P-08-57

Oskarshamn site investigation

Transient evaluation of PFL pumping tests

Subarea Laxemar and Simpevarp

Cristian Enachescu, Sascha Lenné, Stephan Rohs, Reinder van der Wall Golder Associates GmbH

June 2008

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00

ISSN 1651-4416 SKB P-08-57

Oskarshamn site investigation

Transient evaluation of PFL pumping tests

Subarea Laxemar and Simpevarp

Cristian Enachescu, Sascha Lenné, Stephan Rohs, Reinder van der Wall Golder Associates GmbH

June 2008

Keywords: Site/project, Hydrogeology, Hydraulic tests, Pumping tests, Transient evaluation, Hydraulic parameters, Transmissivity.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

A pdf version of this document can be downloaded from www.skb.se

Abstract

Hydraulic pumping tests have been performed at Laxemar, Simpevarp and Ävrö in 32 boreholes. The pumping tests were conducted in the frame of difference flow logging (PFL pumping tests) as open borehole tests. During the pumping phases the pressure in the active boreholes was monitored. The tests are part of the general program for site investigations and specifically for the subareas Laxemar and Simpevarp. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties. Data is subsequently delivered for the site descriptive model.

This report describes the results and transient data evaluation of the 32 pumping tests which were performed between 2003 and 2008. The recorded data of the conducted pumping tests were delivered by SKB.

Sammanfattning

Hydrauliska pumping tester har utförts i 32 borrhål i Laxemark, Simpevarp och Ävrö. Pumptesterna utfördes i anslutning till differens flödesloggning (PFL) i öppna borrhålstester. Under pumpfasen loggades tryckförändringen i borrhålet. Testerna ingår i en del av SKB:s platsundersökningar, specifikt för delområdena Laxemar och Simpevarp. Hydraultestprogrammet har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper. Data från testerna används för den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och transient data utvärdering av de 32 pumptesterna som utfördes mellan 2003 och 2008. Tryckdata från pumptesterna levererades från SKB.

Contents

1	Introduction	7
2 2.1 2.2	Objective and scope Pumped boreholes Tests	9 10 10
3 3.1 3.2 3.3	Equipment Description of equipment/interpretation tools Sensors Data acquisition system	13 13 13 13
4 4.1 4.2 4.3 4.4	Execution General Preparations Execution of field work 4.3.1 Test principle 4.3.2 Test procedure Data handling/post processing	15 15 15 15 15 15 16
4.5	 Analyses and interpretations 4.5.1 Analysis software 4.5.2 Analysis approach 4.5.3 Analysis methodology 4.5.4 Correlation between Storativity and Skin factor 4.5.5 Steady state analysis 4.5.6 Flow models used for analysis 4.5.7 Calculation of the static formation pressure and equivalent freshwater head 4.5.8 Determination of the ri-index and calculation of the radius of 	17 17 17 17 17 17 18 18 18
16	 influence (ri) 4.5.9 Derivation of the recommended transmissivity and the confidence range Nonconformities 	18 19 20
5 5	Results Transient analysis results of the pumping tests 5.1.1 Pumping test KAV01 (Section 70.04–757.31) 5.1.2 Pumping test KAV04A (Section 100.95–1004.00) 5.1.3 Pumping test KAV04B (Section 11.52–101.03) 5.1.4 Pumping test KLX04 (Section 101.43–993.49) 5.1.5 Pumping test KLX09 (Section 11.95–880.38) 5.1.6 Pumping test KLX09B (Section 10.74–120.22) 5.1.7 Pumping test KLX09C (Section 9.00–120.05) 5.1.8 Pumping test KLX09D (Section 9.00–120.00) 5.1.9 Pumping test KLX09E (Section 9.00–120.00) 5.1.10 Pumping test KLX09G (Section 9.00–120.00) 5.1.11 Pumping test KLX09G (Section 9.00–120.00) 5.1.11 Pumping test KLX09G (Section 9.00–120.00) 5.1.12 Pumping test KLX09G (Section 9.30–100.10) 5.1.13 Pumping test KLX108 (Section 9.00–50.25) 5.1.14 Pumping test KLX10C (Section 9.00–146.25) 5.1.15 Pumping test KLX11A (Section 12.05–992.29) 5.1.16 Pumping test KLX11B (Section 2.54–100.20) 5.1.17 Pumping test KLX11C (Section 2.54–100.20)	20 21 22 22 23 24 24 25 26 26 27 27 28 28 29 30 30 31 32

	5.1.18	Pumping test KLX11D (Section 2.00–120.35)	32
	5.1.19	Pumping test KLX11E (Section 2.00–121.30)	33
	5.1.20	Pumping test KLX11F (Section 2.00–120.05)	34
	5.1.21	Pumping test KLX12A (Section 17.92–602.29)	34
	5.1.22	Pumping test KLX13A (Section 11.75–595.85)	35
	5.1.23	Pumping test KLX17A (Section 11.95–701.08)	35
	5.1.24	Pumping test KLX18A (Section 11.83–611.28)	36
	5.1.25	Pumping test KLX20A (Section 100.90–457.92)	36
	5.1.26	Pumping test KLX24A (Section 2.41–100.17)	37
	5.1.27	Pumping test KLX25A (Section 2.20–50.24)	37
	5.1.28	Pumping test KLX27A (Section 77.02–650.56)	38
	5.1.29	Pumping test KLX28A (Section 5.10–80.23)	38
	5.1.30	Pumping test KLX29A (Section 2.35–60.25)	39
	5.1.31	Pumping test KSH01A (Section 2.35–60.25)	40
	5.1.32	Pumping test KSH02 (Section 80.00–1,001.11)	40
6	Summ	ary and conclusions	41
6.1	Summa	ary of results	41
6.2	Correla	tion analysis	46
	6.2.1	Comparison of steady state and transient analysis results	46
	6.2.2	Comparison between the matched and theoretical wellbore	
		storage coefficient	46
7	Refere	nces	49
Appe	endices a	attached on CD	

- Appendix 1Analyses diagramsAppendix 2Test summary sheetsAppendix 3Sicada data tablesAppendix 4Information about 32 pumped boreholes (Sicada, 2008-05-02)Appendix 5Nomenclature

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/ as well as a site specific program for the investigations in the Simpevarp area /SKB 2002/ and a program specifically for the Oskarshamn location /SKB 2005/.

This document reports the results gained by the evaluation of already existing difference flow logging (PFL) pumping test data, performed in 32 different boreholes which were one of the activities performed within the site investigation at Oskarshamn. The data evaluation work was carried out in accordance with activity plan AP PS 400-08-14. Controlling documents for performing this activity are listed In Table 1-1. Both, activity plan and method descriptions are SKB's internal controlling documents.

Hydraulic pumping tests have been performed for SKB in 32 boreholes at the Laxemar, Simpevarp areas in open boreholes in the frame of difference flow logging (PFL). The pumping tests have been performed in the time range from 2003 to 2008. Monitoring of flow rates and pressures in the pumped boreholes were carried out for SKB by a contractor. These data were delivered by SKB for further analyses.

Measurements were carried out between 2003 and 2008 following the methodologies described in SKB MD 326.001 (flow logging with single hole pumping tests) and relevant activity plans (SKB internal controlling documents) specifying in detail the pumping test campaigns. Data and results were delivered to the SKB site characterization database SICADA where they are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the transient data evaluation and results of pumping tests in 32 boreholes in the Laxemar, Simpevarp area. The analysis was conducted by Golder Associates AB and Golder Associates GmbH.

The boreholes are situated in the Laxemar, Simpevarp and Ävrö areas west and east of the nuclear power plant of Simpevarp. Technical borehole information is obtained from the SICADA database of SKB.

The location of the tested boreholes is shown in Figure 1-1.

Table 1-1. Controlling documents for the performance of the activity.

Activity plan	Numbor	Version
Transient utvärdering ov DEL numenteeter		4.0
Transient utvardening av PFL pumptester	AP PS 400-08-14	1.0
Method descriptions	Number	Version
Instruktion för analys av hydrauliska injections- och enhålspumptester	SKB MD 320.004	2.0
Metodbeskrivning för hydrauliska enhålspumptester	SKB MD 321.003	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning.	SKB MD 600.004	1.0
Inleverans av data	SKB SD-111	1.0
Framtagande och hantering av P-rapporter	SKB SDK-107	1.0
Hantering av primärdata vid platsundersökningar	SKB SDP-508	1.0

Figure 1-1. Borehole location map.

2 Objective and scope

The major objective of the performed testing program was to resolve the hydraulic properties transmissivity and hydraulic conductivity of the fracture network and the rock mass around the boreholes. A special objective of the transient evaluation of both phases (perturbation and recovery periods) of each of the constant rate pumping tests is to provide additional information such as transmissivity, flow regimes and hydraulic boundaries. The scope of work consisted of preparation and analysis of data of pumping tests in 32 boreholes.

The following pumping tests were performed between 2003 and 2008.

Borehole	Year	Activity plan No.	P-rapport No.	Duration Pumping [h]	Duration Recovery [h]
KAV01	2004	AP PS 400-03-085	P-04-213	102.65	22.75
KAV04A	2004	AP PS 400-04-035	P-04-216	131.35	15.08
KAV04B	2004	AP PS 400-04-035	P-04-216	20.57	16.32
KLX04	2004	AP PS 400-04-066	P-05-68	165.65	23.72
KLX09	2006	AP PS 400-05-107	P-06-164	187.70	55.32
KLX09B	2006	AP PS 400-05-106	P-06-199	141.47	72.2
KLX09C	2006	AP PS 400-05-106	P-06-199	138.27	97.42
KLX09D	2006	AP PS 400-05-106	P-06-199	141.12	67.77
KLX09E	2006	AP PS 400-05-106	P-06-199	141.58	75.87
KLX09F	2006	AP PS 400-05-106	P-06-199	143.12	48.62
KLX09G	2006	AP PS 400-06-084	P-06-229	51.68	87.63
KLX10	2005	AP PS 400-05-082	P-06-58	188.83	235.17
KLX10B	2006	AP PS 400-06-084	P-06-229	48.98	146.50
KLX10C	2006	AP PS 400-06-084	P-06-229	51.10	65.45
KLX11A	2006	AP PS 400-06-079	P-07-24	126.25	45.68
KLX11B	2006	AP PS 400-06-087	P-07-64	189.33	72.97
KLX11C	2006	AP PS 400-06-087	P-07-64	44.85	26.50
KLX11D	2006	AP PS 400-06-087	P-07-64	142.02	94.68
KLX11E	2006	AP PS 400-06-087	P-07-64	160.25	80.80
KLX11F	2006	AP PS 400-06-087	P-07-64	44.08	81.83
KLX12A	2006	AP PS 400-06-048	P-06-185	121.72	88.85
KLX13A	2006	AP PS 400-06-080	P-06-245	117.25	22.07
KLX17A	2007	AP PS 400-06-119	P-07-34	116.35	71.33
KLX18A	2006	AP PS 400-06-070	P-06-184	167.98	152.80
KLX20A	2006	AP PS 400-06-071	P-06-183	97.73	236.68
KLX24A	2006	AP PS 400-06-092	P-06-246	71.23	237.58
KLX25A	2006	AP PS 400-06-092	P-06-246	49.88	24.00
KLX27A	2008	AP PS 400-07-057	P-08-22	152.67	159.58
KLX28A	2006	AP PS 400-06-106	P-07-17	40.43	24.62
KLX29A	2006	AP PS 400-06-106	P-07-17	23.30	17.33
KSH01A	2003	AP PS 400-02-030	P-03-70	168.27	23.12
KSH02	2003	AP PS 400-03-033	P-03-110	217.20	51.05

Table 2-1. Performed test programme of PFL test analysed in this report.

2.1 Pumped boreholes

Technical data of the pumped boreholes are shown in Appendix 4. The reference point in the boreholes is the centre of top of casing (ToC), given as Elevation in the table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface.

2.2 Tests

The tests performed in the 32 boreholes are listed in Table 2-2. They were conducted according to the relevant Activity Plans (SKB internal document). All tests were conducted as constant rate pumping tests, primarily intended to perform difference flow logging (PFL pumping tests). All pumping test data were provided by SKB.

It should be noted that upper limit of the test section is always defined as bottom of casing respectively bottom of cone if the cone is directly connected to the casing.

Bh ID	Test section (mbToC)	Test type*	Test no	Test start Date, time (yyyy-mm-dd hh:mm:ss)	Test stop Date, time (yyyy-mm-dd hh:mm:ss)
KAV01	70.04–757.31	1B	1	2004-02-18	2004-02-26
				16:25:51	14:46:42
KAV04A	100.95–1,004.00	1B	1	2004-06-10	2004-06-16
				12:24:29	14:55:24
KAV04B	11.52-101.03	1B	1	2004-06-16	2004-06-18
				17:18:30	06:11:46
KLX04	101.43–993.49	1B	1	2004-07-29	2004-08-06
				09:56:34	12:08:04
KLX09	11.95-880.38	1B	1	2006-05-11	2006-05-23
				20:27:18	16:47:46
KLX09B	10.74-100.22	1B	1	2006-02-21	2006-04-09
				10:45:25	11:50:36
KLX09C	9.00–120.05	1B	1	2006-02-16	2006-04-10
				14:14:37	15:03:40
KLX09D	9.75–121.02	1B	1	2006-02-17	2006-04-08
				09:50:03	16:13:03
KLX09E	9.00-120.00	1B	1	2006-02-18	2006-04-10
				10:20:24	08:32:58
KLX09F	9.00–152.30	1B	1	2006-02-20	2006-04-11
				10:21:50	09:05:58
KLX09G	9.30-100.10	1B	1	2006-07-12	2006-07-19
				14:07:45	06:00:00
KLX10	12.10-1,001.20	1B	1	2005-12-10	2005-12-31
				11:10:26	07:35:00
KLX10B	9.00–50.25	1B	1	2006-07-18	2006-07-27
				15:01:58	14:19:30
KLX10C	9.00–146.25	1B	1	2006-07-24	2006-07-30
				12:59:28	06:58:30

Table 2-2. Tests performed.

Bh ID	Test section (mbToC)	Test type*	Test no	Test start Date, time (yyyy-mm-dd hh:mm:ss)	Test stop Date, time (yyyy-mm-dd hh:mm:ss)
KLX11A	12.05–992.29	1B	1	2006-10-29	2006-11-13
				08:56:03	10:50:43
KLX11B	2.54-100.20	1B	1	2006-09-04	2006-10-22
				15:01:10	15:57:36
KLX11C	2.00-120.15	1B	1	2006-09-06	2006-10-20
				10:14:06	13:00:39
KLX11D	2.00–120.35	1B	1	2006-09-07	2006-10-21
				16:48:38	09:42:16
KLX11E	2.00–121.30	1B	1	2006-09-22	2006-10-02
				14:47:36	15:53:02
KLX11F	2.00-120.05	1B	1	2006-10-16	2006-10-21
				10:16:54	16:45:09
KLX12A	17.92–602.29	1B	1	2006-06-09	2006-06-19
				16:05:49	08:54:00
KLX13A	11.75–595.85	1B	1	2006-09-24	2006-10-01
				14:30:44	11:24:02
KLX17A	11.95–701.08	1B	1	2006-12-10	2007-01-11
				16:56:53	14:01:10
KLX18A	11.83–611.28	1B	1	2006-07-07	2006-07-22
				12:05:53	00:00:00
KLX20A	100.90-457.92	1B	1	2006-06-18	2006-07-11
				09:17:06	09:35:00
KLX24A	2.41-100.17	1B	1	2006-08-23	2006-09-06
				11:10:48	14:20:00
KLX25A	2.20-50.24	1B	1	2006-08-16	2006-08-20
				15:53:42	10:55:04
KLX27A	14.76–650.56	1B	1	2007-12-15	2008-01-16
				10:52:33	11:21:00
KLX28A	5.10-80.23	1B	1	2006-11-24	2006-11-27
				11:28:37	08:48:02
KLX29A	2.35-60.25	1B	1	2006-11-27	2006-11-29
				14:00:11	08:56:00
KSH01A	12.10-1,003.00	1B	1	2003-02-20	2003-03-02
				14:05:33	14:54:32
KSH02	80.00–1,001.11	1B	1	2003-07-09	2003-07-22
				11:57:09	16:15:28

* 1B: pumping test-submersible pump.

3 Equipment

3.1 Description of equipment/interpretation tools

As the pumping tests were not performed by Golder, only a generalized description of the used PFL equipment is given. For further information about the equipment and performance of the individual tests see the relevant reports mentioned in Table 5-1.

Unlike traditional types of borehole flowmeters which are measuring the total cumulative flow rate along the borehole, the difference flowmeter measures the flow rate into or out of limited sections of the borehole. The advantage of measuring the flow rate in isolated sections is a better detection of incremental changes of flow along the hydraulic profile of a borehole, which are typically very small and can easily be missed using traditional types of flowmeters.

Rubber disks at both ends of the downhole tool are used to isolate the flow rate in the test section from the flow rate in the rest of the borehole. The flow inside the test section is led through a separate tube and passes through the area where the flow sensors are located. The flow along the borehole outside of the isolated test section passes through the test section by a bypass pipe and is discharged at the upper end of the downhole tool. This entire structure is named the flow guide.

In addition to the main focus of measuring the flow of distinct sections of the borehole, the total flow of the borehole was measured as well. In the following, the transient pumping test analyses are based on the total flow rate and the total drawdown measured in the open borehole during performance of the PFL pumping tests.

3.2 Sensors

No information is given about technical specification of the used sensors and when the last calibration of sensors was performed. It is assumed that actual calibration values were taken from the calibration protocols and inserted to the data acquisition system.

3.3 Data acquisition system

Pressure and flow data are logged in stand alone logger system. No further detailed information about the data acquisition system were obtained in the frame of the project.

4 Execution

4.1 General

As the pumping tests were not performed by Golder, it is just assumed that testing was carried out according to SKB's methodology as outlined in the internal SKB document SKB MD 326.001. The overall activity has to involve the following components:

- Preparations.
- Function control of transducers and data system.
- Pump testing in connection to difference flow logging.
- Analyses of hydraulic tests.
- Reporting.

The basic testing sequence for the pumping tests was to perform a constant head and rate withdrawal followed by a pressure recovery.

4.2 Preparations

As the pumping tests were not performed by Golder, no description about performed testing preparations can be given for the pumping tests.

4.3 Execution of field work

4.3.1 Test principle

The pumping tests were conducted as constant flow rate tests (CRw phase) followed by a pressure recovery period (CRwr phase). The intention was to achieve a drawdown of approximately 10 m. The actual durations of the phases are shown in Table 2-1.

4.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment into the borehole. 2) Pressure stabilisation. 3) Constant rate withdrawal. 4) Pressure recovery. 5) Running the equipment out of the borehole. The pumping tests have been carried out by applying a constant rate withdrawal with a drawdown up to approximately 10. The flow rates and the drawdowns at the end of the perturbation phase are summarised in Table 4-1.

Before start of the pumping tests, approximately stable pressure conditions prevailed in the test section. After the perturbation period, the pressure recovery in each section was measured. Tidal effects were observed as disturbances of the pressure responses only at the end of some recovery phases. No information about eventual major rainfall during performance of the pumping tests which may have disturbed the measurements was obtained.

Bh ID	Section [mbToC]	Final flow rate [L/min]	Drawdown* [m]
KAV01	70.04–757.31	18.7	9.96
KAV04A	100.95–1,004.00	10.6	10.00
KAV04B	11.52–101.03	23.4	10.11
KLX04	101.43–993.49	49.1	6.67
KLX09	11.95-880.38	66.7	4.85
KLX09B	10.74–100.22	9.8	10.10
KLX09C	9.00–120.05	31.7	5.20
KLX09D	9.75–121.02	13.9	9.50
KLX09E	9.00-120.00	31.25	5.50
KLX09F	9.00–152.30	33.3	3.62
KLX09G	9.30-100.10	8.2	7.91
KLX10	12.10-1,001.20	87.0	6.93
KLX10B	9.00–50.25	27.8	9.87
KLX10C	9.00–146.25	6.77	10.38
KLX11A	12.05–992.29	34.0	10.74
KLX11B	2.54-100.20	16.0	9.40
KLX11C	2.00–120.15	1.75	10.74
KLX11D	2.00–120.35	21.1	10.83
KLX11E	2.00–121.30	2.26	9.70
KLX11F	2.00-120.05	22.8	12.38
KLX12A	17.92-602.29	6.25	9.56
KLX13A	11.75–595.85	39.0	10.03
KLX17A	11.95–701.08	14.2	10.28
KLX18A	11.83–611.28	11.68	10.14
KLX20A	100.90-457.92	6.74	10.10
KLX24A	2.41-100.17	15.84	9.78
KLX25A	2.20-50.24	0.75	4.62
KLX27A	14.76-650.56	13.9	13.96
KLX28A	5.10-80.23	1.45	10.62
KLX29A	2.35-60.25	9.6	5.24
KSH01A	12.10-1,003.00	3.1	10.34
KSH02	80.00-1,001.11	3.28	10.54

Table 4-1. Final flow rate and drawdown of pumping tests.

* Pressure difference just before start and immediately before stop of pumping.

4.4 Data handling/post processing

SKB was responsible for recording and collecting the data of the pumping boreholes. SKB delivered the pressure data in *.csv format files. These files were imported and processed to Excel for further evaluation and analysis. The unit of the relevant pressure data was meter above sea level (m.a.s.l.). To analysis the data with the corresponding software the pressure was converted into Kilopascal (kPa). Finally, the test data were exported from Excel in *.txt format. These files were also used for the subsequent test analysis. Flow rate information was delivered by SKB in *.dat format files. These files were used as input files for the analysis and additionally used for calculating a mean flow rate for comparative steady state calculations.

4.5 Analyses and interpretations

4.5.1 Analysis software

The pumping tests were analysed using a type curve matching method. The analyses were performed using Paradigm's test analysis program Interpret 2008. Interpret 2008 is an interactive program that uses a constant rate solution to provide optimized hydraulic parameters for a wide range of potential reservoir models. Some of the features of Interpret 2008 include extensive superposition of constant rate events, non-linear regression and multi-event rate normalized plots. Multi-event plots allow the relevant phases to be presented on a single plot to evaluate for consistency of the formation response throughout the test. Additionally, it can accommodate changing wellbore storage and skin between the test periods.

4.5.2 Analysis approach

Constant rate and pressure recovery tests are analysed using the method described by /Gringarten 1986, Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

4.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve m tching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition Horner plot; /Horner, 1951/). In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

4.5.4 Correlation between Storativity and Skin factor

For the analysis of the conducted hydraulic tests a storativity of $1 \cdot 10^{-6}$ is assumed (SKB MD 320.004). Based on these assumptions the skin will be calculated. In the following the correlation between storativity and skin for the relevant test phases will be explained in greater detail.

The wellbore storage coefficient (C) is determined by matching the early time data with the corresponding type curve. The derived C-value is introduced in the equation of the type curve parameter:

$$(C_D e^{2\xi})_M = \frac{C \rho g}{2\pi r_w^2 S} e^{2\xi}$$

The equation above has two unknowns, the storativity (S) and the skin factor (ξ) which expresses the fact that for the case of constant rate and pressure recovery tests the storativity and the skin factor are 100% correlated. Therefore, the equation can only be either solved for skin by assuming that the storativity is known or solved for storativity by assuming the skin as known.

In case of the present analyses the porosity (ϕ) instead of the storativity was used as an input parameter for the transient test analyses in Interpret 2008. The relationship between the porosity and storativity is given by following equation:

 $S = \phi c_t h \rho g$

- S Storativity assumed 1.10^{-6}
- *ct* total compressibility as sum of the compressibility of water $(5 \cdot 10^{-10} \text{ 1/Pa})$ and rock compressibility $(1 \cdot 10^{-10} \text{ 1/Pa})$
- h length of section in m
- ρ density of water assumed to 1,000 kg/m³
- g gravity constant 9.81 m/s²

4.5.5 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

4.5.6 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. All tests were analysed using a flow dimension of two (radial flow).

4.5.7 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CRwr) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure p* derived from the analysis (see chapter 4.4).

4.5.8 Determination of the ri-index and calculation of the radius of influence (ri)

The analysis provides also the radius of influence and the ri-index, which describes the late time behaviour of the derivative (see also SKB MD320.004).

RI-Index

The determination of the ri-Index is based on the shape of the derivative plotted in log-log coordinates and describes the behaviour of the derivative after the time t_2 , representing the end of the near wellbore response. The ri-index also describes the flow regime at the end of the test. Following ri-indices can be assigned:

- ri-index = 0: The middle and late time derivative shows a horizontal stabilization. This pressure response indicates that the size of the hydraulic feature is greater than the radius of influence. The calculated radius of influence is based on the entire test time t_P and t_s , respectively.
- ri-index = 1: The derivative shows an upward trend at late times, indicating a decrease of transmissivity or a barrier boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on dt₂.
- ri-index = -1: The derivative shows a downward trend at late times, indicating an increase of transmissivity or a constant head boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on dt₂.

If no radial flow stabilization can be observed the ri-index is based on the flow regime at the end of the test: i.e. ri-index = 1 for tests with a derivative showing an upward trend at the end and a ri-index=-1 for tests with a derivative showing a downward trend. In such cases the calculated radius of influence is based on the entire test time t_{p} .

Calculation of the radius of influence

The radius of influence (ri) is calculated as follows:

$$r_i = \sqrt{\frac{2.25T_T}{S^*} \cdot t} \quad [m]$$

- T_T recommended inner zone transmissivity [m²/s]
- *t* time when hydraulic formation properties changes (see previous chapter) [s]
- S^* for the calculation of the ri the storage coefficient (S) is estimated from the transmissivity /Rhen et al. 2006/:

 $S^* = 0.0007 \cdot T_T^{0.5} [-]$

4.5.9 Derivation of the recommended transmissivity and the confidence range

In most of the cases all test phases were analysed (CRw and CRwr). Depending on the data quality of the CRw phase, only the subsequent CRwr phase was analysed. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality, which is in all cases the CRwr phase. In cases when a composite flow model was deemed to be most representative for the hydraulic behaviour of the specific test section, than the most representative zone transmissivity was selected as recommended value.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

4.6 Nonconformities

No information about nonconformities which may happened during performance of the pumping tests were obtained from SKB.

5 Results

In the following, results of the pumping tests conducted in 32 boreholes are presented and analysed. First, the previously performed steady state evaluations of the pumping tests according to the relevant P-rapports are summarized in Table 5-1. The calculation methods are indicated in the column headers. The results of the performed transient analyses are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarized in the Tables 6-1 to 6-3 of the synthesis chapter and in the summary sheets (Appendix 2). No information about disturbing activities like heavy rainfall were obtained with the data. The only disturbing effects observed were caused by tidal influence, which have a minor influence at the late part of some recovery phases and were not accounted for in the analyses.

Borehole	Activity plan No.	P-rapport No.	Transmissivity [m²/s] (Dupuit)	Transmissivity [m²/s] (Moye)	Transmissivity [m²/s] (Jacob/Horner)
KAV01	AP PS 400-03-085	P-04-213	3.17·10 ⁻⁶	5.31·10 ⁻⁶	3.848.10-⁵
KAV04A	AP PS 400-04-035	P-04-216	1.75.10⁻⁵	2.92·10 ⁻⁵	2.36.10-5
KAV04B	AP PS 400-04-035	P-04-216	3.83·10⁻⁵	4.93.10-⁵	3.01.10-⁵
KLX04	AP PS 400-04-066	P-05-68	1.19·10-⁴	1.99 ⋅ 10-4	1.40.10-4
KLX09	AP PS 400-05-107	P-06-164	2.3·10 ⁻⁴	3.7·10 ⁻⁴	-
KLX09B	AP PS 400-05-106	P-06-199	1.6·10⁻⁵	2.1·10 ^{–₅}	-
KLX09C	AP PS 400-05-106	P-06-199	1.0.10-4	1.3.10-₄	-
KLX09D	AP PS 400-05-106	P-06-199	2.3·10 ⁻⁵	3.1.10⁻⁵	-
KLX09E	AP PS 400-05-106	P-06-199	8.7·10 ⁻⁵	1.2·10 ⁻⁴	-
KLX09F	AP PS 400-05-106	P-06-199	1.6·10-₄	2.2·10 ⁻⁴	-
KLX09G	AP PS 400-06-084	P-06-229	1.72·10 ⁻⁵	2.23.10⁻⁵	-
KLX10	AP PS 400-05-082	P-06-58	2.1.10-4	3.5.10-4	-
KLX10B	AP PS 400-06-084	P-06-229	4.64·10 ⁻⁵	5.45·10 ^{–₅}	-
KLX10C	AP PS 400-06-084	P-06-229	1.11.10⁻⁵	1.52·10⁻⁵	-
KLX11A	AP PS 400-06-079	P-07-24	5.53.10-5	9.32·10 ⁻⁵	-
KLX11B	AP PS 400-06-087	P-07-64	2.8·10 ⁻⁵	3.7.10⁻⁵	-
KLX11C	AP PS 400-06-087	P-07-64	2.9·10 ⁻⁶	3.9·10 ⁻⁶	-
KLX11D	AP PS 400-06-087	P-07-64	3.6·10⁻⁵	4.8·10 ⁻⁵	-
KLX11E	AP PS 400-06-087	P-07-64	3.8·10 ⁻⁶	5.1·10 ⁻⁶	-
KLX11F	AP PS 400-06-087	P-07-64	3.9·10⁻⁵	5.2·10 ⁻⁵	-
KLX12A	AP PS 400-06-048	P-06-185	1.1·10 ^{–₅}	1.8.10-5	-
KLX13A	AP PS 400-06-080	P-06-245	6.42·10 ⁻⁵	1.03·10-4	-
KLX17A	AP PS 400-06-119	P-07-34	2.34·10 ⁻⁵	3.81·10⁻⁵	-
KLX18A	AP PS 400-06-070	P-06-184	1.9·10⁻⁵	3.1.10-5	-
KLX20A	AP PS 400-06-071	P-06-183	1.1.10-5	1.7.10⁻⁵	-
KLX24A	AP PS 400-06-092	P-06-246	2.6·10 ⁻⁵	3.5·10⁻⁵	-
KLX25A	AP PS 400-06-092	P-06-246	2.6·10 ⁻⁶	3.1·10 ⁻⁶	-
KLX27A	AP PS 400-07-057	P-08-22	2.29·10 ⁻⁵	3.70·10⁻⁵	-
KLX28A	AP PS 400-06-106	P-07-17	2.31·10 ⁻⁶	2.93·10 ⁻⁶	-
KLX29A	AP PS 400-06-106	P-07-17	3.03.10-5	3.72.10-5	-
KSH01A	AP PS 400-02-030	P-03-70	5.1·10 ⁻⁶	8.6·10 ⁻⁶	2.8·10 ⁻⁶
KSH02	AP PS 400-03-033	P-03-110	5.2·10 ⁻⁶	8.7·10 ⁻⁶	2.9·10 ⁻⁶

Table 5-1. Results from previous steady state and transient calculations.

5.1 Transient analysis results of the pumping tests

5.1.1 Pumping test KAV01 (Section 70.04–757.31)

Comments to test

The test was conducted as a pumping test (CRw) with an average flow rate of 18.9 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.9 m (97.9 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 102.7 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 23 hours. Approx. 10 hours after pump start the CRw phase shows a straight line. (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). The CRwr phase shows no problems and is adequate for quantitative analysis. Due to the minor quality of the data of the CRw phase, the results of this phase should be regarded as less reliable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw derivative is very noisy and radial flow behaviour cannot be seen clearly. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The derivative of the CRwr phase shows a change in slope at early times. This behaviour was interpreted as an increase in wellbore storage caused by a volume change. At middle time the derivative shows a short horizontal stabilization and an upward trend at late time, indicating a decrease in transmissivity. A two shell composite flow model was used for the analysis of the CRwr phase. To match the early time data of the derivative a model for changing wellbore storage based on /Hegeman et al. 1993/ was applied. The analysis is presented in Appendix 1-1.

Selected representative parameters

The recommended transmissivity of $7.4 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better data and derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $1.0 \cdot 10^{-4}$ m²/s (this range encompasses the outer zone transmissivity). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 1.92 m.a.s.l.

The analysis of the CRw and CRwr phases show some inconsistency regarding the chosen flow model. This inconsistency is most likely attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities (CRw and inner zone of CRwr) both analyses show consistency.

No further analysis is recommended.

5.1.2 Pumping test KAV04A (Section 100.95–1004.00)

Comments to test

The test was conducted as a pumping test (CRw) with an average flow rate of 12.6 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.0 m (98.1 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 131.4 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 15 hours. Approx. 20 hours after pump start the CRw phase shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). The CRwr phase shows a change in recovery slope relatively short after start of this

phase. It is assumed that this effect is caused by a change in wellbore storage due to a change in volume. However, the data quality of the CRwr phase is of good quality and therefore adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw derivative is very noisy and a flow model cannot be determined. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The derivative of the CRwr phase shows a change in slope at early times. This behaviour was interpreted as an increase in wellbore storage caused by a volume change. At middle time the derivative shows a short horizontal stabilization and an upward trend at late time, indicating a decrease in transmissivity. A two shell composite flow model was used for the analysis of the CRwr phase. To match the early time data of the derivative a model for changing wellbore storage based on /Hegeman et al. 1993/ was applied. The analysis is presented in Appendix 1-1.

Selected representative parameters

The recommended transmissivity of $6.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better data and derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $1.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 4.79 m.a.s.l.

The analysis of the CRw and CRwr phases show some inconsistency regarding the chosen flow model. This inconsistency is most likely attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities (CRw and inner zone of CRwr) both analyses show consistency.

No further analysis is recommended.

5.1.3 Pumping test KAV04B (Section 11.52–101.03)

Comments to test

The test was conducted as a pumping test (CRw) with an average flow rate of 26.3 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.1 m (99.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a relative high transmissivity. After approx. 21 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 16 hours. The Crw phase shows some oscillations in the recorded pressure. This adds uncertainty to the analyses and the results should be regarded as an order of magnitude, only. The CRwr phase shows no problems and is adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw derivative is noisy and a flow model cannot be determined. However, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The derivative of the CRwr phase shows short horizontal stabilization at middle times followed by an upward trend at late times. This behaviour is consistent with a decrease in transmissivity at some distance from the borehole. Therefore, a two shell composite flow model was used for the analysis. The analysis is presented in Appendix 1-3.

Selected representative parameters

The recommended transmissivity of $9.6 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a horizontal stabilization. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $2.0 \cdot 10^{-4}$ m²/s (this range encompasses the outer zone transmissivity). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 4.18 m.a.s.l.

The analysis of the CRw and CRwr phases some inconsistency regarding the chosen flow model. This inconsistency can be explained by the poor data quality of the CRw phase. However, regarding the derived transmissivities (CRw and inner zone of CRwr) both analyses show consistency.

No further analysis is recommended.

5.1.4 Pumping test KLX04 (Section 101.43–993.49)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 55.4 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 6.99 m (65.5 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a relative high transmissivity. After approx. 166 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 24 hours. For the analyses of the CRw phase only the first 24 hours were used, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). Apart from this both phases show no problems and are adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw and CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-4.

Selected representative parameters

The recommended transmissivity of $3.3 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better derivative quality. The confidence range for the transmissivity is estimated to be $5.0 \cdot 10^{-5}$ to $5.0 \cdot 10^{-4}$ m²/s (this range encompasses the outer zone transmissivities of both phases). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 13.44 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.5 Pumping test KLX09 (Section 11.95–880.38)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 70.0 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 4.85 m (47.6 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a high transmissivity. After approx. 188 hours of pumping the pump was stopped.

The subsequent recovery phase was measured for about 55 hours. For the analyses of the CRw phase only the first 21 hours were used, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). Apart from this both phases show no problems and are adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw and CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-5.

Selected representative parameters

The recommended transmissivity of $5.4 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-4}$ to $8.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 13.36 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.6 Pumping test KLX09B (Section 10.74–120.22)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 9.8 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.1 m (99.1 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 141 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 72 hours. Only the first part of the CRw phase was analysed as no pressure data were available for the main part. The data show fast recovery and oscillations, which were caused by tidal effects throughout the recovery phase.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a relative noisy derivative. However, a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a flat part at middle and late times, which is characteristic for a flow dimension of two (radial flow). A homogeneous radial flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 1-6.

Selected representative parameters

The recommended transmissivity of $8.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $1.0 \cdot 10^{-4}$ m²/s. A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 13.86 m.a.s.l.

Both phases show a high positive skin. This may be caused by non-Darcy flow effects in the borehole and in the formation near the borehole wall. The derived transmissivities of both phases show consistency. No further analysis is recommended.

5.1.7 Pumping test KLX09C (Section 9.00–120.05)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 29.2 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 5.2 m (51.0 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 138 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 97 hours. Due to the poor data quality of the CRw phase only the subsequent recovery phase was analysed. The CRwr phase shows oscillations induced by tidal effects but is still adequate for qualitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows steep downward trend at early times, which is indicative for a high positive skin. At middle times the derivative shows a short horizontal stabilization followed by an upward trend and a second stabilization. A two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analysis. The analysis is presented in Appendix 1-7.

Selected representative parameters

The recommended transmissivity of $5.3 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone). The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-4}$ to $7.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 13.79 m.a.s.l.

No further analysis is recommended.

5.1.8 Pumping test KLX09D (Section 9.75–121.02)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 14.0 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.5 m (93.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 141 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 68 hours. Only the first part of the CRw phase was analysed, due to missing pressure data for the subsequent period. The Crw phase shows a fast pressure decrease. Because of this the data quality is relatively poor, which leads to ambiguity to the analyses of the Crw phase. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a relative noisy derivative. However, a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times and an upward trend at late times, indicating a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with a decrease in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-8.

Selected representative parameters

The recommended transmissivity of $7.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows the best data and derivative quality. The confidence range for the transmissivity is estimated to be $2.0 \cdot 10^{-5}$ to $1.0 \cdot 10^{-4}$ m²/s (this range includes the transmissivity of the outer zone). The flow dimension during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 13.93 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models. This can be attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities both phases show consistency.

No further analysis is recommended.

5.1.9 Pumping test KLX09E (Section 9.00–120.00)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 31.5 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 6.50 m (53.9 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a relative high transmissivity. After approx. 141 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 76 hours. For the analyses of the CRw phase only the first 20 hours were used. With the exception of the noise in the CRw phase, both phases show no problems and are adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw and CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-9.

Selected representative parameters

The recommended transmissivity of $2.6 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better derivative quality. The confidence range for the transmissivity is estimated to be $9.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s (this range encompasses the outer zone transmissivities of both phases). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 13.51 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.10 Pumping test KLX09F (Section 9.00–152.30)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 33.3 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 3.62 m (35.5 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a relative high transmissivity. After approx. 143 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 49 hours. For the analyses of the CRw phase only the first 23 hours were used as about 40 hours of data were missing. The recovery phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw and CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend and a second stabilization at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-10.

Selected representative parameters

The recommended transmissivity of $4.3 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-4}$ to $6.0 \cdot 10^{-4}$ m²/s (this range encompasses the outer zone transmissivities of both phases). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 14.14 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.11 Pumping test KLX09G (Section 9.30–100.10)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 7.7 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 7.9 m (77.6 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 52 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 88 hours. Only the first part of the CRw phase was analysed. Both phases show a relative fast pressure decrease and increase, respectively, at the beginning of each phase. Because of this the data quality is relatively poor, which adds uncertainty to the analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the Crw and CRwr phase show a relative noisy derivative. However, both phases were matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 1-11.

Selected representative parameters

The recommended transmissivity of $6.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $9.0 \cdot 10^{-5}$ m²/s. A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 12.61 m.a.s.l.

Both phases show a high positive skin. This may be caused by non-Darcy flow effects in the formation. The derived transmissivities of both phases show good consistency.

No further analysis is recommended.

5.1.12 Pumping test KLX10 (Section 12.10–1,001.20)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 90.3 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 6.93 m (68.0 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a high transmissivity. After approx. 188 hours of pumping the pump was stopped.

The subsequent recovery phase was measured for about 235 hours. For the analyses of the CRw phase only the first 18 hours were used, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). Apart from this both phases show no problems and are adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw and CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-12.

Selected representative parameters

The recommended transmissivity of $5.3 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a slight better derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-4}$ to $8.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 13.20 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.13 Pumping test KLX10B (Section 9.00-50.25)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 22.0 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.9 m (96.8 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 49 hours of pumping the pump was stopped and the recovery phase was started. After about 20 hours, pumping was continued for another 20 hours with an average flow rate of 12 l/min followed by a subsequent second recovery phase. Only the first recovery phase was analysed. The recorded data of the CRw phase is relatively noisy, but still amenable for a qualitative analysis. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a relative noisy derivative. However, it seems to stabilize at middle and late times and a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times and a slight upward trend at late times, indicating a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with a decrease in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-13.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows the better data and derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s (this range includes the transmissivity of the outer zone). The flow dimension during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 11.62 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models and the high positive skin derived from the CRwr phase. The different flow models can be attributed to the poor data quality of the CRw phase. Non-Darcy flow effects can cause the high positive skin. However, regarding the derived transmissivities both phases show consistency.

No further analysis is recommended.

5.1.14 Pumping test KLX10C (Section 9.00–146.25)

Comments to test

The test consists of a pumping test phase (CRw) with an average flow rate of 6.6 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.4 m (101.8 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 51 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 65 hours. Due to insufficient data

quality, the first part of each phase was analysed, only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw and CRwr phase shows a steep downward trend at middle and late times. This behaviour is indicative for a transition from wellbore dominated flow to pure formation flow. No radial flow was reached. However, a homogeneous radial flow model was assumed for the analyses of both phases. The analysis is presented in Appendix 1-14.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase, which shows a slight better data and derivative quality. The confidence range for the transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-4}$ m²/s A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 12.21 m.a.s.l.

The analyses of both phases show consistency. No further analysis is recommended.

5.1.15 Pumping test KLX11A (Section 12.05–992.29)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 39.9 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.7 m (105.4 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 126 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 46 hours. For the analyses of the CRw phase only the first 2 hours were used, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the derivatives of the CRw shows a continuous downward trend at late time. This indicates a transition from borehole dominated flow to pure formation

flow. No radial flow was reached. A homogeneous radial flow model with wellbore storage and skin was assumed for the analysis. The derivative of the CRwr phases show a short horizontal stabilization at middle times, followed by an upward trend at late times. Therefore, a two shell composite flow model with decreasing transmissivity at some distance from the borehole was used for the analyses of both phases. The analysis is presented in Appendix 1-15.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-4}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a short horizontal stabilization. The confidence range for the transmissivity is estimated to be $5.0 \cdot 10^{-5}$ to $4.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 13.85 m.a.s.l.

The analyses of both phases show some inconsistencies regarding the chosen flow model. This discrepancy can be explained by the short analysable CRw phase where no radial flow was reached. No further analysis is recommended.

5.1.16 Pumping test KLX11B (Section 2.54–100.20)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 17.0 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.4 m (92.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 189 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 73 hours. For the analyses of the CRw phase only the first part was used, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible).

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a noisy derivative and no flow model could be determined. However, a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times and an upward trend at late times, indicating a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with a decrease in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-16.

Selected representative parameters

The recommended transmissivity of $8.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows the better data and derivative quality. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $1.0 \cdot 10^{-4}$ m²/s. The flow dimension during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 10.29 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models, which can be attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities both phases show consistency.

No further analysis is recommended.

5.1.17 Pumping test KLX11C (Section 2.00–120.15)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 2.0 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 11.7 m (115.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 45 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 27 hours. Due to the poor data quality of the CRw phase only the subsequent recovery phase was analysed. The CRwr phase shows no problems and is adequate for qualitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase was matched using a two shell composite flow model with increasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-17.

Selected representative parameters

The recommended transmissivity of $4.6 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase (inner zone). The confidence range for the transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $4.0 \cdot 10^{-5}$ m²/s (this range encompasses the outer zone transmissivity). A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 12.85 m.a.s.l.

No further analysis is recommended.

5.1.18 Pumping test KLX11D (Section 2.00–120.35)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 22.5 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.8 m (106.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 142 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 95 hours. For the analyses of the CRw phase only the first 3 hours were analysable, because after this time period the recorded pressure shows a straight line (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a very noisy derivative and a flow model cannot be determined. However, a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times and an upward trend at late times with a new stabilization at a higher level, indicating a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with a decrease in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-18.

Selected representative parameters

The recommended transmissivity of $6.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better data and derivative quality. The confidence range for the transmissivity is estimated to be $2.0 \cdot 10^{-5}$ to $9.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 13.95 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models, which can be attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities both phases show consistency.

No further analysis is recommended.

5.1.19 Pumping test KLX11E (Section 2.00–121.30)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 2.2 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.7 m (95.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 160 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 81 hours. For the analyses of the CRw phase only the first part was used, due to missing pressure data. In addition, the data of the CRw phase is very noisy. Therefore the results should be regarded as an order of magnitude, only. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a very noisy derivative. However, a homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times followed by an upward trend at late times. This is indicative for a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with a decrease in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-19.

Selected representative parameters

The recommended transmissivity of $7.0 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows the best derivative quality. The confidence range for the transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 14.46 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models, which is attributed to the poor data quality of the CRw phase. However, regarding the derived transmissivities both phases show consistency.

No further analysis is recommended.

5.1.20 Pumping test KLX11F (Section 2.00–120.05)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 25.8 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 12.4 m (121.5 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 44 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 82 hours, but shows several pressure changes which are considered being induced by unnatural effects (e.g. movement of the sensor). For the analyses of the CRw phase only the first part was analysable. The first 20 hours of the CRwr phase show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CRw phase shows a horizontal stabilization at middle and late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis. The derivative of the CRwr phase shows a horizontal stabilization at middle times followed by a downward trend at late times. This is indicative for a change in transmissivity. The CRwr phase was matched using a two shell composite flow model with an increase in transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-20.

Selected representative parameters

The recommended transmissivity of $2.1 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a better data and derivative quality. The confidence range for the transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $7.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 12.55 m.a.s.l.

Both phases show some inconsistency regarding the derived flow models, which is attributed to the short analysable part of the Crw phase. However, regarding the derived near wellbore transmissivities both phases show consistency.

No further analysis is recommended.

5.1.21 Pumping test KLX12A (Section 17.92–602.29)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 6.7 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.6 m (93.8 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 122 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 89 hours. The recorded pressure data of the Crw phase shows after approx. 0.5 hours a straight line. It is assumed that the water level reaches the intake of the pump and no further drawdown was possible. Therefore, the CRw phase was not analysable. The CRwr phase shows no problems and is adequate for qualitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows flat part at middle and late times indicating radial flow. It was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 1-21.

Selected representative parameters

The recommended transmissivity of $2.3 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $8.0 \cdot 10^{-6}$ to $5.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 10.50 m.a.s.l.

No further analysis is recommended.

5.1.22 Pumping test KLX13A (Section 11.75–595.85)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 48.3 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.03 m (98.4 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium to high transmissivity. After approx. 117 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 22 hours. For the analyses of the CRw phase only the first 13 hours were used, because after this time period the recorded pressure shows a straight line. (it is assumed that the water level in the borehole reaches the intake of the submersible pump and no further drawdown was possible). Apart from this both phases show no problems and are adequate for quantitative analyses.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of both phases show a short horizontal stabilization at middle times, followed by a considerable upward trend. At late times the derivatives show a new horizontal stabilization at a higher level. A two shell composite flow model with decreasing transmissivity at some distance from the borehole was used to match the data. The analysis is presented in Appendix 1-22.

Selected representative parameters

The recommended transmissivity of $3.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (outer zone), which is deemed to be representative for the formation. The confidence range for the transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 14.15 m.a.s.l.

The analyses of both phases show good consistency. No further analysis is recommended.

5.1.23 Pumping test KLX17A (Section 11.95–701.08)

Comments to test

The test consists of a pumping test phase (CRw) with an average flow rate of 15.7 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.3 m (100.9 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 116 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 71 hours. No analysable flow period was identified during the CRw phase. The CRwr phase shows some oscilliations at middle times. However, the recovery phase is still amenable for analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase is flat at middle and late times indicating radial flow. Therefore it was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 1-23.

Selected representative parameters

The recommended transmissivity of $5.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $9.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 17.34 m.a.s.l.

No further analysis is recommended.

5.1.24 Pumping test KLX18A (Section 11.83–611.28)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 14.2 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.1 m (99.5 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 168 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 153 hours. No analysable flow period was identified during the CRw phase. The CRwr phase shows no problems and is adequate for quantitative analysis though it is affected by tidal effects.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase shows a flat part at middle and late times and was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 1-24.

Selected representative parameters

The recommended transmissivity of $4.1 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $9.0 \cdot 10^{-5}$ m²/s The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 11.48 m.a.s.l.

No further analysis is recommended.

5.1.25 Pumping test KLX20A (Section 100.90-457.92)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 9.9 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.1 m (99.9 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 98 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 27 hours. No analysable flow period was identified during the CRw phase. The CRwr phase shows no problems and is adequate for quantitative analysis though it is affected by tidal effects.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase was shows a continuous upward trend at middle and late times, indicating a transition from wellbore dominated flow to pure formation flow. At late times the derivative is noisy and no flow model can be determined. A homogeneous radial flow model with wellbore storage and skin was used for the analysis, which is presented in Appendix 1-25.

Selected representative parameters

The recommended transmissivity of $2.4 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $9.0 \cdot 10^{-6}$ to $9.0 \cdot 10^{-5}$ m²/s. A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 13.51 m.a.s.l.

No further analysis is recommended.

5.1.26 Pumping test KLX24A (Section 2.41–100.17)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 16.6 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 9.8 m (95.6 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 71 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 238 hours, but only the first 15 hours are analysable. Due to the poor data quality of the CRw phase, no analysable flow period was identified. However, the first 13 hours of the CRwr phase are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows a horizontal stabilization at middle times, followed by a slight upward trend at late times. A two shell composite flow model with decreasing transmissivity was used for the analysis, which is presented in Appendix 1-26.

Selected representative parameters

The recommended transmissivity of $5.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone). The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-5}$ to $9.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 11.54 m.a.s.l.

No further analysis is recommended.

5.1.27 Pumping test KLX25A (Section 2.20–50.24)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 1.2 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 4.6 m (45.3 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 50 hours of pumping the pump was stopped.

The subsequent recovery phase was measured for about 24 hours. No analysable flow period was identified during the CRw phase. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows a horizontal stabilization at middle times, followed by a slight upward trend at late times. The analysis was conducted using a two shell composite flow model with decreasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-27.

Selected representative parameters

The recommended transmissivity of $7.1 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase (inner zone). The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s (this range includes the outer zone transmissivity). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 14.44 m.a.s.l.

No further analysis is recommended.

5.1.28 Pumping test KLX27A (Section 77.02-650.56)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 16.5 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.0 m (98.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 153 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 160 hours. After approx. 0.6 hours pumping the recorded pressure data shows a straight line. Therefore, the CRw phase is not analysable. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 1-28.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase. The confidence range for the transmissivity is estimated to be $7.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-5}$ m²/s. A flow dimension of 2 was assumed. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 11.01 m.a.s.l.

No further analysis is recommended.

5.1.29 Pumping test KLX28A (Section 5.10-80.23)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 2.1 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.6 m (104.2 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 40 hours of pumping the pump was stopped.
The subsequent recovery phase was measured for about 24.6 hours. After approx. 0.2 hours pumping the recorded pressure data shows a straight line. Therefore, the CRw phase is not analysable. The CRw phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase shows a horizontal stabilization at middle times followed by an upward trend at late times. This behaviour is consistent with a decrease of transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-29.

Selected representative parameters

The recommended transmissivity of $4.6 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase (inner zone). The confidence range for the transmissivity is estimated to be $8.0 \cdot 10^{-7}$ to $7.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 9.04 m.a.s.l.

No further analysis is recommended.

5.1.30 Pumping test KLX29A (Section 2.35–60.25)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 14.1 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 5.2 m (51.4 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 23.3 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 17.3 hours. The recorded pressure data of the CRw phase is very noisy. Because of this, the CRw phase was not analysed. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase shows a horizontal stabilization at middle times followed by an upward trend at late times. This behaviour is consistent with a decrease of transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-30.

Selected representative parameters

The recommended transmissivity of $2.3 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (outer zone), which is deemed to be representative for the formation. The confidence range for the transmissivity is estimated to be $5.0 \cdot 10^{-6}$ to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 9.26 m.a.s.l.

No further analysis is recommended.

5.1.31 Pumping test KSH01A (Section 2.35–60.25)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 3.4 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.3 m (101.4 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 168.3 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 23.1 hours. Due to a lack of pressure data during early time and bad data quality at all, the CRw phase was not analysable. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase shows a horizontal stabilization at middle times followed by an upward trend at late times. This behaviour is consistent with a decrease of transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-31.

Selected representative parameters

The recommended transmissivity of $8.2 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a horizontal stabilization. The confidence range for the transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $1.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of 1.95 m.a.s.l.

No further analysis is recommended.

5.1.32 Pumping test KSH02 (Section 80.00–1,001.11)

Comments to test

The test consists of a pump phase (CRw) with an average flow rate of 3.6 l/min, followed by a pressure recovery phase (CRwr). The maximum drawdown just before stop of flowing was about 10.5 m (103.4 kPa). The flow rate during the pumping phase and the resulting drawdown indicate a medium transmissivity. After approx. 217 hours of pumping the pump was stopped. The subsequent recovery phase was measured for about 51 hours. Due to fast drawdown and no analysable pressure change during the pumping phase, the CRw phase was not analysed. The CRwr phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CRwr phase shows a horizontal stabilization at middle times followed by an upward trend at late times. This behaviour is consistent with a decrease of transmissivity at some distance from the borehole. The analysis is presented in Appendix 1-31.

Selected representative parameters

The recommended transmissivity of $1.3 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRwr phase (inner zone), which shows a horizontal stabilization. The confidence range for the transmissivity is estimated to be $2.0 \cdot 10^{-6}$ to $3.0 \cdot 10^{-5}$ m²/s (this range encompasses the outer zone transmissivity). The flow dimension displayed during the test is 2. The static ground water level was derived from the CRwr phase using straight line extrapolation in the Horner plot to a value of -0.40 m.a.s.l.

No further analysis is recommended.

6 Summary and conclusions

The summary and conclusions chapter summarizes the basic test parameters and analysis results.

6.1 Summary of results

Table 6-1. General test data from the pumping tests.

Borehole ID	Borehole Secup (m)	Borehole Seclow (m)	Date and time Test start YYYYMMDD hh:mm	Date and time Test stop YYYYMMDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	tp (s)	t _F (s)	h _i (m.a.s.l.)	h _p (m.a.s.l.)	h _⊦ (m.a.s.l.)	Test phases measured Analysed test phases marked bold
KAV01	70.04	757.31	20040218 16:25	20040226 14:46	3.11E–04	3.13E-04	369,540	81,882	1.31	-8.66	-0.55	CRw / CRwr
KAV04A	100.95	1,004.00	20040610 12:24	20040616 14:55	1.77E-04	2.10E-04	472,860	54,324	1.25	-8.75	-4.29	CRw / CRwr
KAV04B	11.52	101.03	20040616 17:18	20040618 06:11	3.90E-04	4.38E-04	74,040	58,726	3.55	-6.56	2.61	CRw / CRwr
KLX04	101.43	993.49	20040729 09:56	20040806 12:08	8.18E-04	9.23E-04	596,340	85,386	13.66	6.99	11.64	CRw / CRwr
KLX09	11.95	880.38	20060511 20:27	20060523 16:47	1.11E–03	1.17E-03	675,720	199,126	13.19	8.34	13.30	CRw / CRwr
KLX09B	10.74	100.22	20060221 10:45	20060409 11:50	1.63E-04	1.64E-04	509,280	259,916	13.42	3.32	13.53	CRw / CRwr
KLX09C	9.00	120.05	20060216 14:14	20060410 15:03	5.28E-04	4.86E-04	497,761	350,719	13.52	8.32	13.14	CRw / CRwr
KLX09D	9.75	121.02	20060217 09:50	20060408 16:13	2.32E-04	2.33E-04	508,020	243,941	13.03	3.53	13.68	CRw / CRwr
KLX09E	9.00	120.00	20060218 10:20	20060410 08:32	5.21E-04	5.25E-04	509,700	273,120	13.03	7.53	12.94	CRw / CRwr
KLX09F	9.00	152.30	20060220 10:21	20060411 09:05	5.55E-04	5.55E-04	515,220	175,020	13.64	10.02	13.46	CRw / CRwr
KLX09G	9.30	100.10	20060712 14:07	20060719 06:00	1.37E-04	1.28E-04	186,060	315,480	12.67	4.76	12.37	CRw / CRwr
KLX10	12.10	1,001.20	20051210 11:10	20051231 07:35	1.45E-03	1.50E-03	679,800	846,600	12.73	5.80	12.74	CRw / CRwr
KLX10B	9.00	50.25	20060718 15:01	20060727 14:19	4.63E-04	3.66E-04	176,340	527,370	11.62	1.75	11.33	CRw / CRwr
KLX10C	9.00	146.25	20060724 12:59	20060730 06:58	1.13E-04	1.10E-04	183,960	235,590	11.46	1.08	11.49	CRw / CRwr
KLX11A	12.05	992.29	20061029 08:56	20061113 10:50	5.67E-04	6.65E-04	454,500	164,489	13.20	2.46	11.95	CRw / CRwr
KLX11B	2.54	100.20	20060904 15:01	20061022 15:57	2.67E-04	2.83E-04	681,600	262,680	10.04	0.64	9.78	CRw / CRwr

Borehole ID	Borehole Secup (m)	Borehole Seclow (m)	Date and time Test start YYYYMMDD hh:mm	Date and time Test stop YYYYMMDD hh:mm	Q _p (m³/s)	Q _m (m³/s)	tp (s)	t _F (s)	h _i (m.a.s.l.)	h _p (m.a.s.l.)	h _⊧ (m.a.s.l.)	Test phases measured Analysed test phases marked bold
KLX11C	2.00	120.15	20060906 10:14	20061020 13:00	2.92E-05	3.38E-05	161,460	95,428	12.55	0.80	12.53	CRw / CRwr
KLX11D	2.00	120.35	20060907 16:48	20061021 09:42	3.52E-04	3.74E-04	511,260	340,880	11.91	1.08	12.64	CRw / CRwr
KLX11E	2.00	121.30	20060922 14:47	20061002 15:53	3.77E-05	3.68E-05	576,900	290,882	9.62	0.00	14.38	CRw / CRwr
KLX11F	2.00	120.05	20061016 10:16	20061021 16:45	3.80E-04	4.29E-04	158,700	294,609	12.73	0.35	12.89	CRw / CRwr
KLX12A	17.92	602.29	20060609 16:05	20060619 08:54	1.04E-04	1.12E–04	438,180	319,860	10.66	1.10	10.16	CRw / CRwr
KLX13A	11.75	595.85	20060924 14:30	20061001 11:24	6.50E-04	8.06E-04	422,100	79,442	13.48	3.45	6.61	CRw / CRwr
KLX17A	11.95	701.08	20061210 16:56	20070111 14:01	2.37E-04	2.62E-04	418,860	256,780	16.57	6.29	16.81	CRw / CRwr
KLX18A	11.83	611.28	20060707 12:05	20060722 00:00	1.95E-04	2.37E-04	604,740	550,080	11.74	1.60	11.06	CRw / CRwr
KLX20A	100.90	457.92	20060618 09:17	20060711 09:35	1.12E-04	1.65E-04	351,840	852,060	13.72	3.62	13.34	CRw / CRwr
KLX24A	2.41	100.17	20060823 11:10	20060906 14:20	2.64E-04	2.76E-04	256,440	855,300	10.01	0.22	9.96	CRw / CRwr
KLX25A	2.20	50.24	20060816 15:53	20060820 10:55	1.25E-05	1.94E-05	179,580	86,404	14.64	10.02	13.73	CRw / CRwr
KLX27A	14.76	650.56	20071215 10:52	20080116 11:21	2.32E-04	2.76E-04	549,600	574,500	10.69	0.68	10.54	CRw / CRwr
KLX28A	5.10	80.23	20061124 11:28	20061127 08:48	2.42E-05	3.47E-05	145,560	88,622	8.99	-1.63	7.04	CRw / CRwr
KLX29A	2.35	60.25	20061127 14:00	20061129 08:56	1.60E-04	2.35E-04	83,880	62,400	9.44	4.20	8.95	CRw / CRwr
KSH01A	12.10	1,003.00	20030220 14:05	20030302 14:54	5.00E-06	8.33E-06	605,880	83,192	0.12	-10.22	-2.48	CRw / CRwr
KSH02	80.00	1,001.11	20030709 11:57	20030722 16:15	5.19E-06	8.59E-06	781,920	183,808	-0.67	-11.21	-2.32	CRw / CRwr

Nomenclature

 Q_p Flow in test section immediately before stop of flow [m³/s]. Qm Arithmetical mean flow during perturbation phase [m³/s]. Duration of perturbation phase [s]. tp Duration of recovery phase [s]. tf Pressure in test section before start of flowing [m.a.s.l.]. h Pressure in test section before stop of flowing [m.a.s.l.]. h_p Pressure in test section at the end of the recovery [m.a.s.l.]. $h_{\rm F}$ Test phases CRw: constant rate pump (withdrawal) phase. CRwr: recovery phase following the constant rate pump (withdrawal) phase.

Interval position		Stationary flow		Transient analysis														
			parameters		Flow regime		Formation parameters											
Borehole	up	low	Q/s	Τ _M	Perturb. Phase	Recovery Phase	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Τ _τ	T _{TMIN}	T _{TMAX}	С	ξ	dt₁	dt ₂	\mathbf{h}_{wif}
ID	m btoc	m btoc	m²/s	m²/s			m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	_	min	min	m.a.s.l.
KAV01	70.04	757.31	3.1E–05	4.6E-05	WBS2	WBS22	6.2E–05	#NV	7.4E–05	1.7E–05	7.4E–05	1.0E-05	1.0E-04	2.2E-06	-2.2	24.60	45.00	1.92
KAV04A	100.95	1,004.00	1.8E–05	2.6E-05	WBS2	WBS22	8.8E-05	#NV	6.8E-05	3.4E-06	6.8E-05	1.0E-05	1.0E-04	4.8E-06	-2.9	37.20	68.40	4.79
KAV04B	11.52	101.03	3.9E-05	5.0E-05	WBS2	WBS22	7.9E–05	#NV	9.6E-05	1.6E–05	9.6E-05	1.0E-05	2.0E-04	3.6E-07	-1.1	7.80	16.20	4.18
KLX04	101.43	993.49	1.2E–04	1.8E-04	WBS22	WBS22	2.0E-04	7.0E-05	3.3E-04	8.0E-05	3.3E-04	5.0E-05	5.0E-04	3.2E-06	-2.8	12.60	20.40	13.44
KLX09	11.95	880.38	2.3E-04	3.4E-04	WBS22	WBS22	3.8E-04	8.8E-05	5.4E-04	1.1E–04	5.4E-04	1.0E-04	8.0E-04	5.2E-06	-1.4	12.00	22.20	13.36
KLX09B	10.74	100.22	1.6E–05	2.1E-05	WBS2	WBS2	1.1E–04	#NV	8.5E-05	#NV	8.5E-05	1.0E-05	1.0E-04	4.5E-07	13.8	#NV	#NV	13.86
KLX09C	9.00	120.05	1.0E-04	1.3E-04	#NV	WBS22	#NV	#NV	5.3E–04	1.1E–04	5.3E–04	1.0E-04	7.0E-04	4.3E-07	13.1	3.60	7.20	13.79
KLX09D	9.75	121.02	2.4E-05	3.2E-05	WBS2	WBS22	7.4E-05	#NV	7.8E–05	3.7E-05	7.8E–05	2.0E-05	1.0E-04	3.6E-07	12.5	23.40	63.00	13.93
KLX09E	9.00	120.00	9.5E-05	1.2E-04	WBS22	WBS22	1.7E–04	9.6E-05	2.6E-04	9.5E-05	2.6E-04	9.0E-05	4.0E-04	8.7E-07	1.9	12.60	28.80	13.51
KLX09F	9.00	152.30	1.5E–04	2.1E-04	WBS22	WBS22	1.6E–04	1.3E–04	4.3E-04	1.1E–04	4.3E-04	1.0E-04	6.0E-04	5.9E-07	-1.2	3.00	7.80	14.14
KLX09G	9.30	100.10	1.7E–05	2.2E-05	WBS2	WBS2	6.7E-05	#NV	6.5E-05	#NV	6.5E-05	1.0E-05	9.0E-05	4.7E-07	13.5	#NV	#NV	12.61
KLX10	12.10	1,001.20	2.1E-04	3.2E-04	WBS22	WBS22	3.7E-04	8.4E-05	5.3E-04	1.2E–04	5.3E-04	1.0E-04	8.0E-04	2.5E-06	-3.2	7.20	12.00	13.20
KLX10B	9.00	50.25	4.7E-05	5.4E-05	WBS2	WBS22	1.2E-04	#NV	2.7E-04	1.1E–04	2.7E-04	1.0E-05	4.0E-04	3.7E-07	29.9	23.40	75.60	11.62
KLX10C	9.00	146.25	1.1E–05	1.5E-05	WBS2	WBS2	2.4E-05	#NV	2.5E-05	#NV	2.5E-05	9.0E-06	6.0E-04	5.5E-07	3.9	#NV	#NV	12.21
KLX11A	12.05	992.29	5.3E-05	8.0E-05	WBS2	WBS22	1.0E-04	#NV	1.2E–04	2.7E-05	1.2E–04	5.0E-05	4.0E-04	3.4E-06	-1.0	61.80	105.60	13.85
KLX11B	2.54	100.20	2.8E-05	3.7E-05	WBS2	WBS22	4.6E-05	#NV	8.2E-05	3.1E–05	8.2E-05	1.0E-05	1.0E-04	5.1E–07	3.5	19.20	64.80	10.29
KLX11C	2.00	120.15	2.5E-06	3.3E-06	#NV	WBS22	#NV	#NV	4.6E-06	2.3E-05	4.6E-06	2.0E-06	4.0E-05	5.2E-07	3.0	#NV	#NV	12.85
KLX11D	2.00	120.35	3.2E-05	4.3E-05	WBS2	WBS22	7.7E–05	#NV	6.2E-05	2.5E-05	6.2E-05	2.0E-05	9.0E-05	6.5E–07	-1.8	13.20	31.20	13.95
KLX11E	2.00	121.30	3.9E-06	5.2E-06	WBS2	WBS22	6.6E-06	#NV	7.0E-06	5.6E-07	7.0E-06	2.0E-06	1.0E-05	4.3E-07	2.2	187.80	690.00	14.46
KLX11F	2.00	120.05	3.1E–05	4.1E-05	WBS2	WBS22	2.1E-05	#NV	2.1E–05	5.9E-05	2.1E-05	9.0E-06	7.0E-05	5.3E-07	-6.1	1.20	13.20	12.55
KLX12A	17.92	602.29	1.1E–05	1.6E-05	#NV	WBS2	#NV	#NV	2.3E-05	#NV	2.3E-05	8.0E-06	5.0E-05	3.8E-06	2.1	#NV	#NV	10.50
KLX13A	11.75	595.85	6.5E-05	9.3E-05	WBS22	WBS22	1.6E-03	3.4E-05	3.5E-03	3.5E-05	3.5E-05	9.0E-06	6.0E-05	2.8E-05	-2.2	168.00	930.00	14.15
KLX17A	11.95	701.08	2.3E-05	3.4E-05	#NV	WBS2	#NV	#NV	5.2E-05	#NV	5.2E-05	1.0E-05	9.0E-05	3.9E-06	3.3	322.20	3,600.00	17.34
KLX18A	11.83	611.28	1.9E–05	2.8E-05	#NV	WBS2	#NV	#NV	4.1E–05	#NV	4.1E–05	1.0E-05	9.0E-05	3.8E-06	2.7	126.00	2,349.60	11.48
KLX20A	100.90	457.92	1.1E–05	1.5E–05	#NV	WBS2	#NV	#NV	2.4E-05	#NV	2.4E-05	9.0E-06	9.0E-05	3.8E-06	4.0	#NV	#NV	13.51

 Table 6-2. Results from analysis of the pumping tests.

Interval position		Stationary flow parameters		Transient analysis														
				Flow regime		Formation parameters												
Borehole	up	low	Q/s	Тм	Perturb. Phase	Recovery Phase	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Τ _τ	T _{TMIN}	T _{TMAX}	С	ξ	dt₁	dt ₂	\mathbf{h}_{wif}
ID	m btoc	m btoc	m²/s	m²/s			m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	-	min	min	m.a.s.l.
KLX24A	2.41	100.17	2.7E-05	3.5E-05	#NV	WBS22	#NV	#NV	5.8E-05	3.2E-05	5.8E-05	1.0E-05	9.0E-05	3.3E-07	5.3	27.00	77.40	11.54
KLX25A	2.20	50.24	2.7E-06	3.2E-06	#NV	WBS22	#NV	#NV	7.1E–06	2.4E-06	7.1E–06	1.0E-06	1.0E–05	1.1E–06	-4.0	68.40	210.00	14.44
KLX27A	14.76	650.56	2.3E-05	3.3E-05	#NV	WBS2	#NV	#NV	2.9E-05	#NV	2.9E-05	7.0E-06	6.0E-05	3.9E-05	-3.3	#NV	#NV	11.01
KLX28A	5.10	80.23	2.3E-06	2.9E-06	#NV	WBS22	#NV	#NV	4.6E-06	8.6E-07	4.6E-06	8.0E-07	7.0E-06	6.3E–07	-3.1	15.00	749.40	9.04
KLX29A	2.35	60.25	3.1E–05	3.7E-05	#NV	WBS22	#NV	#NV	1.4E-04	2.3E-05	2.3E-05	5.0E-06	4.0E-05	1.7E–06	-3.2	#NV	#NV	9.26
KSH01A	12.10	1,003.00	5.0E-06	8.3E-06	#NV	WBS22	#NV	#NV	8.2E-06	2.0E-06	8.2E-06	1.0E-06	1.0E–05	4.0E-06	-2.8	192.00	342.00	1.95
KSH02	80.00	1,001.11	5.2E-06	7.8E-06	#NV	WBS22	#NV	#NV	1.3E-05	3.4E-06	1.3E–05	2.0E-06	3.0E-05	3.8E-06	0.9	417.60	754.80	-0.40

Nomenclature

Q/s Specific capacity.

 T_{M} Transmissivity according to /Moye 1967/.

- Flow regime The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
- Transmissivity derived from the analysis of the perturbation phase (CRw). In case a homogeneous flow model was used only one T_f value is reported, in case a two zone composite flow model was used both T_{f1} (inner zone) and T_{f2} (outer zone) are given.

Ts Transmissivity derived from the analysis of the recovery phase (CRwr). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_{s1} (inner zone) and T_{s2} (outer zone) are given.

T_T Recommended transmissivity.

T_{TMIN} / T_{TMAX} Confidence range lower/upper limit.

- C Wellbore storage coefficient.
- ξ Skin factor (calculated based on a Storativity of 1.10⁻⁶; see chapter 4.5.4).
- dt₁ / dt₂ Estimated start/stop time of evaluation for the recommended transmissivity (T_T).
- h_{wif} Static fresh-water head.
- #NV Not analysed/no values.

Borehole ID	Recommended transmissivity T _T	Calculated Storativity S* based on Rhen et al.	Time t for radius of influence calculation	ri-index	Radius of Influence
	(m²/s)	()	(5)	(-)	(m)
KAV01	7.38E-05	6.01E-06	2,700	1	273.05
KAV04A	6.80E-05	5.77E–06	4,104	1	329.82
KAV04B	9.56E-05	6.84E-06	972	1	174.78
KLX04	3.30E-04	1.27E–05	1,224	1	267.34
KLX09	5.40E-04	1.63E–05	1,332	1	315.42
KLX09B	8.50E-05	6.45E-06	259,916	0	2,775.32
KLX09C	5.30E-04	1.61E–05	432	1	178.79
KLX09D	7.84E-05	6.20E-06	3,780	1	327.99
KLX09E	2.61E-04	1.13E–05	1,728	1	299.55
KLX09F	4.32E-04	1.45E–05	468	1	176.82
KLX09G	6.54E-05	5.66E-06	315,480	0	2,863.67
KLX10	5.33E-04	1.62E–05	720	1	231.15
KLX10B	2.71E-04	1.15E–05	4,536	1	489.92
KLX10C	2.50E-05	3.50E-06	235,590	-1	1,945.83
KLX11A	1.22E-04	7.73E-06	6,336	1	474.29
KLX11B	8.15E-05	6.32E-06	3,888	1	335.89
KLX11C	4.60E-06	1.50E-06	#NV	-1	#NV
KLX11D	6.16E–05	5.49E-06	1,872	1	217.32
KLX11E	6.98E-06	1.85E–06	41,400	1	592.93
KLX11F	2.06E-05	3.18E–06	792	-1	107.49
KLX12A	2.30E-05	3.36E-06	319,860	0	2,220.52
KLX13A	3.47E-05	4.12E–06	#NV	1	#NV
KLX17A	5.23E-05	5.06E-06	216,000	0	2,240.76
KLX18A	4.09E-05	4.48E-06	140,976	0	1,702.34
KLX20A	2.44E-05	3.46E-06	852,060	0	3,678.11
KLX24A	5.82E-05	5.34E-06	4,644	1	337.46
KLX25A	7.13E-06	1.87E–06	12,600	1	328.85
KLX27A	2.86E-05	3.74E-06	574,500	0	3,142.53
KLX28A	4.55E-06	1.49E–06	44,964	1	555.24
KLX29A	2.26E-05	3.33E-06	#NV	1	#NV
KSH01A	8.20E-06	2.00E-06	20,520	1	434.59
KSH02	1.34E-05	2.56E-06	45,288	1	729.98

Table 6.3. Results from the ri-index calculation of (see Chapter 4.5.8 for details).

6.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general condlusion regarding the testing and analysis methods used.

6.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M and Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis for the pumping tests (see following Figure 6-5).

The correlation analysis shows that the transmissivities derived from the steady state differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

6.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the borehole to store fluid as a result of a unit pressure change in the interval. For a open system the theoretical storage coefficient is calculated as follows:

$$C = \frac{\pi r_w^2}{\rho g}$$

For the pumping tests the theoretical wellbore storage was calculated based on the casing diameter, because the water level changes during the pumping test are taking place in this part of the borehole. The resulting theoretical wellbore storage ranges between $4.6 \cdot 10^{-7}$ and $2.1 \cdot 10^{-6}$ m³/Pa.

The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

Figure 6-2 presents a cross-plot of the matched and theoretical wellbore storage coefficients.

The comparison shows relative good consistency between both kinds of wellbore storages. Two exceptions are the derived wellbore storages from the analysis of the pumping tests conducted in borehole KLX13A and KLX27A, which show considerable higher values than the theoretical wellbore storage.

Figure 6-1. Correlation analysis of transmissivities derived by steady state and transient methods for the pump tests.

Figure 6-2. Correlation analysis of transmissivities derived by steady state and transient methods for the pump tests.

7 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Soc. Of Petroleum Engineers, SPE Formation Evaluation, pp. 293–302.

Gringarten A C, 1986. Computer-aided well-test analysis. SPR Paper 14099.

Hegemann P S, Hallford D L, Joseph J A, 1993. Well-Test analysis with changing wellbore Storage. Paper SPE 21829.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

Rhen I, Forsmark T, Forssman I, Zetterlund M, 2006. Evaluation of hydrogeo-logical properties for Hydraulic Conductor Domains (HCD) and Hydraulic Rock Domains (HRD). SKB R-06-22, Svensk Kärnbränslehantering AB.

SKB, **2001.** Site investigations: Investigation methods and general execution programme. SKB R-01-10, Svensk Kärnbränslehantering AB.

SKB, **2002.** Geovetenskapligt program för platsundersökning vid Simpevarp. SKB R-01-44, Svensk Kärnbränslehantering AB.

SKB, 2005. Platsundersökning Oskarshamn. Program för fortsatta undersökningar av berggrund, mark, vatten och miljö inom delområde Laxemar. SKB R-05-37, Svensk Kärnbränslehantering AB.

Borehole: Pump Test Analyses

APPENDIX 1

PFL Pumptest KAV01

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KAV04A

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KAV04B

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX04

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09B

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09C

Pressure and flow rate vs. time; cartesian plot

Not analysable

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09D

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09E

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09F

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX09G

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX10

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX10B

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX10C

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11A

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11B

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11C

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11D

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11E

Pressure and flow rate vs. time; cartesian plot

CRw phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX11F

CRw phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX12A

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX13A

Page 1-22/3

CRw phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX17A

CRwr phase; HORNER match

PFL Pumptest KLX18A

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX20A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; HORNER match

PFL Pumptest KLX24A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX25A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX27A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX28A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KLX29A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KSH01A

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

PFL Pumptest KSH02

Pressure and flow rate vs. time; cartesian plot

CRwr phase; log-log match

CRwr phase; HORNER match

Pump Test Analyses

APPENDIX 2

Test Summary Sheets

	Test Summ	nary Sheet				
Project:	Oskarshamn site investigation Test type:[1] CR				CRwr	
Area:	a: Laxemar		1			
Borehole ID:	KAV04A	Test start:		10.06.2004 12:24		
Test section from - to (m):	100.95 - 1004.00	Responsible for	PFL Pumptest			
Section diameter 2 r (m):		test execution: Responsible for	Stephan Rohs			
		test evaluation:				
Linear plot Q and p		Flow period	Recovery period			
		Indata		Indata		
120 PFL Pumping KAV04A	Pressure Firm rate	h _i (m asl) =	1.25			
100 -	riow late	h _p (m asl) =	-8.75	h _F (m asl) =	-4.29	
		Q _p (m ³ /s)=	1.77E-04			
(147a) 20	- 30 I	tp (s) =	472860	t _F (s) =	54324	
00 000000 000 000 000 000 000 000 000		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
		EC _w (mS/m)=				
		Temp _w (gr C)=	0.00			
		Derivative fact.=	0.08	Derivative fact.=	0.13	
0.00 20.00 40.00 60.00 Elapsed T	80.00 100.00 120.00 140.00 ime (h)					
		Results		Results		
		Q/s (m ² /s)=	1.8E-05			
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	2.6E-05			
		Flow regime:	transient	Flow regime:	transient	
		$dt_1 (min) =$	#NV	dt ₁ (min) =	37.20	
1000 KAV04A CRw phase		$dt_2 (min) =$	#NV	dt_2 (min) =	68.40	
100 Log-Log Match		T (m²/s) =	8.8E-05	T (m²/s) =	6.8E-05	
		S (-) =	1.0E-06	S (-) =	1.0E-06	
		$K_s (m/s) =$	9.7E-08	$K_s (m/s) =$	7.5E-08	
8 0.0		$S_s(1/m) =$	1.1E-09	$S_s(1/m) =$	1.1E-09	
0.001	<u>م</u>	C (m ³ /Pa) =	2.1E-06	C (m³/Pa) =	4.8E-06	
0.0001	•	$C_D(-) =$	3.4E+01	$C_D(-) =$	7.6E+01	
T 8.75E-5 m∛s C 2.11E-6 m∛Pa s 15.26 -		ξ(-) =	15.3	ξ(-) =	-2.9	
0.000001 0.01 0.1	1 10 100 1000 apsed time (hrs)	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	Selected representative parameters.					
		dt ₁ (min) =	37.20	C (m³/Pa) =	4.8E-06	
100 KAV04A		dt_2 (min) =	68.40	C _D (-) =	5.3E+02	
Log-Log Match		$T_{T} (m^{2}/s) =$	6.8E-05	ξ(-) =	-2.9	
E 10		S (-) =	1.0E-06			
		K _s (m/s) =	7.5E-08			
1 Alf American		$S_s(1/m) =$	1.1E-09			
0.1 0.1 0.1 0.1		Comments:				
		The recommended transmissivity of 6.8E-5 m2/s was derived from the analysis of the CRwr phase (inner zone), which shows a better data and derivative quality. The confidence range for the transmissivity is				
0.01 0.0001 0.001 0.01 Elap	during the test is 2. The static ground water level was derived from the					
		CRwr phase using s	traight line extra	polation in the Hor	ner plot to a	
		value of 4.79 m asl.				

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX09	Test start:		11	.05.2006 20:27	
Test section from - to (m):	11.95 - 880.38	Responsible for			PFL Pumptest	
Section diameter, 2.r _w (m):	0.2	Responsible for			Stephan Rohs	
Linear plot Q and p		test evaluation: Flow period		Recovery period	1	
		Indata		Indata		
240	PFL Pumping KLX09 • Pressure	b. (m. asl.) –	12 10			
200	- Flow rate 90	$h_i (m asl) =$	8 34	h₋ (m asl.) =	13 30	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$n_p(m a 3i) = 0$	1 11E-03	n _F (m asi) =	15.50	
220 Te dy		$Q_p (\Pi /S) =$	675720	t _r (s) =	199126	
210 -	50 pc	(p(3)) =	1.00E-06	(3) =	1 00E-06	
2 writtole	- 40 DO	Sel S (-)= EC (mS/m)-	1.0012-00	5 el 5 (-)=	1.00E-00	
200.	- 30	$LO_w (IIIO/III) =$				
190 -	20	Derivative fact -	0.10	Derivative fact –	0.08	
			0.10		0.00	
0 50 100 15 Elapsed	0 200 250 300					
		Results		Results	1	
		Ω/s (m ² /s)=	2.3E-04			
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M}$ (m ² /s)=	3.4E-04			
5 51	•	Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	16.20	dt_1 (min) =	12.00	
100 KLX09 C CPw obsee		dt_2 (min) =	23.40	dt_2 (min) =	22.20	
Log-Log match		$T(m^{2}/s) =$	3.8E-04	$T(m^{2}/s) =$	5.4E-04	
		S (-) =	1.0E-06	S (-) =	1.0E-06	
		$K_s (m/s) =$	4.9E-07	$K_s (m/s) =$	6.9E-07	
10-10-10-10-10-10-10-10-10-10-10-10-10-1		$S_{s}(1/m) =$	1.3E-09	$S_{s}(1/m) =$	1.3E-09	
) ourseau	and the second se	C (m ³ /Pa) =	4.7E-06	$C (m^{3}/Pa) =$	5.2E-06	
		$C_D(-) =$	7.4E+01	$C_{D}(-) =$	8.2E+01	
	T1 3.82E-4 m2/s T2 8.77E-5 m2/s C 4.65E-6 m3/Pa	ξ(-) =	-2.0	ξ(-) =	-1.4	
	8 -1.99 -					
0.001 0.01 0.1 Ela	1 10 100 psed time (hrs)	T _{GRF} (m²/s) =	NA	T _{GRF} (m ² /s) =	NA	
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.		
		dt ₁ (min) =	12.00	C (m³/Pa) =	5.2E-06	
100		dt_2 (min) =	22.20	C _D (-) =	5.7E+02	
KLX09 CRwrphase		$T_{T} (m^{2}/s) =$	5.4E-04	ξ(-) =	-1.4	
P		S (-) =	1.0E-06			
10.	~	$K_s (m/s) =$	6.9E-07			
	and and a second s	$S_{s}(1/m) =$	1.3E-09			
		Comments:				
		The recommended t	ransmissivity of	5.4E-4 m2/s was d	erived from the	
	p* 231.02 kPa	analysis of the CRw	r phase (inner z	one), which shows a	a slight better	
	T1 5.40E-4 m2/s T2 1.11E-4 m2/s C 5.17F-6 m3/Pa	estimated to be 1E-4	4 to 8E-4 m2. T	he flow dimension d	lisplayed during	
0.1	s -1.40 -	the test is 2. The sta	tic ground wate	r level was derived	from the CRwr	
0.0001 0.001 0.01 Elaps	0.1 1 10 100 sed time (hrs)	phase using straight	line extrapolati	on in the Horner plo	ot to a value of	
		13.36 m asl.				

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX09C	Test start:		03	.03.2006 13:33	
Test section from - to (m):	9.00 - 120.05	Responsible for test execution:			PFL Pumptest	
Section diameter, 2-r _w (m):	0.077	Responsible for test evaluation:			Stephan Rohs	
Linear plot Q and p		Flow period	-	Recovery period	I	
·		Indata		Indata		
250	50 PFL Pumping KLX09C • Pressure	h _i (m asl) =	13.52			
240	- Picw Tate	h _p (m asl) =	8.32	h _F (m asl) =	13.14	
230	40	Q_{-} (m ³ /s)=	5.28E-04		├─── ┤	
E 220		$\frac{d_p(m, 0)}{d_p} =$	497760	tr (s) =	350719	
	- 30 Aate [7	$(0)^{*}$	1.00E.06	c + 0 [*] ()	1.00E.06	
6 210 4 90	and a second	Sel S (-)=	1.00E-00	S el S (-)=	1.00E-00	
§ 200 -	- ²⁰ &	$EC_w (mS/m) =$				
190		Temp _w (gr C)=				
	- 10	Derivative fact.=	NA	Derivative fact.=	0.07	
170 0 25 50 75 100 12	5 150 175 200 225 250					
Elapsed	lime [h]	Results		Results		
		Q/s (m ² /s)=	1.0E-04			
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	1.3E-04		<u> </u>	
	••••	Flow regime:	transient	Flow regime:	transient	
		dt. (min) –	ΝΔ	dt. (min) –	3.60	
		$dt_1 (min) =$		$dt_1 (min) =$	3.00	
		$u_2(mn) =$		$u_2(11111) =$	7.20	
		T (m²/s) =	NA	T (m²/s) =	5.3E-04	
		S (-) =	NA	S (-) =	1.0E-06	
		$K_s (m/s) =$	NA	$K_s (m/s) =$	4.8E-06	
Not an	alveabla	S _s (1/m) =	NA	$S_s (1/m) =$	9.0E-09	
	uysable	C (m³/Pa) =	NA	C (m³/Pa) =	4.3E-07	
		C _D (-) =	NA	C _D (-) =	4.6E+01	
		ξ(-) =	NA	ξ(-) =	13.1	
					├─── ┤	
		$T_{}(m^{2}/s) =$	NA	$T_{}(m^2/s) =$	NA	
		$S_{ORF}(-) =$	NA	$S_{OPF}(-) =$	NA	
		$D_{\text{GRF}}(r) =$	NA	$D_{\text{GRF}}(\cdot) =$	NA	
Log Log plot incl. derivatives	receivery period	Selected represe	ntotivo porom			
Log-Log plot mol. derivatives-	recovery period	dt. (min) -	ananve paran		1 25 07	
		$dt_1(min) =$	3.80	C (m /Pa) =	4.32-07	
100		$u_2(mn) =$	7.20	$C_{D}(-) =$	4.7 E+01	
KLX09C CRwrphase Log-Log match		T _⊤ (m²/s) =	5.3E-04	ζ(-) =	13.1	
(624)) e		S (-) =	1.0E-06			
10	1	K _s (m/s) =	4.8E-06			
Beaud	•	S _s (1/m) =	9.0E-09			
e Chan	44	Comments:				
		The recommended	transmissivity of	5.3E-4 m2/s was d	erived from the	
	* <u>*</u> *	analysis of the CRw	vr phase. The con	nfidence range for t	he	
	p* 235.30 kPa T1 5.30E-4 m2/s T2 1.07E 4 m2/s	transmissivity is est	imated to be 1E-	-4 to 7E-4 m2/s. Th	e flow	
	12 1.0/E-4 m2/s ▲ C 4.29E-7 m3/Pa ▲ s 13.09 -	dimension displaye	d during the test	is 2. The static grou	ind water level	
0.1 0.0001 0.001 0.01 Elao	0.1 1 10 100 sed time (hrs)	was derived from the	e CRwr phase u	sing straight line ex	trapolation in	
		me norner plot to a	value of 13./91	in ası.		

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CRwr
Area:	Laxemar	Test no:			1
Borehole ID:	KLX09F	Test start:		31	.03.2006 09:11
Test section from - to (m):	9.00 - 152.30	Responsible for			PFL Pumptest
Section diameter 2 r (m):	0.076	test execution: Responsible for			Stephan Rohs
	0.010	test evaluation:			etophan rtono
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
240	PFL Pumping KLX09F Pressure Flow rate	h _i (m asl) =	13.64		
235	40	h _p (m asl) =	10.02	h _F (m asl) =	13.46
225		$Q_p (m^3/s) =$	5.55E-04		1
220 -	- 30 (Ministration of the second seco	tp (s) =	515220	t _F (S) =	175020
215 - 90	uction for	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
210	- 20 2	$EC_w (mS/m) =$			
200	10	Temp _w (gr C)=	0.20	Darivativa faat	0.07
195		Derivative Tact.=	0.20	Derivative fact.=	0.07
	100 120 140 160 180 200				
Elap	sed Time [h]	Results		Rosults	
		Ω/c (m^2/c) -	1.5E-04	Results	
l og-l og plot incl. derivates- f	low period	Q/S (III/S) = T (m ² /s)=	2.1E-04		
		Flow regime:	transient	Flow regime:	transient
		dt₁ (min) =	6.60	dt_1 (min) =	3.00
100		dt_2 (min) =	16.80	dt_2 (min) =	7.80
CRw phase		$T(m^{2}/s) =$	2.6E-04	$T_{m}^{2}(m^{2}/s) =$	4.3E-04
		S (-) =	1.0E-06	S (-) =	1.1E-04
10 10		$K_s (m/s) =$	1.8E-06	$K_s (m/s) =$	3.0E-06
	1	$S_{s}(1/m) =$	7.0E-09	$S_{s}(1/m) =$	7.6E-07
in the second		$C (m^3/Pa) =$	9.0E-07	$C (m^{3}/Pa) =$	5.9E-07
Se 1	- <u>1</u>	$\frac{C_{D}(-)}{C_{D}(-)} =$	1.0E+02	$C_{D}(-) =$	6.0E-01
	T1 1.57E-4 m2/s	ξ(-) =	-3.3	ξ(-) =	-1.2
	T2 1.31E-4 m2/s C 9.04E-7 m3/Pa s -3.25 -				
0.1 0.0001 0.001 0.01	0.1 1 10 100	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
	()	$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	ntative param	neters.	
		dt ₁ (min) =	3.00	C (m ³ /Pa) =	5.9E-07
		dt_2 (min) =	7.80	C _D (-) =	6.0E-01
100 KLX09F		$T_{T} (m^{2}/s) =$	4.3E-04	ξ(-) =	-1.2
ি CRwr phase Log-Log match ল		S (-) =	1.1E-04		
		$K_s (m/s) =$	3.0E-06		
10 		$S_{s}(1/m) =$	7.6E-07		
A MARTIN MARTIN	· · · · · · · · · · · · · · · · · · ·	Comments:			
	A CARACTERS A A 2	The recommended	transmissivity of	4.3E-4 m2/s was d	erived from the
		analysis of the CRw	r phase (inner z	one), which shows	a better
/ .	p* 238.08 kPa T1 4.32E-4 m2/s T2 1.09E-4 m2/s	estimated to be $1E_{-4}$	4 to 6E-4 m ^{2/s} (this range encompa	sses the outer
	C 5.94E-7 m3/Pa ⊾ s -1.16 -	zone transmissivitie	s of both phases	b). The flow dimens	ion displayed
0.1 L	0.1 1 10 100 psed time (hrs)	during the test is 2.	The static grour	nd water level was d	erived from the
		CRwr phase using s	traight line extra	apolation in the Hor	mer plot to a

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CRwr
Area:	Laxemar	Test no:			1
Borehole ID:	KLX09G	Test start:		12	.07.2006 14:07
Test section from - to (m):	9.30 - 100.10	Responsible for			PFL Pumptest
Castian diameter 0 r (m):	0.070	test execution:			Ctanhan Daha
Section diameter, $2 \cdot r_w$ (m).	0.078	test evaluation:			Stephan Rons
Linear plot Q and p		Flow period		Recovery period	İ
		Indata		Indata	
240	PFL Pumping KLX09G + Pressure + Flow rate 18	h _i (m asl) =	12.67		L
220 -	16	h _p (m asl) =	4.76	h _F (m asl) =	12.37
210 -	14	Q _p (m ³ /s)=	1.37E-04		
हि 200 -	+ 12 E	tp (s) =	186060	t _F (s) =	315480
8 22 190 - 8	- 10 ² 10	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
180 - A	- 8 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	EC _w (mS/m)=			
170 -	- 6	Temp _w (gr C)=			
160	+ 4 + 2	Derivative fact.=	0.07	Derivative fact.=	0.08
	0 100 120 140 160 180				
Elapsed	Time (h)	Results		Results	
		Ω/s (m ² /s)-	1.7E-05		1
Log-Log plot incl. derivates- f	low period	$T_{\rm ev} (m^2/s) =$	2.2E-05		
	··· · · · · · · · · · · · · · · · · ·	Flow regime:	transient	Flow regime:	transient
		dt₄ (min) =	NA	dt₄ (min) =	NA
		dt_{1} (min) =	NA	$dt_1 (min) =$	NA
100 KLX09G		$T_{1}(m^{2}/c)$	6 7E-05	$T_{1}(m^{2}/c)$	6.5E-05
CRw phase Log-Log match	\leq	S(-) =	0.7 E 00 1.0E-06	S(-) =	0.0E 00
10	AT A A A	K (m/s) -	7.35.07	C () =	7.2E-07
		$R_{s}(11/3) =$	1.5E 07	$S_{s}(11/3) =$	1.2E 07
3 6Quer_ 1		$O_{s}(1/11) =$	1.1E-00	$O_{s}(1/11) =$	1.TE-00
• • • •		$C(m^{2}/Pa) =$	0.9E+01	$C(m^{2}/Pa) =$	4.7L-07
0.1	* * * *	$C_D(-) =$	9.0L+01	$C_D(-) =$	J. TL+01
	▲ ▲ 6.67E-5 m2/s ▲ 9.04E-7 m3/Pa	ζ(-) =	14.0	ς(-) =	13.5
0.01 0.0001 0.001 0.01 00	14.61 -	$T_{GRE}(m^2/s) =$	NA	$T_{GRE}(m^2/s) =$	NA
Elapse	d time (hrs)	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative param	neters.	
		dt₁ (min) =	0.00	$C_{\rm m}(m^3/Pa) =$	4.7E-07
		dt_2 (min) =	0.00	$C_{D}(-) =$	5.1E+01
100		$T_{\tau}(m^2/s) =$	7.2E-07	ξ(-) =	13.5
KLX09G CRwr phase Log-Log match	× · · · · · · · · · · · · · · · · · · ·	S (-) =	1.1E-08	3 \ /	. 510
10		$K_s(m/s) =$	1.4F-07		1
· ·····	the interview of the second se	$S_{s}(1/m) =$	2 2E-09		
		Commonts:	2.22 03		
	**************************************	The measure de d		6 5E 5 m2/s mas d	
	×	analysis of the CRW	u ansmissivity of ar phase. The co	o.se-s m2/8 was d nfidence range for f	he
0.1		transmissivity is est	imated to be 1E	-5 to 9E-5 m2/s. A f	low dimension
	p* 223.71 kPa ▲ T 6.54E-5 m2/s C 4.66E-7 m3/Pa	of 2 was assumed.	The static ground	l water level was de	rived from the
0.01	s 13.47 -	CRwr phase using s	straight line extra	apolation in the Hor	ner plot to a
Elapse	ed time (hrs)	value of 12.61 m as	1.		

	Test Summ	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CRwr
Area:	Laxemar	Test no:			1
Borehole ID:	KLX11C	Test start:		12.	10.2006 16:08
Test section from - to (m):	2.00 - 120.15	Responsible for test execution:			PFL Pumptest
Section diameter, 2-r _w (m):	0.076	Responsible for test evaluation:			Stephan Rohs
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
240	- 25	h (m. col.)	10.55		
220 -	PFL Pumping KLX11C - Pressure Flow rate	n _i (m asi) =	12.55	h (m. col.)	12.52
	- 20	$n_p(masi) =$	0.80	n _F (m asi) =	12.55
200 -	- F	$Q_p (m^{\circ}/s) =$	2.92E-05	t (a)	05409
6 180	+ 15 4 a opt	tp (s) =	161460	$t_F(S) =$	95428
a 9 9 160 -	6 5 5 10 7 0	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
140 -	ž	EC _w (mS/m)=			
	- 5	Temp _w (gr C)=			
120		Derivative fact.=	NA	Derivative fact.=	0.09
100 0 10 20 30 40	50 60 70 80				
		Results		Results	
		Ω/s (m ² /s)-	2.5E-06		
l og-l og plot incl. derivates- fl	ow period	$\frac{Q}{S} (\frac{m^2}{s}) =$	3.3F-06		╂────┤
		$T_{\rm M}$ (III /S)=	transient	Flow regime:	transient
		dt. (min) –		dt. (min) –	NA
		$dt_1(min) =$		$dt_1 (min) =$	
		$\frac{dt_2}{dt_2}$ (mm) =		$a_2(1111) =$	1.65-06
		I(m/s) =		I(m/s) =	4.0E-06
		S(-) = K(m/c) = -		S(-) = K(m/c) = -	1.0E-00
		$R_{s}(11/s) =$		R_{s} (III/S) =	3.9E-08
Not ana	alysable	$S_{s}(1/11) =$		$S_{s}(1/11) =$	6.3E-09
		C (m°/Pa) =		C (m°/Pa) =	5.2E-07
		$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	5.7E+01
		ζ(-) =	NA	ζ(-) =	3.0
		- (21)	ΝΑ	- (2)	NA
		$I_{GRF}(m^{-}/s) =$		I _{GRF} (m ⁻ /s) =	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
Log Log plot incl. derivatives	receivery period	$D_{GRF}(-) =$	ntativo porom	$D_{GRF}(-) =$	INA.
Log-Log plot mon derivatives-		dt. (min) –		$C \left(m^{3}/D_{c} \right)$	5 2E_07
		dt_1 (min) =		C (m /Pa) =	5.22-07
1000		$d_{12}(mm) =$	165.06	$C_{\rm D}(-) =$	3.7 2 +01
KLX11C CRwr phase Log-Log match		$I_{T}(m/s) =$	4.0E-00	ς(-) =	3.0
(e 100 a		S(-) = K(m/c) = -	1.0E-00		┫─────┤
Pervativ		$R_{s}(11/s) =$	3.9E-00		┫─────┤
	And	$S_{s}(1/11) =$	8.3E-09		L
S 1		Comments:	· · · ·		1 1.6
- Last	*	the analysis of the C	Rwr phase (inn	er zone) The confid	derived from
0.1 p* 226.10 kPa	* *	the transmissivity is	estimated to be	2E-6 to 4E-5 m2/s	(this range
T2 2.30E-5 m2/s C 5.17E-7 m3/Pa	•	encompasses the ou	ter zone transmi	issivity). A flow dim	ension of 2 was
0.01 8 2.95 -	1 10 100	assumed. The static	ground water le	evel was derived from	n the CRwr
Elap	sed time (hrs)	pnase using straight 12.85 m asl.	ine extrapolati	on in the Horner plo	t to a value of

	Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr		
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX12A	Test start:		09.06.2006 16:			
Test section from - to (m):	17.92 - 602.29	Responsible for test execution:			PFL Pumptest		
Section diameter, $2 \cdot r_w$ (m):	0.2	Responsible for			Stephan Rohs		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
250	40	h _i (m asl) =	10.66				
PFL Pumping KLX1	Pressure → Flow rate + 35	h _p (m asl) =	1.10	h _F (m asl) =	10.16		
200	- 30	Q _p (m ³ /s)=	1.04E-04				
₫ ● 150 -	- 25 🕎	tp (s) =	438180	t _F (s) =	319860		
le Pressur	200 E g	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
00 -	- 15 24	EC _w (mS/m)=					
50 -	~ 10	Temp _w (gr C)=					
• •	- 5	Derivative fact.=	NA	Derivative fact.=	0.1		
	150 200 250						
Elapsed	Time (h)						
		Results		Results			
		Q/s (m ² /s)=	1.1E-05				
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	1.6E-05				
		Flow regime:	transient	Flow regime:	transient		
		dt ₁ (min) =	NA	dt ₁ (min) =	NA		
		dt_2 (min) =	NA	dt ₂ (min) =	NA		
		T (m ² /s) =	NA	T (m ² /s) =	2.3E-05		
		S (-) =	NA	S (-) =	1.0E-06		
		$K_s (m/s) =$	NA	$K_s (m/s) =$	3.9E-08		
		S _s (1/m) =	NA	S _s (1/m) =	1.7E-09		
Not ana	alysable	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	3.8E-06		
		$C_{D}(-) =$	NA	$C_{D}(-) =$	6.0E+01		
		ξ(-) =	NA	ξ(-) =	2.1		
		• • •		• ()			
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.			
		dt ₁ (min) =	NA	C (m³/Pa) =	3.8E-06		
1000		dt_2 (min) =	NA	C _D (-) =	6.0E+01		
KLX12A CRw phase		$T_T (m^2/s) =$	2.3E-05	ξ(-) =	2.1		
8 1		S (-) =	1.0E-06				
20 20 20 20 20 20 20 20 20 20 20 20 20 2		K _s (m/s) =	3.9E-08				
		S _s (1/m) =	1.7E-09				
P. 20303 kPa		Comments:					
1 2.30E-5 m2/s C 3.75E-6 m3/Pa 10 s 2.08 -	A A A A A A A A A A A A A A A A A A A	The recommended	transmissivity of	2.3E-5 m2/s was de	erived from the		
		analysis of the CRw	r phase. The co	nfidence range for th	ie		
AL A REAL PROVIDENCE		transmissivity is est	imated to be 8E	-6 to 5E-5 m2/s. The	e flow		
	1 10 10 100 100	uninension displayed was derived from the	u during the test	is 2. The static grou	nu water level trapolation in		
Elaps	ed time (hrs)	the Horner plot to a	value of 10.50	m asl.			

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]		CRwr			
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX13A	Test start:		24.	09.2006 14:30		
Test section from - to (m):	11.75 - 595.85	Responsible for test execution:			PFL Pumptest		
Section diameter, 2-r _w (m):	0.2	Responsible for			Stephan Rohs		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
300 1	т 80	h _i (m asl) =	13.48				
280 -	13A ◆ Pressure Flow rate + 70	h _p (m asl) =	3.45	h _F (m asl) =	6.61		
260	- 60	$Q_{n} (m^{3}/s) =$	6.50E-04				
	50 E	tp (s) =	422100	t _F (s) =	79442		
200 ·		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
180	- 30 July - 30 J	EC _w (mS/m)=		()			
160	- 20	Temp _w (gr C)=					
120 -		Derivative fact.=	0.25	Derivative fact.=	0.08		
100 0 20 40 60 80	100 120 140 160 180						
сырыс	rine (n)						
		Results		Results			
		Q/s (m ² /s)=	6.5E-05				
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	9.3E-05				
<u> </u>	•	Flow regime:	transient	Flow regime:	transient		
		dt₁ (min) =	256.20	dt_1 (min) =	168.00		
100 		dt_2 (min) =	680.40	dt_2 (min) =	930.00		
KLX13A CRwphase		$T(m^{2}/s) =$	3.4E-05	$T(m^{2}/s) =$	3.5E-05		
Log-Log match		S (-) =	1.0E-06	S (-) =	1.0E-06		
G/4 events		$K_s(m/s) =$	5.9E-08	$K_s (m/s) =$	5.9E-08		
and Day		$S_{s}(1/m) =$	1.7E-09	S _s (1/m) =	1.7E-09		
Barrow and a state of the state		$C_{(m^{3}/Pa)} =$	2.7E-06	C (m ³ /Pa) –	2.8E-05		
- Heesen		$C_{D}(-) =$	4.3E+01	$C_{D}(-) =$	4.5E+02		
		ξ(-) =	-1.2	ε (-) =	-2.2		
	T1 1.56E-3 m2/s T2 3.43E-5 m2/s C 2.70E-6 m3/Pa			5()			
0,0001 0,001 0,01	s -1.19 -	$T_{aa}(m^{2}/s) =$	NA	$T_{aa}(m^{2}/s) =$	NA		
Elaps	ed time (hrs)	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	$D_{GRE}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.	•		
		dt₁ (min) =	168.00	$C_{(m^{3}/Pa)} =$	2.8E-05		
		dt_2 (min) =	930.00	$C_{D}(-) =$	4.5E+02		
100		$T_{-}(m^{2}/s) =$	3.5E-05	ξ(-) =	-2.2		
KLX13A CRwrphase		S(-) =	1.0E-06				
		$K_s(m/s) =$	5.9E-08				
G7) 900		$S_{a}(1/m) =$	1.7E-09				
and Dama		Comments:					
		The recommended t	ranemiseivity of	3 5E-5 m2/s was de	erived from the		
A A A A A A A A A A A A A A A A A A A		analysis of the CRw	r phase (outer z	one), which is deem	ed to be		
0.1		representative for th	e formation. Th	e confidence range	for the		
	p* 238.86 kPa T1 3.63E-3 m2/s T2 3.47E-6 m2/s	transmissivity is est	imated to be 9E-	-6 to 6E-5 m2/s. The	e flow		
0.01 0.0001 0.001 0.01 0.01	c 2.822:0 m3/Pa s -2.20 - 1 10 100	dimension displayed	d during the test	is 2. The static grou	ind water level		
Elapsed	unine (riss)	the Horner plot to a	value of 14.15	m asl.	u apoiation in		

	Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr		
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX17A	Test start:		03.01.2007 18			
Test section from - to (m):	11.95 - 701.08	Responsible for	PFL Pun				
Section diameter, 2·r _w (m):	0.2	Responsible for			Stephan Rohs		
l inear plot Ω and p		test evaluation:		Recovery period			
		Indata		Indata			
		h _i (m asl) =	16.57				
280 - PFL Pumping KLX1	7A	$h_{n}(m asl) =$	6.29	h _F (m asl) =	16.81		
260	- 25	$\Omega_{(m^{3}/s)} =$	2.37E-04	,			
240 8 8 9	- 20 E	$\frac{d_p(m/s)}{ds} =$	418860	t _⊏ (s) =	256780		
200	98 98 15 u	S el S [*] (-)-	1.00E-06	S el S [*] (-)-	1.00E-06		
904 180 -	Productio	5 er 3 (-)= FC (mS/m)=	11002 00	3 el 3 (-)=	11002 00		
160		Temp(ar C)=					
120 -	- 5	Derivative fact.=	NA	Derivative fact.=	0.06		
100 20 40 60 8	0 100 120 140 160						
Elapsed	Time [b]						
		Results		Results			
		Ω/c (m ² /c)-	2.3E-05	lioouno			
l og-l og plot incl. derivates- f	low period	$\frac{U}{3} \frac{U}{3} \frac{U}$	3.4F-05				
		Flow regime:	transient	Flow regime:	transient		
		dt_1 (min) =	NA	dt₁ (min) =	322.20		
		dt_2 (min) =	NA	dt_2 (min) =	3600.00		
		$T(m^2/c) =$	NA	$T(m^2/c) =$	5.2E-05		
		S (-) =	NA	S (-) =	1.0E-06		
		$K_s(m/s) =$	NA	$K_{s}(m/s) =$	7.6E-08		
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.5E-09		
Not an	alysable	$C (m^{3}/Pa) =$	NA	C (m ³ /Pa) -	3.9E-06		
		$C_{D}(-) =$	NA	$C_{D}(-) =$	6.1E+01		
		$\xi(-) =$	NA	ξ(-) =	3.3		
		5()		5()			
		$T_{opr}(m^2/s) =$	NA	$T_{opc}(m^2/s) =$	NA		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	eters.			
	••	dt ₁ (min) =	322.20	C (m ³ /Pa) =	3.9E-06		
		dt_2 (min) =	3600.00	$C_{D}(-) =$	6.1E+01		
1000 KLX17A		$T_{T} (m^{2}/s) =$	5.2E-05	ξ(-) =	3.3		
Log-Log match		S (-) =	1.0E-06				
		K _s (m/s) =	7.6E-08				
		S _s (1/m) =	1.5E-09				
Jun David State St		Comments:	-		•		
0	*	The recommended transmissivity of 5.2E-5 m2/s was derived from			erived from the		
		analysis of the CRv	vr phase. The co	nfidence range for th	ne		
0.1	р* 270.11 kРа Т 5.23Е-5 m2/s С 3.86Е-6 m3/Ра	transmissivity is est	timated to be 1E-	-5 to 9E-5 m2/s. The	e flow		
0.01	s 3.28 -	was derived from the	e during the test te CRwr phase u	sing straight line ex	trapolation in		
0.0001 0.001 0.01 Elap	0.1 1 10 100 sed time (hrs)	the Horner plot to a	value of 17.34	m asl.	T		

	Test Sumn	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CRwr
Area:	Laxemar	Test no:			1
Borehole ID:	KLX18A	Test start:		08.	07.2006 11:46
Test section from - to (m):	11.83 - 611.28	Responsible for			PFL Pumptest
Section diameter, 2.r _w (m):	0.2	Responsible for			Stephan Rohs
l inear plot Ω and p		test evaluation:		Recovery period	
		Indata		Indata	
		h _i (m asl) =	11.74		
240	PFL Pumping KLX18A	$h_p(m asl) =$	1.60	h _F (m asl) =	11.06
220 -	30	$Q_{r} (m^{3}/s) =$	1.95E-04	,	
200 - 8	25 F	$\frac{dp}{dp} (m/d)^2 = \frac{dp}{dp} (m/d)^2$	604740	t _F (s) =	550080
2 180 - 180 - 180 -	- 20 E	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
70 160 - 100 -	1504 1504	$EC_w (mS/m) =$			
140	- 10	Temp _w (gr C)=			
120 marine and all all	- 5	Derivative fact.=	NA	Derivative fact.=	0.06
100 20 40 60 80 100 120 140 160 Elapsed 1	180 200 220 240 260 280 300 320 340 Time [h]				
				-	
		Results		Results	
les les platinel derivates fl		$Q/s (m^{2}/s) =$	1.9E-05		
Log-Log plot incl. derivates- fi	ow period	T _M (m²/s)=	2.8E-05		tropologt
		Flow regime:	transient	Flow regime:	
		$dt_1 (min) =$		$dt_1 (min) =$	126.00
		$dl_2(mn) =$		dl_2 (mm) =	2349.60
		T (m ⁻ /s) =		T (m ⁻ /s) =	4.1E-05
		S(-) = K(m/c) = -		S(-) = K(m/c) = -	6.85-08
		$R_{s}(11/3) =$		$R_{s}(11/3) =$	0.3E-08
Not and	alysable	$O_{s}(1/11) = O_{s}(1/11)$	NA	$C_{s}(1/11) = C_{s}(m^{3}/D_{2})$	3.8E-06
		$C(m/Pa) = C_{D}(-) =$	NA	$C(\Pi/Pa) = C_{D}(-) =$	6.0E+01
		$\xi(-) =$	NA	ε _D () =	2.7
		5() -		5() –	
		$T_{aa}(m^{2}/s) -$	NA	$T_{a=-}(m^{2}/s) -$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.	
		dt_1 (min) =	126.00	C (m³/Pa) =	3.8E-06
		dt ₂ (min) =	2349.60	$C_{D}(-) =$	6.0E+01
1000 KLX18A CRwr phase		$T_{T} (m^{2}/s) =$	4.1E-05	ξ(-) =	2.7
Log-Log match		S (-) =	1.0E-06		
		$K_s (m/s) =$	6.8E-08		
		S _s (1/m) =	1.7E-09		
Orando a		Comments:			
Lesson 1 Les	2.	The recommended	transmissivity of	4.1E-5 m2/s was de	erived from the
	*_	analysis of the CRw	vr phase. The con	ntidence range for the $5 \text{ to } 9\text{E} 5 \text{ m}^{2/a}$	ie flow
p* 212.62 kPa T 4.09E-5 m2/s C 3.79E-6 m3/Pa s 2.69 -	▲ ▲	dimension displaye	d during the test	is 2. The static grou	and water level
0.01 0.01 0.1	1 10 100 4000	was derived from th	ne CRwr phase u	sing straight line ext	trapolation in
Elap	sed time (hrs)	the Horner plot to a	value of 11.48	m asl.	

	Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CRwr	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX20A	Test start:		27.06.2006 17		
Test section from - to (m):	100.90 - 457.92	Responsible for test execution:			PFL Pumptest	
Section diameter, $2 \cdot r_w$ (m):	0.2	Responsible for			Stephan Rohs	
Linear plot Q and p		Flow period		Recovery period		
		, Indata		Indata		
260	1 40	h _i (m asl) =	13.72			
240	PFL Pumping KLX20A Pressure Flow rate	$h_{n}(m asl) =$	3.62	h _F (m asl) =	13.34	
220		Q_{-} (m ³ /s)=	1.12E-04	,		
हे 200 -	- 25 ਵ	$\frac{dp}{dp}(m/d) =$	351840	t _F (s) =	852060	
915 82 180	- 20 ¥	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
90 160	9597 - 15 62	EC _w (mS/m)=		0 ei 0 (-)=		
140	- 10	Temp(ar C)=				
120	- 5	Derivative fact.=	NA	Derivative fact.=	NA	
	190 200 230 240 250 290 200 230 240					
Elaps	ed Time (h)					
		Results		Results		
		$O(a_1(m^2/a)) =$	1 1E-05	Results		
l og l og plot incl. derivates- f	low period	U/S (III /S) =	1.1E 00			
		$T_{\rm M}$ (III /S)=		Flow regime:	transient	
		dt_{i} (min) =	NA	$dt_{\rm c}$ (min) –	NA	
		$dt_1(min) =$		dt_1 (min) = dt_2 (min) =		
		$dt_2(mm) =$		$d_{2}(mn) =$	2.45-05	
		I (m /s) =		I (m /s) =	2.4L-05	
		S(-) = K(m/n) = -		S(-) = K(m/c) = -		
		$R_{s}(\Pi/S) =$		$R_s (III/S) =$	0.8E-08	
Not an	alysable	$S_{s}(1/11) =$		$S_{s}(1/11) =$	2.8E-09	
		C (m [°] /Pa) =		C (m°/Pa) =	3.0E-00	
		$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	0.1E+01	
		ζ(-) =	INA	ς(-) =	4.0	
		2		2		
		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
Les Les plet incl. derivatives	no occupie d	$D_{GRF}(-) =$		$D_{\text{GRF}}(-) =$	NA	
Log-Log plot Incl. derivatives	recovery period	Selected represe	Intative param	eters.	2 95 06	
		$dt_1(min) =$		し (m [*] /Pa) =	3.0E-U0	
1000 KLX20A		$dl_2(mn) =$		$C_{\rm D}(-) =$	0.1E+01	
CRwr phase Log-Log match		$T_T (m^{-}/s) =$	2.4E-05	ς(-) =	4.0	
(hD)		S (-) =	1.0E-06			
		κ_{s} (m/s) =	6.8E-08			
Due 60	· · ·	$S_s(1/11) =$	2.8E-09			
	-					
δ 0.1 · · · · · ·		analysis of the CPy	ransmissivity of r phase. The cou	2.4E-5 m2/s was de	erived from the	
0.01	p* 232.55 kPa T 2.44E-5 m2/s	transmissivity is est	imated to be 9E-	-6 to 9E-5 m2/s. A f	low dimension	
	C 3.81E-6 m3/Pa s 4.04 -	of 2 was assumed. T	The static ground	l water level was de	rived from the	
0.001 0.0001 0.001 0.01 0.1 Elap	1 10 100 1000 sed time (hrs)	CRwr phase using s	traight line extra	apolation in the Hor	ner plot to a	
		value of 13.51 m as	l.			

Area:	Laxe	mar Test no:			1
Borehole ID:	KLX	24A Test start:		24	.08.2006 17:18
Test section from - to (m):	2.41 - 100	0.17 Responsible for test execution:			PFL Pumptest
Section diameter, $2 \cdot r_w$ (m):	0.	.077 Responsible for			Stephan Rohs
Linear plot Q and p		Flow period		Recovery period	1
		Indata		Indata	
		b. (m. asl.) –	10.01		
200	PFL Pumping KLX24A + Pressure + Flow rate	$h_{\rm r}$ (m asl) =	0.22	h₋ (m asl.) =	9.96
200		$\int_{0}^{1} \frac{n_{\beta}(m dol)}{n_{\beta}(m dol)} =$	2 64E-04	n _F (m doi) =	5.50
180 -	+ 30	$\frac{Q_p(\Pi/S)}{tn(s)} =$	256440	t _r (s) =	855300
ि सुर भू 160 -	- 25		1.00E-06	r (0) =	1.00E-06
8 2 2 140	- 20	FC (mS/m)=	11002 00	3 el 3 (-)=	11002.00
Down	- 15	$Temp_{u}(ar C) =$			ł
	- 10	Derivative fact.=	NA	Derivative fact.=	0.06
100 -	- 5				0.00
80 20 40 60 80 100 120 140 160 Elapsed	180 200 220 240 260 280 300 320 340 Time [h]				
		Results		Results	-
		Q/s (m²/s)=	2.7E-05		
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	3.5E-05		
		Flow regime:	transient	Flow regime:	transient
		$dt_1 (min) =$	NA	$dt_1 (min) =$	27.00
		$dt_2 (min) =$	NA	$dt_2 (min) =$	77.40
		$T(m^{2}/s) =$	NA	T (m²/s) =	5.8E-05
		S(-) =	NA	S (-) =	1.0E-06
		κ_{s} (m/s) =	NA	K_{s} (m/s) =	6.0E-07
Not and	alysable	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.0E-08
	·	C (m³/Pa) =	NA	C (m)/Pa) =	3.3E-07
		$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	3.5E+01
		ξ(-) =	NA	ξ(-) =	5.3
		$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	neters.	
		$dt_1 (min) =$	27.00	$C (m^3/Pa) =$	3.3E-07
1000		$dt_2 (min) =$	77.40	$C_D(-) =$	3.5E+01
KLX24A CRwr phase		$T_T (m^2/s) =$	5.8E-05	ξ(-) =	5.3
E Log-Log match		S (-) =	1.0E-06		<u> </u>
		$K_s (m/s) =$	6.0E-07		<u> </u>
A STREET STREET		$S_s(1/m) =$	1.0E-08		<u> </u>
p [*] 213.24 kPa T1 5.82E5 m2/s C 3.22E5 m2/s C 3.22E5 m3/Pa s 5.34	Barrow and a second s	Comments: The recommended analysis of the CRv transmissivity is es dimension displaye	transmissivity of vr phase (inner z timated to be 1E ed during the test	f 5.8E-5 m2/s was d one). The confidenc -5 to 9E-5 m2/s. Th is 2. The static grou	erived from the ce range for the e flow und water level
0.1 0.001 0.01 0.1 Elapsec	1 10 100	was derived from tl the Horner plot to a	he CRwr phase u a value of 11.54	ising straight line ex m asl.	trapolation in

	Test Sumn	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CRwr
Area:	Laxemar	Test no:			1
Borehole ID:	KLX27A	Test start:		03.	01.2008 10:43
Test section from - to (m):	77.02 - 650.56	Responsible for test execution:			PFL Pumptest
Section diameter, $2 \cdot r_w$ (m):	0.2	Responsible for test evaluation:			Stephan Rohs
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
220	50 Pressure	b. (m. asl.) –	10.60		
200	PFL Pumping KL227A Flow rate - 45	n _i (m asi) =	10.09		10.54
	40	n _p (m asi) =	0.68	n _F (m asi) =	10.54
180 - E	- 35 E	Q _p (m ³ /s)=	2.32E-04		
× 160 -	- 30 E 9 9	tp (s) =	549600	t _F (s) =	574500
80 140	- 25 4 uojpan	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Down	- 20 8 	EC _w (mS/m)=			
120	10	Temp _w (gr C)=			
100	- 5	Derivative fact.=	NA	Derivative fact.=	0.09
80 0 20 40 60 80 100 120 140 160	0 180 200 220 240 260 280 300 320				,
Elapsed T	lime (h)				
		Results	-	Results	
		Q/s (m²/s)=	2.3E-05		
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	3.3E-05		
		Flow regime:	transient	Flow regime:	transient
		dt ₁ (min) =	8.50	dt ₁ (min) =	NA
		dt_2 (min) =	26.27	dt_2 (min) =	NA
		$T(m^{2}/c) =$	NA	$T(m^{2}/c) =$	2.9E-05
		S(-) = -	NΔ	S(-) =	1.0E-06
		C () –		C () =	5 OE 08
		$R_{s}(\Pi/S) =$		$R_{s}(\Pi/S) =$	5.0E-06
Not ana	alvsable	$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.7E-09
		C (m³/Pa) =	NA	C (m³/Pa) =	3.9E-05
		$C_D(-) =$	NA	$C_{D}(-) =$	6.3E+02
		ξ(-) =	NA	ξ(-) =	-3.3
		$T_{GRE}(m^2/s) =$	NA	$T_{GRE}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRE}(-) =$	NA	$D_{GRE}(-) =$	NA
l og-l og plot incl. derivatives-	recovery period	Selected represe	entative param	eters	
		dt_{ℓ} (min) =	NA	$C \left(m^{3}/D_{2}\right)$	3 9E-05
		$dt_1(min) =$		$C(\Pi / Fa) =$	6 3E+02
1000		$u_2(mn) =$		$C_{\rm D}(-) =$	0.3E+02
KLX27A		T _T (m²/s) =	2.9E-05	ζ(-) =	-3.3
CRwr phase Log-Log match		S (-) =	1.0E-06		
		$K_s (m/s) =$	5.0E-08		
10 III III IIII IIII IIII IIII IIIIIIIII		$S_s(1/m) =$	1.7E-09		
e often		Comments:			
1		The recommended	transmissivity of	2.9E-5 m2/s was de	erived from the
* * * * * * * * * * * * * * * * * * *		analysis of the CRw	vr phase. The co	nfidence range for th	ne
0.1	p* 207.97 kPa T 2.86E-5 m2/s	transmissivity is est	imated to be 7E-	-6 to 6E-5 m2/s. A f	low dimension
	C 3.93E-5 m3/Pa s -3.25 -	of 2 was assumed.	The static ground	l water level was de	rived from the
	1 10 100 1000	CRwr phase using s	straight line extra	apolation in the Hor	ner plot to a
Elaps	ed time (hrs)	value of 11.01 m as	4.		

	Test Summ	nary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr			
Area:	Laxemar	Test no:			1			
Borehole ID:	KLX28A	Test start:		24	.11.2006 11:28			
Test section from - to (m):	5.10 - 80.23	Responsible for test execution:	PFL Pumptest					
Section diameter, 2.r _w (m):	0.077	Responsible for			Stephan Rohs			
l inear plot Ω and p		test evaluation:		Pacovery parior				
Linear plot & and p		Indata		Indata				
		Indata		indata				
200	б	h⊨(m asl.) =	8.99					
1	PFL Pumping KLX28A	$h_p(m asl) =$	-1.63	h _F (m asl) =	7.04			
180 -	- 5	$Q_{2} (m^{3}/s) =$	2.42E-05	,				
160 -	4	tp(s) =	145560	t _F (s) =	88622			
2 uns 90 140	Rate [Vm	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06			
A stortmy	oduction	EC _w (mS/m)=						
8 ₁₂₀ .	- 2 ^a	Temp _w (gr C)=						
100	- 1	Derivative fact.=	NA	Derivative fact.=	0.11			
السبية المعالية								
80) 50 60 70 80 Fime [h]							
		Results		Results				
		$Q/s (m^2/s) =$	2.3E-06					
Log-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	2.9E-06					
		Flow regime:	transient	Flow regime:	transient			
		$dt_1 (min) =$	NA	$dt_1 (min) =$	15.00			
		$dt_2 (min) =$		$dt_2(min) =$	749.40 4 6E 06			
		I (m ⁻ /s) =	ΝΑ	I (m ⁻ /s) =	4.0E-00			
		S (-) =	NA	S (-) =	6.1E-08			
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.3E-08			
Not ana	lysable	C (m ³ /Pa) –	NA	C (m ³ /Pa) –	6.3E-07			
		$C_{D}(-) =$	NA	$C_{D}(-) =$	7.0E+01			
		$\xi(-) =$	NA	$\xi(-) =$	-3.1			
		5()		5()				
		T _{GRF} (m ² /s) =	NA	$T_{GRF}(m^2/s) =$	NA			
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA			
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	eters.				
		dt ₁ (min) =	15.00	C (m³/Pa) =	6.3E-07			
100		$dt_2 (min) =$	749.40	C _D (-) =	7.0E+01			
KLX28A		$T_T (m^2/s) =$	4.6E-06	ξ(-) =	-3.1			
CRwr phase Log-Log match		S (-) =	1.0E-06					
		$K_s (m/s) =$	6.1E-08					
Uge and C		$S_s(1/m) =$	1.3E-08					
0.1 0.1 0.001 0.001 0.001 0.001 Elapse	p* 188,64 kPa T1 4,5556 m2/s T2 8,5857 m2/s s 3,07 - m3/Pa s 3,07	The recommended the analysis of the CRw transmissivity is est dimension displayed was derived from the Horner plot to a	transmissivity of yr phase (inner zy imated to be 8E- d during the test he CRwr phase u value of 9.04 m	4.6E-6 m2/s was do one). The confidence 7 to 7E-6 m2/s. The is 2. The static grou sing straight line ex asl.	erived from the erange for the e flow und water level trapolation in			

	Test Summ	nary Sheet	_					
Project:	Oskarshamn site investigation	Test type:[1]			CRwr			
Area:	Laxemar	Test no:			1			
Borehole ID:	KLX29A	Test start:		27	.11.2006 14:00			
Test section from - to (m):	2.35 - 60.25	Responsible for test execution:	PFL Pumptest					
Section diameter, 2.r _w (m):	0.077	Responsible for			Stephan Rohs			
Linear plot Q and p		fest evaluation:		Recovery period	1			
		Indata		Indata				
210	PFL Pumping KLX29A • Pressure	h _i (m asl) =	9.44					
200 -	← Flow rate _ 45	$h_p(m asl) =$	4.20	h _F (m asl) =	8.95			
190	40	Q_{r} (m ³ /s)=	1.60E-04					
हि <u>.</u> 180 -	30 E	$\frac{dp(m/d)}{dp(s)} =$	83880	t _F (s) =	62400			
9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25 µ	S el S [*] (-)-	1.00E-06	S el S [*] (-)-	1.00E-06			
90 160 -	20 ptot	EC _w (mS/m)=		0 0 0 ()=				
150	- 15	Temp _w (ar C)=						
Lever and and the		Derivative fact.=	NA	Derivative fact.=				
140 -	- 5							
130 +	25 30 35 40 45							
		Results		Results				
		Ω/s (m ² /s)-	3.1E-05					
Log-Log plot incl. derivates- fl	ow period	$T_{\rm ref} (m^2/s) =$	3.7E-05					
	••••	Flow regime:	transient	Flow regime:	transient			
		dt₁ (min) =	NA	dt₁ (min) =	NA			
		dt_2 (min) =	NA	dt_2 (min) =	NA			
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	2.3E-05			
		S (-) =	NA	S (-) =	1.0E-06			
		K_{s} (m/s) =	NA	K_{s} (m/s) =	3.9E-07			
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.7E-08			
Not ana	alysable	$C (m^{3}/Pa) =$	NA	$C(m^{3}/Pa) =$	1.7E-06			
		$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	1.9E+02			
		ξ(-) =	NA	ξ(-) =	-3.2			
		5()		5()				
		$T_{opr}(m^2/s) =$	NA	$T_{opc}(m^2/s) =$	NA			
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA			
		$D_{GRE}(-) =$	NA	$D_{GRE}(-) =$	NA			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	eters.				
		dt_1 (min) =	NA	$C(m^3/Pa) =$	1.7E-06			
100		dt_2 (min) =	NA	$C_{D}(-) =$	1.9E+02			
KLX29A CRwr.phase		$T_{T}(m^{2}/s) =$	2.3E-05	ξ(-) =	-3.2			
Log-Log match		S (-) =	1.0E-06	5.(7				
90 avgsta 10		$K_s (m/s) =$	3.9E-07					
and Des	and the second sec	$S_{s}(1/m) =$	1.7E-08					
· · · · · · · · · · · · · · · · · · ·	-	Comments:			•			
		The recommended	transmissivity of	2.3E-5 m2/s was d	erived from the			
	-1 100 70 10	analysis of the CRw	vr phase (outer z	one), which is deen	ned to be			
	p* 190.79 kPa T1 1.38E-4 m2/s T2 2.26E-5 m2/s	representative for th	ne formation. Th	e confidence range	for the			
0.1	s -3.19 -	transmissivity is est	imated to be 5E	-6 to 4E-5 m2/s. The is 2 The state $\frac{1}{2}$	e flow			
0.0001 0.001 0.01 Elap	0.1 1 10 100 sed time (hrs)	uimension displayed	u during the test	is 2. The static grou	trapolation in			
		the Horner plot to a	value of 9.26 m	asl.	aupolation in			
				·				

	Test Sumn	nary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CRwr		
Area:	Laxemar	Test no:			1		
Borehole ID:	KSH01A	Test start:		20.	02.2003 14:05		
Test section from - to (m):	12.10 - 1003.00	Responsible for	PFL Pumptest				
Section diameter, 2.r., (m):	0.2	test execution: Responsible for			Stephan Rohs		
	0.2	test evaluation:			Ctopinan i torio		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
220	10 PEL Dumping KSH01A • Pressure	h (masl) –	0.12				
200	-Flow rate	$h_1(m asl) =$	-10.22	h₋ (m asl.) =	-2.48		
180 -	- 8	$\int_{0}^{1} (m^{3}/s) -$	5.17E-05		2.10		
[문 것] 일 160 -	6 [uimu];	$\frac{d_p(m/s)}{tp(s)} =$	605880	t _F (s) =	83192		
ole Press		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
Downih	4 4	EC _w (mS/m)=					
120 -	- 2	Temp _w (gr C)=					
100 -		Derivative fact.=	NA	Derivative fact.=			
80 25 50 75 100 125	150 175 200 225 250						
Elapsed Tir	ne [h]						
		Results		Results			
		$Q/s (m^2/s) =$	5.0E-06				
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	7.6E-06	- ·			
		Flow regime:	transient	Flow regime:	transient		
		$dt_1 (min) =$		$dt_1 (min) =$	192.00		
		$dt_2(mn) =$	ΝΑ	$dl_2(mm) =$	342.00 8.2E-06		
		1 (m/s) =	NA	I (m / s) = S(-) =	1.0E-06		
		$K_{a}(m/s) =$	NA	$K_{a}(m/s) =$	8.3E-09		
		$S_{s}(1/m) =$	NA	$S_{s}(1/m) =$	1.0E-09		
Not and	alysable	$C (m^{3}/Pa) =$	NA	$C (m^{3}/Pa) =$	4.0E-06		
		$C_D(-) =$	NA	$C_D(-) =$	6.4E+01		
		ξ(-) =	NA	ξ(-) =	-2.8		
		T _{GRF} (m²/s) =	NA	T _{GRF} (m ² /s) =	NA		
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA		
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.			
		$dt_1(min) =$	192.00	C (m³/Pa) =	4.0E-06		
100		$dt_2 (min) =$	342.00	$C_{\rm D}(-) =$	6.4E+01		
KSH01A CRwr phase		$T_{T}(m^{2}/s) =$	8.2E-06	ζ(-) =	-2.8		
F 10		S (-) =	1.0⊑-00 8.3E-09				
		$S_{c}(1/m) =$	1.0E-09				
1		Comments:					
a and the second		The recommended t	ransmissivity of	8.2E-6 m2/s was de	erived from the		
0.1		analysis of the CRw	r phase (inner z	one), which shows a	horizontal		
/.	p* 219.71 kPa T1 8.20E-6 m2/s T2 2.03E-6 m2/s	stabilization. The co	onfidence range	for the transmissivit	y is estimated		
0.01	C 3.99E-6 m3/Pa s -2.78 -	is 2. The static grou	nd water level w	as derived from the	CRwr phase		
0.0001 0.001 0.01 0 Elapse	.1 1 10 100 d time (hrs)	using straight line e	xtrapolation in t	he Horner plot to a	value of 1.95 m		
		asl.					

	Test Summ	nary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CRwr			
Area:	Laxemar	Test no:			1			
Borehole ID:	KSH02	Test start:		09.	.07.2003 11:57			
Test section from - to (m):	80.00 - 1001.11	Responsible for test execution:	PFL Pumptes					
Section diameter, 2.r _w (m):	0.2	Responsible for			Stephan Rohs			
l inear nlot Ω and n		test evaluation:		Recovery period				
		Indata		Indata				
220	10							
	PFL Pumping KSH02 Pressure Flow rate	h _i (m asl) =	-0.67					
200	- 8	$h_p(m asl) =$	-11.21	h _F (m asl) =	-2.32			
180 -		$Q_p (m^3/s) =$	5.47E-05		10000			
92 91 160 -	as fumi	tp (s) =	781920	t _F (s) =	183808			
901 140 -	Juction R	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06			
Down		EC _w (mS/m)=						
120	2	Temp _w (gr C)=						
100 -		Derivative fact.=	NA	Derivative fact.=	0.09			
80 25 50 75 100 125 150 17 Fiansed	i 200 225 250 275 300 325 350							
		Results		Results				
		Q/s (m ² /s)=	5.2E-06					
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	7.8E-06					
	-	Flow regime:	transient	Flow regime:	transient			
		dt_1 (min) =	NA	dt_1 (min) =	417.60			
		dt_2 (min) =	NA	dt_2 (min) =	754.80			
		$T(m^{2}/s) =$	NA	$T(m^{2}/s) =$	1.3E-05			
		S (-) =	NA	S (-) =	1.0E-06			
		$K_s (m/s) =$	NA	$K_s (m/s) =$	1.5E-08			
		S _s (1/m) =	NA	S _s (1/m) =	1.1E-09			
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	3.8E-06			
		$C_{D}(-) =$	NA	$C_{D}(-) =$	6.1E+01			
		ξ(-) =	NA	ξ(-) =	0.9			
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA			
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA			
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA			
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative param	eters.	-			
		dt ₁ (min) =	417.60	C (m³/Pa) =	3.8E-06			
100		dt_2 (min) =	754.80	C _D (-) =	6.1E+01			
KSH02 CRwr phase		$T_{T} (m^{2}/s) =$	1.3E-05	ξ(-) =	0.9			
Log-Log match		S (-) =	1.0E-06					
10		$K_s (m/s) =$	1.5E-08					
		S _s (1/m) =	1.1E-09					
0.1 0.0001 0.01 0.1 Elapo	p* 196.13 kPa T1 1.34E-5 m2/s T2 3.38E-6 m2/s C 3.81E-6 m3/Pa s 0.87 - 1 10 100	Comments: The recommended to analysis of the CRw stabilization. The co to be 2E-6 to 3E-5 to transmissivity). The static ground water straight line extrapo	transmissivity of or phase (inner z onfidence range m2/s (this range e flow dimension level was derive plation in the Ho	71.3E-5 m2/s was do one), which shows a for the transmissivit encompasses the ou a displayed during the d from the CRwr ph rner plot to a value	erived from the a horizontal ty is estimated ther zone he test is 2. The hase using of -0.40 m asl.			

Pump Test Analyses

APPENDIX 3

SICADA data tables

									(Sir	nplified version v1.9		
SKR		SIC	CADA	/Data	Impo	rt Temp	late					
		-							SKB	& Ergodata AB 2007	7	-
File Identity	/	5048		File Time			Compiled By	,				
Created By	/	Bengt Gentzschein		Zone		Quality Che	ck For Delivery					
Created	1	2008.05.15 09:43	<u> </u>		<u> </u>	De	livery Approval				<u> </u>	
											-	
Activity Type	•	HY610				Project		F	PLU			
		Pumping test-submersible	le pump									
Activity Inform	ation					Additional Activity	Data					
						C10	1250	P20	P200	P220	R240	R25
							Test	Field crew		evaluating	calibratio	
	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	equipment	manager	Field crew	data	n type	Report
KAVUI	2004-02-18 16:25:51	2004-02-26 14:46:42	70,04	157,3		Golder Associates	Posiva Flowiog			der Wall		der Wall
										Stephan Rohs		Stephan Rohs
14421014	0004.00.40.40.04.00	0004 00 40 44 55 04	400.05	1000.40						D : 1		
KAV04A	2004-06-10 12:24:29	2004-06-16 14:55:24	100,95	1000,40)	Golder Associates	Posiva Flowlog			Reinder van der Wall		Reinder van der Wall
										Stephan Rohs		Stephan Rohs
144240										.		
KAV04B	2004-06-16 17:18:30	2004-06-16 17:19:00	11,52	101,03	3	Golder Associates	Posiva Flowlog			Reinder van		Reinder van der Wall
										Stephan Rohs		Stephan Rohs
KLX04	2004-07-29 09:56:34	2004-07-29 09:57:00	101,43	993,49	9	Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										Stephan Rohs		Stephan Rohs
KLX09	2006-05-11 20:27:18	2006-05-23 16:47:46	11,95	880,38	3	Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										Stephan Rohs		Stephan Rohs
										Ctopilair torio		Ctopinan i tono
KLX09B	2006-02-21 10:45:25	2006-03-03 08:29:56	10,74	120,22	2	Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										der Wall, Stephan Robs		der Wall, Stephan Rohs
										Ctephan (Ons		
KLX09C	2006-03-03 13:33:57	2006-03-13 10:10:19	9,00	120,05	5	Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										der Wall,		der Wall, Stephan Roba

									(Sin	nplified version v1.9		
SKB		SIC	CADA	/Data	Impo	rt Temp	late					
							-		SKB	& Ergodata AB 2007	7	
File Identity		5048		File Time			Compiled By	/				
Created By		Bengt Gentzschein		Zone		Quality Che	ck For Delivery	/				
Created		2008.05.15 09:43	<u> </u>		<u> </u>	De	livery Approva	1	1	F		
Activity Type		HY610]	Project		P	LU			
		Pumping test-submersibl	e pump									
					4	<u>L</u>					<u> </u>	
Activity Informa	tion					Additional Activity	Data					
						C10	1250	P20	P200	P220	R240	R25
Ideede	Stort Data	Stan Data	Secur (m)	Saalaw (m)	Section No.	Compony	Test	Field crew	Field erew	evaluating	calibratio	Bonort
	2006-03-22 14-33-38	2006-03-31 07:20:41	Secup (m)	Seciow (m)	Section No	Company Golder Associates	Posiva Flowlog	manager	Field crew	data Reinder van	птуре	Report
NEX09D	2000-03-22 14.33.30	2000-03-31 07.29.41	3,75	121,02		Guider Associates	r osiva r iowiog			der Wall, Stephan Rohs		der Wall, Stephan Rohs
KLX09E	2006-03-13 11:10:18	2006-03-22 12:38:00	9,00	120,00		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX09F	2006-03-31 09:11:56	2006-04-08 08:57:00	9,00	152,30		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX09G	2006-07-12 14:07:45	2006-07-19 06:00:00	9,30	100,10		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX10	2005-12-10 11:10:26	2005-12-31 07:35:00	12,10	1001,20		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX10B	2006-07-18 15:01:58	2006-07-27 14:19:30	9,00	50,25		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX10C	2006-07-24 12:59:28	2006-07-30 06:58:30	9,00	146,25		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs

									(Sin	nplified version v1.9)	
SKB		SIC	CADA	/Data	Impo	rt Temp	late					
									SKB	& Ergodata AB 200	7	
File Identity		5048		File Time			Compiled By	/				
Created By		Bengt Gentzschein		Zone		Quality Che	ck For Delivery	/				
Created		2008.05.15 09:43				De	livery Approva	1	T	1	<u> </u>	
Activity Type		HY610				Project		Р	LU			
		Pumping test-submersibl	e pump									
Activity Informa	ation					Additional Activity	Data					
						C10	1250	P20	P200	P220	R240	R25
Ideede	Start Data	Stop Data	Secure (m)	Saalaw (m)	Section No.	Compony	Test	Field crew	Field grow	evaluating	calibratio	Bonort
	2006-11-01 16:08:36	2006-11-10 13:20:20	12 05		Section No	Golder Associates	Posiva Flowlog	manager	Field Crew	Reinder van	птуре	Report Reinder van
	2000-11-01-10.00.30	2000-11-10 13.29.29	12,00	392,29		Guider Associates	r osiva r iowiog			der Wall, Stephan Rohs		der Wall, Stephan Rohs
KLX11B	2006-09-04 15:01:10	2006-09-22 10:12:00	2,54	100,20		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX11C	2006-10-12 16:08:29	2006-10-15 15:50:28	2,00	120,15		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX11D	2006-10-02 15:46:50	2006-10-12 12:33:20	2,00	120,35		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX11E	2006-09-22 14:47:36	2006-10-02 15:53:02	2,00	121,30		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX11F	2006-10-16 10:16:54	2006-10-21 16:45:09	2,00	120,05		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX12A	2006-06-09 16:05:49	2006-06-19 08:54:00	17,92	602,29		Golder Associates	Posiva Flowlog			Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs

									(Sin	nplified version v1.9)	
SKR		SIC	CADA	/Data	Impo	rt Temp	late					
									SKB	& Ergodata AB 2007	7	
File Identity		5048		File Time	1		Compiled By	/			1	
Created By		Bengt Gentzschein		Zone		Quality Che	ck For Delivery	/				
Created		2008.05.15 09:43				De	livery Approva	1				
Activity Type		HY610		·		Project		F	۲LU		1	
		Pumping test-submersible	e pump									
						<u> </u>					<u>-</u>	
Activity Informa	ation					Additional Activity	Data					
						C10	1250	P20	P200	P220	R240	R25
			.		.		Test	Field crew	· · ·	evaluating	calibratio	
Idcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	equipment	manager	Field crew	data	n type	Report
KLX13A	2006-09-24 14:30:44	2006-10-01 11:24:02	11,75	595,85		Golder Associates	Posiva Flowiog	1		der Wall, Stephan Rohs		der Wall, Stephan Rohs
KLX17A	2007-01-03 18:38:04	2007-01-11 14:23:40	11,95	701,08		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX18A	2006-07-08 11:46:08	2006-07-21 23:59:00	11,83	611,28		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX20A	2006-06-27 11:07:54	2006-07-11 09:35:00	100,90	457,92		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX24A	2006-08-24 17:18:41	2006-09-06 14:20:00	2,41	100,17		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX25A	2006-08-17 08:53:34	2006-08-20 10:55:04	2,20	50,24		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs
KLX27A	2008-01-03 10:43:38	2008-01-16 11:21:00	77,02	650,54		Golder Associates	Posiva Flowlog	1		Reinder van der Wall, Stephan Rohs		Reinder van der Wall, Stephan Rohs

									(Sim	plified version v1.9)		
SKB		SIC	CADA	/Data	Impo	rt Temp	late					
									SKB 8	& Ergodata AB 2007		
			7									
File Identity		5048		File Time			Compiled By					
Created By		Bengt Gentzschein		Zone		Quality Che	ck For Delivery					
Created		2008.05.15 09:43	ļ			De	livery Approva			1	<u></u>	
Activity Type		HY610				Project		Р	LU			
, ,,		Pumping test-submersible	e pump									
						<u> </u>						
Activity Informa	ition					Additional Activity	Data					
,						C10	1250	P20	P200	P220	P240	P25
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	Test equipment	Field crew manager	Field crew	evaluating data	calibratio	Report
KLX28A	2006-11-24 11:28:37	2006-11-27 08:48:02	5,10	80,23		Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										der Wall, Stephan Rohs		der Wall, Stephan Rohs
KLX29A	2006-11-27 14:00:11	2006-11-29 08:56:00	2,35	60,25		Golder Associates	Posiva Flowlog			Reinder van		Reinder van
							_			der Wall,		der Wall,
										Stephan Rohs		Stephan Rohs
KSH01A	2003-02-20 14:05:33	2003-03-02 14:54:32	12,10	1003,00		Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										der Wall,		der Wall,
										Stephan Rohs		Stephan Rohs
KSH02	2003-07-09 11:57:09	2003-07-22 16:15:28	80,00	1001,11		Golder Associates	Posiva Flowlog			Reinder van		Reinder van
										der Wall,		der Wall,
										Stephan Rohs		Stephan Rohs

Table	e	plu_s_h	ole_test_ed1
	PLU Single	e hole tests, pun	nping/injection. Basic evaluation
O a la sura de la sura		11	
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type			Activity type code
start_date	INGRESDATE		Date (yymmad nn:mm:ss)
stop_date			Date (yymmad nn:mm:ss)
project			project code
			Upper or borenole identification code
secup	FLOAT	m	Opper section limit (m)
section no		m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description!
formation_type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
ip	FLOAT	m	Hydraulic point of application for test section, see descr.
secien_class	FLOAT	m	Planned ordinary test interval during test campaign.
spec_capacity_q_s	FLOAT	m^^2/s	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR	**~ (0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m^^2/s	I ranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1: I Q <lower i="" meas.limit,1:="" q="">upper meas.limit.</lower>
bc_tq	CHAR	****	Best choice code. 1 means IQ is best choice of I, else 0
transmissivity_moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
bc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
hydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
width_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
tb	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
l_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
u_measl_tb	FLOAT	m**3/s	Estimated upper meas. limit of evaluated TB,see description
sb	FLOAT	m	SB:S=storativity,B=width of formation,1D model,see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m**2/s	TT:Transmissivity of formation, 2D radial flow model, see
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
l_measl_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated TT,see table descr
u_measl_q_s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity_s	FLOAT		S:Storativity of formation based on 2D rad flow, see descr.
assumed_s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
s_bc	FLOAT		Best choice of S (Storativity) ,see descr.
ri	FLOAT	m	Radius of influence
ri_index	CHAR		ri index=index of radius of influence :-1,0 or 1, see descr.
leakage_coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff,see desc
hydr_cond_ksf	FLOAT	m/s	Ksf:3D model evaluation of hydraulic conductivity, see desc.
value_type_ksf	CHAR		0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>
l_measl_ksf	FLOAT	m/s	Estimated lower meas.limit for evaluated Ksf,see table desc.
u_measl_ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf,see table descr
spec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
с	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
cd	FLOAT		CD: Dimensionless wellbore storage coefficient
skin	FLOAT		Skin factor;best estimate of flow/recovery period,see descr.
dt1	FLOAT	S	Estimated start time of evaluation, see table description
dt2	FLOAT	S	Estimated stop time of evaluation. see table description

Та	I ble PLU Sing	plu_s _ gle hole tests, pu	hole_test_ed1 umping/injection. Basic evaluation												
Column	Datatype	Unit	Column Description												
t1	FLOAT	S	Start time for evaluated parameter from start flow period												
t2	FLOAT	S	Stop time for evaluated parameter from start of flow period												
dte1	FLOAT	S	Start time for evaluated parameter from start of recovery												
dte2	FLOAT	S	Stop time for evaluated parameter from start of recovery												
p_horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description												
transmissivity_t_nlr	FLOAT	m**2/s	T_NLR Transmissivity based on None Linear Regression												
storativity_s_nlr	FLOAT		S_NLR=storativity based on None Linear Regression, see												
value_type_t_nlr	CHAR		0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit</lower>												
bc_t_nlr	CHAR		Best choice code. 1 means T_NLR is best choice of T, else 0												
c_nlr	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr.												
cd_nlr	FLOAT		Dimensionless wellbore storage constant, see table descrip.												
skin_nlr	FLOAT		Skin factor based on Non Linear Regression, see desc.												
transmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Genelized Radial Flow, see												
value_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>												
bc_t_grf	CHAR		Best choice code. 1 means T_GRF is best choice of T, else 0												
storativity_s_grf	FLOAT		S_GRF:Storativity based on Generalized Radial Flow, see des.												
flow_dim_grf	FLOAT		Inferred flow dimesion based on Generalized Rad. Flow model												
comment	VARCHAR		Short comment to the evaluated parameters												
error_flag	CHAR		*: Data for the activity is erroneous and should not be used												
in_use	CHAR		If in_use = "*" then the activity has been selected as												
sign	CHAR		Activity QA signature												
			(m)	(m)				(m)	(m)	(m**2/s)		(m**2/s)			(m**2/s)
--------	---------------------	---------------------	--------	---------	------------	-----------	------------	--------	-----------	-----------	----------	-----------	----------	-------	------------
							formation_		seclen_cl	spec_cap	value_ty	transmis	value_ty		transmissi
idcode	start_date	stop_date	secup	seclow	section_no	test_type	type	lp	ass	acity_q_s	pe_q_s	sivity_tq	pe_tq	bc_tq	vity_moye
KAV01	2004-02-18 16:25:51	2004-02-26 14:46:42	70,04	757,31		1B	1	413,68	687,27	3,12E-05	0				4,65E-05
KAV04A	2004-06-10 12:24:29	2004-06-16 14:55:24	100,95	1000,40)	1B	1	550,68	899,45	1,77E-05	0				2,65E-05
KAV04B	2004-06-16 17:18:30	2004-06-16 17:19:00	11,52	101,03		1B	1	56,28	89,51	3,86E-05	0				4,95E-05
KLX04	2004-07-29 09:56:34	2004-07-29 09:57:00	101,43	993,49)	1B	1	547,46	892,06	1,23E-04	0				1,84E-04
KLX09	2006-05-11 20:27:18	2006-05-23 16:47:46	11,95	880,38		1B	1	446,17	868,43	2,29E-04	0				3,38E-04
KLX09B	2006-02-21 10:45:25	2006-03-03 08:29:56	10,74	120,22		1B	1	65,48	109,48	1,62E-05	0				2,07E-05
KLX09C	2006-03-03 13:33:57	2006-03-13 10:10:19	9,00	120,05	i	1B	1	64,53	111,05	1,02E-04	0				1,34E-04
KLX09D	2006-03-22 14:33:38	2006-03-31 07:29:41	9,75	121,02		1B	1	65,39	111,27	2,44E-05	0				3,21E-05
KLX09E	2006-03-13 11:10:18	2006-03-22 12:38:00	9,00	120,00)	1B	1	64,50	111,00	9,47E-05	0				1,25E-04
KLX09F	2006-03-31 09:11:56	2006-04-08 08:57:00	9,00	152,30		1B	1	80,65	143,30	1,53E-04	0				2,09E-04
KLX09G	2006-07-12 14:07:45	2006-07-19 06:00:00	9,30	100,10)	1B	1	54,70	90,80	1,73E-05	0				2,22E-05
KLX10	2005-12-10 11:10:26	2005-12-31 07:35:00	12,10	1001,20)	1B	1	506,65	989,10	2,09E-04	0				3,17E-04
KLX10B	2006-07-18 15:01:58	2006-07-27 14:19:30	9,00	50,25		1B	1	29,63	41,25	4,69E-05	0				5,44E-05
KLX10C	2006-07-24 12:59:28	2006-07-30 06:58:30	9,00	146,25		1B	1	77,63	137,25	1,09E-05	0				1,47E-05
KLX11A	2006-11-01 16:08:36	2006-11-10 13:29:29	12,05	992,29)	1B	1	502,17	980,24	5,28E-05	0				7,98E-05
KLX11B	2006-09-04 15:01:10	2006-09-22 10:12:00	2,54	100,20)	1B	1	51,37	97,66	2,84E-05	0				3,68E-05
KLX11C	2006-10-12 16:08:29	2006-10-15 15:50:28	2,00	120,15		1B	1	61,08	118,15	2,48E-06	0				3,30E-06
KLX11D	2006-10-02 15:46:50	2006-10-12 12:33:20	2,00	120,35	;	1B	1	61,18	118,35	3,25E-05	0				4,31E-05
KLX11E	2006-09-22 14:47:36	2006-10-02 15:53:02	2,00	121,30		1B	1	61,65	119,30	3,88E-06	0				5,16E-06
KLX11F	2006-10-16 10:16:54	2006-10-21 16:45:09	2,00	120,05	;	1B	1	61,03	118,05	3,07E-05	0				4,07E-05
KLX12A	2006-06-09 16:05:49	2006-06-19 08:54:00	17,92	602,29		1B	1	310,11	584,37	1,09E-05	0				1,56E-05
KLX13A	2006-09-24 14:30:44	2006-10-01 11:24:02	11,75	595,85		1B	1	303,80	584,10	6,48E-05	0				9,26E-05
KLX17A	2007-01-03 18:38:04	2007-01-11 14:23:40	11,95	701,08		1B	1	356,52	689,13	2,30E-05	0				3,35E-05
KLX18A	2006-07-08 11:46:08	2006-07-21 23:59:00	11,83	611,28		1B	1	311,56	599,45	1,92E-05	0				2,75E-05
KLX20A	2006-06-27 11:07:54	2006-07-11 09:35:00	100,90	457,92		1B	1	279,41	357,02	1,11E-05	0				1,50E-05
KLX24A	2006-08-24 17:18:41	2006-09-06 14:20:00	2,41	100,17	•	1B	1	51,29	97,76	2,70E-05	0				3,51E-05
KLX25A	2006-08-17 08:53:34	2006-08-20 10:55:04	2,20	50,24		1B	1	26,22	48,04	2,71E-06	0				3,21E-06
KLX27A	2008-01-03 10:43:38	2008-01-16 11:21:00	77,02	650,54		1B	1	363,78	573,52	2,31E-05	0				3,30E-05
KLX28A	2006-11-24 11:28:37	2006-11-27 08:48:02	5,10	80,23		1B	1	42,67	75,13	2,28E-06	0				2,86E-06
KLX29A	2006-11-27 14:00:11	2006-11-29 08:56:00	2,35	60,25		1B	1	31,30	57,90	3,05E-05	0				3,71E-05
KSH01A	2003-02-20 14:05:33	2003-03-02 14:54:32	12,10	1003,00		1B	1	507,55	990,90	5,00E-06	0				8,26E-06
KSH02	2003-07-09 11:57:09	2003-07-22 16:15:28	80,00	1001,11		1B	1	540,56	921,11	5,19E-06	0				8,59E-06

	(m)	(m)			(m/s)	(m)	(m)	(m**3/s)	(m**3/s)	(m**3/s)	(m)	(m)	(m)	(m**2/s))		(m**2/s)	(m**2/s)
			value_ty		hydr_con	formation	width_of_c		I_measl_t	u_measl		assumed	leakage_f	transmis	value_ty		I_measI_	u_measl
idcode	secup	seclow	pe_tm	bc_tm	d_moye	_width_b	hannel_b	tb	b	_tb	sb	_sb	actor_lf	sivity_tt	pe_tt	bc_tt	q_s	_q_s
KAV01	70,04	757,31	0	0	6,77E-08									7,38E-05	i () 1	1,00E-05	1,00E-04
KAV04A	100,95	1000,40	0	0	2,94E-08									6,80E-05	i () 1	1,00E-05	1,00E-04
KAV04B	11,52	101,03	0	0	5,54E-07									9,56E-05	5 () 1	1,00E-05	2,00E-04
KLX04	101,43	993,49	0	0	2,06E-07									3,30E-04	() 1	5,00E-05	5,00E-04
KLX09	11,95	880,38	0	0	3,89E-07									5,40E-04	. () 1	1,00E-04	8,00E-04
KLX09B	10,74	120,22	0	0	1,89E-07									8,50E-05	5 () 1	1,00E-05	1,00E-04
KLX09C	9,00	120,05	0	0	1,21E-06									5,30E-04	() 1	1,00E-04	7,00E-04
KLX09D	9,75	121,02	0	0	2,89E-07									7,84E-05	5 () 1	2,00E-05	1,00E-04
KLX09E	9,00	120,00	0	0	1,13E-06									2,61E-04	() 1	9,00E-05	4,00E-04
KLX09F	9,00	152,30	0	0	1,46E-06									4,32E-04	() 1	1,00E-04	6,00E-04
KLX09G	9,30	100,10	0	0	2,45E-07									6,54E-05	i () 1	1,00E-05	9,00E-05
KLX10	12,10	1001,20	0	0	3,20E-07									5,33E-04	() 1	1,00E-04	8,00E-04
KLX10B	9,00	50,25	0	0	1,32E-06									2,71E-04	() 1	1,00E-05	4,00E-04
KLX10C	9,00	146,25	0	0	1,07E-07									2,50E-05	i () 1	9,00E-06	6,00E-04
KLX11A	12,05	992,29	0	0	8,14E-08									1,22E-04	() 1	5,00E-05	4,00E-04
KLX11B	2,54	100,20	0	0	3,77E-07									8,15E-05	i () 1	1,00E-05	1,00E-04
KLX11C	2,00	120,15	0	0	2,79E-08									4,60E-06	6 () 1	2,00E-06	4,00E-05
KLX11D	2,00	120,35	0	0	3,64E-07									6,16E-05	i () 1	2,00E-05	9,00E-05
KLX11E	2,00	121,30	0	0	4,32E-08									6,98E-06	6 () 1	2,00E-06	1,00E-05
KLX11F	2,00	120,05	0	0	3,45E-07									2,06E-05	i () 1	9,00E-06	7,00E-05
KLX12A	17,92	602,29	0	0	2,66E-08									2,30E-05	i () 1	8,00E-06	5,00E-05
KLX13A	11,75	595,85	0	0	1,59E-07									3,47E-05	i () 1	9,00E-06	6,00E-05
KLX17A	11,95	701,08	0	0	4,86E-08									5,23E-05	i () 1	1,00E-05	9,00E-05
KLX18A	11,83	611,28	0	0	4,59E-08									4,09E-05	i () 1	1,00E-05	9,00E-05
KLX20A	100,90	457,92	0	0	4,21E-08									2,44E-05	i () 1	9,00E-06	9,00E-05
KLX24A	2,41	100,17	0	0	3,59E-07									5,82E-05	i () 1	1,00E-05	9,00E-05
KLX25A	2,20	50,24	0	0	6,68E-08									7,13E-06	6 () 1	1,00E-06	1,00E-05
KLX27A	77,02	650,54	0	0	5,76E-08									2,86E-05	i () 1	7,00E-06	6,00E-05
KLX28A	5,10	80,23	0	0	3,81E-08									4,55E-06	6 () 1	8,00E-07	7,00E-06
KLX29A	2,35	60,25	0	0	6,41E-07									2,26E-05	5 () 1	5,00E-06	4,00E-05
KSH01A	12,10	1003,00	0	0	8,33E-09									8,20E-06	6 () 1	1,00E-06	1,00E-05
KSH02	80,00	1001,11	0	0	9,32E-09									1,34E-05	i () 1	2,00E-06	3,00E-05

	(m)	(m)				(m)		(1/s)	(m/s)		(m/s)	(m/s)) (1/m)	(1/m)	(m**3/pa)			(s)	(s)
			storativit	assumed				leakage_	hydr_co	value_ty	I_measI_	u_measl	spec_sto	assumed					
idcode	secup	seclow	y_s	_s	s_bc	ri	ri_index	coeff	nd_ksf	pe_ksf	ksf	_ksf	rage_ssf	_ssf	с	cd	skin	dt1	dt2
KAV01	70,04	757,31	1,00E-06	1,00E-06		1	273,05								2,20E-06	5,47E+01	-2,2	1476	2700
KAV04A	100,95	1000,40	1,00E-06	1,00E-06		1	329,82								4,79E-06	7,62E+01	-2,9	2232	4104
KAV04B	11,52	101,03	1,00E-06	1,00E-06		1	174,78								3,60E-07	3,97E+01	-1,1	468	972
KLX04	101,43	993,49	1,00E-06	1,00E-06		1	267,34								3,23E-06	5,14E+01	-2,8	756	1224
KLX09	11,95	880,38	1,00E-06	1,00E-06		1	315,42								5,16E-06	8,21E+01	-1,4	720	1332
KLX09B	10,74	120,22	1,00E-06	1,00E-06		0	2775,32								4,53E-07	4,86E+01	13,8	#NV	#NV
KLX09C	9,00	120,05	1,00E-06	1,00E-06		1	178,79								4,29E-07	4,61E+01	13,1	216	432
KLX09D	9,75	121,02	1,00E-06	1,00E-06		1	327,99								3,60E-07	3,87E+01	12,5	1404	3780
KLX09E	9,00	120,00	1,00E-06	1,00E-06		1	299,55								8,70E-07	9,59E+01	1,9	756	1728
KLX09F	9,00	152,30	1,00E-06	1,00E-06		1	176,82								5,94E-07	6,55E+01	-1,2	180	468
KLX09G	9,30	100,10	1,00E-06	1,00E-06		0	2863,67								4,66E-07	5,00E+01	13,5	#NV	#NV
KLX10	12,10	1001,20	1,00E-06	1,00E-06		1	231,15								2,51E-06	3,99E+01	-3,2	432	720
KLX10B	9,00	50,25	1,00E-06	1,00E-06		1	489,92								3,65E-07	3,92E+01	29,9	1404	4536
KLX10C	9,00	146,25	1,00E-06	1,00E-06		-1	1945,83								5,49E-07	5,89E+01	3,9	#NV	#NV
KLX11A	12,05	992,29	1,00E-06	1,00E-06		1	474,29								3,38E-06	5,38E+01	-1,0	3708	6336
KLX11B	2,54	100,20	1,00E-06	1,00E-06		1	335,89								5,13E-07	5,51E+01	3,5	1152	3888
KLX11C	2,00	120,15	1,00E-06	1,00E-06		-1	#NV								5,17E-07	5,55E+01	3,0	#NV	#NV
KLX11D	2,00	120,35	1,00E-06	1,00E-06		1	217,32								6,49E-07	6,97E+01	-1,8	792	1872
KLX11E	2,00	121,30	1,00E-06	1,00E-06		1	592,93								4,31E-07	4,63E+01	2,2	11268	41400
KLX11F	2,00	120,05	1,00E-06	1,00E-06		-1	107,49								5,32E-07	5,71E+01	-6,1	72	792
KLX12A	17,92	602,29	1,00E-06	1,00E-06		0	2220,52								3,75E-06	5,97E+01	2,1	#NV	#NV
KLX13A	11,75	595,85	1,00E-06	1,00E-06		1	#NV								2,82E-05	4,49E+02	-2,2	10080	55800
KLX17A	11,95	701,08	1,00E-06	1,00E-06		0	2240,76								3,86E-06	6,14E+01	3,3	19332	216000
KLX18A	11,83	611,28	1,00E-06	1,00E-06		0	1702,34								3,79E-06	6,03E+01	2,7	7560	140976
KLX20A	100,90	457,92	1,00E-06	1,00E-06		0	3678,11								3,81E-06	6,06E+01	4,0	#NV	#NV
KLX24A	2,41	100,17	1,00E-06	1,00E-06		1	337,46								3,26E-07	3,50E+01	5,3	1620	4644
KLX25A	2,20	50,24	1,00E-06	1,00E-06		1	328,85								1,07E-06	1,15E+02	-4,0	4104	12600
KLX27A	77,02	650,54	1,00E-06	1,00E-06		0	3142,53								3,93E-05	6,25E+02	-3,3	#NV	#NV
KLX28A	5,10	80,23	1,00E-06	1,00E-06		1	555,24								6,34E-07	6,81E+01	-3,1	900	44964
KLX29A	2,35	60,25	1,00E-06	1,00E-06		1	#NV								1,71E-06	1,88E+02	-3,2	#NV	#NV
KSH01A	12,10	1003,00	1,00E-06	1,00E-06		1	434,59								3,99E-06	6,35E+01	-2,8	11520	20520
KSH02	80,00	1001,11	1,00E-06	1,00E-06		1	729,98								3,81E-06	6,06E+01	0,9	25056	45288

	(m)	(m)) (s)	(s)	(s)	(s)	(kPa)	(m**2/s)				(m**3/pa))		(m**2/s)					
								transmissi	storativit	value_ty					transmissi	value_ty		storativit	flow_di	
idcode	secup	seclow	t1	t2 di	e1	dte2	p_horner	vity_t_nlr	y_s_nlr	pe_t_nlr	bc_t_nlr	c_nlr	cd_nlr	skin_nlr	vity_t_grf	pe_t_grf	bc_t_grf	y_s_grf	m_grf	comment
KAV01	70,04	757,31	1																	
KAV04A	100,95	1000,40)																	
KAV04B	11,52	101,03	3																	
KLX04	101,43	993,49	9																	
KLX09	11,95	880,38	3																	
KLX09B	10,74	120,22	2																	
KLX09C	9,00	120,05	5																	
KLX09D	9,75	121,02	2																	
KLX09E	9,00	120,00)																	
KLX09F	9,00	152,30)																	
KLX09G	9,30	100,10)																	
KLX10	12,10	1001,20)																	
KLX10B	9,00	50,25	5																	
KLX10C	9,00	146,25	5																	
KLX11A	12,05	992,29	9																	
KLX11B	2,54	100,20)																	
KLX11C	2,00	120,15	5																	
KLX11D	2,00	120,35	5																	
KLX11E	2,00	121,30)																	
KLX11F	2,00	120,05	5																	
KLX12A	17,92	602,29	9																	
KLX13A	11,75	595,85	5																	
KLX17A	11,95	701,08	3																	
KLX18A	11,83	611,28	3																	
KLX20A	100,90	457,92	2																	
KLX24A	2,41	100,17	7																	
KLX25A	2,20	50,24	1																	
KLX27A	77,02	650,54	1																	
KLX28A	5,10	80,23	3																	
KLX29A	2,35	60,25	5																	
KSH01A	12,10	1003,00)																	
KSH02	80,00	1001,11	1																	

Datatype	PLU Injection and pumping, C	General information
Datatype		
Datatype		
Datatype		
	Unit	Column Description
CHAR		Investigation site name
CHAR		Activity type code
INGRESDATE		Date (yymmdd hh:mm:ss)
INGRESDATE		Date (yymmdd hh:mm:ss)
VARCHAR		project code
CHAR		Object or borehole identification code
FLOAT	m	Upper section limit (m)
FLOAT	m	Lower section limit (m)
INTEGER	number	Section number
CHAR		Test type code (1-7), see table description
CHAR		1: Rock, 2: Soil (superficial deposits)
INGRESDATE	YYYY-MM-DD hh:mm:ss	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
INGRESDATE	YYYY-MM-DD hh:mm:ss	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
FLOAT	m**3/s	Flow rate at the end of the flowing period
CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
FLOAT	m**3/s	Arithmetic mean flow rate during flow period
FLOAT	m**3/s	Estimated lower measurement limit of flow rate
FLOAT	m**3/s	Estimated upper measurement limit of flow rate
FLOAT	m**3	Total volume of pumped or injected water
FLOAT	S	Duration of the flowing period of the test
FLOAT	S	Duration of the recovery period of the test
FLOAT	m	Hydraulic head in test section at start of the flow period
FLOAT	m	Hydraulic head in test section at stop of the flow period.
FLOAT	m	Hydraulic head in test section at stop of recovery period.
FLOAT	kPa	Groundwater pressure in test section at start of flow period
FLOAT	kPa	Pressure pi in test section corrected for grw pressure trend
FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
FLOAT	kPa	Pressure pp in test section corrected for grw pressure trend
FLOAT	kPa	Ground water pressure at the end of the recovery period.
FLOAT	kPa	Pressure pf in test section corrected for grw pressure trend
FLOAT	оС	Measured section fluid temperature, see table description
FLOAT	mS/m	Measured section fluid el. conductivity see table descr.
FLOAT	mg/l	Total salinity of section fluid based on EC.see table descr.
FLOAT	mg/l	Tot. section fluid salinity based on water sampling see
CHAR		SKB report No for reports describing data and evaluation
VARCHAR	no_unit	Short comment to data
CHAR	_	*: Data for the activity is erroneous and should not be used
CHAR		If in_use = "*" then the activity has been selected as
CHAR		Activity QA signature
FLOAT	m	Hydraulic point of application
	INTEGER CHAR CHAR INGRESDATE INGRESDATE FLOAT CHAR CHAR CHAR CHAR CHAR	INTEGER number CHAR CHAR CHAR INGRESDATE YYYY-MM-DD hh:mm:ss INGRESDATE YYYY-MM-DD hh:mm:ss FLOAT m**3/s CHAR FLOAT m**3/s FLOAT m**3/s FLOAT m**3/s FLOAT m**3/s FLOAT m**3/s FLOAT s FLOAT s FLOAT s FLOAT s FLOAT s FLOAT m FLOAT m FLOAT m FLOAT m FLOAT M FLOAT M FLOAT KPa FLOAT M FLOAT M CHAR CHAR CHAR FLOAT M M T M M M M M M M M M M M M M

			(m)	(m)				(YYYY-MM-DD hh:mm:ss)	(YYYY-MM-DD hh:mm:ss)	(m**3/s)		(m**3/s)	(m**3/s)	(m**3/s)	(m**3)
							r			flow_rate	value_ty	mean_flow_	q_measl	q_measl	tot_volu
idcode	start_date	stop_date	secup	seclow	section_no	test_type	m	start_flow_period	stop_flow_period	_end_qp	pe_qp	rate_qm	_1	u	me_vp
KAV01	2004-02-18 16:25:51	2004-02-26 14:46:42	70,04	757,31		1B	1	2004-02-21 09:23:00	2004-02-25 16:02:00	3,11E-04	•	3,13E-04			1,16E+02
KAV04A	2004-06-10 12:24:29	2004-06-16 14:55:24	100,95	1000,40		1B	1	2004-06-10 12:29:00	2004-06-15 23:50:00	1,77E-04		2,10E-04			9,92E+01
KAV04B	2004-06-16 17:18:30	2004-06-16 17:19:00	11,52	101,03		1B	1	2004-06-17 13:53:00	2004-06-18 06:11:46	3,90E-04		4,38E-04			3,25E+01
KLX04	2004-07-29 09:56:34	2004-07-29 09:57:00	101,43	993,49	1	1B	1	2004-08-05 07:36:00	2004-08-06 07:19:06	8,18E-04		9,23E-04			5,51E+02
KLX09	2006-05-11 20:27:18	2006-05-23 16:47:46	11,95	880,38		1B	1	2006-05-13 13:47:00	2006-05-21 09:29:00	1,11E-03		1,17E-03			7,88E+02
KLX09B	2006-02-21 10:45:25	2006-03-03 08:29:56	10,74	120,22		1B	1	2006-02-22 10:50:00	2006-02-28 08:18:00	1,63E-04		1,64E-04			8,35E+01
KLX09C	2006-03-03 13:33:57	2006-03-13 10:10:19	9,00	120,05		1B	1	2006-03-03 14:29:00	2006-03-09 08:45:00	5,28E-04		4,86E-04			2,42E+02
KLX09D	2006-03-22 14:33:38	2006-03-31 07:29:41	9,75	121,02		1B	1	2006-03-22 14:37:00	2006-03-28 11:44:00	2,32E-04		2,33E-04			1,18E+02
KLX09E	2006-03-13 11:10:18	2006-03-22 12:38:00	9,00	120,00		1B	1	2006-03-13 11:11:00	2006-03-19 08:46:00	5,21E-04		5,25E-04			2,67E+02
KLX09F	2006-03-31 09:11:56	2006-04-08 08:57:00	9,00	152,30		1B	1	2006-03-31 09:13:00	2006-04-06 08:20:00	5,55E-04		5,55E-04			2,86E+02
KLX09G	2006-07-12 14:07:45	2006-07-19 06:00:00	9,30	100,10		1B	1	2006-07-13 10:41:00	2006-07-15 14:22:00	1,37E-04		1,28E-04			2,38E+01
KLX10	2005-12-10 11:10:26	2005-12-31 07:35:00	12,10	1001,20		1B	1	2005-12-13 15:35:00	2005-12-21 12:25:00	1,45E-03		1,50E-03			1,02E+03
KLX10B	2006-07-18 15:01:58	2006-07-27 14:19:30	9,00	50,25		1B	1	2006-07-19 10:51:00	2006-07-21 11:50:00	4,63E-04		3,66E-04			6,46E+01
KLX10C	2006-07-24 12:59:28	2006-07-30 06:58:30	9,00	146,25		1B	1	2006-07-25 10:26:00	2006-07-27 13:32:00	1,13E-04		1,10E-04			2,02E+01
KLX11A	2006-11-01 16:08:36	2006-11-10 13:29:29	12,05	992,29		1B	1	2006-11-03 09:33:00	2006-11-08 15:48:00	5,67E-04		6,65E-04			3,02E+02
KLX11B	2006-09-04 15:01:10	2006-09-22 10:12:00	2,54	100,20		1B	1	2006-09-11 11:54:00	2006-09-19 09:14:00	2,67E-04		2,83E-04			1,93E+02
KLX11C	2006-10-12 16:08:29	2006-10-15 15:50:28	2,00	120,15		1B	1	2006-10-12 16:29:00	2006-10-14 13:20:00	2,92E-05		3,38E-05			5,45E+00
KLX11D	2006-10-02 15:46:50	2006-10-12 12:33:20	2,00	120,35		1B	1	2006-10-02 15:51:00	2006-10-08 13:52:00	3,52E-04		3,74E-04			1,91E+02
KLX11E	2006-09-22 14:47:36	2006-10-02 15:53:02	2,00	121,30		1B	1	2006-09-22 14:50:00	2006-09-29 07:05:00	3,77E-05		3,68E-05			2,12E+01
KLX11F	2006-10-16 10:16:54	2006-10-21 16:45:09	2,00	120,05		1B	1	2006-10-16 10:50:00	2006-10-18 06:55:00	3,80E-04		4,29E-04			6,81E+01
KLX12A	2006-06-09 16:05:49	2006-06-19 08:54:00	17,92	602,29		1B	1	2006-06-10 14:20:00	2006-06-15 16:03:00	1,04E-04		1,12E-04			4,90E+01
KLX13A	2006-09-24 14:30:44	2006-10-01 11:24:02	11,75	595,85		1B	1	2006-09-25 16:05:00	2006-09-30 13:20:00	6,50E-04		8,06E-04			3,40E+02
KLX17A	2007-01-03 18:38:04	2007-01-11 14:23:40	11,95	701,08		1B	1	2007-01-03 18:43:00	2007-01-08 15:04:00	2,37E-04		2,62E-04			1,10E+02
KLX18A	2006-07-08 11:46:08	2006-07-21 23:59:00	11,83	611,28		1B	1	2006-07-08 15:12:00	2006-07-15 15:11:00	1,95E-04		2,37E-04			1,43E+02
KLX20A	2006-06-27 11:07:54	2006-07-11 09:35:00	100,90	457,92		1B	1	2006-06-27 11:10:00	2006-07-01 12:54:00	1,12E-04		1,65E-04			5,81E+01
KLX24A	2006-08-24 17:18:41	2006-09-06 14:20:00	2,41	100,17		1B	1	2006-08-24 17:31:00	2006-08-27 16:45:00	2,64E-04		2,76E-04			7,09E+01
KLX25A	2006-08-17 08:53:34	2006-08-20 10:55:04	2,20	50,24		1B	1	2006-08-17 09:02:00	2006-08-19 10:55:00	1,25E-05		1,94E-05			3,48E+00
KLX27A	2008-01-03 10:43:38	2008-01-16 11:21:00	77,02	650,54		1B	1	2008-01-03 11:06:00	2008-01-09 19:46:00	2,32E-04		2,76E-04			1,51E+02
KLX28A	2006-11-24 11:28:37	2006-11-27 08:48:02	5,10	80,23		1B	1	2006-11-24 15:45:00	2006-11-26 08:11:00	2,42E-05		3,47E-05			5,05E+00
KLX29A	2006-11-27 14:00:11	2006-11-29 08:56:00	2,35	60,25		1B	1	2006-11-27 16:18:00	2006-11-28 15:36:00	1,60E-04		2,35E-04			1,97E+01
KSH01A	2003-02-20 14:05:33	2003-03-02 14:54:32	12,10	1003,00		1B	1	2003-02-22 15:30:00	2003-03-01 15:48:00	5,00E-06		5,63E-05			3,41E+01
KSH02	2003-07-09 11:57:09	2003-07-22 16:15:28	80,00	1001,11		1B	1	2003-07-11 12:00:00	2003-07-20 13:12:00	5,19E-06		6,00E-05			4,69E+01

	(m)	(m)) (s)	(s)) (m)	(m)) (m) (kPa)) (kPa)	(kPa	i) (kPa) (kPa)) (kPa)	(oC)	(mS/m) (mg/l)	(mg/l)	(no_uni	t) (m)
			dur_flow_	dur_rec_	initial_h	head_at_flo	final_he	initial_pr	initial_pres	press_at_flo	press_flowe	final_pre	final_pres	fluid_te	fluid_elco	fluid_salin	fluid_salini	referenc	commen	it
idcode	secup	seclow	phase_tp	phase_tf	ead_hi	w_end_hp	ad_hf	ess_pi	s_pi_corr	w_end_pp	nd_pp_corr	ss_pf	s_pf_corr	mp_tew	nd_ecw	ity_tdsw	ty_tdswm	е	s	lp
KAV01	70,04	757,31	369540	81882	2 1,31	-8,66	-0,55	5												
KAV04A	100,95	1000,40	472860	54324	1,25	-8,75	-4,29)												
KAV04B	11,52	101,03	74040	58726	3,55	-6,56	2,61													
KLX04	101,43	993,49	596340	85386	5 13,66	6,99	11,64	ŀ												
KLX09	11,95	880,38	675720	199126	5 13,19	8,34	13,30)												
KLX09B	10,74	120,22	509280	259916	5 13,42	3,32	13,53	5												
KLX09C	9,00	120,05	497761	350719	13,52	8,32	13,14	Ļ												
KLX09D	9,75	121,02	508020	243941	13,03	3,53	13,68	6												
KLX09E	9,00	120,00	509700	273120	13,03	7,53	12,94	ł												
KLX09F	9,00	152,30	515220	175020	13,64	10,02	13,46	5												
KLX09G	9,30	100,10	186060	315480	12,67	4,76	12,37	·												
KLX10	12,10	1001,20	679800	846600	12,73	5,80	12,74	ł												
KLX10B	9,00	50,25	176340	527370	11,62	1,75	11,33	5												
KLX10C	9,00	146,25	183960	235590	11,46	1,08	11,49)												
KLX11A	12,05	992,29	454500	164489	13,20	2,46	11,95	5												
KLX11B	2,54	100,20	681600	262680	10,04	0,64	. 9,78	3												
KLX11C	2,00	120,15	6 161460	95428	12,55	0,80	12,53	8												_
KLX11D	2,00	120,35	511260	340880	11,91	1,08	12,64	ŀ												_
KLX11E	2,00	121,30	576900	290882	9,62	0,00	14,38	8												_
KLX11F	2,00	120,05	158700	294609	12,73	0,35	12,89)												_
KLX12A	17,92	602,29	438180	319860	10,66	1,10	10,16	5												_
KLX13A	11,75	595,85	422100	79442	2 13,48	3,45	6,61													_
KLX17A	11,95	701,08	418860	256780	16,57	6,29	16,81													_
KLX18A	11,83	611,28	604740	550080	11,74	1,60	11,06	5												
KLX20A	100,90	457,92	351840	852060	13,72	3,62	13,34	ł												_
KLX24A	2,41	100,17	256440	855300	10,01	0,22	9,96	5												
KLX25A	2,20	50,24	179580	86404	14,64	10,02	13,73	8												_
KLX27A	77,02	650,54	549600	574500	10,69	0,68	10,54	ł												_
KLX28A	5,10	80,23	145560	88622	8,99	-1,63	7,04													
KLX29A	2,35	60,25	83880	62400	9,44	4,20	8,95													_
KSH01A	12,10	1003,00	605880	83192	2 0,12	-10,22	-2,48	3												_
KSH02	80,00	1001,11	781920	183808	-0,67	-11,21	-2,32	2	1				1							

Table		flow_during_ Flow rate measurements duri	tests ing hydraulic tests
Q. h. marr	Detetere		
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
project	VARCHAR		Project code
idcode	CHAR		Object or borehole identification code
sign	CHAR		Activity QA signature
error_flag	CHAR		*: Data for the activity is erroneous and should not be used
seclow	FLOAT	m	Lower section limit (m)
secup	FLOAT	m	Upper section limit (m)
measurement_date	INGRESDATE	YYYY-MM-DD hh:mm:ss	Date/timre of measurement (YYYY-MM-DD hh:mm:ss)
meas_number	INTEGER	code	Default=1. >1 if more than one value at the same time.
flow	FLOAT	m**3/s	Measured water flow rate(q, m**3/s)
flow_l_min	FLOAT	l/min	Measured water flow rate (q, L/min)
value_type_flow	CHAR		0 or empty:true value,-1:q <low meas.limit,1:q="">upper limit,</low>
volume_l	FLOAT	I	Measured volume during flow time interval(L)
time_interval	FLOAT	S	Duration of volume measurement
volume_acc	FLOAT	m**3	Accumulated water volume at measurement time
elapsed_time	FLOAT	min	minutes
drawdown_m	FLOAT	m	Drawdown in m since pumping start
comment	CHAR		Comment on the measurement

			(m)	(m)		(YYYY-MM-DD hh:mm:ss)	(code)	(m**3/s)	(l/min))	(I)	(s)	(m**3)	(min)	(m)	
							meas_num		flow_l_mi	value_ty		time_int		elapsed_t	drawdow	
idcode	start_date	stop_date	secup	seclow	section_no	measurement_date	ber	flow	n	pe_flow	volume_l	erval	volume_acc	ime	n_m	comment
KAV01	2004-02-18 16:25:51	2004-02-26 14:46:42	70,04	757,31		2004-02-21 09:23:00		3,13E-04	18,8	6	1,16E+05	369540	1,16E+02	6159	9,96	
KAV04A	2004-06-10 12:24:29	2004-06-16 14:55:24	100,95	1000,40		2004-06-10 12:29:00		2,10E-04	12,6	i	9,92E+04	472860	9,92E+01	7881	10,00	
KAV04B	2004-06-16 17:18:30	2004-06-16 17:19:00	11,52	101,03		2004-06-17 13:53:00		4,38E-04	26,3		3,25E+04	74040	3,25E+01	1234	10,11	
KLX04	2004-07-29 09:56:34	2004-07-29 09:57:00	101,43	993,49		2004-08-05 07:36:00		9,23E-04	55,4		5,51E+05	596340	5,51E+02	9939	6,67	
KLX09	2006-05-11 20:27:18	2006-05-23 16:47:46	11,95	880,38		2006-05-13 13:47:00		1,17E-03	70,0)	7,88E+05	675720	7,88E+02	11262	4,85	
KLX09B	2006-02-21 10:45:25	2006-03-03 08:29:56	10,74	120,22		2006-02-22 10:50:00		1,64E-04	9,8	6	8,35E+04	509280	8,35E+01	8488	10,10	
KLX09C	2006-03-03 13:33:57	2006-03-13 10:10:19	9,00	120,05		2006-03-03 14:29:00		4,86E-04	29,2	2	2,42E+05	497761	2,42E+02	8296	5,20	
KLX09D	2006-03-22 14:33:38	2006-03-31 07:29:41	9,75	121,02		2006-03-22 14:37:00		2,33E-04	14,0)	1,18E+05	508020	1,18E+02	8467	9,50	
KLX09E	2006-03-13 11:10:18	2006-03-22 12:38:00	9,00	120,00		2006-03-13 11:11:00		5,25E-04	31,5	6	2,67E+05	509700	2,67E+02	8495	5,50	
KLX09F	2006-03-31 09:11:56	2006-04-08 08:57:00	9,00	152,30		2006-03-31 09:13:00		5,55E-04	33,3		2,86E+05	515220	2,86E+02	8587	3,62	
KLX09G	2006-07-12 14:07:45	2006-07-19 06:00:00	9,30	100,10		2006-07-13 10:41:00		1,28E-04	7,7		2,38E+04	186060	2,38E+01	3101	7,91	
KLX10	2005-12-10 11:10:26	2005-12-31 07:35:00	12,10	1001,20		2005-12-13 15:35:00		1,50E-03	90,3		1,02E+06	679800	1,02E+03	11330	6,93	
KLX10B	2006-07-18 15:01:58	2006-07-27 14:19:30	9,00	50,25		2006-07-19 10:51:00		3,66E-04	22,0)	6,46E+04	176340	6,46E+01	2939	9,87	
KLX10C	2006-07-24 12:59:28	2006-07-30 06:58:30	9,00	146,25		2006-07-25 10:26:00		1,10E-04	6,6	5	2,02E+04	183960	2,02E+01	3066	10,38	
KLX11A	2006-11-01 16:08:36	2006-11-10 13:29:29	12,05	992,29		2006-11-03 09:33:00		6,65E-04	39,9)	3,02E+05	454500	3,02E+02	7575	10,74	
KLX11B	2006-09-04 15:01:10	2006-09-22 10:12:00	2,54	100,20		2006-09-11 11:54:00		2,83E-04	17,0)	1,29E+05	681600	1,93E+02	7575	9,40	
KLX11C	2006-10-12 16:08:29	2006-10-15 15:50:28	2,00	120,15		2006-10-12 16:29:00		3,38E-05	2,0)	5,45E+03	161460	5,45E+00	2691	10,74	
KLX11D	2006-10-02 15:46:50	2006-10-12 12:33:20	2,00	120,35		2006-10-02 15:51:00		3,74E-04	22,5	i	1,91E+05	511260	1,91E+02	8521	10,83	
KLX11E	2006-09-22 14:47:36	2006-10-02 15:53:02	2,00	121,30		2006-09-22 14:50:00		3,68E-05	2,2	2	2,12E+04	576900	2,12E+01	9615	9,70	
KLX11F	2006-10-16 10:16:54	2006-10-21 16:45:09	2,00	120,05		2006-10-16 10:50:00		4,29E-04	25,7	r	6,81E+04	158700	6,81E+01	2645	12,38	
KLX12A	2006-06-09 16:05:49	2006-06-19 08:54:00	17,92	602,29		2006-06-10 14:20:00		1,12E-04	6,7	,	4,91E+04	438180	4,91E+01	7303	9,56	
KLX13A	2006-09-24 14:30:44	2006-10-01 11:24:02	11,75	595,85		2006-09-25 16:05:00		8,06E-04	48,4		3,40E+05	422100	3,40E+02	7035	10,03	
KLX17A	2007-01-03 18:38:04	2007-01-11 14:23:40	11,95	701,08		2007-01-03 18:43:00		2,62E-04	15,7		1,10E+05	418860	1,10E+02	6981	10,28	
KLX18A	2006-07-08 11:46:08	2006-07-21 23:59:00	11,83	611,28		2006-07-08 15:12:00		2,37E-04	14,2	2	1,43E+05	604740	1,43E+02	10079	10,14	
KLX20A	2006-06-27 11:07:54	2006-07-11 09:35:00	100,90	457,92		2006-06-27 11:10:00		1,65E-04	9,9)	5,81E+04	351840	5,81E+01	5864	10,10	
KLX24A	2006-08-24 17:18:41	2006-09-06 14:20:00	2,41	100,17		2006-08-24 17:31:00		2,76E-04	16,6	i	7,09E+04	256440	7,09E+01	4274	9,78	
KLX25A	2006-08-17 08:53:34	2006-08-20 10:55:04	2,20	50,24		2006-08-17 09:02:00		1,94E-05	1,2		3,48E+03	179580	3,48E+00	2993	4,62	
KLX27A	2008-01-03 10:43:38	2008-01-16 11:21:00	77,02	650,54		2008-01-03 11:06:00		2,76E-04	16,5	i	1,51E+05	549600	1,51E+02	9160	13,96	
KLX28A	2006-11-24 11:28:37	2006-11-27 08:48:02	5,10	80,23		2006-11-24 15:45:00		3,47E-05	2,1		5,05E+03	145560	5,05E+00	2426	10,62	
KLX29A	2006-11-27 14:00:11	2006-11-29 08:56:00	2,35	60,25		2006-11-27 16:18:00		2,35E-04	14,1		1,97E+04	83880	1,97E+01	1398	5,24	
KSH01A	2003-02-20 14:05:33	2003-03-02 14:54:32	12,10	1003,00		2003-02-22 15:30:00		5,63E-05	3,4		3,41E+04	605880	5,05E+00	10098	10,34	
KSH02	2003-07-09 11:57:09	2003-07-22 16:15:28	80,00	1001,11		2003-07-11 12:00:00		6,00E-05	3,6	;	4,69E+04	781920	6,72E+00	13032	10,54	

Pump Test Analyses

APPENDIX 4

Information about 32 pumped boreholes (SICADA, 2008-05-02)

SICADA - Information about KAV01 Value

Title

Comment: No comment exists. BOREHOLE LENGTH: Signed/Approved By Length(m) Reference Level Initial sign by sic_dba 757.31 Top of casing (center) DRILLING PERIODS: Signed/Approved By From Date To Date Secup(m) Seclow(m) Drilling Type 502.00 Anne-Marie Lindekrantz 1977-04-21 1977-05-16 0.00 Core drilling 746.60 Anne-Marie Lindekrantz 1986-10-06 1986-11-16 502.00 Core drilling 757.31 Initial sign by sic_dba 2003-06-11 2004-01-10 0.00 Core drilling STARTING POINT COORDINATE: Length(m) Northing(m) Easting(m) Elevation 0.00 6367257.52 1553084.92 14.10 Signed/Approved By Coord System Johan Svensson RT90-RHB70 STARTING POINT ANGLES: Signed/Approved By Length(m) Bearing Inclination (- = down) Coord System 0.00 237.26 -89.20 ÄSPÖ96 Stefan Sehlstedt BOREHOLE DIAMETERS: Secup(m) Seclow(m) Hole Diam(m) Signed/Approved By Initial sign by sic_dba 0.04 68.74 0.200 68.74 0.165 Initial sign by sic_dba 68.84 Initial sign by sic_dba 68.84 70.04 0.076 Initial sign by sic_dba 70.04 757.31 0.056 CORE DIAMETERS: Signed/Approved By Secup(m) Seclow(m) Core Diam(m) Initial sign by sic_dba 502.00 757.31 0.042 CASING DIAMETERS: Secup(m) Seclow(m) Case In(m) Case Out(m) Comment Signed/Approved By 0.160 Initial sign by sic_dba 0.00 68.00 0.168 Initial sign by sic_dba 68.00 68.04 0.147 0.168 CONE DIMENSIONS: Signed/Approved By Secup(m) Seclow(m) Cone In(m) Cone Out(m) Initial sign by sic_dba 67.49 67.74 0.158 Initial sign by sic_dba 67.74 70.04 0.058 0.066

SICADA - Information about KAV04A Value

Title

Information about cored borehole KAV04A (2008-05-02).

Comment:	No comment e	exists.			
BOREHOLE LENGTH: Signed/Approved By Anne-Marie Lindekrantz	Length(m) 1004.00	Reference Lev Top of casing	vel g (center)		
DRILLING PERIODS:					
Signed/Approved By Lars-Eric Samuelsson	From Date 2003-10-06 drilling	To Date 2003-11-01	Secup(m) 0.00	Seclow(m) 100.20	Drilling Type Percussion
Anne-Marie Lindekrantz	2003-12-10	2004-05-03	99.55	1004.00	Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson	Length(m) 0.00	Northing(m) 6366795.76	Easting(m) 1552475.00	Elevation 10.35	Coord System RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 77.03	Inclination -84.91	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS:	Secup(m)	Seclow(m)	Hole Diam(m))	
Lars-Eric Samuelsson Lars-Eric Samuelsson Anne-Marie Lindekrantz Anne-Marie Lindekrantz	0.00 12.63 99.55 100.95	12.63 100.20 100.95 1004.00	0.349 0.245 0.086 0.076	, ,	

Information about cored borehole KAV01 (2008-05-02).

CORE DIAMETERS: Signed/Approved By Anne-Marie Lindekrantz Anne-Marie Lindekrantz	Secup(m) 99.55 100.95	Seclow(m) 100.95 1004.00	Core Diam(m) 0.072 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.00 0.00	Seclow(m) 100.00 12.63	Case In(m) 0.200 0.265	Case Out(m) 0.208 0.273	Comment
CONE DIMENSIONS: Signed/Approved By Anne-Marie Lindekrantz	Secup(m) 96.25	Seclow(m) 100.95	Cone In(m) 0.200	Cone Out(m) 0.200	

SICADA - Information about KAV04B Value

Title

Information about cored borehole KAV04B (2008-05-02).

Comment:	No comment e	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 101.03	Reference Lev Top of casing	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2004-05-12	To Date 2004-05-18	Secup(m) 0.00	Seclow(m) 101.03	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson	Length(m) 0.00	Northing(m) 6366795.64	Easting(m) 1552474.47	Elevation 10.35	Coord System RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 134.27	Inclination -89.84	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.00 11.52	Seclow(m) 11.52 101.03	Hole Diam(m 0.096 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 101.03	Core Diam(m 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 11.52	Case In(m) 0.077	Case Out(m) 0.089	Comment

SICADA - Information about KLX04 Title Value

Information about cored borehole KLX04 (2008-05-02).

Comment:	No comment exists.					
BOREHOLE LENGTH: Signed/Approved By Susanne König	Length(m) 993.49	Reference Level Top of casing (center)				
DRILLING PERIODS:						
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type	
Lars-Eric Samuelsson	2004-02-11 drilling	2004-02-18	0.00	100.35	Percussion	
Susanne König	2004-03-13	2004-06-28	100.35	993.49	Core drilling	
STARTING POINT COORDINATE: Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System	
Gerry Jonansson	0.00	030/0//.19	15461/1.94	24.09	RI90-RHB/0	
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 0.11	Inclination -84.68	(- = down)	Coord System RT90-RHB70	
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.10	Seclow(m) 12.00	Hole Diam(m 0.347)		

Lars-Eric Samuelsson Lars-Eric Samuelsson Susanne König Susanne König	12.00 12.24 100.35 101.47	12.24 100.35 101.47 993.49	0.254 0.196 0.086 0.076		
CORE DIAMETERS: Signed/Approved By Susanne König Susanne König	Secup(m) 100.35 101.47	Seclow(m) 101.47 993.49	Core Diam(m 0.050 0.072)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.00 0.10	Seclow(m) 12.24 11.90	Case In(m) 0.200 0.310	Case Out(m) 0.208 0.324	Comment
CONE DIMENSIONS: Signed/Approved By Susanne König	Secup(m) 96.85	Seclow(m) 101.43	Cone In(m)	Cone Out(m)	

Information about cored borehole KLX09 (2008-05-02).

SICADA - Information about KLX09 Title Value

Comment: No comment exists. BOREHOLE LENGTH: Signed/Approved By Length(m) Reference Level Henrik Ask 880.38 Top of casing (center) DRILLING PERIODS: Drilling Type Signed/Approved By From Date To Date Secup(m) Seclow(m) 2005-06-02 2005-06-13 Lars-Eric Samuelsson 0.00 100.60 Percussion drilling 2005-08-26 2005-10-15 100.60 Henrik Ask 880.38 Core drilling STARTING POINT COORDINATE: Signed/Approved By Length(m) Northing(m) Easting(m) Elevation Coord System Gerry Johansson 0.00 6367323.45 1548863.18 23.45 RT90-RHB70 STARTING POINT ANGLES: Signed/Approved By Length(m) Bearing Inclination (- = down) Coord System Lars-Eric Samuelsson 0.00 267.41 -85.29 RT90-RHB70 BOREHOLE DIAMETERS: Seclow(m) Hole Diam(m) Signed/Approved By Secup(m) Lars-Eric Samuelsson 9.80 0.341 0.12 Lars-Eric Samuelsson 9.80 11.95 0.248 Lars-Eric Samuelsson 11.95 100.50 0.197 Lars-Eric Samuelsson 100.50 100.60 0.163 Henrik Ask 100.60 102.00 0.086 0.076 Henrik Ask 101.05 880.38 Henrik Ask 755.70 757.95 0.084 Henrik Ask 758.70 760.95 0.084 CORE DIAMETERS: Core Diam(m) Signed/Approved By Secup(m) Seclow(m) Henrik Ask 100.60 101.05 0.072 Henrik Ask 101.05 880.38 0.050 CASING DIAMETERS: Signed/Approved By Secup(m) Seclow(m) Case In(m) Case Out(m) Comment Lars-Eric Samuelsson 0.00 11.95 0.200 0.208 Lars-Eric Samuelsson 0.65 9.80 0.310 0.323 Henrik Ask 775.75 757.70 0.082 0.084 CONE DIMENSIONS: Cone In(m) Cone Out(m) Signed/Approved By Secup(m) Seclow(m) Henrik Ask 97.33 102.00 0.080 0.195

SICADA - Information about KLX09B Value

Title

Information about cored borehole KLX09B (2008-05-02).

Comment:

No comment exists.

BOREHOLE LENGTH:

Signed/Approved By Lars-Eric Samuelsson	Length(m) 100.22	Reference Level Top of casing (center)				
		-	5 . ,			
DRILLING PERIODS:						
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type	
Lars-Eric Samuelsson	2006-01-16	2006-01-26	0.00	100.22	Core drilling	
STARTING POINT COORDINATE:						
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System	
Gerry Johansson	0.00	6367329.07	1548859.01	23.61	RT90-RHB70	
Gerry Johansson	3.00	6367329.07	1548859.03	20.61	RT90-RHB70	
STARTING POINT ANGLES:						
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System	
Gerry Johansson	0.00	21.25	-89.54		RT90-RHB70	
BOREHOLE DIAMETERS:						
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m	ι)		
Lars-Eric Samuelsson	0.30	2.48	0.116			
Lars-Eric Samuelsson	2.48	10.74	0.096			
Lars-Eric Samuelsson	10.74	100.22	0.076			
CORE DIAMETERS:						
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m	1)		
Lars-Eric Samuelsson	2.48	100.22	0.050	,		
CASING DIAMETERS:						
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment	
Lars-Eric Samuelsson	0.00	10.74	0.077	0.089		

SICADA - Information about KLX09C

Information about cored borehole KLX09C (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	evel		
Lars-Eric Samuelsson	120.05	Top of casin	ng (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-01-07	2006-01-15	0.30	120.05	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6367353.43	1548838.82	23.75	RT90-RHB70
Gerry Johansson	3.00	6367351.97	1548839.35	21.19	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	160.39	-58.72		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m	.)	
Lars-Eric Samuelsson	0.30	9.00	0.096		
Lars-Eric Samuelsson	9.00	120.05	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m	.)	
Lars-Eric Samuelsson	0.30	120.05	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	9.00	0.077	0.089	

SICADA - Information about KLX09D

Information about cored borehole KLX09D (2008-05-02).

No comment exists.

BOREHOLE LENGTH:		
Signed/Approved By	Length(m)	Reference Level
Lars-Eric Samuelsson	121.02	Top of casing (center)

Comment:

Comment:

DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2005-11-05	2005-11-17	0.30	121.02	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6367336.99	1548878.22	23.10	RT90-RHB70
Gerry Johansson	3.00	6367337.00	1548876.71	20.51	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(down)	Coord System
Gerry Johansson	0.00	270.15	-59.62	(40,000)	RT90-RHB70
	0.00	2,0,10	00102		
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	9.75	0.096		
Lars-Eric Samuelsson	9.75	121.02	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	0.30	121.02	0.050	,	
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	9.75	0.077	0.089	

SICADA - Information about KLX09E

Information about cored borehole KLX09E (2008-05-02).

No comment exists.

BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	120.00	Top of casin	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2005-11-23	2005-12-05	0.30	120.00	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6367304.45	1548880.37	22.16	RT90-RHB70
Gerry Johansson	3.00	6367305.85	1548879.83	19.56	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	338.90	-59.93		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	9.00	0.096		
Lars-Eric Samuelsson	9.00	120.00	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	0.30	120.00	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	9.00	0.077	0.089	

$\underset{_{\rm Title}}{\text{SICADA}} \text{ - Information about KLX09F}$

Information about cored borehole KLX09F (2008-05-02). Comment: No comment exists. BOREHOLE LENGTH: Length(m) Reference Level Signed/Approved By Lars-Eric Samuelsson 152.30 Top of casing (center) DRILLING PERIODS: Seclow(m) Signed/Approved By From Date To Date Secup(m) Drilling Type 2005-12-06 2006-01-06 0.30 Lars-Eric Samuelsson 152.30 Core drilling Comment:

STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Maria Eriksson	0.00	6367318.02	1548817.26	19.57	RT90-RHB70
Maria Eriksson	3.00	6367318.01	1548818.80	17.00	RT90-RHB70
STARTING DOINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	90.67	-59.14		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m))	
Lars-Eric Samuelsson	0.30	9.00	0.096		
Lars-Eric Samuelsson	9.00	152.30	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m))	
Lars-Eric Samuelsson	0.30	152.30	0.050	,	
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	9.00	0.077	0.089	

$\underset{{}^{\tt Title}}{{\sf SICADA}} - Information about KLX09G$

Information about cored borehole KLX09G (2008-05-02).

No comment exists.

BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 100.10	Reference Le Top of casing			
DRILLING PERIODS:	From Data	The Data	(m)		
Lars-Eric Samuelsson	2006-01-27	2006-02-03	0.00	100.10	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6367330.09	1548905.77	19.63	RT90-RHB70
Gerry Johansson	3.00	6367330.21	1548907.22	17.01	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	85.41	-60.96		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	9.30	0.096		
Lars-Eric Samuelsson	9.30	100.10	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	0.30	100.10	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	9.30	0.077	0.089	

$\underset{_{\rm Title}}{\text{SICADA}} \text{ - Information about KLX10}$

	Information about cored borehole KLX10 (2008-05-02).						
Comment:	No comment	t exists.					
BOREHOLE LENGTH:							
Signed/Approved By	Length(m)	Reference Lev	vel				
Henrik Ask	1001.20	Top of casing (center)					
DRILLING PERIODS:							
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type		
Lars-Eric Samuelsson	2005-05-24 drilling	2005-06-01	0.00	100.60	Percussion		
Henrik Ask	2005-06-18	2005-10-15	100.60	1001.20	Core drilling		

STARTING POINT COORDINATE:

Length(m) 0.00	Northing(m) 6366319.38	Easting(m) 1548515.23	Elevation 18.28	Coord System RT90-RHB70
Length(m) 0.00	Bearing 250.81	Inclination -85.19	(- = down)	Coord System RT90-RHB70
Secup(m)	Seclow(m)	Hole Diam(m))	
0.12	9.20	0.343		
9.20	12.10	0.248		
12.10	100.50	0.197		
100.50	100.60	0.163		
100.60	102.13	0.086		
102.13	1001.20	0.076		
224.65	226.83	0.084		
327.40	329.60	0.084		
336.10	337.83	0.084		
Secup(m)	Seclow(m)	Core Diam(m))	
100.60	101.13	0.072		
101.13	155.10	0.050		
155.10	156.35	0.045		
156.35	168.90	0.050		
168.90	169.50	0.045		
169.50	188.00	0.050		
188.00	192.05	0.045		
192.05	198.24	0.050		
198.24	204.50	0.045		
204.50	1001.20	0.050		
Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
0.00	12.10	0.200	0.208	
0.12	9.20	0.280	0.311	
224.75	225.75	0.082	0.084	
327.50	329.50	0.082	0.084	
336.20	337.70	0.082	0.084	
Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)	
97.48	102.13	0.080	0.195	
	Length(m) 0.00 Length(m) 0.00 Secup(m) 0.12 9.20 12.10 100.50 100.60 102.13 224.65 327.40 336.10 Secup(m) 100.60 101.13 155.10 156.35 168.90 169.50 188.00 192.05 198.24 204.50 Secup(m) 0.00 0.12 224.75 327.50 336.20	Length(m) Northing(m) 0.00 6366319.38 Length(m) Bearing 0.00 250.81 Secup(m) Seclow(m) 0.12 9.20 9.20 12.10 12.10 100.50 100.60 102.13 102.13 1001.20 224.65 226.83 327.40 329.60 336.10 337.83 Secup(m) Seclow(m) 100.60 101.13 101.13 155.10 155.10 156.35 156.35 168.90 169.50 188.00 188.00 192.05 192.05 198.24 198.24 204.50 204.50 1001.20 Secup(m) Seclow(m) 0.00 12.10 0.12 9.20 224.75 225.75 327.50 329.50 336.20 337.70	Length(m) Northing(m) Easting(m) 0.00 6366319.38 1548515.23 Length(m) Bearing Inclination 0.00 250.81 -85.19 Secup(m) Seclow(m) Hole Diam(m) 0.12 9.20 0.343 9.20 12.10 0.248 12.10 100.50 0.197 100.50 100.60 0.163 100.60 102.13 0.086 102.13 1001.20 0.076 224.65 226.83 0.084 336.10 337.83 0.084 Secup(m) Seclow(m) Core Diam(m) 100.60 101.13 0.072 101.13 155.10 0.050 155.10 156.35 0.045 156.35 168.90 0.050 158.00 192.05 0.045 169.50 188.00 0.050 188.00 192.05 0.045 192.05 198.24 0.050 198.24 204.50 0.045 192.05 198.24 0.050 198.24 204.50 0.045 204.50 1001.20 0.050 Secup(m) Seclow(m) Case In(m) 0.00 12.10 0.200 0.12 9.20 0.280 224.75 225.75 0.082 327.50 329.50 0.082 336.20 337.70 0.082	Length(m) Northing(m) Easting(m) Elevation 0.00 6366319.38 1548515.23 18.28 Length(m) Bearing Inclination (- = down) 0.00 250.81 -85.19 Secup(m) Seclow(m) Hole Diam(m) 0.12 9.20 0.343 9.20 12.10 0.248 12.10 100.50 0.197 100.50 100.60 0.163 100.60 102.13 0.086 102.13 1001.20 0.076 224.65 226.83 0.084 327.40 329.60 0.084 336.10 337.83 0.084 Secup(m) Seclow(m) Core Diam(m) 100.60 101.13 0.072 101.13 155.10 0.050 155.10 156.35 0.045 156.35 168.90 0.050 168.90 169.50 0.045 169.50 188.00 0.050 188.00 192.05 0.045 192.05 198.24 0.050 198.24 204.50 0.045 204.50 1001.20 0.050 Secup(m) Seclow(m) Case In(m) Case Out(m) 0.00 12.10 0.200 0.208 0.12 9.20 0.280 0.311 224.75 225.75 0.082 0.084 327.50 329.50 0.082 0.084

$\underset{_{\text{Title}}}{\text{SICADA}} \text{ - Information about KLX10B}$

Information about cored borehole KLX10B (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	50.25	Top of casing	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-02-08	2006-02-14	0.00	50.25	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366316.49	1548525.15	18.15	RT90-RHB70
Gerry Johansson	3.00	6366314.99	1548525.41	16.01	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	170.32	-59.65		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	9.00	0.096		
Lars-Eric Samuelsson	9.00	50.25	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	0.30	50.25	0.050		

CASING DIAMETERS:

Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m) Comment
Lars-Eric Samuelsson	0.00	9.00	0.077	0.089

SICADA - Information about KLX10C Value

Title

Information about cored borehole KLX10C (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 146.25	Reference Le Top of casin	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-02-15	To Date 2006-02-28	Secup(m) 0.30	Seclow(m) 146.25	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson Gerry Johansson	Length(m) 0.00 3.00	Northing(m) 6366372.07 6366373.55	Easting(m) 1548506.94 1548506.74	Elevation 16.93 14.33	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 352.43	Inclination -60.15	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 9.00	Seclow(m) 9.00 146.25	Hole Diam(m 0.096 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.03	Seclow(m) 146.25	Core Diam(m 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 9.00	Case In(m) 0.077	Case Out(m) 0.089	Comment

SICADA - Information about KLX11A Value

Title

Comment:

Information about cored borehole KLX11A (2008-05-02).

No comment exists.

BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	992.29	Top of casin	g (center)		
DETITING DEPTODO					
Signed (Approved Dr	Exem Date	To Doto	Cogur (m)	Coglow(m)	Dwilling Trme
Signed/Approved By	PION Dale	10 Dale		100 06	Driffing Type
Lars-Eric Samuersson	drilling	2005-11-08	0.45	100.00	Percussion
Lars-Eric Samuelsson	2005-11-24	2006-03-02	100.06	992.29	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366339.72	1546608.49	27.14	RT90-RHB70
Gerry Johansson	3.00	6366339.72	1546609.19	24.23	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	89.84	-76.43	,	RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.43	9.60	0.343		
Lars-Eric Samuelsson	9.60	12.05	0.248		
Lars-Eric Samuelsson	12.05	99.96	0.195		
Lars-Eric Samuelsson	99.96	100.06	0.160		
Lars-Eric Samuelsson	100.06	101.53	0.086		
Lars-Eric Samuelsson	101.53	992.29	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	100.06	100.53	0.072		

Comment:

100.53	992.29	0.050	
Secup(m)	Seclow(m)	Case In(m)	Case Out(m) Comment
0.00	12.05	0.200	0.208
0.43	9.60	0.310	0.323
Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)
96.77	99.77	0.100	0.104
99.77	101.53	0.080	0.084
	100.53 Secup(m) 0.00 0.43 Secup(m) 96.77 99.77	100.53 992.29 Secup(m) Seclow(m) 0.00 12.05 0.43 9.60 Secup(m) Seclow(m) 96.77 99.77 99.77 101.53	100.53 992.29 0.050 Secup(m) Seclow(m) Case In(m) 0.00 12.05 0.200 0.43 9.60 0.310 Secup(m) Seclow(m) Cone In(m) 96.77 99.77 0.100 99.77 101.53 0.080

$\underset{{}^{\tt Title}}{{\sf SICADA}} \text{ - Information about KLX11B}$

Information about cored borehole KLX11B (2008-05-02).

No comment exists.

BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	100.20	Top of casin	g (center)		
		-			
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-04-22	2006-04-28	0.30	100.20	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366339.51	1546604.89	27.27	RT90-RHB70
Gerry Johansson	3.00	6366339.50	1546604.90	24.27	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	136.16	-89.87		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	1.21	0.117		
Lars-Eric Samuelsson	1.21	2.54	0.096		
Lars-Eric Samuelsson	2.54	100.20	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	1.21	100.20	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	2.54	0.077	0.089	

SICADA - Information about KLX11C

Information about cored borehole KLX11C (2008-05-05).

Comment:	No comment	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 120.15	Reference Le Top of casir	evel ng (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-03-30	To Date 2006-04-05	Secup(m) 0.00	Seclow(m) 120.15	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson Gerry Johansson	Length(m) 0.00 3.00	Northing(m) 6366350.26 6366348.88	Easting(m) 1546586.89 1546587.41	Elevation 27.19 24.58	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 159.34	Inclination -60.52	n (- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 2.00	Seclow(m) 2.00 120.15	Hole Diam(m 0.096 0.076	1)	

CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 120.15	Core Diam(m 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 2.00	Case In(m) 0.077	Case Out(m) 0.089	Comment

SICADA - Information about KLX11D Title

Value

about cored borehole KLX11D (2008-05-02)

	information about cored borenole KLXIID (2008-05-02).				
Comment:	No comment	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 120.35	Reference Le Top of casin	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-04-06	To Date 2006-04-13	Secup(m) 0.00	Seclow(m) 120.35	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson Gerry Johansson	Length(m) 0.00 3.00	Northing(m) 6366357.37 6366357.33	Easting(m) 1546631.42 1546629.87	Elevation 25.57 23.00	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 268.70	Inclination -59.00	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 2.00	Seclow(m) 2.00 120.35	Hole Diam(m 0.096 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 120.35	Core Diam(m 0.050)	

CASING DIAMETERS:				
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m) Comment
Lars-Eric Samuelsson	0.00	2.00	0.077	0.089

SICADA - Information about KLX11E Title Value

Information about cored borehole KLX11E (2008-05-02).

Comment:	No comment exists.				
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 121.30	Reference Lev Top of casing	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-04-13	To Date 2006-04-21	Secup(m) 0.00	Seclow(m) 121.30	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson Gerry Johansson	Length(m) 0.00 3.00	Northing(m) 6366300.39 6366301.74	Easting(m) 1546627.23 1546626.64	Elevation 22.65 20.03	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 336.17	Inclination -60.65	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 2.00	Seclow(m) 2.00 121.30	Hole Diam(m) 0.096 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.30	Seclow(m) 121.30	Core Diam(m) 0.050)	

CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m) Cor	mment
Lars-Eric Samuelsson	0.00	2.00	0.077	0.089	

SICADA - Information about KLX11F

Information about cored borehole KLX11F (2008-05-02).

Comment:	No comment e	exists.			
BOREHOLE LENGTH: Signed/Approved By	Length(m)	Reference Les			
Lars-Eric Samuelsson	120.05	Top of casing	g (center)		
DRILLING PERIODS:					
Signed/Approved By Lars-Eric Samuelsson	From Date 2006-03-14	To Date 2006-03-17	Secup(m) 0.00	Seclow(m) 120.05	Drilling Type Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366314.09	1546577.96	24.47	RT90-RHB70
Gerry Johansson	3.00	6366314.13	1546579.41	21.84	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	88.61	-60.98		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m))	
Lars-Eric Samuelsson	0.30	2.00	0.096		
Lars-Eric Samuelsson	2.00	120.05	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m))	
Lars-Eric Samuelsson	0.00	120.05	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	2.00	0.077	0.089	

SICADA - Information about KLX12A

Information about cored borehole KLX12A (2008-05-02).

Comment: No comment exists. BOREHOLE LENGTH: Length(m) Signed/Approved By Reference Level Lars-Eric Samuelsson 602.29 Unknown DRILLING PERIODS: From Date Seclow(m) Signed/Approved By To Date Secup(m) Drilling Type Lars-Eric Samuelsson 2005-10-19 2005-10-27 100.57 0.15 Percussion drilling Lars-Eric Samuelsson 2005-11-10 2006-03-04 100.57 602.29 Core drilling STARTING POINT COORDINATE: Length(m) Northing(m) Easting(m) Elevation Coord System 0.00 6365630.78 1548904.44 17.74 RT90-RHB70 Signed/Approved By Gerry Johansson 6365631.34 1548903.90 14.84 Gerry Johansson 3.00 RT90-RHB70 STARTING POINT ANGLES: Signed/Approved By Length(m) Bearing Inclination (- = down) Coord System Gerry Johansson 0.00 315.92 -75.07 RT90-RHB70

BOREHOLE DIAMETERS:				
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.15	15.10	0.343	
Lars-Eric Samuelsson	15.10	17.92	0.248	
Lars-Eric Samuelsson	17.92	100.40	0.197	
Lars-Eric Samuelsson	100.40	100.57	0.161	
Lars-Eric Samuelsson	100.57	102.13	0.086	
Lars-Eric Samuelsson	102.13	602.29	0.076	

CORE DIAMETERS:

Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	100.57	101.12	0.072	,	
Lars-Eric Samuelsson	101.12	224.03	0.050		
Lars-Eric Samuelsson	224.03	224.07			
Lars-Eric Samuelsson	224.07	224.99	0.062		
Lars-Eric Samuelsson	224.99	225.48	0.050		
Lars-Eric Samuelsson	225.48	225.54			
Lars-Eric Samuelsson	225.54	226.39	0.050		
Lars-Eric Samuelsson	226.39	226.43			
Lars-Eric Samuelsson	226.43	226.77	0.050		
Lars-Eric Samuelsson	226.77	226.82			
Lars-Eric Samuelsson	226.82	227.72	0.050		
Lars-Eric Samuelsson	227.72	228.81			
Lars-Eric Samuelsson	228.81	228.87	0.062		
Lars-Eric Samuelsson	228.87	228.91			
Lars-Eric Samuelsson	228.91	229.88	0.050		
Lars-Eric Samuelsson	229.88	229.93			
Lars-Eric Samuelsson	229.93	231.04	0.050		
Lars-Eric Samuelsson	231.04	231.20			
Lars-Eric Samuelsson	231.20	232.20	0.062		
Lars-Eric Samuelsson	232.20	232.24			
Lars-Eric Samuelsson	232.24	233.25	0.062		
Lars-Eric Samuelsson	233.25	233.28			
Lars-Eric Samuelsson	233.28	234.31	0.062		
Lars-Eric Samuelsson	234.31	235.82	0.050		
Lars-Eric Samuelsson	235.82	236.10			
Lars-Eric Samuelsson	236.10	237.13	0.062		
Lars-Eric Samuelsson	237.13	237.17			
Lars-Eric Samuelsson	237.17	238.17	0.062		
Lars-Eric Samuelsson	238.17	238.90	0.050		
Lars-Eric Samuelsson	238.90	238.93			
Lars-Eric Samuelsson	238.93	239.14	0.050		
Lars-Eric Samuelsson	239.14	239.21			
Lars-Eric Samuelsson	239.21	240.28	0.062		
Lars-Eric Samuelsson	240.28	241.90	0.050		
Lars-Eric Samuelsson	241.90	241.95			
Lars-Eric Samuelsson	241.95	302.17	0.050		
Lars-Eric Samuelsson	302.17	304.81	0.048		
Lars-Eric Samuelsson	304.81	307.92	0.050		
Lars-Eric Samuelsson	307.92	310.81	0.048		
Lars-Eric Samuelsson	310.81	313.81	0.050		
Lars-Eric Samuelsson	313.81	316.57	0.048		
Lars-Eric Samuelsson	316.57	319.65	0.050		
Lars-Eric Samuelsson	319.65	322.55	0.048		
Lars-Eric Samuelsson	322.55	325.67	0.050		
Lars-Eric Samuelsson	325.72	328.72	0.048		
Lars-Eric Samuelsson	328.72	331.85	0.050		
Lars-Eric Samuelsson	331.85	334.81	0.048		
Lars-Eric Samuelsson	334.81	349.94	0.050		
Lars-Eric Samuelsson	349.94	352.16	0.062		
Lars-Eric Samuelsson	352.16	355.07	0.050		
Lars-Eric Samuelsson	355.07	356.15	0.062		
Lars-Eric Samuelsson	356.15	357.23	0.050		
Lars-Eric Samuelsson	357.23	358.26	0.062		
Lars-Eric Samuelsson	358.26	359.36	0.050		
Lars-Eric Samuelsson	359.36	360.43	0.062		
Lars-Eric Samuelsson	360.43	365.22	0.050		
Lars-Eric Samuelsson	365.22	368.26	0.062		
Lars-Eric Samuelsson	368.26	467.14	0.050		
Lars-Eric Samuelsson	467.14	469.41	0.062		
Lars-Eric Samuelsson	469.41	470.56	0.050		
Lars-Eric Samuelsson	470.18	474.18	0.062		
Lars-Eric Samuelsson	474.18	475.10	0.050		
Lars-Eric Samuelsson	475.10	476.28	0.062		
Lars-Eric Samuelsson	476.28	479.17	0.050		
Lars-Eric Samuelsson	479.17	480.19	0.062		
Lars-Eric Samuelsson	480.19	481.65	0.050		
Lars-Eric Samuelsson	481.65	483.73	0.062		
Lars-Eric Samuelsson	483.73	602.29	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	17.92	0.200	0.208	
Lars-Eric Samuelsson	0.15	15.10	0.310	0.323	
CONE DIMENSIONS:				_	
Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)	
Lars-Eric Samuelsson	97.36	102.13			

$\underset{{}_{\mathtt{Title}}}{\mathtt{SICADA}} \text{ - Information about KLX13A}$

- -

Comment:

Comment:	No comment	exists.			
BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	595.85	Top of casin	q (center)		
		-1	, , , , , , , , , , , , , , , , , , ,		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-03-23	2006-03-30	0.15	99.86	Percussion
	drilling				
Lars-Eric Samuelsson	2006-05-19	2006-08-16	99.86	595.85	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6367547.14	1546787.36	24.15	RT90-RHB70
Gerry Johansson	3.00	6367546.86	1546787.08	21.18	RT90-RHB70
STARTING DOINT ANGLES.					
Signed/Approved By	Length(m)	Bearing	Inclination	(down)	Coord System
Cerry Johansson	0 00	224 48	_82 25	(= uowii)	
Gerry Conanason	0.00	221.10	02.25		KI 90 - KIIB / 0
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m))	
Lars-Eric Samuelsson	0.15	6.15	0.341		
Lars-Eric Samuelsson	6.15	11.75	0.252		
Lars-Eric Samuelsson	11.75	99.76	0.197		
Lars-Eric Samuelsson	99.76	99.86	0.160		
Lars-Eric Samuelsson	99.86	101.21	0.086		
Lars-Eric Samuelsson	101.21	595.85	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m))	
Lars-Eric Samuelsson	99.86	100.36	0.072		
Lars-Eric Samuelsson	100.36	595.85	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Larg-Fric Samuelsson	0 00	11 75	0 200	0 208	commerc
Lars-Eric Samuelsson	0.15	6.15	0.301	0.323	
	0.10	0.10	0.001	0.525	
CONE DIMENSIONS:					
Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)	
Lars-Eric Samuelsson	96.11	101.21	0.100	0.104	

$\underset{_{\text{Title}}}{\text{SICADA}} \text{ - Information about KLX17A}$

Information about cored borehole KLX17A (2008-05-02).

Information about cored borehole KLX13A (2008-05-02).

No	comment	exists.	

BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 701.08	Reference Lev Top of casing	vel g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-08-07 drilling	2006-08-15	0.15	65.42	Percussion
Lars-Eric Samuelsson	2006-09-13	2006-10-23	65.42	701.08	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366848.75	1546862.09	27.63	RT90-RHB70
Gerry Johansson	3.00	6366850.16	1546862.37	25.00	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	11.21	-61.34		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m))	

Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson	0.15 2.60 11.95 65.35 65.42 66.76	2.60 11.95 65.35 65.42 66.76 701.08	0.339 0.248 0.197 0.159 0.086 0.076			
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 65.42 65.85	Seclow(m) 65.85 701.08	Core Diam(m) 0.072 0.050)		
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.00 0.15 2.50	Seclow(m) 11.95 2.50 2.60	Case In(m) 0.200 0.310 0.280	Case Out(m) 0.208 0.323 0.323	Comment rostfri Borrsko	0.1
CONE DIMENSIONS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 62.02 65.02	Seclow(m) 65.02 66.76	Cone In(m) 0.100 0.080	Cone Out(m) 0.104 0.084		

SICADA - Information about KLX18A Title Value

Information about cored borehole KLX18A (2008-05-02).

No comment exists.

BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 611.28	Reference Le Top of casin	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-02-15 drilling	To Date 2006-02-21	Secup(m) 0.30	Seclow(m) 99.93	Drilling Type Percussion
Lars-Eric Samuelsson	2006-03-29	2006-05-02	99.93	611.28	Core drilling
STARTING POINT COORDINATE: Signed/Approved By Gerry Johansson Gerry Johansson	Length(m) 0.00 3.00	Northing(m) 6366413.39 6366413.40	Easting(m) 1547966.35 1547965.93	Elevation 21.01 18.04	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Gerry Johansson	Length(m) 0.00	Bearing 271.40	Inclination -82.04	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 9.30 11.83 99.83 99.93 101.35	Seclow(m) 9.30 11.83 99.83 99.93 101.35 611.28	Hole Diam(m 0.340 0.254 0.198 0.163 0.086 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 99.93 100.80	Seclow(m) 100.80 611.28	Core Diam(m 0.072 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.00 0.30	Seclow(m) 11.83 9.30	Case In(m) 0.200 0.311	Case Out(m) 0.208 0.323	Comment
CONE DIMENSIONS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 96.53	Seclow(m) 101.35	Cone In(m)	Cone Out(m)	

SICADA - Information about KLX20A Value

Title

Information about cored borehole KLX20A (2008-05-02).

Comment:

No comment exists.

BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	457.92	Top of casin	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-02-22	2006-03-08	0.30	99.91	Percussion
	drilling				
Lars-Eric Samuelsson	2006-03-25	2006-04-24	99.91	457.92	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0 00	6366334 57	1546604 89	27 24	RT90-RHB70
Cerry Johansson	3 00	6366334 59	1546602 95	24 95	RT90-RHB70
serry contribution	5.00	0500551.55	1010002.00	21.95	Rijo Rib/o
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	270.61	-49.81		RT90-RHB70
BORFHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Larg-Fric Samuelsson	0 30	6 00	0 340	/	
Larg-Frig Samuelsson	6.00	0.00 99 90	0.253		
Larg-Fric Samuelsson	99 90	99 91	0.162		
Larg-Fric Samuelsson	99 91	100 90	0.102		
Larg-Frig Samuelsson	100 90	457 92	0.000		
	100.90	137.92	0.070		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	99.91	100.40	0.072		
Lars-Eric Samuelsson	100.40	457.92	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	99.47	0.200	0.208	condicite
Lars-Eric Samuelsson	0.30	6.00	0.310	0.323	
Lars-Eric Samuelsson	99.47	99.50	0.170	0.208	
CONE DIMENSIONS.					
CONE DIMENSIONS:	C = ()			General Outh ()	
Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	cone Out(m)	
Lars-Eric Samuelsson	90.08	99.09	0.100	0.104	
Lars-Eric Samuelsson	99.09	T00.90	0.080	0.084	

SICADA - Information about KLX24A $_{\tt Title}$ Value

Information about cored borehole KLX24A (2008-05-02).

No comment	exists.			
Length(m)	Reference Lev	vel		
100.17	Top of casing	g (center)		
From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
2006-06-14	2006-06-29	0.30	100.17	Core drilling
Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
0.00	6366423.35	1546853.80	21.29	RT90-RHB70
3.00	6366423.12	1546855.32	18.71	RT90-RHB70
Length(m)	Bearing	Inclination	(- = down)	Coord System
0.00	98.41	-59.15		RT90-RHB70
Secup(m)	Seclow(m)	Hole Diam(m))	
0.30	2.41	0.096		
2.41	100.17	0.076		
Secup(m)	Seclow(m)	Core Diam(m))	
0.30	100.17	0.050		
	No comment Length(m) 100.17 From Date 2006-06-14 Length(m) 0.00 3.00 Length(m) 0.00 Secup(m) 0.30 2.41 Secup(m) 0.30	No comment exists. Length(m) Reference Levent 100.17 Top of casing From Date To Date 2006-06-14 2006-06-29 Length(m) Northing(m) 0.00 6366423.35 3.00 6366423.12 Length(m) Bearing 0.00 98.41 Secup(m) Seclow(m) 0.30 2.41 100.17 Seclow(m) 0.30 100.17	No comment exists. Length(m) Reference Level 100.17 Top of casing (center) From Date To Date Secup(m) 2006-06-14 2006-06-29 0.30 Length(m) Northing(m) Easting(m) 0.00 6366423.35 1546853.80 3.00 6366423.12 1546855.32 Length(m) Bearing Inclination 0.00 98.41 -59.15 Secup(m) Seclow(m) Hole Diam(m 0.30 2.41 0.096 2.41 100.17 0.076 Secup(m) Seclow(m) Core Diam(m 0.30 100.17 0.050	No comment exists. Length(m) Reference Level 100.17 Top of casing (center) From Date To Date Secup(m) Seclow(m) 2006-06-14 2006-06-29 0.30 100.17 Length(m) Northing(m) Easting(m) Elevation 0.00 6366423.35 1546853.80 21.29 3.00 6366423.12 1546855.32 18.71 Length(m) Bearing Inclination (- = down) 0.00 98.41 -59.15 Secup(m) Seclow(m) Hole Diam(m) 0.30 2.41 0.096 2.41 100.17 0.076 Secup(m) Seclow(m) Core Diam(m) 0.30 100.17 0.050

CASING DIAMETERS:

Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m) Comment
Lars-Eric Samuelsson	0.00	2.41	0.077	0.090
CONE DIMENSIONS: Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)

No comment exists.

SICADA - Information about KLX25A Value

Title

Comment:

Information about cored borehole KLX25A (2008-05-02).

BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	50.24	Top of casin	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Larg-Fric Samuelsson	2006-07-01	2006-07-04	0 30	50 24	Core drilling
	2000 07 01	2000 07 01	0.50	50.21	core driffing
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366274.74	1546769.66	22.84	RT90-RHB70
Gerry Johansson	3.00	6366273.48	1546770.52	20.25	RT90-RHB70
CTARTING ROINT ANGLES.					
Giamod (Jamasanad Da	Tenerth (m)	Deening	Tualination	()	General Greatian
Signed/Approved By		145 72		(- = down)	
Gerry Jonansson	0.00	145./3	-59.46		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.30	2.20	0.096		
Lars-Eric Samuelsson	2.20	50.24	0.076		
CORE DIAMETERS:					
Signed/Approved By	Socur (m)	Socier(m)	Coro Diam(m)	
Signed/Approved By		5ectow(m))	
Lars-Eric Samuelsson	0.30	50.24	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	2.20	0.077	0.090	

SICADA - Information about KLX27A Title Value

Information about cored borehole KLX27A (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel		
Lars-Eric Samuelsson	650.56	Top of casin	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2007-08-15 drilling	2007-08-27	0.16	75.60	Percussion
Lars-Eric Samuelsson	2007-10-08	2007-11-21	75.60	650.56	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Lars-Eric Samuelsson	0.00	6365608.29	1546742.63	16.98	RT90-RHB70
Lars-Eric Samuelsson	3.00	6365609.54	1546742.65	14.25	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Lars-Eric Samuelsson	0.00	0.73	-65.37		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.16	9.20	0.341		
Lars-Eric Samuelsson	9.20	14.76	0.254		
Lars-Eric Samuelsson	14.76	73.50	0.197		
Lars-Eric Samuelsson	75.50	75.60	0.157		
Lars-Eric Samuelsson	75.60	77.02	0.086		
Lars-Eric Samuelsson	77.02	650.56	0.076		

CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m))	
Lars-Eric Samuelsson	75.60	76.12	0.072		
Lars-Eric Samuelsson	76.12	650.56	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	14.76	0.200	0.208	
Lars-Eric Samuelsson	0.16	9.20	0.310	0.323	
CONE DIMENSIONS:					
Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)	
Lars-Eric Samuelsson	72.28	75.28	0.100	0.104	
Lars-Eric Samuelsson	75.28	77.02	0.080	0.084	

SICADA - Information about KLX28A Value

Title

Information about cored borehole KLX28A (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 80.23	Reference Le Top of casin	vel g (center)		
DRILLING PERIODS: Signed/Approved By Lars-Eric Samuelsson	From Date 2006-09-14	To Date 2006-09-20	Secup(m) 0.30	Seclow(m) 80.23	Drilling Type Core drilling
STARTING POINT COORDINATE: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Length(m) 0.00 3.00	Northing(m) 6365682.22 6365680.70	Easting(m) 1549333.71 1549333.46	Elevation 10.05 7.47	Coord System RT90-RHB70 RT90-RHB70
STARTING POINT ANGLES: Signed/Approved By Lars-Eric Samuelsson	Length(m) 0.00	Bearing 189.70	Inclination -59.23	(- = down)	Coord System RT90-RHB70
BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 2.85 5.10	Seclow(m) 2.85 5.10 80.23	Hole Diam(m 0.116 0.096 0.076	.)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 2.85	Seclow(m) 80.23	Core Diam(m 0.052)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 5.10	Case In(m) 0.077	Case Out(m) 0.090	Comment

SICADA - Information about KLX29A Title Value

Information about cored borehole KLX29A (2008-05-02).

Comment:	No comment	exists.			
BOREHOLE LENGTH: Signed/Approved By Lars-Eric Samuelsson	Length(m) 60.25	Reference Le Top of casin	vel g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2006-09-09	2006-09-13	0.30	60.25	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Lars-Eric Samuelsson	0.00	6366264.54	1549443.99	13.63	RT90-RHB70
Lars-Eric Samuelsson	3.00	6366265.69	1549443.06	11.02	RT90-RHB70
CTADTING DOINT ANGLES.					
STARTING POINT ANGLES:	To a state la (sea)	Densiderer	T	(-1	General Genetary
Signea/Approved By	Length(m)	Bearing	inclination	(- = down)	coora system
Lars-Eric Samuelsson	0.00	321.21	-60.35		RT90-RHB70

BOREHOLE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson Lars-Eric Samuelsson	Secup(m) 0.30 2.35	Seclow(m) 2.35 60.25	Hole Diam(m) 0.096 0.076)	
CORE DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.30	Seclow(m) 60.25	Core Diam(m) 0.050)	
CASING DIAMETERS: Signed/Approved By Lars-Eric Samuelsson	Secup(m) 0.00	Seclow(m) 2.35	Case In(m) 0.077	Case Out(m) 0.090	Comment

SICADA - Information about KSH01A Title Value

	Information	about cored	borehole KSH	01A (2008-05	-02).
Old Idcode Name(s):	KSH01	used until	2002-09-10 1	1:44	
Comment:	Correct nam Sehltstedt, 2002-09-10.	e is KSHOlA,	not KSH01, a	ccording to	Stefan
BOREHOLE LENGTH:					
Signed/Approved By	Length(m)	Reference Le	vel a (acetor)		
Lars-Eric Samueisson	1003.00	top of casin	g (center)		
DRILLING PERIODS:					
Signed/Approved By	From Date	To Date	Secup(m)	Seclow(m)	Drilling Type
Lars-Eric Samuelsson	2002-08-22 drilling	2002-09-17	0.00	100.24	Percussion
Lars-Eric Samuelsson	2002-10-07	2002-12-18	100.24	1003.00	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6366013.45	1552442.98	5.32	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	173.60	-80.44		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)	
Lars-Eric Samuelsson	0.00	2.20	0.420	/	
Lars-Eric Samuelsson	2.20	12.10	0.350		
Lars-Eric Samuelsson	12.10	100.24	0.198		
Lars-Eric Samuelsson	100.24	101.67	0.086		
Lars-Eric Samuelsson	101.67	1003.00	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)	
Lars-Eric Samuelsson	100.24	100.81	0.072	,	
Lars-Eric Samuelsson	100.81	1003.00	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	12.05	0.265	0.273	
Lars-Eric Samuelsson	0.00	2.20	0.392	0.465	
Lars-Eric Samuelsson	0.00	12.10	0.200	0.208	
CONE DIMENSIONS:					
Signed/Approved By	Secup(m)	Seclow(m)	Cone In(m)	Cone Out(m)	
Lars-Eric Samuelsson	97.02	97.02	0.195	0.199	
Lars-Eric Samuelsson	101.67	101.67	0.076	0.080	

SICADA - Information about KSH02 Value

Title

Information about cored borehole KSH02 (2008-05-02).

Comment:	
----------	--

No	comment	exists.
	0011110110	0112000.

BOREHOLE LENGTH:		
Signed/Approved By	Length(m)	Reference Level
Lars-Eric Samuelsson	1001.11	Top of casing (center)

DRILLING PERIODS:

Signed/Approved By Lars-Eric Samuelsson	From Date 2003-01-22 drilling	To Date 2003-03-03	Secup(m) 0.00	Seclow(m) 65.85	Drilling Type Percussion
Johan Svensson	2003-01-22 drilling	2003-03-03	0.00	100.40	Percussion
Lars-Eric Samuelsson	2003-01-28	2003-06-11	65.85	1001.11	Core drilling
STARTING POINT COORDINATE:					
Signed/Approved By	Length(m)	Northing(m)	Easting(m)	Elevation	Coord System
Gerry Johansson	0.00	6365658.33	1551528.93	5.48	RT90-RHB70
STARTING POINT ANGLES:					
Signed/Approved By	Length(m)	Bearing	Inclination	(- = down)	Coord System
Gerry Johansson	0.00	330.68	-85.68		RT90-RHB70
BOREHOLE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Hole Diam(m)		
Lars-Eric Samuelsson	0.10	3.55	0.390		
Lars-Eric Samuelsson	3.55	16.78	0.350		
Lars-Eric Samuelsson	16.78	65.85	0.248		
Lars-Eric Samuelsson	65.85	80.00	0.086		
Lars-Eric Samuelsson	80.00	1001.11	0.076		
CORE DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Core Diam(m)		
Lars-Eric Samuelsson	65.85	67.25	0.072		
Lars-Eric Samuelsson	67.25	1001.11	0.050		
CASING DIAMETERS:					
Signed/Approved By	Secup(m)	Seclow(m)	Case In(m)	Case Out(m)	Comment
Lars-Eric Samuelsson	0.00	65.36	0.200	0.208	
Lars-Eric Samuelsson	0.10	16.78	0.265	0.273	
Lars-Eric Samuelsson	65.36	80.00	0.080	0.084	

Pump Test Analyses

APPENDIX 5

Nomenclature

Character	SICADA	Explanation	Dimension	Unit
	designation			
Variables, o	constants	1		
A _w		Horizontal area of water surface in open borehole, not	[L ²]	m
		Including area of signal cables, etc.		
b		Aquifer thickness (Thickness of 2D formation)		m
В		Width of channel		m
L		Corrected borehole length		m
L ₀		Deint of application for a macauring paction based on its		m
Lp		Point of application for a measuring section based on its	[L]	m
		transmissivity in the measuring section		
1		Test section length	[]]	m
Lw dl		Step length, Positive Flow Log - overlapping flow logging	[L=] [I] 1	m
uL		(step length, PEL)	[=]	
r		Radius	[[]]	m
r		Borehole, well or soil pipe radius in test section.		m
r _{we}		Effective borehole, well or soil pipe radius in test section.		m
wc		(Consideration taken to skin factor)		
r _s		Distance from test section to observation section, the	[L]	m
-		shortest distance.		
r _t		Distance from test section to observation section, the	[L]	m
		interpreted shortest distance via conductive structures.		
r _D		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
Z _r		Level for reference point on borehole	[L]	m
Z _{wu}		Level for test section (section that is being flowed), upper	[L]	m
		limitation		
Z _{wl}		Level for test section (section that is being flowed), lower	[L]	m
		limitation		
Z _{ws}		Level for sensor that measures response in test section	[L]	m
		(section that is flowed)		
Z _{ou}		Level for observation section, upper limitation		m
Z _{ol}		Level for observation section, lower limitation		m
Z _{os}		Level for sensor that measures response in observation	[L]	m
F		Evaporation:	$[1^{3}/(T + 2)]$	mm/v
L				mm/d
		hydrological budget:	(I ³ /T)	m^3/s
FT		Evapotranspiration	$\left[\frac{1}{1},\frac{1}{2}\right]$	mm/v
			[= /(= /]	mm/d.
		hydrological budget:	$[L^3/T]$	m³/s
Р		Precipitation	$[L^3/(T L^2)]$	mm/y,
				mm/d,
		hydrological budget:	$[L^3/T]$	m³/s
R		Groundwater recharge	$[L^{3}/(T L^{2})]$	mm/y,
			2	mm/d,
		hydrological budget:	[L ³ /T]	m /s
D		Groundwater discharge	[L [°] /(T L ²)]	mm/y,
			u ³ / T 1	mm/d,
		hydrological budget:		m°/s
		KUN-OTI FATE		m^{3}/s
		Pumping rate		m^3/s
				III /S
		Volumetric flow Corrected flow in flow leading (Q = Q)	[] ³ /T1	m^{3}/c
L.		Volumetric now. Contected now in now logging $(Q_1 - Q_0)$		111 /5
0.		Flow in test section during undisturbed conditions (flow	П ³ /Т1	m^3/s
~ 0			[[[] /]]	111 /5
Q.,		Flow in test section immediately before stop of flow	[³ /T]	m ³ /s
h		Stabilised pump flow in flow logging.	r = 1	,0
	1		1	

Character	SICADA designation	Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s
Q ₁		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m ³ /s
50	SumO	Cumulativa valumatria flavu alang barabala	гі ³ /ті	m^{3}/c
20	SumQ	Cumulative volumetric flow along borehole undisturbed	[L / I] [I ³ /T]	$\frac{111}{5}$
ΣQ ₀	SumQU	conditions (ie, not pumped)	[L / I]	m /s
ΣQ ₁	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L³/T]	m³/s
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{p2}	[L ³ /T]	m³/s
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1 - \Sigma Q_0$	[L ³ /T]	m³/s
ΣQ _{C2}	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma Q_2 - \Sigma Q_0$	[L ³ /T]	m³/s
q		Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).	([L ³ /T*L ²]	m/s
V		Volume	[L ³]	m ³
Vw		Water volume in test section.	$[L^3]$	m ³
V _p		Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
v		Velocity	$([L^{3}/T*L^{2}])$	m/s
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));.	$([L^3/T^*L^2])$	m/s
		v _a =q/n _e		
t		Time	[T]	hour,mi n,s
t ₀		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_{o}).	[T]	S
t _F		Duration of recovery phase (from p_p to p_F).	[T]	S
t_1, t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_{\rm D} = T \cdot t / (S \cdot r_{\rm w}^2)$. Dimensionless time	-	-
þ		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
pa		Atmospheric pressure	$[M/(LT)^2]$	kPa
pt		Absolute pressure; $p_t=p_a+p_q$	$[M/(LT)^2]$	kPa
Pg		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ²]	kPa
P ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
pi		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
ps		Pressure during recovery.	$[M/(LT)^2]$	kPa
pp		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
PF		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
p _D		$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa

Character	SICADA designation	Explanation	Dimension	Unit
dp _f		$dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s		$dp_s = p_s - p_p$ or $p_p = p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dp _p		$dp_p = p_i - p_p$ or $p_p = p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F		$dp_F = p_p - p_F$ or $p_F = p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_p+h_v$	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=h_e+h_p	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
S _p		Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
h.		Level above reference level during recovery phase.	liLi	m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

Character	SICADA designation	Explanation	Dimension	Unit
Te₀		Temperature in the observation section (taken from temperature logging). Temperature		°C
ECw		Electrical conductivity of water in test section.		mS/m
EC _{w0}		Electrical conductivity of water in test section during undisturbed conditions.		mS/m
FC		Electrical conductivity of water in observation section		mS/m
		Total salinity of water in the test section	[M/I ³]	ma/l
		Total salinity of water in the test section during	$[M/I^{3}]$	ma/l
• • • • •		undisturbed conditions.	[<u>g</u> , _
TDS		Total salinity of water in the observation section.	$[M/L^3]$	ma/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	[L/T ²]	m/s ²
_	ni	Constant (approx 3 1/16)	Г 1	
π r	pi	Constant (approx 5.1410). Residual $r_{\rm p}$ p $r_{\rm p}$ b b eta Differenza between		
		measured data (p_m , h_m , etc.) and estimated data (p_c , h_c , etc.)		
ME				
		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured variable considered.		
RMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)^{0.5}$		
NRMS		Normalized RMR. NRMR=RMR/ $(x_{MAX}-x_{MIN})$, x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual. $SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameters	S		Lu 2/	21
Q/S		Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)	[[L ⁻ /1]	m⁻/s
dt ₁		Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[Т]	s
dt		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
Т		Transmissivity	[L ² /T]	m²/s
T _M		Transmissivity according to Moye (1967)	$\left[L^{2}/T\right]$	m²/s
T _Q		Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190	[L ² /T]	m²/s
Ts		Transmissivity evaluated from slug test	[L ² /T]	m²/s

Character	SICADA designation	Explanation	Dimension	Unit
T _D		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
T		Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log diagram for perturbation phase in injection or pumping.	[L ² /T]	m²/s
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log	[L ² /T]	m²/s
T⊤		Transient evaluation (log-log or lin-log). Judged best	[L ² /T]	m²/s
-		evaluation of I _{Sf} , I _{Lf} , I _{Ss} , I _{Ls}	ri 2/ T 1	
		Evaluation based on non-inteal regression.		$\frac{111}{S}$
I Tot		toot agetion and (in cortain appea) evoluation time with	[[/]	111 /5
		respect to available data (made by SKB at a later stage).		
ĸ		Hydraulic conductivity	п / т 1	m/s
K		Hydraulic conductivity based on spherical flow model		m/s
K		Hydraulic conductivity based on spherical now model		m/s
k k		Intrinsic permeability		m^2
kh		Permeability-thickness product: kb=k,b	[L] [I ³]	m ³
ito -				
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S		Storage coefficient, (Storativity)	[-]	-
S*		Assumed storage coefficient	[-]	-
Sy		Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S _r)	[-]	-
S _{ya}		Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called S_y in literature)	[-]	-
S _r		Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
S _f		Fracture storage coefficient	[-]	-
S _m		Matrix storage coefficient	[-]	-
S _{NLR}		Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}		Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[-]	-
s		Specific storage coefficient: confined storage	[1/]]	1/m
S *		Assumed specific storage coefficient: confined storage		1/m
0 _s				1/111
Cf		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. $c_f=b'/K'$ where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard.	[T]	s
L _f		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.	[L]	m
ξ	Skin	Skin factor	[-]	-

Character	SICADA	Explanation	Dimension	Unit
	designation			
ξ*	Skin	Assumed skin factor	[-]	-
C		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
		$C_{\rm D} = C \cdot \rho_{\rm w} q / (2\pi \cdot S \cdot r_{\rm w}^2)$, Dimensionless wellbore storage	•	
C _D		coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio	[-]	-
		of storage coefficient between that of the fracture and		
		total storage.		
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
_				2.
T _{GRF}		Transmissivity interpreted using the GRF method	[L ² /T]	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
		Water company it ility company dia a to 0 in	F/L =====2\/N #1	4 /D -
C _w		water compressibility; corresponding to p in		Т/Ра
		nydrogeological illerature.	$r/r = \pi^2 / N a^2$	1/Do
Cr		Pore-volume compressibility, (rock compressibility);		Т/Ра
		Corresponding to a/n in hydrogeological inerature.		
<u> </u>		<u> </u>	$[(1 + T^2)/N_{11}]$	1/Do
U _t		$c_t = c_r + c_w$, total complessibility, complessibility per		1/F a
		the total porosity n. (Presence of gas or other fluids can		
		be included in c. if the degree of saturation (volume of		
		respective fluid divided by n) of the pore system of		
		respective fluid is also included)		
nc,		Porosity-compressibility factor: $n_{c} = n_{c}$	$[(LT^2)/M]$	1/Pa
nc _t b		Porosity-compressibility-thickness product: $n_{cb} = n \cdot c_{tb}$	$[(L^2T^2)/M]$	m/Pa
n			-	-
n.		Kinematic porosity, (Effective porosity)	-	-
e		Transport aperture, $e = n_e b$	[[]	m
ρ	Density	Density	$[M/L^3]$	$kg/(m^3)$
Ω _w	Density-w	Fluid density in measurement section during	$[M/L^3]$	$kg/(m^3)$
1- 11	5	pumping/injection		υ ()
ρ	Density-o	Fluid density in observation section	$[M/L^3]$	$kg/(m^3)$
0en	Density-sp	Fluid density in standpipes from measurement section	$[M/L^3]$	$kg/(m^3)$
U U	mv	Dynamic viscosity	IM/LTI	Pas
μ _w	my	Dynamic viscosity (Fluid density in measurement section	[M/LT]	Pas
	,	during pumping/injection)		
FC⊤		Fluid coefficient for intrinsic permeability, transference of	[1/LT]	1/(ms)
		k to K; K=FC _T ·k; FC _T = $\rho_w \cdot g/\mu_w$		
FCs		Fluid coefficient for porosity-compressibility, transference	$[M/T^{2}L^{2}]$	Pa/m
		of c_t to S_s ; $S_s = FC_s \cdot n \cdot c_t$; $FC_s = \rho_w \cdot q$		
Index on K	T and S			•
-	1			
S		S: semi-log		
L		L: log-log		
f		Pump phase or injection phase, designation following S		
		or L (withdrawal)		
S		Recovery phase, designation following S or L (recovery)		
NLR		NLR: Non-linear regression. Performed on the entire test		
		sequence, perturbation and recovery		
M		Moye		
GRF		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		
11		Lludged best evaluation based on transient evaluation		
Character	SICADA	Explanation	Dimension	Unit
---------------------------------------	-------------	---	-----------	------
	designation			
Tot		Judged most representative parameter for particular test		
		section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
е		Effective property (constant) within a domain in a		
		numerical groundwater flow model.		
Index on p	and Q	1	1	1
0		Initial condition, undisturbed condition in open holes		
i		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing		
		phase)		
S		Recovery, shut-in phase		
р		Pressure or flow in measuring section at end of		
		perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for		
		"where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for		
		"where" and "what" are used. Measured value		
Some miscellaneous indexes on p and h				
w		Test section (final difference pressure during flow phase		
		in test section can be expressed dp _{wp} ; First index shows		
		"where" and second index shows "what")		
0		Observation section (final difference pressure during flow		
		phase in observation section can be expressed dp _{op} ;		
		First index shows "where" and second index shows		
		"what")		
f		Fresh-water head. Water is normally pumped up from		
		section to measuring hoses where pressure and level are		
		observed. Density of the water is therefore approximately		
		the same as that of the measuring section. Measured		
		groundwater level is therefore normally represented by		
		what is defined as point-water head. If pressure at the		
		measuring level is recalculated to a level for a column of		
		water with density of fresh water above the measuring		
		point it is referred to as fresh-water head and his		
		during flow phase in characterian section (final level		
		ovproceed by the first index shows "where" and the		
		expressed hopf, the first findex shows where and the		
		"recalculation")		
	1		1	1