# International Progress Report

IPR-01-24

# **Äspö Hard Rock Laboratory**

**Canister Retrieval test** 

Sensor data report (Period: 001026 - 010201)

**Report No: 1** 

Reza Goudarzi Lennart Börgesson Clay Technology AB

February 2001

#### Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden

Tel +46 8 459 84 00 Fax +46 8 661 57 19



Report no. No.  $IPR-01-24 \hspace{1cm} F69K$  Author Date  $R \hspace{1cm} Goudarzi, \hspace{1cm} L \hspace{1cm} B\"{o}rgesson \hspace{1cm} 01-02-01$ 

Checked by Date

Approved Date
Christer Svemar 01-07-03

# **Äspö Hard Rock Laboratory**

#### **Canister Retrieval test**

Sensor data report (Period: 001026 - 010201)

**Report No: 1** 

Reza Goudarzi Lennart Börgesson

Clay Technology AB

February 2001

Keywords: Data, canister retrieval

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

## **Abstract**

This report presents data from the measurements in the Canister Retrieval Test from 001026 to 010201.

The following measurements are made in the bentonite: Temperature is measured in 32 points, total pressure in 27 points, pore water pressure in 14 points and relative humidity in 55 points. Temperature is also measured by in all relative humidity gauges. The positions of the measuring points in the bentonite are related to a coordinate system in the deposition hole.

The following measurements are made in the rock: Temperature is measured in 40 points, stresses are measured in 8 points and strain is measured in 9 points. Results from the two latter measurements are not shown in this report.

The following measurements are made in the canister: Temperature is measured every meter along two fiber optic cables and strain is measured in 75 points on the surface of the copper envelop. Temperature is measured in the steel insert in 18 points.

Results from the two latter measurements are not shown in this report

The following measurements are made on the plug: Force is measured in 3 of the 9 anchors and vertical displacement is measured in three points.

The water inflow to the filter mats on the rock surface is also measured.

The general conclusion is that the measuring systems and transducers seem to work well but the following problems have been noted: There has been a delay of the evaluation of stress and strain measurements in the canister and in the rock and those results are not included. There have been problems with the data collection system for the fiber optical cables, which yielded a period with no data. A few Vaisala relative humidity transducers, located in the high temperature region, have failed.

## Sammanfattning

I denna rapport presenteras data från mätningar i Återtag under perioden 001026-010201.

Följande mätningar görs i bentoniten: Temperaturen mäts i 32 punkter, totaltryck i 27 punkter, porvattentryck i 14 punkter och relativa fuktigheten i 55 punkter. Temperaturen mäts även i alla relativa fuktighetsmätare. Varje mätpunkt relateras till ett koordinatsystem i deponeringshålet.

Följande mätningar görs i berget: Temperaturen mäts i 40 punkter, spänning mäts i 8 punkter och töjning mäts i 9 punkter. Resultat från de två senare visas inte i denna rapport.

Följande mätningar görs på ytan i kapselns kopparhölje: Temperaturen mäts varje meter längs två fiberoptiska kablar och töjning mäts i 75 punkter. Temperaturen mäts i stålinsatsen i kanistern i 18 punkter.

Resultat från de två senare mätningarna redovisas inte i denna rapport.

Följande mätningar görs på pluggen: Kraften mäts i 3 av de 9 stagen och vertikala förskjutningen mäts i tre punkter.

Vatteninflödet till filtermattorna mäts också.

En generell slutsats är att mätsystemen och givarna tycks fungera bra, men följande problem har noterats: Utvärderingen av spännings- och töjningsmätarna i berget och kapseln har försenats och dessa resultat är inte redovisade. Problem med datainsamlingssystemet till de fiberoptiska kablarna har medfört att det saknas data under en period. Några av Visalas relativa fuktighetsmätare, belägna nära kapseln, har slutat fungera.

# **Contents**

| Abstract                                                       | 11          |
|----------------------------------------------------------------|-------------|
| Sammanfattning                                                 | ii          |
| Contents                                                       | iv          |
| 1 Introduction                                                 | 1           |
| 2 Comments                                                     | 2           |
| 2.1 General                                                    | 2           |
| 2.2 Total pressure, Geokon                                     | 2           |
| 2.3 Total Pressure, Kulite                                     | 2<br>2<br>2 |
| 2.4 Suction, Wescore Psychrometers                             |             |
| 2.5 Relative humidity, Vaisala                                 | 3 3         |
| 2.6 Pore water pressure, Geokon                                | 3           |
| 2.7 Pore water pressure, Kulite                                | 3           |
| 2.8 Water flow into the filters                                | 3           |
| 2.9 Forces on the plug                                         | 3           |
| 2.10 Displacement of the plug                                  | 4           |
| 2.11 Canister power                                            | 4           |
| 2.12 Temperature in the buffer                                 | 4           |
| 2.13 Temperature in the rock                                   | 4           |
| 2.14 Temperature on the canister surface, Optical fiber cabels | 4           |
| 2.15 Temperature inside the canister                           | 4           |
| 2.16 Strain in the canister                                    | 4           |
| 2.16 Rock stresses and strain                                  | 4           |
| 3 Geometry                                                     | 5           |
| 4 Location of instruments                                      | 6           |
| 4.1 Brief description of the instruments                       | $\epsilon$  |
| 4.2 Strategy for describing the position of each device        | . 7         |
| 4.3 Position of each instrument in the bentonite               | 8           |
| 4.4 Instruments in the rock                                    | 13          |
| 4.5 Instruments in the Canister                                | 14          |
| 4.6 Instruments at the plug                                    | 17          |
| References                                                     | 18          |
| Appendix 1                                                     | 19          |

## 1 Introduction

The installation of the Canister Retieval Test was made during autumn 2000. In general the data in this report are presented in diagrams covering the time period 2000-10-26 to 2001-02-01. The time axis in the diagrams represents days from 2000-10-26. The diagrams are attached.

A test overview with the positions of the measuring points and a brief description of the instruments is also presented in this report (chapters 3 and 4).

General comments concerning the collection of the data are given in chapter 2.

## 2 Comments

#### 2 General

In this chapter short comments on general trends in the measurements are given. Sensors that are not delivering reliable data or no data at all are noted and comments on the data collection in general are given.

The slot between rock and bentonite block was filled with bentonite pellets and water at 001026. This date is also marked as start date.

The saturation of the bentonite started by applying 1 m water head in the water supply tank connected to the filters on 001102.

The heating of the canister started with an initially applied constant power of 700 W at 001027 that is one day after test start. The power was raised to 1700 W on 001113.

## 2.2 Total pressure, Geokon (pages 19-21)

The measured pressure range is from 0 to 2.6 MPa. The highest pressure is indicated from P105, P107, P109 and P114. The three first are placed in cylinder 1 and all of them are placed at the same distance from the canister and near the bentonite block periphery. P114 is placed in Ring5 in the slot at the bentonite block periphery.

Sensor P104 was not installed

U106 was originally intended to be a pore pressure sensor but was replaced by a total pressure sensor.

## 2.3 Total Pressure, Kulite (page 22)

Six total pressure transducers are installed in the bentonite blocks. P224 and P222 indicate high pressure corresponding to 2 MPa and 1 MPa. These sensors are placed in the bentonite block periphery in Ring10. P224 did not work properly until after 60 days

P221 yields unreliable reading and it is not plotted in this report.

## 2.4 Suction, Wescore Psychrometers (page 23)

The three transducer W141, W147 and W124 have started to yield values that can be interpreted, which means that they are very close to water saturation.

W141 and W147 placed near the periphery surface in Ring10.

W124 placed near the periphery surface in the bentonite block Ring5.

## 2.5 Relative humidity, Vaisala (pages 24-27)

W112 was not installed. W102 and W125 were out of order from start and they are not plotted in this report.

W103 and W101 have stopped working during this period.

The measured water ratio range is from 70% till 100%.

W106, W111, W118 in Cylinder1, W121, W127 in Ring 5 and W150, W138, and W144 in Ring10 indicate high relative humidity. All these transducers are placed near the periphery of the bentonite blocks.

## 2.6 Pore water pressure, Geokon (pages 28-29)

U108 and U110 yield a water pressure of 100 kPa. They are placed in the periphery of Ring 5. U107 and U105 yield 70 kPa and 50 kPa. These sensors are placed in Ring5 but not near the periphery of the bentonite block.

U106 is replaced by a total pressure sensor.

The remaining sensors of this type yield zero pressure.

## 2.7 Pore water pressure, Kulite (page 30)

There are only one sensor of this type in Ring 10 and one in Cylinder 4. Both indicate zero pressure.

## 2.8 Water flow into the filters (page 31)

Measurement of water inflow into the filters started on 001102. The total inflow to the filter during the actual period has been 174 liter. There seems to be close to a steady flow of about 0.5 l/day.

## 2.9 Forces on the plug (page 32)

The forces on the plug have been measured since 001106. The total force is about 2500 kN at 010201.

During the first about 50 days the plug was only fixed with 3 rods. When the total force exceeded 1500 kN the rest of the 9 rods were fixed in a prescribed manner. This procedure took place 12-14 December that is 46-48 days after test start. From that time only every third anchor is measured and the results should thus be multiplied with 3. The diagram shows both the actual measurements and after multiplication with 3.

## 2.10 Displacement of the plug (page 33)

The three displacement gauges were placed and started to measure displacements from 001101. The results show that two of the transducers have about the same displacement but the third has yielded a much lower displacement. The plug thus seems to tilt.

## 2.11 Canister power (page 34)

The measurement of the power of the canister was erroneous during the first 20 days, which was the reason for that only 700 W were applied from start.

## 2.12 Temperature in the buffer (pages 35-39)

The temperature ranges from no increase at all (in the periphery of the upper bentonite cylinder C4) to a total temperature of 59 degrees in the center close to the canister. The highest temperature gradient is 0.55 degrees/cm (ring 5).

## 2.13 Temperature in the rock (pages 40-43)

The maximum temperature in the rock (44 degrees) is measured in the central section on the surface of the deposition hole. Almost complete axial symmetry can be observed.

# 2.14 Temperature on the canister surface, Optical fiber cables (pages 44-45)

The first diagram shows the maximum temperature plotted as a function of time. The maximum temperature on the canister surface is 65 degrees. The second diagram shows the distribution of the temperature along the cables. The length of the cable on the canister surface is only about 20 m and close to the entrances the temperature is affected by the lower surrounding temperatures.

## 2.15 Temperature inside the canister (pages 46-47)

The highest temperature (75 degrees) is measured in the center of the canister (P15). In the same central section the temperature on the surface of the steel insert (P5) is about 5 degrees lower, which can be compared to the corresponding temperature on the copper surface, which is still 5 degrees lower.

#### 2.16 Strain in the canister

Continuous measurements have been made but so far no results have been produced due to evaluation problems.

#### 2.16 Rock stresses and strain

Continuous measurements have been made but so far no results have been produced due to evaluation problems.

# 3 Geometry

The test installation consists of a full scale deposition hole, a copper canister equipped with electrical heaters and bentonite blocks (cylindrical and ring shaped). A plug of concrete and steel is anchored to the rock on top of the bentonite.

The saturation of the bentonite is attained artificially by vertical filter stripes. 16 stripes with a width of 0.1 meters and a length of 5.5 meters are applied on the surrounding rock.

Measurements are made in four vertical sections A, B, C and D according to Figure 3-1. Direction A-B is parallel to the tunnels axial with A headed almost against north.

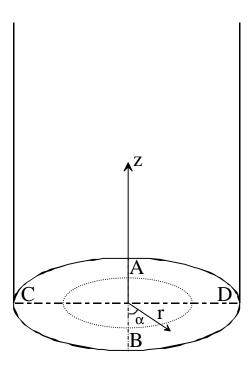



Figure 3-1. Figure describing the instrument planes (A-D) and the coordinate system used when describing the instrument positions.

## 4 Location of instruments

### 4.1 Brief description of the instruments

The different instruments that are used in the experiment are briefly described in this chapter.

#### Measurements of temperature

Buffer

Thermocouples from BICC have been installed for measuring temperature in the buffer. Measurements are done in 32 points in the test hole. In addition, temperature gauges are built in into the capacitive relative humidity sensors (29 sensors) as well as in the pressure gauges of vibrating wire type (13 gauges). Temperature is also measured in the psychrometers.

#### Canister

Temperature is measured inside the canister (on the insert) in 19 points with PT-100 gauges. In addition temperature is measured on the surface of the canister with optical fiber cables. An optical measuring system called FTR (Fiber Temperature Laser Radar) from BICC is used.

#### Rock

Temperature in the rock and on the rock surface of the hole is measured in 40 points with thermocouples from BICC.

#### Measurement of total pressure in the buffer

Total pressure is the sum of the swelling pressure and the pore water pressure. It is measured with the following instrument types:

- Geocon total pressure cells with vibrating wire transducers. 15 cells of this type have been installed.
- Kulite total pressure cells with piezo resistive transducers. 6 cells of this type have been installed.

#### Measurement of pore water pressure in the buffer

Pore water pressure is measured with the following instrument types:

- Geocon pore pressure cells with vibrating wire transducer. 13 cells of this type have been installed.
- Kulite pore pressure cells with piezo resistive transducer. 2 cells of this type have been installed.

#### Measurement of the water saturation process

The water saturation process is recorded by measuring the relative humidity in the pore system, which can be converted into water ratio or total suction (negative water pressure). The following techniques and devices are used:

- Vaisala relative humidity sensor of capacitive type. 29 cells of this type have been installed. The measuring range is 0-100 % RH.
- Wescor psychrometers model PST-55. The devices measure the relative humidity in the pore system, The measuring range is 95.5-99.6 % RH corresponding to the pore water pressure -0.5 to -6MPa. 26 cells of this type have been installed.

#### Measurements of stresses and strain in the rock

These are not reported.

#### Measurements of forces on the plug

The force on the plug caused by the swelling pressure of the bentonite is measured in 3 of the 9 anchors. The force transducers are of the type GLÖTZL.

#### Measurements of plug displacement

Due to straining of the anchors the swelling pressure of the bentonite will cause not only a force on the plug but also displacement of the plug. The displacement is measured in three points with transducers of the type LVDT with the range 0 - 50 mm.

#### Measurement of water flow into the permeable mats

Water is supplied to the bentonite with filter strips attached to the rock surface. The water flow into these mats is measured by measuring the water volume in the supply tank with a differential pressure transmitter that measures the difference in pressure between the nitrogen in the top of the tank and the water in the bottom of the tank.

## 4.2 Strategy for describing the position of each device

Every instrument is named with a short unique name consisting of 1-2 letters describing the type of measurement and 3 figures numbering the device. Every instrument position in the buffer and rock is described with three coordinates according to Figure 3-1.

The r-coordinate is the horizontal distance from the center of the hole and the z-coordinate is the height from the bottom of the hole (the block height is set to 500 mm). The  $\alpha$ -coordinate is the angle from the vertical direction B (almost south).

The short description of the positions in the diagrams differs between the buffer and the rock.

**Buffer:** Three positions with the following meaning: (bentonite block or cylinder number counted from the bottom  $\setminus$  direction A, B, C, or D  $\setminus$  radius in mm from center line)

**Rock:** Three positions with the following meaning: (distance in meters from the bottom  $\setminus \alpha$  according to Fig 3-1  $\setminus$  distance in meters from the hole surface)

The bentonite blocks are called cylinders and rings. The cylinders are numbered C1-C4 and the rings R1-R10 respectively (Figure 4-1).

### 4.3 Position of each instrument in the bentonite

Measurements are done in four vertical sections A, B, C and D according to Figure 3-1. Direction A and B are placed in the tunnels axial direction.

An overview of the positions of the instruments is shown in Fig 4-1. Exact positions are described in Tables 4-1 to 4-4.

The instruments are located in two main levels in the blocks, 50 mm and 160 mm, from the upper surface. The thermocouples have mostly placed in the 50mm level and the other gauges in the 160 mm level.

O pore water pressure + temp.

□ total pressure + temp.

× temp.

Δ relative humidity (+ temp.)



Figure 4-1 Schematic view over the instruments in four vertical sections and the block designation.

Table 4-1 Numbering and position of instruments for measuring temperature (T)

|                 |         | Instrum   | ent position | in block |      | Cable pos. |           |        |
|-----------------|---------|-----------|--------------|----------|------|------------|-----------|--------|
| Type and number | Block   | Direction | α            | r        | z    | α          | Fabricate | Remark |
| T101            | Cyl. 1  | Center    | 90           | 50       | 50   | 242        | BICC      |        |
| T102            | Cyl. 1  | Center    | 90           | 50       | 250  | 238        | BICC      |        |
| T103            | Cyl. 1  | Center    | 90           | 50       | 450  | 230        | BICC      |        |
| T104            | Cyl. 1  | Α         | 180          | 635      | 450  | 206        | BICC      |        |
| T105            | Cyl. 1  | Α         | 180          | 735      | 450  | 202        | BICC      |        |
| T106            | Cyl. 1  | В         | 365          | 685      | 450  | 38         | BICC      |        |
| T107            | Cyl. 1  | С         | 275          | 685      | 450  | 274        | BICC      |        |
| T108            | Cyl. 1  | D         | 90           | 585      | 450  | 96         | BICC      |        |
| T109            | Cyl. 1  | D         | 90           | 685      | 450  | 94         | BICC      |        |
| T110            | Cyl. 1  | D         | 90           | 785      | 450  | 92         | BICC      |        |
| T111            | Ring 5  | Α         | 180          | 635      | 2950 | 224        | BICC      |        |
| T112            | Ring 5  | Α         | 180          | 735      | 2950 | 218        | BICC      |        |
| T113            | Ring 5  | В         | 360          | 610      | 2950 | 318        | BICC      |        |
| T114            | Ring 5  | В         | 360          | 685      | 2950 | 322        | BICC      |        |
| T115            | Ring 5  | В         | 360          | 735      | 2950 | 324        | BICC      |        |
| T116            | Ring 5  | С         | 270          | 610      | 2950 | 258        | BICC      |        |
| T117            | Ring 5  | С         | 270          | 685      | 2950 | 260        | BICC      |        |
| T118            | Ring 5  | С         | 270          | 735      | 2950 | 262        | BICC      |        |
| T119            | Ring 5  | D         | 90           | 585      | 2950 | 44         | BICC      |        |
| T120            | Ring 5  | D         | 90           | 635      | 2950 | 46         | BICC      |        |
| T121            | Ring 5  | D         | 90           | 685      | 2950 | 48         | BICC      |        |
| T122            | Ring 5  | D         | 90           | 735      | 2950 | 50         | BICC      |        |
| T123            | Ring 5  | D         | 90           | 785      | 2950 | 52         | BICC      |        |
| T124            | Ring 10 | Α         | 180          | 635      | 5450 | 200        | BICC      |        |
| T125            | Ring 10 | Α         | 180          | 735      | 5450 | 194        | BICC      |        |
| T126            | Ring 10 | D         | 90           | 585      | 5450 | 54         | BICC      |        |
| T127            | Ring 10 | D         | 90           | 685      | 5450 | 56         | BICC      |        |
| T128            | Ring 10 | D         | 90           | 785      | 5450 | 58         | BICC      |        |
| T129            | Cyl. 3  | Α         | 180          | 785      | 6250 | 166        | BICC      |        |
| T130            | Cyl. 3  | В         | 365          | 585      | 6250 | 358        | BICC      |        |
| T131            | Cyl. 3  | С         | 275          | 585      | 6250 | 280        | BICC      |        |
| T132            | Cyl. 4  | Α         | 180          | 785      | 6950 | 66         | BICC      |        |

Table 4-2 Numbering and position of instruments for measuring total pressure (P)

|                 |         | Instrum   | ent position | in block |      | Cable pos. |           |        |
|-----------------|---------|-----------|--------------|----------|------|------------|-----------|--------|
| Type and number | Block   | Direction | α            | r        | Z    | α          | Fabricate | Remark |
| P101            | Cyl. 1  | Center    | 180          | 50       | 50   | 244        | Geocon    |        |
| P102            | Cyl. 1  | Center    | 180          | 50       | 250  | 232        | Geocon    |        |
| P103            | Cyl. 1  | Α         | 185          | 585      | 250  | 208        | Geocon    |        |
| P104            | Cyl. 1  | Α         | 185          | 685      | 250  | 204        | Geocon    |        |
| P105            | Cyl. 1  | Α         | 185          | 785      | 250  | 186        | Geocon    |        |
| P106            | Cyl. 1  | В         | 365          | 585      | 250  | 40         | Geocon    |        |
| P107            | Cyl. 1  | В         | 365          | 785      | 250  | 2          | Geocon    |        |
| P108            | Cyl. 1  | С         | 275          | 585      | 250  | 278        | Geocon    |        |
| P109            | Cyl. 1  | С         | 275          | 785      | 250  | 270        | Geocon    |        |
| P110            | Ring 5  | Α         | 185          | 585      | 2750 | 228        | Geocon    |        |
| P111            | Ring 5  | Α         | 185          | 685      | 2750 | 222        | Geocon    |        |
| P112            | Ring 5  | Α         | 185          | 785      | 2750 | 188        | Geocon    |        |
| P113            | Ring 5  | В         | 365          | 535      | 2750 | 36         | Geocon    |        |
| P114            | Ring 5  | В         | 365          | 825      | 2750 | 16         | Geocon    |        |
| P115            | Ring 5  | С         | 275          | 585      | 2750 | 296        | Geocon    |        |
| P116            | Ring 5  | С         | 275          | 785      | 2750 | 290        | Geocon    |        |
| P117            | Ring 10 | Center    | 180          | 50       | 5250 | 24         | Kulite    |        |
| P118            | Ring 10 | Α         | 180          | 585      | 5250 | 216        | Geocon    |        |
| P119            | Ring 10 | Α         | 180          | 685      | 5250 | 198        | Geocon    |        |
| P120            | Ring 10 | Α         | 180          | 785      | 5250 | 192        | Geocon    |        |
| P121            | Ring 10 | В         | 365          | 585      | 5250 | 20         | Kulite    |        |
| P122            | Ring 10 | В         | 365          | 785      | 5250 | 18         | Kulite    |        |
| P123            | Ring 10 | С         | 275          | 585      | 5250 | 286        | Kulite    |        |
| P124            | Ring 10 | С         | 275          | 785      | 5250 | 284        | Kulite    |        |
| P125            | Cyl. 3  | Center    | 180          | 50       | 6250 | 158        | Geocon    |        |
| P126            | Cyl. 3  | Α         | 180          | 585      | 6250 | 162        | Geocon    |        |
| P127            | Cyl. 4  | Center    | 180          | 50       | 6750 | 64         | Kulite    |        |

Table 4-3 Numbering and position of instruments for measuring pore water pressure (U)

|                 |         | Instrum   | ent position | in block |      | Cable pos. |           |             |
|-----------------|---------|-----------|--------------|----------|------|------------|-----------|-------------|
| Type and number | Block   | Direction | α            | r        | Z    | α          | Fabricate | Remark      |
| U101            | Cyl. 1  | Center    | 270          | 50       | 50   | 246        | Geocon    |             |
| U102            | Cyl. 1  | Center    | 270          | 50       | 250  | 236        | Geocon    | Horizontal  |
| U103            | Cyl. 1  | Α         | 175          | 585      | 250  | 126        | Geocon    |             |
| U104            | Cyl. 1  | Α         | 175          | 785      | 250  | 178        | Geocon    |             |
| U105            | Ring 5  | Α         | 175          | 585      | 2750 | 138        | Geocon    |             |
| U106            | Ring 5  | Α         | 175          | 785      | 2750 | 180        | Geocon    |             |
| U107            | Ring 5  | В         | 355          | 535      | 2750 | 314        | Geocon    |             |
| U108            | Ring 5  | В         | 355          | 825      | 2750 | 348        | Geocon    |             |
| U109            | Ring 5  | С         | 265          | 585      | 2750 | 256        | Geocon    | In the slot |
| U110            | Ring 5  | С         | 265          | 825      | 2750 | 264        | Geocon    | In the slot |
| U111            | Ring 10 | Α         | 175          | 585      | 5250 | 146        | Geocon    |             |
| U112            | Ring 10 | Α         | 175          | 785      | 5250 | 152        | Geocon    |             |
| U113            | Cyl. 3  | Center    | 270          | 50       | 6250 | 156        | Geocon    |             |
| U114            | Cyl. 4  | Center    | 270          | 50       | 6950 | 62         | Kulite    |             |

Table 4-4 Numbering and position of instruments for measuring water content (W)

| W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |        | Instrum   | ent position | in block |      | Cable pos. |           |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|-----------|--------------|----------|------|------------|-----------|-------------|
| W101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Type and number | Block  | Direction | α            | r        | 7    | α.         | Fahricate | Remark      |
| W1102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |        |           |              |          |      |            |           | Remark      |
| W1103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |        |           |              |          |      |            |           |             |
| W1104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | _      |           |              |          |      |            |           | Horizontal  |
| W1105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |        |           |              |          |      |            |           | Tionzontai  |
| W106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |        |           |              |          |      |            |           |             |
| W107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | _      |           |              |          |      |            |           |             |
| W108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |        |           |              |          |      |            |           |             |
| WH09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |        |           |              |          |      |            |           |             |
| W110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |        |           |              |          |      |            |           |             |
| W111         Cyl. 1         B         360         785         340         360         Vaisala           W112         Cyl. 1         B         360         685         340         308         Vaisala           W113         Cyl. 1         B         355         585         340         306         Wescor           W115         Cyl. 1         B         355         685         340         306         Wescor           W116         Cyl. 1         C         270         585         340         250         Wescor           W116         Cyl. 1         C         270         585         340         250         Wescor           W118         Cyl. 1         C         270         785         340         252         Wescor           W118         Cyl. 1         C         270         785         340         252         Wescor           W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         585         2840         122         Vaisala           W121         Ring 5         A         170         585                                                                                                                                      |                 |        |           | 360          |          |      |            |           |             |
| W112         Cvl. 1         B         360         685         340         308         Vaisala           W113         Cyl. 1         B         355         585         340         302         Wescor           W114         Cyl. 1         B         355         685         340         310         Wescor           W116         Cyl. 1         C         270         585         340         250         Wescor           W117         Cyl. 1         C         270         685         340         252         Wescor           W117         Cyl. 1         C         270         685         340         252         Wescor           W118         Cyl. 1         C         270         785         340         254         Vaisala           W119         Ring 5         A         180         585         2840         220         Vaisala           W120         Ring 5         A         180         685         2840         122         Vaisala           W121         Ring 5         A         170         685         2840         142         Vescor           W122         Ring 5         A         170         785                                                                                                                                     | W111            | Cvl. 1 |           | 360          | 785      | 340  | 360        | Vaisala   |             |
| W114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W112            |        | В         | 360          | 685      |      |            | Vaisala   |             |
| W115         Cyl. 1         B         355         785         340         310         Wescor           W116         Cyl. 1         C         270         685         340         252         Wescor           W117         Cyl. 1         C         270         685         340         252         Wescor           W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         180         685         2840         120         Vaisala           W122         Ring 5         A         170         585         2840         136         Wescor           W123         Ring 5         A         170         585         2840         140         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         685         2840         142         Wescor           W125         Ring 5         B         360         535 <td>W113</td> <td>Cyl. 1</td> <td>В</td> <td>355</td> <td>585</td> <td>340</td> <td>302</td> <td>Wescor</td> <td></td>           | W113            | Cyl. 1 | В         | 355          | 585      | 340  | 302        | Wescor    |             |
| W115         Cyl. 1         B         355         785         340         310         Wescor           W116         Cyl. 1         C         270         685         340         252         Wescor           W117         Cyl. 1         C         270         685         340         252         Wescor           W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         180         685         2840         120         Vaisala           W122         Ring 5         A         170         585         2840         136         Wescor           W123         Ring 5         A         170         585         2840         140         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         685         2840         142         Wescor           W125         Ring 5         B         360         535 <td>W114</td> <td>Cyl. 1</td> <td>В</td> <td>355</td> <td>685</td> <td>340</td> <td>306</td> <td>Wescor</td> <td></td>           | W114            | Cyl. 1 | В         | 355          | 685      | 340  | 306        | Wescor    |             |
| W117         Cyl. 1         C         270         685         340         252         Wescor           W118         Cyl. 1         C         270         785         340         254         Vaisala           W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         180         685         2840         182         Vaisala           W122         Ring 5         A         170         585         2840         140         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         685         2840         140         Wescor           W125         Ring 5         B         360         535         2840         34         Vaisala           W126         Ring 5         B         360         685         2840         35         Vaisala           W127         Ring 5         B         350         535 </td <td>W115</td> <td>Cyl. 1</td> <td>В</td> <td>355</td> <td>785</td> <td>340</td> <td>310</td> <td></td> <td></td>          | W115            | Cyl. 1 | В         | 355          | 785      | 340  | 310        |           |             |
| W118         Cyl. 1         C         270         785         340         254         Vaisala           W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         180         785         2840         182         Vaisala           W122         Ring 5         A         170         585         2840         136         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         B         360         585         2840         142         Wescor           W126         Ring 5         B         360         685         2840         316         Vaisala           W127         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         312         Wescor         In the slot           W127         Ring 5         B                                                                                                                                  | W116            | Cyl. 1 | С         |              | 585      | 340  | 250        | Wescor    |             |
| W119         Ring 5         A         180         585         2840         226         Vaisala           W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         180         785         2840         182         Vaisala           W122         Ring 5         A         170         585         2840         140         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         785         2840         140         Wescor           W125         Ring 5         B         360         535         2840         316         Vaisala           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         34         Vaisala           W128         Ring 5         B         350         535         2840         32         Wescor           W130         Ring 5         B         350         685<                                                                                                                              | W117            | Cyl. 1 | С         | 270          | 685      | 340  | 252        | Wescor    |             |
| W120         Ring 5         A         180         685         2840         220         Vaisala           W121         Ring 5         A         170         585         2840         182         Vaisala           W122         Ring 5         A         170         585         2840         140         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         785         2840         140         Wescor           W125         Ring 5         B         360         535         2840         142         Wescor           W126         Ring 5         B         360         535         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         34         Vaisala           W128         Ring 5         B         350         585         2840         310         Vaisala           W129         Ring 5         B         350         585         2840         320         Wescor           W130         Ring 5         C         270         585<                                                                                                                              | W118            | Cyl. 1 | С         | 270          | 785      | 340  | 254        | Vaisala   |             |
| W121         Ring 5         A         180         785         2840         182         Vaisala           W122         Ring 5         A         170         585         2840         136         Wescor           W123         Ring 5         A         170         785         2840         140         Wescor           W124         Ring 5         A         170         785         2840         142         Wescor           W125         Ring 5         B         360         535         2840         316         Vaisala         In the slot           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         312         Wescor         In the slot           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         785         2840         320         Wescor         In the slot           W130         Ring 5         C         270         585         2840         294         Wescor                                                                                                                | W119            | Ring 5 | Α         | 180          | 585      | 2840 | 226        | Vaisala   |             |
| W122         Ring 5         A         170         585         2840         136         Wescor           W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         785         2840         142         Wescor           W125         Ring 5         B         360         535         2840         316         Vaisala         In the slot           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         685         2840         320         Wescor           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor           W131         Ring 5         C         270         585         2840         349         Wescor           W131         Ring 5         C         <                                                                                                                          | W120            | Ring 5 | Α         | 180          | 685      | 2840 | 220        | Vaisala   |             |
| W123         Ring 5         A         170         685         2840         140         Wescor           W124         Ring 5         A         170         785         2840         142         Wescor           W125         Ring 5         B         360         535         2840         316         Vaisala         In the slot           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         C         270         585         2840         346         Wescor           W131         Ring 5         C         270         585         2840         292         Wescor           W131         Ring 5         C         270         785         2840         292         Wescor           W132         Ring 5                                                                                                                          | W121            | Ring 5 | Α         | 180          | 785      | 2840 | 182        | Vaisala   |             |
| W124         Ring 5         A         170         785         2840         142         Wescor           W125         Ring 5         B         360         535         2840         316         Vaisala         In the slot           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W130         Ring 5         B         350         685         2840         320         Wescor           W131         Ring 5         C         270         585         2840         324         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor           W133         Ring 5         C         275         685         2840         292         Wescor           W133         Ring 5         C         275         685         2840         292         Wescor           W133         Ring 10 <td>W122</td> <td>Ring 5</td> <td>Α</td> <td>170</td> <td>585</td> <td>2840</td> <td>136</td> <td>Wescor</td> <td></td> | W122            | Ring 5 | Α         | 170          | 585      | 2840 | 136        | Wescor    |             |
| W125         Ring 5         B         360         535         2840         316         Vaisala Vaisala         In the slot           W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         270         785         2840         292         Wescor         In the slot           W133         Ring 5         C         270         785         2840         298         Wescor         Wescor           W134         Ring 10         A         180         2                                                                                                    |                 | Ring 5 | Α         | 170          | 685      | 2840 | 140        | Wescor    |             |
| W126         Ring 5         B         360         685         2840         34         Vaisala           W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor         Wescor           W133         Ring 5         C         275         685         2840         292         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W137                                                                                                                     | W124            | Ring 5 | Α         | 170          | 785      | 2840 | 142        |           |             |
| W127         Ring 5         B         360         785         2840         350         Vaisala           W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor         In the slot           W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W137         Ring 10         A         180         585         5340         196         Vaisala           <                                                                                                                 | W125            | Ring 5 | В         | 360          | 535      | 2840 | 316        | Vaisala   | In the slot |
| W128         Ring 5         B         350         535         2840         312         Wescor         In the slot           W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         320         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor         In the slot           W133         Ring 5         C         270         785         2840         292         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         585         5340         26         Vaisala           W137         Ring 10         A         180         585         5340         196         Vaisala           W137         Ring 10         A         180         785         5340         190         Vaisala                                                                                                                            | W126            | Ring 5 | В         | 360          | 685      | 2840 | 34         | Vaisala   |             |
| W129         Ring 5         B         350         685         2840         320         Wescor           W130         Ring 5         B         350         785         2840         346         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor         In the slot           W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         785         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         R                                                                                                                     | W127            | Ring 5 |           | 360          | 785      | 2840 | 350        | Vaisala   |             |
| W130         Ring 5         B         350         785         2840         346         Wescor           W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor           W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A <td>W128</td> <td>_</td> <td></td> <td></td> <td></td> <td>2840</td> <td></td> <td></td> <td>In the slot</td>          | W128            | _      |           |              |          | 2840 |            |           | In the slot |
| W131         Ring 5         C         270         585         2840         294         Wescor         In the slot           W132         Ring 5         C         275         685         2840         292         Wescor           W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         196         Vaisala           W139         Ring 10         A         170         585         5340         190         Vaisala           W140         Ring 10         A         170         685         5340         144         Wescor           W141         Ring 10         B<                                                                                                                     |                 |        |           |              |          |      |            |           |             |
| W132         Ring 5         C         275         685         2840         292         Wescor           W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         685         5340         196         Vaisala           W139         Ring 10         A         180         685         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         B         360                                                                                                                             |                 |        |           | 350          |          |      |            |           |             |
| W133         Ring 5         C         270         785         2840         288         Wescor           W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         685         5340         190         Vaisala           W139         Ring 10         A         180         785         5340         190         Vaisala           W140         Ring 10         A         170         585         5340         144         Wescor           W141         Ring 10         A         170         785         5340         148         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360                                                                                                                           |                 |        |           |              |          |      |            |           | In the slot |
| W134         Ring 10         Center         360         50         5340         22         Vaisala           W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         144         Wescor           W141         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         B         360         585         5340         150         Wescor           W142         Ring 10         B         360         585         5340         332         Vaisala           W143         Ring 10         B         360                                                                                                                           |                 |        |           |              |          |      |            |           |             |
| W135         Ring 10         A         180         262         5340         26         Vaisala           W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         190         Vaisala           W140         Ring 10         A         170         585         5340         144         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         585         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355                                                                                                                            |                 | -      |           |              |          |      |            |           |             |
| W136         Ring 10         A         180         585         5340         214         Vaisala           W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         144         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355                                                                                                                             |                 |        |           |              |          |      |            |           |             |
| W137         Ring 10         A         180         685         5340         196         Vaisala           W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         585         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         C         270                                                                                                                              |                 |        |           |              |          |      |            |           |             |
| W138         Ring 10         A         180         785         5340         190         Vaisala           W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W143         Ring 10         B         360         785         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         785         5340         334         Wescor           W147         Ring 10         C         270                                                                                                                              |                 |        |           |              |          |      |            |           |             |
| W139         Ring 10         A         170         585         5340         144         Wescor           W140         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         585         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W150         Ring 10         C         270                                                                                                                                |                 |        |           |              |          |      |            |           |             |
| W140         Ring 10         A         170         685         5340         148         Wescor           W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270                                                                                                                                |                 |        |           |              |          |      |            |           |             |
| W141         Ring 10         A         170         785         5340         150         Wescor           W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360                                                                                                                           |                 |        |           |              |          |      |            |           |             |
| W142         Ring 10         B         360         585         5340         328         Vaisala           W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180                                                                                                                            |                 |        |           |              |          |      |            |           |             |
| W143         Ring 10         B         360         685         5340         332         Vaisala           W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         268         Wescor           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         C         270                                                                                                                              |                 | _      |           |              |          |      |            |           |             |
| W144         Ring 10         B         360         785         5340         336         Vaisala           W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                   |                 |        |           |              |          |      |            |           |             |
| W145         Ring 10         B         355         585         5340         326         Wescor           W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                    |                 |        |           |              |          |      |            |           |             |
| W146         Ring 10         B         355         685         5340         330         Wescor           W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                             |                 |        |           |              |          |      |            |           |             |
| W147         Ring 10         B         355         785         5340         334         Wescor           W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                      |                 |        |           |              |          |      |            |           |             |
| W148         Ring 10         C         270         585         5340         266         Wescor           W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |        |           |              |          |      |            |           |             |
| W149         Ring 10         C         270         685         5340         268         Wescor           W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |        |           |              |          |      |            |           |             |
| W150         Ring 10         C         270         785         5340         272         Vaisala           W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |        |           |              |          |      |            |           |             |
| W151         Cyl. 3         Center         360         50         6250         154         Vaisala           W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |        |           |              |          |      |            |           |             |
| W152         Cyl. 3         A         180         585         6250         160         Vaisala           W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | _      |           |              |          |      |            |           |             |
| W153         Cyl. 3         B         360         585         6250         356         Vaisala           W154         Cyl. 3         C         270         585         6250         276         Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | _      |           |              |          |      |            |           |             |
| W154 Cyl. 3 C 270 585 6250 276 Wescor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |        |           |              |          |      |            |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |        |           |              |          |      |            |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |        |           |              |          |      |            |           |             |

### 4.4 Instruments in the rock

### **Temperature measurements**

40 thermocouples are placed in the rock and on the rock surface of the deposition hole. Holes have been bored in three directions on three levels and one additional hole has been bored in the bottom of the deposition hole i.e. totally 10 holes. They are led from the rock, over the gap between rock and bentonite and up along the bentonite block periphery. The position of the thermocouples in the rock is shown in Table 4-5.

Table 4-5 Numbering and positions of thermocouples in the rock

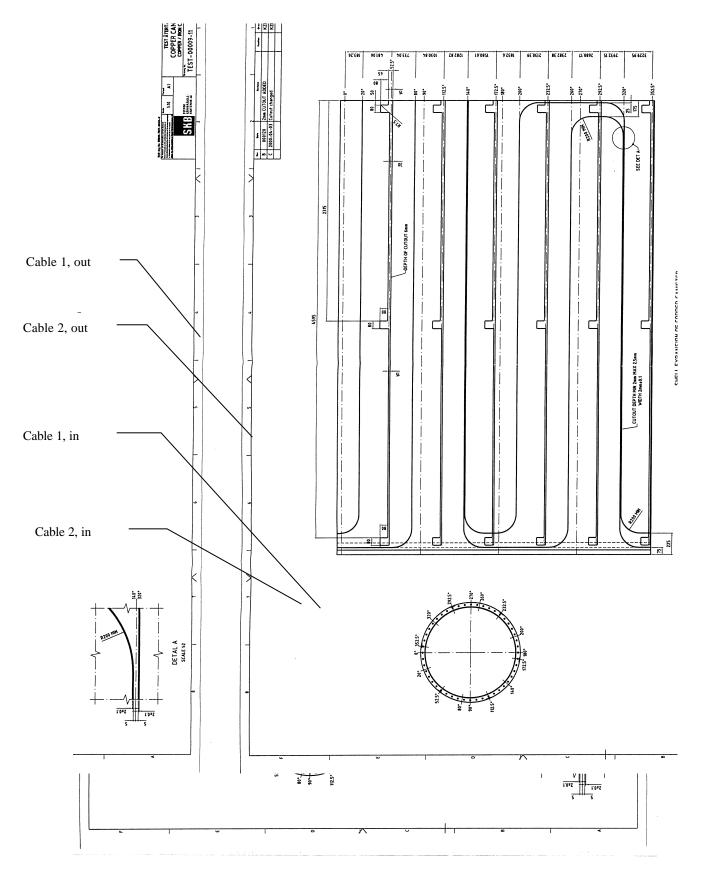
|                 |       |           |                            | Cable pos. |           |                                       |
|-----------------|-------|-----------|----------------------------|------------|-----------|---------------------------------------|
| Type and number | Level | Direction | Distance from rock surface | α          | Fabricate | Remark                                |
| TR101           | 0     | Center    | 0.000                      | 70°-90°    | BICC      |                                       |
| TR102           | 0     | Center    | 0.375                      | 70°-90°    | BICC      |                                       |
| TR103           | 0     | Center    | 0.750                      | 70°-90°    | BICC      |                                       |
| TR104           | 0     | Center    | 1.500                      | 70°-90°    | BICC      |                                       |
| TR105           | 0.61  | 10°       | 0.000                      | 4°-14°     | BICC      |                                       |
| TR106           | 0.61  | 10°       | 0.375                      | 4°-14°     | BICC      |                                       |
| TR107           | 0.61  | 10°       | 0.750                      | 4°-14°     | BICC      |                                       |
| TR108           | 0.61  | 10°       | 1.500                      | 4°-14°     | BICC      |                                       |
| TR109           | 0.61  | 80°       | 0.000                      | 70°-90°    | BICC      |                                       |
| TR110           | 0.61  | 80°       | 0.375                      | 70°-90°    | BICC      |                                       |
| TR111           | 0.61  | 80°       | 0.750                      | 70°-90°    | BICC      |                                       |
| TR112           | 0.61  | 80°       | 1.500                      | 70°-90°    | BICC      |                                       |
| TR113           | 0.61  | 170°      | 0.000                      | 168°-176°  | BICC      |                                       |
| TR114           | 0.61  | 170°      | 0.375                      | 168°-176°  | BICC      |                                       |
| TR115           | 0.61  | 170°      | 0.750                      | 168°-176°  | BICC      |                                       |
| TR116           | 0.61  | 170°      | 1.500                      | 168°-176°  | BICC      |                                       |
| TR117           | 3.01  | 10°       | 0.000                      | 4°-14°     | BICC      |                                       |
| TR118           | 3.01  | 10°       | 0.375                      | 4°-14°     | BICC      |                                       |
| TR119           | 3.01  | 10°       | 0.750                      | 4°-14°     | BICC      |                                       |
| TR120           | 3.01  | 10°       | 1.500                      | 4°-14°     | BICC      |                                       |
| TR121           | 3.01  | 80°       | 0.000                      | 70°-90°    | BICC      |                                       |
| TR122           | 3.01  | 80°       | 0.375                      | 70°-90°    | BICC      |                                       |
| TR123           | 3.01  | 80°       | 0.750                      | 70°-90°    | BICC      |                                       |
| TR124           | 3.01  | 80°       | 1.500                      | 70°-90°    | BICC      |                                       |
| TR125           | 3.01  | 170°      | 0.000                      | 168°-176°  | BICC      |                                       |
| TR126           | 3.01  | 170°      | 0.375                      | 168°-176°  | BICC      |                                       |
| TR127           | 3.01  | 170°      | 0.750                      | 168°-176°  | BICC      |                                       |
| TR128           | 3.01  | 170°      | 1.500                      | 168°-176°  | BICC      |                                       |
| TR129           | 5.41  | 10°       | 0.000                      | 4°-14°     | BICC      |                                       |
| TR130           | 5.41  | 10°       | 0.375                      | 4°-14°     | BICC      |                                       |
| TR131           | 5.41  | 10°       | 0.750                      | 4°-14°     | BICC      |                                       |
| TR132           | 5.41  | 10°       | 1.500                      | 4°-14°     | BICC      |                                       |
| TR133           | 5.41  | 80°       | 0.000                      | 70°-90°    | BICC      |                                       |
| TR134           | 5.41  | 80°       | 0.375                      | 70°-90°    | BICC      | · · · · · · · · · · · · · · · · · · · |
| TR135           | 5.41  | 80°       | 0.750                      | 70°-90°    | BICC      |                                       |
| TR136           | 5.41  | 80°       | 1.500                      | 70°-90°    | BICC      | · · · · · · · · · · · · · · · · · · · |
| TR137           | 5.41  | 170°      | 0.000                      | 168°-176°  | BICC      |                                       |
| TR138           | 5.41  | 170°      | 0.375                      | 168°-176°  | BICC      | · · · · · · · · · · · · · · · · · · · |
| TR139           | 5.41  | 170°      | 0.750                      | 168°-176°  | BICC      |                                       |
| TR140           | 5.41  | 170°      | 1.500                      | 168°-176°  | BICC      |                                       |

#### Stress and strain measurements

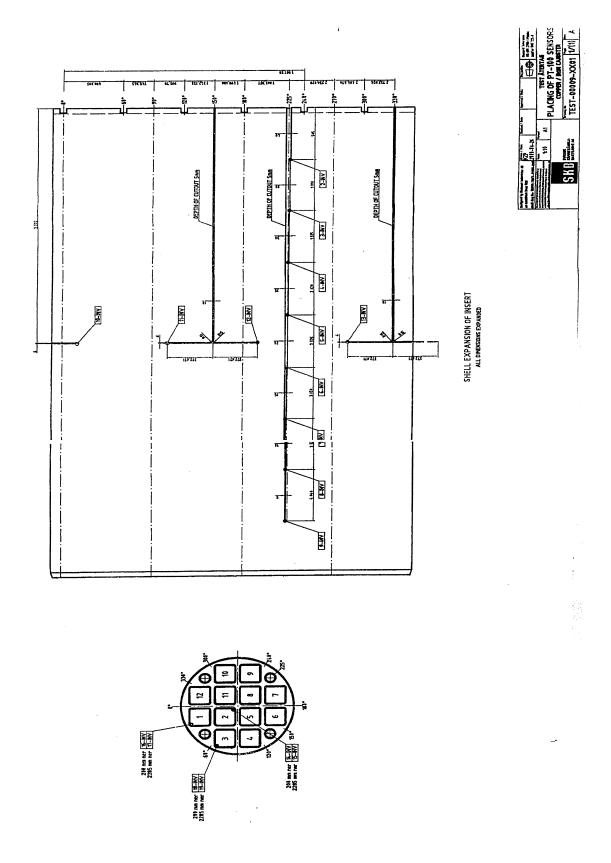
These are not reported

#### 4.5 Instruments in the canister

The canister is instrumented with optical fiber cables on the copper surface, thermocouples in the steel insert and strain gauges on the copper surface. Only the fiber cables and the thermocouples and the resulting temperature measurements are described in this report.


Figure 4-2 shows how the two optical fiber cables are placed on the canister surface. Both ends of a cable are used for measurements. This means that the two cables are used as four measuring channels as described in Table 4-6.

With this laying the cable will enter and exit the surface at almost the same position. Curvatures are shaped as a quarter circle with a radius of 20 cm. The cable is placed in a milled out channel on the surface. The channel has a width and a depth of just above 2 mm

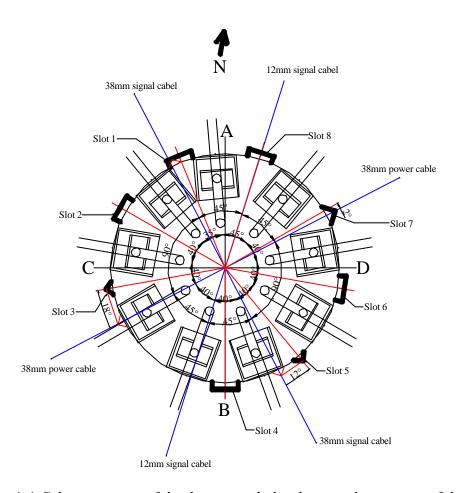

**Table 4-6. Combination of cables and channels** 

| Channel 1 | Outlet of cable 1 |
|-----------|-------------------|
| Channel 2 | Inlet of cable 1  |
| Channel 3 | Outlet of cable 2 |
| Channel 4 | Inlet of cable 2  |

Figure 4-3 shows the location of the thermocouples on the steel insert inside the canister.



**Figure 4-2.** Laying of two optical fibre cables with protection tube of Inconel 625 (outer diameter 2 mm) for measurement of the canister surface temperature (surface unfolded).




Figur 4-3. Location of thermocouples inside the canister

## 4.6 Instruments at the plug

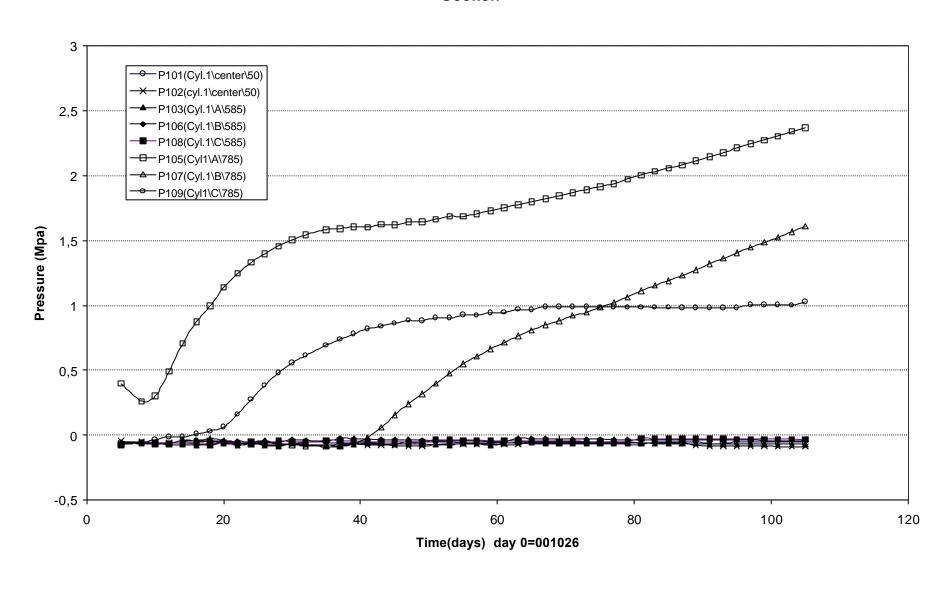
Three force transducers and three displacement transducers have been placed on the plug to measure the force of the anchors and the displacement of the plug. The location of these transducers can be described in relation to Fig 4-4, which shows a schematic view of the plug with the slots, rods and cables.

The rods are numbered 1-9 anti-clockwise and number 1 is assumed to be the northern rod in direction A. The force transducers are placed on rods 3, 6, and 9. The displacement transducers are placed between the rods 5 cm from the rock surface of the hole and according to Table 4-6. They are fixed on the rock surface and measure thus the displacement relative the rock.

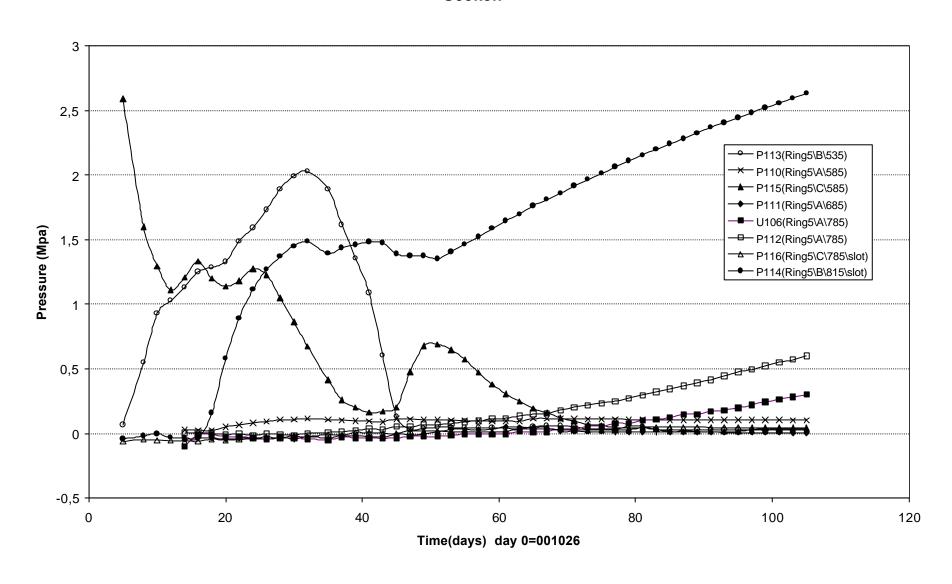


**Figure 4-4.** Schematic view of the deposition hole, showing the position of the slots, the rods and the cables from the canister.

Table 4-6. Location of displacement transducers

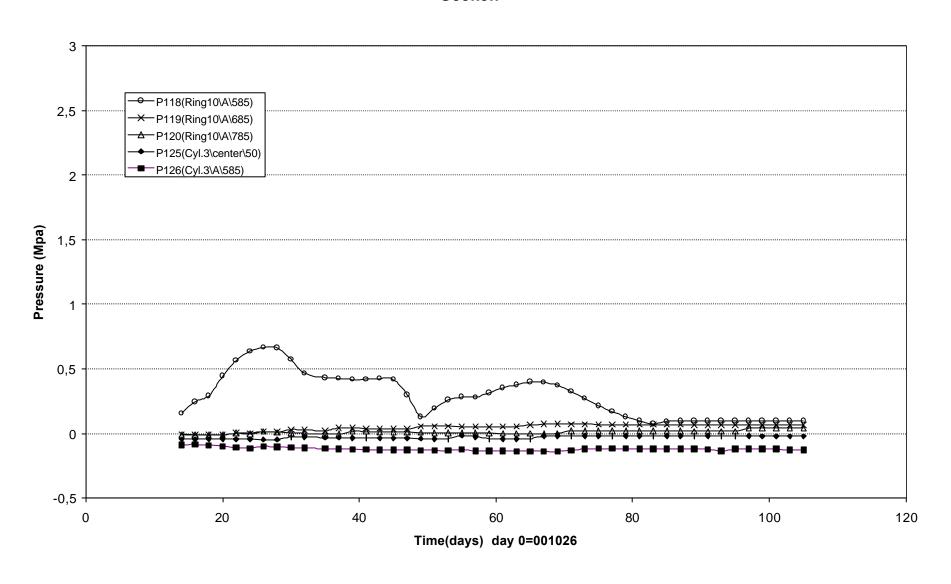

| Transducer No. | Located between rods No. |
|----------------|--------------------------|
| 1              | 4 and 5                  |
| 2              | 7 and 8                  |
| 3              | 1 and 2                  |

## References

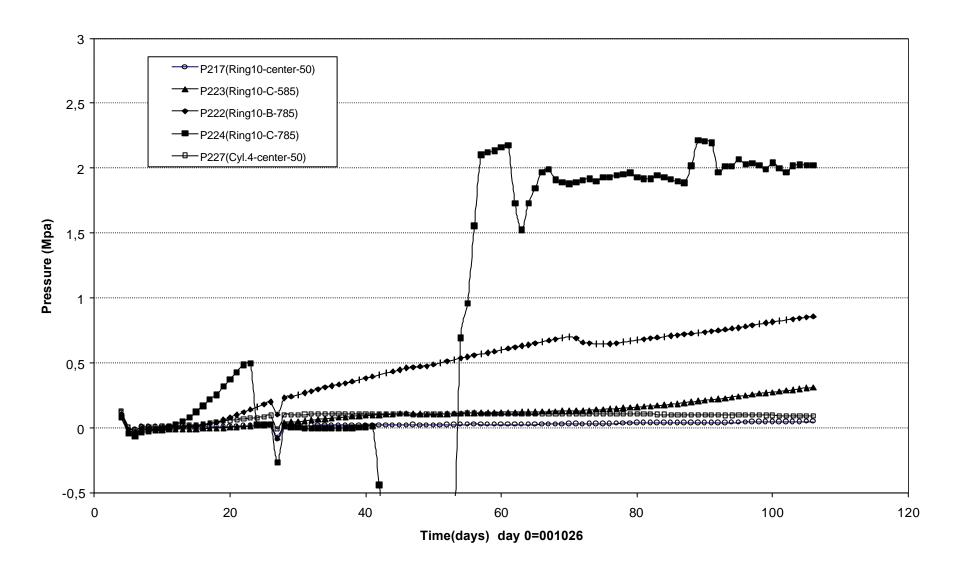

/1-1/ Sanden T, Börgesson L. Report on instrument positions and preparation of bentonite blocks for instruments and cables May 2000

# Appendix 1

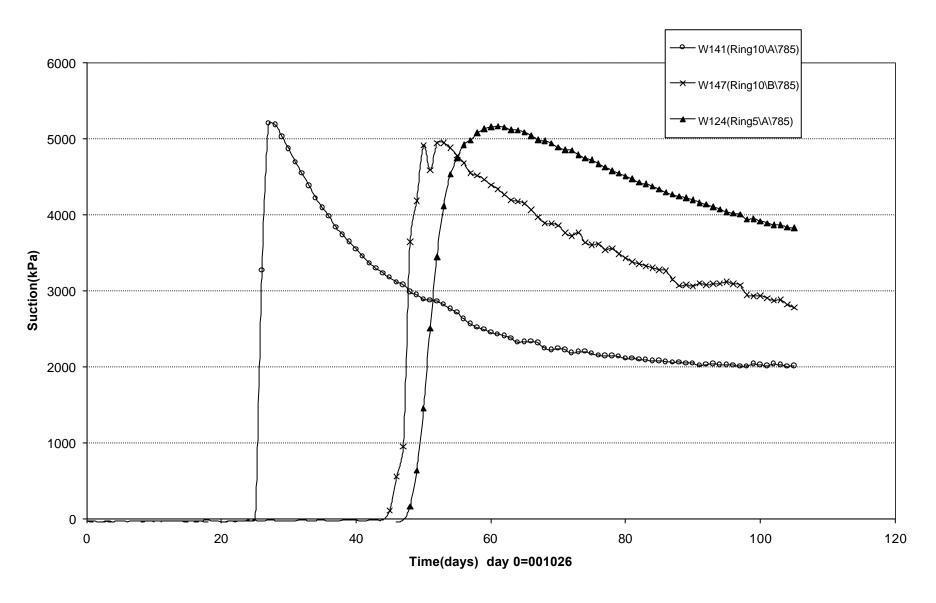
## Total pressure - Cylinder1 (001026-010201) Geokon



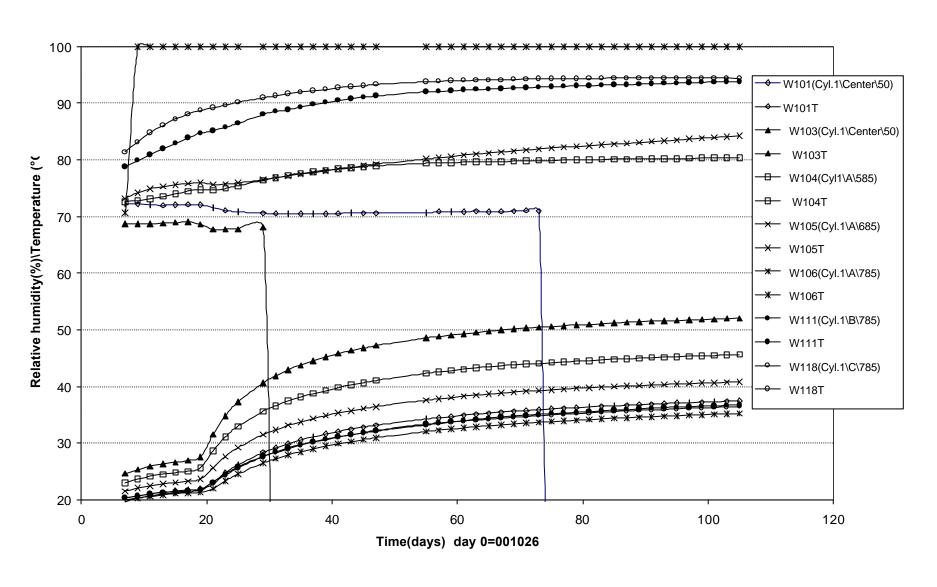

Total pressure - Ring5 (001026-010201) Geokon



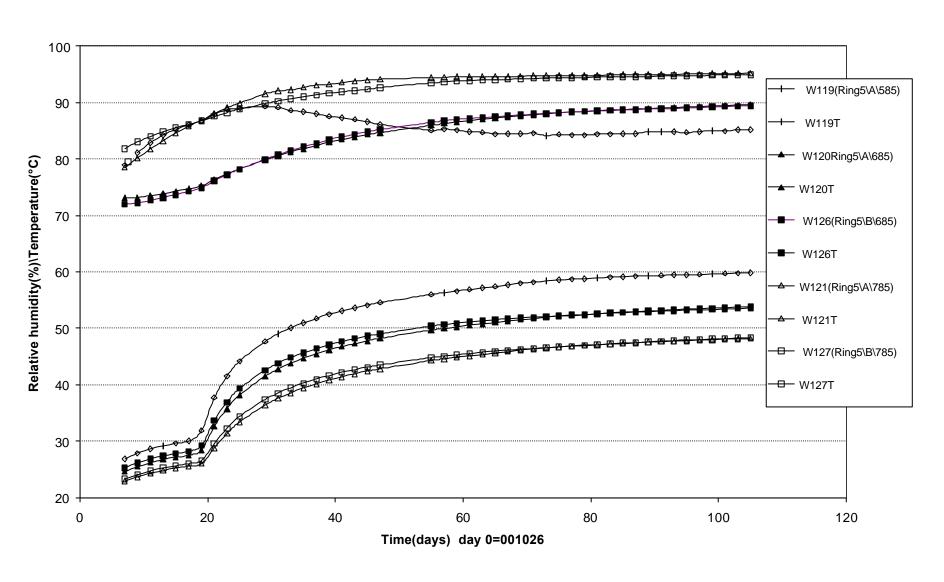

Total pressure - Ring10 and Cylinder3 (001026-010201)


Geokon

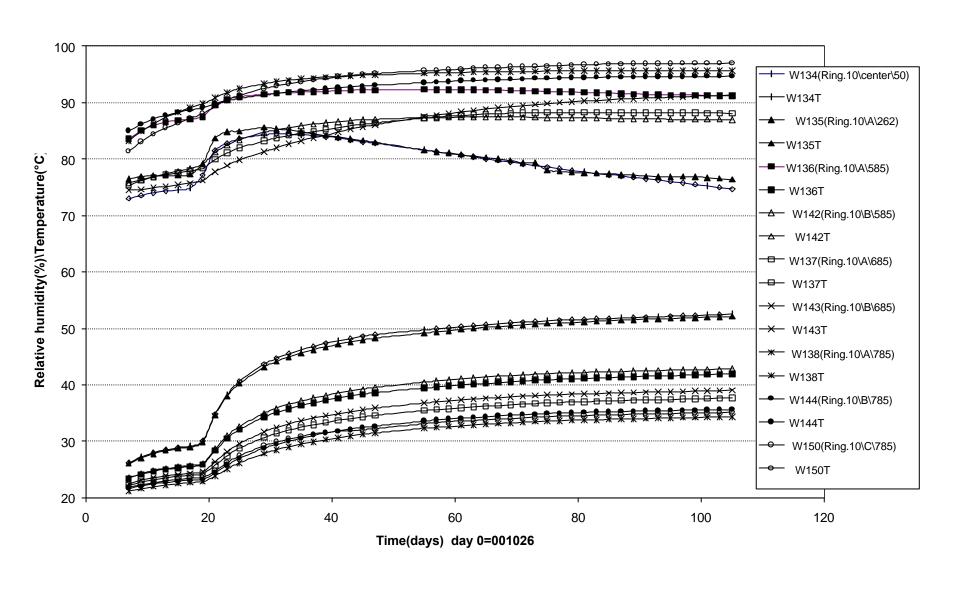



## Total pressure - Ring10 (001026-010201) Kulite

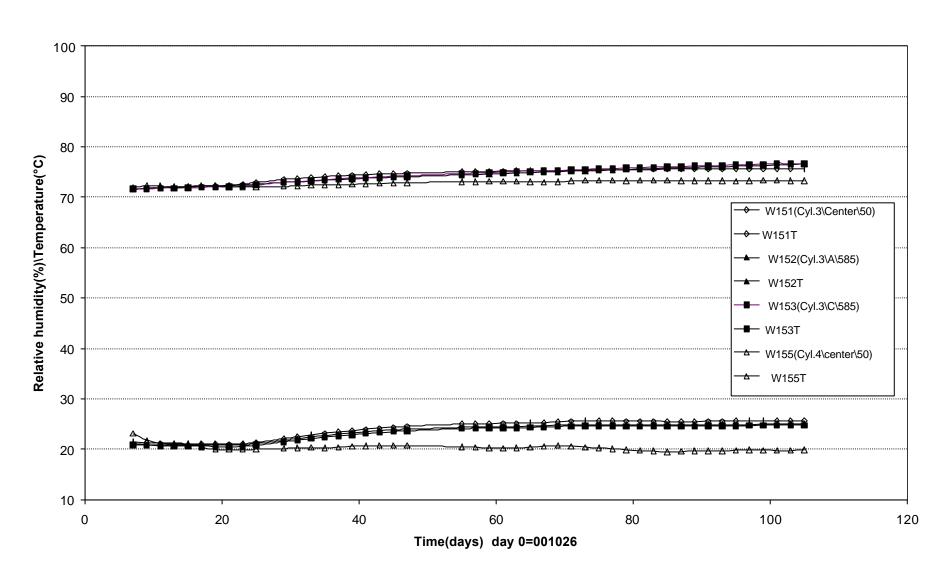



## **Suction in the buffer (001026-010201)**

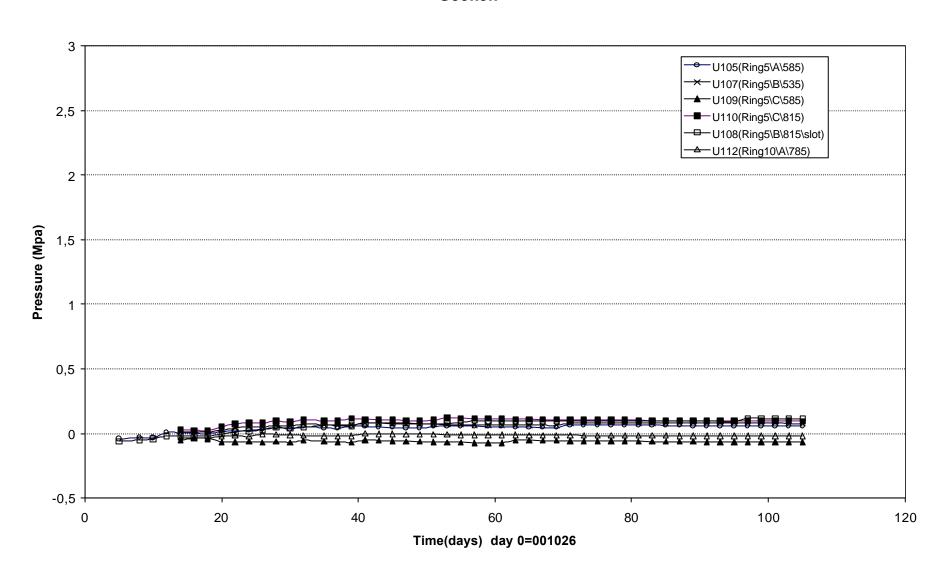



# Water content - Cylinder1 (001026-010201) Vaisala

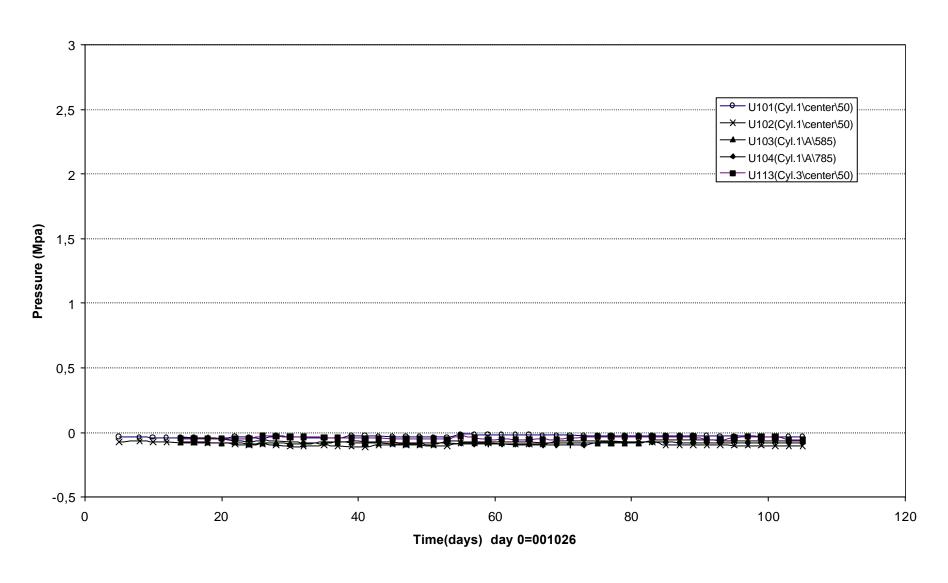



## Water content - Ring5 (001026-010201) Vaisala

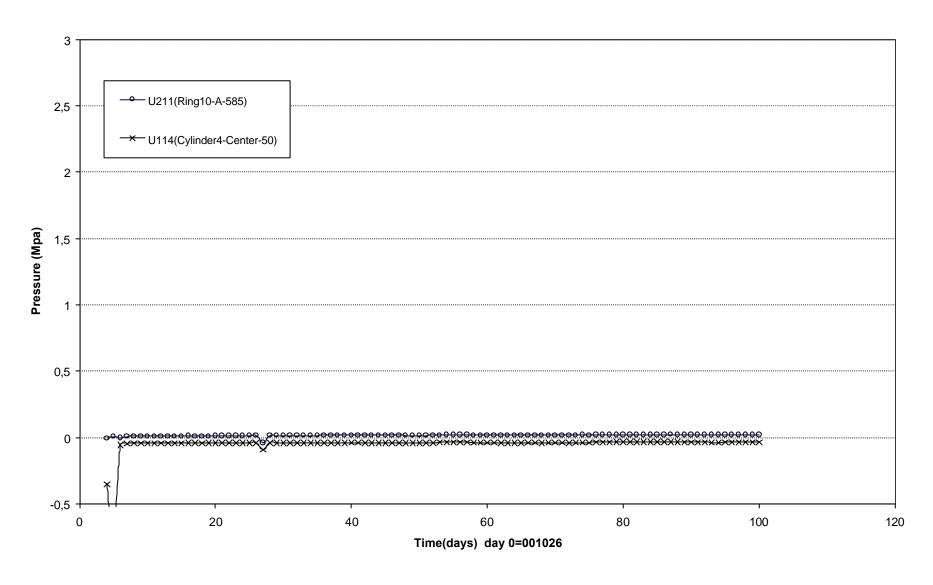



# Water content - Ring10 (001026-010201) Vaisala

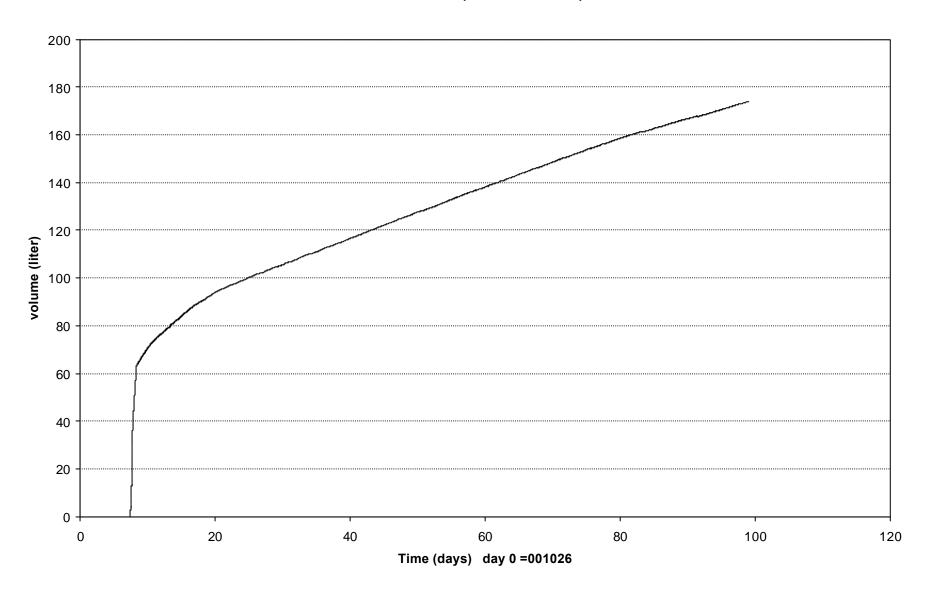



# Water content - Cylinder3 and Cylinder4 (001026-010201) Vaisala

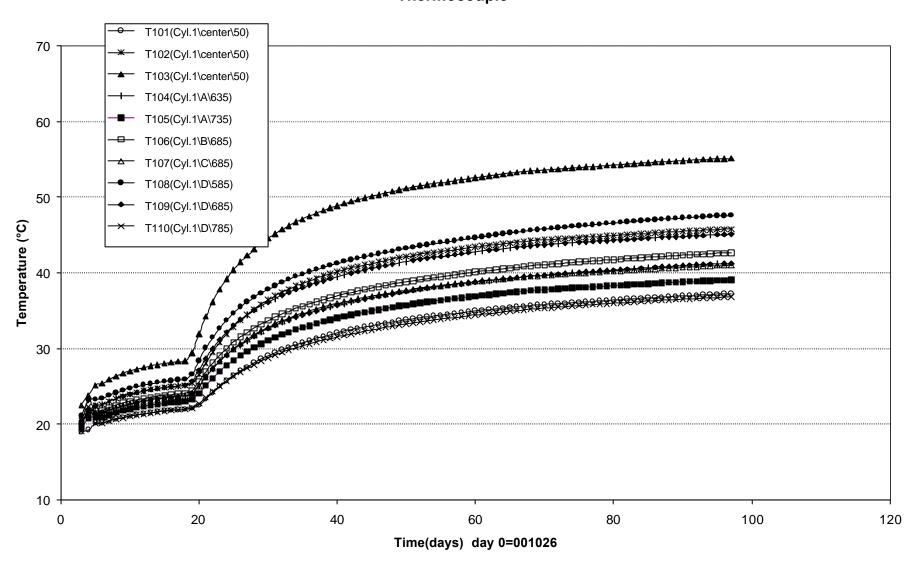



### Pore water pressure - Ring5 and Ring10 (001026-010201) Geokon

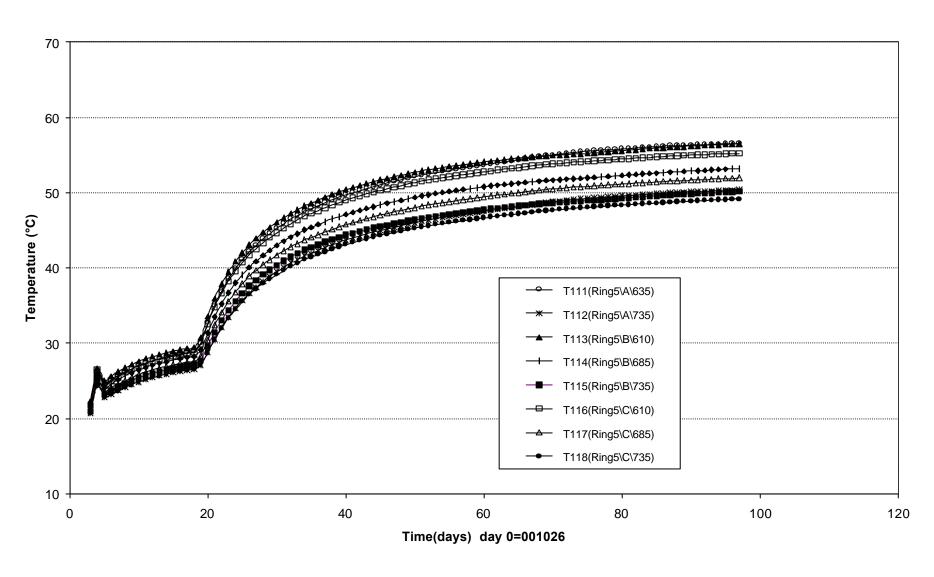



# Pore water pressure - Cylinder1 and Cylinder3 (001026-010201) Geokon

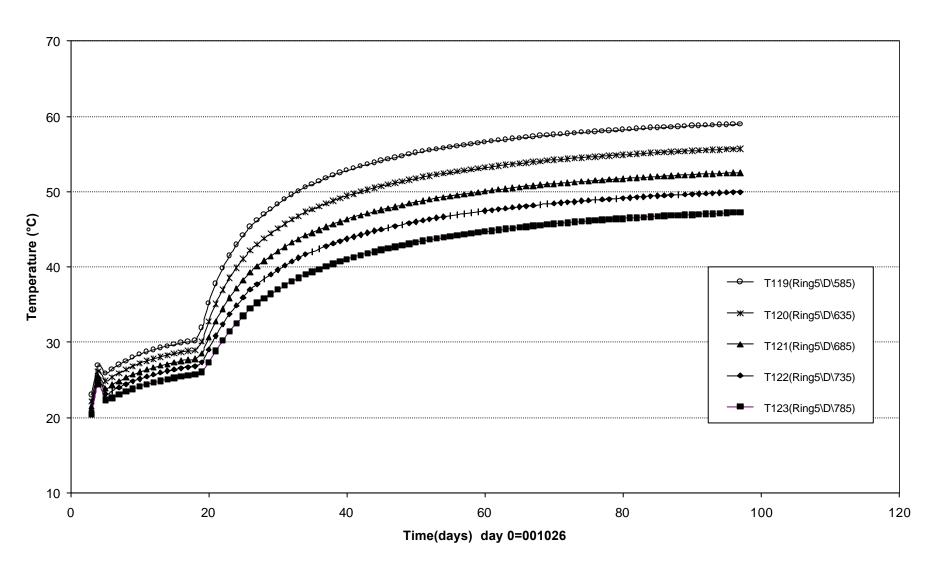



# Pore water pressure - Ring10 and Cylinder4 (001026-010201) Kulite

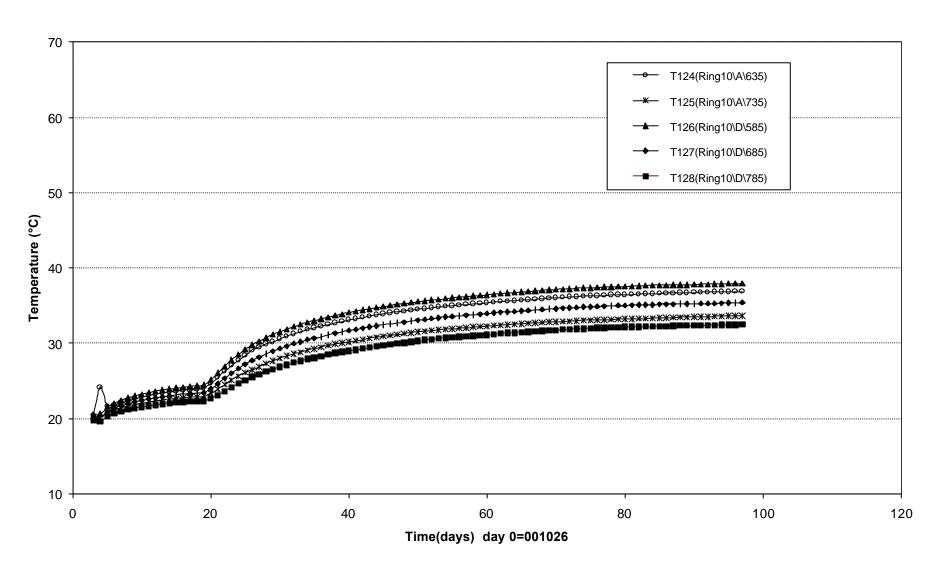



#### Inflow into filter(001026-010201)

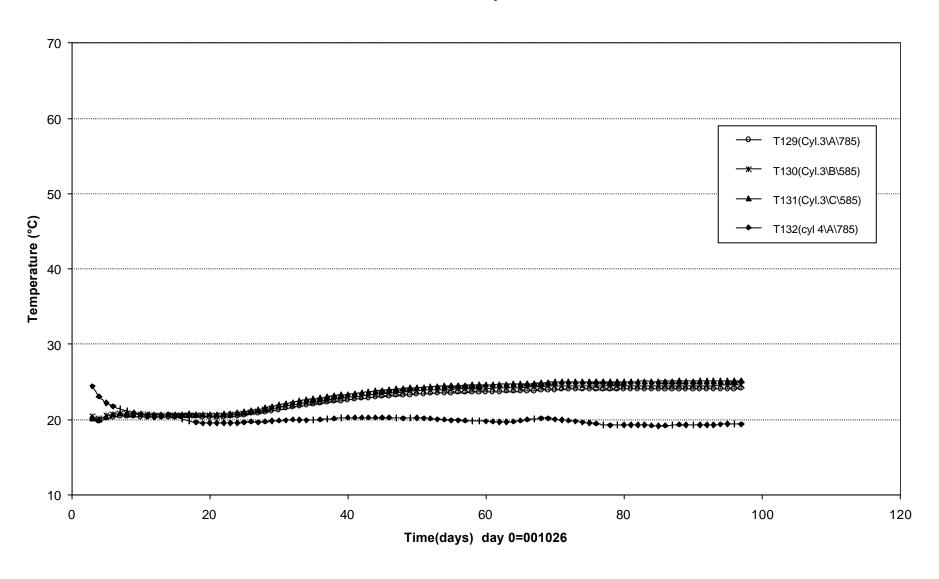



### Temperature in the buffer- Cylinder1 (001026-010201) Thermocouple

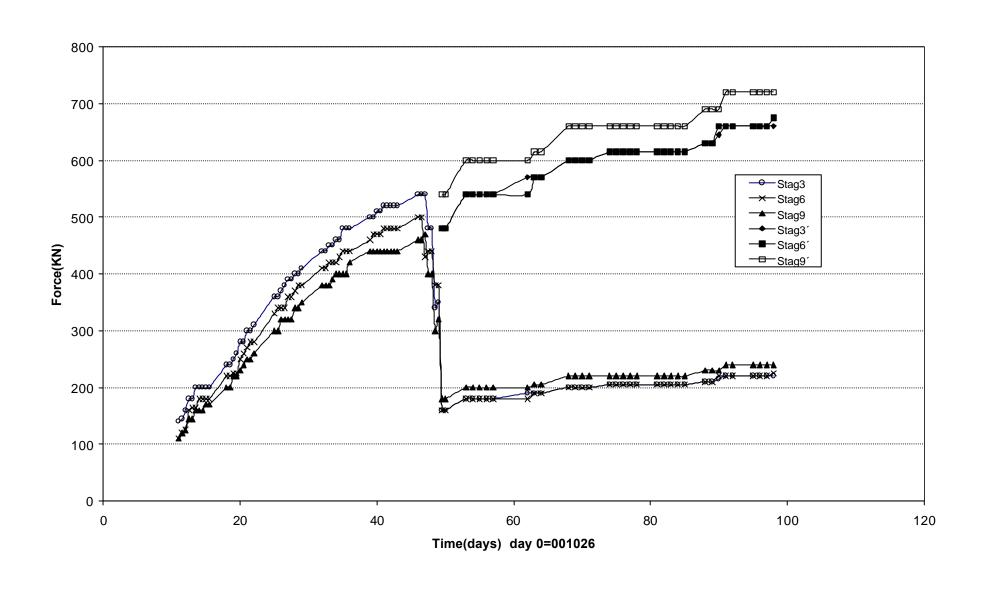



# Temperature in the buffer -Ring 5 (001026-010201) Thermocouple

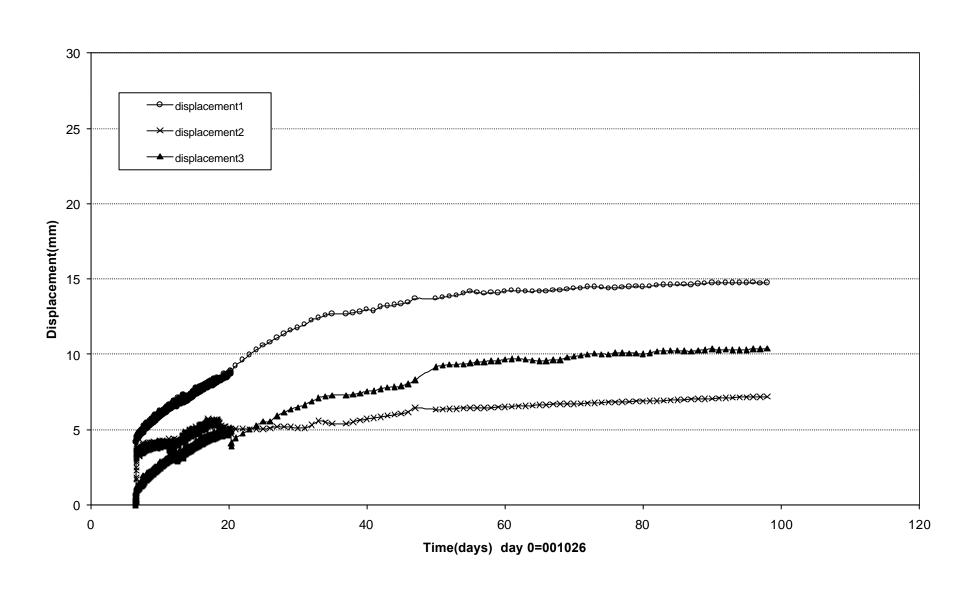



# Temperature in the buffer -Ring 5 (001026-010201) Thermocouple

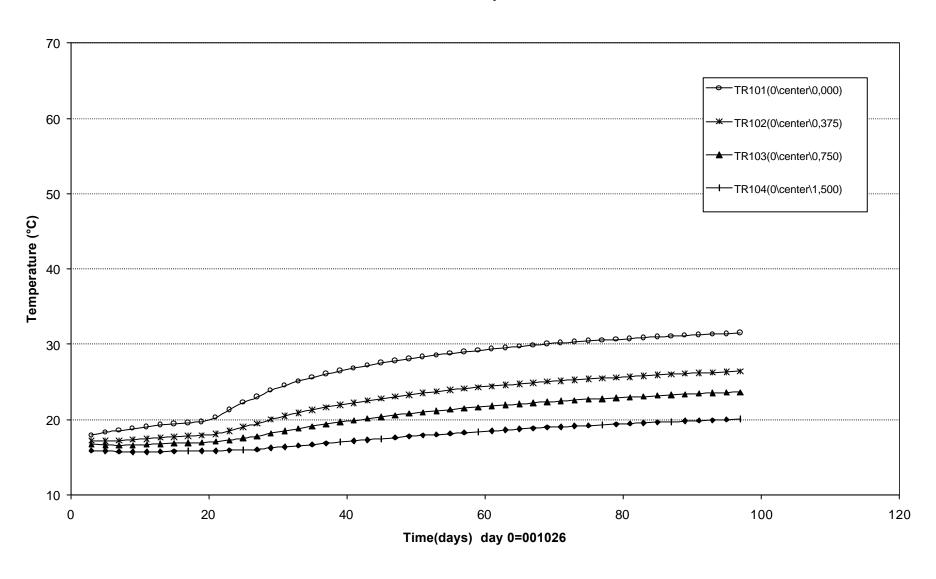


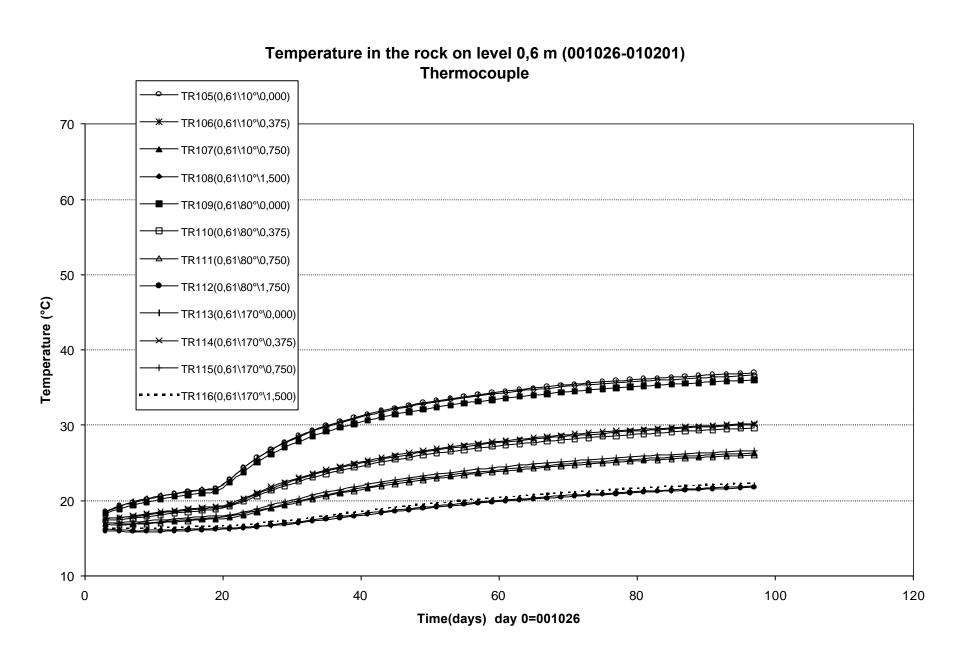

# Temperature in the buffer- Ring 10 (001026-010201) Thermocouple

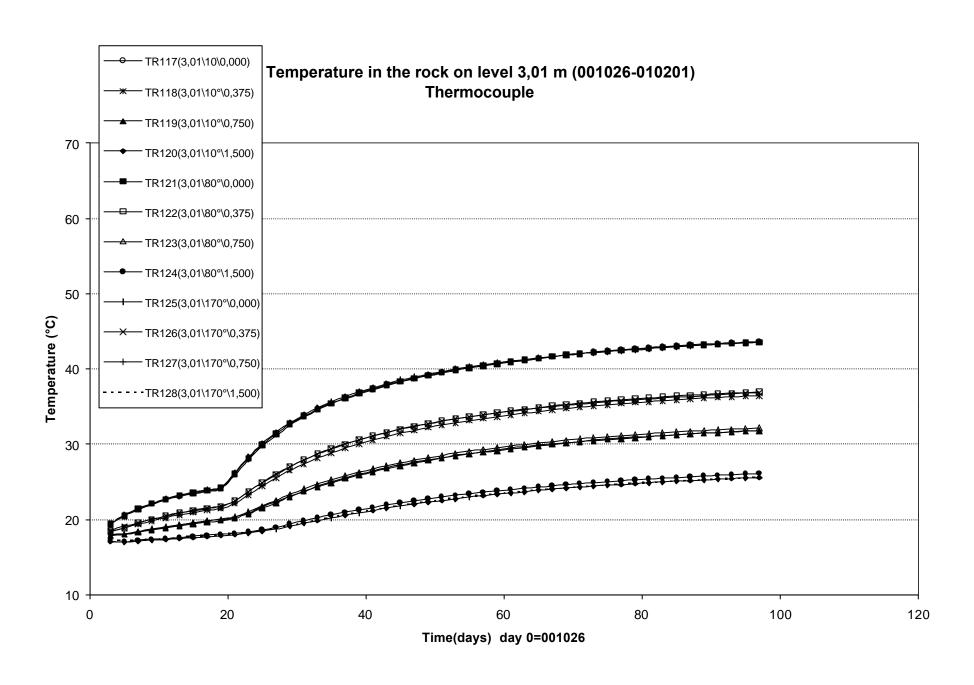



# Temperature in the buffer -Cylinder3 and Cylinder4 (001026-010201) Thermocouple

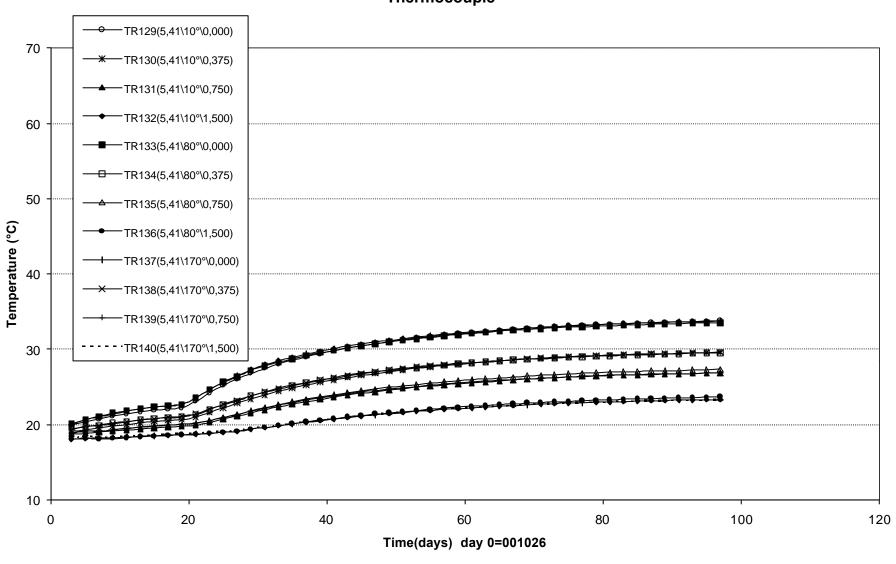



#### Forces on plug (001026-010201)





#### Displacement of the plug (001026-010201)

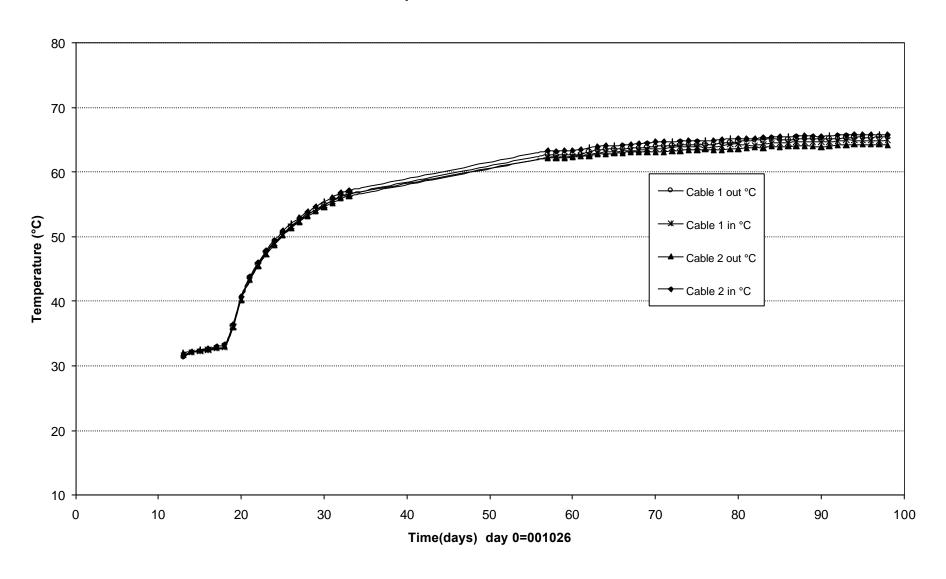



# Temperature in the rock on level 0 m(001026-010201) Thermocouple

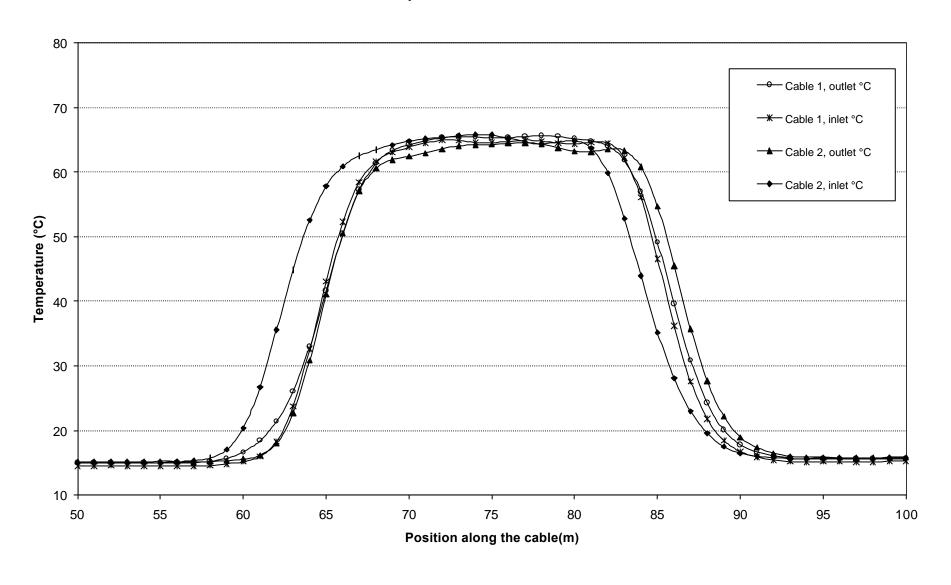




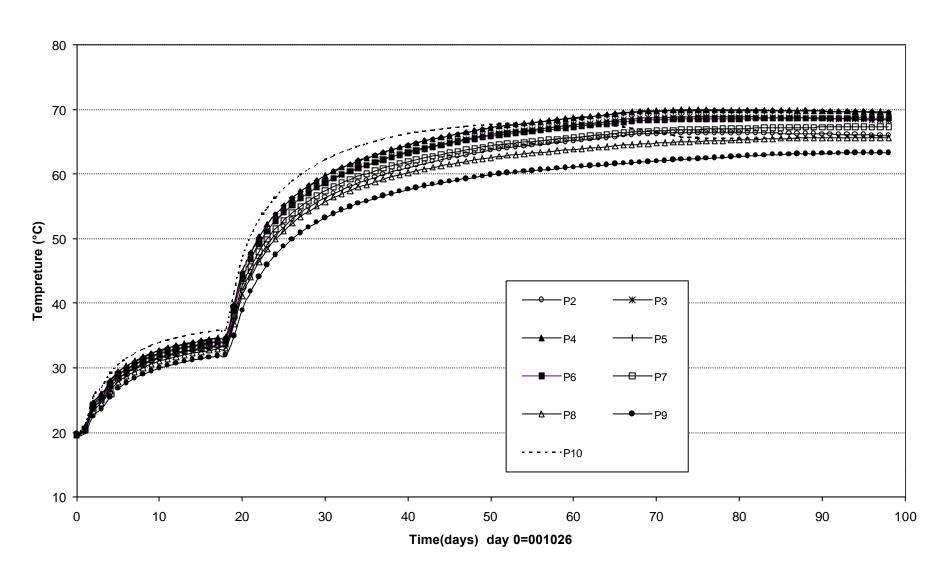




#### Temperature in the rock on level 5,4 m (001026-010201) Thermocouple

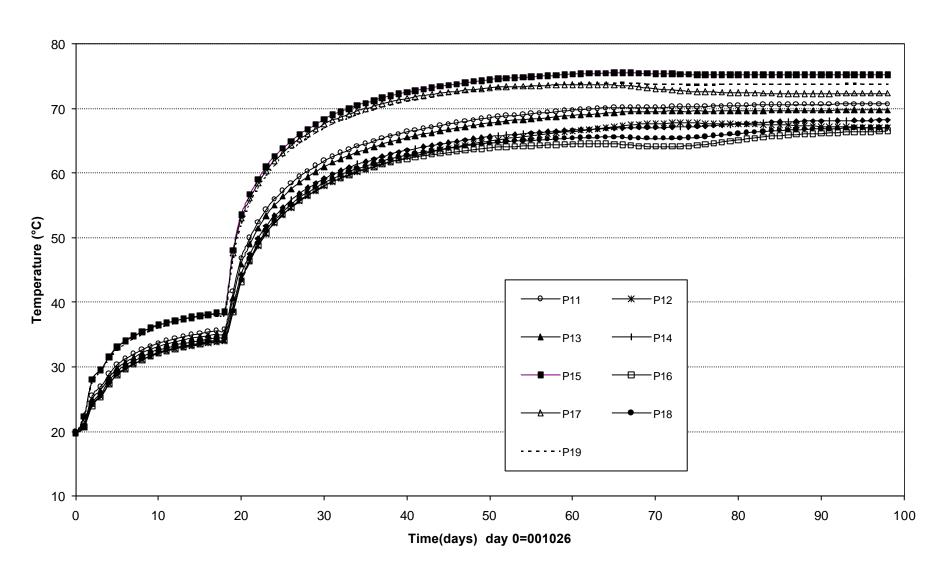



#### Canister power (001026-010201)




### Temperature on the canister surface (001026-010201) Optical fiber cables




# Temperature profile on the canister surface (010208) Optical fiber cables



### Temperature inside the canister (001026-010201) PT-100



#### Temperature inside the canister (001026-010201) PT-100

