International Progress Report

IPR-01-07

Äspö Hard Rock Laboratory

Prototype Repository

Finite element analyses of heat transfer and temperature distribution in buffer and rock

Patrik Jansson Mikael Koukkanen SWECO Industriteknik AB

November 1999

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel +46 8 459 84 00 Fax +46 8 661 57 19

Äspö Hard Rock Laboratory

Report no.	No.
IPR-01-07	F63K
Author	Date
P Jansson, M Koukkanen	99-11-30
Checked by	Date
Lars-Olof Dahlström	
Approved	Date
Christer Svemar	01-03-14

Äspö Hard Rock Laboratory

Prototype Repository

Finite element analyses of heat transfer and temperature distribution in buffer and rock

Patrik Jansson Mikael Koukkanen SWECO Industriteknik AB

November 1999

Keywords: Prototype Repository, temperature distribution, numeric modelling

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Foreword

This report is an addendum to a main report [1] that describes the Finite Element Model developed for the purpose of thermal analyses in the research project named *Prototype Repository* at Äspö Hard Rock Laboratory. The model will be used to verify design parameters during the construction stage and to predict temperature conditions in buffer and rock as the research goes on. A number of cases will be investigated with regard to geometry, material properties and heat load. Each case will be given an identification number, which, for the time being, will be simply sequential. This report includes the analyses and results of Case No. 2.

The main report [1] is divided into two parts:

- Part I constitutes a general description of the problem, modelling requirements and common model features.
- Part II accounts for the models, analyses and results specific for the Case No. 1 calculations.

This report consists of:

Part II models, analyses and results specific for the Case No. 2 calculations.

Abstract

The report describes the Finite Element Model developed for the purpose of thermal analyses in the research project named *Prototype Repository* at Äspö Hard Rock Laboratory. The model will be used to verify design parameters during the construction stage and to predict temperature conditions in buffer and rock as the research goes on. A number of cases will be investigated with regard to geometry, material properties and heat load. This report describes results of the second case study where geometry and material properties have been modified from the first case.

Sammanfattning

Rapporten beskriver den finit-element-modell (FEM) som utvecklats för termiska analyser i forskningsprojektet *Prototype Repository* vid Äspö Hard Rock Laboratory. Modellen kommer att användas under byggfasen och för att prediktera temperaturförhållanden i buffer och berg under hand som forskningsprojektet framskrider. Ett antal fall kommer att studeras med avseende på geometri, materialdata och värmebelastning. Denna rapport beskriver resultat från den andra studien där geometri och materialparametrar är modifierade jämfört med den första studien.

Executive Summary

The objective of the development of the finite element model (FEM), described in this report, is to provide the Prototype Repository research project at Äspö Hard Rock Laboratory (HRL) with a flexible tool for highly accurate thermal analyses of the local domain with the capability of handling transient and non-linear problems. The domain includes canisters, buffer and rock and encompasses the total volume that will be significantly affected by the canister heat loads within the time frame of the project. The particular heat transfer inside the canisters with respect to their various components such as fuel elements, casings and copper claddings, is not included in the scope of the model. That issue will be addressed in another context.

The programme code chosen for this study is ANSYS, a universal FEM code well established within SKB as the tool for thermal analyses in various contexts. ANSYS has been used for a number of years in analyses concerning for instance canister optimisation and layout studies of the deep repository. ANSYS was chosen in view of its powerful pre- and post-processing capabilities, a feature of importance in studies involving a great deal of variations and sensitivity analyses.

A major uncertainty in the heat flow process is the influence of the gap between the canister and the bentonite buffer. Also the properties of the gap between the buffer and rock is uncertain to some extent but will not have the same impact on the canister temperature as the inner gap. The ability to calculate a wide variety of events in the thin inner gap (10 mm) has strongly affected the modelling.

Above is a schematic figure of the model and the physical model range.

Material properties will be specified for each case. There are no limitations to characteristics of material properties regarding, for instance, time or temperature dependency or anisotropic behaviour. Every single canister and its surrounding buffer are modelled separately in that respect.

The initial effect in the canisters can be defined specifically for each canister and be time-dependent. An exponential function describes the decrease by time of the heat output.

Case No. 1 - typical canister centre to centre distance 6,0 m

The first case is described in a main report [1]. This report is an addendum to the main report and describes only Case No. 2.

Case No. 2 - typical canister centre to centre distance 6,0 m with modified geometry and material parameters.

The prime objective of Case No. 1 was to demonstrate the feasibility of the modelling approach in general and of the model itself with respect to versatility and accuracy, as well as to its requirements regarding computer capacity and software. Since the calculations of the first case the layout geometry has been changed. Material parameters have also been modified. The changes have been adapted to Case No. 2.

General provisions for Case No. 2 include a typical canister centre to centre distance of 6,0 m and highly saturated bentonite as buffer material. The initial heat output is 1 800 W per canister. Two cases were investigated with respect to the water bearing capacity of the rock.

For case No. 2A and 2B, it is assumed that the gap between bentonite and the canister is filled with air. For case No. 2C, it is assumed that the gap between bentonite and the canister is filled with water. For the wet rock condition, it is however assumed that the gap will be filled with bentonite after two years.

Heat transfer for air filled gap has been separately investigated and calculated [2].

The results of the Case 2 calculations are summarised in table below. Canister No. 1 is the innermost canister in the deposition tunnel.

Calculations for dry rock condition give as a result a maximum temperature on the canister surface of 90.3°C.

	Maximum temperature [°C] on canister surfaces								
Canister No.	Case 2A Dry rock, air in gap	Case Wet rock,	e 2B air in gap	Case 2C Wet rock, water in gap					
1	84.7	80.9*							
2	89.9	85.7 [*]							
3	90.3	85.8 *	79.5	79.5					
4	85.9	81.4*							
5	83.1	79.7 [*]							
6	82.2	79.3 [*]							

Maximum temperature on canister surface, Case No. 2

* = After two years when there is a material transition in the gap.

Contents

Forew	ord	i
Abstra	act	ii
Samm	anfattning	iii
Execut	tive Summary	iv
Conter	nts	vii
PART	II CASE No. 2 - ANALYSES AND RESULTS	1
1	Case Specific Objectives	1
2	Parameters and Geometry	2
2.1	Models	2
2.2	Parameters	2
2.3	Geometry and Keypoints	3
2.4	Job-name and List of Files	4
3	Results	5
3.1	Case 2A	5
3.2	Case 2B	5
3.3	Case 2C	5
3.4	Conclusions	6
Refere	ences	7

Appendices

Appendix 1	List of parameters
Appendix 2	Geometry and mesh
Appendix 3	Results from subcase 2A
Appendix 4	Results from subcase 2B
Appendix 5	Results from subcase 2C

PART II CASE No. 2 - ANALYSES AND RESULTS

1 Case Specific Objectives

Being the first calculation, the prime objective of Case No. 1 was to demonstrate the feasibility of the modelling approach in general and of the model itself with respect to versatility and accuracy, as well as to its requirements regarding computer capacity and software, see [1].

Since the calculations of the first case the layout geometry has been changed. Material parameters have also been modified. The changes have been adapted to Case No. 2.

For case No. 2A and 2B, it is assumed that the gap between bentonite and the canister is filled with air. For case No. 2C, it is assumed that the gap between bentonite and the canister is filled with water. For the wet rock condition, it is however assumed that the gap will be filled with bentonite after two years.

The program version used in Case No. 2 was ANSYS Mechanical, Version 5.5.3 [3].

2 Parameters and Geometry

2.1 Models

Within Case No. 2, three models were set up and calculated. The objective was to study two subcases, 2A and 2B, differentiated with respect to the water bearing capacity of the surrounding rock, dry and wet rock conditions respectively. The difference in the water bearing capacity was reflected in the modelled water saturation process in the bentonite buffer. Subcase 2C is the same as 2B except that the gap is filled with water instead of air.

- Case 2A Complete model with six canisters split by one symmetry plane. Dry rock condition. Gap filled with air.
- Case 2BComplete model with six canisters split by one symmetry plane. Wet rock
condition. Gap filled with air during the first two years.
- **Case 2C** Complete model with six canisters split by one symmetry plane. Wet rock condition. Gap filled with water during the first two years.

2.2 Parameters

Case No. 2 consists of a six canisters configuration, each canister with an initial heat output of 1 800 W. The initial state of the compacted bentonite with respect to water content is "highly saturated". Inner gaps in the deposition holes are filled with air from the start. For the wet rock case the air filled gap is however assumed to be filled with bentonite after two years. The deposition tunnel is backfilled and plugged.

Parameters are selected according to Appendix 1.

Heat transfer through the air filled gaps is a key parameter for accuracy of results. The finite element modelling of the gap is done with solid elements, which allows heat transfer only by conduction. Convection and radiation may however also contribute to total heat transfer.

An air filled gap has been calculated with the Computational Fluid Dynamics (CFD) code FLUENT, where convection and radiation also can be included. Results showed that convection contributes strongly besides conduction [2].

Equivalent heat conduction values corresponding to the total heat transfer through the gap was then derived and adapted to the finite element model. It was found that dry air and 100% humid air has close to same equivalent heat conduction.

2.3 Geometry and Keypoints

The centres to centre distances between the six canisters are given in Figure 5-1 below. The change of geometry in Case No. 2 is a new distance of 18 m between the two groupings of canisters, see Figure 2-1.

The canisters were considered as being concentrically located in the shafts and with their centre lines in parallel to those. The radial gap between canister and bentonite buffer was set to 1.0 cm and the radial gap between bentonite buffer and rock was set to 5.0 cm.

In Case No. 2, no keypoints were explicitly defined. As the target was to investigate the highest temperature on the canister surface for each canister, the built-in functions of ANSYS could be used to distinguish the extreme values.

Figure 2-1 Schematic figure of the model. Centre to centre distances between canisters.

2.4 Job-name and List of Files

This section contains file control information for the purpose of backtracking of all model data and result output.

Job name	Model	Files	
5540075 Case 2	Case 2A	Input: Database: Solution:	dry_O2.mac dry_O2.db dry_O2.rth
	Case 2B	Input: Database: Solution:	wet_O2.mac wet_O2.db wet_O2.rth
	Case 2C	Input: Database: Solution:	wet_H2O.mac wet_H2O.db wet_H2O.rth

 Table 2-1
 Job-name and list of files

3 Results

The result plots of the various subcases are presented in Appendices 3 to 5.

3.1 Case 2A

See Appendix 3.

The calculation was stopped at a simulation time of 6.0 years. The highest temperature on the canister surfaces was 90.3 $^{\circ}$ C at 4.5 years and occurred, as expected, on canister No. 3.

3.2 Case 2B

See Appendix 4.

The calculation was stopped at a simulation time of 6.5 years. The highest temperature on the canister surfaces was 85.8 $^{\circ}$ C at 2 years and occurred, as expected, on canister No. 3.

At 2.0 years, however, there is a temperature drop because of a material transition in the gap (air to bentonite).

After 5 years, there is a new maximum of 79.5 °C

3.3 Case 2C

See Appendix 5.

The calculation was stopped at a simulation time of 6.5 years. The highest temperature on the canister surfaces was 79.5 $^{\circ}$ C at 5 years and occurred, as expected, on canister No. 3.

At 2.0 years, however, there is a small temperature drop because of a material transition in the gap (water to bentonite).

3.4 Conclusions

The results of the Case 2 calculations are summarised in Table 3-1 below.

	Maximum temperature [°C] on canister surfaces						
Canister No.	Case 2A Dry rock, air in gap	Case Wet rock,	e 2B air in gap	Case 2C Wet rock, water in gap			
1	84.7	80.9*					
2	89.9	85.7^*					
3	90.3	85.8 [*]	79.5	79.5			
4	85.9	81.4*					
5	83.1	79.7 [*]					
6	82.2	79.3 [*]					

Table 3-1Maximum temperature on canister surface, Case No. 2

* = After two years when there is a material transition in the gap.

References

- 1 Ageskog L, Jansson P, Finite Element Analyses of Heat Transfer and Temperature Distribution in Buffer and Rock, General Part & Case No. 1. SKB Progress Report HRL-98-20, 1998
- 2 Jansson P, Kuokkanen M, Prototype Repository, 1999, Heat Transfer For Air Filled Gap, Technical report, SWECO Industriteknik AB, 1999
- **3** ANSYS, Swanson Analysis Systems Inc., P.O. Box 65, Johnson Road, Houston, PA 15342-0065, U.S.A. User's Manual for Release 5.

					(Calculation	n Case	e 2A				
		Canister No. (No. 1 innermost position)										
	Unit	1		2		3		4		5		6
layout geometry												
Location depth	m	450										
Distance between canisters	m		6.0		6.0		6.0		18.0		6.0	
					-							
Canister data												
length	mm	4 830		Ditto		Ditto		Ditto		Ditto		Ditto
diameter	mm	1 050										
initial heat output	W	1 800										
thermal conductivity	W/m,K	390										
specific heat	MJ/m [°] ,K	2.40										
Inner gap ¹⁾												
width of gap	mm	10										
copper surface		normal										
conductivity from start to 2 years	W/m,K	*										
conductivity from 2 to 5 years	W/m,K	*										
conductivity after 5 years	W/m,K	*										
*) 4.544·10 ⁻⁴ ·T+5.046·10 ⁻²												
(100% Humid Air)												
Bentonite - layer 1												
initial conductivity	W/m,K	1.20										
conductivity after 0.5 year	W/m,K	0.50										
conductivity after 2 years	W/m,K	0.90										
specific heat	MJ/m ³ .K	2 20										
	,	2.20										
Bentonite - laver 2												
initial conductivity	W/m K	1 20										
conductivity after 0.5 year	W/m K	1.20										
conductivity after 2 years	W/m K	1.15										
conductivity after 2 years	NA 1/ 3 1/	1.20										
specific field	wj/m ,ĸ	2.20										
Bentonite - laver 3												
initial conductivity	W/m K	1.00										
anductivity ofter 0.5 year	W/m,K	1.20										
conductivity after 2 years	W/m K	1.25										
	VV/III,K	1.25										
specific field	IVIJ/III ,K	2.20										
Bentonite - outer gan												
initial conductivity	W/m K	0.00										
conductivity after 0.5 year	W/m K	0.00										
conductivity after 2 years	W/m K	1.25										
conductivity after 2 years	VV/III,K	1.25										
specific field	wj/m ,ĸ	2.20										
Bentonite - ton/bottom												
initial conductivity	W/m K	1 00			1							
anductivity ofter 10 years	W/m K	1.20										
	VV/III,K	1.25										
specific heat	WJ/m ⁺ ,K	2.20										
Pock												
NUCK	14/100 14	0.00			1							
annual conductivity (at 14°C)	VV/III,K	2.60			1							
conductivity at 100°C	vv/m,K	2.45			1							
specific heat	MJ/m˘,K	2.22	2.45	at 100 ° C	1							
initial temp. at deposition depth	°C	14.0										
temperature gradient	°C/km	15.0										
Backfill in tunnel												
thermal conductivity	vv/m,K	1.00			1							
specific heat	∣MJ/m ˘,K	1.75										

		Calculation Case 2B										
		Canister No. (No. 1 innermost position)					1					
	Unit	1		2		3		4		5		6
layout geometry	-	450										
Distance between canisters	m	450	60		60		6.0		10.0		60	
Distance between carifsters			0.0		6.0		6.0		16.0		0.0	
Canister data												
length	mm	4 830		Ditto		Ditto		Ditto		Ditto		Ditto
diameter	mm	1 050										
initial heat output	w	1 800										
thermal conductivity	W/m,K	390										
specific heat	MJ/m ³ ,K	2.40										
. 1)												
inner gap		10										
coppor surface		10 normal										
conductivity from start to 2 years	W/m K	*										
conductivity from 2 to 5 years	W/m K	1 30										
conductivity after 5 years	W/m K	1.30										
*) $4544\cdot10^{-4}\cdotT+5046\cdot10^{-2}$		1.00										
(100% Humid Air)												
Bentonite - layer 1												
initial conductivity	W/m,K	1.20										
conductivity after 0.5 year	W/m,K	0.90										
conductivity after 2 years	W/m,K	1.30										
specific heat	MJ/m°,K	2.20										
Bentonite - laver 2												
initial conductivity	W/m,K	1.20										
conductivity after 0.5 year	W/m,K	1.15										
conductivity after 2 years	W/m,K	1.30										
specific heat	MJ/m ³ ,K	2.20										
Bentonite - laver 3												
initial conductivity	W/m K	1 20										
conductivity after 0.5 year	W/m K	1.20										
conductivity after 2 years	W/m.K	1.30										
specific heat	MJ/m ³ .K	2 20										
Bentonite - outer gap												
Initial conductivity	W/m,K	0.80										
conductivity after 0.5 year	W/m,K	1.30										
conductivity after 2 years	VV/III,K	1.30										
specific fleat	IVIJ/III ,K	2.20										
Bentonite - top/bottom												
initial conductivity	W/m,K	1.20										
conductivity after 10 years	W/m,K	1.30										
specific heat	MJ/m³,K	2.20										
Rock												
initial conductivity (at 14°C)	W/m,K	2.60										
conductivity at 100°C	W/m,K	2.45										
specific heat	MJ/m ³ ,K	2.22	2.45	at 100 ° C								
initial temp. at deposition depth	°C	14.0										
temperature gradient	°C/km	15.0										
Backfill in tunnel												
thermal conductivity	W/m.K	1.00										
specific heat	MJ/m ³ .K	1.75										
												•

Appendix 2 2 (7)

Appendix 2 4 (7)

Appendix 2 5 (7)

Appendix 2 6 (7)

*** ANSYS POST	26 VARIABLE LIS	STING ***	*** ANSYS POST	26 VARIABLE LI	STING ***
TIME	2 QUOT Year	NSOL TEMP TEMP	TIME	2 QUOT Year	NSOL TEMP TEMP
0.10000E-09	0.316888E-17	14.1827	0.63903E+08	2.02500	88.5031
0.31557E+06	0.100000E-01	49.4375	0.64692E+08	2.05000	88.5577
0.42076E+06	0.133333E-01	50.8505	0.64849E+08	2.05500	88.5672
0.52595E+06	0.166667E-01	52.4254	0.65007E+08	2.06000	88.5773
0.84152E+06	0.266667E-01	56.0711	0.65481E+08	2.07500	88.6092
0.14857E+07	0.470803E-01	60.5483	0.66270E+08	2.10000	88.6613
0.25762E+07	0.816377E-01	64.7690	0.67216E+08	2.13000	88.7187
0.45440E+07	0.143993	68.9870	0.68163E+08	2.16000	88.7762
0.78892E+07	0.250000	73.1957	0.70530E+08	2.23500	88.9132
0.82048E+07	0.260000	74.0335	0.71003E+08	2.25000	88.9368
0.83175E+07	0.263572	74.2253	0.72581E+08	2.30000	89.0170
0.84302E+07	0.267143	74.3847	0.74159E+08	2.35000	89.0965
0.87684E+07	0.277859	74.7849	0.78103E+08	2.47500	89.2770
0.97828E+07	0.310004	75.7727	0.78892E+08	2.50000	89.3076
0.12826E+08	0.406441	77.8845	0.80470E+08	2.55000	89.3690
0.15778E+08	0.500000	79.5358	0.82048E+08	2.60000	89.4313
0.16094E+08	0.510000	79.6926	0.85993E+08	2.72500	89.5725
0.16410E+08	0.520000	79.8524	0.86781E+08	2.75000	89.5965
0.17356E+08	0.550000	80.3243	0.88359E+08	2.80000	89.6434
0.20196E+08	0.640000	81.5184	0.89937E+08	2.85000	89.6917
0.23668E+08	0.750000	82.6942	0.93882E+08	2.97500	89.8011
0.23983E+08	0.760000	82.7493	0.94671E+08	3.00000	89.8196
0.24299E+08	0.770000	82.8360	0.97826E+08	3.10000	89.8849
0.25246E+08	0.800000	83.1262	0.10098E+09	3.20000	89.9515
0.28086E+08	0.890000	83.9025	0.10887E+09	3.45000	90.0787
0.31557E+08	1.00000	84.6966	0.11045E+09	3.50000	90.0995
0.31872E+08	1.01000	84.7282	0.11360E+09	3.60000	90.1302
0.32188E+08	1.02000	84.7847	0.11676E+09	3.70000	90.1653
0.33135E+08	1.05000	84.9819	0.12465E+09	3.95000	90.2234
0.35975E+08	1.14000	85.5253	0.12623E+09	4.00000	90.2326
0.39446E+08	1.25000	86.0943	0.12938E+09	4.10000	90.2383
0.39762E+08	1.26000	86.1119	0.13254E+09	4.20000	90.2499
0.4007/E+08	1.27000	86.1504	0.14043E+09	4.45000	90.2561
0.41024E+08	1.30000	86.2915	0.14201E+09	4.50000	90.2566
0.430046+00	1.59000	00.0095	0.145166+09	4.80000	90.2432
0.47553E+08	1.50000	87 1215	0.146326+09	4.70000	90.2370
0.47967E+08	1 52000	87 1/81	0.15778E+09	5 00000	90.2032
0.47907E+08	1.55000	87 2524	0.15778E+09	5 10000	90.1570
0.51753E+08	1.55000	87 5527	0.16410E+09	5 20000	90.1487
0.55225E+08	1.75000	87.8758	0.17199E+09	5.45000	90.0835
0.56014E+08	1.77500	87.9128	0.17356E+09	5.50000	90.0719
0.56802E+08	1.80000	87.9752	0.17672E+09	5.60000	90.0321
0 59169E+08	1 87500	88 1697	0 17987E+09	5 70000	90 0009
0.63114E+08	2.00000	88.4564	0.18776E+09	5.95000	89,9105
0.63272E+08	2.00500	88.4616	0.18934E+09	6.00000	89.8946
0.63429E+08	2.01000	88.4706			

Case 2B Mesh

Appendix 3 2 (7)

1

Appendix 3 4 (7)

Appendix 3 5 (7)

Appendix 3 6 (7)

*** ANSYS POST	F26 VARIABLE LI	STING ***	*** ANSYS POS	T26 VARIABLE	LISTING ***
TIME	2 QUOT Year	NSOL TEMP TEMP	TIME	2 QUOT Year	NSOL TEMP TEMP
0.10000E-09	0.316888E-17	14.1827	0.64902E+08	2.05667	77.7289
0.31557E+06	0.100000E-01	49.4006	0.64955E+08	2.05833	77.6895
0.42076E+06	0.133333E-01	50.8008	0.65112E+08	2.06333	77.6270
0.52595E+06	0.166667E-01	52.3643	0.65586E+08	2.07833	77.5677
0 84152E+06	0 266667E-01	55 9879	0 66270E+08	2 10000	77 5587
0 14873E+07	0.471297E-01	60 4505	0.67216E+08	2 13000	77 5865
0.250160.07	0.9190640 01	64 6625	0.072100100	2.15000	77.5005
0.256100+07	0.0100046-01	64.0035	0.001036+00	2.10000	77.0321
0.433046+07	0.144307	72 0 (54	0.70530E+08	2.23500	77.7034
0.700926+07	0.250000	73.0054	0.71003E+00	2.25000	77.7900
0.02040E+07	0.260000	73.0029	0.72501E+00	2.30000	77.0733
0.83100E+07	0.263333	74.0331	0.74159E+08	2.35000	77.9567
0.84152E+07	0.266667	74.1758	0.78103E+08	2.47500	78.1554
0.87307E+07	0.276667	74.5412	0.78892E+08	2.50000	78.1952
0.96775E+07	0.306667	75.4646	0.80470E+08	2.55000	78.2647
0.12518E+08	0.396667	77.4781	0.82048E+08	2.60000	78.3359
0.14148E+08	0.448333	78.5336	0.85993E+08	2.72500	78.4975
0.15778E+08	0.500000	79.4252	0.86781E+08	2.75000	78.5302
0.16094E+08	0.510000	79.2204	0.88359E+08	2.80000	78.5859
0.16410E+08	0.520000	79.2588	0.89937E+08	2.85000	78.6438
0.17356E+08	0.550000	79.6466	0.93882E+08	2.97500	78.7749
0.20196E+08	0.640000	80.7991	0.94671E+08	3.00000	78.8014
0.23668E+08	0.750000	81.9583	0.97826E+08	3.10000	78.8830
0.23983E+08	0.760000	81.7158	0.10098E+09	3.20000	78.9685
0.24259E+08	0.768748	81.6969	0.10887E+09	3.45000	79.1404
0.24535E+08	0.777496	81.7366	0.11045E+09	3.50000	79.1751
0.25364E+08	0.803739	81.9539	0.11360E+09	3.60000	79.2228
0.27848E+08	0.882469	82.6182	0.11676E+09	3.70000	79.2761
0.31557E+08	1.00000	83.4616	0.12465E+09	3.95000	79.3785
0.31872E+08	1.01000	83.2253	0.12623E+09	4.00000	79.3992
0.32104E+08	1.01734	83.1885	0.12938E+09	4.10000	79.4213
0.32336E+08	1.02467	83.1968	0.13254E+09	4.20000	79.4503
0.33030E+08	1.04668	83.3082	0.14043E+09	4.45000	79.4999
0.35114E+08	1.11271	83.7012	0.14201E+09	4.50000	79.5100
0.37280E+08	1.18135	84.0793	0.14516E+09	4,60000	79.5126
0.39446E+08	1.25000	84.4278	0.14832E+09	4.70000	79.5230
0.39762E+08	1.26000	84.2108	0.15621E+09	4.95000	79.5318
0.39965E+08	1.26645	84.1712	0.15778E+09	5.00000	79.5337
0.40169E+08	1.27291	84.1665	0.16094E+09	5.10000	79.5211
0.40780E+08	1.29227	84.2261	0.16410E+09	5,20000	79.5169
0.42613E+08	1.35035	84.4746	0.17199E+09	5.45000	79.4935
0.46557E+08	1.47535	84.9675	0.17356E+09	5.50000	79.4888
0.47335E+08	1.50000	85.0485	0.17672E+09	5.60000	79.4642
0.47651E+08	1.51000	84.8471	0.17987E+09	5.70000	79.4484
0.170312100	1 51500	01.0171	0.10776E:00	5.70000	70 2000
0.470305+00	1 51394	04.0079	0.1007/00+09	5.95000	79.3990
0.40020E+00	1.52100	04.7570	0.109346+09	6.00000	79.3091
0.403000+00	1 50212	84.8305	0.192308+09	6.10000	79.3340
0.502/46+08	1.59313	04.9995	0.19565E+09	6.20000	79.3290
0.542198+08	1.71813	85.3/84	0.20354E+09	6.45000	79.2592
0.55225E+08	1.75000	85.4618	0.205128+09	6.50000	/9.2450
0.560146+08	1.77500	85.2499			
0.56802E+08	1.80000	85.2692			
0.591698+08	1.8/500	85.44/4			
0.63114E+08	2.00000	85.7319			
0.63272E+08	2.00500	80.9282			
U.63324E+U8	2.00667	80.2279			
U.63357E+08	2.00770	19.9191			
U.63389E+08	2.00873	/9.6793			
U.63468E+08	2.01121	79.2946			
U.63578E+08	2.01472	78.9486			
0.63737E+08	2.01974	78.6518			
0.63997E+08	2.02798	78.3987			
0.64584E+08	2.04660	78.1974			
0.64692E+08	2.05000	78.1696			
0.64849E+08	2.05500	77.7880			