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Summary 
 
The objective of task presented in the first chapter, ultrasonic imaging of EB weld is to investigate 
imaging methods capable of improving ultrasonic imaging of defects in EB-welds. Algorithms based 
on ideas from ultrasonic tomography were examined as the first step. After a concise review of 
literature in the field of tomography the attention is focused on synthetic focusing and particularly on 
using linear phased array systems for imaging. Synthetic focusing is a technique where the focusing is 
performed by software after gathering the ultrasonic data. General principles of synthetic aperture 
focusing technique (SAFT) - a synthetic focusing technique especially suitable for linear ultrasonic 
arrays are presented. Problems related to the application of SAFT to ultrasonic transducers with large 
apertures are identified and the solution is proposed. It appears that when the probe becomes larger 
(i.e., cannot be regarded as a point source) the ultrasonic pulses that it generates will be smeared by its 
spatial impulse response (SIR). This impairs the spatial resolution achieved for the finite aperture 
probes comparing to the point source. Thus, a proper application of synthetic focusing requires taking 
into account the spatially varying probe’s SIR. The SIR has to be calculated (measured) in the 
interesting points of space and than deconvolved. A technique for deconvolving the SIR based on 
Wiener filter is proposed and illustrated by experimental results. Some preliminary results from 
immersion testing of copper blocks using the ALLIN system in our lab facility are presented. 
 
Nonlinear propagation of plane waves in fluids based on the Burgers equation is investigated in the 
second chapter. The presented method is basically adopted from the existing literature although some 
modification has been made to adapt to our situation. The solution has been re-derived and two 
alternative forms feasible for computer calculation are given and some numerical results are presented. 
The calculated results show how the harmonics evolve as the plane wave propagates. It should be 
noted that the work presented here is at its preliminary stage, the goal of the present and future work is 
to build a simulating tool for material harmonic imaging technology.    
 
The theory of phase conjugation is presented and different methods of wave phase conjugation (WPC) 
are reviewed and characterized in the third chapter. The ability of WPC to self-adaptive focus 
ultrasonic waves in inhomogeneous media makes it interesting in the application to the inspection of 
as EB welds. The WPC can be performed either in time or frequency domain. Time domain method, 
known as time reversal mirrors is reviewed in some detail with focus on its applications to NDT.  
Frequency domain techniques use nonlinear piezoelectric or magnetic materials. The choice of 
magneto-acoustic phase conjugation, performed in nonlinear magnetic ceramics as a candidate for the 
feasibility demonstration is motivated. Details of the preliminary experiment with high frequency 
NDE application (10 MHz) are presented.  
 
NDE methods suitable for the characterization of cast iron are reviewed in the fourth chapter. Two 
groups of methods that could be used in an industrial environment, those based on ultrasound and on 
eddy current measurement are presented in some detail. The review is focused on sensing the 
interaction of elastic waves with the microstructure of cast iron. It is explained how three different 
features of ultrasound, the sound velocity, the attenuation and the backscattering, can be used for the 
characterization.  
 



 

 

Sammanfattning 
 
Målet med uppgiften presenterad i första kapitlet, ultrasonic imaging of EB weld, är att undersöka 
metoder för att förbättra bildpresentationen av defekter i EB-svetsar. Algoritmer som är baserade på 
idéer från ultraljudstomografi undersöktes i det första steget. Efter en litteraturundersökning inom 
ultrljudstomografi koncentrerades sedan arbetet på syntetisk fokusering speciellt riktat mot linjära 
arrayer. Syntetisk fokuserning är en teknik där fokuserning sker med programvara efter att 
ultraljudsdata är insamlat. Principerna för SAFT (eng. synthetic aperture focusing techninque), vilket 
är en teknik speciellt lämpade för linjära arrayer, presenteras först. Sedan diskuteras problem som 
uppkommer med sökare som har an stor apertur och en lösning på problemet föreslås. Det visar sig att 
när sökaren blir större (dvs. när sökaren ej kan ses som en punktkälla) kommer ultrljudspulserna att 
smetas ut beroende på det spatiella impulssvaret hos sökaren (eng. spatial impulse response - SIR). 
Detta försämrar den spatiella upplösningen när sökare med ändlig apertur används jämfört med 
punktkällor. Detta betyder att hänsyn måste tagas till den spatialt varierande SIR som sökaren har för 
att syntetisk fokusering skall fungera tillfredställande. Dvs. det spatiella impulsssvaret måste beräknas 
(mätas) i de punkter som är av intresse för att sedan avfaltas. En metod för avfaltning av sökarens SIR 
baserad på Wienerfiltrering föreslås och illustreras med experimentella resultat. Några preliminära 
resultat från imersionsproving av kopparblock med vårat ALLIN-system visas. 
 
Ickelinjär utbredning av plana vågor i vätskor baserad på Burgers ekvation har undersökts i kapitel två. 
Den metod som används är i princip hämtad från litteraturen med några modifieringar för att passa till 
våran mätsituation. Lösning härleds samt två metoder lämpliga för datorimplementering presenteras 
med numeriska resultat. De numerska resultaten visar hur de harmoniska komponenterna utvecklas när 
den planavågen utbreder sig. Notera dock att arbetet är preliminärt och målet med framtida 
undersökningar är att utveckla ett simuleringsverktyg för  material-harmoniska komponenter. 
 
I kapitel tre presenteras teorin om fas-konjugering och olika metoder för WPC (eng. wave phase 
conjugation) granskas och karakteriseras. Möjligheten att med WPC konstruera självfokuserande 
system i ickehomogena material gör metoden intressant för inspektion av EB-svetsar. Detta kan 
utföras både i tids- och frekvensdomänen. Metoden som i tidsdomänen är känd som TRM (eng. time 
reversal mirror) granskas med fokus på NDT tillämpningar. Frekvensdomän metoderna använder 
ickelinjära piezoelektriska eller magnetiska material. Valet av en magneto-akustisk metod med 
ickelinjara magnetiska keramer motiveras för en förstudie. Detaljer fån ett preliminärt experiment från 
en högfrekvens NDT tillämpning (10 MHz) 
presenteras. 
 
NDE metoder lämpliga för karakterisering av gutet järn presenteras i kapitel fyra. Två grupper av 
metoder som kan användas i industriella miljöer presenteras. Dessa är metoder baserade på ultraljud 
samt virvelströmsmätningar. Granskningen har fokuserats på att känna av interaktionen mellan 
elastiska vågor och mikrostrukturen hos gutet järn. Det förklaras hur tre olika egenskaper hos ultraljud, 
hastighet, dämpning samt bakspridnig kan användas för karakterisering. 
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1. ULTRASONIC IMAGING of EB WELD 

1.1 Introduction 

The objective of this task is to investigate methods capable of improving ultrasonic imaging of EB-

welds and more specifically, to examine algorithms based on ideas from ultrasonic tomography. Here, we 

present the first step in this direction.  

After thorough literature review we have directed our first attempts towards methods that are base for 

synthetic focusing that can be seen as a special version of diffraction tomography [32]. The imaging 

algorithms have also been focused on using linear phased array systems that become more and more 

common in NDT applications. A linear phased array allows for (dynamic) electronic focusing in one 

spatial direction. In the other direction the array can be either geometrically focused at a pre-determined 

depth or unfocused. Dynamic focusing (focusing at more than one depth at reception) requires specialized 

hardware capable of handling time-dependent focusing laws. In simpler systems without this facility, 

several measurements must be performed with different focusing laws to obtain focusing at more than one 

depth.  

The material presented below consists of two parts, a concise literature review in the field of inverse 

scattering, and report of our results obtained with synthetic focusing. 

1.2 Inverse Scattering Problem – Problem Statement 

The inverse problem of reconstructing an object from the scattered field is known as tomography. 

This inverse problem is non-linearly related to the scattering object and it is also inherently non-unique 

problem [1]. The nonlinear property implies that iterative procedures have to be applied to find a 

solution to the exact problem. In some cases it is, however, reasonable to make approximations so that 

the problem can be linearized. Most common approximation is to assume that the objects are small 

compared to the wavelength and that the object is weakly scattering, which is known as the Born 

approximation. By using the Born approximation one can linearize the problem and the reconstruction 

can be performed using efficient Fourier methods [2]. Due to the non-uniqueness of the problem one 

often has to choose one solution from many possible solutions. 

A simple inverse scattering NDT experiment using ultrasonic transducers in immersion is shown in 

Figure 1. The basic idea is to use a fixed transmitter and move the receiver (a hydrophone) in a circular 

path to obtain ultrasonic (US) data at N angles θ and then reconstruct the object f(r) from the scattering 

field Φs(r). 
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where Φi(r) is the incident field and G0(r) is the free space Green’s function (when the background 

medium is homogeneous).  

It is easy to see that if no approximation is applied the problem is nonlinear since the scattered 

field Φs(r) depends on the total field Φ(r). 

f Reciever

Transmitter

θ

 
Fig. 1. Basic configuration of ultrasonic tomography. 

 

 

1.3 Inverse Scattering Problem – a concise literature review 

1.3.1 Weakly Scattering Media (Born Approximation) 

 
The theory of inversion assuming week scattering, usually called diffraction tomography (DT), has 

been an open research area for about 20 years. The theory is built on linearization of eq. (1) using the 

Born approximation or the Rytov approximation [2]. Using the Born approximation facilitates the use of 

efficient fast Fourier transform (FFT) based algorithms which is due to the Fourier diffraction theorem 

or the generalized projection-slice theorem. Assuming the classical scan configuration where the object 

is insonified by a time-harmonic plane wave with wave number k, and the scattered field is measured 

along straight lines, the Fourier diffraction theorem states that the one-dimensional Fourier transform of 

the scattered field is mapped to a semi circular arc of radius k in the 2-D Fourier transform of the object 

f itself (cf. [2, 3, 4, 5] and references therein). Thus, by rotating the object the 2-D Fourier space can be 

filled and the object function can be found by means of the inverse 2-D Fourier transform. The most 
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common algorithm used in DT is the filtered back-propagation algorithm [2]. Examples of resent work 

where week scattering is assumed are: 

 
• Tsihrintzis and Deveney [6] who have shown that the filtered back-propagation algorithm can be 

used to produce an image of the log-likelihood function for estimation of position of a known 

scatterer, and Tsihrintzis et al. [7] have extended this to wide-band data. They have also 

considered a stochastic approach [5] and derived the optimal Wiener filter solution for the linear 

case (first-order Born approximation). 

• Dickens and Winbow have [8] have considered the resolution of diffraction tomography using 

different experiment geometries for geological applications. 

• Anastasio and Pan [9, 10] have studied statistical properties of DT and derived algorithms for 

bias-free reduction of noise in reflection mode diffraction tomography (for transmission mode 

see refs. in [9]). In [11] Pan et al. also shows the statistical similarities between SPECT and DT 

imaging. 

 
In NDT applications the probing signal is usually finite bandwidth pulses and not time-harmonic 

signals. Several authors have considered time-domain diffraction tomography with band-limited pulses. 

Pourjavid and Tretiak [12] have shown that the 3-D (and 2-D) Fourier transform of the point spread 

function (PSF) along a unit vector u is equal to the 1-D Fourier transform of the input pulse g(t) scaled 

by a cosine of the angle of u.  That is, the bandwidth in the direction of the incident wave is maximum, 

while the bandwidth normal to the incident wave is zero. This implies that the reconstructed image will 

be distorted with a distortion that depends on the incident pulse, and the highest resolution is along the 

incident direction of the pulse and the lowest resolution normal to that direction. Collecting data from 

several directions will thus improve performance. They also state that the main limitation of time-

domain diffraction tomography is imposed by the bandwidth of the incident pulse. Mast [13] has 

derived an efficient time-domain inversion formula that can be regarded as a generalization of confocal 

time-domain synthetic aperture imaging. The method is equivalent to multiple-frequency 

reconstructions using the filtered back-propagation algorithm, but with much greater efficiency. He also 

shows that the single frequency PSF has significantly greater sidelobes than the multiple-frequency ditto 

that implies that the multiple-frequency method has higher resolution. 

 

1.3.2 Higher Order Born Approximation 

 
The (first order) Born approximation is a low frequency, weak scattering, and small scatterer 

approximation, as mentioned in the Introduction. Several authors have extended this theory to higher 

order Born series. For example Lu and Zhang [14] compared first- and second-order algorithms on 
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simulated data with circular symmetry. The second-order algorithm out-performed the first order 

algorithm, but if the size of the object, or the deviation in the circular wave number, was too large the 

algorithms failed to reconstruct the object with good accuracy and hence, higher order algorithms must 

be considered. 

Tsihrintzis and Devaney [4] showed that efficient FFT based algorithms could be used for 

computing higher-order Born series when a low-pass approximation was made for the Green’s function. 

The resulting algorithms take the form of nonlinear data filtering followed by back-propagation. The 

inversion operator takes the form of homogeneous Volterra series. If the data was modeled by the first 

Born term all terms higher then one in the inversion operator was identical to zero. Simulations were 

performed using cylindrically symmetric objects with data modeled by 1-3 Born terms both with and 

without white noise added to the data. A comparison with a first order (linear) and a second order 

inversion was then performed. For first order data the to inversions where identical, but for second- and 

third-order data the second-order inversion algorithm outperformed the linear first-order filtered back-

propagation algorithm. The second-order algorithm performed also better in the presence of noise. 

1.3.3 Iterative Algorithms 

 
Several authors have tried to improve the performance of the reconstruction, both in 

electromagnetic and ultrasonic scattering applications, using iterative methods. The, perhaps, most 

common methods are the Born iterative method (BIM) and the distorted Born iterative method (DBIM) 

[15, 16]. The difference between these to methods is that in the BIM method the background medium is 

assumed to be homogeneous while in the DBIM method the background Green’s function is also 

updated in every iteration. Thus, in the BIM method a linear inverse problem is solved in every iteration 

while in the DBIM the problem can no longer be expressed in a closed form and numerical methods 

must be applied. The benefit of using the BIM (and DBIM) method compared to ordinary methods 

based on the Born approximation is that the estimate of the object function f can be used to obtain a new 

estimate of the internal field Φ(r’) in the integral in eq. (1). The BIM method is also more robust against 

noise, but the DBIM method has a better performance for strong scattering objects [15]. 

Haddadin and Ebbini [17] have used the DBIM algorithm for imaging strong scatterers using a 

multiple frequency approach. The algorithm is given a starting solution using a low frequency by the 

Born approximation. The DBIM algorithm is then repeatedly applied for higher frequencies while 

checking that the algorithm does not diverge. They have also proposed a regularization method based on 

a singular value decomposition (SVD) to improve the robustness of the DBIM method [18]. 

 

Both the BIM and DBIM still utilize the Born approximation at every iteration step. Carfantan and 

Djafari [19] have instead considered a solution to the inverse problem using a Baysian framework. They 
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formulated the problem as finding the maximum a posteriori estimate that leads to a multi-modal 

minimization criterion.  

Otto and Chew [21] have used local shape functions (LSF) for reconstructing metallic cylinder 

shaped objects using microwaves. The basic idea is to use small, localized functions to model arbitrary 

metallic objects. The algorithm solves the nonlinear inverse problem iteratively by following the 

linearized gradient direction in each iteration. Also, the predicted scattered field is computed in each 

iteration using a nonlinear multiple, scattering model. The multi-frequency version of this algorithm was 

able to resolve scatterers having a diameter of 0.1λmin separated by a minimum of  0.51λmin. 

 
Miller et al. [22] used B-splines to model the contour scatterers in an inhomogeneous background. 

The application aims at reconstructing objects located near the interface using noisy electromagnetic 

measurements, which is very similar to US NDT measurements. The idea is to use a low-dimensional 

description of the varying background and the object. They used a classical LS-criterion and two 

regularization factors, where the first penalized objects located too deep, and the second penalized the 

total length between the control points in the B-spline basis describing the objects. 

1.3.4 Imaging using Array Focusing Techniques 

Array focusing techniques can also be used for tomographic imaging. A group at Rochester 

University in New York has developed a method for focusing distributed (and point-like) objects [23, 

24, 25] which can be seen as a generalization of the time-reversal mirror (TRM) technique proposed by 

Fink [26, 27, 28, 29]. The idea is to focus the field by re-sending, not the time-reversed original as in 

TRM technique, but the eigenfunctions of the scattering operator. The eigenfunctions associated with 

the largest eigenvalues of the scattering operator specifies the incident-wave distribution that maximizes 

the energy scattered to the far field by general distributed inhomogeneties as well as the point-like 

scatterers. The procedure can be can be implemented by iteratively retransmitting input patterns that are 

proportional to the measured scattered field or by numerical diagonalization. The iterative method is 

similar to the power method for determining eigenvectors for matrices, and the TRM method is 

equivalent to one, single iteration of the power method [23]. The benefit of this method for the inverse 

scattering problem is that the incident energy is focused on the inhomogeneities, and that the basis for 

expansion of the unknown medium is determined directly from scattering data. This is an advantage 

compared to the other methods using a fixed basis to expand the unknown medium. However, 

specialized hardware is required. Essentially an array transducer and electronics to transmit arbitrary 

waveforms is needed. 
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1.3.5 US Tomography and NDT 

 
Several authors have performed research related to tomography for NDT applications. Most of 

them have used methods based on approximations of Eq. (1). Below are some examples: 

• Rose [30] assumed that a flaw is represented with a characteristic function F(r) which is one if r is 

inside the flaw’s boundary and zero if r is outside. Using this model he used the inverse Born 

approximation (IBA), both in the time and frequency domain, to determine the size, shape and 

orientation of the flaws. Even though the Born approximation assumes week scattering he applied 

the method to strongly scattering flaws such as voids and inclusions. He performed pulse-echo 

measurement on small well-defined voids, inclusions and cracks that were diffusion bonded 

titanium alloy samples with a typical size of 500µm. The results show that it is possible to 

characterize certain isolated flaws in metals and ceramics. In this case it was possible to determine 

the size, shape and orientation (of the border) given adequate experimental data. 

• Kitahara at. al. [31] has compared the inverse Born approximation with the inverse Kirchhoff ap-

proximation (IKA) for a void with cercumferantial cracks. In the Kirchhoff approximation (valid in 

the high frequency range) a flaw is represented with a singular function γ(r) that only takes values 

on the illuminated side of the surface of the object. The results show that the Born method works 

well for volumetric defects and that the Kirchhoff method works well for both volumetric and 

crack-like defects. 

• Koo et al. [32] have studied the area function of voids for US tomography. They have used the fact 

that the impulse response from a void is the second derivative of the area function (within a 

multiplicative constant). The area function is the full length of the scatterer for the low-frequency 

approximation and the lit region of the scatterer for the high-frequency approximation. Thus, by 

double integrating the impulse response, known as the ramp function, and normalizing with the 

integral of the ramp function1 the normalized area function is obtained which can be used to 

reproduce the target image. By using the area function and the Born approximation they could 

directly use the same existing algorithms used for X-ray CT. They used the same definition of 

characteristic function of the object as Rose and Kitahara. The experiments were conducted on two 

laboratory samples where the first was a diffusion bonded titanium block containing a spherical 

void and a plastic disk containing a circular copper. The results were rather good.  

• Schlaberg et. al. [33] used a circular array consisting of 36 elements which had a beam angle of 

about 70˚. The system used digital signal processor (DSP) hardware to compute tomograms at a 

rate of approximately 25-30 frames per second. The used an heuristic algorithm where they match 

                                                      
1 The integral of the ramp function is the volume of the target multiplied with the same constant. 
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arcs to each data item inside the target area from pulse-echo measurements. Experiments where 

carried out on circular objects ranging from 1.5-55 mm (results only displayed as images). 

• Nielsen et. al. [34] used a 25 MHz transducer in pulse-echo mode on plexiglas and a AlSi-alloy 

with various radial- and axial holes and inclusions. They used the filtered back-propagation 

algorithm for reconstruction (i.e., Born approximation). They used a stacking technique to 

construct 3D imaging from the 2D tomograms. The artificial defects could be seen in the 

tomograms but there seem to be a substantial amount of artifacts as well. 

• Malyarenko and Hinders [35] used Lamb waves and ray tracing theory (i.e., diffraction effects 

were ignored) to reconstruct artificial defects (flat bottom holes, through holes and rectangular 

thinned areas) as well as disbonded areas in aluminum aircraft structures. They used the (iterative) 

SIRT algorithm for the reconstruction. The performance seems rather good as long as the defects 

are large enough compared to the beam. For smaller defects some of the Lamb waves will interact 

with the defects which results in artifacts in the tomograms. The results would probably improve if 

diffraction effects also were considered (i.e. Lamb wave diffraction tomography). 

• Hall et. al. [36] present a method, based of fuzzy logic, aimed at fusing information from reflection 

tomography, time-of-flight diffraction tomography, and transmission tomography. The first two 

methods utilized the reflected or refracted energy to reconstruct the images whereas transmission 

tomography uses the shadow cast by the flaw to generate defect images. The idea is to remove (or 

reduce) ambiguities. If, for example, planar flaws are considered the first two methods give good 

estimates of the defect end-points, and with the addition of transmission image it becomes possible 

to distinguish if the defect is two point reflectors or a planar defect. The results look promising. 

1.4 Inverse Scattering - Discussion 

Most of the authors treating NDT applications have used linearized approximations in their work 

which is rather surprising since the assumption of weak scatterers does is not valid in most NDE 

applications. Also linear methods (Born approximation) do not take multiple scattering into account 

since this as a nonlinear phenomena—the scattered field from two scatterers is not the same as the sum 

of the field from the individual scatterers. This results in artifacts in methods based on the Born 

approximation especially for objects lying close to each other. Despite the approximations made in 

algorithms based on the Born approximation they can be useful in imaging, for example, single small 

objects. That is, when the multiple scattering does not occur and only the size and position of the 

scatterer is interesting. However, for large, strong (multiple) scattering objects the Born approximation 

is not a good model. If the nonlinear problem is considered some type of regularization and low-

dimensional description of the scattering objects is needed for obtaining satisfactory solutions. 

 



 1-8

1.5 Synthetic focusing 

1.5.1 Introduction 

Synthetic focusing is a technique where the focusing is performed by software after the data 

collection already has been performed. This technique allows for dynamic focusing using much simpler 

hardware. The technique can also be applied to measurements from phased array systems in directions 

where there is no electronic focusing or to improve focusing for array systems with no ability to perform 

dynamic focusing. For example, the array system can be used in an unfocused mode to electronically 

perform scanning of B-scan measurements and then the focusing can be performed synthetically 

afterwards. This results in a fast acquisition time as well as dynamic focusing. Also, the values of time-

delays that are used for electronic focusing in array systems have upper and lower boundaries that limit 

the range where electronic focusing can be performed. Synthetic focusing can thus be an attractive 

alternative for situations when electronic focusing cannot be used due to these limitations. 

The synthetic aperture focusing technique (SAFT) has been adopted from radar applications where 

one wanted to improve the lateral resolution in airborne radar mapping systems [37]. In these 

applications the transducer (i.e. radar antenna) was small – since it had to be mounted on an airplane – 

and the larger aperture was obtained by means coherent summations along the airplanes path. In 

ultrasonic applications using a small aperture transducer gives less acoustic power compared to a larger 

(area) transducer. This will result in more noisy measurements but the noise will be reduced when the 

coherent summing is performed. However, if the measurement noise becomes too severe the probe size 

must in general be increased. When the probe becomes larger (i.e. cannot be seen as a point source) the 

ultrasonic pulses will be smeared due to the spatial impulse response (SIR) of the probe [38]. If the 

probe becomes too large the coherent summing will no longer work since the echoes will no longer have 

the simple hyperbolic shape as is typical from point sources2. For a large probe the ultrasonic field will 

almost be a plane wave in the shadow of the probe and hence a hyperbolic function will fit badly 

resulting in over-compensated images if SAFT is applied directly. The resolution can, however, be 

improved if one accounts for the spatially varying SIR. 

Here we will present some preliminary results from immersion testing of copper blocks using the 

ALLIN system in our lab facility. We have performed measurements with both small apertures (one 

element of the array) as well as larger apertures. In Section 1.5.2 the experimental setup the way it was 

used for synthetic focusing is briefly presented. Section 1.5.3 describes SAFT and Section 1.5.4 presents 

our approach to focusing using large apertures. Finally, Section 1.5.9 presents the results of experiments 

on copper blocks and Section 1.6 gives the conclusions. 

                                                      
2 Assuming that the scanning is performed in a linear fashion in pulse echo mode. 
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1.5.2 The ALLIN Phased Array System for Synthetic Focusing 

Our array used with the ALLIN system is a linear array is geometrically focused to 190 mm in 

water and consists of 64 elements. The ALLIN contains electronics enabling scanning in one dimension 

(no dynamic focusing).  In this report we only consider two-dimensional focusing (B-scan wise), that is, 

the spatial extent of the sound pressure field is assumed to be small in the x-direction where the array is 

geometrically focused. This approximation has the best accuracy close to the geometrical focusing 

point. The array is schematically shown in Figure 2.  
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y

z

x
y

x

 
Fig. 2. Schematic view of the ALLIN array. 

 

The reason for only considering 2D synthetic techniques is mostly practical, since 3D algorithms 

require more memory than is available using our present hardware. The reason for using an array system 

of this type is that it is very easy to change the measurement aperture (using software) still preserving 

the same electro-acoustical properties of the system (the same analog electronics, cables etc). If only a 

single element is excited, all elements of the array can be used for electronic scanning, that is, a 64 mm 

B-scan using the ALLIN array system in our lab. The scanning width can even be extended 

synthetically outside the array width with some loss of quality (see next section). If more than one 

element is used, the useful scanning width will decrease with the number of the used elements.3 A more 

thorough description of the ALLIN system can found in [39], see also Section 1.5.9. 

1.5.3 The Synthetic Aperture Focusing Technique (SAFT) 

 

Consider a small transducer emitting spherical waves as shown in Figure 3(a). A point scatterer at 

the same y-position y1 as the transducer and at depth z1 will then backscatter the acoustic waves (also 

                                                      
3 Each element is 0.9 mm wide with a spacing of 0.1 mm. The electronic scanning width is then: 64 mm – 

number of used elements + 1 mm.  
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spherical) that arrive to the transducer 2z1/cp (cp = sound speed) seconds later.  If the transducer is 

moved horizontally to position y2 the backscattered wave will arrive pc/z)yy( 2
1

2
12 +− seconds later. 

A B-scan from such situation is shown in Figure 3(b).  
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Fig. 3. (a) Sampling geometry of the immersion measurement setup. (b) B-scan from side drilled holes using 

one element of the array. 

 

As can bee seen in the figure, the response from point scatterers (i.e. side-drilled holes) will exhibit 

the typical hyperbolic shape. The SAFT performs synthetic focusing by shifting every measurement 

point, pc/)zz( 11 ′− seconds, and then performing summation. That is, a coherent summation is 

performed for each measurement point along the hyperbolas. The synthetic aperture is determined by 

the maximum distance |y1-y2| that is used in the summation. When the focusing is performed in this way, 

in the time-domain, the algorithm is generally referred to as the delay-and-sum algorithm. The 

computation can also be performed in the frequency domain, at least in the homogeneous case, see for 

example, Nagai [40] or Mayer, et al. [32]. Frequency domain algorithms are more computationally 

efficient but the time-domain version was easier to adapt to immersion measurements and was, 

therefore, chosen here.   

There are some details that are worth noting when implementing the SAFT algorithm. First, the 

time-shifts used in SAFT are quantized by the sampling frequency used for acquisition of the ultrasonic 

signal. That is, the minimum delay is determined by the sampling frequency. For example, a time-shift 

of 1.7 samples is rounded to a two samples shift. To decrease the effect of quantized focusing in the 

SAFT implementation used here interpolation has been performed.  For a time-shift of 1.7 samples, the 

sample #2 will get a weight of 0.3 and the sample #3 a weight of 0.7 in the coherent summation. Note 

that this is not unique for the synthetic focusing. The ALLIN phased array system has also its limitations 

regarding the electronic focusing. The minimum delay in the transmission is 1 ns and in the reception 25 
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ns (see [39]). Thus, using a higher sampling frequency than 40 MHz (= 1/25ns) ensures a lower 

minimum delay time for the SAFT approach compared to the ALLIN system.  Second, phased arrays 

can be focused outside the physical aperture by adjusting the time-delays of the aperture elements 

properly. This can be accomplished using synthetic focusing as well. The performance will decrease 

however, comparing to the focusing using physical aperture since fewer A-scans will be used in the 

processing. That is, only parts of the hyperbolas will be used in the coherent summation process. The 

spatial sampling should be taken into account to avoid grating lobes, as well as the side-lobes that 

depend on the synthetic aperture and the apodization, see [41]. 

 

1.5.4 Synthetic Focusing using Large Apertures  

 

The synthetic focusing procedure described above relies on spherical waves, or point sources and 

scatterers. If a larger transducer is used, which can not be considered as a point source, the emitted 

waves will no longer be spherical and the coherent summation technique will fail. Typically, if SAFT is 

applied to data recorded from large aperture transducers the images will look over-compensated (see Fig 

11(b) in  Section 1.5.10). The reason for this behavior is that in the shadow of the transducer aperture 

the wave field will almost be planar and, hence, a summation along hyperbolic arcs will match the field 

poorly. In order to analyze the problem more thoroughly the spatial impulse response (SIR) of the 

transducer must be considered. The SIR is the impulse response at a point p1 = (z1, y1) that is obtained 

when the transducer is at position p0 = (z=0, y0). The SIR arise from the fact that for larger apertures the 

waves from different parts of the transducer surface will not arrive at the same time instant, and hence a 

smearing of the ultrasonic pulses will be introduced. Consider, for example, the case when point p1 is 

located under the center of the transducer. In this case the first wave arriving at point p1 originates from 

the center point of the transducer and the last wave originates from its edge. Thus, the SIR will be a 

spatially varying filter that smears the ultrasonic pulse emitted from the surface of the transducer. If the 

geometry of the transducer is symmetric with respect to the center of the transducer the SIR:s will also 

be symmetric with respect to the center line. In discrete time, the SIR:s will basically be a FIR (finite 

impulse response) filters with all coefficients ≥ 0.   

To successfully perform synthetic focusing the smearing due to the SIR:s must be considered. If 

linear methods are considered the “de-smearing” or deconvolution filter must be a non-stationary one 

since the SIR:s are non-stationary.  The approach chosen here consists in using a linear model for the 

system and performing the 2D deconvolution by means of a non-stationary Wiener filter realized in 

time-domain. This model accounts for the smearing due to the SIR:s but effects such as multiple 

scattering are not considered. 
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1.5.5 Numerical Algorithm for Computing the Spatial Impulse Response in an 

Immersed Solid 

  

The ALLIN array system consists of narrow strip-like elements that are focused geometrically at 

190 mm. The elements are 0.9 mm wide and there is a small gap of 0.1 mm between each element. The 

spatial impulse response of this type of cylindrically concave array has been calculated by Wu and  

Stepinski using a semi-numerical algorithm [42]. They did, however, not consider immersed solid. 

When calculating the SIR for the immersed solids one has to take the Snell's law  into account in the 

water-solid interface. Here, an approximate numerical algorithm has been used to calculate the SIR:s for 

immersed solids.  Two approximations have been introduced. The first one consisted in neglecting the 

small space between the array elements so that the array can be seen as a single rectangular transducer, 

geometrically focused in the x-direction and unfocused in the y-direction. The second approximation 

was the assumption that the SIR is two-dimensional only which is a reasonable assumption close to the 

geometrical focus where the field is very narrow in the x-direction. The SIR was then calculated directly 

in a sampled-discrete form based on the calculation of the area of the probe that is active during each 

sampling interval4. To understand the principle let us consider two consecutive sampling instants tn and 

tn+1. These sampling instants correspond to two points on the transducer surface (using Snell's law for a 

spatial point p). The SIR for this particular point is then the distance between the points on the 

transducer surface for all tn. This is illustrated in Figure 4 where the spatial sampling points are marked 

with dots. 
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Fig. 4. Illustration of the probe areas active in a particular sampling interval [tn tn+1]. 

                                                      
4 Since the width in the x-direction is the same for all elements only the width in y-direction is used in reality. 
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Note that the respective area is twice as large if the spatial point is in the shadow of the transducer 

(Figure 4(a)) compared to when the spatial point is outside the shadow (Figure 4(b)). That is, the 

ultrasonic wave will now have a more focused shape instead of the spherical shape which small aperture 

transducers described in Section 1.5.3 have.  

Figures 5 and 6 show the SIR:s at different positions for an immersed copper block, where the 

transducer was placed 92 mm above the water-copper interface (y=0 means that the spatial point is 

centered under the transducer).  
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Fig. 5. Echoes from a plane surface of an immersed copper block and a 16 mm aperture at two fixed depths (z is 
the distance from the water-copper interface). 
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Fig. 6. Spatial impulse responses for an immersed copper block and a 16 mm aperture at fixed y-positions. 
 
Note that the SIR:s obtained at a spatial point located close to the transducer have a longer duration and, 

hence a more low-pass character, than the ones measured at the point located far away. Note also the 

that SIR:s drop off fast outside the transducer aperture (red color corresponds to a high amplitude and 

blue is a low amplitude). 

1.5.6 The Electro-acoustical Impulse Response  

 

So far, we have only considered the effects of the SIR and not the effects of the electro-acoustical 

properties of the measurement system. This is what is normally referred to as the system impulse 

response and is determined by the piezo-electric crystal in the probe, the excitation pulse, the cables, 

amplifiers etc. The total impulse response will then be the combination of both the SIR and the electro-

acoustical impulse response (EAIR). It is in general difficult to obtain the EAIR without performing 

measurements.    

In [43] flat-bottom holes (FBH) were used as prototypes for the impulse response. The SIR was not 

considered and the impulse response is, therefore, a combination of the SIR the EAIR as well as effects 

that result from the shape of the FBH and the fact that the measurements where performed in 

immersion. This is a reasonable approach if the only objective is to improve the temporal resolution at 

fixed depths such as the EB-weld [43].  Here we have, however, adopted the same technique as in [42] 

to obtain the EAIR. This was done to obtain an impulse response that does not depend on the SIR.  In 

short, measurements have been performed on a small steel pin using 16 elements of the array and then 

the SIR for this aperture has been deconvolved using Wiener-filtering techniques. Figure 7 shows the 

measured and the deconvolved electro-acoustical impulse response. From Figure 6 it can be seen that 

both curves are pretty similar (a time shift that has been introduced to facilitate the comparison). 
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Fig. 7. Electro-acoustical Impulse Response. Blue-dash-dotted: measured response, Red-Solid: SIR  deconvolved 
response (the impulse responses have been separated slightly for clarity). 

 

1.5.7 The Inverse Filter   

The measurement system is modeled as a linear system where the measurements (A-scans) result 

form the superposition of the responses from small scatterers. Let O(z,y) denote the  object function 

which describes the position of these scatterers. If an infinite bandwidth point transducer is used then 

the an A-scan measurement would simply be a sum of time-delayed Dirac functions,  where O(z,y) gives 

the time delays. In reality the SIR:s and the EAIR will filter this response, so the response will not have 

this simple form.    

The object function is sampled at K×N spatial points and denoted O. Let  oi be column i in O. Then 

an A-scan measurement  xk can be written  

k

kM

kMi
ikik eoSHx += ∑

+

+−=
−         (1) 

where k is the A-scan index (k=1,2,…,K),  M half the synthetic aperture (N is the  length of the A-

scans), and  ek is the measurement noise combined with modeling errors (assumed to be white 

Gaussian). The matrix H is a N× N toeplitz matrix containing the electro-acoustical impulse response, 

and the N×N matrices S|i-k| contain the  SIR:s ( |i-k|=0 means that oi is under the center of the 

transducer). Figure 8 shows the simulated response for a point scatterer when the EAIR is neglected 

(i.e., H = I, where I is the identity matrix). Note that the response differs significantly from the 

hyperbolic response that is assumed in the SAFT algorithms.  
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Fig. 8. Simulated response obtained for a point scatterer at z = 50.5 mm below water solid interface for a 16 

mm aperture (synthetic aperture M= 29 mm). 

 

Note also that 2M-1 vectors oi are used in the summation in Eq (1). That is, each A-scan is a sum of 

several vectors oi. In order to get good estimates of oi the number of A-scan:s used in the processing 

must be at least be as many as the oi otherwise the problem  becomes underdetermined resulting in poor 

performance. The model Eq (1) is, therefore, extended by stacking several A-scan:s and oi:s in column 

vectors x and o respectively,  according to Eq. (2) 

eSoHx += 0            (2) 

The matrices H0 and S are now large block-matrices with H and S|i-k| on the respective diagonals.   

The inverse problem of finding o from measurements x can now be formulated. First the sampled object 

function and the measurement noise are modeled as white Gaussian processes with zero mean and 

covariance matrices Coo and Cee respectively. The problem is then formulated as a search for a matrix K 

that minimizes the mean squared error 

{ } { } ( ){ }T
ee

T
0

T
00000000 trtrtr}{EJ KCHSSCHKSCKHCKxo ++−=−= 22

  (3) 

where tr{·} is the trace operator. 

The matrix Jminargˆ
K

K =  that minimizes the criterion (3) is the classical Wiener filter 

( ) 1−+= ee
T
0

T
000

T
0

T
ee

ˆ CHSSCHHSCK        (4) 

 

Since both o and e are white Gaussian sequences their covariance matrices are diagonal 

IandI eee00 λλ == CC 0 . The ratio between λ0 and λe determines the regularity of the solution. If, 
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for example, the measurement noise variance, λe , is high the diagonal matrix Cee will dominate in the 

inverse in Eq. (4) resulting in a smooth reconstruction. If the noise level is low the inverse is dominated 

by the factor T
0

T
000 HSSCH  which means that more weight will be given to the measurements. The 

ratio λe /λ0 can be seen as a tuning parameter which can be altered to trade between confidence in the 

measurements and the regularity (i.e. bias and variance).   The matrices in Eq. (4) are very large, but 

they are also sparse. This fact can be utilized when computing K̂ . Common software packages like 

MATLABTM have support for computing sparse matrix inverses etc. Without this facility, the inversion 

the matrix in Eq. (4) would be intractable using our present hardware.  The computation of the Wiener 

filter matrix K̂  is still rather computationally demanding. This matrix can, however, be pre-computed 

and the deconvoultion is then performed using a simple matrix-vector multiplication than can be 

performed very efficiently.   

 

1.5.8 Approximate Inverse Filter 

Despite that sparse matrix tools were used for the calculations the optimal solution (4) to Eq. (3) is 

still too demanding computationally. The problem is that H0 makes Eq. (4) less sparse. That is, H0S 

contains more non-zero entries than S. An approximate solution is to separate the deconvolution of the 

EAIR and the SIR in two steps. Then one can use H instead of H0 for deconvolving the EAIR, which is 

a much smaller problem. The two-step deconvolution can be accomplished in two ways, by 

deconvolving the EAIR first and the SIR afterwards or vice verse. The order of this procedure may have 

some influence on the final result since H is measured and S is computed by a numerical algorithm. 

That is, H has measurement (and modeling) errors and S has modeling errors that are different and enter 

differently depending on the order of the two deconvolutions. This topic is presently under 

investigation. 

 

1.5.9 Experiments 

In this section some preliminary results are shown obtained using the ALLIN system in our lab for 

the inspection of two immersed copper blocks, the first made of solid copper with side-drilled holes and 

the second a EB-welded block with natural defects. The water column used was approx. 92 mm which 

gives that the geometric focus approx. 30 mm in copper. A schematic diagram of the measurement setup 

is shown in Figure 9.   
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Fig. 9. Measurement setup. 

The side-drilled holes (SDH) are 1 mm in diameter and are separated 15 mm and drilled in a line 

inclined with an angle  of 15 degrees. The scanning has been performed in the y-direction giving B-

scans of 250  mm.5   

1.5.10 Synthetic Aperture Focusing Technique on Immersed Copper Blocks   

The SAFT algorithm has been tested using the test block shown in Figure 9 and an EB-welded Cu-

block. Measurements have been performed using one element of the array as well as 16 elements. When 

16 elements was used all elements were fired at the same time-instant (no focusing law was applied). 

Two B-scan:s using 1 and 16 elements respectively are shown in Figure 10.  
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Fig. 10. B-scans from side drilled holes. 

                                                      
5 The separation between each A-scan was 1 mm. 
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It is easy to see that the 16-element aperture results in a much narrower beam pattern than the 1-element 

ditto. It is also easy to see that the distinct hyperbolic pattern in  Figure 10(a) is much less pronounced 

in Figure 10(b). 

The idea behind using one element only is to compare the performance of the SAFT algorithm to  

the measurements obtained with focused array. One element is not strictly a line-segmented transducer, 

it has a width of 0.9 mm, but it is the smallest aperture available for the array. However, it behaves 

approximately as a point transducer that can be seen in Figure 10(a). The SAFT algorithm was also 

applied to the measurements shown in Figure 10(b) where a larger aperture has been used (16 mm). This 

was done in order to investigate the behavior of SAFT processing when small aperture transducers are 

not available or when the signal to noise ratio is too poor to use a small aperture. The processed B-scan 

data in Figure 10 are shown in Figure 11 where a synthetic aperture of 31 mm has been used. 
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Fig. 11. SAFT processed B-scans of side drilled holes. 

 

The SAFT algorithm applied to the data using 1-element shows a significant increase in spatial 

resolution as well as better signal to noise ratio. The temporal resolution is, however, about the same as 

in the original measurement, which is not surprising since it should not be affected by the SAFT 

algorithm. For comparison a measurement using 32-element focused at approximately 30 mm in copper 

is shown in Figure 12. The aperture of 32 elements was chosen so that both the focused and the 

synthetic aperture would have the same size and could be compared. Both the temporal and the spatial 

resolution is approximately the same in Figure 11(a) and Figure 12. 
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Fig. 12. B-scan measurement with a focused array using 32 elements.  

 

The SAFT processed data is focused in the whole B-scan. This, however, is not the case for the 32-

element physical focused aperture.  Figure 11(b) shows the SAFT algorithm applied to data using 16-

elements shown in Figure 10(b). The resolution is nearly the same as the original measurement and a 

slightly over-compensated behavior can be observed (the response from the SDH:s bends slightly 

upwards instead of downwards). This result indicates that the aperture size must be considered before 

applying the SAFT algorithm. Using the SAFT algorithm on too large aperture will otherwise lead to 

poor performance.   

Figure 13 shows an additional comparison of SAFT and electronic focusing using 32 elements of 

the EB-welded Cu-block TB25b. The block has been inspected from the top-side in the same manner as 

the CAN1 block [42].  
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Fig. 13. C-scans from the Cu-block TB25b. 
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The C-scans in Figure 13 are computed by taking the max amplitude of the signals within the time 

gate covering the EB weld layer. From Figure 13 it can be seen that the performance is nearly identical 

using both techniques. The difference is that when using the SAFT method the electronic scanning can 

be performed for 64 mm instead of the 32 mm which can be obtained for the 32 element focused case. 

This will improve the acquisition speed since the electronic scanning is much faster then the mechanical 

scanning.   

1.5.11 Deconvolution of the Spatial Impulse Response  

In this section we consider deconvolution of the spatial impulse response only. That is, we  

concentrate on increasing the spatial resolution and disregard the temporal deconvolution. As mentioned 

in Section 1.5.8 temporal deconvolution can be performed both before and after spatial (SIR) 

deconvolution and is regarded as a separate issue.   

The SIR-Wiener deconvolution has been performed on measurements using (un-focused) data from 

an aperture of 16 mm (i.e. 16-elements). The original measurements and the processed results are shown 

in Figure 14. The matrices involved in the computation become very large for large B-scans. The B-

scans has, therefore, been cut into smaller parts and it is these smaller B-scans that have been SIR-

Wiener deconvolved. The large B-scan in Figure 14(b) has been created by pasting those small B-scans 

together afterwards. This may result in some small temporal edge effects at the block borders. This can, 

however, be avoided by using overlapping blocks. 
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Fig. 14. SIR deconvolution of B-scan data from side-drilled holes (16 elements).  
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The result shown in Figure 14(b) has a spatial resolution comparable with the SAFT algorithm 

using 1-element data and the 32-element focused data. 6 Thus, this technique is very promising for the 

situations when the signal to noise ratio is too poor for using the classical SAFT algorithms or when 

dynamic (time-dependent) focusing is not available. Another benefit is that much simpler hardware can 

be used since the full array system is not needed. It can also be used to improve resolution of the arrays 

that cannot be geometrically focused (e.g. used in contact inspection). This can, for example, be 

accomplished by using the array to perform electronic focusing in the y-direction and then perform SIR-

deconvolution in the x-direction. If this is repeated for several depths 3D-data with high resolution in 

both x- and y-direction can be obtained.    

It must, however, be stressed that the above reported research is still in an early stage and there are 

many issues that remain to be investigated, for example, how is the SAFT performance influenced by 

the measurement aperture, transducer bandwidth, modeling errors etc.   

1.5.12 Deconvolution of the Temporal Impulse Response   

Deconvolution of the temporal impulse response, or the electro-acoustical impulse response, is 

much less computationally demanding than the SIR deconvolution since in only involves 1D 

computations and the inversion filter is stationary. The problem here is that the EAIR must be obtained 

by measurements that contain several types of measurement errors. The method used to obtain the EAIR 

is briefly described in Section 1.5.6, and typical sources of errors are: the measurement noise, 

mechanical errors due to the scanning procedure, the fact that the object that is used to measure the 

EAIR is not strictly a point scatterer, etc.   Figure 15 shows one example, where measurements from 

SDH:s have been deconvolved using the procedure described above.  
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Fig. 15. Temporal deconvolution of A-scan data from a side-drilled hole (16 elements). 

                                                      
6 That is, when the SDH:s is in  the focal zone for the 32-element focused measurements. 
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As can be seen the temporal resolution has not been increased by this procedure. The duration of 

the pulse is approximately the same before and after processing, the pulse is however more low-frequent 

than the original measurement. The reason for this might be that SDH:s does not have the same  

ultrasonic response as a point scatterer, hence the deconvolution does not result in a short Dirac pulse. 

This topic is currently under investigation with the aid of simulation software for ultrasonic scattering 

such as UT-Defect [44].   

If a short response is desired for SDH:s a SDH can be used as a prototype instead of the method 

used above. The result from such an experiment is shown in Figure 16. Clearly, a high temporal 

resolution for SDH:s has been obtained. 
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Fig. 16. Temporal deconvolution of data from  side-drilled holes (16 elements) with a SDH used as 

prototype.  

 

Note also that the noise level increases when performing deconvolution. This can be controlled, as 

mentioned in Section 1.5.7, by the noise factor in the Wiener filter. However, there is always a trade-off 

between resolution and noise level.  

 

1.6 Conclusions  

In evaluation of backscattered data from ultrasonic inspections important issues are to detect, 

locate, and size defects in the region of interest. The imaging system, that is, the probe, scanning 

mechanics, amplifiers, cables etc., will influence the measurements, which makes it more difficult for an 

operator to perform the evaluation. Typically, the operator must learn how the imaging system “distorts” 

the measurements in order to be able to make adequate decisions. Two factors that have a large 
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influence are the electro-acoustical impulse response of the system and the spatial impulse response of 

the used probe. These two factors will smear the results making the data more difficult to evaluate. The 

spatial impulse response makes the evaluation especially difficult since the smearing effect varies with 

the location of the defect.  

The two signal processing techniques, SAFT and 2D Wiener deconvolution discussed here can be 

of great aid in NDE applications. The technique, which is most suitable to use, depends on a particular 

application, that is, the type of hardware, that is used, and the properties of the inspected material. Since 

in the Cu-blocks, which have been used here for testing, the level of backscattering from grains 

(material noise) is low both methods performed equally. The resolution was at least as good as the one 

obtained using a focused phased array of similar aperture.  

The main benefit of using the synthetic methods is that the processed data can be focused for all 

depths, while a focused phased array has a fixed focal zone. The synthetic methods may be the only 

alternative if the unfocused transducers have to be used for some reason.  The synthetic methods can be 

also used in a phased array system for improving the electronic focusing limited by the aperture size. 

The two latter cases are of significant interest for the canister inspection. 
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2. Theory for harmonic imaging of welds – Nonlinear wave theory 
 
2.1 Introduction 

 
In our recent report we presented results of an experimental study concerning harmonic imaging 

technology (HIT) in an attempt to apply the technology to ultrasonic NDE, in particular to the 

inspection of EB welds [1]. In that study we had exploited two types of harmonics for harmonic 

imaging (HI) of materials: (i) transducer harmonics that originate from the high order resonant modes 

of a transducer excited with a broad band signal, and (ii) material harmonics that result from the 

nonlinear propagation of ultrasound in materials. The techniques applying transducer and material 

harmonics to ultrasonic imaging of materials were called by us transducer HIT and material HIT, 

respectively [1]. In the present report, we will focus on the material harmonics and material HIT.  

In the recent report we presented a systematical investigation of the material harmonic imaging. 

The experiments conducted using a copper block (Cu 2) with side-drilled holes as well as one canister 

specimen have shown the presence of harmonics generated in the copper material. We could detect the 

harmonics up to fourth order in the echoes from the side-drilled holes in the block Cu 2, also the 

harmonics up to third order were well pronounced in the scattering from the EB weld. The presence of 

harmonic generated by the copper material creates a potential application of harmonic imaging in 

NDE. Judging from the progress and success of the tissue HIT (some commercial medical ultrasound 

systems are already equipped with HIT) we may face a similar progress of the material HIT in the near 

future.  

It is quite obvious that developing practical applications requires good theoretical models. With 

fast development of the tissue HIT, the nonlinear acoustic theories such as Burgers equation [2] and 

the KZK (Kuznetsov-Zabolotskaya-Khokhlov) equation [3, 4], that were established since 1940s have 

regained a great attention and have become the theoretical foundation of the tissue HIT. For example, 

an approach that is based on the spatial Fourier transform and the Burgers equation, proposed for 

calculating nonlinear diffractive acoustic fields [5] is used in the tissue HIT [6, 7]. Also a computer 

model for the tissue HIT that is based on the KZK equation has been developed very recently [8]. 

The material HIT initiated in our recent report has not been yet studied so extensively as the tissue 

HIT. The theories and computer models (for nonlinear elastic waves in solids) directly applicable to 

the material HIT have not yet been established, although material harmonics have been investigated in 

a limited scale and used to evaluate the nonlinear properties of materials [9, 10]. A rather 

comprehensive theoretical review of the nonlinear elastic waves in solids is given in [11], but the 

methods for implementing the nonlinear elastic wave theories (partial differential equations) presented 

there to material HIT are not established yet.  

Our aim is to develop methods for implementing the existing nonlinear elastic theories and then to 

develop computer models for the material HIT. We are especially interested in a model for calculating 
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nonlinear elastic waves in immersed solids since the immersion inspection is used by us for copper 

canisters.  

We are planning to establish the model for calculating nonlinear elastic waves in three steps: First, 

to model nonlinear propagation of plane waves in fluids, second, to investigate the reflection and 

refraction of nonlinear plane waves at the fluid/solid interface, and third, to build the model for 

nonlinear elastic waves in immersed solids. In the present work, we start with nonlinear propagation of 

plane waves in fluids. The method for studying the nonlinear plane waves is basically adopted from 

the existing literature [14-16] although some modification would be made to adapt it to our needs. In 

the future work we will continue the second and the third steps, so as to build a model used for the 

material HIT.  

 
2.2 Concept of nonlinearity in nonlinear acoustics 

 
 What is the nonlinearity in the sense of nonlinear acoustics? To answer this question, let us 

first consider the definition of a linear system. A system H is linear if and only if   
 

[ ] [ ] [ ])()()()( 22112211 xfHaxfHaxfaxfaH +=+ , (2.1) 

 
for any arbitrary inputs )(1 xf  and )(2 xf , and any arbitrary constants 1a  and 2a . In other words, a 

linear system is the one that satisfies the superposition principle.  
The simplest example is the linear algebraic equation as follows,   

 
baxy += . (2.2) 

If  

 bax
dx
dy +=  (2.3) 

 
and assuming thet y=c when x=0,  we have  

 

cbxaxy ++= 2

2
1 , (2.4) 

 
which is no longer linear (algebraic equation). As a matter of fact, we do call Eq. (2.3), or in general,  

 

 )(xf
dx
dy =  (2.5) 

 
a linear differential equation, even though the x dependence may not itself be linear.  
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Let us look at some more complicated cases. For example, the equation governing damped 
oscillations of spring/mass systems is   

 

 02 2
2

2

=++ y
dt
dy

dt
yd ωα , (2.6) 

 
where α  and ω  are constants; the Helmholz equation, the wave equation in the frequency domain, is  

 

 0),()(),(
2

2 =





 ++∇ ωωαωω rr pj

c
p , (2.7) 

 
None of these equations (Eqs. (2.6) and (2.7)) are linear equations, but they are linear differential 

equations and describe linear systems and linear waves. It should be pointed that in Eq. (2.7) the 
attenuation )(ωα  can be nonlinearly related with frequency ω , but the equation still describes linear 

wave propagation.  
Let us look at the Burgers equation of a frequently used form in nonlinear acoustics [13] 
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and the KZK equation [3, 4]  
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where 0/ czt −=τ , and 0ω , 0c , β  and δ  are constant. The Burgers equation is a well-known 

equation that describes the nonlinear propagation of plane waves, and the KZK is an augmentation of 
the Burgers equation that describes nonlinear propagation of diffractive sound beams. The first term 
on the right hand side of the equality in Eq. (2.8), τ∂∂pp , and the second term in Eq. (2.9) 

222 )( τ∂∂ p  are the nonlinear. It is because of these nonlinear terms that the superposition principle 

of Eq. (2.1) does not hold for these equations. Thus both equations are nonlinear equations, and they 
describe nonlinear systems and nonlinear waves.  

From the above analysis we may conclude that the nonlinearities meant by nonlinear acoustics 
are phenomena of an acoustic nature that require a nonlinear differential equation for their 
description.  

Undertaking a study of nonlinear systems, one encounters the wide variety and diverse character 
of the phenomena. The vibrations of linear systems are all alike, but each nonlinear system is 
nonlinear in its own way. Therefore, every nonlinear problem is really individual. That is, it requires 
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individual, usually very complicated and difficult methods of analysis. The nonlinearity may occur in 
the source, in the medium, or even in the detection system.  

 
2.3 Theory of nonlinear plane waves – Burgers equation and its solution 

 

 The Burgers equation is a very good approximation of the equations of motion for thermoviscous 
fluids when the wave motion is plane progressive [12]. To introduce the quantities used in the study, 
we look back to Eq. (2.8). In this equation, β =1+B/2A is the coefficient of nonlinearity, 0/ czt −=τ  
the time retard, 0c  the small-signal sound speed, and δ  the diffusivity of sound, which is given by 
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B cc

11
3
41

00 ρ
κµµ

ρ
δ . (2.10) 

 
where, µ  is shear viscocity, Bµ  is bulk viscosity, κ  is thermal conductivity, and vc  and pc  are the 

specific heats at constant volume and constant pressure, respectively. Thus, the Burgers equation 
accounts explicitly for the effects of nonlinearity (due to β ) and thermoviscous dissipation (due to δ ) 

on wave propagation. Note that the Burgers equation may have different forms [12, 2].  
To apply Eq. (2.8) to depicting how a plane wave nonlinearly propagates, let us suppose that we 

have an infinite plane source at z=0 and the boundary condition on the source is given by   
 

 )(),0( 0 tfPtp = , (2.11) 

 
where 0P  is a pressure amplitude, and we find p as a function of t for 0≥x . For a mono-frequency 
source with vibration frequency 0ω , the source condition is expressed as  

 
 )sin(),0( 00 tPtP ω= , (2.12) 

 
and we are going to determine P(x,t) for 0≥x . In this mono-frequency case, the Burgers equation in 

Eq. (2.8) can be written as 
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where )/( 00 czt −= ωθ . Alternatively, the Burgers equation can be expressed in terms of particle 

velocity V as follows, 
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where we have used the following relation, 
 

 00c
V
P ρ= , (2.15) 

and 3
00 2cωδ=Γ  is a constant related to the thermo-viscous dissipation of the medium, and 

consequently Γ  is related to the energy loss in the medium. There are different methods for solving 
the Burgers equation for V or P, but one of the common methods is to use the Fourier series [14-16]. 
We use as a trial solution a Fourier series, 

 [ ]∑
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2
1)( 0 φω . (2.16) 

 
where φ  is an arbitrary phase constant and )(~ zVn  is the real amplitude of the nth harmonic. Using the 
relation )/( 00 czt −= ωθ , the above equation can be rearranged in the following form, 
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where )exp()(~)( φjnzVzV nn =  is the complex amplitude. Obviously, )()(* zVzV nn =−  since 

[ ] =−=−
** )exp()(~)( φjnzVzV nn )()exp()(~ zVjnzV nn =φ . Inserting Eq. (2.17) to Eq. (2.14), and after a 

lengthy manipulation (see Appendix 2A), we have   
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or alternatively,  
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The first and second terms in the bracket in Eq. (2.18) or Eq. (2.19) represent, respectively, the 
accretion of the nth harmonic due to the preceding harmonics and the depletion due to higher 
harmonics, over the incremented distance.  

An efficient method of solving Eq. (2.18) or (2.19) is a standard Runge-Kutta method that 
marches the solution forward over an incremental step z∆ . Specifically, the incremental change of 
particle velocity V(z, t) can be approximated by a truncated power series of the form 
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z
zVzVzzV ∆

∂
∂+=∆+ )()()( , (2.20) 

 



 2-6

where quadratic and higher order terms are neglected. Substituting zV ∂∂  in Eq. (2.18) into (2.20), we 

have  
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which we will use for the computation. Only a finite number M of harmonics are retained in the 
computation. To facilitate the interpretation of how the fundamental and the harmonics of a plane 
wave change as the plane wave propagates, we write Eq. (2.21) in more detailed form. The 
fundamental is given by 
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which shows that the fundamental component is only subject to the depletion due to higher harmonics 
over the incremented distance. The higher harmonics are given by 
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Eqs. (2.23)–(2.26) show that the higher harmonics are subject to both the accretion due to the 
preceding harmonics and the depletion due to higher harmonics, over the incremented distance. 

Assuming that )0(1V  is known and that the maximum number of harmonics used is M, we can 
iteratively calculate )( zzVn ∆+  (n = 2, ..., M) with step z∆ . 

 
2.4 Results and discussions 

 
 We have calculated nonlinear propagation of plane wave in terms of particle velocity Using Eq. 
(2.21). The program for the calculation is written in MATLAB. We assumed that the initial sinusoidal 
plane wave at z=0 has a frequency of f = 5MHz and an initial intensity of 2

0  W/cm10=I  that is 
equivalent to the initial particle velocity )0(1V =0.0871 m/s. The medium in which the wave 
propagates is water whose density and sound speed are 3

0 kg/m 1000=ρ  and m/s 15000 =c , 
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respectively, and it is assumed to be lossless, i.e., have no attenuation. The parameter B/A has a value 
of 5.2 for water at 30 Co  [17]. The results shown in Fig 2.1 were calculated assuming the step z∆ = 0.2 

mm and 20 harmonics retained. From the figure we can see how the harmonics evolve as the wave 
propagates. The fundamental component decreases with the distance, which is because the 
fundamental depletes as the higher harmonics grow over the incremented distance. The higher 
harmonics increase with the distance, because the nth harmonic accretes as the lower harmonics 
deplete the over the incremented distance. On the whole, we may say that the nth harmonic builds up 
because it gains the energy from the lower harmonics. 
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Fig. 2.1. Calculated harmonics in water due to an initial sinusoidal plane wave with frequency f 
=5MHz and initial intensity 2

0  W/cm10=I  that is equivalent to )0(1V =0.0871 m/s.  

 
2.5 Conclusion and future work 

 
Nonlinear propagation of plane waves in fluids has been investigated based on the Burgers 

equation. The method for the study is basically adopted from the existing literature [14-16] although 
some modification has been made to adapt to our situation. The solution has been re-derived and two 
alternative forms feasible for computer calculation have been given. The Runge-Kutta method was 
used in the numerical calculation of the solution. The calculated results have shown how the 
harmonics evolve as the plane wave propagates.  

It should be noted that the work presented here is just at its preliminary stage. We intend to use 
the presented model in our future work in which we plan to study nonlinear plane waves propagating 



 2-8

in layered media (because welds in copper canisters are always characterized by layered structures), 
including reflection and refraction at interface, and then to deal with more complicated cases, 
nonlinear propagation of ultrasonic beams in immersed solids (because welds in copper canisters may 
be inspected using ultrasonic beams in immersion case). As shown in the experimental study, using 
the material harmonic imaging technology one may catch a broader spectrum of information on 
inspected objects. The theoretical research may provide us with an useful guide to applying nonlinear 
waves so that the material harmonic imaging technology advances towards practical application, like 
the highly-developed tissue harmonic imaging in medical ultrasonic imaging. The goal of the present 
and future work is to build a simulation tool to model nonlinear elastic waves, which is a theoretical 
foundation of the material harmonic imaging technology.    
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Appendix 2A.  
 
Inserting Eq. (2.17) to Eq. (2.14), we have   
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Comparing the terms on both sides of Eq. (2A.3), we obtain  
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Rearranging the first term on the right-hand side of Eq. (2A.4), we may have 
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Substituting Eq. (2A.5) into Eq. (2A.4), Eq. (2A.4) becomes  
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Summing up Eqs. (2A.4) and (2A.6), we obtain 
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From Ginsberg and Hamilton [16], it follows that  
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where the relation )()( * zVzV nn −=  has been taken into account. In this way, the summation includes 
only quantities )(zVn  for n>0. Thus, Eq. (2A.7) becomes, 
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which is one of the final forms used in the computation. We can have an alternative form as follows 
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when we use the relation  
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which can be simply results from the following derivation,  
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3. Ultrasonic Imaging using acoustic phase conjugation  

3.1 Introduction 

 

It is clear that reliable detection and characterization of defects in EB weld in copper requires high 

spatial and temporal resolution. Increased spatial resolution can be obtained by electronic beam 

focusing and post-processing ultrasonic data (synthetic focusing). Beam focusing and steering is 

performed by the hardware of Allin system. The array elements are excited individually in different 

time instants and the signals received by the array elements are delayed by analog delay lines. The 

resulting beam geometry is controlled by the applied focusing law, i.e., the delays used for the 

individual elements. The focusing law is found using geometrical optics for the inspection 

configuration defined by the respective sound velocities, array geometry, and sample geometry. The 

focusing law is established using some assumptions concerning, for instance, material homogeneity.  

However, our previous research has shown that copper is inhomogeneous in the heat affected zone, 

and especially, in the weld zone [10]. This means that perfect focusing can never be obtained without 

detailed information about material structure, which obviously is unavailable before the inspection. 

Thus, compensation of the distortions must be self-adaptive since the designer has no a priori 

knowledge about them.  

Similar problems have been encountered in astronomy when focusing telescopes located on the 

earth, as well as in medical ultrasound. The solution that was first developed in astronomy consists in 

using a technique referred to as optical phase conjugation. This technique has been also adapted to 

medical ultrasound where internal human organs are to be imaged using ultrasound beams penetrating 

inhomogeneous skin and fat layers. The technique used in ultrasound, depending on the means used 

for its realization, is known as acoustic phase conjugation or time reversal mirrors. Both methods 

make use of interesting features of phase conjugated waves, the difference is in the way of generating 

conjugated waves, acoustic phase conjugation uses frequency domain approach while the time reversal 

mirrors are realized in time domain . 

A phase conjugate wave is defined as a wave that has the same spatial distribution as the incident 

wave but travels in the opposite direction. This phenomenon was first observed by Zel’dovich in a 

stimulated scattering of light [1]. After this discovery in 1972, phase conjugation has been extensively 

studied in optics [3], and this very interesting physical phenomenon has got a wide range of 

applications.  

The purpose of this chapter is twofold: first, to introduce the concept of acoustical phase 

conjugation and review methods of its realization; second, to show how this technique can be applied 

to ultrasonic inspection of EB welds. 
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3.2 Conjugator theory (frequency approach) 

In this section, we give an outline of the principle for generating acoustic phase conjugate waves. 

The basic explanation and the definition of phase conjugation and its characteristics are available, for 

example, in  [1] and [4]. Here, we assume that we have a medium (called conjugator) in which the 

multiplication of an acoustic field and some other field (electric or electromagnetic) occurs. In other 

words, the conjugator enables a parametric interaction between both fields. Suppose an acoustic wave 

given by 

 

{ } *
2
1 ][ωt)r((r)expt)(r, ⋅+−= iii kiUu    (1) 

 

is incident on this medium. Here, ki denotes the wave vector and Ui(r) expresses the amplitude that is 

assumed to vary slowly compared to the wavelength. The complex conjugate is expressed by [·]*. 

Suppose the second field ep, called the pump field, is given by 

 

{ } *
2
1 ][t)2ri(expt)(r, ⋅+−= ωppp kEe    (2) 

 

is applied on this medium simultaneously (see Fig. 1). Its wave vector is denoted as kp and the 

frequency is twice that of the incident acoustic wave. The amplitude Ep is assumed to be spatially 

uniform. Product of Eqs. (1) and (2) consists of four terms. The cross-term is expressed as 

 

{ } *
4
1 ][ω)t]-(2ω)r[(exp(r)t)(r, ⋅+−−= ippic kkiE*Uu    (3) 

 

This equation represents a wave with frequency is ω, the same as that of the incident acoustic 

wave, and with the amplitude proportional to Ui ( r)*. The wave vector of Eq. (3) is )( ip kk − . Since 

the electromagnetic velocity c is about 105 times larger than any acoustic velocity v, the pump wave 

number ck p ω2=  is negligible compared to the acoustic wave number ν
ω2=ik . Therefore, Eq. 

(3) can be approximated as 

 

{ } *
4
1 ][ωt)-ri(exp(r)t)(r, ⋅+−= ipic kE*Uu    (4) 

 

The field expressed by Eq. (4) has the same frequency as the incident acoustic wave and the spatial 

part { }ri-exp(r)t)(r, 4
1 ipic kE*Uu =  is proportional to the complex conjugate of that of the 

incident wave. Therefore, this field is the phase conjugate wave of the incident acoustic wave. 
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Figure 1 shows the above-mentioned mechanism. The most notable feature of this method is that it 

does not need any kind of fine adjustments of geometry. In other words, the whole process is 

automatic.  

 

 

 

 

 

Fig. 1. Block structure of an acoustic conjugator. 

 

The medium used for the conjugator must exhibit nonlinear characteristics to enable parametric 

interaction of the incident acoustic field and the pump field. There are two categories of materials used 

for this purpose, piezolectric and magnetic. 

 

3.3 Review of conjugation methods 

The methods for acoustic phase conjugation known today can be categorized into four groups: 

purely acoustic method, nonlinear piezoelectric method, nonlinear magneto-acoustic method, and 

purely electrical method, [1]. The first three methods involve some physical interaction between 

acoustic waves themselves or between acoustic waves and electromagnetic fields, whereas in the 

fourth method the effect is achieved using signal processing. 

Most of the studies on the earliest stage belong to the first category of purely acoustic methods. 

Acoustic phase conjugate was generated experimentally via nonlinear effects in liquid containing 

bubbles, liquid surface, and thermal waves. Acoustic phase conjugate waves were also generated via 

four wave mixing (FWM) in liquid suspending small particles. These purely acoustic methods could 

be demonstrated at relatively low acoustic frequencies (kHz—MHz). This is because the nonlinear 

interaction occurs in liquid, in which the acoustic absorption is substantially large at higher 

frequencies. 

The second category (nonlinear piezoelectric method) is based on the parametric interaction 

between acoustic waves at a frequency ω and an electric field at a frequency 2 ω. The theory of this 

method is described above; nonlinear piezoelectric material is used as conjugator and electric field as 

pump field. 

The third category (nonlinear magneto-acoustic method) which is also described by the above 

presented theory can be described as a magnetic counterpart of the piezoelectric method. Nonlinear 

magneto-acoustic media (e.g., α-Fe203 or hematites) are used as conjugator, and electomagnetic field 
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oscillating at frequency 2ω is used as pump field. An outstanding feature of this method is extremely 

high conversion ratio from the incident wave to the phase conjugate wave. The intensity of the phase 

conjugate wave is often larger than that of the incident wave, and sometimes larger by several 10 dB. 

Preobrazhensky et al. has reported on this method extensively [4] – [6]. It is very important for NDE 

applications that, in the two latter methods, operating acoustic frequency can be relatively high (MHz–

GHz). This is related to the fact that these interactions occur in solid media, characterized by much 

smaller acoustic absorption than liquid. 

The last category on our list purely electrical methods, often referred to as time reversal mirrors 

(TRM), have already found some practical applications. In these methods, no physical interaction is 

utilized, but instead, an array of ultrasonic transmitter/receiver elements, electrical circuits and signal 

processing algorithm perform the conjugation in time domain. The signals received from the inspected 

material by array elements are digitized and memorized. Then, the time-reversed waveforms are 

created and after amplification used for excitation of the same array elements. Although the fidelity of 

phase conjugate waves is not very high in this method, it has some advantages over other methods: the 

conversion ratio can be set arbitrarily, and the real-time or non-real-time operations are selectable. In 

these purely electrical methods, operating frequency is relatively low (kHz – MHz).  

 

3.4 Application of time reversal to NDE 

 

Fink et. al. [7, 8] has shown that time reversal mirror technique due to the invariance of the wave 

equation can be used to focus ultrasonic waves through heterogeneous lossless media. The invariance 

property means that, for each burst of sound that comes from a source and that can be refracted or 

scattered, there is a set of waves that precisely retrace all of the possible paths, ultimately converging 

at the original source. This property ensures that optimal focusing can be achieved by applying the 

time-reversal process on a closed surface covered with a 2D array of reversible transducers and 

surrounding the source.  

Fink has introduced the concept of time-reversal cavity, where the divergent wave issued from a 

point-like source is sampled, time-reversed, and reemitted from the 2D array. Such a processing acts 

as an inverse filter of the diffraction transfer function that relates the wave-field propagation from the 

source to the closed surface.  

In practice, since all arrays have limited aperture size a time-reversal cavity is difficult to realize 

and the time-reversal operator is only achieved over a limited area known as a time-reversal mirror 

(TRM). Its limited angular aperture results in a low-pass filter with relatively low cutoff frequency.  

Despite the above limitations a number of applications have been demonstrated using the TRM 

technique. The technique was first aimed at a medical application of lithotripsy (breaking stones in 

kidneys)[8]. However, the maximum power of the available arrays has been insufficient for their 
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practical use. Some NDE applications have been also demonstrated, mainly for detecting hard-α 

particles in titanium material for aerospace engines, cf. [11]. 

The main disadvantages of the TRM technique seem to be its low fidelity and complexity of the 

required electronic hardware. The basic scheme of focusing on a point target through an 

inhomogeneous media requires three steps. In the first step (illumination step), the array illuminates an 

angular sector that contains the target. In the second step the echoes from the target, distorted by the 

inhomogeneous medium are recorded by the array (receiving step). Then in the last step (focusing 

step), the array retransmits the time-reversed field. When the target is spatially extended and/or when 

there are several targets in the illuminated beam, the time-reversal process needs to be iterated. The 

iterative mode allows selective focusing on the most reflective target and the final transmit beam 

converges on a small portion of this target. This means that a multi-channel hardware A/D converting 

the received signals, time-reversing and amplifying them is required for each array element. The 

fidelity is limited by the resolution of the A/D converters and the performance of the power amplifiers 

used in TRM system. To obtain a satisfactory time-reversal process, a high number of channels has to 

be used for the TRM aperture, which makes the hardware complex.  

Therefore an alternative, less cumbersome method of self-focusing would be of great interest for 

the NDE applications. Recently, Ohno et. al. [1,2] have demonstrated the feasibility of the time 

reversal property and the automatic correction of phase distortion in phase conjugate process using 

nonlinear piezoceramics. They have demonstrated image improvement of a high contrast object placed 

in a special phase distorting jelly. Similar results were obtained for the magneto-elastic wave phase 

conjugator by Brysev et. al. [4, 5]. 

The advantages of nonlinear magneto-elastic method make it an interesting candidate in the 

competition with TRM and the piezoelectric method. Our direct contacts with one of the main 

developers of this method Prof. V. Preobrazhensky at EC-Lille have made realistic some preliminary 

experiments that will be presented below. 

 

3.5 Application of phase conjugation in magnetic ceramics to NDE 

 

One of the most promising methods of ultrasonic wave phase conjugation (WPC) is based on a 

strong parametric interaction of ultrasound waves with electromagnetic field in magneto-acoustic 

ceramics. A significant amplification of the phase conjugate wave is possible due the supercritical 

mode of parametric WPC, available in this type of materials [4, 5]. This valuable feature improves 

acoustic imaging by means of parametric phase conjugator in the case of high acoustical losses of the 

analyzed object. The gain obtained in the conjugator contributes to the increase of the overall signal to 

noise ratio of the imaging system.  
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A simplified scheme of the experimental conjugator setup used in the first experiments in 

conducted at EC-Lille in the laboratory of Prof. P. Pernod and Prof. V. Preobrazhensky, cf. [5], is 

shown in Fig. 2. An object was placed in the focal plane of a focalized ultrasonic transducer. Both 

object and transducer were immersed in a water tank. Symmetrically, on the other side of the object, a 

cylindrically shaped magneto-elastic phase conjugator (MPC) was introduced into the tank through a 

thin rubber membrane placed on the lateral side of the tank. The diameters of the transducer and the 

conjugator were 10 and 15 mm, respectively; the focal distance of the transducer was 30 mm. The 

conjugator had a length of 35 mm and was made of magneto-acoustic ceramics based on Ni-Co ferrite.  

 
 

Fig. 2. MPC – magneto-acoustic phase conjugator. H0 - externally produced dc magnetic bias field, applied 

to the coniugator; h(t) - alternating magnetic field of parametric pump (courtesy of  Prof. Pernod). 

 

The transducer was excited by a burst generator at a frequency of  f =10 MHz with a duration of 2 

µs. A sample consisting of an object and a special aberration layer was scanned line by line in the 

focal plane with a two-dimensional x-y positioning system. At the moment of arrival of the incident 

ultrasonic pulse in the active zone of the conjugator, the burst generator via an inductance coil applied 

an electromagnetic pumping field. The pumping burst duration was about 20 µs and its frequency was 

2f = 20 MHz. The gain of the conjugator, measured in such conditions was 80 dB. A conjugate wave 

pulse, generated inside the conjugator propagated back to the source through the sample and was 

received by the transducer. During this propagation the processes of noise suppression and compen-

sation of the discussed above phase distortions took place. A considerable improvement of images of 

small objects (electronic encapsulated integrated circuits) was demonstrated at frequency of 10 MHz. 

Recently, we have made an attempt to investigate the feasibility of imaging of larger objects in the 

configuration presented in Figure 2. A small copper block with an EB weld was immersed in water 

between the transducer and the conjugator. It appeared, however, that the power of the transducer 
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operating at a relatively high frequency of 10 MHz was too low to conduct the experiments. 

Transducer with lower frequency (e.g., 5 MHz) has to be used for obtaining some results in this case. 

It appears, however, that despite the broadband character of the conjugation phenomenon (cf. [6]) 

lower transducer frequency requires substantial changes in hardware. First, the pumping coil and its 

amplifier are to be tuned to this frequency band. Second, the power of the transducer amplifier has to 

be increased and its operating frequency band also matched to the transducer. Therefore the 

experiment has been suspended until the required hardware modifications have been completed. 

 

3.6 Concluding remarks 

The theory of phase conjugation has been presented and different methods of wave phase 

conjugation (WPC) have been reviewed and characterized. Time domain method, known as time 

reversal mirrors has been reviewed in some detail with focus on its applications to NDT.  

The ability of WPC to self-adaptive focus ultrasonic waves in inhomogeneous media makes it 

interesting in the application to the inspection of as EB welds.  

The WPC can be performed in frequency-domain using nonlinear piezoelectric or magnetic 

materials. It can be also realized in time-domain using sophisticated, muli-channel array system. 

The choice of magneto-acoustic phase conjugation, performed in nonlinear magnetic ceramics as a 

candidate for the feasibility demonstration has been motivated. Details of the preliminary experiment 

with high frequency NDE application (10 MHz), conducted at EC-Lille have been presented. The 

hardware used in this experiment has to be modified for lower operating frequency (approx. 5 MHz) to 

enable feasibility test on copper samples with EB weld. The experiments will be conducted in the near 

future in cooperation with Institut d’Electronique et de Microelecroélectronique du Nord (IEMN), 

Ecole Centrale de Lille. 
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4. Nondestructive characterization of cast iron 

4.1 Introduction 

Nondestructive characterization of steel aims at estimating material strengths, ductility, hardness 

or other mechanical parameters using the methods that do not impair material’s functionality. The 

known NDE methods can measure the material properties only indirectly using mechanical vibrations, 

magnetic field or electromagnetic waves and radiation. The NDE parameters have to be correlated 

with the material properties experimentally and using complex theoretical models. In the case of cast 

iron most NDE methods are based on the analysis of its internal microstructure. Such parameters as 

contents and shape of graphite nodules or the structure of ferrite, austenite, pearlite colonies determine 

mechanical properties of cast iron.  

Below, we present a short review of NDE methods used for the characterization of steels and cast 

iron. 

4.1.1 Ultrasonic Waves 

There are two mechanisms of interacting of ultrasonic waves with material microstructure, elastic 

and non-elastic. The elastic interaction takes the form of elastic waves that are subject to reflection, 

diffraction and scattering in the material. Velocity of the elastic waves is correlated with various 

material properties and is used as the main quantity that characterizes material microstructure.  

The non-elastic interaction describes the dissipation of wave energy due to an absorption that 

contributes to material attenuation. The attenuation that is a sum of the absorption and scattering is 

also used for material characterization.  

4.1.2 Resonant Ultrasonic Spectroscopy 

Resonant Ultrasonic Spectroscopy (RUS) is a powerful tool for making accurate measurements of 

all the elastic modulus tensor elements and their imaginary counterparts, the internal friction or 

damping capacity [9]. It is a destructive technique in that it requires preparation of specimens with a 

regular geometry such as a sphere, cylinder or parallelepiped, but its results can be used to interpret 

any nondestructive measurement of an ultrasonic wave velocity or attenuation.  

4.1.3 X-ray diffraction imaging 

Electro-optical systems optimized for rapid x-ray diffraction imaging can be used to study crystal 

lattice rotation accompanying plastic deformation, to measure the rate of grain boundary migration 

during recrystallization annealing of cold-worked metals, to determine the physical state of exploding 
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metals, to monitor the amorphous to crystalline phase transformation of rapidly solidified metals, to 

rapidly measure residual stress (strain), and to study the dynamics of structural phase transitions.  

4.1.4 Harmonic Analysis of Eddy Current Signals 

Frequency domain evaluation of eddy current signals (harmonic analysis) in ferro-magnetic 

materials has been introduced in 90s as an industrial tool for materials characterization and proved to 

be a reliable and cost effective alternative to traditional techniques of quality control (metalography, 

mechanical tests, etc.) [3]. The harmonic analysis was applied to nodular cast iron samples 

characterization to predict their metallurgical and mechanical properties. The harmonic analysis of 

eddy current signals is performed using coil producing an electromagnetic field in the inspected 

material. This field is influenced by a secondary electromagnetic field (with opposite direction) that 

results from the induction of eddy currents inside of the material, and the magnetic behavior of the 

material. Changes of magnetic properties influence the signals in their amplitude and phase shifting.  

For ferromagnetic materials the measured signal depends on the form of the hysteresis loop that in 

turn is dependent on the measuring frequency and the magnetic field intensity. The non-linearity of the 

hysteresis loop results in higher harmonic components that can be sensed using a separate pick-up coil. 

The mechanical and metallurgical parameters were found to have good correlation with the harmonic 

analysis parameters measured in the same samples, showing reliable industrial applicability of the 

technique. The main characteristics of the harmonic analysis system are the high measuring velocity 

and the high accuracy of measuring values that can be compared to destructive testing methods [3]. 

 

4.1.5 Measurement of Magnetostriction  

In ferromagnetic materials particularly steel, the application of a magnetic field changes the 

dimensions of the sample. This phenomenon, called magnetostriction, can excite ultrasonic waves 

produced by the interaction of magnetic field with a coil of wire carrying an RF current at the 

frequency of the desired ultrasonic wave. The amplitude of the ultrasonic waves produced under these 

conditions can be used to measure the value of the magnetostrictive coefficients of the particular 

ferromagnetic material involved. In order to use such measurements as a nondestructive materials 

characterization tool, theoretical models relating the measured ultrasonic wave amplitudes to the 

magnetostriction coefficient have to be established. 

From the above review we can select only two methods that are suitable for industrial applications: 

ultrasound and harmonic analysis of eddy current signals. However, the latter method has a serious 

drawback, due to the limited penetration of eddy currents (skin effect) it can be only used for the 

analysis near to the material surface. The most interesting, versatile and established seem to be the 

methods based on ultrasound. Elastic waves, like electromagnetic waves, are attenuated but a proper 

choice of frequency enables considerable penetration depths. 
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Table 1. Summary of methods used for nondestructive characterization of steels and cast iron. 

 

Method Physics Used in industry? Comments 
Ultrasound Elastic waves yes Sensitive to many parameters 
RUS Elastic waves yes (for small 

components)  
Requires well defined samples 

X-ray diffraction Electromagnetic waves no Sophisticated laboratory method 
Harmonic analysis of EC Magnetic  yes Low penetration depth 
Magnetostriction Magnetic no Low penetration depth 

 

Below, we will shortly present the principles of using ultrasound for characterizing cast iron.  

4.2 Characterization of cast iron properties using ultrasound 

 

In this section we will show how velocity, attenuation and scattering of elastic waves are 

correlated to the mechanical properties of cast iron. It should be noted however, that cast iron is an 

alloy of iron and carbon modified by minor additions of other elements, for instance, Si, Mn, P, Cr or 

Ni. Those elements result in a considerable variability of the iron’s microstructure as well as its 

mechanical properties. Since the microstructure affects propagation of elastic waves in cast iron most 

works are concerned rather with the investigation of microstructure than direct estimation of its 

mechanical parameters. 

Theory and experimental methods used for determining velocity, attenuation, and grain scattering 

in solids were established already in 70s  in by E. P. Papadakis, who published his results in a series of 

papers ([13] can serve as an excellent review of his work). Important contributions have also been 

made by researchers from Stanford University, e.g. Grayeli and coworkers [5]. In Europe the 

Fraunhofer Inst. team led by K. Goebbels has also contributed to this field (see [4] for the review of 

their results). Recent works published in 90s report mainly practical results obtained for some specific 

types of cast irons [1, 2, 7]. 

 

4.2.1 Ultrasonic velocity 

The relationship between the velocity of longitudinal, shear, and surface waves and the elastic 

modulus E, the Poison’s ratio ν and the material density ρ is well known. However, there are other 

factors that may influence the ultrasonic velocity that are less known [4]. Since the velocity depends 

on E and ρ several micro-structural effects can cause its change. A correlation between velocity and 

grain size and dislocation density has been proven experimentally. Residual and macroscopic stress, 

texture and scattering also influence the velocity. 

Ultrasonic is relatively easy to measure, especially if relative measurements are sufficient for the 

application. The measurement requires samples with fairly flat and roughly parallel surfaces and can 
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be performed using a single transducer if the sample thickness is known accurately. However, in many 

industrial applications this can be difficult to achieve – sample thickness varying from sample to 

sample results in errors. A widely used industrial configuration, shown in Fig. 1 employing a water 

tank and two transducers eliminates this problem [6, 13]. The transducers are placed in water at the 

known distance L and the time of flight in water, t0, is measured first (sound velocity in water depends 

on temperature). Then a metal sample with unknown thickness d is inserted between the transducers 

and the times t1 and t2 are measured. 

 

 

 

 

 

 

 

Fig. 1. Setup for measuring velocity in metal sample 

without knowledge of its thickness d. (a) Initial 

measurement in water. (b) Measurement of the times t1 

and t2. 

 

 

 

 

It can be shown that the sound velocity in metal, vm is 
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The absolute accurate measurement of velocity requires special techniques but accuracy of the 

above-presented method is sufficient for material characterization.  

Pappadakis [13] reports results illustrating the relationship between the tensile and yield strength 

and ultrasonic velocity for nodular versus gray cast iron. Gray iron has a lower strength than the 

nodular iron due to the shape of carbon, which in the first case takes the form of flakes while in the 

second spheroidal particles or nodules. The carbon flakes in gray iron partially subdivide and weaken 

it relative to the nodular iron. The graphite flakes lower the elastic moduli in gray iron that is 

characterized by a lower ultrasonic velocity than the nodular iron. This is clearly pronounced in the 

results obtained by Ford Motor Company and presented by Pappadakis [13]. He reported that a 35% 
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increase in yield strength (or 55% increase in tensile strength) resulted in variations of the ultrasound 

velocity from 5330 m/s to 5700 m/s. 

Similar results are also presented by Collins and Alcheikh [2], who investigated matrix structure 

and the graphite shape in cast iron. They reported variations of the ultrasound velocity from 4200 m/s 

for gray iron with graphite flakes, to 5600 m/s for the cast iron with 80 % nodularity. 

4.2.2 Ultrasonic attenuation 

The propagating ultrasonic wave is loosing its energy due to the absorption and scattering. 

Generally, attenuation coefficient is defined as a sum of the two respective terms, α = αA + αS. 

Absorption results in converting part of the wave energy to heat. The following factors contribute to 

the absorption: 

• Theromoelastic losses resulting from heating during compression, and cooling during dilatation. 

• Dislocation damping that contributes strongly to the absorption in metals. 

• Magnetoelastic losses in ferromagnetic materials. 

 

All this effects are difficult to isolate and for the technical materials an absorption coefficient αA is 

used that provides an indication of the total absorption observed for a given material. 

Scattering occurs when the ultrasonic wave propagating in the inhomogenous material enters 

interfaces where the acoustic impedance (Z = ρv) changes rapidly. This is observed for materials with 

distinct grain structure that is for all types of steel. The energy scattered at the grains is propagating in 

all directions resulting in energy loss in the main wave direction. Amount of scattering observed in a 

certain material depends on: 

• The difference in the acoustic impedance ∆Z between the matrix and the grains, 

• The ratio between the dimensions D of scatterers (grains) and the wavelength λ , 

• The volume density of the scatterers n0  

 

Scattering mechanisms have been studied in detail and it was shown that scattering by grains is 

responsible for a large part of the ultrasonic attenuation of polycrystalline metals [4, 11], and that 

scattering generally increases with frequency ( )n
ss fαα = . Since scattering depends strongly on the 

ratio λ/D  the following classification has been introduced to describe this mechanism [10]:  

• λ/D >>1 - Rayleigh scattering, signal amplitudes increase strongly with λ/D → 4fs ∝α , 

• λ/D ~1  - stochastic region, scattering ceases to increase → 2fs ∝α  

• λ/D <1 – diffusion region, geometrical reflection → 0fs ∝α . 

 



 

It means that the amount of scattering for a given material depends strongly on frequency, 

especially in the Rayleigh region. 

Measurement of scattering coefficient is rather complicated and requires more sophisticated 

methods than the measurement of velocity. First of all, a reliable coupling has to be established 

between the specimen and the transducer, for instance in immersion. Secondly, all losses due to 

transducer diffraction effects and the presence of transducer absorbing energy have to be compensated. 

Pappadakis invented a practical method employing a buffer rod between the transducer and the 

specimen (see Fig. 3) and also formulated practical rules for the diffraction correction for circular 

transducers, [12].  
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4.2.3 Ultrasonic backscattering 

Although scattering can be measured indirectly by the measurement of ultrasonic attenuation, 

alternative methods have been developed for the measurement of backscattering, i.e., this portion of 

ultrasonic energy that comes back to the emitting transducer used in pulse-echo mode. 

Since scattering depends strongly on the ratio λ/D  it is a valuable source of information about 

material microstructure (grain dimensions). Theoretical models have been developed describing the 

relationship between the scatterers volume density, their dimensions and the amount of scattering 

observed [16]. Review of this works and the practical ways of measuring the backscattering can be 

found in our previous reports [17, 18], here we will limit ourselves to citing few references concerned 

with the application to cast iron.  

To apply the abovementioned models to polycrystalline materials one has to assume that there is 

one dominating scatterer in the matrix. This assumption may be relevant for the nodular iron where 

graphite nodules are responsible for the scattering or for the pure iron that consists of ferrite grains. 

However, this assumption is not valid for heat-treated steels with more complex structure [1]. 

Kruger et al proposed a model for simulation of spectrum of the backscattered ultrasonic signal 

acquired from nodular cast iron [7]. Their preliminary results show a difference in the spectra obtained 

for the cast iron with different dimensions of nodules: 29 µm and 36 µm. 

 

4.3 Conclusion 

We have reviewed NDE methods suitable for the characterization of cast iron. Two groups of 

methods could be used in industrial environment, those based on ultrasound and on eddy current 

measurement. The latter group, however, has an inherent limitation – a low penetration depth, in 

practice less than a couple of millimeters. Therefore, our review has been focused on sensing the 

interaction of elastic waves with cast iron microstructure. We have explained how three different 

features of ultrasound, the sound velocity, the attenuation and the backscattering, can be used for the 

characterization. The two latter features are functions of frequency and contain a great deal of 

information about the material properties, especially its microstructure. Generally, an accurate 

measurement of velocity and particularly attenuation requires taking samples, while the backscattering 

does not. However, the extraction of  the useful information concerning a particular type of cast iron 

from ultrasonic measurements is a complex issue that requires experimental work involving samples 

of this material. 
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