International Progress Report

IPR-08-22

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase

Test campaign 9

Torbjörn Forsmark SWECO

December 2008

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co

Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00

Äspö Hard Rock Laboratory

Report no.	No.
IPR-08-22	F63K
Author	Date
Torbjörn Forsmark	2008-12-08
Checked by	Date
Ingvar Rhén	2008-12-18
Approved	Date
Anders Sjöland	2009-01-14

Äspö Hard Rock Laboratory

Prototype Repository

Hydraulic tests and deformation measurements during operation phase

Test campaign 9

Torbjörn Forsmark SWECO

December 2008

Keywords: Äspö HRL, Prototype Repository, Hydrogeology, Hydraulic tests, Pressure build-up tests, Transmissivity

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client.

Abstract

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included in the project but are also part of other projects.

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors.

Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. In some of the holes several tests are made. The pressure change (dp_p) is limited to approximately 100 metres of water, 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively.

There are two HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section used as a reference hole. The results are shown in the table below.

The evaluation method according to (Dougherty, Babu, 1984) was used using the software AQTESOLV ver. 4.5. The result from test campaign 9 using the method is shown in the table below.

Table 1. Results from the test campaign 9. ⁽¹⁾ Indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. ⁽²⁾ indicates no tests are done this test campaign.

Section	HM section	dp _p (m)	Specific capacity (m²/s)	T _{MOYE} (m²/s)	T _{eval} (Dougherty & Babu) (m ² /s)	Skin factor (Dougherty & Babu) (-)
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3554G01:2	х	~100	1.2·10 ⁻⁷	7.5·10 ⁻⁸	8.0·10 ⁻⁷	34
KA3554G01:2	х	~200	7.7·10 ⁻⁸	4.9·10 ⁻⁸	5.8·10 ⁻⁷	40
KA3554G01:2	х	max	6.7·10 ⁻⁸	4.3·10 ⁻⁸	4.6·10 ⁻⁷	38
KA3554G02:4	х	~100	1.4·10 ⁻⁹	9.0·10 ⁻¹⁰	1.6·10 ⁻⁸	70
KA3554G02:4	х	max	1.7·10 ⁻⁹	1.1·10 ⁻⁹	1.3·10 ⁻⁸	45
KA3548A01:3	х	~100	2.8·10 ⁻⁷	1.9·10 ⁻⁷	1.5·10 ⁻⁷	-3
KA3548A01:3	х	~200	1.9·10 ⁻⁷	1.3·10 ⁻⁷	9.8·10 ⁻⁸	-3
KA3548A01:3	х	max	1.3·10 ⁻⁷	9.0·10 ⁻⁸	9.0·10 ⁻⁸	-2
KA3542G01:3	х	~100	7.7·10 ⁻⁸	5.1·10 ⁻⁸	1.6·10 ⁻⁷	6
KA3542G01:3	х	~200	5.3·10 ⁻⁸	3.5·10 ⁻⁸	1.3·10 ⁻⁷	9
KA3542G01:3	х	max	4.5·10 ⁻⁸	2.9·10 ⁻⁸	1.3·10 ⁻⁷	12
KA3544G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	х	~100	1.1·10 ⁻⁹	7.2·10 ⁻¹⁰	9.3·10 ⁻¹⁰	-0.3
KA3542G02:2	х	max	1.1·10 ⁻⁹	6.9·10 ⁻¹⁰	7.5·10 ⁻¹⁰	0
KA3563G:4	-	max	(2)	(2)	(2)	(2)
KA3546G01:2	х	max	5.0·10 ⁻¹⁰	3.3·10 ⁻¹⁰	1.1·10 ⁻⁹	9
KA3566G01:2	-	max	(2)	(2)	(2)	(2)
KA3572G01:2	-	max	(2)	(2)	(2)	(2)
KA3574G01:3	-	max	(2)	(2)	(2)	(2)
KA3539G:2	х	~100	2.7·10 ⁻⁷	1.8·10 ⁻⁷	2.0·10 ⁻⁶	5
KA3539G:2	Х	max	2.5·10 ⁻⁷	1.7·10 ⁻⁷	1.8·10 ⁻⁶	6

Sammanfattning

Huvudsyftet med prototypförvaret är att testa och demonstrera funktionen av en del av SKB:s djupförvarssystem. Aktiviteter som syftar till utveckling och försök av praktiska och ingenjörsmässiga lösningar, som krävs för att på ett rationellt sätt kunna stegvis utföra deponeringen av kapslar med kärnbränsle, är inkluderade i projektet för prototypförvaret men även i andra projekt.

Målsättningen med enhålstesterna är att få en uppskattning av transmissiviteten hos de hydromekaniska testsektionerna, (HM), som är utrustade med sprickdeformationssensorer.

Enhålstester gjordes i totalt 8 stycken borrhål. Ett nionde och tionde borrhål är utrustad med HM sensorer men har inte kunnat testas på grund av läckageproblem med de hydrauliska manschetterna. I G-tunneln finns ytterligare ett borrhål med en HM sensor installerad. Det hålet används som referenshål. Resultaten från denna testomgång presenteras i tabellen nedan.

Metodiken enligt (Dougherty, Babu, 1984), har använts i samband med utvärderingen av denna testkampanj. Programvaran AQTESOLV ver. 4.5 har använts vid denna utvärdering. Resultat för testomgång 9 presenteras i tabellen nedan

Sektion	HM sektion	dp _p (m)	Specifik kapacitet (m³/s⋅m)	T _{MOYE} (m²/s)	T _{eval} (Dougherty & Babu) (m ² /s)	Skinfaktor (Dougherty & Babu) (-)
KA3550G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	х	max	(1)	(1)	(1)	(1)
KA3554G01:2	х	~100	1.2·10 ⁻⁷	7.5·10 ⁻⁸	8.0·10 ⁻⁷	34
KA3554G01:2	х	~200	7.7·10 ⁻⁸	4.9·10 ⁻⁸	5.8·10 ⁻⁷	40
KA3554G01:2	х	max	6.7·10 ⁻⁸	4.3·10 ⁻⁸	4.6·10 ⁻⁷	38
KA3554G02:4	Х	~100	1.4·10 ⁻⁹	9.0·10 ⁻¹⁰	1.6·10 ⁻⁸	70
KA3554G02:4	х	max	1.7·10 ⁻⁹	1.1·10 ⁻⁹	1.3·10 ⁻⁸	45
KA3548A01:3	х	~100	2.8·10 ⁻⁷	1.9·10 ⁻⁷	1.5·10 ⁻⁷	-3
KA3548A01:3	х	~200	1.9·10 ⁻⁷	1.3·10 ⁻⁷	9.8·10 ⁻⁸	-3
KA3548A01:3	х	max	1.3·10 ⁻⁷	9.0·10 ⁻⁸	9.2·10 ⁻⁸	-2
KA3542G01:3	х	~100	7.7·10 ⁻⁸	5.1·10 ⁻⁸	1.6·10 ⁻⁷	6
KA3542G01:3	х	~200	5.3·10 ⁻⁸	3.5·10 ⁻⁸	1.3·10 ⁻⁷	9
KA3542G01:3	х	max	4.5·10 ⁻⁸	2.9·10 ⁻⁸	1.3·10 ⁻⁷	12
KA3544G01:2	х	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	х	~100	1.1·10 ⁻⁹	7.2·10 ⁻¹⁰	9.3·10 ⁻¹⁰	-0.3
KA3542G02:2	х	max	1.1·10 ⁻⁹	6.9·10 ⁻¹⁰	7.5·10 ⁻¹⁰	0
KA3563G:4	-	max	(2)	(2)	(2)	(2)
KA3546G01:2	х	max	5.0·10 ⁻¹⁰	3.3·10 ⁻¹⁰	1.1·10 ⁻⁹	9
KA3566G01:2	-	max	(2)	(2)	(2)	(2)
KA3572G01:2	-	max	(2)	(2)	(2)	(2)
KA3574G01:3	-	max	(2)	(2)	(2)	(2)
KA3539G:2	х	~100	2.7·10 ⁻⁷	1.8·10 ⁻⁷	2.0·10 ⁻⁶	5
KA3539G:2	х	max	2.5·10 ⁻⁷	1.7·10 ⁻⁷	1.8·10 ⁻⁶	6

Tabell 1. Resultat från testomgång 9. ⁽¹⁾ indikerar läckageproblem med manschetterna, "-" indikerar att inget värde kunnat beräknas med valt utvärderingsmetod. ⁽²⁾ indikerar att ingen test gjordes i detta borrhål denna testkampanj.

Executive Summary

In Tables 1 to 4 below is a summary of the test results of the single hole tests so far. In the heading of each test campaign column is indicated the number of days since the heaters in canister hole 5 (DA3551G01) were turned on.

An evaluation method (Dougherty, Babu, 1984) has replaced the earlier used method. The software AQTESOLV ver. 4.5 has been used. All data from the earlier test campaigns 1–7 were re-evaluated using Dougherty & Babu model and presented in (Forsmark, 2007a) and are considered as the results that should prevail.

Table 1. Specific capacity. For each test campaign is indicated the number of days since starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. ⁽²⁾ indicates no tests are done this test campaign.

Section	dp _p (m)	Test campaig 1 (-0 days) (m³/s⋅m)	Test campaign 2 (-166 days) (m ³ /s·m)	Test campaign 3 (-270 days) (m ³ /s⋅m)	Test campaign 4 (-461 days) (m ³ /s⋅m)	Test campaign 5 (-622 days) (m³/s⋅m)	Test campaign 6 (-935 days) (m ³ /s⋅m)	Test campaign 7 (-1236 days) (m³/s⋅m)	Test campaign 8 (-1625 days) (m ³ /s⋅m)	Test campaign 9 (-1992 days) (m³/s·m)
KA3550G01:2	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	max	9.4·10 ⁻⁹	1.6·10 ⁻⁹	1.4·10 ⁻⁹	5.8·10 ⁻⁹	1.4·10 ⁻⁹	1.5·10 ⁻⁹	1.2·10 ⁻⁹	1.2·10 ⁻⁹	(1)
KA3554G01:2	~100	(2)	(2)	(2)	1.0·10 ⁻⁷	1.1·10 ⁻⁷	9.7·10 ⁻⁸	1.1·10 ⁻⁷	6.6·10 ⁻⁷	1.2·10 ⁻⁷
KA3554G01:2	~200	(2)	(2)	(2)	8.8·10 ⁻⁸	8.9·10 ⁻⁸	8.4·10 ⁻⁸	9.3·10 ⁻⁸	2.0·10 ⁻⁷	7.7·10 ⁻⁸
KA3554G01:2	max	8.2·10 ⁻⁸	8.3·10 ⁻⁸	7.8·10 ⁻⁸	7.9·10 ⁻⁸	7.7·10 ⁻⁸	7.7·10 ⁻⁸	8.1·10 ⁻⁸	1.4·10 ⁻⁷	6.7·10 ⁻⁸
KA3554G02:4	~100	(2)	(2)	(2)	1.2·10 ⁻⁹	1.3·10 ⁻⁹	1.2·10 ⁻⁹	1.3·10 ⁻⁹	1.4·10 ⁻⁹	1.4·10 ⁻⁹
KA3554G02:4	max	1.3·10 ⁻⁹	1.2·10 ⁻⁹	1.2·10 ⁻⁹	1.2·10 ⁻⁹	1.2·10 ⁻⁹	1.4·10 ⁻⁹	1.8·10 ⁻⁹	2.1·10 ⁻⁹	1.7·10 ⁻⁹
KA3548A01:3	~100	(2)	(2)	(2)	(2)	1.1·10 ⁻⁷	1.1·10 ⁻⁷	1.0·10 ⁻⁷	2.4·10 ⁻⁷	2.8·10 ⁻⁷
KA3548A01:3	~200	(2)	(2)	(2)	(2)	1.1·10 ⁻⁷	1.0·10 ⁻⁷	9.3·10 ⁻⁸	1.8·10 ⁻⁷	1.9·10 ⁻⁷
KA3548A01:3	max	1.1·10 ⁻⁷	1.0·10 ⁻⁷	1.1·10 ⁻⁷	9.8·10 ⁻⁸	1.0·10 ⁻⁷	9.3·10 ⁻⁸	8.8·10 ⁻⁸	1.5·10 ⁻⁷	1.3·10 ⁻⁷
KA3542G01:3	~100	(2)	(2)	(2)	5.8·10 ⁻⁸	5.9·10 ⁻⁸	6.9·10 ⁻⁸	5.2·10 ⁻⁸	8.4·10 ⁻⁸	7.7·10 ⁻⁸
KA3542G01:3	~200	(2)	(2)	(2)	4.9·10 ⁻⁸	5.4·10 ⁻⁸	5.4·10 ⁻⁸	5.0·10 ⁻⁸	6.4·10 ⁻⁸	5.3·10 ⁻⁸
KA3542G01:3	max	5.4·10 ⁻⁸	4.9·10 ⁻⁸	4.7·10 ⁻⁸	4.5·10 ⁻⁸	4.7·10 ⁻⁸	4.4·10 ⁻⁸	4.6·10 ⁻⁸	5.9·10 ⁻⁸	4.5·10 ⁻⁸
KA3544G01:2	(1)	7.8·10 ⁻¹⁰	5.9·10 ⁻¹⁰	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	~100	(2)	(2)	(2)	(2)	9.5·10 ⁻¹⁰	9.5·10 ⁻¹⁰	9.5·10 ⁻¹⁰	1.0·10 ⁻⁹	1.1·10 ⁻⁹
KA3542G02:2	max	5.4·10 ⁻¹⁰	4.9·10 ⁻¹⁰	1.0·10 ⁻⁹	9.8·10 ⁻¹⁰	9.9·10 ⁻¹⁰	9.7·10 ⁻¹⁰	1.1·10 ⁻⁹	9.9·10 ⁻¹⁰	1.1·10 ⁻⁹
KA3563G:4	max	1.7·10 ⁻⁸	(2)	(2)	(2)	9.3·10 ⁻⁹	(2)	(2)	(2)	(2)
KA3546G01:2	max	6.1·10 ⁻¹⁰	6.0·10 ⁻¹⁰	6.4·10 ⁻¹⁰	5.7·10 ⁻¹⁰	5.9·10 ⁻¹¹	5.1·10 ⁻¹⁰	5.2·10 ⁻¹⁰	5.3·10 ⁻¹⁰	5.0·10 ⁻¹⁰
KA3566G01:2	max	6.8·10 ⁻¹⁰	(2)	(2)	(2)	6.4·10 ⁻¹¹	(2)	(2)	(2)	(2)
KA3572G01:2	max	1.9·10 ⁻¹⁰	(2)	(2)	(2)	2.3·10 ⁻¹⁰	(2)	(2)	(2)	(2)
KA3574G01:3	max	8.7·10 ⁻¹⁰	(2)	(2)	(2)	1.9·10 ⁻¹⁰	(2)	(2)	(2)	(2)
KA3539G:2	~100	(2)	(2)	(2)	2.3·10 ⁻⁷	2.2·10 ⁻⁷	2.1·10 ⁻⁷	1.9·10 ⁻⁷	2.5·10 ⁻⁷	2.7·10 ⁻⁷
KA3539G:2	max	1.9·10 ⁻⁷	3.0·10 ⁻⁷	2.2·10 ⁻⁷	2.3·10 ⁻⁷	1.5·10 ⁻⁷	1.9·10 ⁻⁷	1.7·10 ⁻⁷	2.4·10 ⁻⁷	2.5·10 ⁻⁷

Table 2. T_{MOYE} . For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. ⁽²⁾ indicates no tests are done this test campaign.

Section	dp _p (m)	Test campaign 1 (-0 days) (m ² /s)	Test campaign 2 (-166 days) (m ² /s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5 (-622 days) (m ² /s)	Test campaign 6 (-935 days) (m ² /s)	Test campaign 7 (-1236 days) (m ² /s)	Test campaign 8 (-1625 days) (m ² /s)	Test campaign 9 (-1992 days) (m ² /s)
KA3550G01:2	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	max	8.8·10 ⁻⁹	1.0·10 ⁻⁹	8.8·10 ⁻¹⁰	3.8·10 ⁻⁹	8.9·10 ⁻¹⁰	9.9·10 ⁻¹⁰	8.0·10 ⁻¹⁰	8.0·10 ⁻¹⁰	(1)
KA3554G01:2	~100	(2)	(2)	(2)	6.5·10 ⁻⁸	7.2·10 ⁻⁸	6.2·10 ⁻⁸	7.1·10 ⁻⁸	4.2·10 ⁻⁷	7.5·10 ⁻⁸
KA3554G01:2	~200	(2)	(2)	(2)	5.6·10 ⁻⁸	5.7·10 ⁻⁸	5.4·10 ⁻⁸	6.0·10 ⁻⁸	1.3·10 ⁻⁷	4.9·10 ⁻⁸
KA3554G01:2	max	5.2·10 ⁻⁸	5.3·10 ⁻⁸	5.0·10 ⁻⁸	5.1·10 ⁻⁸	4.9·10 ⁻⁸	4.9·10 ⁻⁸	5.2·10 ⁻⁸	8.7·10 ⁻⁸	4.3·10 ⁻⁸
KA3554G02:4	~100	(2)	(2)	(2)	8.2·10 ⁻¹⁰	8.2·10 ⁻¹⁰	7.5·10 ⁻¹⁰	8.6·10 ⁻¹⁰	9.1·10 ⁻¹⁰	9.0·10 ⁻¹⁰
KA3554G02:4	max	8.2·10 ⁻¹⁰	7.9·10 ⁻¹⁰	7.9·10 ⁻¹⁰	7.5·10 ⁻¹⁰	8.0·10 ⁻¹⁰	9.1·10 ⁻¹⁰	1.2·10 ⁻⁹	1.4·10 ⁻⁹	1.1·10 ⁻⁹
KA3548A01:3	~100	(2)	(2)	(2)	(2)	7.4·10 ⁻⁸	7.5·10 ⁻⁸	6.8·10 ⁻⁸	1.6·10 ⁻⁷	1.9·10 ⁻⁷
KA3548A01:3	~200	(2)	(2)	(2)	(2)	7.7·10 ⁻⁸	6.8·10 ⁻⁸	6.3·10 ⁻⁸	1.2·10 ⁻⁷	1.3·10 ⁻⁷
KA3548A01:3	max	7.1·10 ⁻⁸	6.9·10 ⁻⁸	6.9·10 ⁻⁸	6.6·10 ⁻⁸	6.9·10 ⁻⁸	6.3·10 ⁻⁸	5.9·10 ⁻⁸	1.0·10 ⁻⁷	9.0·10 ⁻⁸
KA3542G01:3	~100	(2)	(2)	(2)	3.8·10 ⁻⁸	3.9·10 ⁻⁸	4.5·10 ⁻⁸	3.4·10 ⁻⁸	5.5·10 ⁻⁸	5.1·10 ⁻⁸
KA3542G01:3	~200	(2)	(2)	(2)	3.3·10 ⁻⁸	3.5·10 ⁻⁸	3.5·10 ⁻⁸	3.3·10 ⁻⁸	4.2·10 ⁻⁸	3.5·10 ⁻⁸
KA3542G01:3	max	3.6·10 ⁻⁸	3.2·10 ⁻⁸	3.1·10 ⁻⁸	3.1·10 ⁻⁸	3.0·10 ⁻⁸	2.9·10 ⁻⁸	3.0·10 ⁻⁸	3.9·10 ⁻⁸	2.9·10 ⁻⁸
KA3544G01:2	(1)	5.1·10 ⁻¹⁰	3.6·10 ⁻¹⁰	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	~100	(2)	(2)	(2)	(2)	6.1·10 ⁻¹⁰	6.1·10 ⁻¹⁰	6.1·10 ⁻¹⁰	6.5·10 ⁻¹⁰	7.2·10 ⁻¹⁰
KA3542G02:2	max	3.5·10 ⁻¹⁰	3.1·10 ⁻¹⁰	6.4·10 ⁻¹⁰	6.3·10 ⁻¹⁰	6.4·10 ⁻¹⁰	6.2·10 ⁻¹⁰	6.8·10 ⁻¹⁰	6.4·10 ⁻¹⁰	6.9·10 ⁻¹⁰
KA3563G:4	max	5.6·10 ⁻⁹	(2)	(2)	(2)	5.9·10 ⁻⁹	(2)	(2)	(2)	(2)
KA3546G01:2	max	3.9·10 ⁻¹⁰	3.9·10 ⁻¹⁰	4.1·10 ⁻¹⁰	3.6·10 ⁻¹⁰	3.6·10 ⁻¹¹	3.3·10 ⁻¹⁰	3.3·10 ⁻¹⁰	3.4·10 ⁻¹⁰	3.3·10 ⁻¹⁰
KA3566G01:2	max	4.4·10 ⁻¹⁰	(2)	(2)	(2)	4.1·10 ⁻¹¹	(2)	(2)	(2)	(2)
KA3572G01:2	max	1.3·10 ⁻¹⁰	(2)	(2)	(2)	1.6·10 ⁻¹⁰	(2)	(2)	(2)	(2)
KA3574G01:3	max	6.1·10 ⁻¹⁰	(2)	(2)	(2)	1.4·10 ⁻¹⁰	(2)	(2)	(2)	(2)
KA3539G:2	~100	(2)	(2)	(2)	1.5·10 ⁻⁷	1.4·10 ⁻⁷	1.4·10 ⁻⁷	1.2·10 ⁻⁷	1.6·10 ⁻⁷	1.8·10 ⁻⁷
KA3539G:2	max	1.3·10 ⁻⁷	2.0·10 ⁻⁷	1.5·10 ⁻⁷	1.5·10 ⁻⁷	1.0·10 ⁻⁷	1.3·10 ⁻⁷	1.1·10 ⁻⁷	1.6·10 ⁻⁷	1.7·10 ⁻⁷

Table 3. Transmissivity – transient evaluation according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. ⁽²⁾ indicates no tests are done this test campaign.

Section	dp _p (m)	Test campaign 1 (-0 days) (m²/s)	Test campaign 2 (-166 days) (m²/s)	Test campaign 3 (-270 days) (m ² /s)	Test campaign 4 (-461 days) (m ² /s)	Test campaign 5 (-622 days) (m ² /s)	Test campaign 6 (-935 days) (m ² /s)	Test campaign 7 (-1236 days) (m ² /s)	Test campaign 8 (-1625 days) (m²/s)	Test campaign 9 (-1992 days) (m ² /s)
KA3550G01:2	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	max	4.2·10 ⁻⁹	1.3·10 ⁻⁹	9.5·10 ⁻¹⁰	8.1·10 ⁻¹⁰	7.4·10 ⁻¹⁰	4.5·10 ⁻¹⁰	8.0·10 ⁻¹⁰	8.2·10 ⁻¹⁰	(1)
KA3554G01:2	~100	(2)	(2)	(2)	5.7·10 ⁻⁷	5.3·10 ⁻⁷	5.3·10 ⁻⁷	5.3·10 ⁻⁷	2.7·10 ⁻⁶	8.0·10 ⁻⁷
KA3554G01:2	~200	(2)	(2)	(2)	5.3·10 ⁻⁷	4.9·10 ⁻⁷	4.8·10 ⁻⁷	4.6·10 ⁻⁷	1.8·10 ⁻⁶	5.8·10 ⁻⁷
KA3554G01:2	max	6.4·10 ⁻⁷	6.4·10 ⁻⁷	5.8·10 ⁻⁷	4.9·10 ⁻⁷	4.6·10 ⁻⁷	4.5·10 ⁻⁷	4.4·10 ⁻⁷	1.3·10 ⁻⁶	4.6·10 ⁻⁷
KA3554G02:4	~100	(2)	(2)	(2)	7.0·10 ⁻⁹	9.0·10 ⁻⁹	1.7·10 ⁻⁸	1.1·10 ⁻⁸	1.0·10 ⁻⁸	1.6·10 ⁻⁸
KA3554G02:4	max	2.1·10 ⁻⁸	2.0·10 ⁻⁸	1.9·10 ⁻⁸	1.2·10 ⁻⁸	1.1·10 ⁻⁸	1.7·10 ⁻⁸	1.1·10 ⁻⁸	1.2·10 ⁻⁸	1.3·10 ⁻⁸
KA3548A01:3	~100	(2)	(2)	(2)	(2)	1.0·10 ⁻⁷	9.0·10 ⁻⁸	8.0·10 ⁻⁸	1.2·10 ⁻⁷	1.5·10 ⁻⁷
KA3548A01:3	~200	(2)	(2)	(2)	(2)	1.2·10 ⁻⁷	1.2·10 ⁻⁷	8.3·10 ⁻⁸	1.3·10 ⁻⁷	9.8·10 ⁻⁸
KA3548A01:3	max	1.1·10 ⁻⁷	1.3·10 ⁻⁷	1.1·10 ⁻⁷	1.1·10 ⁻⁷	1.1·10 ⁻⁷	9.1·10 ⁻⁸	8.6·10 ⁻⁸	2.2·10 ⁻⁷	9.2·10 ⁻⁸
KA3542G01:3	~100	(2)	(2)	(2)	4.4·10 ⁻⁸	5.8·10 ⁻⁸	6.6·10 ⁻⁸	4.7·10 ⁻⁸	6.6·10 ⁻⁸	1.6·10 ⁻⁷
KA3542G01:3	~200	(2)	(2)	(2)	4.8·10 ⁻⁸	4.2·10 ⁻⁸	6.5·10 ⁻⁸	4.0·10 ⁻⁸	7.7·10 ⁻⁸	1.3·10 ⁻⁷
KA3542G01:3	max	4.5·10 ⁻⁸	3.0·10 ⁻⁸	5.5·10 ⁻⁸	3.1·10 ⁻⁸	3.5·10 ⁻⁸	4.4·10 ⁻⁸	3.8·10 ⁻⁸	6.9·10 ⁻⁸	1.3·10 ⁻⁷
KA3544G01:2	(1)	1.1·10 ⁻⁸	7.4·10 ⁻⁹	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	~100	(2)	(2)	(2)	(2)	1.0·10 ⁻⁹	9.6·10 ⁻¹⁰	9.0·10 ⁻¹⁰	9.6·10 ⁻¹⁰	9.3·10 ⁻¹⁰
KA3542G02:2	max	3.6·10 ⁻¹⁰	2.7·10 ⁻¹⁰	9.3·10 ⁻¹⁰	8.7·10 ⁻¹⁰	8.6·10 ⁻¹⁰	6.1·10 ⁻¹⁰	4.6·10 ⁻¹⁰	9.4·10 ⁻¹⁰	7.5·10 ⁻¹⁰
KA3563G:4	max	1.7·10 ⁻⁷	(2)	(2)	(2)	5.1·10 ⁻⁸	(2)	(2)	(2)	(2)
KA3546G01:2	max	6.8·10 ⁻¹⁰	1.4·10 ⁻⁹	1.2·10 ⁻⁹	1.1·10 ⁻⁹	1.3·10 ⁻⁹	1.4·10 ⁻⁹	9.6·10 ⁻¹⁰	1.2·10 ⁻⁹	1.1·10 ⁻⁹
KA3566G01:2	max	1.3·10 ⁻¹⁰	(2)	(2)	(2)	3.3·10 ⁻¹⁰	(2)	(2)	(2)	(2)
KA3572G01:2	max	3.5·10 ⁻⁹	(2)	(2)	(2)	1.4·10 ⁻⁸	(2)	(2)	(2)	(2)
KA3574G01:3	max	-	(2)	(2)	(2)	-	(2)	(2)	(2)	(2)
KA3539G:2	~100	(2)	(2)	(2)	1.1·10 ⁻⁶	1.2·10 ⁻⁶	8.8·10 ⁻⁷	6.3·10 ⁻⁷	9.1·10 ⁻⁷	2.0·10 ⁻⁶
KA3539G:2	max	1.3·10 ⁻⁶	1.5·10 ⁻⁶	1.1·10 ⁻⁶	1.0·10 ⁻⁶	9.8·10 ⁻⁷	9.6·10 ⁻⁷	7.2·10 ⁻⁷	9.0·10 ⁻⁷	1.8·10 ⁻⁶

Table 4. Skin factor – according to (Dougherty, Babu, 1984). For each test campaign is indicated the number of days since the starting of the heaters in canister hole 5 (2003-05-08). ⁽¹⁾ indicates packer system failure, "-" indicates it is not possible to evaluate any value with selected method. ⁽²⁾ indicates no tests are done this test campaign.

Section	dp _p (m)	Test campaign 1 (-0 days) (-)	Test campaign 2 (-166 days) (-)	Test campaign 3 (-270 days) (-)	Test campaign 4 (-461 days) (-)	Test campaign 5 (-622 days) (-)	Test campaign 6 (-935 days) (-)	Test campaign 7 (-1236 days) (-)	Test campaign 8 (-1625 days) (-)	Test campaign 9 (-1992 days) (-)
KA3550G01:2	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3552G01:2	max	1.1	-0.5	-0.7	-0.9	-0.4	-1.9	-0.2	0	(1)
KA3554G01:2	~100	(2)	(2)	(2)	26	24	25	20	18	34
KA3554G01:2	~200	(2)	(2)	(2)	30	28	28	22	47	40
KA3554G01:2	max	43	42	39	32	30	29	26	54	38
KA3554G02:4	~100	(2)	(2)	(2)	30	38	90	50	45	70
KA3554G02:4	max	100	95	94	58	73	68	35	32	45
KA3548A01:3	~100	(2)	(2)	(2)	(2)	-1.4	-2.1	-2.5	-2.8	-3
KA3548A01:3	~200	(2)	(2)	(2)	(2)	-1.1	-0.6	-1.8	-1.8	-3
KA3548A01:3	max	0.2	1.1	-1.2	-0.1	-0.4	-1	-1.3	-2.2	-2
KA3542G01:3	~100	(2)	(2)	(2)	-1	-0.1	-1	-1.5	-1.1	6
KA3542G01:3	~200	(2)	(2)	(2)	0.3	-0.9	1.1	-1.5	1.4	9
KA3542G01:3	max	0.1	-1	1.5	-0.9	-0.7	0.2	-0.7	-1.5	12
KA3544G01:2	(1)	90	100	(1)	(1)	(1)	(1)	(1)	(1)	(1)
KA3542G02:2	~100	(2)	(2)	(2)	(2)	0.8	-0.1	0.6	0.4	-0.3
KA3542G02:2	max	0.4	-0.5	0.1	0.1	-0.1	-0.9	-1.1	0	0
KA3563G:4	max	-	(2)	(2)	(2)	31	(2)	(2)	(2)	(2)
KA3546G01:2	max	6	10	7	8	9	11	8	10	9
KA3566G01:2	max	-	(2)	(2)	(2)	0.1	(2)	(2)	(2)	(2)
KA3572G01:2	max	-	(2)	(2)	(2)	-	(2)	(2)	(2)	(2)
KA3574G01:3	max	-	(2)	(2)	(2)	-	(2)	(2)	(2)	(2)
KA3539G:2	~100	(2)	(2)	(2)	1.8	2.1	-0.6	-1.5	-0.5	5
KA3539G:2	max	3.6	5.7	2.7	1.7	1	0.7	-0.8	0	6

Contents

1	Background	17
1.1	Äspö Hard Rock Laboratory	17
1.2	Prototype Repository	18
	1.2.1 General objectives	18
2	Objective	19
3	Scope	21
4	Equipment	23
4.1	Description of equipment	23
	Pressure sensors	24
4.3 4.4	Flowmeter equipment Deformation measurements	25 26
7.7	4.4.1 Measurement equipment	26
5	Execution	-• 31
	Preparations	31
	Execution of tests/measurements	31
	5.2.1 Test principle	31
	5.2.2 Test procedure	31
5.3	Data handling	32
5.4	Analyses and interpretation	32
	5.4.1 Single hole tests	32
6	Results	35
6.1	Single hole tests	35
	6.1.1 KA3552G01:2, test No 9:1	35 38
	6.1.2 KA3554G01:2, test No 9:2a 6.1.3 KA3554G01:2, test No 9:2b	58 41
	6.1.4 KA3554G01:2, test No 9:2c	44
	6.1.5 KA3554G02:4, test No 9:3a	47
	6.1.6 KA3554G02:4, test No 9:3b	50
	6.1.7 KA3548A01:3, test No 9:4a	53
	6.1.8 KA3548A01:3, test No 9:4b	56
	6.1.9 KA3548A01:3, test No 9:4c	59
	6.1.10 KA3542G01:3, test No 9:5a	62
	6.1.11 KA3542G01:3 , test No 9:5b 6.1.12 KA3542G01:3 , test No 9:5c	65 68
	6.1.13 KA3542G02:2, test No 9:7a	71
	6.1.14 KA3542G02:2, test No 9:7b	74
	6.1.15 KA3546G01:2, test No 9:9	77
	6.1.16 KA3539G:2, test No 9:13a	80
	6.1.17 KA3539G:2, test No 9:13b	83
6.2	Deformation measurements	86
7	Conclusion	87
Ref	erences	89

Tables

Table 3-1	Single hole tests during the campaign in November - December 2005. (1) indicates packer system failure, "X" indicates that section is equipped with HM sensors. (2) indicates no test is done in this campaign.) 21
Table 4-1	Data of the deformation measurement sections (sensors, length, number of fractures etc).	28
Table 6-1	General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01	35
Table 6-2	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	38
Table 6-3	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	41
Table 6-4	General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01	44
Table 6-5	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	47
Table 6-6	General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02	50
Table 6-7	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	53
Table 6-8	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	56
Table 6-9	General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01	59
Table 6-10	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	62
Table 6-11	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	65
Table 6-12	General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01	68
Table 6-13	General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02	71
Table 6-14	General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02	74
Table 6-15	General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01	77
Table 6-16	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	80
Table 6-17	General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G	83

Figures

Figure 1-1. Äspö Hard Rock Laboratory	17
Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.	23
Figure 4-2. Pressure transducers connections	24
Figure 4-3. The equipment for flowrate measurement with Micro Motion Coriolis mass flowmeter system	25
Figure 4-4. A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner.	27
Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.	29
Figure 6-1. Flow rates during draw down in KA3552G01:2.	36
Figure 6-2. Flow rates during draw down in KA3554G01:2.	39
Figure 6-3. Flow rates during draw down in KA3554G01:2.	42
Figure 6-4 Flow rates during draw down in KA3554G01:2.	45
Figure 6-5 Flow rates during draw down in KA3554G02:4.	48
Figure 6-6 Flow rates during draw down in KA3554G02:4.	51
Figure 6-7 Flow rates during draw down in KA3548A01:3.	54
Figure 6-8 Flow rates during draw down in KA3548A01:3.	57
Figure 6-9 Flow rates during draw down in KA3548A01:3.	60
Figure 6-10 Flow rate during draw down in KA3542G01:3.	63
Figure 6-11 Flow rate during draw down in KA3542G01:3.	66
Figure 6-12 Flow rate during draw down in KA3542G01:3.	69
Figure 6-13 Flow rate during draw down in KA3542G02:2.	72
Figure 6-14 Flow rate during draw down in KA3542G02:2.	75
Figure 6-15 Flow rate during draw down in KA3546G01:2. The flow in this section is very low. No flowmeter readings are available.	78
Figure 6-16 Flow rate during draw down in KA3539G:2.	81
Figure 6-17 Flow rate during draw down in KA3539G:2.	84

1 Background

1.1 Äspö Hard Rock Laboratory

In order to prepare for the localization and licensing of a spent fuel repository SKB has constructed an underground research laboratory.

In the autumn of 1990, SKB began the construction of Äspö Hard Rock Laboratory (Äspö HRL), see Figure 1-1, near Oskarshamn in the southeastern part of Sweden. A 3.6 km long tunnel was excavated in crystalline rock down to a depth of approximately 460 m.

The laboratory was completed in 1995 and research concerning the disposal of nuclear waste in crystalline rock has since then been carried out.

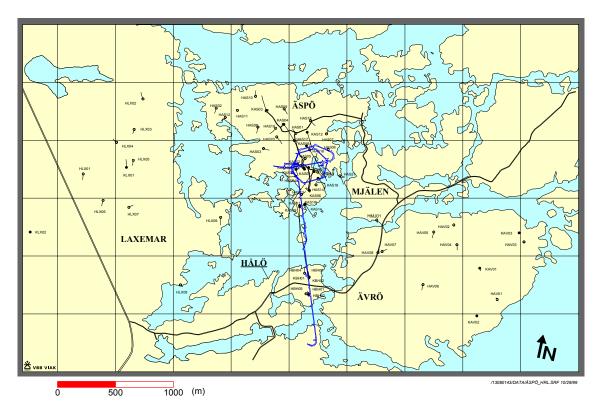


Figure 1-1. Äspö Hard Rock Laboratory.

1.2 **Prototype Repository**

The Äspö Hard Rock Laboratory is an essential part of the research, development, and demonstration work performed by SKB in preparation for construction and operation of the deep repository for spent fuel. Within the scope of the SKB program for RD&D 1995, SKB has decided to carry out a project with the designation "Prototype Repository Test". The aim of the project is to test important components in the SKB deep repository system in full scale and in a realistic environment.

The Prototype Repository Test is focused on testing and demonstrating the function of the SKB deep repository system. Activities aimed at contributing to development and testing of the practical, engineering measures required to rationally perform the steps of a deposition sequence are also included. However, efforts in this direction are limited, since these matters are addressed in the Demonstration of Repository Technology project and to some extent in the Backfill and Plug Test.

1.2.1 General objectives

The Prototype Repository should simulate as many aspects as possible a real repository, for example regarding geometry, materials, and rock environment. The Prototype Repository is a demonstration of the integrated function of the repository components. Results will be compared with models and assumptions to their validity.

The major objectives for the Prototype Repository are:

- To test and demonstrate the integrated function of the repository components under realistic conditions in full scale and to compare results with models and assumptions.
- To develop, test and demonstrate appropriate engineering standards and quality assurance methods.
- To simulate appropriate parts of the repository design and construction process.

The objective for the operation phase program is:

• To monitor processes and properties in the canister, buffer material, backfill and near-field rock mass

2 Objective

The objective of the single-hole tests is to estimate the transmissivity of the Hydro Mechanical (HM) test sections equipped with deformation sensors, *(Alm et al, 2005)*.

3 Scope

Single hole tests are done in 8 boreholes of the Prototype Repository tunnel. There are two more HM sections in KA3544G01 and KA3550G01, which however could not be tested due to packer system failure. In the G-tunnel there is a hole with a HM-equipped section to be used as a reference hole. The tested intervals and basic test data are listed in Table 3-1. The first figure in the test number indicates this being the seventh single hole test campaign, while the second number indicates the chronological order of the single hole tests. The same numbering of the tests as used during test campaign 1 to 8 is used (*Forsmark et al, 2004), (Forsmark, Rhén, 2004a, 2004b, 2004c, 2005a, 2005b, 2005c), (Forsmark, 2006, 2007a, 2007b)*. Also indicated in the table are the sections where Hydro Mechanical (HM) measurements are done. In chapter 6 the results of the tests are presented.

In some of the holes several tests are made. The pressure change (dp_p) is limited to approximately 100 metres of water, approximately 200 metres of water and finally a maximum possible pressure change (i.e open the flow control valves entirely) respectively.

Bore hole	Section (m)	HM section	Single hole test no.	Date of test	Start of test	Flow start	Flow stop	Test stop
KA3550G01:2 ⁽¹⁾	5.20-7.30	Х	- ⁽¹⁾	-	-	-	-	-
KA3552G01:2	4.35-6.05	Х	9:1	2008-10-23	09:00:00	10:00:00	- ⁽³⁾	-
KA3554G01:2	22.60-24.15	Х	9:2a	2008-10-20	13:25:00	14:25:00	16:25:00	17:25:00
KA3554G01:2	22.60-24.15	Х	9:2b	2008-10-21	10:00:00	11:00:00	13:00:00	14:00:00
KA3554G01:2	22.60-24.15	Х	9:2c	2008-10-22	08:40:00	09:40:00	11:40:00	12:40:00
KA3554G02:4	10.50-12.20	Х	9:3a	2008-10-21	07:00:00	08:00:00	10:00:00	11:00:00
KA3554G02:4	10.50-12.20	Х	9:3b	2008-10-23	12:00:00	13:00:00	15:00:00	16:00:00
KA3548A01:3	8.80-10.75	Х	9:4a	2008-10-21	15:00:00	16:00:00	17:00:00	18:00:00
KA3548A01:3	8.80-10.75	Х	9:4b	2008-10-22	06:40:00	07:40:00	08:40:00	09:40:00
KA3548A01:3	8.80-10.75	Х	9:4c	2008-10-23	06:40:00	07:40:00	08:40:00	09:40:00
KA3542G01:3	18.60-20.30	Х	9:5a	2008-10-20	18:30:00	19:30:00	20:30:00	22:30:00
KA3542G01:3	18.60-20.30	Х	9:5b	2008-10-21	17:00:00	18:00:00	19:00:00	21:00:00
KA3542G01:3	18.60-20.30	Х	9:5c	2008-10-22	16:40:00	17:40:00	18:40:00	20:40:00
KA3544G01:2 ⁽¹⁾	8.90-10.65	Х	- (1)	-	-	-	-	-
KA3542G02:2	25.60-27.20	Х	9:7a	2008-10-23	15:20:00	16:20:00	19:20:00	21:20:00
KA3542G02:2	25.60-27.20	Х	9:7b	2008-10-24	05:30:00	06:30:00	09:30:00	11:30:00
KA3563G:4	1.50-3.00	-	- (2)	-	-	-	-	-
KA3546G01:2	6.75-8.30	Х	9:9	2008-10-22	11:40:00	12:40:00	15:40:00	17:40:00
KA3566G01:2	20.00-21.50	-	- (2)	-	-	-	-	-
KA3572G01:2	2.70-5.30	-	- (2)	-	-	-	-	-
KA3574G01:3	1.80-4.10	-	- (2)	-	-	-	-	-
KA3539G:2	15.85-17.60	Х	9:13a	2008-10-20	16:30:00	17:30:00	18:30:00	19:30:00
KA3539G:2	15.85-17.60	Х	9:13b	2008-10-21	13:00:00	14:00:00	15:00:00	16:00:00

Table 3-1. Single hole tests during the campaign in October 2008. (HMS time) ⁽¹⁾ indicates packer system failure, "X" indicates that section is equipped with HM sensors. ⁽²⁾ indicates no test is done in this campaign. ⁽³⁾ A probable packer failure.

4 Equipment

4.1 Description of equipment

A large number of boreholes are instrumented with one or several packers. In all packed-off sections, the water pressure is measured. Each borehole section is connected to a tube of polyamide that via lead-through holes ends in the G-tunnel. All pressure transducers are placed in the G-tunnel to facilitate easy calibration and exchange of transducers that are out of order. The transducers are connected to the HMS system at Äspö Laboratory and it is a flexible system for changing the sampling frequency, see Figure 4-1. The maximum scan frequency is every third second. During periods with no hydraulic tests, the sampling (storing a value in the data base) frequency will be every second hour with an automatic increase of the sampling frequency if the pressure change since last registration is larger than 2kPa. During hydraulic tests, the sampling frequency may be up to every third second.

Figure 4-1. All pressure transducers are connected to the HMS system. In the G-tunnel there is a computer in the HMS system where logging frequencies easily can be changed.

4.2 Pressure sensors

The pressure in a borehole is transmitted via a plastic tube directly to a pressure transducer, *see* Figure 4-2.

The pressure transducers are either of the type DRUCK PTX 500 series or DRUCK PTX 600 series with a pressure range of 0 - 50 bar (absolute).

According to the manufacturer the uncertainty for these transducers is $\pm -0.2 \%$ (type 500) and $\pm -0.08 \%$ (type 600) of full scale (F.S) for the best straight line (B.S.L.). For the 600 series types the time drift is given to max. 0.05 % F.S., while no figure is given for the 500 series types. Normally, a pressure value is scanned once every third second. If the change since the latest stored value exceeds a "change value" of approximately 2 kPa the newly scanned value is stored. A value is always stored once every second hour, regardless of any changes.

Figure 4-2. Pressure transducers connections.

4.3 Flowmeter equipment

A new kind of flow meter, see Figure 4-3, is used in order to obtain continously flow measurements during the tests. The equipment system used was originally developed by Micro Motion, Inc. in USA, and is comprised of a sensor and a signal processing transmitter. It is called a Coriolis mass flow meter and measures mass flow directly. The volume flow can be obtained when knowing the temperature, the pressure and finally the density of the fluid (water).

The fluid enters the sensor and travels through the sensor's flow tubes, which vibrate and twist. The twisting characteristic is called the Coriolis effect. According to Newton's Second Law of Motion, the amount of sensor tube twist is directly proportional to the mass flow rate of the fluid flowing through the tube.

The equipment unit consists of two flow meters with different measurement ranges. The measurement range for the large flow meter is 0 to appr. 36 kg/min and for the small flow meter is 0 to approx. 1.8 kg/min.

Figure 4-3. The equipment for flow rate measurement with Micro Motion Coriolis mass flow meter system.

4.4 Deformation measurements

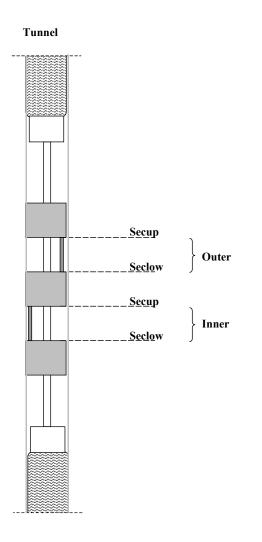
During storage of nuclear waste in the rock mass the temperature will increase due to the heat loss from the canisters with spent fuel. This will increase the rock stresses and the fractures will generally close, but may locally open due to the stress situation (*Alm et al, 2005*).

It is of interest to investigate the magnitude of this effect on the fracture transmissivity since the fracture transmissivity is essential of two reasons. First, enough transmissivity is needed to provide the bentonite buffer with water if no artificial moistening of the buffer is arranged. Secondly, the transmissivity should be as low as possible in order to minimise the hydraulic contact with the canisters. The increased temperature will decrease the transmissivity, which in principal is positive in perspective of Safety Assessment. The last effect is however limited in time and may not be of any greater importance in Safety Assessment.

Displacement measurements are done continuously. Hydraulic tests will be made a number of times during the operation period for the ten measurement sections. An extra section is also equipped with hydro mechanical measurements equipment and is used as a reference hole (KG0010B01). Most tests have been planned to be made during the first years of operation when the largest displacements are expected to occur. This report details the interference results from the fifth test campaign. They are done in order to provide hydrogeological data useful for setting up a hydrogeological model of the rock volume around the TBM tunnel.

In order to investigate the hydro mechanical response of the fractures as a result of the increased thermal load, two different approaches are considered.

The first approach is to measure the change of the fracture width as function of temperature and time. The displacement is both measured for the intact rock as for a section with one or more fractures.


The second approach implies that the mechanical response is evaluated indirect by using the results from hydraulic tests. Single hole hydro tests are performed in the same sections as the mechanical measurements are made (*Forsmark, Rhén, 2004a, 2004b, 2004c, 2005a and 2005c*), (*Forsmark, 2006, 2007a, 2007b*).

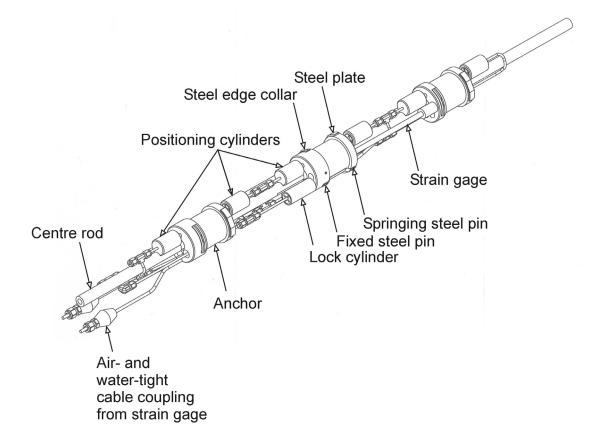
All results from the hydro mechanical measurements will be documented in separate documents.

4.4.1 Measurement equipment

In order to measure the fracture deformation (and to separate the fracture deformation from the deformation of the intact rock) due to the increased temperature a measurement equipment has been developed.

The equipment consists of two hydraulic packers, which hydraulically isolate the test section. Between the packers three anchors are placed. These anchors are fixed to the borehole wall and in the sections between the anchors sensors (strain gage) are mounted. These sections are called mechanical measurement sections. The sensors will register any relative movement between the anchors; see Figure 4-4 and 4-5. The temperature is also measured in each sensor by a thermistor.

Figure 4-4. A schematic figure that shows the different parts of the test equipment and also the definitions of the terms outer and inner.


The deformation is measured in two sections in each borehole. One mechanical measurement section is placed over a fracture (or fractures) and the other mechanical measurement section is placed over intact rock. That makes it possible to separate the fracture deformation from the deformation of the intact rock.

Of all boreholes in the prototype tunnel, ten are equipped as described above. Five of the measurement sections are placed over a single fracture and the rest are placed over two to six fractures, see Table 4-1.

Since hydraulic packers isolate the test sections and the test sections have contact with the tunnel (atmospheric pressure) via tubes and valves it is possible to perform hydraulic tests in the sections.

Label	Cable mark	Sensor S/N	Position	Secup	Seclow	Section length (m)	Number of fractures
KA3539G-2-1	HRA 1121	3511	Inner	16.77	16.97	0.20	2
KA3539G-2-2	HRA 1122	3510	Outer	16.47	16.67	0.20	0
KA3542G01-3-1	HRA 1231	3513	Inner	19.47	19.67	0.20	0
KA3542G01-3-2	HRA 1232	3512	Outer	19.17	19.37	0.20	1
KA3542G02-2-1	HRA 1321	3515	Inner	26.50	26.70	0.20	1
KA3542G02-2-2	HRA 1322	3514	Outer	26.20	26.40	0.20	0
KA3544G01-2-1	HRA 1621	3509	Inner	9.82	10.02	0.20	1
KA3544G01-2-2	HRA 1622	3508	Outer	9.52	9.72	0.20	0
KA3546G01-2-1	HRA 1721	3517	Inner	7.67	7.87	0.20	1
KA3546G01-2-2	HRA 1722	3516	Outer	7.37	7.57	0.20	0
KA3548A01-3-1	HRA 1831	3526	Inner	9.70	10.15	0.45	2
KA3548A01-3-2	HRA 1832	3518	Outer	9.40	9.60	0.20	0
KA3550G01-2-1	HRA 2121	3527	Inner	6.10	6.70	0.60	6
KA3550G01-2-2	HRA 2122	3519	Outer	5.80	6.00	0.20	0
KA3552G01-2-1	HRA 2521	3521	Inner	5.25	5.45	0.20	0
KA3552G01-2-2	HRA 2522	3520	Outer	4.95	5.15	0.20	2
KA3554G01-2-1	HRA 2821	3525	Inner	23.54	23.80	0.26	2
KA3554G01-2-2	HRA 2822	3522	Outer	23.24	23.44	0.20	0
KA3554G02-4-1	HRA 2941	3524	Inner	11.40	11.60	0.20	0
KA3554G02-4-2	HRA 2942	3523	Outer	11.10	11.30	0.20	1
KG0010B01-1-1	-	3238	Inner	3.66	3.86	0.20	-
KG0010B01-1-2	-	3507	Outer	3.36	3.56	0.20	-

Table 4-1. Data of the deformation measurement sections (sensors, length, number of fractures etc).

Figure 4-5. A detailed figure of the three anchors, sensors (strain gage), positioning cylinder etc.

5 Execution

5.1 Preparations

Planning is an important step in the preparation stage. No other activities, which may cause pressure responses, must occur in the neighbourhood of the test area. Such activities include drilling, blasting and flowing of boreholes.

Preparations also include checking of equipment to be used in the tests. The equipment included

- measuring glasses of various sizes
- synchronizing watches with the HMS system (only normal time)
- protocols for flow measurements
- water sampling bottles
- hand calculator
- flow rate measurement equipment with Micro Motion flow meter system

5.2 Execution of tests/measurements

5.2.1 Test principle

The main purpose of a single hole pressure build-up test is to do a test, which makes it possible to evaluate the hydraulic properties of the bedrock around the tested borehole section.

5.2.2 Test procedure

The following measurement cycle is used:

- Initialising of the HMS system 30 minutes before flow start with logging interval of 5 minutes
- A couple of minutes before flow start and until 5 minutes after flow start the highest logging interval of 3 seconds are used. Thereafter the logging interval is 30 seconds which is used until 30 minutes after flow start and a logging interval of 5 minutes is then used once again
- The flow is measured manually 2-3 times the first 5 minutes after flow start, 2-3 times the following 60 minutes and 3 times shortly before flow stop
- From shortly before flow stop until 5 minutes after flow stop the highest logging interval of 3 seconds are used. Thereafter the logging frequency is 30 seconds which is used until 30 minutes after flow start and a logging frequency of 5 minutes is then used
- The valve shutting is done as swiftly as possible

5.3 Data handling

The test operator is keeping a diary during the test period. Data from the hydro tests includes:

- Daily logs in accordance with Äspö Hard Rock Laboratory routines
- Protocols from flow measurements

The project coordinator collected all data and delivered it to the data handling responsible person at Äspö for further SICADA handling.

5.4 Analyses and interpretation

5.4.1 Single hole tests

The following description applies to the analysis in this report. The analysis done is for the recovery phase only.

The specific capacity is as mentioned above, Q/s, where Q is the calculated average water flow before shutting the valve and s is the maximum change of pressure, in metres, during the test.

The Moye formula can be used for interpretation of stationary tests in order to get an estimate of the transmissivity

$$T_{Moye} = Q \cdot (1 + \ln(L/(2 \cdot r_w))) / (2 \cdot \pi \cdot \Delta h) \text{ where}$$

$$\Delta h = (p_0 - p_p) / (\rho_w \cdot g) \qquad [m]$$

$$L = \text{test section length} \qquad [m]$$

$$r_w = \text{borehole radius} \qquad [m]$$

$$p_0 = \text{absolute pressure in test section before start of flow period} \qquad [Pa]$$

$$p_p = \text{absolute pressure in test section before stop of flow period} \qquad [Pa]$$

$$\rho_w = \text{water density} \qquad [kg/m^3]$$

$$g = acceleration of gravity$$
 [m/s²]

While plotting the data, three different kinds of graphs are produced. The first plot is made in a linear scale. The time, date and hours is indicated on the horizontal axis. The pressure (p), expressed in bar or metres of water head is indicated on the vertical axis. The second plot is made in a semi-logarithmic diagram, where the pressure change, Δp , is plotted versus the equivalent time, dt_e, in minutes. The equivalent time, dt_e, (*Spane and Wurstner*, 1993) is defined as

$$dt_e = (t_p \cdot dt) / (t_p + dt)$$
 where

 $t_p =$ the flowing time of the borehole before shutting the valve

dt = the time after shutting the valve

The pressure change $\triangle p$ is calculated as

Δp	=	$p(dt) - p(t_p)$
p(dt)	=	measured pressure at time dt after shutting the valve
p(t _p)	=	measured pressure just before shutting the valve

The third plot is made in a logarithmic diagram, where the change of pressure, $\triangle p$, is plotted versus the equivalent time, dt_e , in minutes. The derivative of the pressure is also plotted in this diagram.

The pressure normally is signed using the p and a change of pressure using a Δp . In the diagrams the pressure can be expressed in bar, kPa or in metres of water head. In the formulas below however the praxis is to use the s for the change of water head and Δs for the difference of pressure over one decade in a logarithmic diagram. The s or Δs values shall be expressed in metres before used in the formulas.

Hydrologic test analysis based on the derivative of pressure (i.e., rate of pressure change) with respect to the natural logarithm of time has been shown to significantly improve the diagnostic and quantitative analysis of slug and constant-rate discharge tests (i.e., pumping tests) (*Spane and Wurstner, 1993*). The improvement in hydrologic test analysis is attributed to the sensitivity of the derivative response to small variations in the rate of pressure change that occurs during testing, which would otherwise be less obvious with standard pressure change versus time analysis techniques. The sensitivity of pressure derivatives to pressure change responses facilitates their use in identifying the presence of wellbore storage, boundaries, and establishment of flow conditions, as e.g. radial flow, within the test data record. Specifically, pressure derivative analysis can be used to:

- diagnostically determine formation response (homogeneous vs. heterogeneous) and boundary conditions (impermeable or constant head) that are evident during the test,
- determine when radial flow conditions are established and, therefore, when straight-line solution analysis of drawdown data is valid, and
- assist in log-log type-curve matching to determine hydraulic properties for test data exhibiting wellbore storage and/or leakage effects.

In a fracture, different flow regimes may be observed at different times, *(Horne, 1995)*. At very early time only a linear flow regime occur within the fracture. At early time, there is linear flow within the fracture and linear flow into the fracture from the rock formation. The combination of these two linear flows gives rise to a bilinear flow period. This part of the pressure response is characterized by a straight line with slope 1:4 at early time on a log-log plot of pressure drop against time. Following the bilinear flow period, finite conductivity fracture responses generally enter a transition after bilinear flow, but reach radial flow before ever achieving linear flow, recognizeable by the upward bending of the pressure response curve towards a 1:2 slope on the log-log plot. In practice, the 1:2 slope is rarely seen except in fractures where the conductivity is infinite. The above described methodology is used in chapter 6.

The tests are evaluated using the software AQTESOLV ver. 4.50, and results are reported in chapter 6 and in the executive summary. AQTESOLV is the all-in-one software package for the design and analysis of aquifer tests including pumping tests, step-drawdown tests, variable-rate tests, recovery tests, single-well tests, slug tests and constant-head tests. The software is developed by HydroSOLVE, Inc., USA.

The solution used in these analysis is the Dougherty-Babu model for a pumping test in a confined aquifer (Dougherty, Babu, 1984). The model assumes radial flow in a porous medium. AQTESOLV uses the principle of superposition in time to simulate variable-rate tests including recovery with the solution. The result consist of

- Transmissivity, T (m^2/s)
- Skinfactor, Sw (-)

It is of uttermost importance when evaluation the hydraulic tests within the scope of this report that all tests are evaluated using the <u>same approach</u> between the test campaigns. This is important to be able to evaluate the <u>relative difference</u> of the transmissivity from one test campaign to another.

It is however important as well to observe any significant changes of the pressure plot from on time to another. If changes have occurred another matching of the data to a chosen model may be necessary.

6 Results

6.1 Single hole tests

6.1.1 KA3552G01:2, test No 9:1

General test data for the pressure build-up test in the interval 4.35-6.05 m of borehole KA3552G01 are presented in Table 6-1.

Table 6-1. General test data for the pressure build-up test in section 4.35-6.05 m of borehole KA3552G01.

General test data					
Borehole section	KA3552G01:2				
Test No	9:1				
Field crew	A. Blom(S	WECO AB)			
Test equipment system	HMS				
General comment	Single hol	e test (dp _p = max)			
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	4.35		
Test section- seclow	Seclow	m	6.05		
Test section length	L _w	m	1.70		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081023 09:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20081023 10:00:30		
Stop of flow period		yymmdd hh:mm:ss	-		
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	-		
Total flow time	tp	min	-		
Total recovery time	t⊧	min	-		

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1292.0	
Absolute pressure in test section before stop of flow	pp	kPa	-	
Absolute pressure in test section at stop of recovery period	p _f	kPa	-	
Maximal pressure change during flow period	dpp	kPa	-	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	-
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

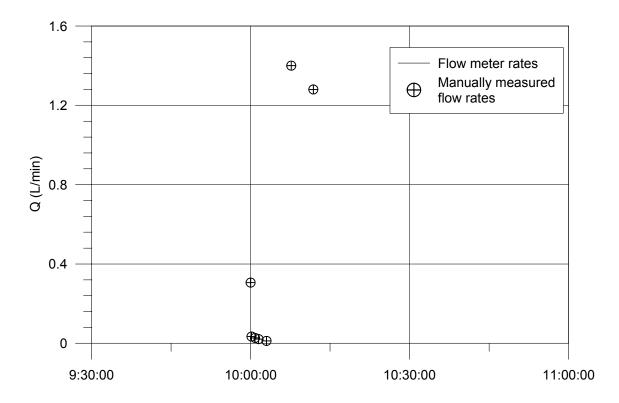


Figure 6-1. Flow rates during draw down in KA3552G01:2.

During this test a equipment failure occurred. It was probably a tube coupling to one of the packer inflating tube that now leaks gas into the test section. The inflating gas to the packers is now turned off. No more tests in this borehole will probably be possible in the future.

Interpreted flow regimes

The test was abandoned.

Calculated parameters

The test was abandoned.

Selected representative parameters

The test was abandoned.

	Test Su	mmary Sheet		
Project:	PROTOTYPE	Test type:	PBT	
Area:	ÄSPÖ	Test no:	9:1	
Borehole ID:	KA3552G01	Test start:	2008-10-23	09:00
Test section (m):	4.35-6.05	Responsible for	SWECO AE	
		test performance:	A. Blom	
Section diameter, 2·rw (m):	0.076	Responsible for	SWECO AE	8
		test evaluation:	T. Forsmark	(
Linear plot Head		Flow period		
		Indata		Indata
° T]		p ₀ (kPa)	1292.0	
		p _i (kPa)		
-100 +		p _p (kPa)		p _F (kPa)
		Q _p (m ³ /s)		
<u> <u> </u> </u></u></u></u></u>		tp (min)		t _F (min)
Head (mas)		S*		S*
		EC _w (mS/m)		
		Te _w (gr C)		
-400		Derivative fact.		Derivative fact.
9:00 10:00 11:00 12:00	14:00 15:00 16:00 17:00	18:00		
Lin-Log plot		Results		Results
		Q/s (m ² /s)		Flow regime:
		T _{Moye} (m ² /s)		dt _{e1} (min)
		Flow regime:		dt _{e2} (min)
		dt ₁ (min)		T (m²/s)
		dt ₂ (min)		S (-)
		T (m²/s)		K _s (m/s)
		S (-)		S _s (1/m)
		K _s (m/s)		C (m³/Pa)
		S _s (1/m)		C _D (-)
		C (m³/Pa)		ξ (-)
		C _D (-)		
		ξ(-)		
Log-Log plot incl. derivative-	recovery period	Interpreted forma	tion and wel	
		Flow regime:		C (m ³ /Pa)
		dt ₁ (min)		C _D (-)
		dt_2 (min)		ξ (-)
		T _T (m²/s)		
		S (-)		
		K _s (m/s)		
		S _s (1/m)		
		failure. No analysis		ndoned due to equipment

6.1.2 KA3554G01:2 , test No 9:2a

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-2.

Table 6-2. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01.

General test data						
Borehole section	KA3554G01:2					
Test No	9:2a	9:2a				
Field crew	A. Blom (SWECO AB)				
Test equipment system	HMS					
General comment	Single hole test $(dp_p = approx. 100 m)$					
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	2∙r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081020 13:25:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081020 14:25:00			
Stop of flow period		yymmdd hh:mm:ss	20081020 16:25:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081020 17:25:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2487.9	
Absolute pressure in test section before stop of flow	p _p	kPa	1650.4	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2472.8	
Maximal pressure change during flow period	dpp	kPa	837.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	9.83 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	9.99 · 10 ⁻⁶
Total volume discharged during flow period	Vp	m ³	0.0719

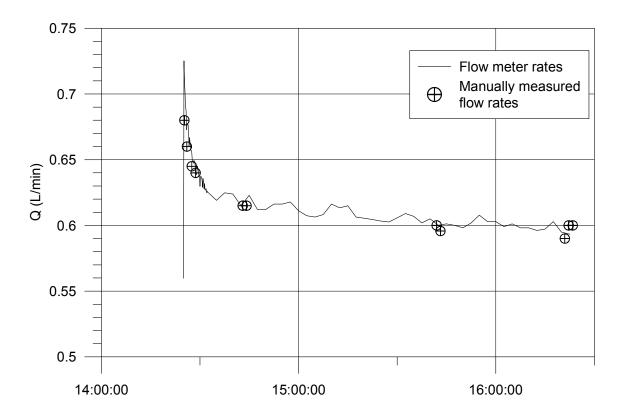


Figure 6-2. Flow rates during draw down in KA3554G01:2.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.5	minutes	Well Bore Storage (WBS)
0.5 – 5	minutes	Transition period
5 – 10	minutes	Radial flow period
10 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

PROTOTYPE ÄSPÖ KA3554G01 22.60-24.15 0.076	Test type: Test no: Test start: Responsible for test performance: Responsible for test evaluation:	PBT 9:2a 2008-10-20 SWECO AE A. Blom SWECO AE	3	
KA3554G01 22.60-24.15	Test start: Responsible for test performance: Responsible for	2008-10-20 SWECO AB A. Blom	3	
22.60-24.15	Responsible for test performance: Responsible for	SWECO AE A. Blom	3	
	test performance: Responsible for	A. Blom		
0.076	Responsible for			
0.076		SWECO AF		
·		T. Forsmark		
	Flow period		Recovery period	ł
	Indata		Indata	
	p ₀ (kPa)	2487.9		
	p _i (kPa)			
	p _p (kPa)	1650.4	p _F (kPa)	2472.8
	$Q_p (m^3/s)$	9.83 · 10 ⁻⁶		
		120	t _F (min)	60
				1·10 ⁻⁶
	-			
			Derivative fact.	0.4
2008-10-22 2008	8-10-23			
	Results		Results	
	Q/s (m ² /s)	1.2·10 ⁻⁷	Flow regime:	Radial
Obs. Wells	T _{Moye} (m ² /s)	7.5·10 ⁻⁸	dt _{e1} (min)	5
-	Flow regime:		dt _{e2} (min)	10
	dt ₁ (min)		T (m²/s)	8.0·10 ⁻⁷
-	dt ₂ (min)		S (-)	
-	T (m ² /s)		K _s (m/s)	
-	S (-)		S _s (1/m)	
-	K _s (m/s)		C (m ³ /Pa)	
	S _s (1/m)		C _D (-)	
-	C (m ³ /Pa)		ξ(-)	34
	C _D (-)			
	ξ (-)			
100.				
ecovery period	Interpreted forma	tion and we	II parameters.	
	-			
	-		· · · ·	+
KA3554G01:2				34
Confined Solution	T_{T} (m ² /s)		517	+•··
Dougherty-Babu Parameters	S()	5.0 10		+
S = 1.0E-6 Kz/Kr = 1.				+
- Sw = 34.1 - r(w) = 0.038 m - r(c) = 0.00104	n			+
	· · · · ·	L smissivity and	l d skinfactor evalua	ted by using
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	
-				
	ecovery period	$\frac{1}{2008-10-22} = 2008-10-23$ $\frac{1}{2008-10-23} = \frac{1}{2008-10-23}$ $\frac{1}{2008-10-23} = 1$	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	$\frac{tp (min)}{S^*} = \frac{120}{S^*} + \frac{tp (min)}{S^*} = \frac{5}{S^*} = \frac{5}{S^*} = \frac{5}{C_w (mS/m)} = \frac{5}{T_{w}(gr C)} = \frac{5}{Derivative fact.} = \frac{5}$

6.1.3 KA3554G01:2 , test No 9:2b

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-3.

Table 6-3. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01.

General test data					
Borehole section	KA3554G01:2				
Test No	9:2b				
Field crew	A. Blom(S	WECO AB)			
Test equipment system	HMS				
General comment	Single hole test $(dp_p = approx. 200 \text{ m})$				
	Nomencl ature	Unit	Value		
Test section- secup	Secup	m	22.60		
Test section- seclow	Seclow	m	24.15		
Test section length	L _w	m	1.55		
Test section diameter	2·r _w	mm	76		
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081021 10:00:00		
Packer expanded		yymmdd hh:mm:ss	-		
Start of flow period		yymmdd hh:mm:ss	20081021 11:00:00		
Stop of flow period		yymmdd hh:mm:ss	20081021 13:00:00		
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081021 14:00:00		
Total flow time	t _p	min	120		
Total recovery time	t _F	min	60		

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2483.6	
Absolute pressure in test section before stop of flow	p _p	kPa	730.6	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2463.4	
Maximal pressure change during flow period	dpp	kPa	1753.0	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.35 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	1.396 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.100

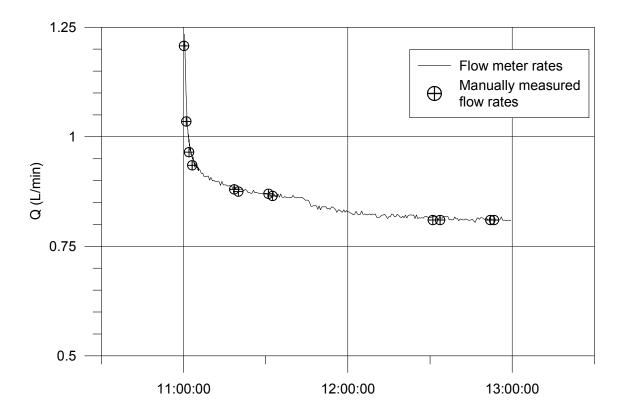


Figure 6-3. Flow rates during draw down in KA3554G01:2.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. The results of this test indicate increased transmissivity to the south side of the Prototype repository since earlier test-campigns.

Interpreted flow regimes

0 - 0.4	minutes	Well Bore Storage (WBS)
0.4 - 9	minutes	Transition period
9 - 14	minutes	Radial flow period
14 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sur	nmary Sheet			
Project:	PROTOTYPE	Test type:	PBT		
Area:	ÄSPÖ	Test no:	9:2b		
Borehole ID:	KA3554G01	Test start:	2008-10-21 10:00		
Test section (m):	22.60-24.15	Responsible for	SWECO AB		
		test performance:	A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO AE T. Forsmark		
Linear plot Head		Flow period		Recovery period	1
		Indata		Indata	
0 T		p ₀ (kPa)	2483.6		
		p _i (kPa)			
-100		p _p (kPa)	730.6	p _F (kPa)	2463.4
		Q _p (m ³ /s)	1.35 · 10 ⁻⁵		
		tp (min)	120	t _F (min)	60
(max)		S*		S*	1·10 ⁻⁶
± -300		EC _w (mS/m)			
		Te _w (gr C)			
-400 +		Derivative fact.		Derivative fact.	0.4
-500					
2008-10-20 2008-10-21	2008-10-22 2008-10-2	3			
Lin-Log plot		Results		Results	
		Q/s (m ² /s)	7.7·10 ⁻⁸	Flow regime:	Radial
0.	Obs. Wells	T _{Moye} (m ² /s)	4.9·10 ⁻⁸	dt _{e1} (min)	9
	C KA3554G01:2	Flow regime:		dt _{e2} (min)	14
40.		dt ₁ (min)		T (m ² /s)	5.8·10 ⁻⁷
	-	dt ₂ (min)		S (-)	
	-	T (m ² /s)		K _s (m/s)	
	_	S (-)		S _s (1/m)	
82 - %	-	K _s (m/s)		C (m ³ /Pa)	
120	-	S _s (1/m)		C _D (-)	
		C (m ³ /Pa)		ξ(-)	40
160.		C _D (-)		5()	
	-	ξ(-)			
200. 0.01 0.1 1. 10. Aqarwal Equivalent Time (min)	100.				
Log-Log plot incl. derivative-	recovery period	Interpreted forma	tion and we	II narameters	
		Flow regime:	Radial	C (m ³ /Pa)	
Prototype Repository Test 9:2		dt ₁ (min)	9	C (11 /1 2) C _D (-)	
	Dbs. Wells Characteristics Aquifer Model	dt_2 (min)	14	ξ(-)	40
	Confined Solution	T_{T} (m ² /s)	5.8·10 ⁻⁷	517	
	Dougherty-Babu Parameters	$\mathbf{c}(\mathbf{i})$	0.0 10		
	T = 5.824E-7 m ² /se S = 1.0E-6 Kz/Kr = 1.	[∞] (T) K _s (m/s)			
	- Sw = 39.65 r(w) = 0.038 m r(c) = 0.001092 m	S_{s} (1/m)			
		Comments: Tran	l smissivity and	l d skinfactor evalua	ted by using
		AQTESOLV - with			
ž –				. ,	
1.					
E					
F					
0.01 0.1 1.	10. 100.				
1					

6.1.4 KA3554G01:2 , test No 9:2c

General test data for the pressure build-up test in the interval 22.60-24.15 m of borehole KA3554G01 are presented in Table 6-4.

Table 6-4. General test data for the pressure build-up test in section 22.60-24.15 m of borehole KA3554G01.

General test data						
Borehole section	KA3554G	KA3554G01:2				
Test No	9:2c	9:2c				
Field crew	A. Blom(S	A. Blom(SWECO AB)				
Test equipment system	HMS	HMS				
General comment	Single hole test (dpp = max)					
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	22.60			
Test section- seclow	Seclow	m	24.15			
Test section length	L _w	m	1.55			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081022 08:40:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081022 09:40:00			
Stop of flow period		yymmdd hh:mm:ss	20081022 11:40:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081022 12:40:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2455.2	
Absolute pressure in test section before stop of flow	p _p	kPa	279.0	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2453.7	
Maximal pressure change during flow period	dpp	kPa	2176.2	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	1.45 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.58 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.1137

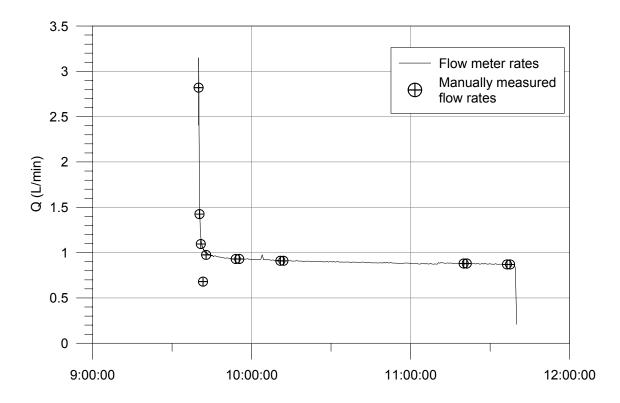


Figure 6-4. Flow rates during draw down in KA3554G01:2.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.3	minutes	Well Bore Storage (WBS)
0.3 – 12	minutes	Transition period
12 - 20	minutes	Radial flow period
20 -	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 22.60-24.15 m in KA3554G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Su	mmary Sheet				
Project:	PROTOTYPE	Test type:	PBT			
Area:	ÄSPÖ	Test no:	9:2c			
Borehole ID:	KA3554G01	Test start:	2008-10-22	08:40		
Test section (m):	22.60-24.15	Responsible for		SWECO AB		
		test performance:	A. Blom			
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:	SWECO AE T. Forsmark			
Linear plot Head		Flow period		Recovery period	ł	
		Indata		Indata		
٥ ــــــــــــــــــــــــــــــــــــ		p ₀ (kPa)	2455.2			
-		p _i (kPa)				
-100 +		p _p (kPa)	279	p _F (kPa)	2453.7	
		$Q_p (m^3/s)$	1.45 · 10 ⁻⁵			
<u></u> -200 +		tp (min)	120	t _F (min)	60	
(men + 200		S*		S*	1·10 ⁻⁶	
² ₋₃₀₀ + − − − − − − − − − − − − −	+	EC _w (mS/m)		0		
		Te _w (gr C)				
-400 +		Derivative fact.		Derivative fact.	0.4	
-500				Derivative last.	0.1	
2008-10-20 2008-10-21	2008-10-22 2008-10	0-23				
Lin-Log plot		Results		Results		
		Q/s (m ² /s)	6.7·10 ⁻⁸	Flow regime:	Radial	
Prototype Repository Test 9:2c	Obs. Wells	T _{Moye} (m ² /s)	4.3·10 ⁻⁸	dt _{e1} (min)	12	
	-	Flow regime:		dt _{e2} (min)	20	
50.		dt ₁ (min)		T (m²/s)	4.6·10 ⁻⁷	
-		dt ₂ (min)		S (-)		
		T (m ² /s)		K _s (m/s)		
	-	S (-)		S _s (1/m)		
Recovery 1 (11)	-	K _s (m/s)		C (m³/Pa)		
150 		S _s (1/m)		C _D (-)		
	-	C (m³/Pa)		ξ(-)	38	
200.		C _D (-)				
		ξ (-)				
250. 250. 0.1 0.1 1. 10. Agarwal Equivalent Time (min)	1	5.77				
Log-Log plot incl. derivative-	recovery period	Interpreted forma	tion and we	Il narameters		
		Flow regime:	Radial	C (m ³ /Pa)		
Prototype Repository Test 9:		dt ₁ (min)	12	C (iii /i a) C _D (-)		
	Dbs. Wells Characteristics Aquifer Model	dt_2 (min)	20	ξ(-)	38	
	Confined Solution	$T_T (m^2/s)$	4.6·10 ⁻⁷	517		
-	Dougherty-Babu Parameters		-T.U IU			
	T = 4.566E-7 m S = 1.0E-6 Kz/Kr = 1.	² / _{sec} S (-) K _s (m/s)				
	Sw = 37.59 r(w) = 0.038 m r(c) = 0.001093 m					
		Comments: Tran	l smiseivity an	l d skinfactor evalua	ted by using	
10.		AQTESOLV - with				
ž – – – – – – – – – – – – – – – – – – –			,	,,		
1						
0.1 0.1 1. 0.01 0.1 1.	10. 100.					
Agarwal Equivalent Time (m	n)					

6.1.5 KA3554G02:4, test No 9:3a

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-5.

Table 6-5. General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02.

General test data						
Borehole section	KA3554G	KA3554G02:4				
Test No	9:3a					
Field crew	A. Blom(S	A. Blom(SWECO AB)				
Test equipment system	HMS	HMS				
General comment Single hole test (dp _p =			00 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	10.50			
Test section- seclow	Seclow	m	12.20			
Test section length	L _w	m	1.70			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081021 07:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081021 08:00:00			
Stop of flow period		yymmdd hh:mm:ss	20081021 10:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081021 11:00:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1838.4	
Absolute pressure in test section before stop of flow	p _p	kPa	770.8	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1839.0	>p0
Maximal pressure change during flow period	dpp	kPa	1067.6	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.47 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	1.62 · 10 ⁻⁷
Total volume discharged during flow period	Vp	m ³	1.17 · 10 ⁻³

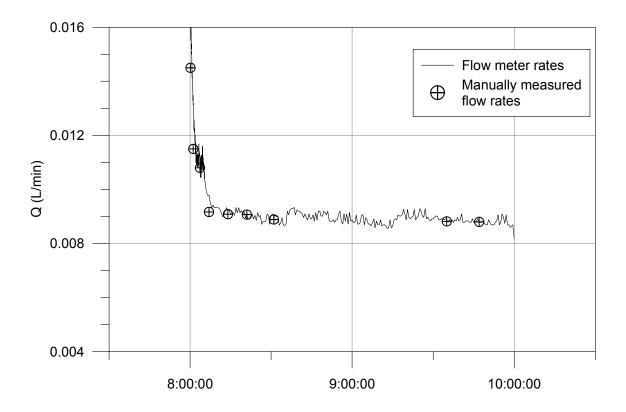


Figure 6-5. Flow rates during draw down in KA3554G02:4.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. The radial flow period is uncertain. The reason for the pressure increase between 1-5 minutes is not known.

Interpreted flow regimes

0 – 1	minutes	Well Bore Storage (WBS)
1 – 30	minutes	Transition period
30 -	minutes	Possible radial flow period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sun	nmary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:3a			
Borehole ID:	KA3554G02		Test start:	2008-10-21 07:00			
Test section (m):	10.50-12.20		Responsible for	SWECO A	В		
			test performance:	A. Blom			
Section diameter, 2·rw (m):	0.076		Responsible for	SWECO AB			
			test evaluation:	T. Forsmar	k		
Linear plot Head			Flow period		Recovery period	bc	
			Indata		Indata		
۰ ۲			p ₀ (kPa)	1838.4			
			p _i (kPa)				
-100			p _p (kPa)	770.8	p _F (kPa)	1839.0	
			Q _p (m ³ /s)	$1.47 \cdot 10^{-7}$			
see			tp (min)	120	t _F (min)	60	
			S*		S*	1·10 ⁻⁶	
± -300			EC _w (mS/m)				
			Te _w (gr C)				
-400		[-]	Derivative fact.		Derivative fact.	0.4	
1							
-500	2008-10-23	2008-10-24					
Lin-Log plot			Results		Results		
			Q/s (m²/s)	1.4·10 ⁻⁹	Flow regime:	Radial	
Prototype Repository Test 9:3a	Obs. Wells PKA3554G02:4		T _{Moye} (m ² /s)	9.0· 10 ⁻¹⁰	dt _{e1} (min)	30	
	-		Flow regime:		dt _{e2} (min)	35	
25.			dt ₁ (min)		T (m ² /s)	1.6· 10 ⁻⁸	
			dt ₂ (min)		S (-)		
50.			T (m²/s)		K _s (m/s)		
	-		S (-)		S _s (1/m)		
- 4	-		K _s (m/s)		C (m ³ /Pa)		
76.			S _s (1/m)		C _D (-)		
	-		C (m ³ /Pa)		ξ(-)	70	
100.	-		C _D (-)				
			ξ(-)				
125. 125. 125. 125. 125. 125. 125. 125.	100.						
Agarwal Equivalent Time (min)							
Log-Log plot incl. derivative- r	ecovery perio	d	Interpreted forma	tion and we	Il parameters.	-	
<u> </u>			Flow regime:	Radial	C (m ³ /Pa)		
Prototype Repository Test 9:3a		Obs. Wells	dt ₁ (min)	30	C _D (-)		
E I I I I I I I I I I I I I I I I I I I		CA3554G02:4 Aquifer Model	dt ₂ (min)	35	ξ(-)	70	
F I I	-	Confined Solution	T_{T} (m ² /s)	1.6· 10 ⁻⁸			
		Dougherty-Babu			1		
100	110	Parameters	5(-)		1	1	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1.	S (-) K _s (m/s)				
		T = 1.631E-8 m ² /sec S = 1.0E-6	K _s (m/s)				
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	K _s (m/s) S _s (1/m)	reason for th	e pressure disturba	Ince between	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$eq:started_st$	ot known. Ho	wever, the later par	rt of the	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is no recovery is consider} \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is nor } \\ recovery \mbox{ is conside } \\ evaluated \mbox{ by using } \end{array} $	ot known. Ho ered as relia	wever, the later par	t of the and skinfactor	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is no recovery is consider} \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is nor } \\ recovery \mbox{ is conside } \\ evaluated \mbox{ by using } \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is nor } \\ recovery \mbox{ is conside } \\ evaluated \mbox{ by using } \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	
		T = 1.631E-8 m ² /sec S = 1.0E-6 Kz/Kr = 1. Sw = 70	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is nor } \\ recovery \mbox{ is conside } \\ evaluated \mbox{ by using } \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	
Sector Contraction		T = 1,631E=8m ² /sec. S = 1.0E=6 Kz/Kr = 1. Sw Sw = 0.038 m r(w) = 0.038 m r(c) = 0.0002492 m	$ \begin{array}{c} K_{s} \mbox{ (m/s)} \\ \hline S_{s} \mbox{ (1/m)} \\ \hline \mbox{ Comments: The } \\ 1-5 \mbox{ minutes is nor } \\ recovery \mbox{ is conside } \\ evaluated \mbox{ by using } \end{array} $	ot known. Ho ered as relia	wever, the later par ble. Transmissivity	t of the and skinfactor	

6.1.6 KA3554G02:4 , test No 9:3b

General test data for the pressure build-up test in the interval 10.50-12.20 m of borehole KA3554G02 are presented in Table 6-6.

Table 6-6. General test data for the pressure build-up test in section 10.50-12.20 m of borehole KA3554G02.

General test data						
Borehole section	KA3554G	02:4				
Test No	9:3b	9:3b				
Field crew	A. Blom (S	SWECO AB)				
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = max)				
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	10.50			
Test section- seclow	Seclow	m	12.20			
Test section length	L _w	m	1.70			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081023 12:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081023 13:00:00			
Stop of flow period		yymmdd hh:mm:ss	20081023 15:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081023 16:00:00			
Total flow time	t _p	min	120			
Total recovery time	t _F	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1826.9	
Absolute pressure in test section before stop of flow	p _p	kPa	364.0	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1834.3	>p0
Maximal pressure change during flow period	dpp	kPa	1462.9	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	2.44 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	$2.38 \cdot 10^{-7}$
Total volume discharged during flow period	Vp	m ³	1.72 · 10 ⁻³

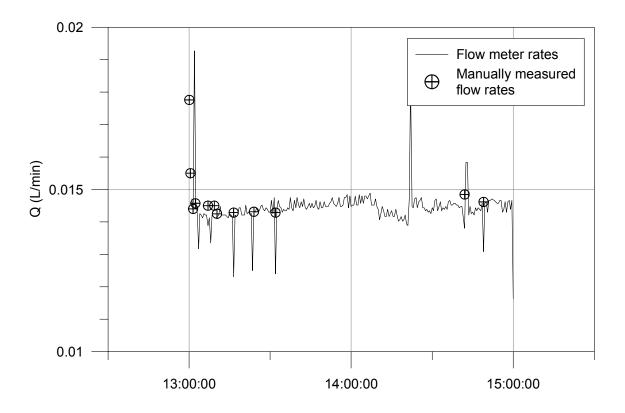


Figure 6-6. Flow rates during draw down in KA3554G02:4.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. The radial flow period is uncertain.

Interpreted flow regimes

0 – 1	minutes	Well Bore Storage (WBS)
1? - 30	minutes	Transition period
30 -	minutes	Probable radial flow period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 10.50-12.20 m in KA3554G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Tes	st Sum	mary Sheet			
Project:	PROTOTYPE		Test type:	PBT		
Area:	ÄSPÖ		Test no:	9:3b		
Borehole ID:	KA3554G02		Test start:	2008-10-23	12:00	
Test section (m):	10.50-12.20		Responsible for test performance:	SWECO AB A. Blom		
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:	SWECO AE		
Linear plot Head			Flow period	1. TOISINAN	Recovery period	I
			Indata		Indata	
° -		1	p ₀ (kPa)	1826.9	inuala	
			p _i (kPa)	1020.3		
-100			p _p (kPa)	364.0	p _F (kPa)	1834.3
			Q_p (m ³ /s)	2.44 · 10 ⁻⁷		1004.0
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>			tp (min)	120	t _F (min)	60
			S*	120	S*	1·10 ⁻⁶
± -300 − − − − − − − − − − − − − − − − − −]	EC _w (mS/m)		5	
			Te _w (gr C)			
-400 +	- -		Derivative fact.		Derivative fact.	0.4
-500 +	2008-10-23	2008-10-24				
Lin-Log plot			Results		Results	
			Q/s (m ² /s)	1.7·10 ⁻⁹	Flow regime:	Radial
Prototype Repository Test 9:3b	Obs. Wells		$T_{Moye}(m^2/s)$	1.1·10 ⁻⁹	dt _{e1} (min)	30
	■ KA3554G02:4		Flow regime:		dt _{e2} (min)	40
	-		dt ₁ (min)		T (m ² /s)	1.3·10 ⁻⁸
	-		dt_2 (min)		S (-)	
	-		T (m ² /s)		K _s (m/s)	
			S (-)		S _s (1/m)	
L 2004 L	-		K _s (m/s)		C (m ³ /Pa)	
90.	-		S _s (1/m)		C _D (-)	
	-		C (m ³ /Pa)		ξ(-)	45
120.			C _D (-)		3()	
	-		ξ(-)			
150. 0.01 0.1 1. 10. Agarwai Equivalent Time (min)	100.		5()			
Log-Log plot incl. derivative- re	covery period		Interpreted forma			
Prototype Repository Test 9:3b			Flow regime:	Radial	C (m³/Pa)	
		3554G02:4	dt ₁ (min)	30	C _D (-)	
	Aquifer Confi		dt ₂ (min)	40 °	ξ(-)	45
		gherty-Babu	$T_T (m^2/s)$	1.3·10 ⁻⁸		
100. E	= s	= 1.336E-8 m ² /sec = 5.638E-7	S (-)			
	Kz/Ki Sw	r = 1. = 45. = 0.038 m = 0.0002646 m	K _s (m/s)			
		= 0.0002646 m	S _s (1/m)			
			Comments: The recovery is not kno considered as relia by using AQTESO	wn. Howeve Ible. Transmi	r, the later part of the single structure of the second seco	he recovery is or evaluated
1. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	10. 100.					

6.1.7 KA3548A01:3 , test No 9:4a

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-7.

Table 6-7. General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01.

General test data						
Borehole section	KA3548A0	01:3				
Test No	9:4a	9:4a				
Field crew	A. Blom (S	SWECO AB)				
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approx.	100 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	8.80			
Test section- seclow	Seclow	m	10.75			
Test section length	L _w	m	1.95			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081021 15:00:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081021 16:00:00			
Stop of flow period		yymmdd hh:mm:ss	20081021 17:00:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081021 18:00:00			
Total flow time	t _p	min	60			
Total recovery time	t⊨	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2433.1	
Absolute pressure in test section before stop of flow	pp	kPa	2231.3	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2434.1	>p0
Maximal pressure change during flow period	dpp	kPa	201.8	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	5.75 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	6.45 · 10 ⁻⁶
Total volume discharged during flow period	Vp	m ³	0.0232

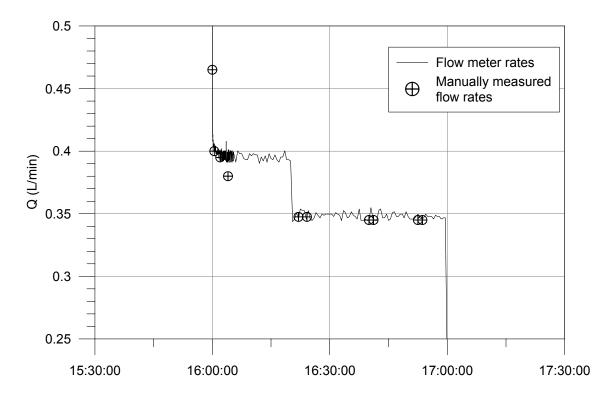


Figure 6-7. Flow rates during draw down in KA3548A01:3.

The radial flow period occurs early in the test. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.1	minutes	Well Bore Storage (WBS)
0.1 – 0.8	minutes	Transition period
0.8 – 2	minutes	Radial flow period
2 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:4a			
Borehole ID:	KA3548A01		Test start:	2008-10-21	15:00		
Test section (m):	8.80-10.75		Responsible for	SWECO AE	SWECO AB		
			test performance:	A. Blom			
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:	SWECO AE T. Forsmark			
Linear plot Head			Flow period	•	Recovery period	ł	
•			Indata		Indata		
۰ ۲]	p ₀ (kPa)	2433.1			
			p _i (kPa)				
-100			p _p (kPa)	2231.3	p _F (kPa)	2434.1	
			$Q_p (m^3/s)$	5.75 · 10 ⁻⁶			
-200			tp (min)	60	t _F (min)	60	
			S*		S*	1·10 ⁻⁶	
± _300 +			EC _w (mS/m)				
			Te _w (gr C)				
-400	<u> </u> <u> </u> -		Derivative fact.		Derivative fact.	0.4	
-500 +	2008-10-23	2008-10-24					
Lin-Log plot			Results		Results		
			Q/s (m ² /s)	2.8·10 ⁻⁷	Flow regime:	Radial	
Prototype Repository Test 9:4a	Obs. Wells RA3548AD1:3		T _{Moye} (m ² /s)	1.9·10 ⁻⁷	dt _{e1} (min)	0.8	
	-		Flow regime:		dt _{e2} (min)	2	
5			dt ₁ (min)		T (m ² /s)	1.5·10 ⁻⁷	
	-		dt ₂ (min)		S (-)		
10.	-		T (m ² /s)		K _s (m/s)		
Recovery (m)	-		S (-)		S _s (1/m)		
	-		K _s (m/s)		C (m ³ /Pa)		
	-		S _s (1/m)		C _D (-)		
			C (m³/Pa)		ξ(-)	-3	
20.	-		C _D (-)				
	-		ξ(-)				
25	100.						
Log-Log plot incl. derivative- r	ecovery period		Interpreted forma	tion and we	I narameters		
p.oton doirtui/0-1			Flow regime:	Radial	C (m ³ /Pa)		
Prototype Repository Test 9:42		Ohe Wells	dt_1 (min)	0.8	C _D (-)	1	
E I I		Obs. Wells KA3548A01:3 Aquifer Model	dt_2 (min)	2	ξ(-)	-3	
F		Confined Solution	T_{T} (m ² /s)	2 1.5·10 ⁻⁷			
		Dougherty-Babu Parameters	S (-)	1.0 10			
100.		T = 1.502E-7 m ² /sec S = 1.0E-6 Kz/Kr = 1.	K _s (m/s)				
		Sw = -3.102 r(w) = 0.038 m r(c) = 0.001087 m	S _s (1/m)				
Ê			Comments: The	adial flow pe	i riod occurs early in	the test	
(E) \$ 10.			Transmissivity and				
			with (Dougherty, B				
1.							
F							
0.1 0.1 1. 0.01 0.1 1. Agarwal Equivalent Time (min)	10. 100.						
Agaiwai Equivaion: 11118 (1111)			1				

6.1.8 KA3548A01:3 , test No 9:4b

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-8.

Table 6-8. General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01.

General test data						
Borehole section	KA3548A0	01:3				
Test No	9:4b	9:4b				
Field crew	A. Blom (S	SWECO AB)				
Test equipment system	HMS					
General comment	Single hol	e test (dp _p = approxir	mate 200 m)			
	Nomencl ature	Unit	Value			
Test section- secup	Secup	m	8.80			
Test section- seclow	Seclow	m	10.75			
Test section length	L _w	m	1.95			
Test section diameter	2·r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081022 06:40:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081022 07:40:00			
Stop of flow period		yymmdd hh:mm:ss	20081022 08:40:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081022 09:40:00			
Total flow time	t _p	min	60			
Total recovery time	t _F	min	60			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2464.4	
Absolute pressure in test section before stop of flow	p _p	kPa	1562.7	
Absolute pressure in test section at stop of recovery period	р _f	kPa	2420.0	
Maximal pressure change during flow period	dpp	kPa	901.7	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	$1.70 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	$1.79 \cdot 10^{-5}$
Total volume discharged during flow period	Vp	m ³	0.0645

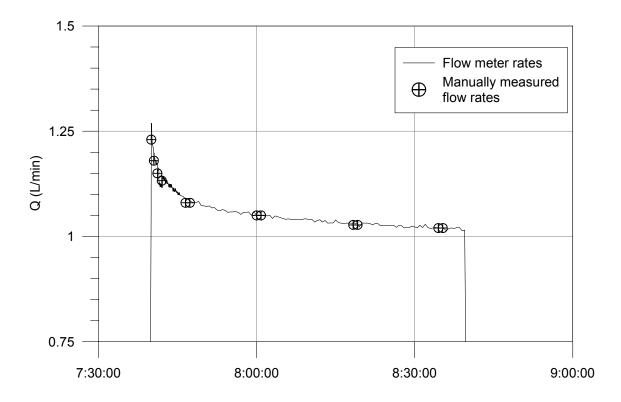


Figure 6-8. Flow rates during draw down in KA3548A01:3.

The radial flow period occurs early in the test. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0 - 0.07	minutes	Well Bore Storage (WBS)
0.07 - 0.8	minutes	Transition period
0.8 - 4	minutes	Radial flow period
4 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet			
Project:	PROTOTYPE		Test type:	PBT		
Area:	ÄSPÖ		Test no:	9:4b		
Borehole ID: KA3548A01			Test start:	2008-10-22 06:40		
Test section (m):	8.80-10.75		Responsible for	SWECO AE	3	
			test performance:	A. Blom		
Section diameter, 2·r _w (m):	0.076		Responsible for test evaluation:	SWECO AE T. Forsmar		
Linear plot Head			Flow period		Recovery period	l
			Indata		Indata	
°T			p ₀ (kPa)	2464.4		
			p _i (kPa)			
-100			p _p (kPa)	1562.7	p _F (kPa)	2420.0
			Q _p (m ³ /s)	$1.70 \cdot 10^{-5}$		
200			tp (min)	60	t _F (min)	60
			S*		S*	1·10 ⁻⁶
			EC _w (mS/m)			
			Te _w (gr C)			
-400			Derivative fact.		Derivative fact.	0.4
-500		_				
2008-10-21 2008-10-22	2008-10-23	2008-10-24				
Lin-Log plot			Results		Results	
			Q/s (m ² /s)	1.9·10 ⁻⁷	Flow regime:	Radial
Prototype Repository Test 9.4b	Obs. Wells		$T_{Moye}(m^2/s)$	1.3·10 ⁻⁷	dt _{e1} (min)	0.8
	- • KA3548A01:3		Flow regime:	1.0 10	dt _{e2} (min)	4
20.	-		dt ₁ (min)		T (m ² /s)	9.8·10 ⁻⁸
	1		dt_2 (min)		S (-)	0.0 10
			T (m ² /s)		K _s (m/s)	
			S (-)		S _s (1/m)	
			K _s (m/s)		C (m ³ /Pa)	
60.			S _s (1/m)		C _D (-)	
F	-		C (m ³ /Pa)		ξ(-)	-3
80.			C _D (-)		5()	
-			ξ(-)			
			5()			
Agarwal Equivalent Time (min)						
Log-Log plot incl. derivative- re	ecovery period		Interpreted forma	tion and we	Il parameters.	
			Flow regime:	Radial	C (m³/Pa)	
Prototype Repository Test 9:4b	<u>E</u>	Obs. Wells	dt ₁ (min)	0.8	C _D (-)	
E I I		KA3548AD1:3 Aquifer Model Confined	dt ₂ (min)	4	ξ(-)	-3
		Confined Solution Dougherty-Babu	T _T (m ² /s)	9.8·10 ⁻⁸		
100.		Parameters T = 9.82E-8 m ² /sec	S (-)			
		S = 1.227E-6 Kz/Kr = 1. Sw = -2.83	K _s (m/s)			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		r(w) = 0.038 m r(c) = 1.0E-10 m	S _s (1/m)			
			Comments: The	radial flow pe	riod occurs early ir	the test.
			Transmissivity and	skinfactor ev	valuated by using A	QTESOLV -
			with (Dougherty, B	abu, 1984) n	nethod.	
-						
1.						
	1 1					
	1					
	-					
	10. 100					

6.1.9 KA3548A01:3, test No 9:4c

General test data for the pressure build-up test in the interval 8.80-10.75 m of borehole KA3548A01 are presented in Table 6-9.

Table 6-9. General test data for the pressure build-up test in section 8.80-10.75 m of borehole KA3548A01.

General test data			
Borehole section	KA3548A	01:3	
Test No	9:4c		
Field crew	A. Blom (S	SWECO VIAK)	
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = max)	
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	8.80
Test section- seclow	Seclow	m	10.75
Test section length	L _w	m	1.95
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081023 06:40:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20081023 07:40:00
Stop of flow period		yymmdd hh:mm:ss	20081023 08:40:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081023 09:40:00
Total flow time	tp	min	60
Total recovery time	t _F	min	60

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2461.1	
Absolute pressure in test section before stop of flow	p _p	kPa	564.6	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2388.9	
Maximal pressure change during flow period	dpp	kPa	1896.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	2.53 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.88 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.1037

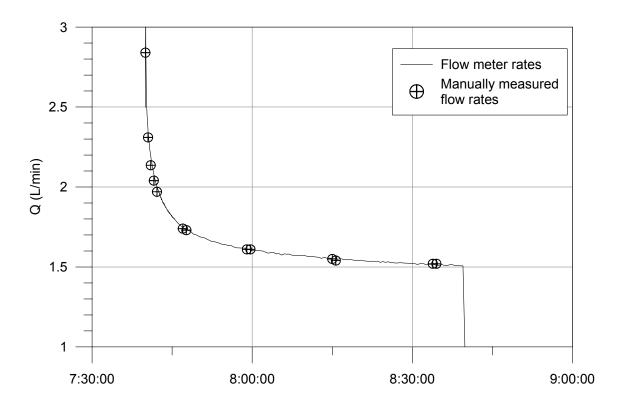


Figure 6-9. Flow rates during draw down in KA3548A01:3.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.2	minutes	Well Bore Storage (WBS)
0.2 - 0.9	minutes	Transition period
0.9 - 4	minutes	Radial flow period
4 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 8.80-10.75 m in KA3548A01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:4c			
Borehole ID:	KA3548A01		Test start:	2008-10-23	2008-10-23 06:40		
Test section (m):	8.80-10.75		Responsible for	SWECO AE	3		
			test performance:	A. Blom			
Section diameter, 2·r _w (m):	0.076		Responsible for test evaluation:	SWECO AE			
Linear plot Head			Flow period		Recovery period	1	
			Indata		Indata		
0			p ₀ (kPa)	2461.1			
			p _i (kPa)				
-100			p _p (kPa)	564.6	p _F (kPa)	1896.5	
			Q _p (m ³ /s)	$2.53 \cdot 10^{-5}$			
₹ -200 			tp (min)	60	t _F (min)	60	
			S*		S*	1·10 ⁻⁶	
			EC _w (mS/m)				
			Te _w (gr C)				
-400	·		Derivative fact.		Derivative fact.	0.4	
-500	2008-10-23	2008-10-24					
			-				
Lin-Log plot			Results	1.3·10 ⁻⁷	Results	D. I.I.	
Prototype Repository Test 9.4c			Q/s (m^{2}/s)	9.0·10 ⁻⁸	Flow regime:	Radial	
	Obs. Wells KA3548AD1:3		T _{Moye} (m ² /s)	9.0.10	dt _{e1} (min)	0.9	
	-		Flow regime:		dt _{e2} (min) T (m²/s)	4 9.2·10 ⁻⁸	
50.	-		dt ₁ (min)			9.2.10	
	-		dt ₂ (min) T (m ² /s)		S (-)		
- °	-		S (-)		K _s (m/s) S _s (1/m)		
			K _s (m/s)		C (m ³ /Pa)		
	-		S _s (1/m)		C (III /Fa)		
-	-		C (m ³ /Pa)		ξ(-)	-2	
150.	-		C _D (-)		ς (-)	-2	
	1						
			ξ(-)				
Agarwal Equivalent Time (min)							
Log-Log plot incl. derivative- re	ecovery period		Interpreted forma	tion and we	I parameters.		
-			Flow regime:	Radial	C (m ³ /Pa)		
Prototype Repository Test 9:4c		Obs. Wells	dt ₁ (min)	0.9	C _D (-)		
		Carford	dt ₂ (min)	4	ξ(-)	-2	
		Confined Solution Dougherty-Babu	T _T (m ² /s)	9.2·10 ⁻⁸			
100.		$\frac{\text{Parameters}}{\text{T}} = 9.183\text{E-8 m}^2/\text{sec}$	S (-)				
		S = 1.0E-6 Kz/Kr = 1. Sw = -2.172	K _s (m/s)				
A . AL 44	1	r(w) = 0.038 m r(c) = 2.666E-8 m	S _s (1/m)				
			Comments: Trans				
			AQTESOLV - with	(Dougherty,	Babu, 1984) meth	od.	
E ▲							
1.							
	1						
	1						
	10. 100.						
0.01 0.1 1.			i i				

6.1.10 KA3542G01:3, test No 9:5a

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-10.

Table 6-10. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01.

General test data			
Borehole section	KA3542G	01:3	
Test No	9:5a		
Field crew	A. Blom(S	WECO AB)	
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = approx. ²	100 m)
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	L _w	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081020 18:30:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20081020 19:30:00
Stop of flow period		yymmdd hh:mm:ss	20081020 20:30:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081020 22:30:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2431.3	
Absolute pressure in test section before stop of flow	p _p	kPa	1877.9	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2438.9	> p ₀
Maximal pressure change during flow period	dpp	kPa	553.4	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	4.28 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	$4.31\cdot 10^{\text{-}6}$
Total volume discharged during flow period	Vp	m³	0.0155

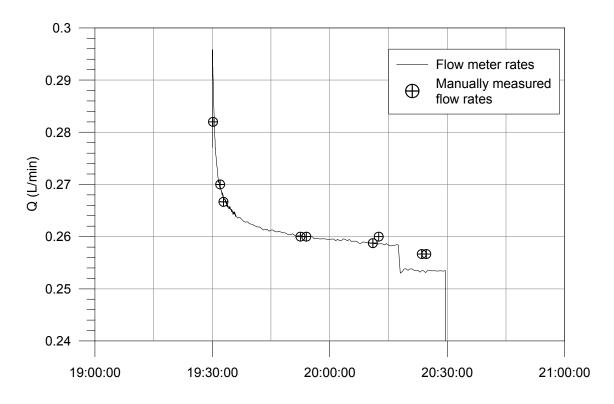


Figure 6-10. Flow rate during draw down in KA3542G01:3.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. There is a major difference in the interpreted flow regimes compared to earlier tests in this borehole. The radial flow period occurs later and both the transmissivity and the skinfactor is higher.

Interpreted flow regimes

0-0.1	minutes	Well Bore Storage (WBS)
0.1 – 6	minutes	Transition period
6 – 12	minutes	Radial flow period
12 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Те	st Sum	mary Sheet			
Project:	PROTOTYPE		Test type:	PBT		
Area:	ÄSPÖ		Test no:	9:5a		
Borehole ID: KA3542G01			Test start:	2008-10-20 18:30		
Test section (m):	18.60-20.30		Responsible for	SWECO AE	3	
			test performance:	A. Blom		
Section diameter, 2·rw (m):	0.076		Responsible for	SWECO AE	3	
			test evaluation:	T. Forsmark	(
Linear plot Head	I		Flow period	n.	Recovery period	1
			Indata		Indata	
۰۲]	p ₀ (kPa)	2431.3		
			p _i (kPa)			
-100			p _p (kPa)	1877.9	p _F (kPa)	2438.9
			$Q_p (m^3/s)$	$4.28 \cdot 10^{-6}$		
\$ -200 +	~		tp (min)	60	t _F (min)	120
			S*		S*	1·10 ⁻⁶
[₫] -300		-	EC _w (mS/m)			-
	U		Te _w (gr C)			
-400			Derivative fact.		Derivative fact.	0.4
		U				
-500	2008-10-22	2008-10-23				
Lin Log plot			Results		Results	
Lin-Log plot			Q/s (m ² /s)	7.7·10 ⁻⁸		Radial
Prototype Repository Test 9:5a			$T_{Moye}(m^2/s)$	5.1·10 ⁻⁸	Flow regime:	6
	Obs. Wells - RA3542G01:3			5.1.10	dt _{e1} (min)	-
			Flow regime:		dt_{e2} (min)	12
15.	-		dt ₁ (min)		T (m ² /s)	1.6·10 ⁻⁷
	-		dt_2 (min)		S (-)	
30.	<u> </u>		T (m ² /s)		K_s (m/s)	_
Recovery (m)			S (-)		S _s (1/m)	
45.			K _s (m/s)		C (m ³ /Pa)	
			S _s (1/m)		C _D (-)	-
60			C (m³/Pa)		ξ(-)	6
	-		C _D (-)			
	-		ξ(-)			
76. 0.1 0.1 1. 10. Agarwal Equivalent Time (min)	100.					
Log-Log plot incl. derivative- re	ecovery period		Interpreted forma	tion and we		
			Flow regime:	Radial	C (m³/Pa)	
Prototype Repository Test 9:5a		s. Wells KA3542G01:3	dt ₁ (min)	6	C _D (-)	
E	Aqu	KA3542G01:3 ifer Model Confined	dt ₂ (min)	12	ξ(-)	6
	Solu	ution lougherty-Babu	T _T (m ² /s)	1.6·10 ⁻⁷		
100.	Par. T	ameters = 1.6E-7 m ² /sec	S (-)			
	- S	s = 1.0E-6 z/Kr = 1. sw = 6.45	K _s (m/s)			
- Partinour and		(w) = 0.038 m (c) = 0.0008002 m	S _s (1/m)			
			Comments: Trans	smissivity and	d skinfactor evalua	ted by using
			AQTESOLV - with			
			major difference in earlier tests in this			
			and both the transi			
1.						5
0.1						
0.01 0.1 1. Agarwal Equivalent Time (min)	10. 100.					
Agarwai Equivaient Timé (min)						

6.1.11 KA3542G01:3, test No 9:5b

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-11.

Table 6-11. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01.

General test data			
Borehole section	KA3542G	01:3	
Test No	9:5b		
Field crew	A. Blom(S	WECO AB)	
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = approx. 2	200 m)
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	L _w	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081021 17:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20081021 18:00:00
Stop of flow period		yymmdd hh:mm:ss	20081021 19:00:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081021 21:00:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2415.4	
Absolute pressure in test section before stop of flow	p _p	kPa	860.2	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2428.8	>p0
Maximal pressure change during flow period	dpp	kPa	1555.2	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	8.31 · 10 ⁻⁶
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	8.70 · 10 ⁻⁶
Total volume discharged during flow period	Vp	m³	0.0313

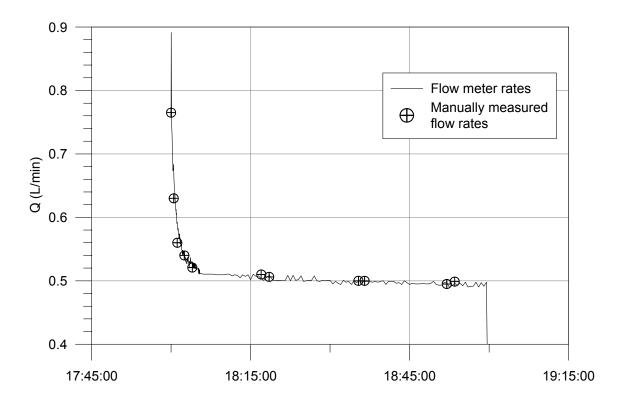


Figure 6-11. Flow rate during draw down in KA3542G01:3.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. There is a major difference in the interpreted flow regimes compared to earlier tests in this borehole. The radial flow period occurs later and both the transmissivity and the skinfactor is higher.

Interpreted flow regimes

0-0.15	minutes	Well Bore Storage (WBS)
0.15 - 8	minutes	Transition period
8-17	minutes	Radial flow period
17 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet			
Project:	PROTOTYPE		Test type:	PBT		
Area:	ÄSPÖ		Test no:	9:5b		
Borehole ID: KA3542G01		Test start:	2008-10-21	2008-10-21 17:00		
Test section (m):	18.60-20.30		Responsible for test performance:	SWECO AE A. Blom	3	
	0.070			SWECO AE	<u> </u>	
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:	T. Forsmark		
Linear plot Head			Flow period		Recovery period	ł
			Indata		Indata	
۰ ۲]	p ₀ (kPa)	2415.4		
			p _i (kPa)			
-100			p _p (kPa)	860.2	p _F (kPa)	2428.8
-			$Q_p (m^3/s)$	8.31 · 10 ⁻⁶		
g -200 +			tp (min)	60	t _F (min)	120
			S*		S*	1.10-6
<u>3</u> -300			EC _w (mS/m)		0	1.10
			Te _w (gr C)			
-400			Derivative fact.		Derivative fact.	0.4
		U	Derivative lact.			0.4
-500	2008-10-22	2008-10-23				
Lin-Log plot			Results		Results	
			Q/s (m ² /s)	5.3·10 ⁻⁸	Flow regime:	Radial
0.	Obs. Wells		T _{Moye} (m ² /s)	3.5·10 ⁻⁸	dt _{e1} (min)	8
	KA3542G01:3		Flow regime:		dt _{e2} (min)	17
40.	_		dt ₁ (min)		T (m ² /s)	1.3·10 ⁻⁷
	-		dt ₂ (min)		S (-)	
	-		T (m ² /s)		K _s (m/s)	
	-		S (-)		S _s (1/m)	
	-		K _s (m/s)		C (m ³ /Pa)	
120.			S _s (1/m)		C _D (-)	
E	-		C (m ³ /Pa)		ξ(-)	9
160.			C _D (-)		5()	
-	-		ξ(-)			
200. 0.01 0.1 1. 10. Acarwal Equivalent Time (min)	100.		5()			
Log-Log plot incl. derivative- re		4	Interpreted forma	tion and wa	ll paramatara	
		•	Flow regime:	Radial	C (m ³ /Pa)	
Prototype Repository Test 9:5b			-	8	· · · ·	
		Obs. Wells CKA3542G01:3	dt ₁ (min) dt ₂ (min)	8	C _D (-)	9
-		Aquifer Model Confined			ξ(-)	9
		Solution Dougherty-Babu Parameters	$T_T (m^2/s)$	1.3·10 ⁻⁷		
		T = 1.271E-7 m ² /sec S = 1.0E-6	S (-)			
		Kz/Kr = 1. Sw = 8.576 r(w) = 0.038 m	K_s (m/s)			
		r(c) = 0.0007496 m	S _s (1/m)	,		<u> </u>
			Comments: Trans			
Se F − −			AQTESOLV - with major difference in			
			earlier tests in this			
			and both the transi			
1.	1			-		-
E I I	1 1		1			
	1 7					
	10. 100					

6.1.12 KA3542G01:3, test No 9:5c

General test data for the pressure build-up test in the interval 18.60-20.30 m of borehole KA3542G01 are presented in Table 6-12.

Table 6-12. General test data for the pressure build-up test in section 18.60-20.30 m of borehole KA3542G01.

General test data			
Borehole section	KA3542G	01:3	
Test No	9:5c		
Field crew	A. Blom (SWECO AB)	
Test equipment system	HMS		
General comment	Single ho	le test (dp _p = max)	
	Nomen- clature	Unit	Value
Test section- secup	Secup	m	18.60
Test section- seclow	Seclow	m	20.30
Test section length	L _w	m	1.70
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081022 16:40:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20081022 17:40:00
Stop of flow period		yymmdd hh:mm:ss	20081022 18:40:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081022 20:40:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	120

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2445.3	
Absolute pressure in test section before stop of flow	p _p	kPa	182.6	
Absolute pressure in test section at stop of recovery period	p _f	kPa	2432.3	
Maximal pressure change during flow period	dpp	kPa	2262.7	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.01 · 10 ⁻⁵
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	1.16 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.0418

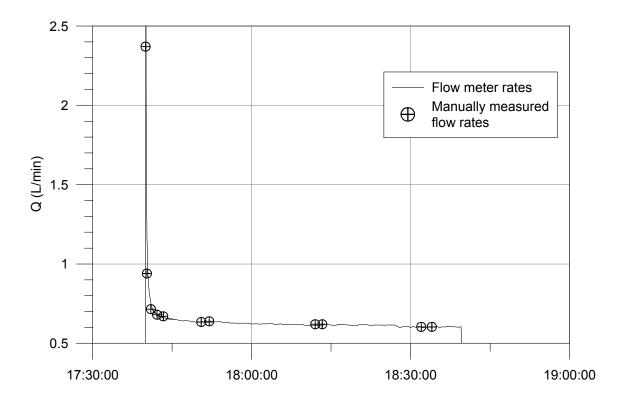


Figure 6-12. Flow rate during draw down in KA3542G01:3.

Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method. There is a major difference in the interpreted flow regimes compared to earlier tests in this borehole. The radial flow period occurs later and both the transmissivity and the skinfactor is higher.

Interpreted flow regimes

0-0.2	minutes	Well Bore Storage (WBS)
0.2 – 10	minutes	Transition period
10-40	minutes	Radial flow period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 18.60-20.30 m in KA3542G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Т	est Sum	mary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:5c			
Borehole ID:	KA3542G01		Test start:	2008-10-22	17:40		
Test section (m):	18.60-20.30		Responsible for	SWECO AE	3		
			test performance:	A. Blom			
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:	SWECO AE T. Forsmark			
Linear plot Head			Flow period		Recovery period	1	
·			Indata		Indata		
۰۲]	p ₀ (kPa)	2445.3			
			p _i (kPa)				
-100			p _p (kPa)	182.6	p _F (kPa)	2432.3	
			$Q_p (m^3/s)$	1.01 · 10 ⁻⁵			
			tp (min)	60	t _F (min)	120	
			S*		S*	1.10-6	
[₩] -300 +	+		EC _w (mS/m)		-		
	U		Te _w (gr C)				
-400			Derivative fact.		Derivative fact.	0.4	
		u					
-500	2008-10-22	2008-10-23					
Lin-Log plot			Results		Results		
			Q/s (m ² /s)	4.5·10 ⁻⁸	Flow regime:	Radial	
Prototype Repository Test 9.5c			$T_{Moye}(m^2/s)$	2.9·10 ⁻⁸	dt _{e1} (min)	10	
	Obs. Wells		Flow regime:	2.9'10	dt _{e1} (min) dt _{e2} (min)	40	
	-		dt ₁ (min)		T (m^2/s)	1.3·10 ⁻⁷	
50. r			dt_2 (min)		S (-)	1.5.10	
			T (m ² /s)		K _s (m/s)		
100. – – – – – – – – – – – – – – – – – –			S (-)		S _s (1/m)		
	-		K _s (m/s)		C (m ³ /Pa)		
150.			S _s (1/m)		C (11 /1 2) C _D (-)		
	-		C (m ³ /Pa)		ξ(-)	12	
200.			C _D (-)		S (-)	12	
			ξ(-)				
Agarwal Equivalent Time (min)	100.						
Log-Log plot incl. derivative- re	ecovery period		Interpreted forma	tion and we	II parameters.		
			Flow regime:	Radial	C (m ³ /Pa)		
Prototype Repository Test 9:5c		bs. Wells	dt ₁ (min)	10	C _D (-)		
	- <u>Ag</u>	KA3542G01:3 quifer Model	dt ₂ (min)	40	ξ(-)	12	
	So	Confined blution Dougherty-Babu	T _T (m²/s)	1.3·10 ⁻⁷			
100		arameters T = 1.338E-7 m ² /sec	S (-)				
		S = 1.0E-6 Kz/Kr = 1. Sw = 12.5	K _s (m/s)				
		r(w) = 0.038 m r(c) = 0.0007278 m	S _s (1/m)				
			Comments: Trans	smissivity and	d skinfactor evalua	ted by using	
			AQTESOLV - with				
			major difference in earlier tests in this				
-			and both the transi				
1.						9	
F							
			i				
	10. 100.						

6.1.13 KA3542G02:2, test No 9:7a

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-13.

Table 6-13. General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02.

General test data						
Borehole section	KA3542G	02:2				
Test No	9:7a	9:7a				
Field crew	A. Blom (SWECO AB)				
Test equipment system	HMS					
General comment	Single ho	le test (dp _p = approxim	ate 100 m)			
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	25.60			
Test section- seclow	Seclow	m	27.20			
Test section length	L _w	m	1.60			
Test section diameter	2∙r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081023 15:20:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081023 16:20:00			
Stop of flow period		yymmdd hh:mm:ss	20081023 19:20:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081023 21:20:00			
Total flow time	t _p	min	180			
Total recovery time	t _F	min	90			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2007.9	
Absolute pressure in test section before stop of flow	p _p	kPa	1008.2	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1897.7	
Maximal pressure change during flow period	dpp	kPa	999.7	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	1.12 · 10 ⁻⁷
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	1.28 · 10 ⁻⁷
Total volume discharged during flow period	Vp	m ³	1.38 · 10 ⁻³

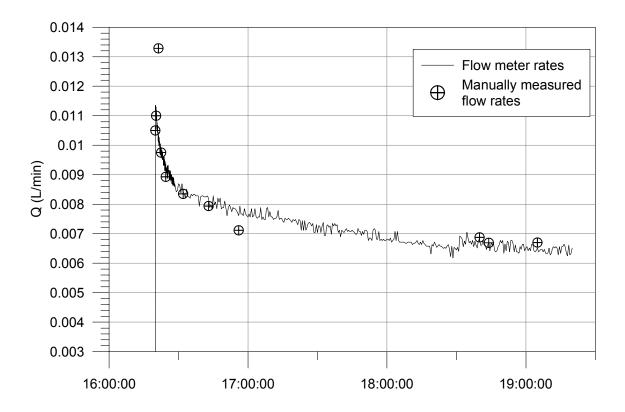


Figure 6-13. Flow rate during draw down in KA3542G02:2.

The reason for the pressure disturbance during recovery is not known. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.5	minutes	Well Bore Storage (WBS)
0.5 - 6	minutes	Transition period
6 – 10	minutes	Radial flow
10 –	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:7a			
Borehole ID:	KA3542G02		Test start:	2008-10-23	15:20		
Test section (m):	25.60-27.20		Responsible for test performance:	SWECO AE A. Blom	3		
Section diameter, $2 \cdot r_w$ (m):			Responsible for test evaluation:	SWECO AB T. Forsmark			
Linear plot Head			Flow period		Recovery period	1	
•			Indata		Indata		
۰۳]	p ₀ (kPa)	2007.9			
			p _i (kPa)				
-100			p _p (kPa)	1008.2	p _F (kPa)	1897.7	
			$Q_p (m^3/s)$	1.12 · 10 ⁻⁷			
-200			tp (min)	180	t _F (min)	90	
			S*		S*	1·10 ⁻⁶	
² -₃₀₀ + + - + - +			EC _w (mS/m)		-		
			Te _w (gr C)				
-400			Derivative fact.		Derivative fact.	0.4	
-500	2008-10-25	2008-10-26					
Lin-Log plot			Results		Results		
			Q/s (m²/s)	1.1 · 10 ⁻⁹	Flow regime:	Radial	
Prototype Repository Test 9:7a	Obs. Wells		T _{Moye} (m ² /s)	7.2 · 10 ⁻¹⁰	dt _{e1} (min)	6	
	- RA3542G02:2		Flow regime:		dt _{e2} (min)	10	
20.			dt ₁ (min)		T (m ² /s)	9.3·10 ⁻¹⁰	
	-		dt ₂ (min)		S (-)		
40	-		T (m ² /s)		K _s (m/s)		
	-		S (-)		S _s (1/m)		
	-		K _s (m/s)		C (m ³ /Pa)		
60.			S _s (1/m)		C _D (-)		
			C (m ³ /Pa)		ξ(-)	-0.3	
80.			C _D (-)				
	-		ξ(-)				
100	100.						
Log-Log plot incl. derivative- re	ecovery period		Interpreted forma	tion and we			
			Flow regime:	Radial	C (m³/Pa)		
Prototype Repository Test 9:7a 1000.	E	Obs. Wells Chaster Control Con	dt ₁ (min)	6	C _D (-)		
		Aquifer Model Confined	dt ₂ (min)	10	ξ(-)	-0.3	
F		Solution Dougherty-Babu	T _T (m ² /s)	$9.3\cdot10^{10}$			
100.		$\frac{\text{Parameters}}{\substack{\text{T} = 9.261\text{E}-10 \text{ m}^2/\text{sec}}}_{\substack{\text{S} = 1.0\text{E}-6}}$	S (-)				
		Kz/Kr = 1. Sw = -0.3106 r(w) = 0.038 m	K _s (m/s)				
		r(c) = 0.0002646 m	S _s (1/m)				
			Comments: The recovery is not kno by using AQTESO	wn. Transmi	ssivity and skinfact	or evaluated	
0.1 0.1 1. 0.01 0.1 1. Agarwal Equivalent Time (min)	10. 100.						

6.1.14 KA3542G02:2, test No 9:7b

General test data for the pressure build-up test in the interval 25.60-27.20 m of borehole KA3542G02 are presented in Table 6-14.

Table 6-14. General test data for the pressure build-up test in section 25.60-27.20 m of borehole KA3542G02.

General test data						
Borehole section	KA3542G	02:2				
Test No	9:7b	9:7b				
Field crew	A. Blom(S	SWECO AB)				
Test equipment system	HMS					
General comment	Single ho	le test (dp _p = max)				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	25.60			
Test section- seclow	Seclow	m	27.20			
Test section length	L _w	m	1.60			
Test section diameter	2∙r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081024 05:30:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081024 06:30:00			
Stop of flow period		yymmdd hh:mm:ss	20081024 09:30:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081024 11:30:00			
Total flow time	t _p	min	180			
Total recovery time	t _F	min	90			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	2042.0	
Absolute pressure in test section before stop of flow	p _p	kPa	109.4	
Absolute pressure in test section at stop of recovery period	р _f	kPa	1711.6	
Maximal pressure change during flow period	dpp	kPa	1932.6	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	$2.08 \cdot 10^{-7}$
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	$2.92 \cdot 10^{-7}$
Total volume discharged during flow period	Vp	m³	$3.16 \cdot 10^{-3}$

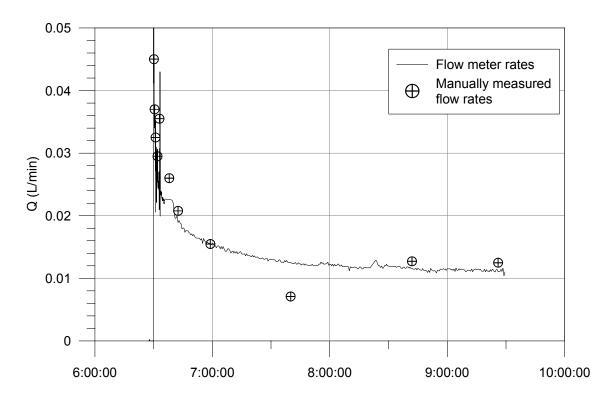


Figure 6-14 Flow rate during draw down in KA3542G02:2.

The reason to the pressure disturbance during recovery is not known. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0 - 1	minutes	Well Bore Storage (WBS)
1 – 30	minutes	Transition period
30 - 50	minutes	Radial flow
50 -	minutes	Transition period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

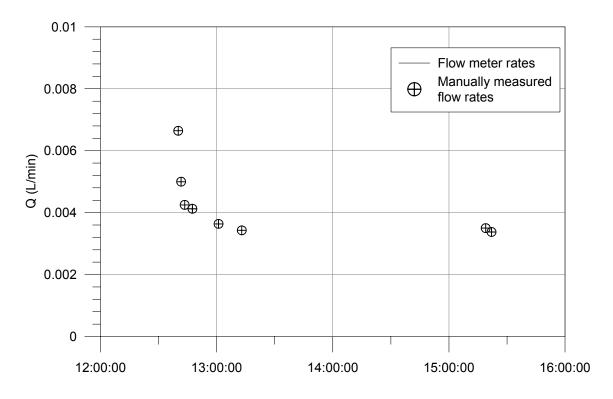
Selected representative parameters

The selected representative parameters from the test in the interval 25.60-27.20 m in KA3542G02 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet					
Project:	PROTOTYPE		Test type:	PBT				
Area:	ÄSPÖ		Test no:	9:7b				
Borehole ID:	KA3542G02		Test start:	2008-10-24 05:30				
Test section (m):	25.60-27.20		Responsible for	SWECO AE	SWECO AB			
			test performance:	A. Blom				
Section diameter, $2 \cdot r_w$ (m): 0.076			Responsible for test evaluation:	SWECO AE T. Forsmark				
Linear plot Head			Flow period		Recovery period	ł		
			Indata		Indata			
۰ ۲]	p ₀ (kPa)	2042.0				
			p _i (kPa)					
-100			p _p (kPa)	109.4	p _F (kPa)	1711.6		
-			Q _p (m ³ /s)	$2.08 \cdot 10^{-7}$				
<u> </u>			tp (min)	180	t _F (min)	90		
			S*		S*	1·10 ⁻⁶		
Ť -300 +			EC _w (mS/m)					
			Te _w (gr C)					
-400 +			Derivative fact.		Derivative fact.	0.4		
-500	2008-10-25	2008-10-26				1		
Lin-Log plot			Results		Results			
			Q/s (m²/s)	1.1 · 10 ⁻⁹	Flow regime:	Radial		
Prototype Repository Test 9:7b	Obs. Wells		T _{Moye} (m ² /s)	$6.9 \cdot 10^{-10}$	dt _{e1} (min)	30		
	-		Flow regime:		dt _{e2} (min)	50		
	-		dt ₁ (min)		T (m ² /s)	7.5·10 ⁻¹⁰		
50.			dt ₂ (min)		S (-)			
	-		T (m ² /s)		K _s (m/s)			
(ii)	-		S (-)		S _s (1/m)			
			K _s (m/s)		C (m ³ /Pa)			
-			S _s (1/m)		C _D (-)			
150.			C (m ³ /Pa)		ξ(-)	0		
	-		C _D (-)					
	-		ξ(-)					
200	100.		5(7					
Agarwal Equivalent Time (min)								
Log-Log plot incl. derivative- re	covery period		Interpreted forma	tion and we	Il parameters.	L		
			Flow regime:	Radial	C (m ³ /Pa)			
Prototype Repository Test 9:7b		Obs. Wells	dt ₁ (min)	30	C _D (-)	1		
		KA3542G02:2 Aquifer Model	dt ₂ (min)	50	ξ(-)	0		
		Confined Solution	$T_T (m^2/s)$	7.5 · 10 ⁻¹⁰		1		
100.		Dougherty-Babu Parameters T = 7.534E-10 m ² /sec	S (-)					
		S = 1.0E-6	K _s (m/s)			1		
		r(w) = 0.006322 r(w) = 0.038 m r(c) = 0.0006639 m	S _s (1/m)			1		
	1		Comments: The	reason to the	pressure disturba	nce durina		
			recovery is not kno by using AQTESO	wn. Transmi	ssivity and skinfact	tor evaluated		
Agarwal Equivalent Time (min)								

6.1.15 KA3546G01:2, test No 9:9

General test data for the pressure build-up test in the interval 6.75-8.30 m of borehole KA3546G01 are presented in Table 6-15.


Table 6-15. General test data for the pressure build-up test in section 6.75-8.30 m of borehole KA3546G01.

General test data						
Borehole section	KA3546G	01:2				
Test No	9:9	9:9				
Field crew	A. Blom (SWECO AB)				
Test equipment system	HMS					
General comment	Single ho	le test (dp _p = max)				
	Nomen- clature	Unit	Value			
Test section- secup	Secup	m	6.75			
Test section- seclow	Seclow	m	8.30			
Test section length	L _w	m	1.55			
Test section diameter	2∙r _w	mm	76			
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081022 11:40:00			
Packer expanded		yymmdd hh:mm:ss	-			
Start of flow period		yymmdd hh:mm:ss	20081022 12:40:00			
Stop of flow period		yymmdd hh:mm:ss	20081022 15:40:00			
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081022 17:40:00			
Total flow time	t _p	min	180			
Total recovery time	t _F	min	90			

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1213.6	
Absolute pressure in test section before stop of flow	pp	kPa	87.5	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1213.6	= p ₀
Maximal pressure change during flow period	dpp	kPa	1126.1	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	5.63 · 10 ⁻⁸
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	-
Total volume discharged during flow period	Vp	m ³	-

Figure 6-15. Flow rate during draw down in KA3546G01:2. The flow in this section is very low. No flow meter readings are available.

A very low flow rate is established from this borehole. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-4 min	utes Wel	l Bore Storage (WBS)
---------	----------	----------------------

4 – minutes Transition period

No radial flow regime period is established.

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 6.75-8.30 m in KA3546G01 are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet				
,	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:9			
Borehole ID: KA3546G01		Test start:	2008-10-22 11:40				
Test section (m):	6.75-8.30		Responsible for	SWECO AB			
			test performance: A. Blom				
Section diameter, $2 \cdot r_w$ (m):	0.076		Responsible for test evaluation:	SWECO AE T. Forsmark			
Linear plot Head			Flow period	•	Recovery period	I	
			Indata		Indata		
۰۲		·]	p ₀ (kPa)	1213.6			
			p _i (kPa)				
-100			p _p (kPa)	87.5	p _F (kPa)	1213.6	
			$Q_p (m^3/s)$	5.63 · 10 ⁻⁸			
			tp (min)	180	t _F (min)	90	
(1992) 1992 199		0	S*		S*	1·10 ⁻⁶	
[⊕] - ₃₀₀ + − − − − − − − − − − − − − − − − − −			EC _w (mS/m)		-		
			Te _w (gr C)				
-400			Derivative fact.		Derivative fact.	0.4	
					Donnative labe	0.1	
-500 +	2008-10-24	2008-10-25					
Lin-Log plot			Results		Results		
			Q/s (m ² /s)	$5.0 \cdot 10^{-10}$	Flow regime:	-	
Prototype Repository Test 9:9a 0.	Obs. Wells		T _{Moye} (m ² /s)	3.3 · 10 ⁻¹⁰	dt _{e1} (min)	_	
	KA3546G01:2		Flow regime:	0.0 10	dt _{e2} (min)	-	
30.			dt ₁ (min)		T (m ² /s)	1.1 · 10 ⁻⁹	
			dt_2 (min)		S (-)	1.1 10	
	-		T (m ² /s)		K _s (m/s)		
60. E			S (-)		S _s (1/m)		
Macoversity (11)	-		K _s (m/s)		C (m ³ /Pa)		
90.			S _s (1/m)		C _D (-)		
			C (m ³ /Pa)		ξ(-)	9	
120.]		C _D (-)		S (-)	5	
-	-						
150. 0.01 0.1 1. 10. Agarwal Equivalent Time (min)			ξ(-)				
Log-Log plot incl. derivative- re	covery period		Interpreted forma		Il parameters. C (m ³ /Pa)		
Prototype Repository Test 9:9a			Flow regime:	-	. ,		
		Obs. Wells KA3546G01:2	dt ₁ (min)	-	C _D (-)	0	
E I I		Aquifer Model Confined	dt_2 (min)	-	ξ(-)	9	
-		Solution Dougherty-Babu	T _T (m ² /s)	1.1 · 10 ⁻⁹			
100.		Parameters T = 1.063E-9 m ² /sec S = 1.0E-6	S (-)				
		Kz/Kr = 1. Sw = 8.992 r(w) = 0.038 m r(c) = 0.0002873 m	K _s (m/s)				
		r(c) = 0.0002873 m	S _s (1/m)				
			Comments: No ra period. Transmissi AQTESOLV - with In the linear head p	vity and skinf (Dougherty, plot the sudde	actor evaluated by Babu, 1984) meth en pressure rise 20	using od. 108-10-23 in	
	10. 100.		the section is due t entered the fractur			501 when gas	

6.1.16 KA3539G:2, test No 9:13a

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-16.

Table 6-16. General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G.

General test data				
Borehole section	KA3539G	KA3539G:2		
Test No	9:13a			
Field crew	A. Blom(S	WECO AB)		
Test equipment system	HMS			
General comment	Single hol	e test (dp _p = approx. ²	100 m)	
	Nomencl ature	Unit	Value	
Test section- secup	Secup	m	15.85	
Test section- seclow	Seclow	m	17.60	
Test section length	L _w	m	1.75	
Test section diameter	2·r _w	mm	76	
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081020 16:30:00	
Packer expanded		yymmdd hh:mm:ss	-	
Start of flow period		yymmdd hh:mm:ss	20081020 17:30:00	
Stop of flow period		yymmdd hh:mm:ss	20081020 18:30:00	
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081020 19:30:00	
Total flow time	t _p	min	60	
Total recovery time	t _F	min	60	

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1856.4	
Absolute pressure in test section before stop of flow	p _p	kPa	1114.9	
Absolute pressure in test section at stop of recovery period	р _f	kPa	1669.5	
Maximal pressure change during flow period	dpp	kPa	741.5	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Q _p	m ³ /s	$2.00 \cdot 10^{-5}$
Mean (arithmetic) flow rate during flow period	Q _m	m ³ /s	2.17 · 10 ⁻⁵
Total volume discharged during flow period	Vp	m ³	0.0780

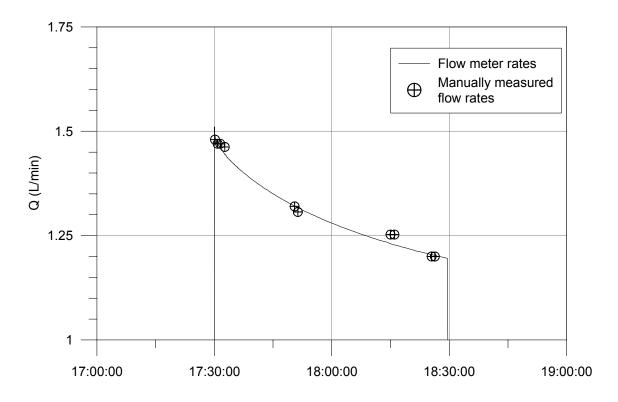


Figure 6-16. Flow rate during draw down in KA3539G:2.

A linear channel flow period occurs during this test. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.05	minutes	Well Bore Storage (WBS)
0.05 - 0.3	minutes	Transition period
0.3 – 0.7	minutes	Radial flow period
0.7 - 1	minutes	Transition period
1 –	minutes	Possible linear channel flow period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

		Test Sum	mary Sheet				
Project:	PROTOTYPE		Test type:	PBT			
Area:	ÄSPÖ		Test no:	9:13a			
Borehole ID:	KA3539G		Test start:	2008-10-20	16:30		
Test section (m): 15.85-17.60			Responsible for test performance:	SWECO AE A. Blom	3		
Section diameter, 2·r _w (m):	0.076		Responsible for test evaluation:	SWECO AE			
Linear plot Head			Flow period		Recovery period		
			Indata		Indata	-	
° T		1	p ₀ (kPa)	1856.4			
			p _i (kPa)				
-100 +			p _p (kPa)	1114.9	p _F (kPa)	1669.5	
			$Q_p (m^3/s)$	$2.00\cdot 10^{\text{-5}}$			
g -200			tp (min)	60	t _F (min)	60	
			S*		S*	1·10 ⁻⁶	
≗ -300 +	-		EC _w (mS/m)				
	V		Te _w (gr C)				
-400			Derivative fact.		Derivative fact.	0.4	
-500							
2008-10-20 2008-10-21	2008-10-22	2008-10-23					
Lin-Log plot			Results		Results		
Prototype Repository Test 9:13a			Q/s (m ² /s)	$2.7 \cdot 10^{-7}$	Flow regime:	Radial	
	Obs. Wells RA3539G:2		T _{Moye} (m ² /s)	1.8·10 ⁻⁷	dt _{e1} (min)	0.3	
-	-		Flow regime:		dt _{e2} (min)	0.7	
20.	-		dt ₁ (min)		T (m²/s)	$2.0\cdot10^{\text{-}6}$	
-	-		dt ₂ (min)		S (-)		
	-		T (m²/s)		K _s (m/s)		
(E), 63, 40.			S (-)		S _s (1/m)		
⁸ -	1		K _s (m/s)		C (m³/Pa)		
			S _s (1/m)		C _D (-)		
60.			C (m ³ /Pa)		ξ(-)	5	
			C _D (-)				
			ξ(-)				
Agarwal Equivalent Time (min)	100.						
Log-Log plot incl. derivative- re	covery period	d	Interpreted forma	tion and we			
			Flow regime:	Radial	C (m³/Pa)		
Prototype Repository Test 9:13a		Obs. Wells KA3539G:2	dt ₁ (min)	0.3	C _D (-)		
F		KA3539G:2 Aquifer Model Confined	dt ₂ (min)	0.7	ξ(-)	5	
F	-	Solution Dougherty-Babu	T _T (m ² /s)	$2.0\cdot10^{-6}$			
100.		Parameters T = 2.022E-6 m ² /sec S = 1.0E-6	S (-)				
E I I		Kz/Kr = 1. Sw = 4.78	K _s (m/s)				
		r(w) = 0.038 m r(c) = 1.0E-5 m	S _s (1/m)				
			Comments: A chattest. Transmissivity AQTESOLV - with	/ and skinfac	tor evaluated by us	sing	
0.1 0.1 1.	10. 10						

6.1.17 KA3539G:2, test No 9:13b

General test data for the pressure build-up test in the interval 15.85-17.60 m of borehole KA3539G are presented in Table 6-17.

Table 6-17. General test data for the pressure build-up test in section 15.85-17.60 m of borehole KA3539G.

General test data			
Borehole section	KA3539G	:2	
Test No	9:13b		
Field crew	A. Blom(S	WECO VIAK)	
Test equipment system	HMS		
General comment	Single hol	e test (dp _p = max)	
	Nomencl ature	Unit	Value
Test section- secup	Secup	m	15.85
Test section- seclow	Seclow	m	17.60
Test section length	L _w	m	1.75
Test section diameter	2·r _w	mm	76
Test start (start of pressure registration)		yymmdd hh:mm:ss	20081021 13:00:00
Packer expanded		yymmdd hh:mm:ss	-
Start of flow period		yymmdd hh:mm:ss	20081021 14:00:00
Stop of flow period		yymmdd hh:mm:ss	20081021 15:00:00
Test stop (stop of pressure registration)		yymmdd hh:mm:ss	20081021 16:00:00
Total flow time	t _p	min	60
Total recovery time	t _F	min	60

Pressure data

Pressure data	Nomenclature	Unit	Value	Comment
Absolute pressure in borehole before start of flow period	p ₀	kPa	1868.7	
Absolute pressure in test section before stop of flow	p _p	kPa	705.3	
Absolute pressure in test section at stop of recovery period	p _f	kPa	1571.2	
Maximal pressure change during flow period	dpp	kPa	1163.4	

Flow data	Nomenclature	Unit	Value
Flow rate from test section just before stop of flowing	Qp	m ³ /s	$2.92\cdot 10^{\text{-5}}$
Mean (arithmetic) flow rate during flow period	Qm	m ³ /s	$3.28 \cdot 10^{-5}$
Total volume discharged during flow period	Vp	m ³	0.1179

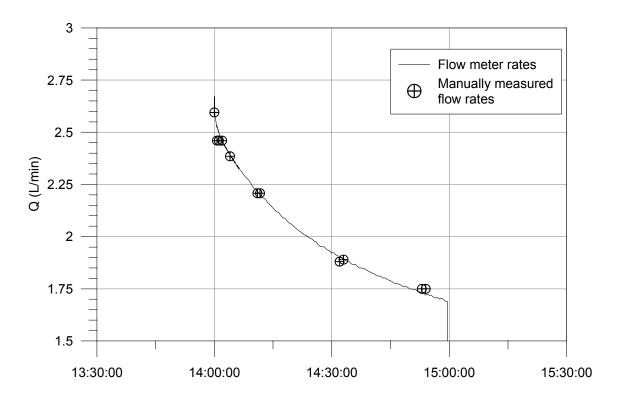


Figure 6-17. Flow rate during draw down in KA3539G:2.

A channel flow regime is established during this test. Transmissivity and skinfactor evaluated by using AQTESOLV - with (Dougherty, Babu, 1984) method.

Interpreted flow regimes

0-0.05	minutes	Well Bore Storage (WBS)
0.05 - 0.4	minutes	Transition period
0.4 - 0.7	minutes	Radial flow period
0.7 – 1	minutes	Transition period
1 –	minutes	Possible linear channel flow period

Calculated parameters

Quantitative analysis is made for recovery phases in lin-log- and log-log diagrams according to the methods described in Section 5.4.1.

Selected representative parameters

The selected representative parameters from the test in the interval 15.85-17.60 m in KA3539G are presented in the Test Summary Sheet below. The selected parameters are derived from the recovery period.

	Test Sun	nmary Sheet			
Project: PROTOTYPE		Test type:	РВТ		
Area:	ÄSPÖ	Test no:	9:13b		
Borehole ID: KA3539G		Test start:	2008-10-21 13:00		
Test section (m): 15.85-17.60		Responsible for test performance:	SWECO AB A. Blom		
Section diameter, 2·r _w (m): 0.076		Responsible for test evaluation:	SWECO AB T. Forsmark		
Linear plot Head		Flow period			
		Indata	Indata		-
٥ ــــــــــــــــــــــــــــــــــــ		p ₀ (kPa)	1868.7		
		p _i (kPa)			
-100		p _p (kPa)	705.3	p _F (kPa)	1571.2
		$Q_p (m^3/s)$	2.92 · 10 ⁻⁵		
image: 200		tp (min)	60	t _F (min)	60
		S*		S*	1·10 ⁻⁶
		EC _w (mS/m)		-	
		Te _w (gr C)			
-400	· · · · · · · · · · · · · · · · · · ·	Derivative fact.		Derivative fact.	0.4
-500					
2008-10-20 2008-10-21	2008-10-22 2008-10-2	3			
Lin-Log plot		Results		Results	
		Q/s (m²/s)	$2.5 \cdot 10^{-7}$	Flow regime:	Radial
Prototype Repository Test 9:13b	Obs. Wells	T _{Moye} (m ² /s)	1.7·10 ⁻⁷	dt _{e1} (min)	0.4
-	-	Flow regime:		dt _{e2} (min)	0.7
20.		dt ₁ (min)		T (m²/s)	1.8 · 10 ⁻⁶
		dt ₂ (min)		S (-)	
40.		T (m ² /s)		K _s (m/s)	
Recovery (m)	-	S (-)		S _s (1/m)	
80		K _s (m/s)		C (m ³ /Pa)	
	-	S _s (1/m)		C _D (-)	
	-	C (m ³ /Pa)		ξ(-)	6
80.		C _D (-)			
		ξ (-)			
0.01 0.1 1. 10. Agarwal Equivalent Time (min)	100.				
Log-Log plot incl. derivative- re	Interpreted formation and well parameters.				
		Flow regime:	Radial	C (m³/Pa)	
Prototype Repository Test 9:13b	Obs. Wells	dt ₁ (min)	0.4	C _D (-)	
E	KA3539G:2 <u>Aquifer Model</u> Confined	dt ₂ (min)	0.7	ξ (-)	6
		T _⊤ (m ² /s)	1.8 · 10 ⁻⁶		
100.	Parameters T = 1.828E-6 m ² /se	s (-)			
	S = 1.0E-6 Kz/Kr = 1. Sw = 5.902	K _s (m/s)			
	r(w) = 0.038 m r(c) = 1.0E-5 m	S _s (1/m)			
		Comments: A characteristic test. Transmissivity AQTESOLV - with	y and skinfac	tor evaluated by us	sing
0.1 0.1 1. 0.01 0.1 1. Agarwal Equivalent Time (min)	10. 100.				
Ayarwar Equivalent Time (Min)		1			

6.2 Deformation measurements

Deformation measurements started 2003-05-06. Evaluation of the deformations will be made in a separate report.

7 Conclusion

The results of some tests in test campaign 8 (TC8) indicated increased transmissivity (*see discussion below*) to the south side of the Prototype repository since earlier testcampigns. This may have been caused by the on-going investigation and construction work of a new tunnel from niche I. Some of the investigation boreholes in niche I had been leaking ground water into the tunnel system during several months. By doing that, fractures may have been cleansed of fracture minerals and the transmissivity of the rock mass may have increased at a local scale between the prototype repository and the location of the new tunnel.

Prior to test campaign 9 (TC 9) several grouting campaigns have been done in niche I. In the results of TC9 the effect of these can be seen on the southern side of the prototype repository in different ways. In the outermost boreholes, KA3539G and KA3542G01 the transmissivity AND the skin factor are higher now than before in earlier tests including TC8. Meanwhile in the horizontal hole to the south KA3548A01 the transmissivity have decreased to earlier levels before TC8 while the skin factor is the same as in earlier tests campaigns. In the innermost hole to the south KA3554G01 the tendency is the same as in KA3548A01, the transmissivity decreases and the skin factor remains at the same order of magnitude.

In KA3542G01 there is a major difference in the interpreted flow regimes compared to earlier tests in this borehole. The radial flow period occurs later and both the transmissivity and the skinfactor is higher.

It seems though that the grouting in the new tunnel has had different consequences. In the most eastern part of the prototype the transmissivity remains or increase to a higher level together with a high skinfactor. To the west the grouting has decreased the temporary higher transmissivity back to earlier levels while the skin factor remains at the same order of magnitude.

During the test in KA3552G01 2008-10-23 a equipment failure occurred. It was probably a tube coupling to one of the packer inflating tube that now leaks gas into the test section and also into the rock. The gas to the packers is now turned off. No more tests in this borehole will probably be possible in the future.

In the linear head plot of KA3546G01 the sudden pressure rise 2008-10-23 in the section is due to the packer failure in KA3552G01 when gas entered the fracture system in the rock.

References

Alm P, Forsmark T, Rhen I, 2005. Äspö HRL – Prototype repository – Installations for measurements of flow into tunnels, water pressure in rock and hydro mechanical responses in boreholes during operation phase. SKB IPR-05-04.

Dougherty, D.E and Babu, D.K, 1984. Flow to a partially penetrating well in a double-porosity reservoir, Water Resources Research, Vol 20, No. 8, pp 1116–1122.

Forsmark T, Forsman I, Rhén I, 2004. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Interference tests. SKB IPR-04-16.

Forsmark T, Rhén I, 2004a. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 1 – Single hole tests. SKB IPR-04-17.

Forsmark T, Rhén I, 2004b. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 2 – Single hole tests. SKB IPR-04-18.

Forsmark T, Rhén I, 2004c. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 3 – Single hole tests. SKB IPR-04-19.

Forsmark T, Rhén I, 2005a. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 4 – Single hole tests. SKB IPR-05-02.

Forsmark T, Rhén I, 2005b. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 5 – Interference tests. SKB IPR-05-18.

Forsmark T, Rhén I, 2005c. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 5 – Single hole tests. SKB IPR-05-17.

Forsmark T, 2006. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 6 – Single hole tests. SKB IPR-06-01.

Forsmark T, 2007a. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 7 – Single hole tests. SKB IPR-07-02.

Forsmark T, 2007b. Äspö HRL - Prototype repository – Hydraulic tests and displacement measurements during operation phase. Test campaign 8 – Single hole tests. SKB IPR-07-17.

Horne R N, 1995. Modern Well Test Analysis. A computer-Aided Approach. 2nd Edition. Petroway Inc, Palo Alto.

Spane F A, Wurstner S K, 1993. DERIV: A computer program for calculating pressure derivatives for use in hydraulic tests. Groundwater Vol 31, No. 5, pp 814 – 822.