end-members. No combination 
is missing and no combination repeated.

Table D1-1. Combinations of a maximum of six end-members as computed by M3.

Three end-members Four end-members Five end-members Six end-members

1 1 2 3 21 1 2 3 4 36 1 2 3 4 5 42 1 2 3 4 5 6
2 1 2 4 22 1 2 3 5 37 1 2 3 4 6
3 1 2 5 23 1 2 3 6 38 1 2 3 5 6
4 1 2 6 24 1 2 4 5 39 1 2 4 5 6
5 1 3 4 25 1 2 4 6 40 1 3 4 5 6
6 1 3 5 26 1 2 5 6 41 2 3 4 5 6
7 1 3 6 27 1 3 4 5
8 1 4 5 28 1 3 4 6
9 1 4 6 29 1 3 5 6
10 1 5 6 30 1 4 5 6
11 2 3 4 31 2 3 4 5
12 2 3 5 32 2 3 4 6
13 2 3 6 33 2 3 5 6
14 2 4 5 34 2 4 5 6
15 2 4 6 35 3 4 5 6
16 2 5 6
17 3 4 5
18 3 4 6
19 3 5 6
20 4 5 6
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Test Case D2: Test of ESM using as end-members the same used 
to create the samples
Introduction
The End-Member Selection Module of M3 computes the coverage of all combinations of the 
end-members selected by the user. The coverage is the percentage of samples that fall inside the 
mixing polyhedron (Report 1, Section 4.1), and the mixing polyhedron is the volume of compo-
sitional space that has the end-members as “corners” (see Figure D2-1). When working with real 
samples and uncertain end-members the coverage is usually less than 100% because some samples 
can not be explained by pure mixing (see the Validation part of this report). The same can happen 
when working with synthetic samples created with a set of end-members and then selecting in M3 
a different set of end-members. But what can not occur if the routine works correctly is having a 
coverage less than 100% when the set of end-members used to create the samples and the set of 
end-members selected in M3 are the same. This option is what is tested here. 

The test
One thousand synthetic samples were generated according to the procedure described in Report 1, 
Section 3.2.2 using the four end-members listed in Table B1-1 for Test Case B1. Then these 
same end-members were included in an M3 input file, together with the 1,000 synthetic samples. 
Figure D2-1 shows M3’s “Select end-member combination” window where the coverage of 
each combination of end-members is graphically depicted. The “Sample coverage percentage” 
on the right part of this window gives the coverage of all the combinations of end-members. The 
highlighted combination (the first one in the figure) is the one plotted on the left and shown in 
the bottom part of the window under the heading “End-member combination”. The n-pc mixing 
routine was used to compute the mixing proportions.

Results and discussion
With four end-members, there are four different combinations of end-members: one combina-
tion of four end-members, and 3 combinations of three end-members. This is why there are four 
entries in the “Sample coverage percentage” part of Figure D2-1. The highlighted combination, 
shown in the bottom part of the windows, has end-members 1, 2 3 and 4. These numbers refer to 
end-members Brine, Glacial, Littorina, and Rain, which are the same as those that were used to 
create the 1,000 synthetic samples. 

As Figure D2-1 shows, the coverage of this combination of end-members is 100%, as it should 
be because the combination coincides with the set of end-members originally used to create the 
samples.

Note that in the rest of combinations in Figure D2-1 the coverage is less than 100% as the set of 
end-members does not coincide with the sample-generating set.

Conclusions
We have shown that the End-member Selection Module correctly predicts a coverage of 100% 
when working with synthetic samples that were generated using a set of end-members identical 
to the end-members used to compute the mixing proportions.
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Figure D2-1. Coverage of the combination 1+2+3+4, which coincides with the set of end-members 
used to generate the synthetic samples.
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Test Case E1: Test of random number generator
Introduction
The End-member Variability Module of M3 (Report 1, Section 4.2) makes intensive use of 
random numbers for assessing by a Monte Carlo method the uncertainty in the computed mixing 
proportions of a water sample.

The Monte Carlo simulation method is a standard technique in all physical sciences. The key 
ingredient in its successful application lies in the quality of the random numbers used, which 
are usually produced by a deterministic pseudorandom number generator algorithm. Many tests 
have been devised to measure their quality, but none can prove that a given generator is reliable 
in all applications. Two important properties are uniformity (for uniformly distributed random 
numbers) and absence of correlations.

Uniformity means that the distribution of a large number of random numbers drawn from a 
given generator has equal weight in all subintervals inside the generator’s substrate, usually the 
[0.1) interval (i.e. between 0, including it, and 1, excluding it). Due to statistical fluctuations, the 
actual number of random numbers per bin deviates from the expected number np, where n is the 
total number of random numbers drawn and p is the probability of a random number falling in a 
given bin, i.e. the inverse of the number of bins in which the [0.1) interval has been subdivided. 
The probability distribution that describes these fluctuations is the binomial distribution,

( ) ( , ) x n xp x C n x p q −= , (E1-1)

where C(n,x) are the combinations of n elements taking x at a time, p is the probability of 
each event and q	=	1−p. For random numbers, the question we want to answer is: What is the 
probability p(x) of having exactly x random numbers in a bin of width 1/p when a total of n 
random numbers have been drawn? When n and np are both large the binomial distribution 
can be approximated by a Gaussian distribution,

2( )
21( ) ( , )

2

x np
x n x npqp x C n x p q e

npq

−−
−=

π
 . (E1-2)

This is a Gaussian distribution of mean np and standard deviation npq .

The second important property of a good random number generator is absence of correlations. 
The word “random” has the implicit meaning of a complete lack of correlation between any two 
random numbers is a series. The presence of correlations can ruin a Monte Carlo simulation and 
lead to erroneous results. Here we used two tests to check for local correlations present in rather 
short subsequences of random numbers /Vattulainen et al. 1994/.

The tests
Uniformity (Test Case E1.1). One million random numbers uniformly distributed in the interval 
[0, 1) were drawn with the MATLAB routine randn()used in M3. A histogram with 1,000 bins 
was constructed to check the “uniformity” of the random number generator (Figure E1-1). Each 
bin of width 0.001 should contain exactly 1,000 random numbers. The actual number is not 
expected to be 1,000 due to statistical fluctuations, and if the generator works properly, these 
fluctuations should follow Eq (E1-1).

Absence of correlations (Test Case E1.2). In the two-dimensional random walk test, we consider 
a sequence of pseudorandom numbers which determine the directions of jumps of a random walker 
on a plane. In the test, the plane is divided into four equal blocks, each of which has an equal prob-
ability to contain the random walker after a walk of length n. The test is performed N times, and the 
number of occurrences in each of the four blocks is compared to the expected value of N/4 using 
a	χ2	statistics	with	three	degrees	of	freedom.	The	generator	fails	if	the	χ2 value exceeds 7.815 in at 
least two out of three independent runs (with a different initial seed for the generator). 



45

In the n-block test, averages of sequences of pseudorandom numbers are calculated. Each 
average determines the value of a block variable (one or zero). When repeated several times, 
the test then performs a statistical analysis to either fail or pass the generator. For that purpose, 
N pseudorandom numbers are generated and their sum calculated. If the sum is larger than N/2, 
we increase counter 1 by one. Otherwise, we increase counter 0 by one. Finally, a chi-square 
test to the block variables (counters 0 and 1) with one degree of freedom is performed. Each test 
is repeated three times, and the generator fails the test with fixed n (length of the sequence of 
random	numbers)	if	at	least	two	out	of	three	χ2 values exceed 3.841, which should occurs with 
a probability of about 3/400.

Results and discussion
Uniformity (Test Case E1.1). The [0.1) interval is divided in 1,000 bins, so that p = 0.001 as 
there are 1,000 bins and each one has the same probability of storing a random number (remember 
that these are uniformly distributed in the whole [0.1) interval). The number of trials is n = 106, the 
total number of random numbers drawn. Therefore np = 1,000 is the expected number of random 
numbers per bin. Both n and np are large, so Eq (E1-2) can be used. Figure E1-1 shows the result.

Figure E1-2 compares the result of the test with the prediction of Eq (E1-2). The expected value 
of np = 1,000 random numbers per bin has been subtracted from the abscissa in order to zero-
centre the probability distribution.

The experimental probability distribution (histogram) in Figure E1-2 has a mean of 0 and a 
standard deviation of 30.5. The probability distribution arising from Eq (E1-2) with n = 106 
and p = 0.001 has a mean of 0 (after subtracting the expected value np = 1,000) and a standard 
deviation of npq = 31.6. The means are identical and the standard deviations are not statistically 
different at the 95% significance level (F-statistics with 1,000 degrees of freedom). So, we can 
conclude that the generator passes the uniformity test.

Figure E1-1. Uniformity test (Test Case E1.1). Distribution of 106 random numbers into 1,000 bins in 
the interval [0, 1). The expected value per bin is 1,000. The difference with respect to the expected value 
is due to statistical fluctuations that should follow a binomial distribution if the random numbers are 
truly uniform. 
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Absence of correlations (Test Case E1.2). The FORTRAN codes implementing the correlation 
tests have been downloaded from http://www.netlib.org/random/ (2drwtest.f and nblocktest.f) 
and modified in order to accept as input a sequence of random numbers. A complete analysis 
of both tests can be found in /Vattulainen et al. 1994/. Table E1-1 summarises the results of the 
two	correlation	tests.	For	all	three	repetitions	both	tests	return	a	χ2 value smaller that the critical 
one for the corresponding number of degrees of freedom. As a consequence, the random number 
generator that M3 uses passes the correlation tests.

Conclusions
The random number generator used by M3, which is the standard randn()function that comes 
with MATLAB package /MATLAB 2005b/, passes both the uniformity test and the correlation 
tests. It is, therefore, suitable for Monte Carlo simulations.

Figure E1-2. Uniformity test (Test Case E1.1). Distribution of deviates from the expected value of 1,000 
random numbers per bin. The histogram is the experimental probability distribution and the continuous 
blue line is the prediction of Eq (E1-2) with n = 106 and np = 1,000 after subtracting the mean.
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Table E1-1. Result of the correlation tests for n = 100 and N = 104.

Random walk 
χ2 < 7.815

n-block 
χ2 < 3.841

1 4.113 1.796
2 1.387 2.890
3 2.208 0.116
Result PASS PASS

http://www.netlib.org/random/
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Test Case E2: Construction of input probability distributions: 
Identical lower and upper ranges
Introduction
The End-member Variability Module is a complex routine implemented in M3 v3.0 to assess the 
impact of the compositional variability of water end-members on the calculated mixing propor-
tions. The EVM performs the following tasks (Report 1, Section 4.2):

1. Construct a probability density function for each input compositional variable from a 
pre defined compositional range. These probability density functions are called input prob-
abilities. The compositional range for each end-member is stored in a dedicated input file.

2. Generate, according to the chosen input probabilities, a large number of end member 
compositions, one set per run. The generated compositions will be, in most cases, unrealistic 
from a geochemical point of view (e.g. no charge balance). 

3. For each run specific compositions of the end-members are used to compute the mixing 
proportions of the samples in the input dataset.

4. After all runs have been finished, mixing proportions for each sample are binned to construct 
the output probability distributions.

For the definition of the input probability density functions (pdfs) that characterize the composi-
tional variation of each end-member, the EVM adopts the following two assumptions: (1) elemental 
compositional variables follow a log-normal distribution and isotopic per mil deviations follow a 
normal distribution; and (2) the compositional range is equated to the 1st and 99th percentiles of the 
chosen probability function, which means that M3 allows for end-member compositions outside 
the reported range with a probability of 1% (see Report 2, Section 4.2 for details). 

The test
This verification test analyses the behaviour of the input probability density functions in 
the case of identical lower and upper ranges, i.e. when an end-member has no compositional 
variability and the input probability density functions changes from lognormal/normal to a 
Dirac delta function. 

The Dirac delta function can be loosely thought of as:
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( ) ; ( ) 1
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∫ .

The Dirac delta is not a function in the strict sense but it can be usefully treated as a probability 
density function coming from particular limiting cases of other probability density functions. 
For example, for a normal distribution it can be thought of as the limiting case when the 
standard deviation of the normal distribution tends to zero (Figure E2-1):
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Is it in this sense how an input compositional range is treated in M3 when both the upper and 
lower ranges have the same value. Table E2-1 gives the ranges of the four end-members used in 
this test. Notice how end-members Glacial and Rain have many variables with the same value 
for the upper and lower limits that define their range. For example, both the upper and lower 
limits for the Na content in the Glacial end-member are 0.17 mg/L. So, its input probability 
density function is a Dirac delta function satisfying
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Table E2-1. Ranges of the four end-member used in this test.

End member Na 
(mg/l)

K 
(mg/l)

Ca 
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

2H 
(dev)

3H 
(TU)

18O 
(dev)

Brine 1 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0.00 –8.9
Brine 2 9,540 28 18,000 130 8.2 45,200 8.4 –49.5 0 –9.3
Glacial 1 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 0.00 –21
Glacial 2 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –125 0 –17
Littorina 1 3,674 134 151 448 93 6,500 890 –38 0.00 –4.7
Littorina 2 1,960 95 93.7 234 90 3,760 325 –53.3 0.00 –5.9
Rain 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 –125 0 –17
Rain 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 –44 168 –6.9

Results and discussion
For this test the ranges listed in Table E2-1 and Laxemar-Simpevarp 2.1 dataset (only ground-
waters, 210 samples) have been used. Figure E2-2 shows the EVM window where the number 
of runs and the mixing model (n-PC or 2-PC; see Report 1, Section 3.2) are set.

Figure E2-3 shows the main window of the EVM with the “Input probabilities” option selected. 
In the plot on the right-hand side the distribution of Na content in the four end-members is 
graphically displayed. Note the spread of Na contents of Brine and Littorina end-members and 
the Dirac delta shape of the Na content for the other two end-members: Rain and Glacial. Due 
to the scale of the horizontal axis, the Na content of both end-members seems to be 0 mg/L, but 
actually one is 0.1 and the other 0.17 mg/L, as Table E2-2 clearly shows, together with the zero 
standard deviation (actually of the order of the machine precision)

Conclusions
Figure E2-3 and Table E2-2 clearly show that the EVM correctly deals with degenerated  
probability distributions (both normal and lognormal) in the limit of zero standard deviation. 

Figure E2-1. The Dirac delta function as a limiting case of a normal distribution of zero standard 
deviation.
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Figure E2-2. EVM Launcher window. The user must specify the number of runs and the type of mixing 
model (n-PC or 2-PC).

Figure E2-3. Input probabilities for the Na content in the four end-members used in this test.

Table E2-2. M3 output file containing the mean and standard deviation of the input  
probabilities for element Na.

Element Distribution End-member Mean Std dev

Na lognormal Glacial 0.17 2.0e–015
Na lognormal Rain 0.1 1.4e–015
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Test Case E3: Construction of input probability distributions: 
different lower and upper ranges
Introduction
See the Introduction to Test Case E2. 

The test
This verification test analyses the behaviour of the input probability density functions in the 
case of different lower and upper ranges, i.e. when the composition of an end-member varies for 
whatever the reason (spatially, temporally or otherwise) and it is desirable to take this variability 
into account.

Only two types of probability distributions are implemented in the EVM: normal and lognormal. 
The lognormal distribution is the logical choice for elemental concentrations due to their inherently 
positive (or zero) character. The normal distribution is used for isotopic concentrations when 
these are expressed as per mil deviation with respect to a reference value (the so-called delta 
values). For more details on this choice of probability distributions the reader is referred to 
Report 1, Section 4.2.2. 

For this test, the dataset from Test Case E2 has been used. Continuing with the example of Na 
that was chosen there, we see in Table E2-1 that the Brine end-member has a lower Na content 
of 8,500 mg/L and an upper Na content of 9,540 mg/L. 

The value of 8,500 mg/L is equated to the 1st percentile and the value of 9,540 mg/L to the 99th 
percentile.	The	mean	µ	and	standard	deviation	σ	of	the	log-normally	distributed	Na	content	are	
/Mishra 2002/
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where	α	and	β	are	the	mean	and	standard	deviation	of	the	log-transformed variable. Parameters 
α	and	β	are	computed	from	the	ranges	in	Table	E2-1:
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where the factor 2×2.576 is the number of standard deviations needed to include 99% of the 
area under a normal distribution, from the 1st to the 99th percentiles. Thus, µ = 9007 mg/L and 
σ	=	202	mg/L.

Results and discussion

Table E3-1 gives the mean and standard deviation of the Na content in the Littorina and Brine 
end-members. Also, Figure E2-3 in Test Case E2 gives a graphical representation of this input 
probabilities.

If we compare the mean and standard deviation of Na in the Brine end-member with the 
expected	result	µ	=	9,007	mg/L	and	σ	=	202	mg/L,	we	see	that	the	agreement	is	very	good.
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Conclusions
Table E3-1 clearly shows that the EVM correctly computes the mean and standard deviation of the 
input probability distributions from the compositional ranges given in the input files to the EVM. 

Table E3-1. M3 output file containing the mean and standard deviation of the input prob-
abilities for element Na.

Element Distribution End-member Mean Std dev

Na lognormal Littorina 2,696.0 329.0
Na lognormal Brine 9,011.9 203.6
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Test Case F1: Linear mixing (no redundancy)
Introduction
M3 can solve linear mixing problems with three or more end-members. Ternary linear mixing 
is a well known mixing problem with an analytical solution, which is ideal to benchmark M3 
results. Let A, B and C be three generic end-members, and X and Y two conservative elements. 
The concentration of elements X and Y in any sample that is the result of a ternary mixing 
between end-members A, B and C can be used to compute the proportion of each end-member 
in the sample. Mixing proportions f (or mixing fractions) fulfil the following obvious closure 
relation

1A B Cf f f+ + = . (F1-1)

We can also write a mass-balance equation for each conservative element:

A A B B C C TotX f X f X f X+ + =  (F1-2)

A A B B C C TotY f Y f Y f Y+ + =  (F1-3)

These three equations allow us to compute the three unknown mixing ratios fA, fB and fC. The 
simplest way to obtain a solution to this set of linear equations is re-writing them into matrix 
form,

=Ax b ,  (F1-4)

where

1 1 1

A B C

A B C

X X X
Y Y Y

 
 =  
  

A  (F1-5)

is the coefficients matrix,

1

Tot

Tot

X
Y

 
 =  
  

b  (F1-6)

is the vector collecting the independent terms, and

A

B

C

f
f
f

 
 =  
  

x  (F1-7)

is the vector of unknown mixing proportions. The solution to matrix equation (F1-4) is

1−=x A b , (F1-8)

where A−1 is the inverse of A. Equation (F1-8) gives the mixing proportions of a sample with 
concentrations XTot and YTot of elements X and Y. This solves the mixing problem. Notice that 
two is the minimum number of elements needed to solve uniquely the system of linear equations 
(F1-4). Less than two elements gives an under-determined system of equations. On the other 
hand, when one tries to solve the ternary linear mixing problem with more than three elements, 
the corresponding system of equations is over-determined and a least square solution must be 
sought in order to deal with the redundancy (this is the topic of Test Case F2).
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The test
Test with 3 end-members. One thousand synthetic samples were generated from known 
mixing proportions of the three end-members Brine, Glacial and Littorina, whose chemical 
composition is summarised in Table F1-1. The concentration of Cl, Deuterium and oxygen-18 
of the 1,000 samples where used as input to M3 and the mixing proportions computed with the 
n-PC mixing routine (Report 1, Section 3.2.3) using an allowance parameter of 0.0 (Report 1, 
Section 3.2.4). The reason of using three elements instead of two (as in the previous theoretical 
derivation) is that M3 needs a number of elements equal to or greater than the number of end-
members to perform the Principal Component Analysis. This is not a limitation of M3, but 
a limitation of PCA (see Report 1, Section 3.1).
Test with 8 end-members. This test is similar to the previous one but the 1,000 samples are 
generated from known mixing proportions of 8 different end-members (Table F1-2). The goal 
of this test is confirm that the number of end-members does not influence the results. 

Results and discussion
Figure F1-1 shows the PC plot of the samples and Table F1-2 gives the mixing proportions of 
the first eight samples of the synthetic dataset, together with the analytical result for the same 
samples based on Eq. (F1-4): mixing proportions are identical. 

Figure F1-1. PC plot of 1,000 synthetic samples generated from known mixing proportions of three 
end-members (left panel), and 8 end-members (right panel).

Table F1-1. Composition of the end-members used in the 3 end-member test.

End-member Cl (mg/l) D (dev) O18 (dev)

Brine 47,200 –44.9 –8.9
Glacial 0.5 –158 –21
Littorina 6,500 –38 –4.7

Table F1-2. Composition of the end-members used in the 8 end-member test.

End-member Na (mg/l) K (mg/l) Ca (mg/l) Mg (mg/l) HCO3 (mg/l) Cl (mg/l) SO4 (mg/l) O18 (dev)

1 8,500 45.5 19,300 2.12 14.1 47,200 906 −8.9
2 613 2.4 162 21 61 1,220 31.1 −15.8
3 1,960 95 93.7 234 90 3,760 325 −5.9
4 11.5 2.3 15.4 1.9 63 5 13.2 −10.2
5 2,140 35.1 504 195 760 4,490 111.6 −7.3
6 3,020 7.3 4,380 49.5 11 12,300 709 −12.7
7 0.17 0.4 0.18 0.1 0.12 0.5 0.5 −21
8 3,674 134 151 448 93 6,500 890 −4.7
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Table F1-2. Comparison of the mixing proportions computed by M3 and with equation  
(F1-10) for the three and 8 end-members tests.

Test EM Solution Sample
1 2 3 4 5 6 7 8

3 end-
members

Br Analytic 0.32522 0.58508 0.37599 0.04243 0.50678 0.23492 0.37064 0.48787
M3 0.32522 0.58508 0.37599 0.04243 0.50678 0.23492 0.37064 0.48787

Gl Analytic 0.38230 0.04930 0.28910 0.70145 0.18458 0.46793 0.33388 0.45237
M3 0.38230 0.04930 0.28910 0.70145 0.18458 0.46793 0.33388 0.45237

Litt Analytic 0.29248 0.36562 0.33491 0.25612 0.30864 0.29715 0.29548 0.05976
M3 0.29248 0.36562 0.33491 0.25612 0.30864 0.29715 0.29548 0.05976

8 end-
members

1 Analytic 0.05721 0.00445 0.01563 0.00203 0.22453 0.01183 0.12408 0.98795
M3 0.05721 0.00445 0.01563 0.00203 0.22453 0.01183 0.12408 0.98795

2 Analytic 0.40238 0.00034 0.00993 0.00743 0.00499 0.10573 0.15649 0.00074
M3 0.40238 0.00034 0.00993 0.00743 0.00499 0.10573 0.15649 0.00074

3 Analytic 0.05145 0.98207 0.02877 0.00730 0.23696 0.00458 0.12922 0.00236
M3 0.05145 0.98207 0.02877 0.00730 0.23696 0.00458 0.12922 0.00236

4 Analytic 0.13716 0.00208 0.86939 0.00092 0.16023 0.06380 0.00152 0.00441
M3 0.13716 0.00208 0.86939 0.00092 0.16023 0.06380 0.00152 0.00441

5 Analytic 0.01156 0.00483 0.02294 0.97328 0.17972 0.07741 0.08812 0.00016
M3 0.01156 0.00483 0.02294 0.97328 0.17972 0.07741 0.08812 0.00016

6 Analytic 0.08571 0.00176 0.02602 0.00407 0.00141 0.01578 0.13399 0.00188
M3 0.08571 0.00176 0.02602 0.00407 0.00141 0.01578 0.13399 0.00188

7 Analytic 0.14389 0.00294 0.02413 0.00136 0.01929 0.65647 0.10750 0.00223
M3 0.14389 0.00294 0.02413 0.00136 0.01929 0.65647 0.10750 0.00223

8 Analytic 0.11064 0.00153 0.00319 0.00361 0.17285 0.06440 0.25909 0.00027
M3 0.11064 0.00153 0.00319 0.00361 0.17285 0.06440 0.25909 0.00027

We have also computed the average absolute difference between M3 and analytical results for 
the 1,000 samples, obtaining a value of the order of the machine precision.

Conclusions
As is immediately clear from the table, the mixing proportions computed by M3 and by the 
analytical procedure are identical, demonstrating that M3 can solve correctly linear mixing 
problems with a number of end-members equal to the number of input compositional variables. 
The examples shown use 3 and 8 end-members, but because the numerical routine for the 
computation of the mixing proportions is identical for any number of end-members (greater 
or equal to 2), the results of this test case can be considered general. 



55

Test Case F2: Linear least squares (redundancy)
Introduction
The ternary linear mixing problem can only be solved with the procedure explained in Test 
Case F1 when the number of input elements is two. This is so because in this case the linear 
system of equations has the same number of equations and unknowns (three). If more than two 
elements are used, the resulting set of equations has more equations that unknowns, matrix A is 
not square and its inverse A−1 does not exists. In this over-determined case we should look for a 
least square solution trying to minimize error E defined as

( ) 2

, , , ,
1

n

i Tot i A A i B B i C C
i

E X X f X f X f
=

 = − + + ∑ , (F2-1)

where n is the number of elements, Xi,Tot is the concentration of element Xi in the sample, and 
Xi,A, Xi,B, and Xi,C, are its concentrations in end-members A, B and C. The three unknowns are 
the mixing proportions fA, fB, fC, which satisfy the closure relation 1A B Cf f f+ + = .

This problem is then the elementary calculus problem of locating the minimum of the function 
E(fA, fB, fC) and is solved by setting the derivatives of E to zero and solving the resulting equations. 
The result is /Menke 1984, p. 39/:

1est T T−
 =  x A A A b , (F2-2)

which is the least-squares solution to the problem Ax = b, where 
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The test
The same one thousand synthetic samples generated for Test Case F1 were used for this test. 
Table F1-1 gives the contents of Cl, 2H and 18O in the three end-members Brine, Glacial and 
Littorina used to perform the test. Again, the n-PC mixing routine (Report 1, Section 3.2.3) 
and an allowance parameter of 0.0 (Report 1, Section 3.2.4) were selected. 
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Results and discussion
M3 results are identical to those in Test Case F1 because in both cases three elements (Cl, 2H 
and 18O) were used to compute the mixing proportions. As an example, the first sample in the 
synthetic dataset has the following composition: Cl = 17,251.63281 mg/L, 2H	=	−86.12042	
‰ dev., and 18O	=	−12.29747	‰	dev.	Inserting	these	values	in	Eq.	(F2-4)	with	n = 3, and the 
corresponding composition of the end-members in Eq. (F2-3), we have:

1 1 1
47200 0.5 6500

44.9 158 38
8.9 21 4.7

 
 
 =
 − − −
 − − − 

A ,

and

1
17251.63281

86.12042
12.29747

 
 
 =
 −
 − 

b .

The solution, Eq. (F2-2), to this problem is 

0.325219
0.382304
0.292474

 
 =  
  

x ,

which is almost identical to M3 solution fBrine = 0.325219, fGlacial = 0.382304, and fLitt = 0.292477. 

Conclusions
Test Case F2 has demonstrated that M3 can also solve a linear mixing problem in the over-
determined case (more equations than unknowns), thus generalizing the result of Test Case F1 
for the even-determined case (equal number of equations and unknowns). 
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Test Case F3: PHREEQC in pure-mixing mode
Introduction
PHREEQC /Parkhurst and Appelo 1999/ is one of the most popular and widely used geochemical 
codes for solving mixing and reaction problems. Due to its universality, PHREEQC serves as a 
benchmarking tool for other codes. Although more suited to complex problems where mixing 
and reactions take place at the same time, it can also be used in pure mixing mode.

PHREEQC can solve both forward and inverse geochemical problems. When dealing with a 
forward model, PHREEQC computes the chemical composition of a mixed water knowing the 
chemical composition of each initial water and the mixing proportions. Additionally, on the final 
mixed water several equilibrium constraints can be imposed representing chemical reactions 
that modify the water composition computed only by mixing.

The inverse modelling approach of PHREEQC starts from the chemical composition of the 
final mixed water, the chemical composition of each selected initial water and, optionally, the 
stoichiometry of a set of feasible phases (minerals that dissolve and/or precipitate, exchangeable 
phases, gases, etc, representing heterogeneous chemical reactions) and computes from there the 
mixing proportion of each end-member and (optionally) the mineral mass transfers that better 
explain the chemical composition of the final mixed water. 

The output of the calculation is not a unique set of mixing proportions. Due to the non-uniqueness 
of the inverse approach, PHREEQC will usually output a range of mixing proportions compatible 
with the composition of the end-members and with the composition of the sample, taking into 
account analytical uncertainties and other sources of error (like charge imbalance). 

The test
The first three synthetic samples of the dataset used in Test Cases F1 and F2 were input to 
PHREEQC together with the complete chemical and isotopic composition of the end-members 
Brine, Littorina and Glacial. Figure F3-1 reproduces the input file. Solution 1 is Brine end-
member, solution 2 is Littorina end-member, solution 3 is Glacial end-member, and solutions 4 
to 6 are the synthetic samples. 

Note in the section “Inverse modelling”, near the bottom of the file, the values for the analytical 
uncertainty of all elements in the chemical analysis (entry “-uncertainty”) and for selected 
conservative elements (entry “-balance”). It is not possible, due to lack of convergence of the 
numerical algorithm that PHREEQC used to carry out the inverse modelling, to select a value 
of zero for these analytical uncertainties. A value of 3% for alkalinity, 5% for the conservative 
elements and 1 ‰ dev. for the isotopes have been selected. The extra degree of freedom that 
a non-zero uncertainty introduces in the calculation allows PHREEQC to output a range of 
mixing proportions instead of a unique value, because more than one set of mixing proportions 
is compatible with the given (uncertain) chemical composition of the end-members and the 
samples.
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SOLUTION 1 Brine
temp 15
pH 8.0
pe 4
redox pe
units ppm
density 1
Cl 47,200
K 45.5
Mg 2.12
Ca 19,300
Na .8500
S(6) 906
Alkalinity 14.1 gfw 61.0171

- isotope 18O –8.9
- isotope 2H –44.9
- water 1 # kg

SOLUTION 2 Littorina
temp 15
pH 7.6
pe 4
redox pe
units ppm
density 1
Cl 6,500
K 134.0
Mg 448.0
Ca 151.0
Na 3,674.0
S(6) 890.0
Alkalinity 93.0 gfw 61.0171

- isotope 18O –4.7
- isotope 2H –38
- water 1 # kg

SOLUTION 3 Glacial
temp 15
pH 5.8
pe 4
redox pe
units ppm
density 1
Cl 0.5
K 0.4
Mg 0.1
Ca 0.18
Na 0.17
S(6) 0.8
Alkalinity 0.12 gfw 61.0171

- isotope 18O –21
- isotope 2H –158
- water 1 # kg

SOLUTION 4 Sample 1
temp 15
pH 7
pe 4
redox pe
units mg/l
density 1
Na 3,838.99
K 54.14
Ca 6,320.96
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Mg 131.76
Alkalinity 31.8 gfw 61.0171
Cl 17,251.6
S(6) 555.14

- isotope 18O –12.3
- isotope 2H –86.12
- water 1 # kg

SOLUTION 5 Sample 2
temp 15
pH 7
pe 4
redox pe
units mg/l
density 1
Na 6,316.5
K 75.6
Ca 11,347.3
Mg 165.04
Alkalinity 42.26 gfw 61.0171
Cl 29,992.48
S(6) 855.5

- isotope 18O –7.96
- isotope 2H –47.95
- water 1 # kg

SOLUTION 6 Sample 3
temp 15
pH 7
pe 4
redox pe
units mg/l
density 1
Na 4,426.4
K 62.1
Ca 7,307.17
Mg 150.87
Alkalinity 36.48 gfw 61.0171
Cl 19,923.67
S(6) 638.86

- isotope 18O –10.99
- isotope 2H –75.29
- water 1 # kg

INVERSE_MODELING 1
- solutions 1 2 3 4
- uncertainty 0.03 0.03 0.03 0.03
- balances

Cl 0.05 0.05 0.05 0.05
Ca 0.05 0.05 0.05 0.05
Mg 0.05 0.05 0.05 0.05
Na 0.05 0.05 0.05 0.05
K 0.05 0.05 0.05 0.05
S(6) 0.05 0.05 0.05 0.05

- isotopes
2H 0.01 0.01 0.01 0.01
18O 0.01 0.01 0.01 0.01

- range 1,000
- tolerance 1e–010
- mineral_water true

Figure F3-1. PHREEQC input file for Test Case F3 to compute the mixing proportions (inverse 
modelling) of three synthetic samples (solutions 4 to 6) knowing their chemical composition and the 
composition of the three end-members.
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Results and discussion
Table F3-1 summarises the results of Test Case F3. The mixing proportions calculated by M3 
are compared in the table with the most probable mixing proportions calculated by PHREEQC. 
We can see that both sets of mixing proportions are very similar, with maximum relative deviations 
of the order of 0.001%. 

Actually, as commented on above, PHREEQC outputs a range of mixing proportions for each 
sample. The value given in Table F3-1 is the most probable value. Figure F3-2 gives, for the 
first synthetic sample, both the most probable and the minimum and maximum values of the 
mixing proportions. For example, the range of mixing proportions of the Brine end-member 
(Solution 1 in the figure) in the first synthetic sample is 31.91% to 33.30%, 32.60% being the 
most probable value. In all the cases the value calculated by M3 is inside the range computed 
by PHREEQC.

Conclusions
Test Case F3 has shown that M3 and PHREEQC (inverse modelling) give the same mixing 
proportions when synthetic samples created by pure mixing of fully known end-members are 
used.

Table F3-1. Comparison of M3 and PHREEQC mixing proportions for the first three synthetic 
samples of the dataset.

Sample Brine Glacial Littorina
M3 M3 M3

1 0.3252 0.3260 0.3823 0.3823 0.2925 0.2917
2 0.5851 0.5849 0.04930 0.04930 0.3656 0.3658
3 0.3760 0.3754 0.2891 0.2892 0.3349 0.3355

Solution fractions: Minimum Maximum

Solution 1 3.260e–001 3.191e–001 3.330e–001
Solution 2 2.917e–001 2.853e–001 2.981e–001
Solution 3 3.823e–001 3.817e–001 3.828e–001

Figure F3-2. PHREEQC range of mixing proportions for the first synthetic sample. Solution 1 is Brine 
end-member, solution 2 Littorina end-member, and solution 3 Glacial end-member.
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Appendix 2 

Validation tests
The Verification part of this report has already demonstrated the ability of M3 to calculate the 
mixing proportions of a sample when (1) the composition of the end-members is fully known, 
and (2) the samples in the dataset are the result of pure mixing (no chemical reactions) of the 
chosen (and only the chosen) end-members. For this purpose, several datasets of synthetic 
samples with known mixing proportions were used.

In the Validation part of this report all these restrictions will be raised in order to assess, for 
a real groundwater dataset, the impact of the most important uncertainties on the computed 
mixing proportions, specifically: (1) the number of samples in the dataset (Test Case VA1); (2) 
the number of input compositional variables (Test Case VA2); (3) the inclusion/exclusion of the 
end-members in the PCA (Test Case VA3); (4) the composition of the end-members (Test Case 
VB1); and (5) the number of end-members (Test Case VC1). 

Apart from these verification exercises the goal of which is to assess the correctness of the com-
puted mixing proportions, Test Cases VB2, VD1 and VE1 are designed to assess the capacity of 
M3 to deduce chemical reactions (mass balance). Finally, Test Cases VF and VG compare M3’s 
performance with other methods of computing mixing proportions, including examples outside 
the field of hydrogeochemistry.

Group VA tests: Validation of stability of mixing proportions

Group VB tests: Validation of the End-member Variability module

Group VC tests: Validation of the End-member Selection module

Group VD tests: Validation of mass balance and analysis of reactions

Group VE tests: Cross-check against other codes

Group VF tests: Cross-check against other methods to compute mixing ratios and reactions

Group VG tests: M3’s ability to solve non-aqueous mixing problems
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Test Case VA1: Dependence of mixing proportions on the 
number of samples in the dataset
Introduction
When dealing with a dataset of real water samples neither the composition of the end-members 
nor the importance of water-rock interactions can be known fully. This and the following Test 
Cases are designed specially to ascertain the stability of the mixing proportions in the presence 
of uncertain knowledge. Here we start with a simple question: Does it matter how many samples 
the dataset contain? Do we obtain the same mixing proportions (for a particular sample) if we 
delete some samples from the dataset? Answering these questions in a positive way is crucial 
to validate the approach that M3 uses to compute mixing proportions. 

This Test Case will assess the impact that the number of samples in the dataset has on the computed 
mixing proportions, and will quantify the precision with which these mixing proportions can be 
calculated. To separate the impact that the number of samples has on the mixing proportions, the 
rest of the parameters (number of end-members, composition of the end-members, and number and 
type of input compositional variables) will be kept constant. 

The test
A real dataset of groundwater and near-surface groundwater samples from the Laxemar-Simpevarp 
area, Sweden, were selected for Test Case VA1 /Laaksoharju 2006/. Four end-member waters 
can explain most chemical variability in the Laxemar-Simpevarp area (Table VA1-1): a highly 
saline water (Brine), a glacial meltwater (Glacial), an ancient sea water (Littorina), and a dilute 
groundwater (DGW). The Brine and DGW end members are local extreme waters (see the 
footnote in Table VA1-1), and the Glacial and Littorina end-members are hypothetical ancient 
waters whose chemical composition has been inferred from independent geological and geo-
chemical information. 

Nine chemical variables were included in the input file: the concentration, in mg/L, of the major 
ions Na, K, Ca, Mg, HCO3, Cl, SO4; and the isotopic delta-values (per mil deviation) of deuterium 
(2H) and 18O. HCO3 represents total alkalinity. In this dataset conservative and non-conservative 
elements are mixed. The impact of the non-conservative elements on the mixing proportions is 
explored in detail in Test Cases VB2 and VD1.

Two simulations were performed: one with the whole dataset (324 samples), and the other with 
a subset of the previous set consisting of 230 samples (a reduction of around 30% in the number 
of samples). The removed samples are those with no analytical data for the elements Li and Br. 
These two elements are not used as input variables here, but will be used in Test Case VA2, and 
this is the reason why this subset has been chosen. 

Figure VA1-1 shows the coverage plot of the two M3 runs. Coverage is the percentage of 
samples inside the mixing polyhedron, i.e. the number of samples than can be explained by 
pure mixing, and gives a good initial indication of the suitability of the chosen end-members 
(see Report 1, Section 4.1). Samples inside the mixing polyhedron are coloured in blue in 
Figure VA1-1 and those outside it are coloured in black. The coverage is very high in both 
datasets (97% for the whole dataset and 98.7% for the subset), an indication that the selected 
end-members could be a good initial choice, relevant to the hydrogeochemistry of the site. 

Together with these real water samples, five synthetic waters were created by mixing the 
end-members in Table VA1-1 in specific proportions. The mixing proportions are collected 
in Table VA1-2 and the resulting chemical composition in Table VA1-3. Four of the synthetic 
samples (samples #2–4) are rather “extreme” with one or two preponderant end-member compo-
nents; the other (sample #1) is a mixture of the four end-members in similar proportions. The 
location of the five synthetic samples in the PC-plot is shown in Figure VA1-2.
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Table VA1-1. Composition of the end-members used in Test Case VA1.

End-member Na  
(mg/l)

K 
(mg/l)

Ca  
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

D 
(dev)

O18 
(dev)

Brine1) 8,030 29 18,600 2.7 9 45,500 832 –47.4 8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 –21
Littorina 3,674 134 151 448 93 6,500 890 –38 –4.7
DGW2) 228 4.0 27.00 4.0 373.0 123.00 118.0 –68.70 –9.8

1) Sample #2731, borehole KLX02, 1,560 m depth, Laxemar-Simpevarp area. 
2) Shallow borehole HAS05, 72 m depth, Äspö area. 

Table VA1-2. True mixing proportions (%) of the five synthetic samples.

Sample Brine Glacial Littorina DGW

1 20 30 20 30
2 80 10 0 10
3 10 60 0 30
4 5 5 50 40
5 5 0 0 95

Table VA1-3. Composition of the five synthetic samples.

Sample Na  
(mg/l)

K 
(mg/l)

Ca  
(mg/l)

Mg  
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

D 
(dev)

O18 
(dev)

1 2,310.4 37.92 3,758.5 77.77 142.9 10,357 307.3 –84.5 –12.02
2 6,446.8 23.64 14,882.7 2.57 44.51 36,412 677.4 –60.6 –10.2
3 871.5 4.34 1,868.2 1.53 112.9 4,587.2 118.9 –120.1 –16.43
4 2,082.7 80.07 1,016.8 191.74 222.6 5,374.2 352.3 –55.2 –7.915
5 618.1 5.25 955.6 3.94 354.8 2,391.8 153.7 –67.6 –9.755

Figure VA1-1. Coverage window for the whole dataset (left panel) and for the subset of 230 samples 
(right panel). Samples inside the mixing polyhedron are in blue and those outside it are in black. The 
coverage is 97% for the whole dataset and 98.7% for the subset. In both panels end-member “−1” is 
Brine, end-member “−2” Glacial, end-member “−3” Littorina, and end-member “−4” DGW. Allowance 
parameter = 0.03.
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Two M3 input files were created: one with the end-members, the 324 real water samples, and 
the 5 synthetic samples with known mixing proportions; and the other with the end-members, 
the subset of 230 water samples, and the 5 synthetic samples. Contrasting the results obtained 
with the two M3 runs would allow us to test (1) the accuracy of the mixing proportions calcu-
lated by M3 (using the synthetic samples), and (2) the influence of the number of samples in the 
computed mixing proportions. It is appropriate to remind here that the n-pc mixing proportion 
has been used to compute the mixing proportions.

Results and discussion
First, we deal with the accuracy of the computed mixing proportions for the 5 synthetic samples. 
Table VA1-4 shows the true mixing proportions and the mixing proportions computed by M3 
using the complete dataset and the subset. There are very few differences between both runs and 
also between the true and the computed mixing proportions. For samples #2, 3 and 5 the results 
are exact, i.e. true and computed mixing proportions are identical in both runs. For sample #1 
(a mixture in similar proportions of all end-members), the maximum difference is 2.6% for the 
DGW end-member in the subset run; for sample #4 (mainly a mixture of Littorina and DGW) 
the maximum difference is 3.2% for the Glacial end-member in the subset run (this difference 
amounts to 64% in relative terms). 

From the results shown in the table, we can conclude that the mixing proportions of the five 
synthetic samples are recovered by M3 with high but variable accuracy. Some samples are 
inverted with zero error, but others have a finite precision. This raises the question of what 
controls the precision with which a (known) mixing proportion can be recovered? The answer 
is complex but points to two main “culprits”: (1) the “purity” of the dataset, and (2) the quality 
of the end-members. For purity we mean that the samples in the dataset are essentially the 
sole result of a mixing process, with reactions playing a secondary role4. The quality of the end-
members refers to the precision with which their compositions and number are known. In other 
words, if the end-members are well characterised and the groundwater system is dominated by 
mixing, then the computed mixing proportions will be close to the “true” (and unknown) mixing 

4  Analytical error is usually lower and the uncertainty coming from it can be neglected. As for sampling 
errors, we are assuming that these are kept at a minimum and that there is an independent protocol to 
screen out non-representative samples before the analysis with M3 is carried out.

Figure VA1-2. Location of the five synthetic samples (green asterisks) in the PC plot. Four of the 
synthetic samples are rather “extreme” with one or two preponderant end-members; the other, sample 
#1, is a mixture of the four end-members in similar proportions.
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proportions. Test Case VE1, where M3 results are compared with PHREEQC’s for synthetic 
samples with known mixing proportions affected by known chemical reaction, thoroughly 
assesses the impact of chemical reactions on the computed mixing proportions. The reader 
is urged to analyse the results and conclusions there contained.

Test Case VA1 will not be complete without an analysis of the mixing proportions of the real 
groundwater samples. In this case we don’t know the “true” mixing proportions (if we knew 
them in advance, this exercise would be futile), but we can compare the results of both runs 
assuming the mixing proportions given by the test run with the whole dataset are exact. This 
is shown in Figure VA1-3 in the form of a PC plot where each sample is colour-coded with 
respect to the difference between the mixing proportions in both runs. 

This difference is a kind of generalised standard deviation, calculated according to the expression 

2 2 2 2
Set Subset Set Subset Set Subset Set Subset

StDev

(Br Br ) (Gl Gl ) (Lit Lit ) (DGW DGW )

=

− + − + − + −
,

where BrSet refers to the mixing proportion of the Brine end-member in the simulation with the 
whole set, and BrSubset to the mixing proportion in the simulation with the subset. The average 
deviation for the 230 samples common to both datasets is 0.9%, while the maximum deviation 
is 3.5% (blue samples in the figure). Both values point to a stable behaviour of M3 against a 
change in the number of samples in the dataset, as has been already observed with the synthetic 
samples. Although the true mixing proportions of these real samples cannot be ascertained, if 
M3 accurately estimates the mixing proportions in a synthetic sample that is very close (in the 
Principal Components space) to a real groundwater sample, the estimated mixing proportions 
in the real sample can be assumed to be accurate. Although this last statement cannot be demon-
strated, the results presented in the following Test Cases build confidence in its veracity. 

Table VA1-4. Computed mixing proportion (%) of the 5 synthetic samples in the two M3 runs.

Synthetic 
Sample

Mixing proportions (%)
Brine Glacial Littorina DGW

#1 True 20.0 30.0 20.0 30.0
M3 (set) 19.3 28.8 19.5 32.4
M3 (subset) 19.1 28.7 19.6 32.6

#2 True 80.0 10.0 0.0 10.0
M3 (set) 80.0 10.0 0.0 10.0
M3 (subset) 80.0 10.0 0.0 10.0

#3 True 10.0 60.0 0.0 30.0
M3 (set) 10.0 60.0 0.0 30.0
M3 (subset) 10.0 60.0 0.0 30.0

#4 True 5.0 5.0 50.0 40.0
M3 (set) 3.2 2.0 48.8 46.0
M3 (subset) 2.8 1.8 48.9 46.5

#5 True 5.0 0.0 0.0 95.0
M3 (set) 5.0 0.0 0.0 95.0
M3 (subset) 5.0 0.0 0.0 95.0
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Conlusions
Test Case VA1 has strengthened the confidence in M3’s approach to calculating mixing pro-
portions. This has been done by analysing the impact on the computed mixing proportions of a 
change in the number of samples in the input dataset. This is a basic stability check previous to 
more demanding ones to be carried out in the following Test Cases. For the synthetic samples 
inserted in the real dataset the test has shown that M3 is able to recover the true mixing propor-
tion with high accuracy, and that these mixing proportions barely change when the number of 
samples in the dataset is changed (a 30% decrease is the number of samples has been tested). 
For real groundwater samples the test has shown that the computed mixing proportions are also 
stable against a change in the size of the dataset, although the true mixing proportions cannot be 
known with certainty because additional particularities of the dataset (mainly the importance of 
the chemical reactions and the knowledge of the end-members) affect their accuracy. For that 
matter, the results and conclusions of Test Case VE1 should be consulted. 

Figure VA1-3. Difference in mixing proportions between the M3 run with the whole set and the one 
with the subset (both including the 5 synthetic samples). Maximum difference is 3.5% and the average 
deviation is 0.9% for the 230 real samples common to both datasets. Black dots are samples outside the 
mixing polyhedron for which a set of all positive mixing proportions cannot be computed.
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Test Case VA2: Dependence of mixing proportions on the 
number of input variables
Introduction
Another validation issue that must be address is: How much can mixing proportion vary if the 
number of input compositional variables is changed? 

In the previous Test Case a dataset of 324 groundwater samples from the Laxemar-Simpevarp 
area, Sweden, and a subset of 230 samples of the whole dataset were used to explore the stabil-
ity of mixing proportions against a change in the number of samples. Now we are going to use 
the subset of 230 samples to assess the impact of a change in the number of input compositional 
variables on the mixing proportions. The reason to use only the subset of 230 samples is because 
now Li and Br are included among the input compositional variables, and only these 230 samples 
have data for both Li and Br (together with data for the other nine compositional variables: 
Na, K, Ca, Mg, HCO3, Cl, SO4, 2H, and 18O).

The test
A real dataset of 230 groundwater and near-surface groundwater samples from the Laxemar-
Simpevarp area in Sweden was selected for Test Case VA2 /Laaksoharju 2006/. Four end-member 
waters can explain most chemical variability in the Laxemar-Simpevarp area: a highly saline 
water (Brine), a glacial meltwater (Glacial), an ancient sea water (Littorina), and a dilute ground-
water (DGW). The composition of the four end-members is collected in Table VA1-1. Apart 
from the real water samples, five synthetic samples of known mixing proportions were included 
in the datasets. Their mixing proportions and chemical composition are given in Tables VA1-2 
and VA1-3 (see Test Case VA1).

Four simulations were performed: one with nine input compositional variables (Na, K, Ca, Mg, 
HCO3, Cl, SO4, 2H, and 18O); other with eleven compositional variables (Na, K, Ca, Mg, HCO3, 
Cl, SO4, Br, Li, 2H, and 18O); a third one with only 6 compositional variables (Ca, Mg, HCO3, 
Cl, SO4, and 18O); and a final one only with conservative elements (Cl, Br, Li, 2H and 18O)5. 
Table VA2-1 summarises the compositional differences between the four simulations.

In the four test runs the five synthetic samples already used in Test Case VA1 were included 
(see Tables VA1-2 and VA1-3) in order to assess the quality of the computed mixing proportions. 
These have been computed with the n-pc mixing routine.

5  These elements behave as conservative in the studied groundwater system, as different ion-ion plots and 
other geochemical studies show. 

Table VA2-1. Input compositional variables included in the four test runs.

Run Chemical elements
Na K Ca Mg HCO3 Cl SO4 Br Li 2H 18O

#1 • • • • • • • • •
#2 • • • • • • • • • • •
#3 • • • • • •
#4 • • • • •
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Results and discussion
Figure VA2-1 shows the coverage of each test run. In the first test runs (nine, eleven, and six 
compositional variables respectively) the number of samples inside the mixing polyhedron is 
high and very similar (between 98.3 and 98.7%) meaning that the choice of end-members is 
indeed correct. However, in run #4, where only conservative elements have been used as input 
compositional variables, the coverage is very low: only 5.5% of the samples are inside the 
mixing polyhedron. 

This points to a poor selection of end-members in this case, obviously due to the elimination 
from the input variables of a highly discriminating one. A three-dimensional plot of the samples 
in Run #4 (with the first principal component as x-axis, the second principal component as 
y-axis, and the third principal component as the z-axis) shows that the low coverage is due to 
the co-planarity of the four end-members, thus forming a highly deformed mixing tetrahedron 
of very low volume, with most samples outside it. This could be an indication that not all the 
end-members are really “independent” when using only conservative elements and that one of 
them should be disregarded or substituted by another one (this line or reasoning will be pursued 
in Test Case VC1, where the reader is referred to for details). But it can also be that the selected 
elements do not behave as perfectly conservative and that the small variance in the third principal 
component	(from	−0.05	to	+0.05,	ten	times	smaller	that	the	variance	associated	to	the	second	
principal component) is only due to the effect of reactions (the effect of reactions is further 
assessed in Test Case VB2 and specially in Test Case VD1).

Figure VA2-1. Coverage plot of the 4-end-member combination Brine (−1) + Glacial (−2) + Littorina 
(−3) + DGW (−4) for the subset of 230 samples. Upper left panel: 98.7% coverage, nine input compo-
sitional variables (Na, K, Ca, Mg, HCO3, Cl, SO4, 2H, and 18O). Upper right panel: 98.3% coverage, 
eleven input compositional variables (Na, K, Ca, Mg, HCO3, Cl, SO4, Br, Li, 2H, and 18O). Lower left 
panel: 98.7% coverage, six compositional variables (Ca, Mg, HCO3, Cl, SO4, and 18O). Lower right 
panel: 5.5% coverage, only conservative elements (Cl, Br, Li, 2H, and 18O).
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To appreciate the influence of the change in the number of input compositional variables in 
the mixing proportions, Table VA2-2 collates the results for the five synthetic samples. The 
row highlighted in yellow gives the true mixing proportions and the other rows the mixing 
proportions computed by M3 in each of the four runs. The main thing that the table transmits 
is the similarity between all mixing proportions, even in Run #4 for the three samples inside 
the mixing polyhedron. This is good news because it is a very strong indication of the stability 
of the mixing proportions against a change in the number of input compositional variables. 
Some differences are noticeable though, mainly for Sample #1 (near the centre of the mixing 
polyhedron) and Sample #4 (mainly a binary mixture of Littorina and DGW). 

Table VA2-2. Computed mixing proportions (%) of the 5 synthetic samples in the four M3 
runs with different number of input compositional variables.

Synthetic Sample Mixing proportions (%)
Brine Glacial Littorina DGW

#1 True 20.0 30.0 20.0 30.0
Run #1 19.1 28.7 19.6 32.6
Run #2 19.4 28.7 19.5 32.4
Run #3 19.2 29.1 16.8 34.9
Run #4 ----(*) ---- ---- ----

#2 True 80.0 10.0 0.0 10.0
Run #1 80.0 10.0 0.0 10.0
Run #2 80.0 10.0 0.0 10.0
Run #3 80.0 10.0 0.0 10.0
Run #4 80.0 10.0 0.0 10.0

#3 True 10.0 60.0 0.0 30.0
Run #1 10.0 60.0 0.0 30.0
Run #2 10.0 60.0 0.0 30.0
Run #3 10.0 60.0 0.0 30.0
Run #4 10.0 60.0 0.0 30.0

#4 True 5.0 5.0 50.0 40.0
Run #1 2.8 1.8 48.9 46.5
Run #2 3.6 1.7 48.7 46.0
Run #3 2.9 2.9 52.2 42.0
Run #4 ---- ---- ---- ----

#5 True 5.0 0.0 0.0 95.0
Run #1 5.0 0.0 0.0 95.0
Run #2 5.0 0.0 0.0 95.0
Run #3 5.0 0.0 0.0 95.0
Run #4 5.0 0.0 0.0 95.0

(*) ----: outside the mixing polyhedron.

Figure VA2-2. 3D PC plot of Run #4 (only conservative elements) showing that the almost co-planarity 
of the four end-members is the cause of the low coverage (only 5.5% of the samples are inside the 
deformed tetrahedron whose vertices are the end-members Brine, Glacial, Littorina and DGW.
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Variations in the computed mixing proportions for Sample #1 are nevertheless small in all cases 
(except for Run #4, where a mixing proportion cannot be computed), below 5%. For Sample #4 
variations are bigger (6.5% in absolute terms for the DGW end-member, and 66% in relative 
terms for the Glacial end-member). But on average, the computed mixing proportions can be 
considered highly stable.

As for the real water samples, Figure VA2-3 and VA2-4 show in a graphic format the differences 
in the computed mixing proportions for the first three runs. Open black circles are for Run #1 
(nine input compositional variables), open red circles are for Run #2 (eleven input compositional 
variables), and filled blue circles are for Run #3 (six compositional variables). The horizontal axis 
is the sample’s index (a number from 1 to 230), and the vertical axis is the mixing proportion  
(on a 0 to 1 scale). 

Each sample is thus represented by three circles (one black, one red, and one blue) over the 
same vertical line. If the circles for a sample are one inside the other, it means that the three runs 
give the same mixing proportion for that end-member. If the circles are vertically separated, it 
means that the computed mixing proportions are different, more so the greater the distance.

In general the correspondence between runs is quite good, with differences lower than 5% for 
most samples. It is difficult, however, to quantify all the discrepancies just by looking at these 
plots, whose main purpose is to visually appreciate the major differences. For that purpose, 
Figure VA2-4 gives, for the Glacial end-member, the deviation between the mixing proportion 
of each sample in Runs #1 and 2 (left panel) and Runs #1 and 3 (right panel). The average 
deviation between Runs #1 and 2 is only 0.2% and between Runs #1 and 3 is 3.9%. Maximum 
deviations are of the order of 0.9% and 12% for Runs #1–2 and Runs #1–3, respectively. The 
deviation is computed as the square root of the squared difference in mixing proportions between 
the two runs under comparison (see the equation in Test Case VA1). This deviation is computed 
in a sample basis.

Figure VA2-3. Mixing proportions in runs #1, 2 and 3. The horizontal axis is the sample index, a correla-
tive value from 1 to 230; the vertical axis is the mixing proportion (on a 0–1 scale) of the corresponding 
end-member (upper left: Brine; upper right: Glacial; lower left: Littorina; lower right: DGW).
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Conclusions
Test Case VA2 has shown several key aspects of M3 behaviour: (1) computed mixing pro-
portions are relatively stable under a change of the number of input compositional variables, 
although a proper choice of the input compositional variables (a trade-off between total number 
of variables and number of conservative ones) is always helpful; (2) this stability is to a certain 
extent independent of the coverage, i.e. even for a low-coverage test run, the computed mixing 
proportions, when a sample is inside the mixing polyhedron, are stable; and (3) this stability is 
not absolute and can deteriorate if the selected input compositional variables make some of the 
end-members redundant or are highly correlated with another one (this correlation is not just a 
function of the choice of the compositional variables, but also depends upon the relationships 
between the chosen end-member waters). 

Figure VA2-4. Deviation between the mixing proportion of each sample in Runs #1 and 2 (left panel) 
and Runs #1 and 3 (right panel). The average deviation between Runs #1 and 2 is 0.2% and between 
Runs #1 and 3 is 3.9%.
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Test Case VA3: Dependence of mixing proportions on the 
inclusion/exclusion of end-members from the PCA
Introduction
A question was raised in Report 1 (Section 3.2.1) regarding the convenience of including the 
end-members in the dataset prior to calculating the PC coordinates of the samples.

There it was stated that the inclusion of the end-members in the PC analysis could introduce a 
bias if (1) the end-members have a chemical composition radically different from the waters in 
the dataset; (2) there are very few water samples in the dataset; or (3) the statistical uncertain-
ties affecting the samples of the dataset and of the end-members are different. Here we will 
answer this question performing the PCA without the end-members and then compute the PC 
coordinates of the end-members (PC scores) by means of the eigenvectors. We will compare 
the mixing proportions of the samples so computed with the mixing proportions calculated in 
the “usual way”, i.e. doing the PCA with both the samples and the end-members. This would 
allow us to assess the impact of the inclusion/exclusion of the end-members in the computed 
mixing proportions.

The test
The same dataset of 324 groundwater samples used in the two previous Test Cases is again 
used here in which 5 synthetic control samples with known mixing proportions have been 
inserted. Table VA1-1 gives the composition of the end-members and Tables VA1-2 and VA1-3 
the mixing proportions and composition of the five synthetic samples.

Two input files were created: one with the samples and the end-members and another only 
with the samples. The PCA was performed with the two input files and the PC coordinates, 
eigenvalues and eigenvectors saved to separate files. Once the eigenvectors of the run without 
end-members are known, the PC co-ordinates (i.e. the principal components scores, in the 
jargon) of the mixing end-members are computed by

T T T′=Z W X  

where WT is the transpose of the matrix with the eigenvectors in the columns so that the eigen-
vectors are now in the rows, with the most significant eigenvector at the top (i.e. that eigenvector 
linked to the biggest eigenvalue), and X′T is the transpose of the normalised end-member composi-
tion matrix, i.e. end-members are in each column, with each row holding a separate compositional 
variable. The PC co-ordinates are in matrix Z, with end-members in rows and compositional 
variables in columns (of course, ZT has compositional variables in rows and end-members in 
columns). Because W is an n×p matrix and X′	a	p×n matrix (where n is the number of composi-
tional variables, and p the number of end-members), Z is a square p×p matrix.

The PC-scores of the end-members computed this way are then appended to the M3 output 
file containing the PC-scores of the water samples (as computed by M3 in the run without 
end-members) and can be compared with the PC-scores of the run with end-members. Again, 
the n-pc mixing routine has been used for the calculation of mixing proportions.

Results and discussion
Figure VA3-1 shows the distance (in PCA space) of each sample from the four end-members, 
both in the run with end-members included in the PCA (red filled squares) and without them 
(blue open squares). As mixing proportions are proportional to such distances, a close corre-
spondence between distances with and without end-members means a close correspondence 
in mixing proportions. The four plots show an almost perfect match in distances, which is 
equivalent to an almost perfect match in mixing proportions. 
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In a more quantitative way, we can compute the mean relative deviation between distances in 
the runs with and without end-members (averaged over the 323 water samples), according to 
the equation

2 2 2 2Br Br' Gl Gl' Lit Lit' DGW DGW'StDev
Br Gl Lit DGW
− − − −       = + + +              

, (VA3-1)

where Br is the distance between a sample and the Br end-member in the M3 run with the end-
member included in the PCA, and Br’ the distance between a sample and the Br end-member 
in the M3 run without the end-members. Figure VA3-2 plots this relative distance difference 
for all the samples in the dataset (excluding the end-members themselves). It can be observed 
that most samples have a relative distance deviation of less than 0.05 (5%). The mean deviation 
for the whole dataset is 0.025 (2.5%). The samples with the highest relative distance difference 
corresponds to those very close to a particular end-member water (where a small change in 
absolute distance translates into a big change is relative distance) 

Figure VA3-1. Distance of each sample in the dataset from the four end-members. Blue open squares 
are for a PCA without the end-members and red filled squares for a PCA with the end-members. As 
mixing proportions are proportional to such distances, a close correspondence between distances with 
and without end-members means a close correspondence in mixing proportions.
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Figure VA3-2. Relative distance difference from the end-members for each sample in the dataset, 
excluded the end-members. The deviation has been calculated with Eq. (VA3-1). The green horizontal 
line marks the mean deviation for the whole dataset (2.5%).
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Conclusions
This Test Case has demonstrated that the arguments put forward in Report 1 (Section 3.2.1) 
regarding the suitability of including the end-members as part of the input dataset are correct, 
provided the three limitations commented on there (similar composition of end-members and 
water samples; a big enough dataset; and similar uncertainties for end-members and samples) 
are fulfilled.
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Test Case VB1: Propagation of end-member composition 
uncertainties into mixing proportions (validation of the  
End-member Variability Module, part 1)
Introduction
As already commented on in verification Test Case E2, the End-member Variability Module (EVM) 
is a complex routine implemented in M3 v3.0 to assess the impact of the compositional variability 
of water end-members on the calculated mixing proportions. Verification Test Cases E2 and E3 
have demonstrated, by means of synthetic samples, the correct construction of the input prob-
ability distributions by the EVM. These distributions are the translation of the compositional 
variability of the end-members into proper probability distributions, defined in terms of their 
moments (see Report 1, Section 4.2). 

This test will assess, for a real dataset, how the compositional variability of the end-members 
propagates into the computed mixing proportions.

The test
As before, the same dataset of 324 groundwater samples with 5 additional synthetic samples 
is used here. These synthetic control samples have known mixing proportions and serve to 
check both the precision and the accuracy of the calculation. The rest of the samples will check 
the precision (not the accuracy) of the calculation, because the “true” mixing proportions are 
unknown. Tables VA1-2 and VA1-3 give the mixing proportions and composition of the five 
synthetic samples.

In science, engineering, and statistics, accuracy is defined as the closeness of the agreement 
between the result of a measurement and a true value of the measurand /Ellison et al. 2000/. 
Accuracy is closely related to precision, also called reproducibility or repeatability, the closeness 
of agreement between independent test results obtained under stipulated conditions /Ellison et al. 
2000/. Precision is related to the standard deviation (or any other measure of the dispersion) 
of a random variable, and accuracy is related to the difference between its “true” value and 
the calculated one, as Figure VB1-1 shows graphically.

For this Test Case the composition of the end-members listed in Table VA1-1 were modified by 
an amount of ±5%. For example, the concentration of Na in the Brine end-member, as listed in 
Table VA1-1, is 8,030 mg/L. So, 8,030×0.05 = ±401.5 mg/L is the range of variation of Na in 
Brine,	from	a	lower	bound	of	8,030−401.5	=	7,628.5	mg/L,	to	an	upper	bound	of	8,030+401.5	
= 8,431.5 mg/L. These are the ranges collected in Table VB1-1 for each end-member and each 
compositional variable.

Figure VB1-1. Concepts of precision and accuracy as applied to a measured or computed random 
variable with a known probability distribution function (from the article “Accuracy and precision”, 
Wikipedia, The Free Encyclopedia, 21 Nov 2006, Wikimedia Foundation, Inc. 28 Nov 2006,  
<http://en.wikipedia.org/w/index.php?title= Accuracy_and_precision&oldid=89319755>.
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Table VB1-1. Compositional range of end-members; variability is ±5% with respect to  
end-member compositions used in Test Case VA1 (Table VA1-1).

Range Na K Ca Mg HCO3 Cl SO4 D O18

Brine Min 7,628.5 27.55 17,670 2.565 8.55 43,225 790.4 –45.03 –8.455
Brine Max 8,431.5 30.45 19,530 2.835 9.45 47,775 873.6 –49.77 –9.345

Glacial Min 0.1615 0.38 0.171 0.095 0.114 0.475 0.475 –150.1 –19.95
Glacial Max 0.1785 0.42 0.189 0.105 0.126 0.525 0.525 –165.9 –22.05

Littorina Min 3,490.3 127.3 143.45 425.6 88.35 6,175 845.5 –36.1 –4.465
Littorina Max 3,857.7 140.7 158.55 470.4 97.65 6,825 934.5 –39.9 –4.935

DGW Min 216.6 3.8 25.65 3.8 354.35 116.85 112.1 –65.265 –9.31
DGW Max 239.4 4.2 28.35 4.2 391.65 129.15 123.9 –72.135 –10.29

As explained in detail in Report 1, Section 4.2.2, this range is equated to the 1st and 99th percentiles 
of the chosen probability function, which means that M3 allows for end-member compositions  
outside the reported range with a probability of 1%. The major ions are modelled with a log-
normal probability distribution and the isotopes with a normal probability distribution. From the 
ranges so defined the mean and standard deviation of each compositional variable can be calcu-
lated. Then, the EVM randomly samples these distributions in order to compute, in each run, a 
different composition of the end-members with which the mixing proportions of the samples in the 
dataset are calculated (the reader is referred to Section 4.2.2 in Report 1 for further details; for 
the calculation of mixing proportions, the n-pc mixing routine has been used). 

Figure VB1-2 is a PC plot of 5,000 runs of the EVM. Each end-member is thus represented by 
5,000 coloured points (cyan for Brine, red for Glacial, green for Littorina, and blue for DGW), 
and each samples (black dots) is also represented by 5,000 points, one per run.

Figure VB1-2. EVM window showing the PC-plot of 5,000 runs using the end-member ranges listed in 
Table VB1-1. The dataset consists of 324 real groundwater samples and 5 synthetic samples of known 
mixing proportions. 
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Results and discussion
The EVM gives as results the input probabilities for the composition of the end-members, 
the output probabilities for the mixing proportions of the samples and the deviation of each 
sample from its true composition. In this Test Case the output probabilities will be analysed, 
while deviations from the real composition (mass balance) will be dealt with in Test Case VB2.

Before analysing the output probabilities let us have a look at the input probabilities. Figure VB1-3 
shows the input probabilities for two of the nine input compositional variables: the major cation 
Na and the isotope oxygen-18, to visually grasp the meaning of the ±5% range in the composition 
of the end-members (Table VB1-1). 

Note that this ±5% variation translates into a dispersion that grows with the mean concentration 
value (for major ions) or mean delta value (for the isotopes), giving standard deviations ranging 
from 0.00197 mg/L for Mg in the Glacial end-member to 875.7 mg/L for Cl in the Brine end-
member. For comparison (Figure VB1-3), Na in the Brine end-member has a standard deviation 
of 156 mg/L, Na in Littorina 70.3 mg/L, Na in DGW 4.35 mg/L, and Na in Glacial 0.0033 mg/L. 
The question is: How is this variability propagated into the final mixing proportions?

Figures VB1-4 and VB1-5 give a first idea of the impact of the compositional variability of 
the end-members on the mixing proportions. Synthetic sample #1 is a mixture in roughly equal 
proportion of the four end-members, but it is immediately obvious from the figure that the calcu-
lated mixing proportions have different precision. Figure VB1-5 for sample #3 confirms this point. 
Two qualitative conclusions can be drawn from both figures: (1) the output probabilities are in 
all cases tightly concentrated around a mean value; and (2) the propagation of the end-member 
compositional uncertainty into the computed mixing proportions is not linear, both between 
samples and between end-members of the same sample.

Table VB1-2 further confirms these two qualitative conclusions. The table gives, for each 
synthetic sample, the mean value of the computed mixing proportion, the standard deviation 
and the range. The range is defined as the deviation (in mixing percentage) that corresponds to 
the 1st and 99th percentiles of the log-normal distribution by which the output probabilities have 
been approximated. The 1st	percentile	is	at	a	distance	of	−2.576	standard	deviations	from	the	
mean (in log-transformed coordinates) and the 99th percentile at a distance of +2.576 standard 
deviations from the mean (in log-transformed coordinates). 

Figure VB1-3. Input probabilities. Normalized histograms of the concentration of Na (left, in mg/L) and 
oxygen-18 (right, in per mil deviation) in the four end-members Brine, Glacial, Littorina, and DGW. The 
histograms have been constructed from 5,000 runs of the EVM using the ranges listed in Table VB1-1.
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Figure VB1-4. Output probabilities. Normalized histograms of the mixing proportions of Brine (top left), 
Glacial (top right), Littorina (bottom left), and DGW (bottom right) in sample #1. Minimum range is 
±0.72% for Littorina end-member and maximum range is ±4% for Glacial end-member. The histograms 
have been constructed from 5,000 runs of the EVM using the input ranges listed in Table VB1-1.

Sample #1 (Br=20%, Gl=30%, Litt=20%, DGW=30%)

Brine end-member Glacial end-member

Littorina end-member DGW end-member
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Figure VB1-5. Output probabilities of synthetic sample #3. Normalized histograms of the mixing 
proportion of Brine (top left), Glacial (top right), Littorina (bottom left), and DGW (bottom right). 
Minimum range is +0.22/−0.23% for Littorina end-member and maximum range is ±6.9% for Glacial 
end-member. The histograms have been constructed from 5,000 runs of the EVM using the input ranges 
listed in Table VB1-1.

Sample #3 (Br=10%, Gl=60%, Litt=0%, DGW=30%)

Brine end-member Glacial end-member

Littorina end-member DGW end-member
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Except for mixing proportions close to zero (i.e. Littorina mixing proportion in Samples #2, 3 
and 5), the log-normal distribution is almost symmetrical and indistinguishable from a normal 
distribution,	and	that	is	why	the	+	and	−	ranges	in	Table	VB1-2,	once	the	log-transformation	is	
undone, are equal in most cases. Ranges smaller than ±1% are written in blue in Table VB1-2 
and those greater than ±5% are in red. Only two cases have a range which is greater than the 
input variability of ±5%. This is good news and points to a stable behaviour of the EVM when 
computing mixing proportions in the presence of an initial uncertainty in the composition of 
the end-members.

Once the precision of the calculated mixing proportions has been demonstrated, the second 
important check is the accuracy of the calculated mixing proportions, i.e. how close are the true 
and computed values of the mixing proportions? Table VB1-3 shows the results for the five 
synthetic samples. For each end-member the table gives the true mean, the calculated mean, 
and the absolute and relative difference between the true and the calculated mean. As mixing 
proportions are percentages, all the values in the table are also percentages. Maximum absolute 
differences are of 7.7% but they tend to be lower than 1% (in blue in Table VB1-3). Only one 
value is above 5% (in red in the table). Recall that the input end-member uncertainty is ±5% 
for each compositional variable.

The last row entry in Table VB1-3 is the relative difference between the true and the computed 
mixing proportion. A relative difference has the true mean in the denominator and that is why 
some values are missing in the table. Maximum relative differences are of 93% but most are 
below ±10%. 

And what about the mixing proportions of the real samples in the dataset? We cannot be sure 
of the accuracy of the computed mixing proportions as the true ones are not known. However, 
due to the fact that the coverage is very high (97%; see figure VA1-1 in Test Case VA1) and that 
for the synthetic samples the average mixing proportion is always close (or very close) to the 
true one, it is reasonable to assume that the computed mixing proportions for the real samples 
are also close to the true (and unknown) value. As for the precision, Figure VB1-6 shows the 
output histograms for sample #702, which has mixing proportions similar to those of synthetic 
samples #3 (see Figure VB1-5). The mean mixing proportions of the 5,000 EVM runs are: 5.4% 
of Brine, 56.7% of Glacial, 1.9% of Littorina, and 36.0% of DGW (to be compared with 10% 

Table VB1-2. Computed mixing proportions (mean, standard deviation, and range) for 
the five synthetic samples. Blue: ranges lower than ±1%; red: ranges greater that ±5%).

End-member Statistics Sample #1 Sample #2 Sample #3 Sample #4 Sample #5
Brine Mean 19.2 79.9 9.3 3.7 5.2

StDev +0.30 
−0.30

+0.71 
−0.71

+0.33 
−0.33

+0.38 
−0.38

+0.27 
−0.27

Range +0.78 
−0.78

+1.84 
−1.84

+0.86 
−0.86

+0.98 
−0.98

+0.69 
−0.69

Glacial Mean 29.3 10.5 63.9 0.33 0.26

StDev +1.57 
−1.57

+0.90 
−0.90

+2.68 
−2.68

+0.19 
−0.29

+0.13 
−0.24

Range +4.0 
−4.0

+2.3 
−2.3

+6.9 
−6.9

+0.49 
−0.75

+0.33 
−0.61

Littorina Mean 19.6 0.09 0.21 48.3 0.01

StDev +0.28 
−0.28

+0.06 
−0.07

+0.09 
−0.09

+0.85 
−0.85

+0.004 
−0.009

Range +0.72 
−0.72

+0.16 
−0.19

+0.22 
−0.23

+2.2 
−2.2

+0.01 
−0.02

DGW Mean 31.9 9.5 26.5 47.7 94.5

StDev +1.45 
−1.45

+1.09 
−1.09

+2.44 
−2.44

+1.06 
−1.06

+0.61 
−0.61

Range +3.7 
−3.7

+2.8 
−2.8

+6.3 
−6.3

+2.7 
−2.7

+1.6 
−1.6
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Table VB1-3. Accuracy in the estimation of the true mixing proportion for the five  
synthetic samples.

End-member Statistics Sample #1 Sample #2 Sample #3 Sample #4 Sample #5

Brine True mean 20 80 10 5 5
Mean 19.2 79.9 9.3 3.7 5.2
Abs Dev 0.77 0.05 0.66 1.33 0.21
Rel Dev 3.87 0.06 6.64 26.60 –4.24

Glacial True mean 30 10 60 5 0
Mean 29.3 10.5 63.9 0.33 0.26
Abs Dev 0.67 0.46 3.93 4.67 0.26
Rel Dev 2.22 –4.58 –6.55 93.43 –

Littorina True mean 20 0 0 50 0
Mean 19.6 0.09 0.21 48.3 0.01
Abs Dev 0.42 0.09 0.21 1.73 0.01
Rel Dev 2.11 – – 3.47 –

DGW True mean 30 10 30 40 95
Mean 31.9 9.5 26.5 47.7 94.5
Abs Dev 1.86 0.50 3.47 7.73 0.48
Rel Dev –6.21 5.05 11.57 –19.34 0.50

Figure VB1-6. Output probabilities for real water sample #702. Normalized histograms of the mixing 
proportion of Brine (top left), Glacial (top right), Littorina (bottom left), and DGW (bottom right). The 
histograms have been constructed from 5,000 runs of the EVM using the input ranges listed in Table VB1-1.

Sample #702 (Br=5.4%, Gl=56.7%, Litt=1.9%, DGW=36.0%)

Brine end-member Glacial end-member

Littorina end-member DGW end-member



82

Figure VB1-7. Location in PC space of synthetic sample #3 (red asterisk) and real water sample #702 
(blue asterisk).

Brine, 60% Glacial, 0% Littorina, and 30% DGW of synthetic samples #3). Figure VB1-7 plots 
the position of both samples in a PC plot (first principal component in the horizontal axis, and 
second principal component in the vertical axis). The red asterisk is synthetic sample #3 and 
the blue asterisk is real water sample #702. 

A visual comparison of Figures VB1-5 and VB1-6 shows that the precision with which the 
mixing proportions are calculated for both samples are very similar, with Brine and Littorina 
recovered with high precision (the standard deviation is 0.3% for Brine and 0.09% for Littorina),  
and Glacial and DGW with less but good precision (2.4% and 2.2% standard deviation, respectively). 
Similar results were obtained comparing the other three synthetic samples with comparable real 
samples from the Laxemar groundwater system in Sweden.

Conclusions
Test Case VB1 has dealt with the propagation of end-member compositional uncertainties into 
the computed mixing proportions using a real groundwater set where 5 synthetic samples were 
included. The test has demonstrated that the End-member Variability Module is able to compute 
with reasonable precision and accuracy the mixing proportions of known synthetic samples, and 
also with good precision the mixing proportions of real groundwater samples. Real samples that 
plot close to synthetic samples in a PC plot have similar mixing proportions and the precision 
with which these mixing proportions are computed is also similar, strengthening the confidence 
in the computed (and unknown by definition) mixing proportions of the real samples.
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Test Case VB2: Propagation of end-member composition 
uncertainties into mass balance deviations (validation of 
the End-member Variability Module, part 2)
Introduction
After calculating the mixing proportions, any deviation between the computed and the true 
compositions of a sample in the dataset would be interpreted in the end (not by M3, but by the 
user of M3) as a source (positive deviation) or a sink (negative deviation) for the corresponding 
element; in other words, as a chemical reaction involving one or several elements. It is therefore 
of utmost importance to assess the impact of an imposed compositional variability of the end-
members on the deviations between computed and true sample compositions. 

The test
As in Test Case VB1, the same dataset of 324 groundwater samples with 5 additional synthetic 
samples is used here. The focus is not in the mixing proportions but on the difference between 
the true and computed chemical composition of each sample, in order to assess the uncertainty 
in the mass balance deviations. The true composition of the 5 synthetic samples is given in 
Table VB2-1 and their position on the PC plot in Figure VB2-1.

For this Test Case the compositional range of the end-members is the same as for the previous 
Test Case, and is given in Table VB1-1. From these ranges the EVM (Report 1, Section 4.2.2) 
randomly samples the input probability distributions in order to compute, in each run, a different 
composition of the end-members with which the mixing proportions of the samples in the data-
set are calculated using the n-pc mixing routine. 5,000 different end-member compositions are 

Figure VB2-1. Location of the five synthetic samples in the PC plot: sample #1 (red), sample #2 (blue), 
sample #3 (green), sample #4 (yellow), and sample #5 (cyan).

Table VB2-1. Composition of the 5 synthetic samples and real samples #702  
(mg/l for ions, and permil deviation for isotopes).

Sample Na K Ca Mg HCO3 Cl SO4 D O18

#1 2,310.45 37.92 3,758.55 77.77 142.94 10,357.05 307.35 –84.49 –12.02
#2 6,446.82 23.64 14,882.72 2.57 44.51 36,412.35 677.45 –60.59 –10.20
#3 871.50 4.34 1,868.21 1.53 112.87 4,587.20 118.90 –120.15 –16.43
#4 2,082.71 80.07 1,016.81 191.74 222.66 5,374.22 352.32 –55.25 –7.92
#5 618.1 5.25 955.65 3.93 354.80 2,391.80 153.70 –67.63 –9.76
#702 691.0 3.19 234.0 6.9 51.40 1,480.0 104.00 –112.9 –15.10
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randomly selected and, therefore, 5,000 different compositions for each sample are computed. 
Then, the deviation between the true and computed concentration of each input compositional 
variable is calculated and a frequency histogram of deviations constructed. 

Two different sets of simulations have been done: one with the four end-members listed in 
Table VB2-1 (Brine, Glacial, Littorina and DGW) and 9 input compositional variables (Na, K, Ca, 
Mg, HCO3, Cl, SO4, 2H, 18O)6; and another with 3 end-members (Brine, Glacial and DGW) and 
5 input compositional variables, all of them with a conservative behaviour (Cl, Br, Li, 2H, 18O)7.

Results and discussion
Figures VB2-2 to 5 summarise the results of Test Case VB2. Figures VB2-2 and VB2-3 show 
the deviation, for conservative elements Cl and 18O, between the true and the computed chemical 
composition (positive deviations mean less concentration in the computed composition) in the 
five synthetic samples (synthetic sample #4 has not been plotted because its behaviour is very 
similar to sample #3). The histograms on the left are for simulations with 4 end-members and 
9 input compositional variables and those on the right for simulations with 3 end-members 
and 5 conservative input compostional variables. Two observations are worth pointing out:

1. Deviations are smaller for simulations carried out with only conservative elements; for 
example,	Cl	deviations	for	sample#3	go	from	−200	to	800	mg/L	in	simulations	with	9	input	
compositional	variables,	and	from	−100	to	400	mg/L	in	simulations	with	5	conservative	
input compositional variables (Figure VB2-2).

2. The histograms (actually, probability distributions) are not always centred at zero, although 
zero is always inside the 95% confidence interval of each probability distribution. This 
reflects the fact that the assumed range in end-member compositions is not centred with 
respect to the optimal composition (i.e. a bias is introduced). How should these deviation  
histograms for the control synthetic samples be interpreted? They give the range of deviations 
that should not be explained as mass transfers due to reactions because they only reflect the 
uncertainty in the knowledge of the end-members (both in number and in composition). For 
example,	if	Cl	has	a	range	of	deviations	from	−100	to	+400	mg/L	for	samples	plotting	near	
synthetic sample #3 (see Figure VB1-7), that means that any Cl deviation inside this range 
is reflecting “natural” variations in composition due to changes in the composition of the 
end-members. Only deviations outside the range suggested by the synthetic samples should 
be interpreted (and only in principle) as a consequence of chemical reactions.

This last point is further explored in Figures VB2-4 and VB2-5, where a comparison is made 
between deviations for a real and a control synthetic sample. Real sample #702 plots in a PC 
plot near synthetic sample #3, as Figure VB1-7 shows.

Figure VB2-4 demonstrates that for a conservative element like 18O deviations are similar for the 
true and the control synthetic sample, suggesting that it is the accuracy rather than the precision 
that is affected (histograms on the left are for the real sample and those on the right for the syn-
thetic one), but narrower and best zero-centred for simulations carried out with only conservative 
elements (upper histograms). For the simulations performed with all nine input compositional 
variables 18O deviations are larger for the real samples and also more off-centre (note that zero 
is not even included in the histogram, although only deviations larger that 1 per mil are not inside 
the corresponding range for the control synthetic sample). This is certainly due to the distortion 
that the non-conservative elements introduce in the PCA, a point which is further investigated 
in Test Cases VD1 and VE1.

6  Conservative and non-conservative elements are included in this list. The implications of this selection 
are explored in this Test Case and also in Test Case VD1. 
7  These elements behave as conservative in the studied groundwater system, as different ion-ion plots and 
other geochemical studies show. 
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Figure VB2-2. Chlorine deviation (mg/L) for synthetic samples #1, 2, 3, and 5 (top to bottom). Left 
histograms: 4 end-members, 9 input compositional variables. Right histograms: 3 end-members, 5 input 
compositional variables (only conservative).
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Figure VB2-3. Oxygen-18 deviation (‰) for synthetic samples #1, 2, 3, and 5 (top to bottom). Left 
histograms: 4 end-members, 9 input compositional variables. Right histograms: 3 end-members,5 input 
compositional variables (only conservative).
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Finally, Figure VB2-5 shows deviations for elements whose behaviour is a priori non-conservative 
because they can participate in chemical reactions (HCO3 and SO4). Upper histograms are for HCO3 
and lower ones for SO4. All histograms have been generated running M3 with 4 end-members and 9 
input compositional variables. It is clear that predicted bicarbonate concentrations in sample 702 
are higher than the true concentration and that the range of deviations is outside what control 
sample #3 predicts (upper right histogram). This behaviour points to an average HCO3 depletion 
of 100 mg/L in the real sample (51 mg/L) with respect to the predicted concentration (150 mg/L), 
which can be interpreted as, for example, calcite precipitation. This is confirmed by an associated 
depletion in Ca (not shown). On the other hand, SO4 seems to behave conservatively in this sample 
(lower histograms) as the deviation range is inside the range reported by control samples #3. 

Figure VB2-4. Oxygen-18 deviation (‰) for real sample 702 (left histograms) and synthetic sample #3 
(right histograms). Upper histograms are for simulations with 3 end-members and 5 conservative 
input compositional variables; lower histograms are for simulations with 4 end-members and 9 input 
compositional variables.

Oxygen-18, sample #702, 3 end-members Oxygen-18, sample #3, 3 end-members

Oxygen-18, sample #702, 4 end-members Oxygen-18, sample #3, 4 end-members
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Conclusions
Due to uncertainties in the number and chemical composition of the end-members in a real ground-
water system, end-members are better described by a range of compositions instead of by a unique 
composition. This uncertainty propagates into the computed chemical composition of each sample 
in the dataset, thus complicating the interpretation of the differences between real and computed 
concentrations in terms of chemical reactions. The inclusion of synthetic samples in a real ground-
water datasets could facilitate this interpretation by providing a range of deviations which should 
not be correlated with mass transfers, but with a natural compositional variability due to a poor 
knowledge of the end-members. Only deviations outside the range reported by the control samples 
should be further investigated in the light of possible chemical reactions.

With respect to simulations carried out only with conservative input compositional variables, 
they seem to narrow the deviation range for conservative elements, thus providing a better 
picture of the system. On the other hand, fewer input compositional variables imply less end-
member resolution. This topic is further investigated in Test Cases VD1 and VE1.

Figure VB2-5. HCO3 (upper histograms) and SO4 (lower histograms) deviation (mg/L) for real sample 702 
(left histograms) and synthetic sample #3 (right histograms). All histograms are for simulations with 
4 end-members and 9 input compositional variables.

HCO3, sample #702, 4 end-members HCO3, sample #3, 4 end-members

SO4, sample #702, 4 end-members SO4, sample #3, 4 end-members
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Test Case VC1: Stability of mixing proportions against changes 
in the number or type of end-members 
Introduction
Test Case VB1and VB2 have dealt with the impact of a slight variation in the composition of the 
(already selected) end-members on the computed mixing proportions (VB1) and mass balance 
(VB2). This test would go a step forward and assess the impact on the computed mixing proportions 
of a change in the number or type of end-members.

It is obvious that there is a smooth transition from a slight variation in the composition of 
an end-member to a “rather big” variation in the composition to a change in the type of end-
member. Think, for example, of smoothly changing the composition of the Brine end-member 
(a saline water; see Table VA1-1) until it is converted into the Littorina end-member (an old 
sea water, Table VA1-1). A slight variation falls in the realm of the End-member Variability 
Module, which has been verified in Test Cases E2 and E3 and validated in Test Cases VB1 and 
VB2. On the contrary, a large variation in the composition has the connotation of changing the 
end-member. This change can maintain the total number of end-members (drop one, add one) 
or else increase or decrease it. The underlying question is: How can one be sure that the actual 
selection of end-members is the correct one? To aid in this difficult task, M3 has a dedicated 
module, the End-member selection Module (ESM), which has been described in Report 1, 
Section 4.1.8 

The ESM accepts as an input a number (<15 for practical purposes) of potential end-members 
and gives as an output the number of samples inside the mixing polyhedron for each combination 
of potential end-members. The “best” combination of end-members is the one that can explain, 
only by mixing, the largest number of samples in the dataset, i.e. the combination that has the 
largest number of samples inside the mixing polyhedron. 

This module can be accessed through the Calculations/End-members/Select End-members menu 
(Figure VC1-1a), clicking on the “Test” button after having selected the potential end-members 
(Figure VC1-1b). Before calculating all possible combinations of end-members, M3 asks for the 
allowance parameter (see Report 1, Section 3.2.4) to know how to treat samples very close to, 
but outside, the walls of the mixing polyhedron (Figure VC1-1c). Once the allowance parameter 
is selected (3% in the example), the coverage of each combination of end-members is computed 
(Figure VC1-1d). 

As is repeatedly warned in Report 1, the ESM should not be treated as an “expert system” to 
decide the best combination of end-members for the chosen dataset. Of course, the final selection 
of end-members will be based also on independent geochemical and hydrochemical arguments 
appropriate to the specific site. Nevertheless, the ESM is a great exploratory aid to evaluate 
different scenarios and is in this way how it should be utilised.

Figure VC1-1d shows the configuration of the coverage window, where all the information 
relevant to each combination of end-member is collected. This window has 3 main parts: (1) the 
sample coverage plot; (2) the sample coverage percentage; and (3) the end-member combination. 
The coverage plot shows in the upper left corner the percentage of samples inside the mixing 
polyhedron (whose 2D projection are the lines connecting the end-members). Samples inside the 
mixing polyhedron are in blue and those outside it are in black. The coverage percentage list is 
on the right hand side of the coverage window. It has two columns of numbers: the left column 
gives the coverage (%) for the 2-PC mixing routine, and the right column gives the coverage for 
the n-PC mixing routine (see Report 1, Sections 3.2.2 and 3.2.3 for details). The end-member 
combination bar at the lower part of the coverage window identifies the combination of end-
members to which the coverage percentage and coverage plot refers to. 

8  A completely different question is whether the end-members are just extreme compositions that bracket 
the compositions in a suite of water samples, or waters that actually mix in the real groundwater system. 
This question can not be addressed only with the aid of M3. 
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The test
Several tests with the Laxemar-Simpevarp area, Sweden, groundwater and near-surface ground-
water dataset already used in Test Cases VA and VB will be carried out. This dataset consists of 
324 water samples and 5 synthetic samples. All tests will be performed with the following nine 
input compositional variables: Na, K, Ca, Mg; HCO3, Cl¸SO4, 2H, and 18O. The base test case, 
to which all the others will be compared to, is the one used in Test Case VA1 with end-members 
Brine, Glacial, Littorina, and Dilute Groundwater (DGW), the composition of which is listed in 
Table VA1-1:

Base Test Case:

•  324 water samples.

•  5 synthetic samples (Table VA1-2 and VA1-3).

•  Nine input compositional variables: Na, K, Ca, Mg; HCO3, Cl¸SO4, 2H, and 18O.

•  Four end-members: Brine, Glacial, Littorina, and DGW (Table VA1-1).

•  Allowance parameter = 0.03

Figure VC1-1. Steps in the calculation of the coverage of each combination of end-members with the 
End-member Selection Module. (a) Access to the Calculations/End-members/Select end-members menu; 
(b) selection of potential end-members before pressing the “Test” button; (c) selection of a value for the 
allowance parameter (3% in the example); (d) coverage plot for each combination of end-members.
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The following changes will be made to the Base Test Case to generate the other tests:
•	 Change	of	the	allowance	parameter	(Test	VC1a).	Values	between	0	and	0.1	will	be	tested.
•	 Substitution	of	end-member	DGW	by	end-member	Rain	(Test	VC1b)	→	number	of	end-

members is kept constant (4 end-members: Br + Gl + Litt + Rain).
•	 Substitution	of	end-member	Laxemar-Brine	(high	SO4) for end-member Olkiluoto-Brine 

(low SO4)	(Test	VC1b’)	→	number	of	end-members	is	kept	constant	(4	end-members:	
Br-low + Gl + Litt + DGW) . 

•	 Addition	of	end-member	Sea	Sediment	(Test	VC1c)	→	number	of	end-members	increased	
from 4 to 5 (Br + Gl + Litt + DGW + SeaSed).

•	 Elimination	of	end-member	Littorina	(Test	VC1d)	→	number	of	end-members	is	reduced	
from 4 to 3 (Br + Gl + DGW). 

All the above changes imply the use of a total of 7 different end-members, whose chemical 
composition is collated in Table VC1-1. The n-pc mixing routine has been used to compute the 
mixing proportions.

Results and discussion
Test Case VC1a (Change of the allowance parameter). When performing a mixing calculation 
(for which purpose a set of end-members has been previously selected), some of the samples in 
the dataset could fall outside the mixing hyper-polyhedron, meaning that they cannot be explained 
by pure mixing of the chosen end-members. From this set of ”outsiders”, some samples will fall 
far from the ”walls” of the mixing hyper-polyhedron as they simply cannot be constructed as a 
mixture of the selected end-members, but others will fall just outside the hyper-polyhedron, very 
close to one or more of its walls. These samples strictly can not be explained only by mixing, 
but the reason in this case is almost certainly due to uncertainties in the composition of the end-
members or the samples. In this case it is not unreasonable to “move” these samples to the 
nearest hyper-polyhedron wall and include them in the mixing calculations. 

This procedure is implemented in M3 through the Allowance Parameter. As its name suggests, 
it allows for samples near the mixing hyper-polyhedron (but outside it) to be moved to the nearest 
wall. So, setting the allowance parameter to, say, 0.03, would move to the nearest wall all the 
samples whose distance to the wall is less than 3% in terms of mixing proportions. 

The behaviour shown in Figure VC1-2 is typical for the change in coverage with respect to the 
allowance parameter for a dataset with properly selected end-members: a fast increase in coverage 
at the beginning (for low values of the allowance parameter), followed by a slower increase when 
the allowance parameter is bigger. As the figure shows, an allowance parameter between 0.02 and 
0.03 (i.e. 2–3% in terms of mixing proportions) is enough to increase the coverage from 81% to 
96% (i.e. to decrease from 61 to 11 the number of samples outside the mixing polyhedron).

Table VC1-1. Composition of all the end-members used in Test Case VC1.

End-member Na  
(mg/l)

K 
(mg/l)

Ca  
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

D 
(dev)

O18 
(dev)

Brine1) 8,030 29 18,600 2.7 9 45,500 832 –47.4 8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 –21
Littorina 3,674 134 151 448 93 6,500 890 –38 –4.7
DGW2) 228 4.0 27.00 4.0 373.0 123.00 118.0 –68.70 –9.8
Brine-low3) 9,540 28 18,000 130 8.2 45,200 8.4 –49.5 –9.3
Sea Sedim 2,144 91.8 103 258 793 3,383 53.1 –61 –7
Rain 0.4 0.29 0.24 0.1 12.2 0.23 1.4 –70 –10

1) Brine: sample #2731, borehole KLX02, 1,560 m depth, Laxemar-Simpevarp area. 
2) DGW: sample from shallow borehole HAS05, 72 m depth, Äspö area.  

3) Brine-low: sample KRA/860/2 from Olkiluoto, Finland.
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Test Case VC1b (Substitution of DGW end-member for Rain end-member). End-members 
DGW and Rain are both very dilute waters, for which the greatest difference is the isotopes 
content (deuterium and oxygen-18). As Figure VC1-3 shows, the end-member combination 
Br+Gl+Litt+Rain explains only 44.7% of the samples in the dataset, whereas combination 
Br+Gl+Litt+DGW explains 98.7% of the samples. This is a good indication that the combination 
of end-members in the Base Case is better than the combination Br+Gl+Litt+Rain. Most of the 
samples outside the mixing polyhedron are shallow groundwaters (between 0 and 50 m depth) 
mainly composed of meteoric water modified by interaction with the overburden. As the upper 
panels in Figure VC1-3 show, the position of end-member DGW (labelled –4 in the upper left 
panel) is more extreme than the position of end-member Rain (labelled –4 in upper right panel), 
and this is why DGW is able to explain more samples than end-member Rain. This is also a 
good indication that shallow groundwaters have more in common (from a mixing point of view) 
with an altered meteoric end-member (i.e. what is called here DGW) than with a pure meteoric 
one (what is called here Rain).

As for the mixing proportions of the three common end-members Br, Gl, and Litt (Table VC1-2), 
they are quite similar in both runs, although mixing proportions in the Base Case are closer to 
the true ones. The two synthetic samples with a greater proportion of the DGW end-member 
(samples #4 and #5) are outside the mixing polyhedron in the run with end-members Br + Gl 
+ Litt + Rain, suggesting again that this combination of end-members is not as good as the one 
chosen for the Base Case.

Test Case VC1b’ (Substitution of Brine end-member for Brine-low end-member). When 
a brine end-member high in sulphate (860 mg/L) is substituted for a brine end-member low in 
sulphate (10 mg/L, called here Brine-low), most mixing proportions do not change significantly 
(Table VC1-3), but synthetic sample #2, with 80% of the brine end-member falls outside the 
mixing polyhedron when combination Br-low + Gl + Litt + DGW is used. This is clearly seen 
in the two upper panels of Figure VC1-4, where the samples that approach the brine end-member 
in the upper left panel are outside the mixing polyhedron in the upper right one (black circles in 
the Br-low + Gl + Litt + DGW run). The lower panels in Figure VC1-4 also show how samples 
with a higher proportion of brine are the ones not explained by the combination Br-low + Gl + 
Litt + DGW (these are those sections of the graph that are in white, as the block of samples with 
indices from 115 to 140).

Figure VC1-2. Coverage (left axis, black squares) and number of samples outside the mixing  
polyhedron (right axis, red circles) as a function of the allowance parameter.
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Test VC1c (Addition of end-member Sea Sediment).The addition of an extra end-member, 
an altered marine water (called here Sea Sediment) dramatically degrades the coverage of the 
dataset. The number of samples inside the mixing polyhedron drops from 98.7% (Base Case) 
to 7.9%, indicating that this five-end-member combination is a poor choice. End-member Sea 
Sediment has been infrequently used in relation with the mixing behaviour of Laxemar and 
Forsmark groundwaters as a possible reference water, even though it seems incompatible with 
the Littorina end-member due to their compositional similarities. In other words, the simultaneous 
presence of Littorina and Sea Sediment end-members drastically reduce the volume of the mixing 
polyhedron, leaving outside it most of the samples. But surprisingly, the mixing proportions of 
the few samples that are inside the mixing polyhedron are very similar to those of the Base Case 
for the four common end-members, as Table VC1-4 demonstrates. This of course is true for 
those synthetic samples with no Littorina component, for which mixing proportions are exactly 
reproduced (samples #2, 3, and 5).

Test VC1d (Elimination of end-member Littorina). The lower right panel in Figure VC1-6 
shows that the Littorina proportion (green) is low or zero for most samples in the Laxemar  
dataset. This suggest that eliminating it from the set of end-members should not affect nega-
tively the coverage nor the mixing proportions of all the samples with low ore zero proportion 
of Littorina. The upper panels in Figure VC1-6 and Table VC1-5 show that this is indeed the 
case. Coverage only drops from 98.7% (Base Case) to 95.1%, leaving outside those samples 
whose Littorina mixing proportion is greater that 10% (very few in the Laxemar dataset). The 
mixing proportions of the three synthetic samples with no Littorina component (samples #2, 
3, and 5) are exactly reproduced, while from the other two, the one with 50% Littorina falls 
outside the mixing polyhedron and the other, with 20% of Littorina end-member, has mixing 
proportions quite far from the true ones, up to a factor of two. 
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Table VC1-2. Mixing proportions of the three common end-members Br + Gl + Litt in 
Test Case VC1b, where end-member DGW has been substituted for end-member Rain.

Synthetic Sample Mixing proportions Comment
Brine Glacial Littorina

#1 True 20.0 30.0 20.0 30% DGW
Base Case 19.3 28.8 19.5
with Rain 17.4 20.6 19.2

#2 True 80.0 10.0 0.0 10% DGW
Base Case 80.0 10.0 0.0
with Rain 79.3 7.5 0.0

#3 True 10.0 60.0 0.0 30% DGW
Base Case 10.0 60.0 0.0
with Rain 8.2 52.3 0.0

#4 True 5.0 5.0 50.0 40% DGW
Base Case 3.2 2.0 48.8
with Rain – – –

#5 True 5.0 0.0 0.0 95% DGW
Base Case 5.0 0.0 0.0
with Rain – – –

Figure VC1-3. Coverage plot (upper row) and mixing proportions (lower row) of base case (left column, 
end-members: Br+Gl+Litt+DGW) and simulation where end-member DGW has been substituted by 
end-member Rain (right column, end-members: Br+Gl+Litt+Rain).

Test Case VC1b (Substitution of DGW end-member for Rain end-member)
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Figure VC1-4. Coverage plot (upper row) and mixing proportions (lower row) of base case (left 
column, end-members: Br+Gl+Litt+DGW) and simulation where end-member Brine has been  
substituted by end-member Brine-Low (right column, end-members Br-Low+Gl+Litt+DGW).

Test Case VC1b’ (Substitution of Brine end-member by Brine-low end-member)

Table VC1-3. Mixing proportions of the three common end-members Gl + Litt + DGW 
in Test Case VC1b’, where end-member Brine has been substituted for Brine-Low.

Synthetic Sample Mixing proportions Comment
Glacial Littorina DGW

#1 True 30.0 20.0 30.0 20% Brine
Base Case 28.8 19.5 32.4
with Brine-Low 27.4 15.9 32.9

#2 True 10.0 0.0 10.0 80% Brine
Base Case 10.0 0.0 10.0
with Brine-Low – – –

#3 True 60.0 0.0 30.0 10% Brine
Base Case 60.0 0.0 30.0
with Brine-Low 58.2 0.0 29.7

#4 True 5.0 50.0 40.0 5% Brine
Base Case 2.0 48.8 46.0
with Brine-Low 1.8 48.3 46.0

#5 True 0.0 0.0 95.0 5% Brine
Base Case 0.0 0.0 95.0
with Brine-Low 0.0 0.0 93.9
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Figure VC1-5. Coverage plot (upper row) and mixing proportions (lower row) of base case (left 
column, end-members: Br + Gl + Litt + DGW) and simulation where end-member Sea Sediment has 
been added (right column, end members Br + Gl + Litt + DGW + SeaSed). In the coverage plots, blue 
samples are inside the mixing polyhedron (in hyperspace) and black samples are outside it. 

Test VC1c (Addition of end-member Sea Sediment)

Table VC1-4. Mixing proportions of the four common end-members Br + Gl + Litt + DGW 
in Test Case VC1c, where end-member Sea Sediment has been added.

Synthetic Sample Mixing proportions
Brine Glacial Littorina DGW

#1 True 20.0 30.0 20.0 30.0
Base Case 19.3 28.8 19.5 32.4
with SeaSed 19.8 29.1 17.8 30.4

#2 True 80.0 10.0 0.0 10.0
Base Case 80.0 10.0 0.0 10.0
with SeaSed 80.0 10.0 0.0 10.0

#3 True 10.0 60.0 0.0 30.0
Base Case 10.0 60.0 0.0 30.0
with SeaSed 10.0 60.0 0.0 30.0

#4 True 5.0 5.0 50.0 40.0
Base Case 3.2 2.0 48.8 46.0
with SeaSed 4.4 2.9 44.7 41.1

#5 True 5.0 0.0 0.0 95.0
Base Case 5.0 0.0 0.0 95.0
with SeaSed 5.0 0.0 0.0 95.0
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Figure VC1-6. Coverage plot (upper row) and mixing proportions (lower row) of base case (left 
column, end-members: Br + Gl + Litt + DGW) and simulation where end-member Littorina has been 
eliminated (right column, end members Br + Gl + DGW).

Test VC1d (Elimination of end-member Littorina)

Table VC1-5. Mixing proportions of the three common end-members Br + Gl + DGW in Test 
Case VC1d, where end-member Littorina has been eliminated.

Synthetic Sample Mixing proportions Comment
Brine Glacial DGW

#1 True 20.0 30.0 30.0 20% Litt
Base Case 19.3 28.8 32.4
without Littorina 36.2 15.2 48.5

#2 True 80.0 10.0 10.0 No Littorina
Base Case 80.0 10.0 10.0
without Littorina 80.0 10.0 10.0

#3 True 10.0 60.0 30.0 No Littorina
Base Case 10.0 60.0 30.0
without Littorina 10.0 60.0 30.0

#4 True 5.0 5.0 40.0 50% Litt
Base Case 3.2 2.0 46.0
without Littorina – – –

#5 True 5.0 0.0 95.0 No Littorina
Base Case 5.0 0.0 95.0
without Littorina 5.0 0.0 95.0



98

Conclusions
It is fairly clear that the proper selection of the end-members is the most important step in the 
M3 methodology. Mixing proportions can vary wildly when the number or end-members change 
or one end-member is substituted by another. In this respect, the End-member Selection Module 
of M3 is a great aid in selecting a proper set of end-members compatible with a dataset. The 
coverage percentage is the most useful single-figure parameter to characterise the quality of a 
set of end-members. Together with the coverage plot (to see where the samples are located with 
respect to the walls of the mixing polyhedron), and a graph similar to Figure VC1-2 (an x-y plot 
with the allowance parameter in the x-axis and the coverage in the y-axis), they are invaluable 
tools to select the best combination of end-member for a specific dataset.
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Test Case VD1: Validation of mass balance and analysis of 
reactions
Introduction
M3 is primarily a tool to compute mixing proportions. Thus, M3 should be used, as already 
mentioned several times, only when the system under study is believed to be dominated by 
mixing processes, and where other processes, such as chemical reactions, are secondary or 
nonexistent.

Having stressed again this crucial assumption, the obvious question is: What is the exact meaning  
of “dominated by mixing”? Or stated with other words: Is it possible to asses the level of departure 
from pure mixing that M3 is able to handle and still compute mixing proportions close to the true 
mixing proportions? Test Case VD1 addresses this important question by means of a dataset of 
synthetic samples created by pure mixing upon which several reactions that change its chemical 
composition have been superimposed. The interested reader should also read Test Cases VE1 
(comparison of mixing and reaction between M3 and PHREEQC), and VF2 (comparison between 
M3 mixing proportions and those computed by Douglas et al. 2000 for a real ground water dataset 
by a completely different method) to have a more complete appraisal of M3 limitations under real 
and synthetic conditions.

The test
A dataset of 5,000 synthetic samples was created by randomly mixing the four end-members 
listed in Table VD1-1. Figure VD1-1 shows histograms of the number of samples with a specific 
proportion of each end-member, and Figure VD1-2 is a 3D view of the distribution of samples 
with respect to the end-members, located at the vertices of the mixing tetrahedron. The sampling 
is not homogeneous, but most combinations of mixing proportions (except the most extreme 
ones) are represented. The least represented samples are binary mixtures of two end-members 
(e.g. 40% brine and 60% glacial, with 0% of DGW and Littorina) as can be checked by looking 
at the “edges” of the mixing tetrahedron in Figure VD1-2.

This dataset, consisting of the mixing proportions for 5,000 synthetic samples (calculated with 
the n-pc mixing routine), was then used to create input files for PHREEQC in order to obtain 
the detailed chemical compositions of each sample. These calculations were carried out with 
the direct approach implemented in PHREEQC. Four input files were created:

•	 Benchmark dataset: no reaction, just the composition of the samples as calculated from 
the corresponding proportion of each end-member in the sample. This is the dataset against 
which all the others are compared in order to assess the influence of reactions because the 
mixing proportions are fully known

•	 Calcite equilibrium dataset: each sample was equilibrated with calcite. This affects the 
concentration of Ca2+ and also the alkalinity (expressed as HCO3), either by lowering them 
(the sample was originally over-saturated in calcite) or increasing them (the sample was 
originally under-saturated in calcite).

•	 Gypsum equilibrium dataset: each sample was equilibrated with gypsum. This affects 
the concentration of Ca2+ and SO4

2–, either by lowering them (the sample was originally 
over-saturated in gypsum) or increasing them (the samples was originally under-saturated 
in gypsum).

•	 Cation exchange dataset: each sample was put in contact with an exchanger (clay) with 
exchange sites for Ca, Mg, Na and K, and allowed to equilibrate with it. The exchanger 
initial molar fractions of Ca, Mg, Na and K were those in equilibrium with the brine end-
member. The amount of exchanger per kg of water was 0.1 kg/kg. This is a reasonable lower 
limit for cation exchange in a fractured groundwater system like Forsmark’s considering 
fracture density /Hartley et al. 2005/, kinematic porosity /Hartley et al. 2005/, and mass 
of exchanger per square meter of fracture /Drake et al. 2006/.
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Table VD1-1. Composition of the end-members used in Test Case VD1.

End-
member

Na  
(mg/l)

K  
(mg/l)

Ca  
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl  
(mg/l)

SO4 
(mg/l)

D 
(‰ dev)

O18 
(‰ dev)

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158 –21
Littorina 3,674 134 151 448 93 6,500 890 –38 –4.7
DGW(*) 274 5.6 41.1 7.5 465 181 85.1 –80.6 –11.1

(*) Soil pipe sample from the Forsmark area (borehole HFM09, 33 m depth).

Figure VD1-1. PC plots of the 5,000 synthetic samples. Upper left panel shows the PC1-PC2 plane 
(standard M3 representation); the upper right panel shows the PC2-PC3 plane; the lower left panel the 
PC1-PC3 plane; and the lower right panel shows a 3D representation with PC1, PC2 and PC3 as axis.



101

The large PHREEQC output files were filtered to extract the information required for input to 
M3. The chemical data used as input to M3 are the concentration of Na+, Ca2+, K+, Mg2+, HCO3

−, 
Cl−, and SO4

2−,	and	the	delta	values	of	deuterium	(δ2H)	and	oxygen-18	(δ18O).

In summary, we know the “true” mixing proportion of each sample and the goal is to assess 
the accuracy of the mixing proportions computed by M3 in the absence of chemical reactions 
(benchmark dataset) and in the presence of chemical reactions (rest of datasets).

Results and discussion
To measure the importance of mass-transfers due to reactions, a mass-transfer log-ratio	η	has	
been defined as

BM

[M]log
[M ]

 
η =  

 
, (VD1-1)

where [M] = concentration of element M after equilibrium with a mineral (calcite, gypsum, 
or an exchanger); and BM[M ]= concentration of element M in the only-mixing, benchmark 
simulation. This ratio measures the importance of the reactions with respect to the benchmark 
concentration	of	an	element.	A	value	of	η=0	means	no	change	in	the	concentration	of	an	element	
by the reaction; a positive value means an increase in concentration; and a negative value a 
decrease	in	concentration.	A	value	of	η	=	+1	means	a	ten-fold	increase	in	concentration,	and	
a	value	of	η	=	+0.3	a	two-fold	increase	in	concentration.	Equivalently,	η	=	−1	means	a	ten-fold	
decrease	in	concentration,	and	η=	−0.3	a	two-fold	decrease	in	concentration.

Figure	VD1-2	shows,	as	an	example,	the	mass-transfer	log-ratio	η	for	the	cation	exchange	
dataset, where Na+, K+, Ca2+, and Mg2+ are exchanged until equilibrium with an exchanger phase 
previously equilibrated with the Brine end-member (0.1 mol of exchanger per kg of water). The 
upper panel shows that for most synthetic samples there is only a slight change in concentration 
of Na+ and Ca2+ (relative to the benchmark concentration), but that K+ and Mg2+ can decrease their 
original concentrations in a factor of two, or even a factor of three for a few samples. The lower 
panel clarifies which samples are most affected by cation exchange: those with high percentages 
of the Glacial and/or DGW end-members (in black, red, orange or yellow in Figure VD1-2).

Mass-transfer log-ratios for the dataset equilibrated with calcite are lower, with an average of 
−0.005	(10%	decrease	in	Ca2+	concentration)	and	a	maximum	value	of	−0.30.	For	the	dataset	
equilibrated with gypsum, sulphate mass transfer can be as high as +3 (a ×1,000 increase in 
concentration), with a mean value for the 5,000 samples of +0.4 (×2.5 increase).

Once the change in concentration due to reactions is known, we can proceed to assess how this 
change affects the computed mixing proportions calculated by M3. Besides mixing proportions, 
M3 also outputs the difference between the true composition and the calculated composition 
based on the computed mixing proportions. These differences are interpreted as mass transfers 
and, therefore, as chemical reactions.

Figure VD1-3 summarises the main results by comparing the true and computed mixing propor-
tions for the Littorina and DGW end-members, the most affected by the reactions. Upper panel is 
for the dataset equilibrated with calcite (DGW mixing proportions); middle panel for the dataset 
equilibrated with gypsum (Littorina mixing proportions); and lower panel for the dataset 
equilibrated with the exchanger phase (Littorina mixing proportions). 

Three different simulations have been carried out: (1) base-case runs with all input composi-
tional variables and the end-member waters not equilibrated with the corresponding mineral 
phase (calcite, gypsum or the exchanger); (2) runs with all the input compositional variables 
and the end-member waters equilibrated with the corresponding mineral phase; and (3) runs 
with only conservative input compositional variables. These three simulations are labelled 
with black, red, and green crosses in Figure VD1-3, respectively.
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It is apparent from the figure that reaction can influence the computed mixing proportions. And 
this influence can be quite strong, with absolute differences of up to 40% in mixing proportions. 
This is for example the case for the high-Littorina samples equilibrated with an exchanger when 
the end-members themselves are not equilibrated with the exchanger (Figure VD1-3, lower 
panel, black crosses). Differences of up to 20% are found for the high-DGW samples equili-
brated with calcite (Figure VD1-3, upper panel, black crosses).

As a general rule, the quality of the computed mixing proportions increases when the end-
member waters are equilibrated with the corresponding mineral phase (i.e. in Figure VD1-3 
red crosses are, on average, closer to the diagonal line than black crosses).

What is crystal clear is that simulations where only conservative elements have been included are 
not affected at all by reactions and that mixing proportions are exactly computed. This is why all 
green crosses in Figure VD1-3 run across the diagonal of the graphs. Of course, this is an expected 
result because we are working with synthetic samples for which the end-members are fully known 
and the imposed reactions are also known, which is the same as saying that we know which 
elements behave conservatively and which do not. For a real dataset things are obviously not 
so clear-cut. But nevertheless, the results shown in Figure VD1-3 are worth remembering.

Figure VD1-2. Intensity of Na, Ca, Mg and K mass transfer due to cation exchange expressed as the 
mass-transfer log-ratioη. Upper panel shows the change in concentration η for Na+, Ca2+, Mg2+, and 
K+ as a frequency histogram. Lower panel shows the same mass-transfer log-ratio (only for Mg) with 
respect to the percentage of each end-member water in the sample in a principal components plot (the 
first principal component, pc1, is in the horizontal axis, and the third principal component, pc3, in the 
vertical axis; pc3 is used instead of pc2 because end-members Glacial and DGW are further apart).
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Figure VD1-3. Difference between true and computed mixing proportions in the presence of reactions. 
Upper panel is for the dataset equilibrated with calcite; middle panel for the dataset equilibrated with 
gypsum; and lower panel for the dataset equilibrated with an exchanger. In all three panels, black 
crosses are the base case where all input compositional variables are included in M3; red crosses are 
for runs with all compositional variables included and the end-members equilibrated with the same 
mineral as the samples; and green crosses are for runs with only conservative elements.
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Conclusions
Reactions can and do influence the mixing proportions that M3 computes. The amount of deviation 
between true and computed mixing proportions depends on a large number of variables, both 
intrinsic to the water samples and external to them. The most important intrinsic variable is the 
intensity of the mass-transfers due to reactions. Important external variables are the number 
of end-member waters and the composition of each end-member. Working with conservative 
elements should, in principle, increase the quality of the computed mixing proportions.
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Test Case VE1: Cross-check against PHREEQC
Introduction
One of the most important observations that can be obtained from the study of an aquifer system 
dominated by mixing is the contribution of each end-member water to the chemical composition 
of every water parcel in the aquifer. Once the first-order effect of mixing has been taken into 
account via the mixing proportions, water-rock interaction can be used to explain the remaining 
variability. There are many sources of uncertainty that can prevent the accurate calculation of the 
mixing proportions of a mixing-dominated system, but the type and intensity of the chemical reac-
tions that have taken place on top of, and as a consequence of mixing is one of the most critical. 

This Test Case will assess the uncertainty in the computed mixing proportions of samples from 
a “synthetic” aquifer system derived from the actuation of different chemical reactions (always 
remembering that the chemical reactions are a second-order effect), comparing the results 
obtained by PHREEQC and M3. 

For that purpose, several synthetic water samples are created with the direct approach of 
PHREEQC, both by pure mixing and including different types of chemical reactions. Then 
these samples, together with the chemical information of the end-member waters, are fed into 
PHREEQC (inverse modelling) and M3 and the mixing proportions and mineral mass transfers 
computed. Note that, due to the non-uniqueness of the inverse approach, not even PHREEQC 
is able to recover the true mixing proportions. So, the test will compare the mixing proportions 
obtained by PHREEQC and M3 (n-pc mixing routine) and also these mixing proportions with 
the true ones. What follows is a summary of the paper by /Gómez et al. 2008/.

The test
To create the synthetic waters with PHREEQC, four end members have been used: Brine (Br), 
Littorina (Lit), Glacial (Gl) and Precipitation (P). The composition of each end-member is 
reported in Table VE1-1. 

The following two mixing proportions have been used:

SALINE: 60% Br + 10% Lit + 30% Gl + 0% P
BRACKISH: 1.6% Br + 50.8% Lit + 24.4% Gl + 23.2% P

The chemical composition obtained with these mixing proportions is shown in Tables VE1-2 
and VE1-3. The chemical characteristics of Sample SALINE are similar to the deepest and more 
saline groundwaters found in the Laxemar-Simpevarp area in Sweden. The chemical composition 
of Sample BRACKISH is similar to many brackish, Littorina-bearing groundwaters found in 
different places of the Scandinavian Shield.

Table VE1-1. Compositional ranges of the end members used in this test /from 
Laaksoharju 2005/.

End member Na 
(mg/l)

K 
(mg/l)

Ca 
(mg/l)

Mg 
(mg/l)

HCO3 
(mg/l)

Cl 
(mg/l)

SO4 
(mg/l)

2H 
(‰ dev)

3H 
(TU)

18O 
(‰ dev)

Brine 8,500 45.5 19,300 2.12 14.1 47,200 906 –44.9 0 –8.9
Glacial 0.17 0.4 0.18 0.1 0.12 0.5 0.5 –158.0 0 –21.0
Littorina 3,674 134 151 448 93 6,500 890 –38.0 0 –4.7
Precipitation 0.4 0.29 0.24 0.1 12.2 0.23 1.4 –80.0 168 –10.5
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The chemical composition of these two waters, as obtained by conservative mixing of the four 
mentioned end members, has been further modified by imposing four different sets of reactions 
(at 25ºC, using the WATEQ4F thermodynamic database):

•	 Set	A: equilibrium with calcite, illite and chlorite. The chemical composition of type-A 
waters, obtained as a result of superimposing these reactions on samples SALINE and 
BRACKISH are shown in Tables VE1-2 and VE1-3 under columns “SALINE-A” and 
“BRACKISH-A”, respectively. Compared with the original mixed waters, the chemical 
composition in these re-equilibrated waters barely changes.

•	 Set	B: ionic exchange involving Na, Ca, K and Mg, plus calcite equilibrium. The final 
chemical composition of the waters affected by cation exchange is shown in Tables VE1-2 
and VE1-3 under the headings “SALINE-B” and “BRACKISH-B”, respectively. Columns 
B1 and B2 show the resultant composition considering two different cation exchange capacity 
(CEC) constants: 0.1 mol/kg H2O (column B1) and 0.2 mol/kg H2O (column B2). In contrast 
with type-A waters, the chemical variation introduced by cation exchange (Na, K, Ca and Mg) 
is considerably bigger.

•	 Set	C: ionic exchange involving Na, Ca, K and Mg, plus calcite equilibrium plus sulphate 
reduction. The sulphate-reduction process has been defined in PHREEQC by the reaction
2
4 2 3 2SO 2CH O OH HS 2HCO H O− − − −+ + → + +   (VE1-1)

using a reaction progress of 1 mmol. The effect of this simple reaction on the sulphate and 
carbonate concentrations in waters is consistent with the ranges found in groundwaters affected 
by sulphate reduction in the Scandinavian Shield. This reaction has been combined with cation 
exchange (CEC=0.2 mol/kg H2O) and calcite equilibrium in order to create type-C samples 
SALINE-C and BRACKISH-C.

Summarising, for each of the two selected mixing proportions, SALINE and BRACKISH, 
there are five synthetic samples with which we have checked the inverse approach implemented 
in PHREEQC and in M3: only mixing (one sample); mixing + Set-A reactions (one sample); 
mixing + Set-B reactions (2 samples); and mixing + Set-C reactions (one sample).

Table VE1-2. Chemical and isotopic composition of the SALINE synthetic samples. 
Concentrations in mg/l.

SALINE samples: 60% Br + 10% Lit + 30% Gl + 0% P

SALINE SALINE-A SALINE-B SALINE-C
Only Mixing Mixing + equilibrium 

(calcite, illite, chlorite)
Mixing + cation exchange (CE) + calcite eq. Mixing + CE +  

calcite eq. + sulphate  
reduction 

B1: CEC =  
0.1 mol/kg H2O

B2: CEC =  
0.2 mol/kg H2O

pH 7.16 7.99 6.97 6.97 6.28
Na 5,894.58 5,894.58 5,991.13 6,073.90 6,476.21
K 43.24 42.62 40.70 25.25 40.11
Ca 12,557.06 12,545.04 12,488.90 12,440.80 12,064.08
Mg 46.74 50.48 42.78 39.57 39.93
HCO3

– 18.61 2.92 18.01 17.49 85.66
Cl 31,326.30 31,326.30 31,326.30 31,326.30 31,326.30
SO4

2– 678.84 678.84 678.84 678.84 582.78
Br 212.56 212.56 212.56 212.56 212.56
d2H (per mil) –78.14 –78.14 –78.14 –78.14 –78.14
d18O (per mil) –12.11 –12.11 –12.11 –12.11 –12.11
Tritium (3H) 0 0 0 0 0
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Table VE1-3. Chemical and isotopic composition of the BRACKISH synthetic samples. 
Concentrations in mg/l.

BRACKISH samples: 1.6% Br + 50.8% Lit + 24.4% Gl + 23.2% P

BRACKISH BRACKISH-A BRACKISH-B BRACKISH-C
Only Mixing Mixing + equilibrium 

(calcite, illite, chlorite)
Mixing + cation exchange (CE) + calcite eq. Mixing + CE +  

calcite eq. + sulphate  
reduction 

B1: CEC =  
0.1 mol/kg H2O

B2: CEC =  
0.2 mol/kg H2O

pH 7.41 7.63 7.38 7.34 7.14
Na 2,036.20 2,036.20 1,853.43 1,769.06 2,236.20
K 69.83 68.97 53.99 51.61 50.79
Ca 412.02 408.82 658.51 742.68 369.46
Mg 230.34 231.53 183.74 178.32 152.85
HCO3

– 50.92 46.13 50.64 50.03 147.05
Cl 4,158.60 4,158.60 4,158.60 4,158.60 4,158.60
SO4

2– 473.66 473.66 473.66 473.66 377.60
Br 17.02 17.02 17.02 17.02 17.02
δ2H (per mil) –77.13 –77.13 –77.13 –77.13 –77.13
δ18O (per mil) –10.09 –10.09 –10.09 –10.09 –10.09
Tritium (3H) 39 39 39 39 39

Results and discussion
First we summarize the results obtained with PHREEQC and then those obtained with M3.

PHREEQC inverse modelling
Four sets of mineral phases (reactions) have been considered in the mass balance calculations, 
similar to the ones used to create the synthetic waters:
•	 Set	1: calcite, illite and chlorite (used to create the synthetic waters of type A).
•	 Set	2: calcite and exchangers CaX2, NaX, MgX2 and KX (used to create the synthetic 

waters of type B).
•	 Set	3: Set 2 plus the sulphate-reduction reaction.
•	 Set	4: Set 1 plus the sulphate-reduction reaction.

The chemical parameters used in the calculations are: pH, Na, K, Ca, Mg, HCO3, SO4, Cl, Br, 
δ2H	and	δ18O.	Bromide	has	been	included,	together	with	Cl,	δ2H,	δ18O and sulphate (only when 
sulphate reduction is negligible), as conservative elements during mixing. These elements are 
essential parameters in determining the mixing proportions because their concentration in the 
final water only depends on the end members mixing proportions. All other chemical parameters 
included in the calculations are subject to mass transfer and they are dissolved/precipitated from/to 
reacting phases to satisfy the calculation constraints (chemical concentrations of the elements). 
Inverse modelling in PHREEQC also allows the treatment of analytical uncertainties, including 
both chemical and isotopic uncertainties. The uncertainty used for pH is 0.05 pH units, 0.1 per mil 
for	δ18O	uncertainty,	1	per	mil	for	δ2H uncertainty and 5% for the rest of the elements.

Waters resulting from pure mixing (Table VE1-4). These synthetic samples are the result 
of conservative mixing between end members in the proportions indicated in Tables VE1-2 and 
VE1-3. Therefore, in principle, the inverse method of PHREEQC should only need the end mem-
bers to obtain these final waters (no mineral phases needed). However, in order to avoid errors 
in the resolution algorithm the definition of a feasible set of phases (reactions) is required. When 
doing this, and independently of the phases, PHREEQC obtains several models, the first of which 
is always the pure mixing model which consistently reproduces the original mixing proportions, 
as Table VE1-4 shows. For these models, propagating the assumed analytical uncertainties in order 
to maximize their impact on the mixing proportions (by selecting the models with more extreme 
mixing proportions), an uncertainty of 5% in the calculated mixing proportions is obtained.
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Waters resulting from mixing + equilibrium with calcite, illite, and chlorite (Table VE1-5). 
When the inverse modelling is carried out with Set 1 (column “Set 1” in Table VE1-5) the same 
set of reactions used for the creation of these waters (Set A: equilibrium with calcite, illite and 
chlorite), the obtained models reproduce with high accuracy the original mixing proportions and 
also the (very low) mass transfers. Some models are even able to justify the final waters with 
no mass transfers. This means that type-A waters can be explained just by conservative mixing, 
which is reasonable considering that the chemical changes produced by the reactions are inside 
the assumed analytical uncertainty limits. Taking into account these input uncertainties, 
maximum variations in the mixing proportions are of the order of ±2%.

When a set of reactions different to the one used to create the samples is included (column 
“Set 2” in Table VE1-5, ionic exchange), PHREEQC obtains again some models just by mixing, 
which reproduce almost perfectly the original mixing proportions. The rest of the models, with 
higher mass transfers than in type-A waters, produce more variable mixing proportions, although 
always close to the original ones, because mass transfers associated with the exchange reactions 
represent only a minor percentage of the dissolved concentrations. A closer look at Table VE1-5 
shows that Set-2 tends to overestimate the proportion of the brine end-member. This is due to 
the exchange of Na between the water and the exchanger, which is compensated (to give the 
correct concentration of chlorine) with a lower concentration of Littorina (to subtract Cl− from 
the water) and a higher one of Precipitation (to dilute the final water, thus further lowering the 
Cl− content).

Table VE1-4. Mixing proportions obtained by inverse modelling with PHREEQC for samples 
created by pure mixing with the direct approach.

Sample SALINE Sample BRACKISH
Synthetic data 
(PHREEQC direct 
approach)

Inverse approach

Results without 
mass transfer

Synthetic data 
(PHREEQC direct 
approach)

Inverse approach

Results without 
mass transfer

% Mixing Brine 60 59.41 1.6 1.61
Littorina 10 10.55 50.8 51.18
Glacial 30 30.03 24.4 24.60
Precipitation 0 0.00 23.2 24.61

Table VE1-5. Mixing proportions obtained by inverse modelling with PHREEQC for samples 
SALINE-A and BRACKISH-A (mixing + equilibrium with calcite, illite, and chlorite).

Sample SALINE-A Sample BRACKISH-A
Synthetic 
data (Direct 
approach)

Inverse approach Synthetic 
data (Direct 
approach)

Inverse approach
Set 1 Set 2 Set 1 Set 2

No mass 
transfer

With mass 
transfer

No mass 
transfer

With mass 
transfer 

% Brine 60 59.02 59.07 63–65 1.6 1.65 1.60 1.6–1.9
% Littorina 10 10.9 10.88 7.4–10.9 50.8 50.48 50.55 47.6–50.9
% Glacial 30 30.07 30.05 25.4–31.1 24.4 24.23 24.27 22.7–24.5
% Precipitation 0 0.0 0.0 0.0–8.7 23.2 23.64 23.53 22.9–27.8



109

Waters resulting from mixing + cation exchange + calcite equilibrium (Table VE1-6). In 
type-B samples ionic exchange processes and calcite equilibrium introduce stronger chemical 
changes in the waters. When the inverse modelling is performed with Set 2 (“Set 2” column 
in Table VE1-6), which is the same set of reactions used to generate the B1 waters, several 
models are obtained. Some of them reproduce exactly the original mixing proportions and mass 
transfers. Table VE1-6 gives the range of mixing proportions taking into account all the models 
found by PHREEQC. Variations are most important in the Precipitation end-member, although 
these are always smaller than 10%.

Inverse modelling the chemistry of the waters with Set 1 (“Set 1” column in Table VE1-6; 
mineral equilibrium), the number of models found by PHREEQC and the variation in mixing 
proportions are smaller than with Set 2. Mixing proportions for Sample SALINE-B agree very 
well with the original proportions. As for Sample BRACKISH-B, differences between original 
and calculated mixing proportions are lower than 8%, being highest for the Precipitation 
end-member. Mass transfers (of the order of 0.1 mmol) and direction of reactions (dissolution 
or precipitation) are both reasonable in the context of this methodology. The narrower range of 
mixing proportions in the SALINE sample is due to the higher content of the Brine end-member 
in this sample, which fixes the proportion of Brine very strictly (no other end-member can 
provide so much Na+ and Cl−) and thus the proportion of the other end-members.

Waters resulting from mixing + cation exchange + calcite equilibrium + sulphate reduc-
tion (Table VE1-7). These samples represent the combined effects of ionic exchange, calcite 
equilibrium and sulphate-reduction. Sulphate-reduction affects dissolved sulphate content, 
and this species has very high concentrations in the two sets of synthetic waters, SALINE and 
BRACKISH. As both Littorina and Brine end-members have high sulphate contents, sulphate 
in the final water can come from either source and this introduces a source of uncertainty in 
the mixing proportions of Littorina and Brine, depending on whether sulphate is treated as a 
conservative or a non conservative element.

When using Set 3 for the inverse modelling (the original set of phases), a fairly high variation 
in mixing proportions is obtained, especially for the Precipitation end-member (column “Set 
3” in Table VE1-7). Although these variations could be considered acceptable in most cases, it 
casts some doubts on the results, indicating the need for independently checking with additional 
data (iron and sulphide concentrations, sulphur isotopes data, etc) the extent of the sulphate-
reduction process.

When using Set 4 for the inverse modelling (column “Set 4” in Table VE1-7), consisting of 
sulphate reduction and equilibrium with calcite, illite and chlorite, mixing proportions are closer 
to the original ones and their variability smaller (although in two cases, Brine and Glacial, the 
range does not bracket the real mixing proportion, a situation that does not happen in Set 3). 
These results indicate, again, that similar mixing proportions can be obtained using different sets 
of reactions.

Table VE1-6. Mixing proportions results obtained by inverse modelling with PHREEQC 
samples SALINE-B and BRACKISH-B (mixing + equilibrium with calcite + cation exchange).

Sample SALINE-B Sample BRACKISH-B
Synthetic data 
(Direct approach)

Inverse approach Synthetic data 
(Direct approach)

Inverse approach
Set 2 
(low mass 
transfer)

Set 1 Set 2 
(low mass 
transfer)

Set 1

% Brine 60 57.6–63.3 59.50 1.6 0.0–3.0 3.0
% Littorina 10 8.5–12.5 10.45 50.8 44.0–58.0 44.6
% Glacial 30 28.1–30.1 30.03 24.4 20.9–28.3 31.2
% Precipitation 0 0.5–7.5 0.0 23.2 13.0–31.0 21.2
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M3 inverse modelling
The same synthetic waters created with the direct modelling approach of PHREEQC have been 
used for verifying M3 performance, with the difference that here Set C waters are only affected 
by sulphate reaction (no cation exchange nor equilibrium with calcite) in order to better appreciate 
changes in the concentration of sulphate and bicarbonate. Ideally M3 should provide mixing 
proportions as close as possible to the original ones, independent of the variability introduced 
by the added chemical reactions (because M3 tries first to account for mixing, and only the 
unexplained part of the chemical composition is then attributed to water-rock interaction). In 
principle, the chemical differences between the synthetic water and the water obtained from 
the M3-calculated mixing proportions, could be used, via a mass balance step, to determine 
the reactions that have taken place.

In order to verify the assumption that calculated and actual mixing proportions are similar, the two 
sets of synthetic waters (SALINE and BRACKISH, with and without reactions) have been included 
in a real groundwater dataset from the Laxemar-Simpevarp area consisting of 158 samples. 

Mixing proportions have been calculated with M3 considering end-members Brine, Glacial, 
Littorina and Precipitation as before. The input compositional variables used for these calculations 
are: Na, K, Ca, Mg, HCO3, SO4,	Cl,	δ2H,	δ18O, 3H. The hyperspace mixing algorithm has been 
used throughout (Report 1, Section 3.2.3).

Waters resulting from pure mixing (Table VE1-8). Here, the synthetic waters created by 
conservative mixing (SALINE and BRACKISH) and by mixing and equilibrium (SALINE-A 
and BRACKISH-A) are included.

Table VE1-8 shows that M3 reproduces very well the mixing proportions for all samples. This 
result is important in itself, as it demonstrates that the n-dimensional generalization of the PCA 
analysis implemented in M3 is able to correctly evaluate simple mixing processes in waters.

In this and the following tables the upper part (Mixing) contains the calculated mixing propor-
tions. The lower part (Mass Balance) shows the mass balance calculated by M3 for the three 
conservative	elements	Cl,	δ2H	and	δ18O). Results of mass balance for conservative elements 
are calculated as

sample predicted

sample

100
C C

C
−

× ,

where Csample is the real concentration and Cpredicted is the predicted concentration.

The ability to identify pure mixing processes (in which all the elements behave as conservative) 
allows us to check the actual non conservative behaviour of the chemical elements included in 
the PCA. In M3 methodology (but not in PHREEQC), constituents participating in chemical 
reactions are treated on exactly the same footing as the non-reactive ones and therefore the 
reacting constituents also influence the computed mixing proportions of every water sample.

Table VE1-7. Mixing proportions results obtained by inverse modelling with PHREEQC for 
Samples SALINE-C and BRACKISH-C (mixing + ionic exchange, calcite equilibrium and 
sulphate reduction).

Sample SALINE-C Sample BRACKISH-C

Synthetic data 
(Direct approach)

Inverse approach Synthetic data 
(Direct approach)

Inverse approach
Set 3 (range) Set 4 (range) Set 3 (range) Set 4 (range)

% Brine 60 62.6–68.4 64.0–64.5 1.6 0.8–2.1 1.1–1.2

% Littorina 10 0.0–8.0 6.0–8.0 50.8 45.6–58.6 50.6–56.5

% Glacial 30 25.0–29.5 28.2–28.9 24.4 21.6–33.1 24.3–27.4

% Precipitation 0 0.0–11.3 0.0 23.2 12.0–30.7 15.0–23.9
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Waters resulting from mixing, ionic exchange and equilibrium with calcite (Table VE1-9). 
M3 results for synthetic samples created by mixing, ionic exchange and calcite equilibrium 
(samples SALINE-B and BRACKISH-B ) show differences in the mixing proportions with 
respect to the original ones. These differences depend on the type of sample (Table VE1-9): 
small variations for SALINE waters and bigger variations for BRACKISH waters. 

For samples SALINE-B1 and SALINE-B2 (B1 samples are obtained with a cation exchange 
capacity of 0.1 mol/kg H2O, and samples B2 with a value of 0.2 mol/kg H2O),M3 mixing 
proportions have an uncertainty of 7% for Littorina and lower for the rest of the end members 
(specially	for	Glacial).	The	predicted	concentration	of	the	conservative	elements	(Cl,	δ2H,	δ18O) 
is in very good agreement with the original ones, and always with uncertainties below 6%.

For BRACKISH-B1 and B2 samples (with Littorina as the main end member) M3 results are 
far away from the original mixing proportions, especially for Brine and Littorina end-members 
(Table VE1-9). Mass balances show differences of around 50% (for Cl) with respect to the 
synthetic sample.

These results are particularly important when checking the reliability of the mixing proportions 
provided by M3. In fact, they indicate that the effects of the chemical reactions propagate into 
the calculated mixing proportions and, therefore, M3 mixing proportions can not be used to 
calculate the mass balance of the non conservative elements. This is obvious when looking at 
chloride mass balances in Table VE1-9. Chloride is a conservative element and its calculated 
concentration should be in perfect agreement with the concentration in the synthetic water. The 
noise introduced by chemical reactions in the mixing proportions computed by M3 is non-linear 
and depends on the chemical characteristics of the sample. While in some cases (SALINE 
samples) the variation in the mixing proportions is low and acceptable, in others (BRAKISH 
samples) the variation is high and the discrepancies large. This is probably due to the fact that 
the relative change in concentration due to reactions is much larger in dilute waters than in 
saline ones.

Table VE1-8. M3 results for the synthetic waters created by pure mixing (Samples SALINE and 
BRACKISH) and by mixing and equilibrium with calcite (Samples SALINE-A and BRACKISH-A). 

SALINE samples BRACKISH samples
Synthetic 
data 
(PHREEQC)

M3 results Synthetic data 
(PHREEQC)

M3 results
SALINE 
Pure mixing

SALINE-A 
Mixing + 
mineral eq.

BRACKISH 
Pure mixing

BRACKISH-A 
Mixing + 
mineral eq.

Mixing Brine 60 60.0 58.2 1.6 1.4 1.3
Littorina 10 11.5 12.4 50.8 51.7 51.8
Glacial 30 28.5 29.4 24.4 24.4 24.9
Precipitation 0 0.0 0.0 23.2 22.5 21.9

Mass Bal,% Cl 7.2 9.7 3.1 4.02
δ2H 2.3 3.0 0.4 0.01
δ18O 1.7 3.0 0.0 0.00
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Waters resulting from mixing and sulphate reduction (Table VE1-11). The effect of sulphate 
reduction on the chemical variables included in the analysis carried out with M3 is only visible 
in the concentrations of sulphate and bicarbonate. Sulphate reduction is thus a reaction with 
relatively simple effects on only two parameters, as it can be clearly seen in Table VE1-10 com-
paring the concentrations in sample SALINE-SR with those in sample SALINE: only sulphate 
and bicarbonate change. Note, however, that pH also changes, but that this variable is not used 
as input to M3.

M3 results depend again on the type of sample (Table VE1-11). For the SALINE samples the 
calculated mixing proportions are close to the original ones; however, for the BRACKISH 
samples the discrepancies are large. Mass balance calculations for the conservative elements 
are very useful (again) to detect this problem: while in the first case the deviation in chloride 
content is < 5%, in the second case it is around 80%.

Table VE1-9. M3 results for the synthetic waters created by mixing, ionic exchange and 
calcite equilibrium (Samples SALINE-B and BRACKISH-B).

SALINE samples BRACKISH samples
Synthetic data 
(PHREEQC)

M3 results 
CEC increase →

Synthetic data 
(PHREEQC)

M3 results 
CEC increase →

SALINE-B1 SALINE-B2 BRACKISH-B1 BRACKISH-B2

Mixing Brine 60 61.24 65.89 1.6 8.1 8.5
Littorina 10 9.94 2.94 50.8 36.6 35.3
Glacial 30 28.82 31.17 24.4 23.8 24.1
Precipitation 0 0.00 0.00 23.2 31.4 32.1

Mass Bal,% Cl 5.7 0.1 49.9 55.9
δ2H 1.7 2.2 4.2 4.8
δ18O 0.8 3.3 6.0 6.9

Table VE1-10. Composition of sample SALINE-SR, affected by sulphate reduction (no ion 
exchange nor equilibrium with calcite).

SALINE samples BRACKISH samples
Only Mixing Mixing + sulphate reduction  

(SALINE-SR)
Only Mixing Mixing + SR  

(BRACKISH-SR)

pH 7.16 7.25 7.41 7.65
Na 5,894.58 5,894.58 2,036.20 2,036.20
K 43.24 43.24 69.83 69.83
Ca 12,557.06 12,557.06 412.02 412.02
Mg 46.74 46.74 230.34 230.34
HCO3

– 18.61 122.03 50.92 168.16
Cl 31,326.30 31,326.30 4,158.60 4,158.60
SO4

2– 678.84 582.78 473.66 377.60
Br 212.56 212.56 17.02 17.02
d2H (per mil) –78.14 –78.14 –77.13 –77.13
d18O (per mil) –12.11 –12.11 –10.09 –10.09
Tritium (3H) 0 0 39 39
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Calculations with only conservative elements (Table VE1-12). From all the previous results, 
it is clear that modifications introduced on some elements by the chemical reactions produce 
deviations in the mixing proportions calculated by M3. These deviations can be more or less 
important depending on the type and extent of reactions, and the type of water involved, all 
subject to uncertainty in a study with real water samples.

A possible solution to this problem could be to limit the PCA analysis to elements behaving 
conservatively in the system. Among all the elements considered in the calculations (Na, K, 
Ca, Mg, HCO3, SO4,	Cl,	δ2H	and	δ 18O)	only	three	of	them	(Cl,	δ2H	and	δ18O) have an a priori 
conservative behaviour. M3 needs at least three input compositional variables to compute the 
mixing proportions of four end-members. These input compositional variables should give 
independent	information,	but	δ2H	and	δ 18O are highly correlated (r	=	−0.98).	Because	we	are	
working with four end members (Brine, Glacial, Littorina and Precipitation), an additional 
conservative element is required. For this purpose, bromide has been selected as the fourth 
conservative element.

In order to verify this approach, the previous M3 calculations have been repeated using four 
input	variables,	Cl,	Br,	δ2H	and	δ18O. Only the two synthetic samples not affected by reaction, 
samples SALINE and BRACKISH, are used for this test in order to assess the importance of 
the number of input compositional variables in the computed mixing proportions.

M3 results are shown in Table VE1-12 together with previous results as obtained with conserva-
tive and non-conservative elements (taken from Table VE1-8). It can be seen that M3 correctly 
reproduces the original mixing proportions indicating that the decrease in the number of input 
parameters does not reduce the precision with which mixing proportions are estimated when 
waters are the result of pure mixing.

More importantly, the differences in mass balances for the conservative elements are very small, 
as it should be for conservative elements, certainly much smaller than working with conservative 
and non-conservative elements at the same time. For example, chlorine reduces its imbalance 
from 7.2% to 0.9% in Sample SALINE and from 3.1% to 0.07% in Sample BRACKISH. The 
reduction in the deuterium and oxygen-18 imbalance is even more pronounced (a factor of 100).

These results can be generalised to waters affected by mixing and reaction (i.e. to real ground-
waters) as this method is based only on conservative elements which, by definition, are not 
affected by reactions.

Table VE1-11. M3 results for the synthetic waters created by mixing and sulphate-reduction 
(Samples SALINE-SR and BRACKISH-SR).

SALINE samples BRACKISH samples
Synthetic data 
(PHREEQC)

M3 results Synthetic data 
(PHREEQC)

M3 results

SALINE-SR 
(Sulphate-reduction)

BRACKISH-SR 
(Sulphate-reduction)

Mixing Brine 60 64.4 1.6 12.6
Littorina 10 4.5 50.8 22.7
Glacial 30 23.6 24.4 13.7
Precipitation 0 7.5 23.2 51.0

Mass Bal,% Cl 2.0 78.5
δ2H 5.4 0.5
δ18O 3.3 3.0
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Conclusions
PHREEQC calculations give a reasonable estimate of the real mixing proportions and the 
chemistry of the groundwaters. However, similar mixing proportions and mass transfers can 
be obtained using different sets of reactions, indicating a source of uncertainty that should be 
overcome with additional chemical information. For M3, where synthetic samples have been 
embedded in a real data set of groundwater samples from the Scandinavian Shield, mixing 
proportions are only mildly affected by the number of compositional variables or the number 
of samples used for the Principal Component Analysis (PCA). However, the robustness of the 
output is quite sensitive to using only conservative compositional variables or both conservative 
and non-conservative compositional variables. Mass balance calculations in M3 are much more 
sensitive to non-conservative compositional variables and the recommendation here is not to use 
non-conservative variables with PCA-based codes if any information about reactions is to be 
obtained. After computing mixing proportions with the conservative elements, the concentration 
of non-conservative elements can be calculated via the composition of the end-members and the 
difference between these only-mixing concentrations and the actual ones can be used to infer 
chemical reactions. 

Table VE1-12. M3 results for the synthetic waters created by pure mixing using only 
conservative elements (Cl, Br, δ2H and δ18O). 

Sample SALINE Sample BRACKISH
Synthetic data 
(PHREEQC)

M3 results Synthetic data 
(PHREEQC)

M3 results
All elements 
(considered 
conservative)

Only 
conservative 
elements

All elements 
(considered 
conservative)

Only 
conservative 
elements

Mixing Brine 60 60.0 59.3 1.6 1.4 1.9

Littorina 10 11.5 10.6 50.8 51.7 49.5

Glacial 30 28.5 30.0 24.4 24.4 23.9

Precipitation 0 0.0 0.0 23.2 22.5 24.7

Mass 
Bal,%

Cl 7.2 0.9 3.1 0.07

δ2H 2.3 0.001 0.4 0.001

δ18O 1.7 0.008 0.0 0.0
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Test Case VF1: Cross-check against /Carrera et al. 2004/ 
maximum likelihood method
Introduction
Most methods available for computing mixing ratios are based on assuming that end-member 
concentrations are perfectly known, which is rarely the case. Often, end-members cannot be 
sampled, and their concentrations vary in time and space. Still, much information about them 
is contained in the mixtures.

To take advantage of this information, /Carrera et al. 2004/ have developed a maximum 
likelihood method to estimate mixing ratios, while acknowledging uncertainty in end-member 
concentrations. Maximizing the likelihood of concentration measurements with respect to 
both mixing ratios and end-member concentrations leads to a general constrained optimisation 
problem /Carrera and Neuman 1986/. The proposed algorithm consists of the following four 
steps /Carrera et al. 2004/:

1. Initialisation, consisting of the definition of initial mixing ratios by conventional least 
squares, assuming that the composition of the end-members is fully known (zero uncertainty).

2. Given the initial mixing ratios, maximise the log-likelihood function to estimate, at the same 
time, the expected values of the composition (i.e. concentrations) of the mixed waters and of 
the end-members.

3. Given the expected values of mixed water and end-member concentrations, maximise the 
log-likelihood to obtain the mixing ratios.

4. Repeat Steps 2 and 3 until convergence.

The log-likelihood function to be maximised is:

( ) ( )1

1

1ln
2

ns
t

s s s s s
s

L −

=

 = − − −  
∑ z µ A z µ ,

where zs are vectors containing the concentration of all species in both the samples and the end-
members (there are ns such chemical species), µs are vectors with the expected values of zs and 
A−1 is the inverse of the covariance matrix. Of course, µs and A are unknown, and the procedure 
consists of finding those µs and As that maximise the above function. The resulting non-linear 
system of equations is solved iteratively by a Newton-Raphson method.

The results are evaluated in terms of an “improvement index” for end-member concentrations, 
which evaluates the reduction in mean square error of end-member concentrations during esti-
mation (an improvement index of 2 means that the error has been reduced by a factor of two). 

The test
We test the method with a synthetic data set consisting of three end-members and five species 
/Carrera et al. 2004/. To simulate the uncertainty in the concentration of end-members, and 
to check the incidence of this uncertainty in the final mixing proportions, deviations from the 
“true” concentrations are introduced in the form of a “noise” term. Table VF1-1 gives the true 
composition of the end-members and the added noise, in the form of a standard deviation with 
respect to the true composition.

The test has been carried out with the data gathered in Table VF1-2. The first part of the table 
lists the composition of the end-members after having added a random noise term to the true 
composition (the true composition is the one used to create the synthetic samples). The second 
part gives the composition of the four synthetic samples for which the mixing proportions are 
to be computed. The lower part of the table gives the true mixing proportions of each synthetic 
sample. To these samples a random noise amounting to a standard deviation of ±4 concentration 
units has also be added. Because the composition of the end-members is different to the true 
composition from which the samples have been generated (and the composition of the samples 
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has also been modified), the computed mixing proportions would not be identical to the true 
mixing proportions. The aim of the test is to see whether M3 is able to calculate reliable mixing 
proportions (with the n-pc mixing routine) and how these mixing proportions compare to the 
mixing proportions calculated by /Carrera et al. 2004/ using their method. The authors state that 
their method outperforms more traditional methods like least squares and linear mixing. 

Results and discussion
M3 has been run with the end-members and samples listed in Table VF1-2 using the hyperspace 
mixing algorithm (Report 1, Section 3.2.3). Tables VF1-3 and VF1-4 summarises the results. 
The left part of the Table VF1-3 gives the results obtained by /Carrera et al. 2004/ with the 
maximum likelihood approach, and the right part of the table gives the results obtained by M3 
for the four synthetic samples, whereas Table VF1-4 gives the percentage difference between 
the true and computed mixing proportions, computed according to the following expression:

2 2 2
True Comp True Comp True CompDev (EM1 EM1 ) (EM2 EM2 ) (EM2 EM2 )= − + − + − ,

where suffix “True” means the true mixing proportion and suffix “Comp” means the computed 
mixing proportion.

Both tables point to a very similar performance by the two alternative methodologies, with 
differences lying within the range 2 to 6%, both for the maximum likelihood method and M3.

Table VF1-1. “True” composition of the end-members and “noise” added to it in the form of 
a standard deviation /from Carrera et al. 2004/. 

End-members Species
1 2 3 4 5

True concentrations
1 500 700 100 800 200
2 100 100 400 200 700
3 700 400 900 500 50

“Noise” (Standard deviation)
1 200 100 75 200 75
2 75 50 200 75 200
3 200 100 200 200 30

Table VF1-2. Composition of the end-members and the synthetic samples used in the test 
/from Carrera et al. 2004/.

End-members Species
1 2 3 4 5

1 500.89450 807.33472 130.29805 788.71979 237.97029
2 82.23440 66.22243 554.31506 274.93958 628.26062
3 733.04761 394.85715 797.56995 664.48767 17.66558

Samples(*)

1 550.52484 411.22662 648.76434 563.66235 194.71411
2 301.49957 330.60428 362.23471 440.21863 463.07953
3 576.29169 402.26633 693.09833 562.80817 178.38208
4 429.62680 396.80719 453.40265 524.82141 323.36151

(*) Sample 1: 15% (1) + 25% (2) + 60% (3) 
Sample 2: 40% (1) + 60% (2) + 0% (3) 
Sample 3: 10% (1) + 20% (2) + 70% (3) 
Sample 4: 35% (1) + 35% (2) + 30% (3)
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Conclusions
M3 is able to accurately compute mixing proportions in the presence of noise affecting the 
composition of the end-members and the samples. The computed mixing proportions are not 
exact, but compare very well with the mixing proportions computed with the maximum likeli-
hood approach of /Carrera et al. 2004/, who state that their method outperforms more traditional 
methods like least squares and linear mixing.

Table VF1-3. Mixing proportions for the four samples.

Sample /Carrera et al. 2004/ M3
End-member 1 End-member 2 End-member 3 End-member 1 End-member 2 End-member 3

1 0.149 0.231 0.620 0.148 0.238 0.614
2 0.393 0.575 0.032 0.367 0.609 0.024
3 0.092 0.218 0.691 0.096 0.220 0.684
4 0.355 0.372 0.273 0.331 0.396 0.273

Table VF1-4. Difference between real and computed mixing proportions (%).

Sample /Carrera et al. 2004/ M3

1 2.76 1.85
2 4.12 4.18
3 2.16 2.59
4 3.52 5.66
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Test Case VF2: Cross-check against /Douglas et al’s 2000/ linear 
mixing method
Introduction
/Douglas et al. 2000/ made a study of the mixing dynamics of groundwaters in the Canadian 
Shield around the Con Mine, Yellowknife, NWT, Canada. In the study, the authors examined 
the impact of underground openings on hydrogeologic conditions at the mine, as an analogue 
for the hydrogeological perturbations that could be caused by the construction and operation 
of a deep geological repository of high level radioactive wastes in crystalline fractured rocks.

The objective of the study is to determine the extent to which modern meteoric water may 
be migrating into the mine excavations (in operation since 1937) by using geochemistry and 
environmental isotopes. The meteoric water mixes with the other two end-member waters 
present in the mine: a brine end-member with a Ca-Cl chemistry and enriched in 2H; and a 
glacial	end-member	with	low	δ18O	and	δ2H values, originating from the infiltration of glacial 
meltwaters during the early Holocene deglaciation. Figure VF2-1, taken from /Douglas et al. 
2000/,	shows	water	samples,	the	three	end-members	and	the	mixing	lines	on	a	δ18O versus Cl−	
plot, with different symbols separating waters by tritium content.

Several sampling campaigns at different depths were carried out /Douglas et al. 2000/ during 
which relevant physicochemical parameters, major ions, and environmental isotopes (18O, 
deuterium, 34S, 14C, and tritium) were measured in the groundwater samples. Tables 2 and 3 
in /Douglas et al. 2000/ give the geochemical composition of the 34 groundwater samples 
that have been used for this Test Case.

Figure VF2-1. Relationship between δ18O and chlorine concentration in the groundwater samples, with 
mixing lines plotted between the end-members. “Glacial meltwater” is the direct infiltration from the 
base of the ice sheet 10 ka ago, whereas “In situ glacial meltwater is the result of water-rock interac-
tions (mainly Cl− leaching) during the last 10 ka.
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For the mixing calculations /Douglas et al. 2000/ opted for a classical linear mixing approach 
based on the conservative elements Cl, 18O and 2H. From this theoretical viewpoint, the com-
position of individual samples can be expressed in percentage of the three end-members. The 
component fractions are determined by the following series of equations, where the subscripts T, 
B, G and R represent total, brine, glacial and recent (meteoric) waters. The total of all fractions 
must obey the volumetric mass-balance equation:

T B G R= + +C C C C ,

where CT = 1 and the three remaining components are unknown values. These components can 
be determined using an isotope mass balance equation, 

18 18 18 18
T T B B G G R RO O O OC C C Cδ = δ + δ + δ ,

and a chlorine mass balance equation,

T T B B G G R RCl Cl Cl ClC C C C− − − −= + + .

By substituting in the second equation for CR from the first, we obtain

( ) ( )18 18 18 18
T T R G R G

B 18 18
B R

O O O O
O O

C C
C

δ − δ + δ − δ
=

δ − δ
.

And substituting in the third equation for CB from the first, we obtain

( ) ( )T T B G G B
R

R B

Cl Cl Cl Cl
Cl Cl

C C
C

− + −
=

−
.

There is a unique solution for CG when CT = 1. The other two components are calculated by 
back-substitution. The results of these calculations are shown in /Douglas et al’s 2000/ Table 3 
and are reproduced here below in Table VF2-2.

The test
For a simulation with n end-members, M3 needs at least n input compositional variables in 
order to perform the principal components analysis and compute the mixing proportions. So, 
in	addition	to	chlorine	concentration	(in	mg/L)	and	δ18O values (in per mil deviations), we have 
also	used	δ2H values in this Test Case. Table VF2-1 summarises the contents of chlorine, 18O and 
deuterium in the three end-members as given by /Douglas et al. 2000/ and /Frape et al. 1984/, 
except for the deuterium delta value in the glacial end-member, which has been estimated from 
the	δ18O-δ2H regression line from the locality of Fort Smith, Northern Territories, Canada 
/Fritz et al. 1987/. 

An M3 input file has been created with these end-members and the chlorine content and 18O and 
2H delta values of the 34 samples taken from /Douglas et al. 2000/. In summary, the parameters 
of this simulation are: three end-members (brine, glacial, and recent meteoric), three input com-
positional variables (Cl−, 18O, and 2H), and 34 groundwater samples. An allowance parameter 
of 0.03 has been used (Report 1, Section 3.2.4).

Table VF2-1. Composition of the end-members 

End-member Cl (mg/l) 2H (‰ dev) 18O (‰ dev)

Recent 10.9 –148 –18.9
Glacial 3,059.6 –215(*) –28
Brine 235,337 –53 –11.7

(*) Extrapolated from δ18O-δ2H regression line from Fort Smith, Northern Territories, Canada /Fritz et al. 1987/: 
δ2H = 7.5×δ18O − 4.9.
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Results and discussion
Figure VF2-2 shows the PC plot of the 34 samples (and the three end-members, with labels) 
in the upper left panel, and the mixing proportions of brine, glacial and recent meteoric in the 
other three panels. Notice that one sample is outside the mixing triangle and cannot be explained 
by mixing, although it seems to be a binary mixture of brine and recent meteoric. The proportion 
of glacial is never above 50% (lower left panel, green samples), and most samples have a contri-
bution of glacial lower than 20%. On the other hand, there is a group of samples that have high 
salinities and therefore are dominated by the brine end-member (lower right panel: yellow, orange 
and red samples). But most samples are dominated by the recent meteoric end-member, with as 
much as 94% (upper right panel, yellow, orange and red samples).

Table VF2-2 summarises the results of Test Case VF2. The mixing proportions of recent meteoric, 
brine and glacial for the 34 samples as calculated originally by /Douglas et al. 2000/ are given in 
the left part of the table, whereas those computed by M3 are on the right part of the table. The last 
column in Table VF2-2 gives the absolute percent difference between the mixing proportions as 
computed by both approaches. The deviation has been computed as

2 2 2
True Comp True Comp True CompDev (Recent Recent ) (Brine Brine ) (Glacial Glacial )= − + − + − ,

where suffix “True” refers to the mixing proportion calculated by /Douglas et al. 2000/ and suffix 
“Comp” refers to the mixing proportion computed with M3. As the table shows, deviations are 
in general small, except for samples with a high brine content (samples near the bottom of the 
table), where they can reach 20%. The average deviation for the 34 samples is 6.1%.

Figure VF2-2. M3 PC plot with the samples from /Douglas et al. 2000/, together with their mixing 
proportions (upper right panel: recent meteoric end-member; lower left panel: glacial end-member; 
lower right panel: brine end-member).
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Table VF2-2. Comparison of mixing proportions as computed by /Douglas et al. 2000/ (left) 
and by M3 (right).

Sample /Douglas et al. 2000/ M3 Deviation (%)
Recent Brine Glacial Recent Brine Glacial

23-A-4 0.48 0 0.52 0.47 0.01 0.52 1.4

23-B-2 0.79 0 0.21 0.79 0 0.21 0.0

23-C-3 0.87 0 0.13 0.86 0 0.14 1.4

23-D-4 0.66 0.1 0.24 0.67 0.13 0.20 5.1

23-E-2 0.94 0 0.06 0.94 0 0.06 0.0

23-E-3 0.93 0 0.07 0.92 0 0.08 1.4

23-F-4 0.92 0 0.08 0.92 0 0.08 0.0

35-A-4 0.75 0.02 0.22 0.76 0.03 0.21 1.7

35-B-3 0.91 0 0.09 0.91 0 0.09 0.0

35-D-3 0.85 0.03 0.12 0.85 0.03 0.12 0.0

39-A-4 0.54 0.22 0.24 0.58 0.23 0.19 6.5

45-A-2 0.60 0.19 0.21 0.63 0.21 0.17 5.4

45-B 0.28 0.14 0.57 0.31 0.18 0.51 7.8

45-B’ 0.41 0.11 0.48 0.42 0.14 0.44 5.1

45-B’’ 0.65 0.07 0.28 0.66 0.08 0.26 2.4

45-B-2 0.74 0.04 0.22 0.74 0.04 0.23 1.0

45-B-3 0.74 0.05 0.21 0.74 0.05 0.21 0.0

45-B-4 0.76 0.03 0.21 0.76 0.03 0.21 0.0

45-D 0.66 0.13 0.21 0.68 0.14 0.18 3.7

45-D’ 0.64 0.16 0.20 0.67 0.18 0.15 6.2

45-D-4 0.63 0.17 0.20 0.66 0.17 0.17 4.2

45-E-2 0.71 0.13 0.16 0.73 0.14 0.13 3.7

45-G 0.39 0.56 0.04 -- -- --
45-G’ 0.50 0.25 0.25 0.54 0.27 0.19 7.5

45-G-2 0.54 0.26 0.20 0.57 0.27 0.16 5.1

45-G-3 0.52 0.26 0.22 0.56 0.27 0.17 6.5

45-G-4 0.41 0.37 0.22 0.46 0.40 0.14 9.9

49-A-4 0.30 0.32 0.38 0.34 0.35 0.31 8.6

49-B-4 0.13 0.57 0.30 0.21 0.61 0.18 15.0

53-A-3 0 0.76 0.24 0.10 0.80 0.10 17.7

53-A-4 –0.03 0.77 0.26 0.08 0.81 0.11 19.0

53-B-4 0.19 0.66 0.15 0.29 0.71 0 18.7

53-C-4 0.07 0.77 0.16 0.19 0.81 0 20.4

53-D-4 0.11 0.63 0.26 0.20 0.68 0.12 17.4

Figure VF2-3 is a triangular plot with the end-members brine, glacial and recent in the three 
vertices plotting the position of each sample. On the left is /Douglas et al’s 2000/ result and on 
the right M3’s result. As Table VF2-2 already suggested, the samples near the brine end member 
are the ones which differ more, mainly because the percentage of the recent end-member is rather 
different. Finally, Figure VF2-4 adds onto the triangular plot the information on the deviation 
between mixing proportions as computed by /Douglas et al. 2000/ and M3. Here, it is clearly 
seen a deviation gradient, with smaller deviations near the bottom of the triangle (low brine end-
member mixing proportions) and larger deviations near the top vertex (high brine proportions).



122

Figure VF2-3. Location of the samples in a triangular plot with the end-members brine, glacial and 
recent at the vertices of the triangle. On the left is the result obtained by /Douglas et al. 2000/ and on 
the right the result obtained with M3.

To finish the comparison carried out in this Test Case, we would focus on the temporal change 
in composition of one of the samples, in order to assess whether M3 can also reproduce this 
compositional trend. Figure VF2-5 plots the temporal evolution of the composition of waters 
from sample locality 45B from the first analysis in 1980 to the last one in 1996. The upper panel 
is a PC plot with the first principal component in the horizontal axis and the second principal 
component on the vertical axis. Sample 45B is marked as a red asterisk, showing its evolution 
from 1980 to 1996. Note how the position of the samples approaches the recent end-member 
vertex, indicating an influx of meteoric water in the borehole. The lower panel is a graph with 
time on the horizontal axis (in years since the first sampling) and the mixing proportions of the 
three end members on the vertical axis. Squares are for the recent end-member, circles for the 
brine end-member, and triangles for the glacial end-member. The results obtained by M3 (red 
line) are superimpose onto the results obtained originally by /Douglas et al. 2000/. Note the 
almost perfect agreement between both predictions.
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Conclusions
This Test Case has demonstrated the capacity of M3 to reproduce the mixing proportions 
computed by means of a different methodology. /Douglas et al. 2000/ opted for a classical 
linear mixing approach based on the conservative elements Cl, 18O and 2H, and M3 is able 
to reproduce with fair precision the original mixing proportions.

Figure VF2-5. Temporal evolution of the composition of sample 45B from the first analysis in 1980 
to the last one in 1996. Upper panel: PC plot with sample 45B marked with a red asterisk, showing its 
evolution from 1980 to 1996. Lower panel: graph with time on the horizontal axis (in years since the 
first sampling) and the mixing proportions of the three end members on the vertical axis. Squares are 
for the recent end-member, circles for the brine end-member, and triangles for the glacial end-member.
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Test Case VG1: Mineral solid solutions (garnets)
Introduction
Minerals in nature, except in rare occasions (e.g. quartz, andalucite), do not have a fixed chemi-
cal composition but a range of possible compositions. For example, the chemical composition of 
the mineral olivine, common in mafic and ultramafic igneous rocks like basalts and peridotites, 
can vary between Mg2SiO4 and Fe2SiO4 and is usually expressed as (Fe,Mg)2SiO4, meaning that 
in the olivine structure Fe2+ and Mg2+ ions can freely substitute each other in the same crystallo-
graphic site.

This behaviour is termed solid solution due to its similarity with aqueous solutions, where several 
chemical species can form part of the solution. In solid solution theory, minerals are “constructed” 
by mixing two or more pure solids in which only one of the possible ions that can substitute each 
other actually exists. These “pure” solids can be real minerals or theoretical constructs and are 
called end-members. So, in the olivine example above, we would say that any natural olivine could 
be formed by mixing the two end-members Mg2SiO4 (forsterite) and Fe2SiO4 (fayalite). From this 
point of view, minerals are just solutions (in the solid state) that have been put together by mixing 
several end-members. This “mixing” must follow strict crystallographic and geochemical rules, 
but knowing the structure of a mineral and a few geochemical facts it is quite easy to deduce, from 
a chemical analysis expressed in percentage of the mineral-forming oxides (SiO2, Al2O3, FeO, etc), 
the proportion of each end-member in the solid solution.

Let us see in detail how this could be done for a garnet. Garnets are complex mineral solid solu-
tions that can be expressed as a mixture of several end-members, where mixing can affect both 
octahedrally and cubic-coordinated cations (Figure VG1-1).

Figure VG1-1. Structure of garnets. Left panel: trivalent cations (Al3+, Fe3+, Cr3+) are octahedrally 
coordinated with oxygen (blue octahedra);there is one set of trivalent ions at altitudes 0, 1/2 and +1, 
and another at 1/4 and 3/4; the light blue octahedra are at altitude 1/2, the dark blue octahedra are at 
1/4. Right panel: this diagram shows the distorted cube coordination polyhedra (green) for the divalent 
cations (Fe2+, Mg2+, Ca2+). In both panels green dots are tetrahedrally coordinated cations, mainly Si4+ 
(from http://www.uwgb.edu/dutchs/).
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In octahedral sites the trivalent cations Al3+, Fe3+, Cr3+ can substitute each other; in cubic-coordinated 
sites the divalent cations Fe2+, Mg2+, Ca2+ can substitute each other. This gives a minimum of six 
end-members to explain the composition of any garnet:

•	 Almandine:	Fe3Al2(SiO4)3

•	 Pyrope:	Mg3Al2(SiO4)3

•	 Spessartine:	Mn3Al2(SiO4)3

•	 Grossular:	Ca3Al2(SiO4)3

•	 Andradite:	Ca3Fe2(SiO4)3

•	 Uvarovite:	Ca3Cr2(SiO4)3 

In the particular case where only cubic-coordinated solid solutions exists, the four end-members 
almandine, pyrope, spessartine and grossular are enough to express the chemical composition of 
any garnet with Al3+ as the only octahedral cation. For example, the garnet

2+ 2+ 2+ 2+ 3+
1.1 1.5 0.3 0.1 2 4 3(Fe , Mg ,  Ca , Mn )Al (SiO )

is a mixture of 36.7% almandine, 50% pyrope, 10% grossular, and 3.3% spessartine (as there 
are a total of 3 atoms in octahedral positions, Fe2+ amounts to a fraction of 1.1/3 = 0.367, Mg2+ 
to 1.5/3 = 0.5, Ca2+ to 0.3/3 = 0.1, and Mn2+ to 0.1/3 = 0.033).

The test
Microprobe analysis of 12,471 garnets collected in the Alberta, Saskatchewan and Manitoba 
provinces, Canada, have been obtained from the Saskatchewan Industry and Resources (SIR) 
online database webpage (http://www.ir.gov.sk.ca/dbsearch/SaskKimbQuery/default.aspx). 

For the test, only garnets with Al3+ in the octahedral sites were selected. So, garnets with more 
than 1% of TiO2 and/or Cr2O3 (both substituting for Al3+ in the octahedral sites, /Deer et al. 
1992/) were eliminated, 2,309 analysis in total. A further 838 analysis were removed because 
the sum total of oxide weight percentage was below 95% or above 105%.

After this initial selection, the microprobe analysis (in weight percent of the oxides SiO2, Al2O3, 
FeO, MgO, CaO, and MnO) were converted to number of atoms of Si, Al, Fe2+, Mg, Ca, and Mn 
per unit formula assuming that Si4+ is the only tetrahedral cation, Al3+ the only octahedral cation, 
and that Fe2+, Mg, Ca, and Mn substitute each other in the cubic-coordinated sites. All garnets 
with a deviation of more than ±0.1 from the theoretical value of 3 cubic-coordinated atoms 
per unit formula were also eliminated, 3,527 analysis in total. This resulted in a final dataset 
consisting of 5,797 garnets, from which the proportions of almandine, pyrope, grossular, and 
spessartine were calculated. Figure VG1-2 graphically displays the mixing proportions of the 
garnets used for Test Case VG1. Note that most garnets are complex solid solutions of the four 
end-members. However, many are predominantly almandine-pyrope mixtures, although with 
a measurable proportion of grossular (Ca-bearing end-member). Spessartine, the Mn-bearing 
end-member, is usually a minor component. 

Table VG1-1 displays the beginning of M3 input file consisting of the four end-members and 
the number of atoms of Fe2+, Mg, Ca and Mn per unit formula for each garnet. The complete 
file (5,797 garnets plus four end-members) was input in M3 and the PC co-ordinates and mixing 
proportions computed.
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Figure VG1-2. Proportions of end-members almandine (black), pyrope (red), grossular (green) and 
spessartine (blue) in the garnet dataset used for Test Case VG1.
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Table VG1-1. M3 input file for Test Case VG1.

Atoms per unit formula
Fe Mg Ca Mn Sample

3 0 0 0 Almandine
0 3 0 0 Pyrope
0 0 3 0 Grossular
0 0 0 3 Spessartine
1.68783 0.04723 0.04289 1.25951 Garnet #1
0.96104 0.00122 2.02563 0.01174 Garnet #2
2.2615 0.67067 0.10074 0.05105 Garnet #3
2.5073 0.24301 0.1153 0.23277 Garnet #4
1.83057 0.97815 0.2347 0.04788 Garnet #5
1.69553 0.60076 0.74468 0.05145 Garnet #6
1.81856 0.10481 1.04285 0.12462 Garnet #7
1.9811 0.42882 0.56623 0.11612 Garnet #8
2.01947 0.33079 0.5741 0.16735 Garnet #9
1.98727 0.20803 0.88174 0.01512 Garnet #10
2.01121 0.22861 0.80704 0.05156 Garnet #11
1.29098 1.67732 0.09596 0.02507 Garnet #12
... ... ... ... ...

Results and discussion
A way to summarise the accuracy of the computed mixing proportions is by defining a generalised 
standard deviation between the real and computed mixing proportions:

2 2 2 2
Real M3 Real M3 Real M3 Real M3StDev (Alm Alm ) (Py Py ) (Grs Grs ) (Spss Spss )= − + − + − + −
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In this expression AlmReal refers to the mixing proportion derived from the garnet structural 
formula and AlmM3 to the one calculated by M3’s n-PC principal component mixing routine. 
In Figure G1-3, where the results are graphically presented, each of the garnet samples is colour-
coded with respect to this standard deviation. Maximum deviation is of the order of 2.5% and 
the mean standard deviation for the 5,797 garnet samples is 0.46%. This deviation is really low, 
meaning that the mixing proportions computed by M3 are almost identical to the mixing propor-
tions calculated by means of the garnet structural formula. 

Conclusions
A mean standard deviation for the 5,797 garnet samples of 0.46% is a demonstration of the 
capability of M3 to deal with mixing problems outside the realm of hydrogeochemistry, 
provided mixing is the first-order process

Figure VG1-3. Difference between mixing proportions calculated with the structural formula and with 
M3. Maximum deviations are of the order of 2.5% and the mean deviation for the whole dataset is 0.46%. 
Garnet end-members are almandine (Alm), pyrope (Py), grossular (Grs) and spessartine (Spss).
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