P-08-15

Oskarshamn site investigation

Evaluation of hydraulic interference tests, pumping borehole KLX19A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs, Reinder van der Wall Golder Associates GmbH

April 2008

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00

ISSN 1651-4416 SKB P-08-15

Oskarshamn site investigation

Evaluation of hydraulic interference tests, pumping borehole KLX19A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs, Reinder van der Wall Golder Associates GmbH

April 2008

Keywords: Site/project, Hydrogeology, Hydraulic tests, Pump tests, Interference tests, Hydraulic parameters, Transmissivity.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

Hydraulic interference tests have been performed at the Laxemar area in the active pumping borehole KLX19A in two different sections. During the pumping phase the pressure response in 15 observation boreholes was monitored in up to three different intervals per borehole, which were separated with packers. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. Subsequent to the interference tests, hydraulic injection tests in 100 m, 20 m and 5 m intervals were performed (see report P-07-90). The hydraulic test-ing programme has the aim to characterise the rock with respect to its hydraulic properties and the interference tests have the purpose to resolve hydraulic connectivity in the fracture network, especially related to the major fracture zone NW042. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the interference tests in borehole KLX19A performed between 28th of November 2006 and 09th of January 2007. The data of the observation boreholes were delivered by SKB.

The main objective of the interference testing was to characterize the rock around the borehole with special respect to connectivity of lineaments. Transient evaluation of the flow and recovery period of the constant rate interference pump tests provided additional information such as transmissivities, flow regimes and hydraulic boundaries.

Sammanfattning

Hydrauliska interferenstester har utförts i Laxemarområdet med pumpning i borrhål KLX19A i två sektioner. Under pumpningen har tryckresponsen uppmätts i 15 observationshål i upp till tio sektioner per borrhål med dubbelmanschett. Före interferenstesterna utfördes hydrauliska injektionstester om 100 m, 20 m och 5 m sektioner (se rapport P-07-90). Hydraultestprogrammet har som mål att karakterisera berget utifrån dess hydrauliska egenskaper och interferenstesterna har som syfte att undersöka konnektiviteten mellan sprickzoner. Erhållna data utgör sedan indata för den platsspecifika modellen.

Följande rapport redovisar resultaten och primärdata från utvärderingen av interferenstesterna i borrhål KLX19A utförda mellan den 28 November 2006 till den 09 Januari 2006. Data från observationshålen levererades av SKB.

Huvudsyftet med interferenstesterna var att karakterisera berget i anslutning till borrhålet med avseende på konnektivitet mellan olika lineament. Transient utvärdering av flödes- och återhämtningsfasen för pumptesterna utförda med konstant flöde vid interferenstesten har givit ytterligare information med avseende på transmissivitet, flödesregim och hydrauliska gränser.

Contents

1	Introduction	7
2 2.1	Objective and scope Conditions that possibly affect the observed responses besides responses	9
	due to the source intended to study	9
2.2	Pumped borehole	9
2.3 2.4	Tests Control of equipment	11 11
	Control of equipment	
3	Equipment	13
3.1 3.2	Description of equipment/interpretation tools Sensors	13 17
3.2	Data acquisition system	18
4	Execution	19
4.1	General	19
4.2	Preparations	19
4.3	Execution of field work	19
	4.3.1 Test principle	19
	4.3.2 Test procedure	20
4.4	Data handling/post processing	20
4.5	Analysis of the pump tests	21 21
4.6	Analysis and Interpretation of the response in the observation holes 4.6.1 Hydraulic connectivity parameters	21 21
	4.6.2 Approximate calculation of hydraulic diffusivity	22
	4.6.3 Response Analysis	23
4.7	Nonconformities	25
5	Results	27
5.1	Pumped sections	27
	5.1.1 Section 495.00–515.00 m, test no. 1, pumping	27
	5.1.2 Section 764.00–769.00 m, test no. 1, pumping	28
5.2	Observation sections	28
	5.2.1 Responses when pumping KLX19A section 764.00–769.00 m	29
	5.2.2 Responses when pumping KLX19A section 495.00–515.00 m. Response in HLX28, section 1 (0.00–154.00 m)	30 32
	Response in HLX28, section 1 $(0.00-154.00 \text{ m})$ Response in HLX32, section 1 $(0.00-163.00 \text{ m})$	32 32
	Response in HLX37, section 1 (149.00–199.80 m)	32
	Response in HLX37, section 2 (118.00–148.00 m)	33
6	Summary and conclusions	35
6.1	Location of responding test section	35
6.2	Summary of results	37
6.3	Conclusions	40
	6.3.1 Transmissivity derived from the pump tests	40
	6.3.2 Flow regimes encountered6.3.3 Interference tests and hydraulic connectivity	40 41
	6.3.4 Interpretation of the responses	41
7	References	43
'		rJ

Appendix 1	Pump Test Summary Sheets	45
Appendix 2	Index calculation	47
Appendix 3	Observation Holes Test Analyses Diagrams	79
Appendix 4	Observation Holes Test Summary Sheets	83
Appendix 5	SICADA Data Tables (Observation holes)	85
Appendix 6	Nomenclature	91

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001a/ as well as a site specific program for the investigations in the Laxemar area /SKB 2006/. The hydraulic interference tests form part of the site characterization program in the work breakdown structure of the execution program /SKB 2002/. The execution of the investigations is basically controlled through a general program /SKB 2001a/ and a program specifically for the Oskarshamn location /SKB 2001b/.

This document reports the results gained by the hydraulic interference tests (pumping tests) performed in borehole KLX19A, which is one of the activities performed within the site investigation at Oskarshamn. The pump tests were carried out in accordance with activity plan (AP PS 400-06-144). The evaluation of the tests was carried out in accordance with activity plan AP PS 400-07-72. In Table 1-1 controlling documents for performing the work are listed. Both activity plan and method descriptions are SKB's internal controlling documents.

Hydraulic interference tests (pumping tests) have been performed in borehole KLX19A in two different sections with section lengths of 20 m and 5 m. Both sections were separated with packers above and below. Monitoring of pressure response was carried out by SKB in 15 additional boreholes (see Figure 1-1), monitoring data were delivered by SKB for further analyses.

Measurements were carried out between 28th of November 2006 and 9th of January 2007 following the methodologies described in SKB MD 321.003 (pump tests), SKB MD 330.003 (interference tests), the activity plan AP PS 400-07-72 (SKB internal controlling documents) specifying in detail the interference tests campaign. Data and results were delivered to the SKB site characterization database SICADA where they are traceable by the activity plan number /Enachescu et al. 2007/.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the interference tests in borehole KLX19A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Activity plan	Number	Version
Utvärdering och rapportering av interferenstester I KLX27A och KLX19A	AP PS 400-07-72	1.0
Hydraulic injection tests and water sampling in borehole KLX19A	AP PS 400-06-144	1.0
Method descriptions	Number	Version
Analysis of injection and single-hole pumping tests	SKB MD 320.004e	1.0
lydraulic injection tests	SKB MD 323.001	1.0
Netodbeskrivning för Interferenstester	SKB MD 330.003	1.0
letodbeskrivning för hydrauliska enhålspumptester	SKB MD 321.003	1.0
nstruktion för rengöring av borrhålsutrustning och viss narkbaserad utrustning.	SKB MD 600.004	1.0
nstruktion för längdkalibrering vid undersökningar i kärnborrhål	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Dskarshamn.	SKB SDPO-003	1.0
/liljökontrollprogram Platsundersökningar	SKB SDP-301	1.0
lantering av primärdata vid platsundersökningar	SKB SDP-508	1.0

Table 1-1. Controlling documents for the performance of the activity.

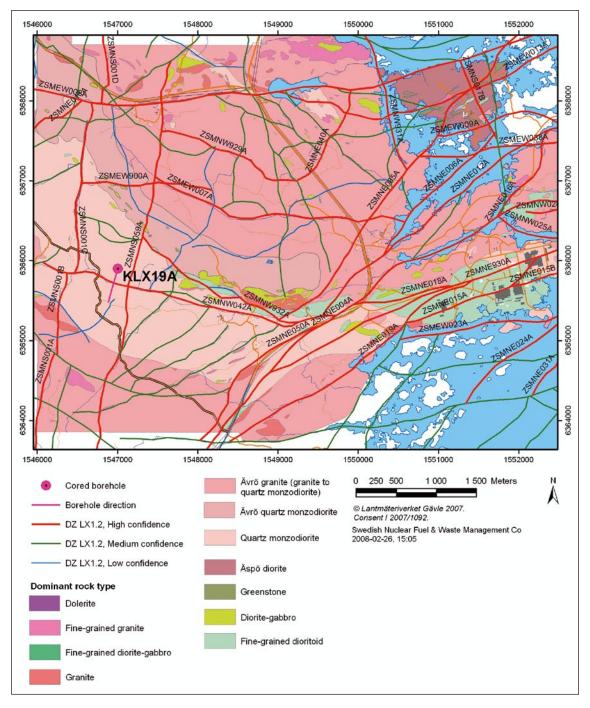


Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX19A.

Borehole KLX19A is situated in the Laxemar area approximately 3 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from May 2006 to September 2006 at 800.07 m length with an inner diameter of 76 mm and an inclination of -57.78° . The upper 98.75 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 210–323 mm.

2 Objective and scope

The major objective with the pumping was to collect water samples, and as a spinn off the interference tests was allowed to resolve the hydraulic connectivity of the fracture network. A special additional objective of the interference tests was to resolve the hydraulic properties of the lineament NW042.

The scope of work consisted of the analysis and reporting for measurements in the observation boreholes, recorded, collected and delivered by SKB.

The following interference tests were performed between 28th of November 2006 and 09th of January 2007.

2.1 Conditions that possibly affect the observed responses besides responses due to the source intended to study

Besides the response due to the pumping in KLX19A (source) the observed responses were influenced by following effects:

- all observation holes were influenced by earth-tidal effects,
- some observed sections close to the surface were affected by a major rainfall on 01st of January 2007.

2.2 Pumped borehole

Technical data of the borehole KLX19A is shown in Table 2-2. The reference point in the borehole is the centre of top of casing (ToC), given as Elevation in the table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface.

Table 2-1. Performed test programme.	
--------------------------------------	--

Borehole	Priority	Secup [mbToC]	Seclow [mbToC]	Seclen [m]	Duration Pumping [h]	Duration Recovery [h]
KLX19A	1	764.0	769.0	5.0	160.7	2.7
KLX19A	2	495.0	515.0	20.0	785.3	3.6
				Total:	946.0	6.3

Title	Value				
Old idcode name (s): Comment: Borehole length (m): Reference level:	KLX19A No comm 800.07 TOC	nent exists			
Drilling Period (s):	From date 2006-05-10 2006-06-03	To date 2006-05-22 2006-09-20	Secup (m) 0.20 99.33	Seclow (m) 99.33 800.07	Drilling type Percussion drilling Core drilling
Starting point coordinate: (centerpoint of TOC)	Length (m) 0.000 3.00	Northing (m) 6,365,901.42 6,365,899.89	Easting (m) 1,547,004.62 1,547,004.15	Elevation (m.a.s.l.) 16.87 14.33	Coord System RT90-RHB70 RT90-RHB70
Angles:	Length (m) 0.000	Bearing 197.13	Inclination (– = –57.78	down) RT90-RHB70	
Borehole diameter:	Secup (m) 0.20 6.30 70.00 99.33 100.23 520.30	Seclow (m) 6.30 70.00 99.33 100.73 800.07 522.50	Hole diam (m) 0.339 0.254 0.253 0.086 0.076 0.084		
Core diameter:	Secup (m) 99.33 100.23	Seclow (m) 100.23 800.07	Core diam (m) 0.072 0.050		
Casing diameter:	Secup (m) 0.000 0.20 6.20 92.75 98.70 520.40	Seclow (m) 92.75 6.20 6.30 98.70 98.75 522.40	Case in (m) 0.200 0.310 0.280 0.200 0.170 0.076	Case out (m) 0.208 0.323 0.323 0.210 0.210 0.082	
Cone dimensions:	Secup (m) 96.03 99.03	Seclow (m) 99.03 100.73	Cone in (m) 0.100 0.080	Cone out (m) 0.104 0.084	
Grove milling:	Length (m) 110.000 200.000 250.000 303.000 350.000 403.000 447.000 507.000 547.000 647.000 647.000 647.000 748.000 778.000	Trace detectable YES YES YES YES YES YES YES YES YES YES	le		

Table 2-2. Information about KLX19A (from SICADA 2006-11-23).

2.3 Tests

The interference tests performed in KLX19A are listed in Table 2-4. They were conducted according to the Activity Plan AP PS 400-06-144 (SKB internal document). All tests were conducted as constant rate pump tests. Hydraulic responses were monitored with pressure transducers in selected observation boreholes. Pressure data of further monitoring boreholes were provided by SKB.

Observations were made in the following boreholes (Table 2-3):

2.4 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101–123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

Bh ID	No of Intervals monitored	Log time [s]	Bh ID	No of Intervals monitored	Log time [s]	Bh ID	No of Intervals monitored	Log time [s]
HLX27	2	600	HLX37	3	600	KLX11E	1	300
HLX28	1	600	HLX38	1	600	KLX20A	1	600
HLX32	1	600	HLX42	2	600			
HLX36	2	600	KLX11A	1	7,200			

Table 2-3. Observation boreholes – see Table 5-2 and 5-3 for distances and responses.

Table 2-4. Tests performed.

Bh ID	Test section (mbToC)	Test type*	Test no	Test start Date, time (yyyy-mm-dd hh:mm:ss)	Test stop Date, time (yyyy-mm-dd hh:mm:ss)
KLX19A	764.0–769.0	1B	1	2006-11-28 19:53:00	2006-12-05 15:52:00
KLX19A	495.0–515.0	1B	1	2006-12-07 15:07:00	2007-01-09 12:28:00

* pumping test-submersible pump

3 Equipment

3.1 Description of equipment/interpretation tools

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next Figure 3-1). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-8.

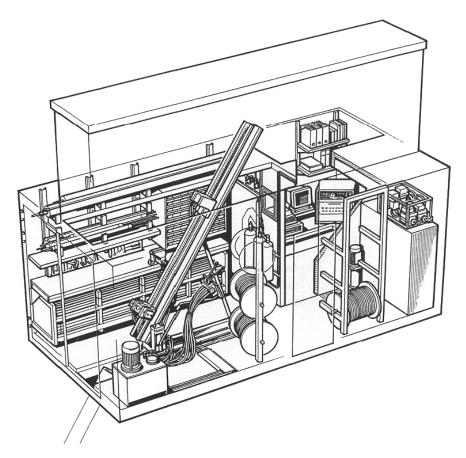
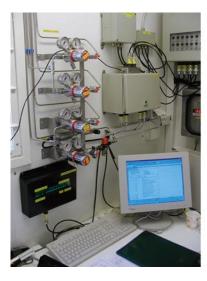



Figure 3-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

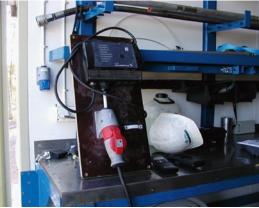


Photo 5. Positioner, bottom end of down-in-hole string.

Photo 6. Packer and gauge carrier.

Photo 7. Top of test string with shunt valve and nylon line down to the pump basket.

Photo 8. Control board of the pump with remote control.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (+ 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below.
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (+ 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa-50L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (+ 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The 3"-pump is placed in a pump basket and connected to the test string at about 50–90 m below ToC. The pumping frequency of the pump is set with a remote control on surface. The flow can be regulated additionally with a shunt-valve on top of the test string, a nylon line connects the valve with the pump basket, so that the water can circulate and the pump cannot run out of water (Photo 7).

The tool scheme is presented in Figure 3-2.

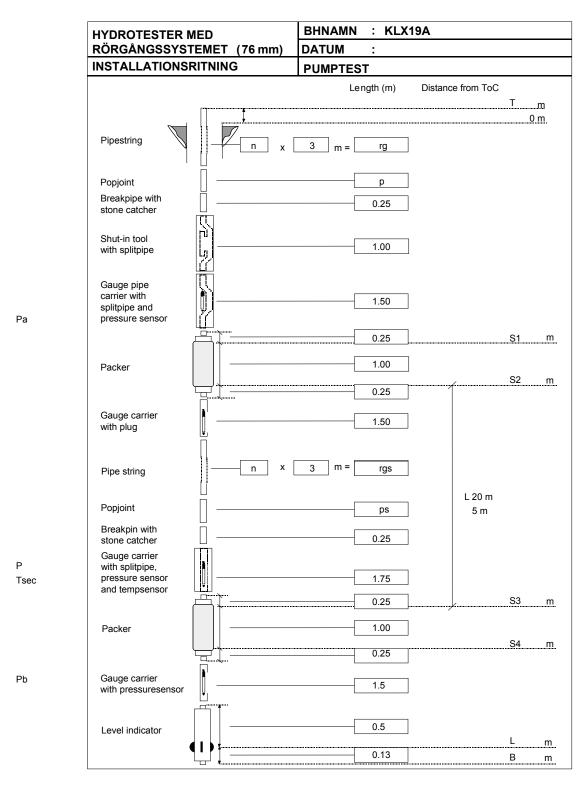


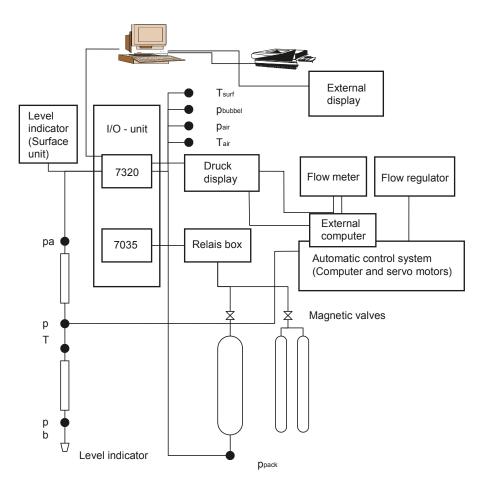
Figure 3-2. Schematic drawing of the down-hole equipment in the PSS2 system.

3.2 Sensors

Calibration of the sensors was performed by Geosigma in October 2006. Actual calibration values were taken from the calibration protocols and inserted to the data acquisition system and the regulation unit as documented in the PSS protocol.

Keyword	Sensor	Name	Value/Range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162–1464 abs	9–30 4–20 0–13.5 ± 0.1	VDC mA MPa % of FS	
$T_{sec,surf,air}$	Temperature	BGI	18–24 4–20 0–32 ± 0.1	VDC mA °C °C	
Q_{big}	Flow	Micro motion Elite sensor	0–100 ± 0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 ± 0.1	kg/min %	Massflow
P _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 ± 0.1	VDC mA KPa % of FS	
P _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 ± 0.1	VDC mA MPa % of FS	
P _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5 ± 0.15	VDC mA MPa % of FS	
L	Level Indicator				Length correction

Table 3-1. Technical specifications of sensors.


Table 3-2. Sensor positions and wellbore storage (WBS) controlling factors.

Borehole	information		Sensors		Equipment affecting WBS coefficient		
ID	Test section (m)	Volume in test section (m³)	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KLX19A	764.00–769.00	0.023	p _a p T p _b L	762.11 768.37 768.20 771.01 771.25	Test section	Signal cable Pump string Packer line	9.1 33 6
KLX19A	495.00–515.00	0.091	p₄ p T p₅ L	493.11 514.37 514.20 517.01 517.25	Test section	Signal cable Pump string Packer line	9.1 33 6

3.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 3-3.

Figure 3-3. Schematic drawing of the data acquisition system and the flow regulation control system in *PSS2.*

4 Execution

4.1 General

Testing, analyses and reporting were carried out according to SKB's methodology as outlined in the internal SKB document SKB MD 330.003. The activity involves the following components:

- Prepararions.
- Function control of transmitters and data system.
- Pumping/interference testing.
- Analyses of hydraulic tests.
- Reporting.

The basic testing sequence for the pumping tests was to perform a constant rate withdrawal followed by a pressure recovery.

4.2 Preparations

The container was placed on pallets with adjustments made according to the inclination of the borehole. Cables, hoses and down-hole equipment (including pump and pump basket) were cleaned with hot steam according to cleaning level 1. Calibration constants were entered in the data acquisition system and the regulation unit and function checks of the sensors, level indicator, shut in tool and flow meters were made. As result of the function checks, all sensors and components of the testing system worked well.

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of these groves are given by SKB in the activity plan (see Table 2-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the test sections to avoid wrong placements and minimize elongation effects of the test string.

4.3 Execution of field work

4.3.1 Test principle

Pump tests

The pump tests were conducted as constant flow rate tests (CRw phase) followed by a pressure recovery period (CRwr phase). The intention was to achieve a drawdown as high as possible, which is limited by several factors like flow capacity of the valves at the regulation unit, maximum flow rate and depth of the pump, head loss due to friction inside the tubing, etc. According to the Activity Plan, the pump phases should have lasted until reaching an acceptable uranine concentration. The actual durations of the phases are shown in Table 2-1.

Observation wells

For evaluation as interference tests, a total number of 10 boreholes were used to monitor the pressure change in up to three intervals. Recording and data collection was done by SKB. SKB delivered the data as ASCII files (mio-format). An overview of the monitored boreholes and their intervals is given in Table 2-3. Observation borehole HLX32_1 was monitored only for the pump section 495.00–515.00 in KLX19A.

4.3.2 Test procedure

A test cycle includes the following phases: 1) Transfer of down-hole equipment to the section. 2) Packer inflation. 3) Pressure stabilisation. 4) Constant rate withdrawal. 5) Pressure recovery. 6) Packer deflation. The pump tests in KLX19A have been carried out by applying a constant rate withdrawal with a drawdown as high as possible. The flow rates and resulting drawdowns are summarised in Table 4-1.

Before start of the pumping tests, approximately stable pressure conditions prevailed in the test section. After the perturbation period, the pressure recovery in the section was measured. Tidal effects were observed as disturbances of the pressure responses. A major rainfall (9 mm within 24 hours) happened on 01st of January 2007 during performance of the pump test in section 495.00–515.00 which may have disturbed the measurements. In some observation sections close to the surface, influence of this rainfall was identified, e.g. in observation sections HLX36_2 and HLX42_2.

The extracted water was collected in tanks, which were removed by SKB and discharged into the sea.

4.4 Data handling/post processing

Pump tests

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent test analysis.

Observation wells

SKB was responsible for recording and collecting the data of the observation boreholes. The sample rate in those boreholes was between 5 minutes and 2 hours. SKB delivered the ASCII data in mio-format. These files were imported and processed to Excel for further evaluation and analysis. In addition, barometric data were delivered by SKB to eliminate barometric fluctuations from the observation data. Even by consideration of barometric pressure changes, the observation data showed still major disturbance by natural fluctuation.

Table 4-1.	Flow rate and	drawdown of	pumping tests.
------------	---------------	-------------	----------------

Bh ID	Section [mbToC]	Flow rate [L/min]	Drawdown* [kPa]
KLX19A	764.00–769.00	0.8	241
KLX19A	495.00-515.00	2.1	125

* Difference between pressure just before start and immediately before stop of pumping.

4.5 Analysis of the pump tests

The test analysis of the pump tests was already performed and documented in the report P-07-90 /Enachescu et al. 2007/, printed in October 2007.

4.6 Analysis and Interpretation of the response in the observation holes

In 10 boreholes with a total of 15 sections (Table 2-3) the responses were monitored during the pumping tests in KLX19A. Those data were analysed according to the methodology description (SKB MD 330.003) to derive hydraulic connectivity parameters (Indices 1, 2 and 2new). As only one of the monitored sections (HLX32_1) showed a clear response to the performed pump tests, a type curve matching method with Paradigm's Interpret 2006 software package was performed only for this section.

4.6.1 Hydraulic connectivity parameters

Calculation of the indices

For the interference test analysis, the data of the pumping hole and the observation holes were compared. Therefore both data sets were plotted in one graph to decide if the observation borehole shows a response which is related to the pumping. In case of a response in the observation sections due to pumping in KLX19A, the response time (dt_L) and the maximum drawdown (s_p) in these sections were calculated. The 3D distance between the point of application in the pumping borehole and the observation borehole (r_s) was provided by SKB. These parameters combined with the pumping flow rate (Q_p) are the variables used to calculate the indices, which characterize the hydraulic connectivity between the pumping and the observed section. The response parameters and the calculated hydraulic connectivity parameters are shown in the tables in section 5 and Appendix 2. The indices are calculated as follows:

Index 1: rs^2/dt_L =normalised distance rs with respect to the response time $[m^2/s]$,Index 2: s_p/Q_p =normalised drawdown with respect to the pumping rate $[s/m^2]$.

Additionally, a third index was calculated including drawdown and distance. This index is calculated as follows:

Index 2 new:

 $(s_p/Q_p) \cdot \ln(r_s/r_0)$ $r_0=1$ and for the pumped borehole $r_s=e^1$ (fictive borehole radius of 2.718).

The classification based on the indices is given as follows:

Index 1 (r_s^2/dt_L)		Index 2 (s_p/Q_p)		Colour code
$r_{s}^{2}\!/dt_{\rm L}\!>100~m^{2}\!/s$	Excellent	$s_p/Q_p > 1 \cdot 10^5 \ s/m^2$	Excellent	
$10 < r_s^2/dt_L \le 100 \text{ m}^2/\text{s}$	High	$3 \cdot 10^4 < s_p/Q_p \le 1 \cdot 10^5 \ s/m^2$	High	
$1 < r_s^2/dt_L \le 10 \text{ m}^2/s$	Medium	$1 \cdot 10^4 < s_p/Q_p \le 3 \cdot 10^4 \text{ s/m}^2$	Medium	
$0.1 < r_s^2/dt_L \le 1 m^2/s$	Low	$s_p/Q_p \leq 1\!\cdot\!10^4~s/m^2$	Low	
		$s_p < 0.1 m$	No response	

Index 2 new (s_p/Q_p) *ln (r_s/r_0)		Colour code
$(s_p/Q_p)*ln(r_s/r_0) > 5 \cdot 10^5 s/m^2$	Excellent	
$5 \cdot 10^4 < (s_p/Q_p) * ln(r_s/r_0) \le 5 \cdot 10^5 \ s/m^2$	High	
$5 \cdot 10^3 < (s_p/Q_p) * ln(r_s/r_0) \le 5 \cdot 10^4 \ s/m^2$	Medium	
$5 \cdot 10^2 < (s_p/Q_p) * ln(r_s/r_0) \le 5 \cdot 10^3 \ s/m^2$	Low	
sp < 0.1 m	No response	

Calculated response indexes are given in Tables 5-2, 5-3 and 6-3.

Derivation of the indices and limitations

To evaluate the hydraulic connectivity between the active and the observed section, the drawdown in the observation section (sp) caused by pumping in the active section and the response time after start of pumping (dtL) is needed.

To get these two values the data of both sections are plotted in one graph. The time, the observation hole needed to react to the pumping in KLX19A with a drawdown of at least 0.1 m and the amount of drawdown at the end of the pumping were taken out of the graph. Often it is not really clear if the section responds to the pumping or if the drawdown is based on natural processes exclusively. In unclear cases, the data sets were regarded in total to better differentiate between those effects. By looking at the pressure response of the days before and after the pumping phase, it is easier to distinguish between natural fluctuations and those induced by pumping. Furthermore it should be pointed out, that some of the responses could be caused by the drawdown in the section above or below of the same observation borehole.

All observation data are influenced by natural fluctuations of the groundwater level such as tidal effects and long term trends. The pressure changes due to tidal effects are different for the observation boreholes but in case of the performed tests relative large and of major importance for the data evaluation.

The pressure changes in the observation sections generated by the pumping are often very marginal. In general, it is a combination of natural processes and the pumping in KLX19A producing the pressure changes in the monitored sections. If there is a reaction, it shows – in most of the cases – not a sharp but a smooth transition from undisturbed to disturbed (by pumping) behaviour, which makes it more difficult to determine the response time exactly. As in the case of the evaluated response data, neither start time nor stop time of pumping can provide reliable data for the response time, therefore Index 1 was not calculated.

4.6.2 Approximate calculation of hydraulic diffusivity

The distance r_s between different borehole sections has been calculated as the spherical distance using co-ordinates for the mid-chainage of each section. The calculation of the hydraulic diffusivity is based on radial flow:

$$\eta = T / S = r_s^2 / \left[4 \cdot dt_L \cdot (1 + dt_L / tp) \cdot \ln (1 + tp / dt_L) \right]$$

The time lag dtL is defined as the time when the pressure response in an observation section is greater than ca 0.1 metres (The time difference between a certain first observable response in the observation section and the stop of the pumping). The pumping time is included as tp. /Streltsova 1988/.

The estimates of the hydraulic diffusivity according to above should be seen as indicative values of the hydraulic diffusivity. Observation sections straddling a planar, major conductive feature

that also intersects the pumping section should provide reliable estimates of the hydraulic diffusivity, but these cases have to be judged based on the geological model of the site.

In case of the interference tests related to pumping in KLX19A, a calculation of the hydraulic diffusivity was performed due to the poor quality and the relative high uncertainty of the response in most of the observed data only for the data of HLX32_1.

4.6.3 Response Analysis

To derive transmissivities and storativities from the sections of the observation boreholes Paradigm's analysis software Interpret 2006 was used. Interpret 2006 is an interactive program that uses a constant rate solution to provide optimized hydraulic parameters for a wide range of potential reservoir models. Some of the features of Interpret 2006 include extensive superposition of constant rate events, non-linear regression and multi-event rate normalized plots. Multi-event plots allow the relevant phases to be presented on a single plot to evaluate for consistency of the formation response throughout the test. Additionally, it can accommodate changing wellbore storage and skin between the test periods.

Analysis approach

The interference tests are analysed using line source type curves calculated for different flow models as identified from the log-log derivative of the pressure response.

Assumptions

To understand the assumption used in the analysis of observation zone data it is useful to imagine in a first instance a source zone connected with the observation zones through fractures of equal transmissivity (T_1 to T_4). In Figure 4-1 the case of a source zone connected with 4 observation zones is presented.

If we note the flow rate at the source as q, each of the response in each of the observation zones will be influenced by a flow rate of q/4 because the transmissivities of the 4 fractures are equal, so the rate will be evenly distributed between the fractures as well.

We complicate now the system by adding a new fracture of much higher transmissivity (T_5) to the system (see Figure 4-2).

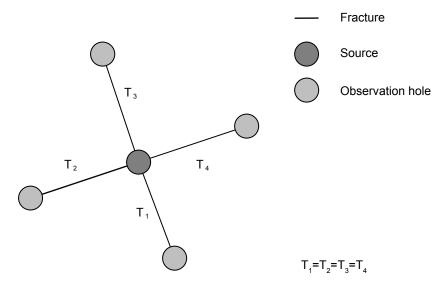


Figure 4-1. Schematic sketch of a pumping hole (source) and observation holes.

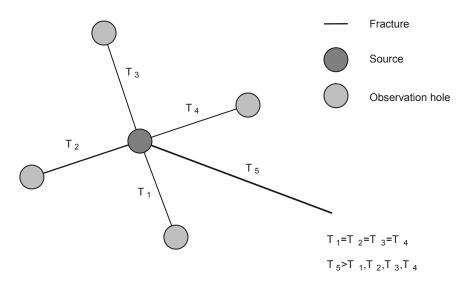


Figure 4-2. Schematic sketch of a pumping hole (source) and observation holes with an added fracture.

Because of the larger transmissivity, most of the flow rate of the source will be captured by this fracture, so the other 4 fractures will receive less flow. Because of this, the magnitude of the response at the 4 observation zones will be higher than in the first case. The pathway transmissivity derived from the analysis of the observation zones will be in the second case much higher than in the first case. However, the pathway transmissivity between source and any of the observation zones did not change. The transmissivity derived in the second case is false because the analysis is conducted under the assumption that the flow rate of the source is evenly distributed in space. This assumption is clearly not valid in the second case. In reality, the flow rate around the source will be distributed inversely proportional to the transmissivity of the individual pathways:

 $q = q_1 + q_2 + \ldots + q_n$

 $\frac{T_1}{q_1}=\frac{T_2}{q_2}=\ldots=\frac{T_n}{q_n}$

The analysis of observation zones (i.e. interference test analysis) assumes that:

 $q_1 = q_2 = \ldots = q_n.$

This assumption will typically result in similar transmissivities:

 $T_1 = T_2 = \ldots = T_n.$

The distance used for the analysis is the shortest way between the source and the observation hole and no pathway tortuosity was considered. This assumption influences the storativity derived from the transient analysis.

Methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.

Superposition type curve matching in log-log coordinates. The type curves are based on /THEIS 1935/ calculated for a line source (i.e. finite wellbore radius).

Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In the most cases a homogenous flow model was used, otherwise a two shell composite flow model was chosen for the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. All tests were analysed using a flow dimension of two (radial flow).

In case of the present interference tests with pumping in KLX19A, only the response of HLX32_1 was analysed, this with a homogenous model with infinite acting radial flow.

4.7 Nonconformities

Deviating from the relating Activity Plan for the pumptests in KLX19A, the 20 m pumping section was shifted by 4 m due to difficulties finding appropriate packer positions. The interval was moved from 499.00 to 519.00 meter below top of casing (m b TOC) to 495.00 to 515.00 m after clearance with SKB.

5 Results

In the following, results of the pump tests conducted in KLX19A are presented and analysed. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarized in the Tables 6-1 to 6-3 of the synthesis chapter and in the summary sheets (Appendix 1). Heavy rainfall was observed during the pump tests in borehole KLX19A on 01st of January 2007 when pumping in section 495.00 to 515.00 m bTOC. Other disturbing effects observed were caused by tidal influence. As at both performed pump tests the derivative is flat at late times, both pump tests were evaluated using a flow dimension of 2. In both cases, there was a flat derivative at middle times at a different level. In these cases, a composite model was chosen with a change of transmissivity in some distance from the borehole to match the different flat parts of the derivative and the connecting slope.

5.1 Pumped sections

In the following, the results from the two pumped sections in borehole KLX19A are presented and analysed in 5.1.1 and 5.1.2 respectively. An overview of the results obtained from the pump tests can be found in Appendix 1 (Pump test summary sheets). See also /Enachescu et al. 2007/.

5.1.1 Section 495.00–515.00 m, test no. 1, pumping

Comments to test

The test was conducted as a constant rate pump test phase with a flow rate of 2.1 L/min, followed by a pressure recovery phase. The maximum drawdown just before stop of flowing was about 12.74 m. All pressures are influenced by natural phenomena (e.g. tidal effects). A hydraulic connection between the test interval and the bottom zone was observed. The flow rate during the pumping phase of about 2.1 L/min and the resulting drawdown of about 120 kPa indicate a relatively moderate o high interval transmissivity. After approximate 786 hours of pumping, a water sample was taken. The CRw phase is noisy and unstable and therefore not analysable. The CRwr phase is very short compared to the perturbation phase. However, the recovery is of good quality and amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows a relatively long transition period from wellbore storage and skin dominated flow to pure formation flow. This is probably caused by the hydraulic communication to the bottom section. At late middle times and late times the derivative is flat, which is indicative for radial flow (flow dimension of 2). A radial composite flow model with increasing transmissivity at some distance to the borehole was chosen for the analysis of the CRwr phase.

Selected representative parameters

The recommended transmissivity of $5.8 \cdot 10^{-6}$ m²/s was derived from the analysis of the CRwr phase. Due to the hydraulic communication to the bottom zone, the derived value should be regarded as at the upper limit of the confidence range. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ to $6.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 4,331.2 kPa. Due to the short duration of the recovery compared to the pumping time, this value is slightly uncertain.

5.1.2 Section 764.00–769.00 m, test no. 1, pumping

Comments to test

The test was conducted as a constant rate pump test phase with a flow rate of 0.8 L/min, followed by a pressure recovery phase. The maximum drawdown just before stop of flowing was about 24.57 m. A hydraulic connection between the test interval and the bottom zone was observed. Between approximately 14 and 20.5 hours elapsed time, the flow rate and the pressure in the test section became very noisy. The reason for this is unknown. The flow rate during the pumping phase of about 0.8 L/min and the resulting drawdown of about 235 kPa indicate a relatively moderate to low interval transmissivity. Due to malfunction of the bottom transducer, the reaction in the bottom zone could not be observed earlier. After approximate 160 hours of pumping, a water sample was taken. The CRw phase is very noisy and unstable and not analysable. The CRwr phase is relatively short compared to the perturbation phase. However, the recovery is of good quality and amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CRwr phase shows a gently inclined derivative at middle times, followed by a downward trend at late times, indicating either a change in flow dimension or in transmissivity. A radial composite flow model with increasing transmissivity at some distance to the borehole was chosen for the analysis of the CRwr phase.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-7}$ m²/s was derived from the analysis of the CRwr phase. Due to the hydraulic communication to the bottom zone, the derived value should be regarded as at the upper limit of the confidence range. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-8}$ to $3.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CRwr phase using type curve extrapolation in the Horner plot to a value of 6,404.6 kPa. Due to the short duration of the recovery compared to the pumping time, this value is slightly uncertain.

5.2 Observation sections

In the following, the data of the observation zones which responded to pumping are presented and analysed. The results of the analysis are also summarized in the Table 6-3 of the summary chapter and in the summary sheets (Appendix 4 and 5).

Table 5-1 summarises all the tests and the observed boreholes. Furthermore it shows the response matrix based on the calculated indices 1 (rs^2/dt_L), 2 (s_p/Q_p) and 2 new (s_p/Q_p)·ln(r_s/r_0) (see Chapter 4.5.1).

		Pumping Hole	KLX19	A		KLX19	A	
		Section (m b TOC)	764.00)–769.00		495.00	0–515.00	
		Flow rate (I/min)	0.8			2.1		
		Drawdown (kPa)	241			125		
Observation	Sec	Section	Respo	nse indi	ces			
borehole	No	(m)	1	2	2 new	1	2	2 new
HLX27	1	133.00–164.70						
	2	0.00-132.00						
HLX28	1	0.00–154.00				n.c.		
HLX32	1	0.00–163.00	n.o.	n.o.	n.o.	n.c.		
HLX36	1	50.00–199.50						
	2	0.00–49.00						
HLX37	1	149.00–199.80				n.c.		
	2	118.00–148.00				n.c.		
	3	0.00–117.00						
HLX38	1	0.00–199.50						
HLX42	1	30.00–152.60						
	2	0.00–29.00						
KLX11A	1	0.00–992.00						
KLX11E	1	2.00-121.00						
KLX20A	1	0.00-457.00						

Table 5-1. Response matrix with Index 1, Index 2 and Index 2 new.

Index 1 (r²/t _L)			Index 2 (s _p /Q _p)		
$r_{s}^{2}/dt_{L} > 100 \text{ m}^{2}/\text{s}$	Excellent	Е	s _p /Q _p > 1 ⋅ 10 ⁵ s/m²	Excellent	
$10 < r_s^2/dt_L \le 100 \text{ m}^2/\text{s}$	High	Н	$3.10^4 < s_p/Q_p \le 1.10^5 \text{ s/m}^2$	High	
$1 < r_s^2/dt_L \le 10 \text{ m}^2/\text{s}$	Medium	Μ	$1 \cdot 10^4 < s_p/Q_p \le 3 \cdot 10^4 \text{ s/m}^2$	Medium	
$0.1 < r_s^2/dt_L \le 1 m^2/s$	Low	L	$s_p/Q_p \le 1.10^4 \text{ s/m}^2$	Low	
Not calculated due to strong natural fluctuations		n.c.	s _p < 0.1 m	No response	
Index 2 new (s _p /Q _p)·In(r _s /r ₀)					
$(s_p/Q_p) \cdot \ln(r_s/r_0) > 5 \cdot 10^5 \text{ s/m}^2$		Exce	llent		
$5 \cdot 10^4 < (s_p/Q_p) \cdot \ln(r_s/r_0) \le 5 \cdot 10^5$	s/m²	High			
$5 \cdot 10^3 < (s_p/Q_p) \cdot \ln(r_s/r_0) \le 5 \cdot 10^4$	s/m²	Medi	um		
$5 \cdot 10^2 < (s_p/Q_p) \cdot \ln(r_s/r_0) \le 5 \cdot 10^3$	s/m²	Low			

blank = observed but no response at all n.o. = not observed

 $s_p < 0.1 \text{ m}$

5.2.1 Responses when pumping KLX19A section 764.00–769.00 m

No response

This test was conducted as constant rate pump test phase followed by a recovery pressure phase in the source section. The mean flow rate was 0.8 l/min with a drawdown of 24.57 m. In sum none of the 14 observed sections responded due to the pumping. Table 5-2 summarizes the test sections and selected parameters.

Source borehole		Section (m)	Flow rate Qm (l/min)	Draw- down (m)	r _{wf} (m)				
KLX19A	1	764.00–769.00	0.8	24.57	3.8				
Observation borehole	Sec No	Section (m)	Distance r _s (m)	Draw- down s _p (m)	dt∟ (s)	Index 1 r _s ²/dt _∟ (m²/s)	Index 2 s _p /Q _p (s/m ²)	Index 2 New (s _p /Q _p)·In(r _s /r ₀) (s/m ²)	Diffusivity ŋ (m²/s)
HLX27	1	133.00–164.70	1,099	n.r.	_	_	_	_	_
	2	0.00–132.00	1,123	n.r.	-	-	-	_	-
HLX28	1	0.00–154.00	661	n.r.	_	_	_	_	_
HLX32	1	0.00–163.00	634	n.o.	_	_	_	_	_
HLX36	1	50.00-199.50	958	n.r.	_	_	_	_	_
	2	0.00-49.00	979	n.r.	-	-	-	-	-
HLX37	1	149.00–199.80	930	n.r.	_	-	_	_	_
	2	118.00–148.00	962	n.r.	-	-	-	-	_
	3	0.00–117.00	983	n.r.	-	-	_	_	_
HLX38	1	0.00–199.50	722	n.r.	_	_	_	_	_
HLX42	1	30.00-152.60	988	n.r.	_	_	_	_	_
	2	0.00–29.00	1,071	n.r.	-	-	-	-	-
KLX11A	1	0.00–992.00	872	n.r.	_	_	_	_	_
KLX11E	1	2.00–121.00	1,057	n.r.	_	_	_	_	_
KLX20A	1	0.00-457.00	1,060	n.r.	_	_	_	_	_

Table 5-2. Test sections and selected parameters (section 764.00–769.00 m pumped).

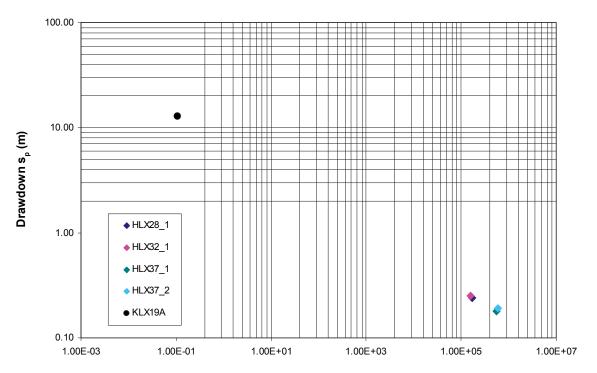
n.r. no response due to pumping in source

n.o. no observed

Key for Index 1,2 and 2 New see Table 5-1

5.2.2 Responses when pumping KLX19A section 495.00–515.00 m.

This interference test was conducted as constant rate pump test phase followed by a recovery pressure phase in the source section. The mean flow rate was 2.1 l/min with a drawdown of 12.74 m. In sum 4 observation sections responded due to the pumping. Table 5-3 summarizes the responding test sections and selected parameters. Figure 5-1 shows the drawdown of the observed sections related to the distance. The pumped borehole KLX19A is shown with consideration of the effective borehole radius r_{wf} , calculation based on the skin factor.


 $r_{\rm wf}\,{=}\,r_{\rm w}\cdot e^{{}_-\xi}$

In the following chapters the response analysis of each responded section is presented.

Source borehole		Section (m)	Flow rate Qm (l/min)	Draw- down (m)	r _{wf} (m)				
KLX19A	2	495.00-515.00	2.1	12.74	3.3E-0	1			
Observation borehole	Sec No	Section (m)	Distance r _s (m)	Draw- down s _p (m)	dt∟ (s)	Index 1 r _s ²/dt _∟ (m²/s)	Index 2 s _p /Q _p (s/m²)	Index 2 New (s _p /Q _p)·In(r _s /r ₀) (s/m ²)	Diffusivity ŋ (m²/s)
HLX27	1	133.00–164.70	989	n.r.	-	_	_	_	_
	2	0.00–132.00	1,002	n.r.	-	_	_	_	_
HLX28	1	0.00–154.00	413	0.24	_	_	6,989.95	42,103.61	n.a.
HLX32	1	0.00–163.00	401	0.25	_	_	7,281.20	43,643.23	3.01
HLX36	1	50.00–199.50	764	n.r.	_	_	_	_	_
	2	0.00-49.00	770	n.r.	-	-	_	-	-
HLX37	1	149.00–199.80	745	0.18	_	_	5,242.46	34,670.43	n.a.
	2	118.00–148.00	775	0.19 n.r.	-	-	5,533.71	36,815.03	n.a.
	3	0.00–117.00	795	11.1.	-	_	-	-	_
HLX38	1	0.00–199.50	478	n.r.	_	_	_	-	-
HLX42	1	30.00–152.60	970	n.r.	_	_	_	-	-
	2	0.00–29.00	1,043	n.r.	-	-	-	-	-
KLX11A	1	0.00–992.00	724	n.r.	_	_	_	_	_
KLX11E	1	2.00–121.00	846	n.r.	_	_	_	_	_
KLX20A	1	0.00-457.00	883	n.r.	_	_	_	_	_

Table 5-3. Test sections and selected parameters (section 495.00–515.00 m pumped).

n.a. not analysed due to strong natural fluctuations n.r. no response due to pumping in source Key for Index 1,2 and 2 New see Table 5-1

Figure 5-1. Distance vs. Drawdown for the responding test sections, KLX19A section 495.00–515.00 m pumped.

Response in HLX28, section 1 (0.00-154.00 m)

Comments to test

A total drawdown during the flow period of 2.4 kPa (0.24 m) was observed in this section. The index 1 1 (r_s^2/dt^L) was not calculated due to effects of natural fluctuation, index 2 (s_p/Q_p) was calculated as "low response" and the new index 2 (s_p/Q_p)·ln(r_s/r_0) as "medium response". Both phases (CRw and CRwr) are strongly disturbed by natural fluctuations and could not be used for further interpretation.

Flow regime and calculated parameters

Due to the influence of natural fluctuations the recorded data of the pressure response is very noisy and does not allow flow model identification.

Selected representative parameters

No hydraulic parameters could be derived from the pressure response.

Response in HLX32, section 1 (0.00–163.00 m)

Comments to test

A total drawdown during the flow period of 2.5 kPa (0.25 m) was observed in this section. The recovery was very much disturbed by natural fluctuations and could not be used for further interpretation. The index 1 (r_s^2/dt^L) was not calculated due to effects of natural fluctuation, index 2 (s_p/Q_p) was calculated as "low response" and the new index 2 (s_p/Q_p)·ln(r_s/r_0) as "medium response".

The CRw phase shows no problems and is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. For the analysis of the CRw phase a homogeneous radial flow model was chosen. The Analysis is presented in Appendix 3-1.

Selected representative parameters

The recommended transmissivity of $4.3 \cdot 10^{-5}$ m²/s was derived from the analysis of the CRw phase, which shows the best data and derivative quality. The confidence range for the borehole transmissivity is estimated to be $2.0 \cdot 10^{-5}$ m²/s to $1.0 \cdot 10^{-4}$ m²/s. The flow dimension during the test is 2. No further analysis recommended.

Response in HLX37, section 1 (149.00-199.80 m)

Comments to test

A total drawdown during the flow period of 1.8 kPa (0.18 m) was observed in this section. The index 1 1 (r_s^2/dt^L) was not calculated due to effects of natural fluctuation, index 2 (s_p/Q_p) was calculated as "low response" and the new index 2 (s_p/Q_p)·ln(r_s/r_0) as "medium response". Both phases (CRw and CRwr) are strongly disturbed by natural fluctuations and could not be used for further interpretation.

Flow regime and calculated parameters

Due to the influence of natural fluctuations the recorded data of the pressure response is very noisy and does not allow flow model identification.

Selected representative parameters

No hydraulic parameters could be derived from the pressure response.

Response in HLX37, section 2 (118.00-148.00 m)

Comments to test

A total drawdown during the flow period of 1.9 kPa (0.19 m) was observed in this section. The index 1 1 (r_s^2/dt^L) was not calculated due to effects of natural fluctuation, index 2 (s_p/Q_p) was calculated as "low response" and the new index 2 (s_p/Q_p)·ln(r_s/r_0) as "medium response". Both phases (CRw and CRwr) are strongly disturbed by natural fluctuations and could not be used for further interpretation.

Flow regime and calculated parameters

Due to the influence of natural fluctuations the recorded data of the pressure response is very noisy and does not allow flow model identification.

Selected representative parameters

No hydraulic parameters could be derived from the pressure response.

6 Summary and conclusions

The summary and conclusions chapter summarizes the basic test parameters and analysis results.

6.1 Location of responding test section

The following figures are showing the location of the responding test sections in relationship with the pumping section.

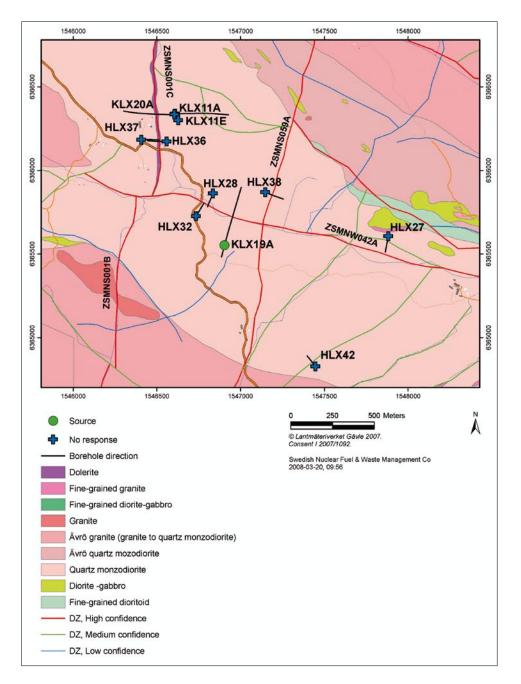


Figure 6-1. Location of responding test sections while pumping in section 764.00–769.00 m.

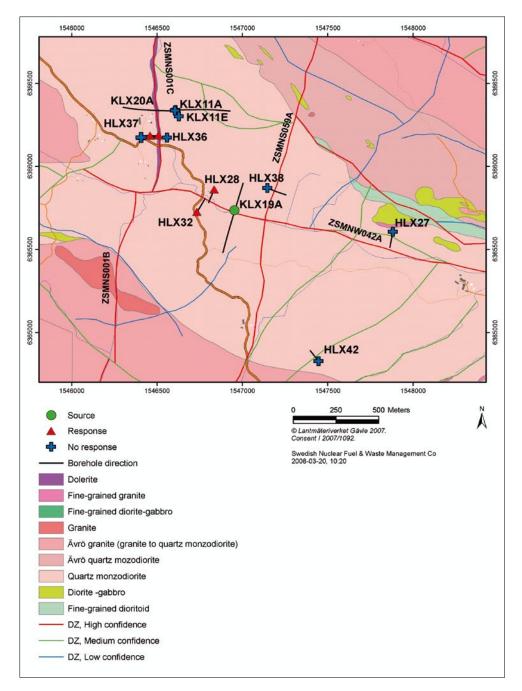


Figure 6-2. Location of responding test sections while pumping in section 495.00–515.00 m.

6.2 Summary of results

Table 6-1. General test data from constant rate pump tests.

Borehole	Borehole	Borehole	Date and time	Date and time	Q _p (m³/s)	Q _m (m³/s)	tp (s)	t _⊧ (s)	p₀ (kPa)	p _i (kPa)	p (kPa)	p _⊧ (kPa)	Te _w (°C)	Test µ meas	ohases ured
ID	secup (m)	Seclow (m)	Test start YYYYMMDD hh:mm	Test stop YYYYMMDD hh:mm										-	sed test es marked
KLX19A	495.00	515.00	20061207 15:07	20070109 12:28	3.50E-05	3.57E-05	2827044	12780	4316	4311	4186	4306	13.3	_	CRwr
KLX19A	764.00	769.00	20061128 19:53	20061205 15:52	1.33E-05	1.33E-05	578490	9588	6404	6391	6150	6347	16.8	-	CRwr

Nomenclature

- Q_m Arithmetical mean flow during perturbation phase [m³/s]
- t_p Duration of perturbation phase [s]
- t_f Duration of recovery phase [s]
- p₀ Pressure in borehole before packer inflation [kPa]
- p_i Pressure in test section before start of flowing [kPa]
- p_p Pressure in test section before stop of flowing [kPa]
- p_F Pressure in test section at the end of the recovery [kPa]
- Te_w Temperature in test section
- Test phases CRw: constant rate pump (withdrawal) phase
 - CRwr: recovery phase following the constant rate pump (withdrawal) phase

Table 6-2. Results from analysis of the constant rate pump tests.

Interval p	osition		Stationar	y flow	Transie	nt analysis														
			paramete	ers	Flow reg	gime	Format	ion paran	neters										Static co	onditions
Borehole	up	low	Q/s	Тм	Perturb.	Recovery	T _{f1}	T _{f2}	T _{s1}	T _{s2}	Τ _τ	T _{TMIN}	T_{TMAX}	С	ξ	dt ₁	dt ₂	r _{inner}	p*	h _{wif}
ID	m btoc	m btoc	m²/s	m²/s	Phase	Phase	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m²/s	m³/Pa	-	min	min	m	kPa	masl
KLX19A	495.00	515.00	2.7E-06	2.9E-06	#NV	WBS22	#NV	#NV	2.6E-06	5.8E-06	5.8E-06	1.0E-06	6.0E-06	6.8E-09	-2.2	11.4	95.5	19.4	4,331	16.38
KLX19A	764.00	769.00	5.4E-07	4.5E-07	#NV	WBS22	#NV	#NV	2.9E-07	7.2E-07	2.9E-07	5.0E-08	3.0E-07	9.7E-10	-4.6	0.6	23.3	19.6	6,405	16.37

Nomenclature

Q/s	Specific capacity.
Т _м	Transmissivity according to /Moye 1967/.
Flow regime	The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
T _f	Transmissivity derived from the analysis of the perturbation phase (CRw). In case a homogeneous flow model was used only one T_f value is reported, in case a two zone composite flow model was used both T_{f1} (inner zone) and T_{f2} (outer zone) are given.
Ts	Transmissivity derived from the analysis of the recovery phase (CRwr). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_{s1} (inner zone) and T_{s2} (outer zone) are given.
Τ _τ	Recommended transmissivity.
T_{TMIN} / T_{TMAX}	Confidence range lower/upper limit.
С	Wellbore storage coefficient.
٤	Skin factor (calculated based on a Storativity of 1.10 ⁻⁶).
dt ₁ / dt ₂	Estimated start/stop time of evaluation for the recommended transmissivity $(T_{\scriptscriptstyle T})$.
r _{inner}	Radius of the inner zone.
p*	The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHir phase using straight line or type-curve extrapolation.
h _{wif}	Fresh-water head (based on transducer depth and p*).
#NV	Not analysed/no values.

Pumped s	section	Observation	n borehole	Flow reg	gime	Transien Formatic	-									Index ca	lculation		
Borehole ID	Section m btoc	Borehole ID_Sec.	Section m btoc	Pertub. Phase	Rec. Phase	T _{f1} m²/s	T _{f2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T⊤ m²/s	T _{TMIN} m²/s	T _{™AX} m²/s	S	dt₁ s	dt₂ s	Index 1 r _s ²/dt _L	Index 2 s _p /Q _p	Index 2 new (sp/ Qp)* In(r _s /r₀)	Diffusivity ŋ (T/S)
KLX19A	495.00-	HLX27_1	133.00–164.70	_	-	_	_	-	_	_	_	_	_	_	-	No respo	onse due t	o pumping	_
	515.00	HLX27_2	0.00-132.00	_	_	-	_	_	_	_	-	_	_	_	_	No respo	onse due t	o pumping	_
		HLX28_1	0.00-154.00	n.a.	n.a.	_	_	-	_	-	_	_	_	_	_	n.a.	6,990	42,104	n.a.
		HLX32_1	0.00-163.00	2	n.a.	4.3E-05	_	n.a.	n.a.	4.3E-05	2.0E-05	1.0E-04	1.4E–05	2.8E05	1.5E06	n.a.	7,281	43,643	3.01
		HLX36_1	50.00-199.50	_	_	-	_	_	_	-	_	_	_	_	-	No respo	onse due t	o pumping	_
		HLX36_2	0.00-49.00	_	_	_	_	_	-	_	_	_	_	_	_	No respo	onse due t	o pumping	_
		HLX37_1	149.00–199.80	n.a.	n.a.	_	_	_	-	_	_	_	_	_	_	n.a.	5,242	34,670	n.a.
		HLX37_2	118.00–148.00	n.a.	n.a.	_	_	_	-	-	_	_	_	_	_	n.a.	5,534	36,815	n.a.
		HLX37_3	0.00-117.00	_	_	_	_	_	_	_	_	-	_	_	_	No respo	onse due te	o pumping	-
		HLX38_1	0.00-199.50	_	-	_	_	-	-	_	-	-	_	_	-	No respo	onse due te	o pumping	-
		HLX42_1	30.00-152.60	-	-	-	-	-	-	-	-	-	-	_	-	No respo	onse due te	o pumping	-
		HLX42_2	0.00-29.00	-	-	-	_	-	-	_	-	-	-	_	-	No respo	onse due te	o pumping	-
		KLX11A_1	0.00-992.00	-	-	-	-	-	-	-	-	-	-	-	-	No respo	onse due te	o pumping	-
		KLX11E_1	2.00-121.00	-	-	-	-	-	-	-	-	-	-	-	-	No respo	onse due te	o pumping	-
		KLX20A_1	0.00-457.00	-	-	-	-	-	-	-	-	-	-	-	-	No respo	onse due to	o pumping	
KLX19A	764.00-	HLX27_1	133.00–164.70	_	_	_	_	_	_	_	_	_	_	_	_	No respo	onse due te	o pumping	_
	769.00	HLX27_2	0.00-132.00	_	_	_	_	_	_	_	_	-	_	_	_	No respo	onse due to	o pumping	-
		HLX28_1	0.00-154.00	_	_	_	_	_	_	-	_	-	_	_	_	No respo	onse due t	o pumping	_
		HLX32_1	0.00-163.00	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.	n.o.			n.o.
		HLX36_1	50.00-199.50	-	-	-	-	-	-	-	-	-	-	-	-	No respo	onse due t	o pumping	-
		HLX36_2	0.00-49.00	-	_	-	_	-	-	-	-	-	_	_	-	No respo	onse due t	o pumping	-
		HLX37_1	149.00–199.80	-	-	-	-	-	-	-	-	-	-	-	-	No respo	onse due t	o pumping	-
KLX19A	764.00-	HLX37_2	118.00–148.00	_	_	_	_	_	_	_	_	_	_	_	_	No respo	onse due t	o pumping	_
	769.00	– HLX37_3	0.00-117.00	_	_	_	_	_	_	-	_	_	_	_	_			o pumping	
		- HLX38_1	0.00-199.50	_	_	_	_	_	-	-	_	_	_	_	_	No respo	onse due te	o pumping	-
			30.00-152.60	_	_	_	_	_	_	_	_	_	_	_	_	No respo	onse due te	o pumping	_
			0.00-29.00	_	_	_	_	_	-	-	_	_	_	_	_	No respo	onse due te	o pumping	-
			0.00-992.00	_	_	_	_	-	-	-	_	_	_	_	_	No respo	onse due te	o pumping	-
			2.00-121.00	-	_	_	-	_	_	_	_	_	_	_	_			o pumping	
		KLX20A_1	0.00-457.00	_	_	_	_	_	_	_	_	_	_	_	_	No respo	onse due te	o pumping	_

Table 6-3. Results from analysis of the interference tests.

Nomenclature

Flow regime	The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
T _f	Transmissivity derived from the analysis of the perturbation phase (CRw). In case a homogeneous flow model was used only one T_f value is reported, in case a two zone composite flow model was used both T_{f1} (inner zone) and T_{f2} (outer zone) are given.
T _s	Transmissivity derived from the analysis of the recovery phase (CRwr). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_{s1} (inner zone) and T_{s2} (outer zone) are given.
Τ _τ	Recommended transmissivity.
T_{TMIN} / T_{TMAX}	Confidence range lower/upper limit.
S	Storativity.
dt1 / dt2	Estimated start/stop time of evaluation of the recommended transmissivity $(T_{\scriptscriptstyle T})$.
Index 1	$r_{\rm s}^{\rm 2}/dt_{\rm L}$ (m²/s) normalised distance $r_{\rm s}$ with respect to the response time.
Index 2	sp/Qp (s/m ²) normalised drawdown with respect to the pumping rate.
Index 2 new	$(sp/Qp)^{*}ln(r_{s}/r_{0})$ (s/m ²) normalised drawdown with respect to the pumping rate and distance.
Diffusivity ŋ	T _T /S (m²/s)
n.a.	Not analysed due to strong natural fluctuations.
n.o.	No observation data available.

6.3 Conclusions

6.3.1 Transmissivity derived from the pump tests

Table 6-2 presents numbers of transmissivities, including the confidence range derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 4.5.9 of the report No. P-07-90.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described using a skin effect. Due to the noisy and unstable CRw phases of both pump tests, only the CRwr phases were analysed. A composite model was chosen for both of the CRwr phases. Depending on the quality of the data, the outer zone transmissivity of the recovery phase was recommended for the test section 495.00–515.00 m ($5.8 \cdot 10^{-06}$ m²/s) and the inner zone transmissivity for the test section 764.00–769.00 m ($2.9 \cdot 10^{-07}$ m²/s).

6.3.2 Flow regimes encountered

The flow models used in the analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In both pump tests, the pressure derivative suggests a change of transmissivity with increased distance from the borehole. In these cases a composite flow model was used in the analysis.

The flow dimension displayed by the tests can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. However, in both cases it was possible to achieve to acceptable analysis results (good match quality) by using radial flow geometry (flow dimension of 2).

6.3.3 Interference tests and hydraulic connectivity

For the interference tests two constant rate pump tests were performed in KLX19A. Up to 15 sections in 10 boreholes mainly along the lineament NW042 and NS001 were monitored. 4 sections in 3 observation holes responded during the pump test in section 495.00–515.00 m and no section responded during the pump test in section 764.00–769.00 m.

The responding observation sections are located in two boreholes along the lineament NW042 up to approximately 400 m away from KLX19A and in one of the boreholes along the lineament NS001 up to approximately 775 m away from KLX19A. Due to the background noise of the response test data, it was not possible to derive a response time, the response drawdown range from low to medium.

The recommended transmissivity derived from the transient analysis of the responding section in borehole HLX32 is at $4.3 \cdot 10^{-5}$ m²/s. Due to major natural fluctuations affecting the data of the other three responding sections, no further analysis of test data was possible.

6.3.4 Interpretation of the responses

Preliminary evaluations indicate that the lineament NW042 acts as a hydraulic connection, whereas the dolerite dyke connected to NS001 acts as a hydraulic barrier. Pumping in KLX19A in section 495.00–515.00 m generates responses in boreholes HLX28 and HLX32 connected to NW042 and in two lower sections in HLX37 east of and covering the dolerite dyke. The upper section in HLX37 above (west) of the dolerite dyke does not respond to the pumping in KLX19A. The second pump test section in KLX19A at 764.00–769.00 which is not direct connected to the lineament NW042 generated no response in any of the observation boreholes at all.

The tests also show that there is no hydraulic connection from the lineament NW042 to lineament NS059 as the observation borehole HLX38 shows no response to both of the pump tests in KLX19A.

7 References

Enachescu C, Böhner J, Wolf P, 2007. Oskarshamn site investigation. Pumping tests and hydraulic injection tests in borehole KLX19A, 2007, Subarea Laxemar. SKB P-07-90, Svensk Kärnbränslehantering AB.

Horner D R, 1951. Pressure build-up in wells. – Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

Moye D G, 1967. Diamond drilling for foundation exploration Civil Eng. Trans, Inst. Eng. Australia, Apr. 1967, pp 95–100.

SKB, **2001a**. Site investigations: Investigation methods and general execution programme. SKB R-01-10, Svensk Kärnbränslehantering AB.

SKB, 2001b. Geovetenskapligt program för platsundersökning vid Simpevarp. SKB R-01-44, Svensk Kärnbränslehantering AB.

SKB 2002. Execution programme for the initial site investigations at Simpevarp. SKB P-02-06 Svensk Kärnbränslehantering.

SKB 2006. Oskarshamn site investigation. Programme for further investigations of bedrock, soil, water and environment in Laxemar subarea. R-06-29, Svensk Kärnbränslehantering AB.

Streltsova T D, 1988. Well testing in heterogeneous formations. John Wiley & Sons, New York.

Theis C V, 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. – Trans. Am. Geophys. Union 16:519–524.

Appendix 1

Pump Test Summary Sheets

		nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Crv
Area:	Laxemar	Test no:			
	1412400	-			00400745
Borehole ID:	KLX19A	Test start:			061207 15:0
Test section from - to (m):	495.00-515.00 m	Responsible for			Stephan Rol
		test execution:			Philipp Wo
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for test evaluation:		Crist	ian Enacheso
Linear plot Q and p		Flow period	Į	Recovery period	1
		Indata		Indata	
		p ₀ (kPa) =	4316		
4322 KLX19A_495.00-515.00_061207_1_CRwr_Q_r	• P sector	p _i (kPa) =	4311		
4220	P and/on P And/on P And/on P And/on P And/on P And/on A S P below C A 0	p _p (kPa) =	4186	p _F (kPa) =	43
4200	15	Q _p (m ³ /s)=	3.50E-05		
4270	+ 20 g	tp (s) =	2827044	t _F (s) =	127
4250		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-
4200		EC _w (mS/m)=			
420		Temp _w (gr C)=	13.3		
4170 -	- 05	Derivative fact.=	NA	Derivative fact.=	0.
4150 0.03 100.00 200.00 400.00 Elispind Tir	0.0 500.00 600.00 700.00 800.00				
Elapsed Tr	ne (h)				
		Results		Results	
		Q/s (m²/s)=	2.7E-06		
.og-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	2.9E-06		
		Flow regime:	NA	Flow regime:	transient
		dt ₁ (min) =	NA	dt_1 (min) =	11.4
		dt_2 (min) =	NA	dt_2 (min) =	95.5
		T (m ² /s) =	NA	T (m²/s) =	5.8E-0
		S (-) =	NA	S (-) =	1.0E-0
		$K_s (m/s) =$	NA	$K_s (m/s) =$	2.9E-0
not an	alysed	S _s (1/m) =	NA	$S_{s}(1/m) =$	5.0E-0
	v	C (m ³ /Pa) =	NA	$C (m^{3}/Pa) =$	6.8E-0
		$C_{D}(-) =$	NA	$C_{D}(-) =$	7.4E-
		ξ(-) =	NA	ξ(-) =	-2.1
		2		- 21	
		$T_{GRF}(m^2/s) = S_{GRF}(-) =$		$T_{GRF}(m^2/s) = S_{GRF}(-) =$	
		$D_{GRF}(-) =$		$D_{GRF}(-) =$	
.og-Log plot incl. derivatives-	recovery period	Selected represe	entative naran		
		dt_1 (min) =	11.44	C (m ³ /Pa) =	6.8E-0
Elapsed time (r) 1	dt_2 (min) =	95.51	$C_{D}(-) =$	7.4E-0
10 2	v	$T_{T}(m^{2}/s) =$	5.8E-06		-2.1
	10	S (-) =	1.0E-06	/	
10 1		$K_s (m/s) =$	2.9E-07		
	10 ²	$S_{s}(1/m) =$	5.0E-08		
and the second s	8	Comments:			
¹⁰	10 ¹		transmissivity of	f 5.8•10-6 m2/s was	derived from
				e to the hydraulic co	
10 -1				should be regarded confidence range for	
	10 °			•10-6 to 6.0•10-6 m	
10 [°] 10 ¹	10 ² 10 ³ 10 ⁴	dimension displaye	ed during the test	is 2. The static pres	ssure measured
10 10 sbict		at transducer depth	, was derived fro	om the CRwr phase	using type curv
		*		a value of 4,331.2 k	
				pared to the pumping	g unie, this
		value is slightly un	certain		

	Test	Sumn	nary Sheet			
Project:	Oskarshamn site invest	tigation	Test type:[1]			CRwr
Area:	La	axemar	Test no:			1
Borehole ID:	к	LX19A	Test start:	061128 1		061128 19:53
Test section from - to (m):	764.00-	Responsible for			Stephan Rohs	
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Cristi	Philipp Wolf an Enachescu
			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p ₀ (kPa) =	6404		
6402 NLX19A_764.00-769.00_001128_1_CRwr_Q_r	• P section • P above • P balave • Q	2.0	p _i (kPa) =	6391		
6400	• P belaw • Q		p _p (kPa) =		p _F (kPa) =	6347
6200-	7	• 15	$Q_{p} (m^{3}/s) =$	1.33E-05		
E. Min		burne	tp (s) =	578490		9588
		10 w fate	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
â			EC _w (mS/m)=			
		- 0.5	Temp _w (gr C)=	16.8		
6153			Derivative fact.=	NA	Derivative fact.=	0.06
600	100.00 120.00 140.00 100.00 10 [N]	↓ 0.0 80.00				
			Results		Results	
			Q/s (m²/s)=	5.4E-07		
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	4.5E-07		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	NA	dt ₁ (min) =	0.60
			dt ₂ (min) =	NA	dt ₂ (min) =	23.34
			T (m²/s) =	NA	T (m²/s) =	2.9E-07
			S (-) =	NA	S (-) =	1.0E-06
			K _s (m/s) =	NA	K _s (m/s) =	5.7E-08
Not an	alvead		S _s (1/m) =	NA	S _s (1/m) =	2.0E-07
	ary seu		C (m³/Pa) =	NA	C (m³/Pa) =	9.7E-10
			C _D (-) =	NA	C _D (-) =	1.1E-01
			ξ(-) =	NA	ξ(-) =	-4.6
			T _{GRF} (m ² /s) =		T _{GRF} (m ² /s) =	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
			$D_{GRF}(-) =$		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative param		
			dt ₁ (min) =	0.60	C (m³/Pa) =	9.7E-10
Elapsed time (h)	, 10 ⁻¹ , , , , , , , , , , , , , , , , , , ,	,	dt ₂ (min) =	23.34	C _D (-) =	1.1E-01
10			$T_{T} (m^{2}/s) =$	2.9E-07	ξ(-) =	-4.6
10,		10 3	S (-) =	1.0E-06		
			K _s (m/s) =	5.7E-08		
10 °		10 2	S _s (1/m) =	2.0E-07		
and the second sec		[edd].	Comments:			
10 1		(ndd).(0d-d) (od-d			2.9E-7 m2/s was de	
· ·			-	*	the hydraulic comm	
10 -2		10 0			Id be regarded as at ence range for the in	
		10-1			E-8 to $3.0E-7 \text{ m}2/\text{s}.$	
10 ° 10 °	10 ⁻² 10 ⁻³ 10 ⁻⁴	1 ····			is 2. The static press	
					m the CRwr phase u	
					a value of 6,404.6 kF pared to the pumping	
			value is slightly un			, uno

Appendix 2

Index calculation

Interference analysis

APPENDIX 2-1

Index calculation

KL19A Section 495.00-515.00 m pumped

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	(495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section befo Pressure in test section befo Maximum pressure change o	re stop of flowing:	p _i p _p dp _p	kPa kPa kPa	4311 4186 125
Observation Hole: Distance r_s [m]: Response time dt _L [s]:	HLX27 989.00 #NV	Section no.: Section length: max. Drawdown s _p	[m]:*	HLX27_1 133.0-164.7 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section befo Pressure in test section befo Maximum pressure change of	re stop of flowing:	p _i p _p dp _p	kPa kPa kPa	68.9 68.5 0.4
Normalized drawdown with r Index 2 s _p /C	dt _L [m²/s]:	#NV		
Comment: no r	esponse due to pumping i sure changes due to natu			* see comment
Pumpstart 4340 4320 4300 4300 4280 4280 4280 4280 4220 4200 4180 4180 4160 29.11.2006 9.12.2006		Pumpsto	p → KLX19A → HLX27_1	72 71 70 69 60 60 65 65 64 64 63

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	0	495.00-515.00 9.01.2007 12:28 9.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section	n before start of flowing:	p _i	kPa	4311
	n before stop of flowing:	pp	kPa	4186
Maximum pressure ch	ange during flowing period:	dpp	kPa	125
Observation Hole:	HLX27	Section no.:		HLX27_2
Distance a fault	4000.00	Section length:	[].*	0.0-132.0
Distance r _s [m]:	1002.00	max. Drawdown s _p	[m]:*	#NV
Response time dt _L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
	n before start of flowing:	pi	kPa	69.0
	n before stop of flowing:	p _p	kPa	68.5
Maximum pressure cha	ange during flowing period:*	dpp	kPa	0.5
Normalized distance w Index 1	ith respect to the response time r_s^2/dt_L [m ² /s]:	#NV		
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping ir pressure changes due to natur no index calculated			see comment
Pumpstar	t	Pumpsto	p	
4340				12
4320		I		71
4300				70
4280	M. MANNALL			
H9 4260			<u> </u>	68 <u>0</u>
stive	· · · · · · · · · · · · · · · · · · ·		M	rvati
99 4240				
Lessare Active A			<u> </u>	Pressure Observation well [kPa]
Ĕ		Ť.	•	ress
4200				65 C
				64
4180			KLX19A	1 04
4180	l	I •		
4160	1 1 1 2 2006 19 12 2006 20 40	2006 08.01.2007	· · · ·	63
4160		2.2006 08.01.2007 ate	HLX27_2	63 28.01.2007

Pumping Hole:					
Test Start: Pump Start:	KLX19A 07.12.2006 15:07 07.12.2006 15:38		Pumping Section Test Stop: Pump Stop:	[m bToC]:	495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Flow Rate Q _p [m ³ /s]:	3.50E-05		Nemenoloture	Unit	Value
			Nomenclature		
	before start of flowing:		p _i	kPa kDa	-
Pressure in test section	ange during flowing period:		p _p dp	kPa kPa	
			dp _p	кга	
Observation Hole:	HLX28		Section no.:		HLX28_1 0.0-154.0
Distance r _s [m]:	413.00		Section length: max. Drawdown s₀	[m]:*	0.0-154.0
Response time dt_{L} [s]:	#NV				0.21
Pressure data			Nomenclature	Unit	Value
Pressure in test section	before start of flowing:		p _i	kPa	133.2
Pressure in test section	-		p _p	kPa	130.8
Maximum pressure cha	ange during flowing period.	*	dpp	kPa	2.4
Index 1	th respect to the response $r_s^2/dt_L [m^2/s]$: with respect to pumping flo $s_p/Q_p [s/m^2]$:	#NV			
index 2		6969.95	L	w	
Index 2 New	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	42103.61	М	edium	* see comment
Comment:	no clear response due to pressure changes influen (e.g. tidal effects)			tuations	
4340 Pumpstart			Pumpsto	p	 137
			l l		
4320			i †	ŧ	136
4300 -					
-				M	kPa]
4280				M/	134]]
4260				· · · · · · · · · · · · · · · · · · ·	133 D
ctive	Α.				ervat
4240			WN. /		132 Sq
4280 4280 4280 4280 4280 4280 4280 4280	WM Ann	1 Martin	<u>'' WY</u>		131 131
۵ – L	J. J		ŧ		134 134 132 132 132 132 132 132 132 132 132 132
4200					130
4180				KLX19A	129
			l T		
			<u> </u>		128
4160	12 2006 10 12 2006	29 12 2006	08 01 2007	18 01 2007	28 01 2007
	9.12.2006 19.12.2006	29.12.2006 Date	08.01.2007	18.01.2007	28.01.2007

Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]: Pressure data Pressure in test section bef Pressure in test section bef Maximum pressure change Observation Hole: Distance r _s [m]: Response time dt _L [s]: Pressure in test section bef Pressure in test section bef Maximum pressure change	ore stop of flowing: during flowing period: HLX32 401.00 #NV		Pumping Section Test Stop: Pump Stop: Nomenclature p_i p_p dp_p Section no.: Section length: max. Drawdown s _p Nomenclature	Unit KPa kPa kPa	495.00-515.00 09.01.2007 12:28 09.01.2007 08:56 Value 4311 4186 125 HLX32_1 0.0-163.0 0.25
Pressure in test section bef Pressure in test section bef Maximum pressure change Observation Hole: Distance r_s [m]: Response time dt_L [s]: Pressure data Pressure in test section bef Pressure in test section bef	ore stop of flowing: during flowing period: HLX32 401.00 #NV		p _i p _p dp _p Section no.: Section length: max. Drawdown s _p	kPa kPa kPa [m]:*	4311 4186 125 HLX32_1 0.0-163.0
Pressure in test section bef Maximum pressure change Observation Hole: Distance r _s [m]: Response time dt _L [s]: Pressure data Pressure in test section bef Pressure in test section bef	ore stop of flowing: during flowing period: HLX32 401.00 #NV		p _p dp _p Section no.: Section length: max. Drawdown s _p	kPa kPa [m]:*	4186 125 HLX32_1 0.0-163.0
Maximum pressure change Observation Hole: Distance r _s [m]: Response time dt _L [s]: Pressure data Pressure in test section bef Pressure in test section bef	e during flowing period: HLX32 401.00 #NV		dp _p Section no.: Section length: max. Drawdown s _p	kPa [m]:*	125 HLX32_1 0.0-163.0
Observation Hole: Distance rs [m]: Response time dtL [s]: Pressure data Pressure in test section bef Pressure in test section bef	HLX32 401.00 #NV		Section no.: Section length: max. Drawdown s _p	[m]:*	HLX32_1 0.0-163.0
Distance r _s [m]: Response time dt _L [s]: Pressure data Pressure in test section bef Pressure in test section bef	401.00 #NV		Section length: max. Drawdown s _p		0.0-163.0
Response time dt _L [s]: Pressure data Pressure in test section bef Pressure in test section bef	#NV		max. Drawdown s _p		
Response time dt _L [s]: Pressure data Pressure in test section bef Pressure in test section bef	#NV				0.25
Pressure data Pressure in test section bef Pressure in test section bef	ore start of flowing:		Nomenclature	Unit	
Pressure in test section bef Pressure in test section bef	-		Nomenciature	Unit	Value
Pressure in test section bef	-				
	ore stop or nowing:		p _i	kPa kDa	79.1
		*	p _p dp _p	kPa kPa	76.6 2.5
	during nowing period.		up _p	KFd	2.0
Normalized distance with re					
Index 1 r _s ²	/dt _L [m²/s]:	#NV			
Normalized drawdown with Index 2 s _p	respect to pumping flo / Q_p [s/m²]:	w rate 7281.20	Lo	w	
Index 2 New (s _p	_o /Q _p)*In(r _s /r ₀) [s/m ²]:	43643.23	Με	edium *	see comment
pre	clear response due to essure changes influen g. tidal effects)			uations	
Pumpstart			Pumpstop)	
4340					80
4320			I		
4300					
4280 A					
4280 4260 4240 4240 4240 4240				•	78.5 78.5 78.7 77.5 77.5 77.5 777 777 777 777
2 4260					vatio 87
4240				1 m	77.5 Sg
					Le O
<u>ě</u> 4220	Ma. e				77 ns
4200	V MAMAA		I NAM		76.5
			لنستنس		
4180		<u>'''''</u>	 	KLX19A HLX32_1	76
4160			İ		75.5
	12.2006 19.12.2006 24.12.2006		03.01.2007 08.01.2007 13.	01.2007 18.01.2007	23.01.2007
		Date			

-71	in No.	AP PS 400-07-72			
Pumping Test Start: Pump Star Flow Rate	rt:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	(495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure	data		Nomenclature	Unit	Value
Pressure in	n test section be	efore start of flowing:	p _i	kPa	4311
		efore stop of flowing:	pp	kPa	4186
Maximum	pressure chang	e during flowing period:	dpp	kPa	125
Observati	ion Hole:	HLX36	Section no.:		HLX36_1
Distance r		704.00	Section length:	[m].*	50.0-199.5
Distance r _s	_s [m]: time dt _L [s]:	764.00 #NV	max. Drawdown s _p	[m].	#NV
Pressure		#111	Nomenclature	Unit	Value
		efore start of flowing:	p _i	kPa	136.7
		efore stop of flowing:	ρ _i	kPa	130.7
		e during flowing period:*	dp _p	kPa	0.6
Index 1 Normalized Index 2	d drawdown wit s	s ² /dt _L [m ² /s]: h respect to pumping flow rat p/Q _p [s/m ²]:	#NV te #NV		
Index 2 No	ow (/				
	ew (:	s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	#NV	÷	* see comment
Comment:	: n p	s _p /Q _p)*In(r _s /r ₀) [s/m ²]: to response due to pumping i pressure changes due to natu to index calculated	n source		* see comment
Comment:	: n p	o response due to pumping i ressure changes due to natu	n source	effects) only	
	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	* see comment
Comment:	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	
Comment:	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142
Comment: 4340 - 4320 - 4300 - 4300 - 4300 - 4300 - 4300 - 4300 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142
Comment: 4340 - 4320 - 4300 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140 138 138 137 137 137
Comment: 4340 4320 4320 4300 4300 4260 4260 4240 4240 4240 4240	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140 139 137 138 137 136 L136
Comment: 4340 - 4320 - 4300 - 4300 - 4280 - 4220 - 4220 - 4200 - 4200 - 4180 -	: n p n	o response due to pumping i ressure changes due to natu	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140 139 138 138 137 136 137 136 137 136 137 136 135 135
Comment: 4340 - 4320 - 4300 - 4300 - 4240 - 4240 - 4220 - 4200 -	Pumpstart	to response due to pumping i pressure changes due to natu o index calculated	n source ral fluctuations (e.g. tidal e	effects) only	142 141 140 139 138 138 137 136 136 136 135

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _o [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 2.50E 05	Pumping Section Test Stop: Pump Stop:		495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data	3.50E-05	Nomenclature	Unit	Value
Pressure in test section I	boforo start of flowing:		kPa	4311
Pressure in test section I	-	p _i	kPa kPa	4311
	ige during flowing period:	p _p dp _p	kPa	125
Observation Hole:	HLX36	Section no.:		HLX36_2
Observation noie.	ПЕЛЭО	Section length:		0.0-49.0
Distance r _s [m]:	770.00	max. Drawdown s _p	[m]:*	0.0-49.0 #NV
Response time dt _L [s]:	#NV	þ		
Pressure data		Nomenclature	Unit	Value
Pressure in test section I	pefore start of flowing:	p _i	kPa	104.2
Pressure in test section I	-	p _p	kPa	104.4
	ige during flowing period:*	dp _p	kPa	0.2
	n respect to the response time rs²/dt _L [m²/s]:	#NV		
	no response due to pumping ir pressure changes due to natur no index calculated			* see comment
Pumpstart		Pumpstop)	
4340				106.5
4320				106
• • • • •		l		
4300 -				105.5
4280				105 II
			w/\	A L
9 4260		- WWWIII		atio 104.5
4240				104 S
4280 4260 4240 4240 4240 4240	Wy N wan	<u>, N</u>		10 2
4220 -		••••••••••••••••••••••••••••••••••••••		105 105 104 104 104 104 104 104 104 104 104 104
				103 4
4200				
4200				
4200 4180			KLX19A	102.5
			KLX19A HLX36_2	102.5
4180	, 2.2006 19.12.2006 29.12 Da			

Activityplan No.	AP PS 400-07-72				
Pumping Hole:	KLX19A		Pumping Section	[m bToC]:	495.00-515.00
Test Start:	07.12.2006 15:07		Test Stop:		09.01.2007 12:28
Pump Start:	07.12.2006 15:38		Pump Stop:		09.01.2007 08:56
Flow Rate Q _p [m ³ /s]:	3.50E-05				
Pressure data			Nomenclature	Unit	Value
Pressure in test section	before start of flowing:		p _i	kPa	4311
Pressure in test section	before stop of flowing:		pp	kPa	4186
Maximum pressure cha	inge during flowing period:		dpp	kPa	125
Observation Hole:	HLX37		Section no.:		HLX37_1
			Section length:		149.0-199.8
Distance r _s [m]:	745.00		max. Drawdown s _p	[m]:*	0.18
Response time dt_L [s]:	#NV				
Pressure data			Nomenclature	Unit	Value
Pressure in test section	before start of flowing:		pi	kPa	135.3
Pressure in test section	before stop of flowing:		pp	kPa	133.5
Maximum pressure cha	inge during flowing period:	*	dpp	kPa	1.8
Normalized distance wi	th respect to the response	time			
Index 1	$r_s^2/dt_L [m^2/s]$:	#NV			
Normalized drawdown v Index 2	with respect to pumping flo s _p /Q _p [s/m ²]:	w rate 5242.46	Lo	w	
Index 2 New	(s _p /Q _p)*ln(r _s /r ₀) [s/m ²]:	34670.43	M	edium	* see comment
Comment:	clear response due to pur pressure changes influen (e.g. tidal effects)			tuations	
4340 Pumpstart			Pumpsto	p	 139
			I		
4320 -			[138
4300 -					
4280 -			_		
				WY '	
4280 4260 4240 4240 4220	N				135 atio
4240					134 S
a		MAN	WW		134 Ä O
SS 4220 -			' ''		133 Đ
•			t		136 137 134 134 134 134 134 133 133
4200					132
4180					131
			i T	KLX19A HLX37_1	
4160				10.01.0007	130
29.11.2006 09	.12.2006 19.12.2006	29.12.2006 Date	08.01.2007	18.01.2007	28.01.2007

Activityplan No.	AP PS 400-07-7	2			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19 07.12.2006 15:0 07.12.2006 15:3 3.50E-0)7 38	Pumping Section Test Stop: Pump Stop:	C	495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data			Nomenclature	Unit	Value
Pressure in test section	ion before start of flowing:		p _i	kPa	4311
	ion before stop of flowing:		pp	kPa	4186
Maximum pressure of	change during flowing peri	od:	dpp	kPa	125
Observation Hole:	HLX3	\$7	Section no.:		HLX37_2
Distance r [m]:	775.0	0	Section length:	[m]·*	118.0-148.0
Distance r _s [m]: Response time dt _L [s			max. Drawdown s _p	[m].	0.19
Pressure data	<u>. </u>		Nomenclature	Unit	Value
Pressure in test sect	ion before start of flowing:		p _i	kPa	135.2
	ion before stop of flowing:		pi p _p	kPa	133.3
	change during flowing peri		dp _p	kPa	1.9
•			- F		
Index 1	with respect to the responent r _s ² /dt _L [m ² /s]:	nse time #N	v		
Normalized drawdow Index 2	vn with respect to pumping s _p /Q _p [s/m ²]:	g flow rate 5533.7	71 Lo	w	
Index 2 New	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: 36815.0)3 M	edium *	see comment
Comment:	clear response due to pressure changes infl (e.g. tidal effects)			tuations	
Pumps	tart		Pumpsto	р	100
4340			l		
4340					138
4320					138
4320				<u> </u>	
4320					138
4320			Ŵ	M	138
4320			J. M	Ŵ	138
4320			M.	M	138
4320	M	mmm	M M	Ŵ	138
4320 4300 4260 4240 4240 4240 4240 4240 4220	M M	mmy	M M	M.	138 137 137 136 136 136 138 138 138 138 133 133
4320	M	mm			138
4320 4300 4260 4240 4240 4240 4240 4240 4220	M	mmm	M M i	KLX19A	138 137 136 135 136 135 136 137 138 138 138 138 138 138
4320 4300 4280 4280 4240 4240 4240 4240 4240 42	h h h h h h h h h h h h h h h h h h h		M M M	KLX19A HLX37_2	138 137 136 136 136 136 134 133 133 132 132 131
4320 4300 4240 4240 4240 4240 4240 4220 422	09.12.2006	29.12.2006	08.01.2007		138 137 136 136 135 134 134 133 133 133 132
4320 4300 4280 4280 4240 4240 4240 4240 4240 42	09.12.2006	29.12.2006 Date	08.01.2007		138 137 136 136 135 134 134 134 133 134 133 132 132 131 131 130

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:		495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section before	•	p _i	kPa	4311
Pressure in test section before		pp	kPa	4186
Maximum pressure change	during flowing period:	dp _p	kPa	125
Observation Hole:	HLX37	Section no.:		HLX37_3
Distance r [m]:	705.00	Section length:	[m]·*	0.0-117.0
Distance r_s [m]: Response time dt _L [s]:	795.00 #NV	max. Drawdown s _p	, [m].	#NV
Pressure data	TTIN V	Nomenclature	Unit	Value
Pressure in test section before	ore start of flowing.	p _i	kPa	148.5
Pressure in test section before	-	p _p	kPa	148.6
Maximum pressure change		dp _p	kPa	0.1
Normalized distance with re Index 1 r _s ² /	spect to the response time dt _L [m²/s]:	#NV		
Normalized drawdown with Index 2 s _p /	respect to pumping flow ra Q _p [s/m ²]:	te #NV		
Index 2 New (s _p	/Q _p)*In(r _s /r ₀) [s/m ²]:	#NV		* see comment
pre	response due to pumping i ssure changes due to natu index calculated		effects) only	
Pumpstart		Pumpsto	p	
4340				149
4320			•	148.9
4300				148.8
		1		
4280				
4260	2 Sta 2 Sta Billion 2			148.6 <u>0</u>
ti citice				rvati
A2200 42200 42200 42200 42200			/ }}	148.7 148.7 148.5 148.4 148.4 148.4 148.4
7 8 4220	+	•	•	148.4 US
<u>د</u>				Press
4200				148.3
4180		U	KLX19A	148.2
4160 29.11.2006 09.12.2006	5 19.12.2006 29.1	2.2006 08.01.2007	18.01.2007	148.1 28.01.2007
	D	ate		

Activityplan	No.	AP PS 400-07-72			
Pumping H Test Start: Pump Start Flow Rate (:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	n [m bToC]:	495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure d	ata		Nomenclature	Unit	Value
Pressure in	test section b	efore start of flowing:	p _i	kPa	4311
		efore stop of flowing:	pp	kPa	4186
Maximum p	pressure chang	ge during flowing period:	dpp	kPa	125
Observatio	on Hole:	HLX38	Section no.:		HLX38_1
			Section length:		0.0-199.5
Distance r _s		478.00	max. Drawdown s	_p [m]:*	#NV
Response ti		#NV			
Pressure d	ata		Nomenclature	Unit	Value
Pressure in	test section b	efore start of flowing:	pi	kPa	56.6
Pressure in	test section b	efore stop of flowing:	pp	kPa	56.6
Maximum p	pressure chang	ge during flowing period:*	dpp	kPa	0.0
Normalized Index 1		respect to the response time $s^2/dt_L [m^2/s]$:	#NV		
Index 2 Ne Comment:	r F	s _p /Q _p)*ln(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes due to natur no index calculated		effects) only	* see comment
1010	Pumpstart		Pumpsto	ор	50.5
4340	1				58.5
4320 —			!		58
	1				
4300					57.5 E
Lack Active Well [kBa]	<u> </u>				57 56.5 56.5 56.5 56.5 56.5 56.5 56.5 56.5
vell	lini.		AL. MALIN		M LO
2 4260		A.A	A IN THE WAY		
		M. A.M.W.W.W.M.			56 q
ssur	Ŧ	· · · · · · · · · · · · · · · · · · ·	· · · ·		Le O
<u>ق</u> 4220 —		•			55.5 TSS
4200					55 5
			jonne		
4180				← KLX19A ← HLX38_1	54.5
4160		2006 10 10 2006 20 10			
29.11.20	006 09.12.	2006 19.12.2006 29.12	2.2006 08.01.2007	18.01.2007	28.01.2007
29.11.20	JUG U9.12.		ate	18.01.2007	28.01.2007

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	(495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section bef	ore start of flowing:	p _i	kPa	4311
Pressure in test section bef		pp	kPa	4186
Maximum pressure change	during flowing period:	dpp	kPa	125
Observation Hole:	HLX42	Section no.:		HLX42_1
Distance a fach	070.00	Section length:	[].*	30.0-152.6
Distance r _s [m]:	970.00	max. Drawdown s _p	, [m]:"	#NV
Response time dt _L [s]: Pressure data	#NV	Nomonoloturo	Unit	Value
	and start of flowing	Nomenclature		
Pressure in test section bef	-	p _i	kPa kPa	105.2
Pressure in test section bef Maximum pressure change		Ρ _Ρ dp _p	kPa kPa	103.4 1.8
	during nowing period.	up _p	кга	1.0
Normalized distance with re Index 1 rs ²	espect to the response time / dt _ [m ² /s]:	#NV		
Comment: no pre	p/Q _p)*In(r _s /r ₀) [s/m ²]: response due to pumping i essure changes due to natu index calculated			f see comment
Pumpstart		Pumpsto	p	440
4340	ls.			113
4320				110
4300		1 1		107
4240 4240 4240 4240				Pressure Observation well [kPa]
4260				N
tive				rvati
¥ 4240				98 98
n s s 4220	1°mm		M	95 95
Ϋ́Υ Ϋ́Υ	•		V	ress
4200				92
4180			KLX19A	
4160 99.12.200	06 19.12.2006 29.5	2.2006 08.01.2007	18.01.2007	86 28.01.2007
	Γ	Date		

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	(495.00-515.00 09.01.2007 12:28 09.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section b	efore start of flowing:	p _i	kPa	4311
Pressure in test section b	efore stop of flowing:	pp	kPa	4186
Maximum pressure change	ge during flowing period:	dpp	kPa	125
Observation Hole:	HLX42	Section no.:		HLX42_2
		Section length:		0.0-29.0
Distance r _s [m]:	1043.00	max. Drawdown s _p	[m]:*	#NV
Response time dt _L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
Pressure in test section b	efore start of flowing:	pi	kPa	118.8
Pressure in test section b	efore stop of flowing:	pp	kPa	118.0
Maximum pressure change	ge during flowing period:*	dpp	kPa	0.8
	respect to the response time r _s ²/dt _L [m²/s]:	#NV		
Index 2	th respect to pumping flow rat s _p /Q _p [s/m ²]:	#NV		
Index 2				* see comment
Index 2 standard stan	s _p /Q _p [s/m ²]:	#NV #NV n source		* see comment
Index 2 search s	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source	effects) only	
Index 2 second s	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	* see comment
Index 2 search s	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	
Index 2 New Index 2 New Comment:	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 New Comment:	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8
Index 2 Several Second	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 119 118.8 118.6 118.4 118.4 118.2 118.2 118.2
Index 2 Index 2 New Comment: 4340	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8 118.8 118.6 118.4 118.4 118.2 118.2 118.2 118 118 118 118 118 118 118
Index 2 Index 2 New Comment: 4340	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8 118.8 118.6 118.4 118.4 118.2 118.2 118.2 118 118 118 118 118
Index 2 Index 2 New Comment: 4340 4300 4300 4280 420 420 420 420 420 420 420 42	<pre>sp/Qp [s/m²]: (sp/Qp)*In(rs/r0) [s/m²]: no response due to pumping i pressure changes due to nature</pre>	#NV #NV n source ral fluctuations (e.g. tidal e	effects) only	119.2 119 118.8 118.8 118.6 118.4 118.4 118.2 118.2 118 118 118 118 118 118 118 118 118 11

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	0	495.00-515.00 9.01.2007 12:28 9.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section b Pressure in test section b Maximum pressure change	efore stop of flowing:	p _i p _p dp _p	kPa kPa kPa	4311 4186 125
Observation Hole: Distance r_s [m]: Response time dt _L [s]:	KLX11 724.00 #NV	Section no.: Section length: max. Drawdown s _p	[m]:*	KLX11A_1 0.0-992.0 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section b Pressure in test section b Maximum pressure chang	efore stop of flowing:	p _i p _p dp _p	kPa kPa kPa	142.4 141.0 1.4
Index 1 Normalized drawdown wi	respect to the response time s ² /dt _L [m ² /s]: th respect to pumping flow rate s _p /Q _p [s/m ²]:	#NV 9 #NV		
Comment: r	s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes due to natura no index calculated			see comment
		Dumpoto		
Pumpstart 4340 4320 4300 4300 4280 4280 4280 4220 4220 4200 4180 4180 4180 29.11.2006 09.12	2006 19.12.2006 29.12	Pumpsto	р КLX19А КLX11А_1	147 146 145 145 144 143 142 141 142 141 141 140 139 138

Pumping Hole:Test Start:Pump Start:Flow Rate $Q_p [m^3/s]$:Pressure dataPressure in test section beforePressure in test section beforeMaximum pressure change duObservation Hole:Distance $r_s [m]$:	e stop of flowing:	Pumping Section Test Stop: Pump Stop: Nomenclature P _i P _p dp _p	0	495.00-515.00 9.01.2007 12:28 9.01.2007 08:56 Value 4311
Pressure in test section before Pressure in test section before Maximum pressure change du Observation Hole:	e stop of flowing: Iring flowing period:	P _i P _p	kPa	
Pressure in test section before Maximum pressure change du Observation Hole:	e stop of flowing: Iring flowing period:	Pp		4311
Maximum pressure change du Observation Hole:	Iring flowing period:		kPa	
Observation Hole:	<u> </u>	dpp		4186
	KLX11		kPa	125
Distance r _s [m]:		Section no.:		KLX11E_1
Distance r _s [m]:		Section length:		2.0-121.0
D (1 1 1 1	846.00	max. Drawdown s _r	, [m]:*	#NV
Response time dt _L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
Pressure in test section before	-	p _i	kPa	149.3
Pressure in test section before		pp	kPa	147.4
Maximum pressure change du	iring flowing period:*	dp _p	kPa	1.9
Normalized distance with resp Index 1 rs ² /dt	ect to the response time L [m²/s]:	#NV		
Index 2 New (s _p /Q Comment: no re-	, [s/m²]: _p)*In(r _s /r ₀) [s/m²]: sponse due to pumping ure changes due to natu	#NV #NV in source iral fluctuations (e.g. tidal of		see comment
-	dex calculated		, ,	
Pumpstart		Pumpsto	p	
4320		[•	152
4300			A	
				kPa]
4280			W .	150]]
4260				149 j
				ervat
e 4240				148 šą
4280 4260 4240 4240 4240				Lessure Observation well [kPa]
ā	V			Pres
4200				146
4180	W	U	KLX19A	145
		ļ		
4160 4160 9.12.2006	19.12.2006 29.	12.2006 08.01.2007	18.01.2007	144 28.01.2007
		Date		

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 07.12.2006 15:07 07.12.2006 15:38 3.50E-05	Pumping Section Test Stop: Pump Stop:	0	495.00-515.00 19.01.2007 12:28 19.01.2007 08:56
Pressure data		Nomenclature	Unit	Value
Pressure in test section before Pressure in test section before Maximum pressure change	ore stop of flowing:	P _i P _p dp _p	kPa kPa kPa	4311 4186 125
Observation Hole: Distance r_s [m]: Response time dt _L [s]:	KLX20 883.00 #NV	Section no.: Section length: max. Drawdown s _p	[m]:*	KLX20A_1 0.0-457.0 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section before Pressure in test section before Maximum pressure change	ore stop of flowing:	Pi P _p dp _p	kPa kPa kPa	150.4 148.8 1.6
Index 2 New (s _p Comment: no pre	respect to pumping flow rat Q _p [s/m ²]: /Q _p)*In(r _s /r ₀) [s/m ²]: response due to pumping ir ssure changes due to natur index calculated	#NV #NV		see comment
Pumpstart 4340 4320 4300 4260 4260 4260 4260 4220 4200 4180 4160		Pumpsto	p	154 153 152 151 151 150 149 149 148 148 147 147 146 145

Interference analysis

APPENDIX 2-2

Index calculation KLX19A Section 764.00-769.00 m pumped

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	(764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section befo	re start of flowing:	p _i	kPa	6391
Pressure in test section befo	re stop of flowing:	pp	kPa	6150
Maximum pressure change of	luring flowing period:	dpp	kPa	241
Observation Hole:	HLX27	Section no.:		HLX27_1
Distance r [m]:	1000.00	Section length:	[m];*	133.00-164.70
Distance r _s [m]: Response time dt _L [s]:	1099.00 #NV	max. Drawdown s_p	[m]:"	#NV
Pressure data	#197	Nomenclature	Unit	Value
Pressure in test section befo	re start of flowing:		kPa	69.3
Pressure in test section befo	-	p _i p _p	kPa kPa	69.5
Maximum pressure change c		dp _p	kPa	0.2
		· · ·		
Normalized distance with results r_s^2/c	tt _L [m²/s]:	#NV		
Comment: no r pres	Q _p)*In(r _s /r ₀) [s/m ²]: esponse due to pumping sure changes mainly cau ndex calculated	in source sed by natural fluctuations		f see comment
Pumpstart			Pum	ipstop
Georgia Contraction of the second sec			← KLX19A ← HLX27_1	72 70 70 70 70 70 70 70 70 70 70 70 70 70

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:		764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section before	ore start of flowing:	p _i	kPa	6391
Pressure in test section before		pp	kPa	6150
Maximum pressure change	during flowing period:	dpp	kPa	241
Observation Hole:	HLX27	Section no.:		HLX27_2
		Section length:		0.00-132.00
Distance r _s [m]:	1123.00	max. Drawdown s _p	[m]:*	#NV
Response time dt _L [s]:	#NV			
		Nomenclature	Unit	Value
Pressure in test section before	-	p _i	kPa	69.3
Pressure in test section befo		р _р	kPa	69.7
Maximum pressure change	during flowing period:"	dpp	kPa	0.4
Normalized distance with respectively link to $r_s^2/$	spect to the response time dt _L [m ² /s]:	#NV		
Normalized drawdown with r Index 2 s _p /0	respect to pumping flow ra Q _p [s/m ²]:	te #NV		
	'Q _p)*ln(r₅/r₀) [s/m²]:	#NV		* see comment
pre	response due to pumping i ssure changes mainly caus index calculated		(e.g. tidal effe	ects)
Pumpstart			Pum	ipstop
6500				72 1 1 1 1 1 1 1 1 1 1 1 1 1
Pressure Active well [kPa]	\sim	\sim	\sim	Pressure Observation well [kPa]
6100			→ KLX19A → HLX27_2	
6000 28.11.2006 29.11.2006		2.2006 03.12.2006 04.12.200 late	6 05.12.2006	06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:		764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section befo Pressure in test section befo Maximum pressure change of	re stop of flowing:	p _i p _p dp _p	kPa kPa kPa	6391 6150 241
Observation Hole: Distance r _s [m]: Response time dt _L [s]:	HLX28 661.00 #NV	Section no.: Section length: max. Drawdown s _p	[m]:*	HLX28_1 0.00-154.00 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section befo Pressure in test section befo Maximum pressure change of	re stop of flowing:	p _i p _p dp _p	kPa kPa kPa	131.6 133.4 1.8
Normalized drawdown with r	lt _∟ [m²/s]:	#NV		
Comment: no r	Q _p)*In(r _s /r ₀) [s/m ²]: esponse due to pumping i ssure changes mainly cau	#NV in source sed by natural fluctuations		* see comment
	ndex calculated			
Pumpstart 6500 6400 6000 6000 6000 6000			Purr	Listence Observation well [kPa]
28.11.2006 29.11.2006		12.2006 03.12.2006 04.12.2006 Date	6 05.12.2006	06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q_p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Sectior Test Stop: Pump Stop:		764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section	before start of flowing:	p _i	kPa	6391
Pressure in test section	-	pp	kPa	6150
Maximum pressure char	nge during flowing period:	dpp	kPa	241
Observation Hole:	HLX32	Section no.:		HLX32_1
Distance r _s [m]:	634.00	Section length: max. Drawdown s	_p [m]:*	0.00-163.00 #NV
Response time dt_L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
Pressure in test section	-	p _i	kPa	#N∿
Pressure in test section		pp	kPa	#N∿
Maximum pressure char	nge during flowing period:*	dpp	kPa	#N\
	rith respect to pumping flow rate s _p /Q _p [s/m ²]: (s _p /Q _p)*ln(r _s /r ₀) [s/m ²]:	e #NV #NV		* see comment
6500 Pumpstart			Pun	npstop 100
6400 6300 6000 6000 6000 6000 6000		ervation data vailable	KLX19A	98 96 96 94 94 Pressure Observation well [kPa]
6000 28.11.2006 29.11.2000		2.2006 03.12.2006 04.12.20 ate		90 06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	C	764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section Pressure in test section Maximum pressure cha	•	P _i P _P dp _p	kPa kPa kPa	6391 6150 241
Observation Hole: Distance r _s [m]: Response time dt _L [s]:	HLX36 958.00 #NV	Section no.: Section length: max. Drawdown s _p	, [m]:*	HLX36_1 50.00-199.50 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section Pressure in test section Maximum pressure cha	-	Pi P _p dp _p	kPa kPa kPa	133.4 136.3 2.9
Index 1	th respect to the response time r _s ² /dt _L [m ² /s]: with respect to pumping flow rate s _p /Q _p [s/m ²]:	#NV e #NV		
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in			see comment
	pressure changes mainly caus no index calculated	ed by natural fluctuations	e.g. tidal effe	CIS)
6500 Pumpstari	t		Pum	
Less rue Active well [Kpa]		2 2006 03 12 2006 04 12 200	← KLX19A ← HLX36_1	- 136 [e] - 138
28.11.2006 29.11.20		2.2006 03.12.2006 04.12.200 ate	06 05.12.2006	06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	05	764.00-769.00 5.12.2006 15:52 5.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section bef	ore start of flowing:	p _i	kPa	6391
Pressure in test section before	ore stop of flowing:	pp	kPa	6150
Maximum pressure change	during flowing period:	dpp	kPa	241
Observation Hole:	HLX36	Section no.:		HLX36_2
		Section length:		0.00-49.00
Distance r _s [m]:	979.00	max. Drawdown s _p	[m]:*	#NV
Response time dt _L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
Pressure in test section before	-	p _i	kPa	104.7
Pressure in test section before	ore stop of flowing:	pp	kPa	104.4
Maximum pressure change	during flowing period:*	dpp	kPa	0.3
Normalized distance with re Index 1 rs ²	spect to the response time /dt_ [m²/s]:	#NV		
Index 2 New (sp Comment: no pre	<pre>/Q_p [s/m²]: /Q_p)*In(r_s/r₀) [s/m²]: response due to pumping it essure changes mainly cause index calculated</pre>	#NV #NV n source		see comment
6500 Pumpstart			Pumps 	110

Activitypla	ın No.	AP PS 400-07-72				
Pumping Test Start: Pump Star	:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05		Pumping Section Test Stop: Pump Stop:		764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure	•	1.33E-05		Nomenclature	Unit	Value
Prossure i	n test section b	efore start of flowing:			kPa	6391
		efore stop of flowing:		p _i p _p	кга kPa	6150
		e during flowing period:		dpp	kPa	241
Observati		HLX37		Section no.:		HLX37_1
Observati	on noie.	nex37		Section length:		149.00-199.80
Distance r		930.00		max. Drawdown s _p	[m]:*	#NV
Response	time dt _L [s]:	#NV				
Pressure	data			Nomenclature	Unit	Value
		efore start of flowing:		pi	kPa	133.7
		efore stop of flowing:		pp	kPa	135.6
Maximum	pressure chang	e during flowing period:*		dpp	kPa	1.9
Normalize Index 1		respect to the response time _s ²/dt _L [m²/s]:	#NV			
Normalize Index 2		h respect to pumping flow rat s _p / Q p [s/m²]:	te #NV			
Index 2 N	ew (s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	#NV			* see comment
Comment:	p	o response due to pumping i pressure changes mainly caus no index calculated			(e.g. tidal effe	ects)
6500 1	Pumpstart				Pun	npstop
6500 -						140
6400 -						138
						Pa]
kPa]						
] 9 6300 -						136 E
ive v				\sim	\sim	vatio
Act				$\sim \sim$	\sim	Ser
Pressure Active well [kPa]						134 Ö
Pres		NN				Pressure Observation well [kPa
		•				
6100 -		•				132
					KLX19A HLX37_1	
6000 - 28.11	.2006 29.11.2006	30.11.2006 01.12.2006 02.1	12.2006	03.12.2006 04.12.200	6 05.12.2006	130
			Date			

Activityplan No.	AP PS 400-07-72				
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	٦	Pumping Section Fest Stop: Pump Stop:	[m bToC]:	764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		I	Nomenclature	Unit	Value
Pressure in test section before	re start of flowing:		p _i	kPa	6391
Pressure in test section before	re stop of flowing:		pp	kPa	6150
Maximum pressure change	during flowing period:		dpp	kPa	241
Observation Hole:	HLX37	5	Section no.:		HLX37_2
			Section length:	r 1+	118.00-148.00
Distance r _s [m]: Response time dt _L [s]:	962.00	r	max. Drawdown s _p	[m]:*	#NV
Pressure data	#NV		Nomenclature	Unit	Value
	an atom of floring an				
Pressure in test section before Pressure in test section before	-		p _i	kPa kPa	133.6 135.4
Maximum pressure change			p _p dp _p	кРа kPa	135.4
			αPp	Ki d	1.0
Normalized distance with results r_s^2/c	spect to the response time dt. [m²/s]:	#NV			
	espect to pumping flow rai Q _p [s/m ²]: Q _p)*In(r _s /r ₀) [s/m ²]:	te #NV #NV			* see comment
pres	esponse due to pumping i ssure changes mainly caus ndex calculated			(e.g. tidal eff	ects)
Pumpstart				Pur	npstop
Georgia Contraction of the second sec	30.11.2006 01.12.2006 02.1	12.2006	03.12.2006 04.12.2006	KLX19A HLX37_2	138 138 138 138 138 138 138 134 134 134 132 132 132 06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	(764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section	before start of flowing:	p _i	kPa	6391
Pressure in test section	before stop of flowing:	pp	kPa	6150
Maximum pressure cha	ange during flowing period:	dpp	kPa	242
Observation Hole:	HLX37	Section no.:		HLX37_3
Distance a facili	000.00	Section length:	[].*	0.00-117.00
Distance r _s [m]:	983.00 #NV	max. Drawdown s _p	[m]:*	#N∖
Response time dt _∟ [s]: Pressure data	#INV	Nomenclature	Unit	Value
	before start of flowing			
Pressure in test section	before start of flowing:	p _i	kPa kPa	148. <u></u> 148.
	ange during flowing period:*	p _p dp _p	kPa	0.0
Normalized distance wi Index 1	th respect to the response time $r_s^2/dt_L [m^2/s]$:	#NV		
Index 2	with respect to pumping flow rate s _p /Q _p [s/m ²]: (s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	#NV #NV	*	see comment
Comment:	no response due to pumping ir pressure changes mainly caus no index calculated			
Pumpstar	t		Pum	pstop
6500				150
6400				KPa]
i μ i i i i i i i i i i i i i			minne	
Pressure Active well [kPa]			•	Pressure Observation well [kPa]
	M			Pressure C
6100	•			<u>i</u>
6000		,,	KLX19A HLX37_3	I I I I→→ 146
28.11.2006 29.11.20		2.2006 03.12.2006 04.12.2000 ate	6 05.12.2006	06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	(764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section	on before start of flowing:	p _i	kPa	639
Pressure in test section	on before stop of flowing:	p _p	kPa	6150
Maximum pressure ch	ange during flowing period:	dpp	kPa	24
Observation Hole:	HLX38	Section no.:		HLX38_′
		Section length:		0.00-199.50
Distance r _s [m]:	722.00	max. Drawdown s _p	[m]:*	#N\
Response time dt _L [s]:	#NV			
Pressure data		Nomenclature	Unit	Value
Pressure in test section	on before start of flowing:	p _i	kPa	56.9
	on before stop of flowing:	pp	kPa	56.9
Maximum pressure ch	ange during flowing period:*	dpp	kPa	0.
	<pre>r_s²/dt_L [m²/s]: with respect to pumping flow rate</pre>	#NV		
Index 2 Index 2 New		#NV #NV		
	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	#NV		* see comment
Index 2 New	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause	#NV source		
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	
Index 2 New Comment: Pumpsta	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment: Pumpsta 6500	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment: Pumpsta	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)
Index 2 New Comment:	(s _p /Q _p)*In(r _s /r ₀) [s/m ²]: no response due to pumping in pressure changes mainly cause no index calculated	#NV source	(e.g. tidal effe	cts)

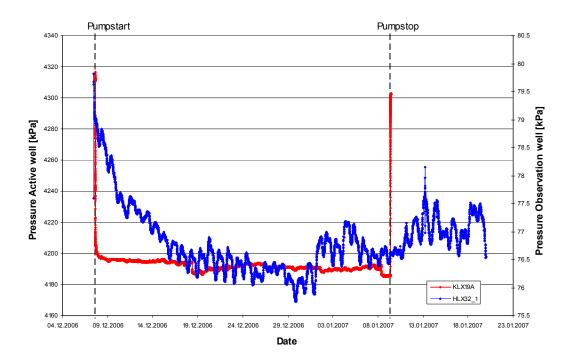
Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	C	764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section befor Pressure in test section befor Maximum pressure change d	e stop of flowing:	P _i P _p dp _p	kPa kPa kPa	6391 6150 241
Observation Hole: Distance r _s [m]: Response time dt _L [s]:	HLX42 988.00 #NV	Section no.: Section length: max. Drawdown s _p	[m]:*	HLX42_1 30.00-152.60 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section befor Pressure in test section befor Maximum pressure change d	e stop of flowing:	p _i p _p dp _p	kPa kPa kPa	96.1 97.1 1.0
Normalized drawdown with re	t _L [m²/s]:	#NV		
Comment: no re	\mathbf{Q}_{p})*In($\mathbf{r}_{s}/\mathbf{r}_{0}$) [s/m ²]: esponse due to pumping i			see comment
-	sure changes mainly caus idex calculated	sed by natural fluctuations	(e.g. tidal effe	cts)
Pumpstart 6400 6400 6400 6200 6200 6200 6200 6200	30.11.2006 01.12.2006 02.	12.2006 03.12.2006 04.12.200 Date	Pump	Pressure Observation well [kba]

Activityplar	ו No.	AP PS 400-07-72				
Pumping H Test Start: Pump Start Flow Rate (t:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05		Pumping Section Test Stop: Pump Stop:	C	764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure d	lata			Nomenclature	Unit	Value
Pressure in	test section be	fore start of flowing:		p _i	kPa	6391
Pressure in	i test section be	fore stop of flowing:		pp	kPa	6150
Maximum p	pressure change	e during flowing period:		dpp	kPa	241
Observatio	on Hole:	HLX42		Section no.:		HLX42_2
D: 1		4074.00		Section length:	r 1+	0.00-29.00
Distance r _s		1071.00	[max. Drawdown s _p	[m]:^	#N∨
Response t		#NV		NI	11 14	Malaa
				Nomenclature	Unit	Value
		fore start of flowing:		p _i	kPa	119.3
		fore stop of flowing: e during flowing period:*		p _p dp	kPa kPa	119.0 0.3
		a during nowing period.		dp _p	кра	0.3
		respect to the response time				
Index 1	r _s	² /dt _L [m²/s]:	#NV			
Normalized Index 2		n respect to pumping flow ra "/ Q _p [s/m²]:	ate #NV			
Index 2 Ne	w (s	s _p /Q _p)*ln(r _s /r ₀) [s/m ²]:	#NV		*	see comment
Comment:	рі	o response due to pumping ressure changes mainly cau o index calculated			(e.g. tidal effe	cts)
	Pumpstart				Pum	oston
6500						120
	• ¦					!
						I I I
6400		un and and a state of the state	Maria dan	and a first data and a	-	
		ungen ander and	pressing to the	anna an tha tha an that	Martin Carpoly	I I I KPa]
		up 12 Martin provinsi de la competencia	an a		and the state of the	n well [kPa]
			i fallaja jaga	an a		ation well [kPa]
			⁶⁴⁶⁴⁴ 4 ² 48491	and a stand of the		I III [KPa]
						B Observation well [kPa]
						I III ssure Observation well [kPa]
e Active well [kPa] 						Pressure Observation well [kPa]
						Pressure Observation well [kPa]
Lessure Active well [kPa]					KLX19A HLX42_2	Pressure Observation well [kPa]
Pressure Active well [kPa]	2006 29.11.2006	30.11.2006 01.12.2006 02.	.12.2006	03.12.2006 04.12.2006		Line Servation well [kba]

Activityplar	ו No.	AP PS 400-07-72			
Pumping I Test Start: Pump Start Flow Rate	t:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	(764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure o	lata		Nomenclature	Unit	Value
Pressure in	test section befo	re start of flowing:	p _i	kPa	6391
		re stop of flowing:	pp	kPa	6150
Maximum	pressure change of	luring flowing period:	dpp	kPa	241
Observatio	on Hole:	KLX11A	Section no.:		KLX11A_1
D' I		070.00	Section length:	r 1+	0.00-992.00
Distance r _s		872.00	max. Drawdown s _p	[m]:^	#NV
Pressure o	time dt _L [s]:	#NV	Nomenclature	Unit	Value
		re start of flowing			
		re start of flowing: re stop of flowing:	p _i	kPa kPa	138.3 142.5
		during flowing period:*	p _p dp _p	kPa kPa	4.2
			•	кіа	4.2
Normalized Index 1		spect to the response time it_L [m²/s]:	#NV		
Normalized Index 2 Index 2 Ne	s _p /0	espect to pumping flow rai 0 _p [s/m²]: Q _p)*In(r _s /r₀) [s/m²]:	te #NV #NV	*	see comment
Comment:	pres	esponse due to pumping i ssure changes mainly caus ndex calculated	n source sed by natural fluctuations	(e.g. tidal effe	cts)
	Pumpstart			Pum	ostop
6500					I 144 I I I I
					142 [kba] Meil
Pressure Active well [kPa]			/ * 		- 142 [kba]
6100 -					
6000 - 28.11.2	2006 29.11.2006	30.11.2006 01.12.2006 02.1	12.2006 03.12.2006 04.12.200	KLX19A KLX11A_1 6 05.12.2006	1 1 06.12.2006
20.112			Jate		

Activityplan No.	AP PS 400-07-72				
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05		Pumping Section Test Stop: Pump Stop:		764.00-769.00 05.12.2006 15:52 05.12.2006 13:10
Pressure data			Nomenclature	Unit	Value
Pressure in test section be	efore start of flowing:		p _i	kPa	6391
Pressure in test section be	efore stop of flowing:		pp	kPa	6150
Maximum pressure chang	e during flowing period:		dpp	kPa	241
Observation Hole:	KLX11E		Section no.:		KLX11E_1
Distance a fach	4057.00		Section length:	[].*	2.00-121.00
Distance r_s [m]: Response time dt _L [s]:	1057.00 #NV		max. Drawdown s _p	[m]:"	#NV
Pressure data	#111		Nomenclature	Unit	Value
	ofore start of flowing:				
Pressure in test section be Pressure in test section be	-		P _i	kPa kPa	146.2 149.6
Maximum pressure chang			p _p dp _p	кРа kPa	3.4
-			ΫΡρ	Ki u	0.7
	respect to the response time ² /dt _L [m ² /s]:	#NV			
	, /ut/ [m /s].	TIN V			
	h respect to pumping flow rai _p /Q _p [s/m²]:	te #NV			
Index 2 New (s	s _p /Q _p)*ln(r _s /r ₀) [s/m ²]:	#NV			* see comment
р	o response due to pumping i ressure changes mainly caus o index calculated			(e.g. tidal effe	ects)
Pumpstart				Pun	ipstop
6500					152
					<u> </u>
6400					i
0400					150 ਫ਼ਿ
(Pa]				\sim (
Lessure Active well [kba]			- mand		u Ke
8 2			\sim		atio
Acti					+ 148 Lie s
6200				•	10
- Lec	4				- 146 Pressure Observation well [kPa]
					- 146 Č
6100	•				
				KLX19A KLX11E_	
					1 1
6000					144
6000 28.11.2006 29.11.2006		12.2006 Date	03.12.2006 04.12.200	6 05.12.2006	06.12.2006

Activityplan No.	AP PS 400-07-72			
Pumping Hole: Test Start: Pump Start: Flow Rate Q _p [m ³ /s]:	KLX19A 28.11.2006 19:53 28.11.2006 20:28 1.33E-05	Pumping Section Test Stop: Pump Stop:	0	764.00-769.00 5.12.2006 15:52 5.12.2006 13:10
Pressure data		Nomenclature	Unit	Value
Pressure in test section b Pressure in test section b Maximum pressure chang	efore stop of flowing:	Pi Pp dpp	kPa kPa kPa	6391 6150 241
Observation Hole: Distance r _s [m]: Response time dt _L [s]:	KLX20A 1060.00 #NV	Section no.: Section length: max. Drawdown s _p	, [m]:*	KLX20A_1 2.00-121.00 #NV
Pressure data		Nomenclature	Unit	Value
Pressure in test section b Pressure in test section b Maximum pressure change	efore stop of flowing:	p _i p _p dp _p	kPa kPa kPa	147.7 150.7 3.0
Index 1rNormalized drawdown withIndex 2Index 2 New	respect to the response time s ² /dt _L [m ² /s]: th respect to pumping flow rate s _p /Q _p [s/m ²]: s _p /Q _p)*In(r _s /r ₀) [s/m ²]:	#NV #NV	*	see comment
F	no response due to pumping ir pressure changes mainly caus no index calculated		e (e.g. tidal effec	cts)
6500 Pumpstart		~~~	Pump	
Lessure Active well [kPa]	4			- 150 [FkJa] - 146
6000 28.11.2006 29.11.2006		2.2006 03.12.2006 04.12.200 ate	06 05.12.2006	144 06.12.2006


Observation Holes Test Analyses Diagrams

Interference analysis HLX32_1 observed

APPENDIX 3-1


KLX19A Section 495.00-515 m pumped HLX32_1 0.00-163.00 observed

> Observation hole Test analysis diagrams

Pressure vs. time; log-log match; KLX19A 495.00-515.00 m pumped and HLX32_1 0.00-163.00 observed

Log-Log Match - Flow Period 2

CRw phase; log-log match; KLX19A 495.00-515.00 m pumped and HLX32_1 0.00-163.00 observed

Not analysable

CRwr phase; log-log match; KLX19A 495.00-515.00 m pumped and HLX32_1 0.00-163.00 observed

Appendix 4

Observation Holes Test Summary Sheets

Project:	Oskarshamn site investigation	Test type:[1]			
-		· oot gpon in		0	CRw
Area:	Laxemar	Test no:		Ot	oservation hole
	Laxemai	1031110.			
Borehole ID:	HLX32_1	Test start:			061207 15:0
Test section from - to (m):	(KLX19A 495.00-515.00 pumped)	Responsible for			Stephan Roh
	0.00-103.00	test execution:			
Distance (m):	401.00	Responsible for		Crist	ian Enachesc
line on allot O and a		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
4340 Pumpstart	Pumpstop 80.5	p ₀ (kPa) =			
4320	- 80	p _i (kPa) =		n (kDa) -	
4300	79.5	$p_p(kPa) =$	3.50E-05	p _F (kPa) =	
E 4280	779 ¥	$\frac{Q_p (m^3/s)}{tp (s)} =$	2827044	t₌ (s) =	1278
1 1 1 1 1 1 1 1 1 1			2027044		12/8
	77.5 O Onsource 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S el S (-)= EC _w (mS/m)=		S el S (-)=	<u> </u>
		Temp _w (gr C)=			<u> </u>
4200 Manual Andrews	76.5 8	Derivative fact.=	0	Derivative fact.=	NA
4180			0		1171
4180 04.12.2006 09.12.2006 14.12.2006 19.12.2006 24.12.2006 29.12.2	75.5 006 03.012007 08.012007 13.012007 18.012007 23.012007				
Dat	9	Results		Results	<u> </u>
		Q/s (m ² /s)=	NA		
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	NA		
• •		Flow regime:	transient	Flow regime:	transient
Log-Log Match -	Flow Period 2	dt_1 (min) =	4674.0	dt_1 (min) =	NA
10		dt ₂ (min) =	24978.0	dt ₂ (min) =	NA
	- Antipitation	T (m²/s) =	4.3E-05	T (m²/s) =	NA
1	A REAL MARKEN	S (-) =	1.4E-05	, ,	NA
		K _s (m/s) =	2.6E-07	K _s (m/s) =	NA
Presson Chromote (PS)	**************************************	S _s (1/m) =	8.7E-08	S _s (1/m) =	NA
	۵	C (m ³ /Pa) =	NA	C (m³/Pa) =	NA
		C _D (-) =	NA	C _D (-) =	NA
0.01	•	ξ(-) =	NA	ξ(-) =	NA
0.001 / / .	10 100 1000	$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
Elapse	enne (me)	S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe			.
		dt_1 (min) =	NA	C (m ³ /Pa) =	NA
		dt_2 (min) =	NA	C _D (-) =	NA
		$T_{T}(m^{2}/s) =$	4.3E-05		NA
		S (-) =	1.4E-05		
		$K_s(m/s) =$	2.6E-07		
		$S_s(1/m) =$	8.7E-08		
Not an:	llysable	analysis of the CRw quality. The confide	y phase, which sl ence range for th E-5 m ² /s to 1.0E	f 4.3E-5 m2/s was do hows the best data a he borehole transmis -4 m ² /s. The flow di	nd derivative sivity is

Appendix 5

SICADA Data Tables (Observation holes)

									(Sin	plified version v1.7
SKB		SICA	DA/D	ata In	nport	Templa	ate		SKB	& Ergodata AB 200
									0110	2.goddid / 12 200
			ן וו		1			1		
File Identity				File Time			Compiled By			
Created By		Stephan Rohs		Zone		Quality Chec				
Created			J			Dell	very Approval			
					-					
Activity Type		KLX19A				Project		AP PS	400-07-72	
		KLX19A Interference test-obs	sholes							
Activity Informa	tion					Additional Activ	ity Data			
						C30	C40	1160	P20	P200
						Company	performing		Field crew	
Idcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	evaluating data	field work	Instrument	manager	Field crew
HLX27	2006-11-28 00:00:00	2007-01-09 12:28:00	133.00	164.70	1	Golder				
HLX27	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	132.00	2	Golder				
HLX28	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	154.00	1	Golder				
HLX32	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	163.00	1	Golder				
HLX36	2006-11-28 00:00:00	2007-01-09 12:28:00	50.00	199.50		Golder				
HLX36	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	49.00		Golder				
HLX37	2006-11-28 00:00:00	2007-01-09 12:28:00	149.00	199.80		Golder				
HLX37	2006-11-28 00:00:00	2007-01-09 12:28:00	118.00	148.00		Golder				
HLX37	2006-11-28 00:00:00	2007-01-09 12:28:00	149.00	199.80	-	Golder				
HLX38	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	199.50		Golder				
HLX42	2006-11-28 00:00:00	2007-01-09 12:28:00	30.00	152.60		Golder				
HLX42	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	29.00	2	Golder				
KLX11A	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	992.00	1	Golder				
KLX11E	2006-11-28 00:00:00	2007-01-09 12:28:00	2.00	121.00	1	Golder				
KLX20A	2006-11-28 00:00:00	2007-01-09 12:28:00	0.00	457.00	1	Golder				

Table		plu_inf_tes	t_obs_d
		PLU interference test, Obs	ervation section data
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		
start_date	DATE		
stop_date	DATE		
project	CHAR		project code
dcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code, one of 7, see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date and time start of pumping/injection(YYMMDDhhmmss)
stop_flow_period	DATE	yyyymmdd	Date and time stop of pumping/injection(YYMMDDhhmmss)
test_borehole	CHAR		Idcode of pumped/injected borehole
est_secup	FLOAT	m	Upper limit of pumped/injected section
test_seclow	FLOAT	m	Lower limit of pumped/injected section
p	FLOAT	m	Hydraulic point of application, see table description
radial_distance_rs	FLOAT	m	Radial distance:test secobs.sec., see table description
shortest_distance_rt	FLOAT	m	Shortest distance: test secobs.sec., see table description
time_lag_press_dtl	FLOAT	s	Time lag, pressure response obs. hole. See table description
initial head hi	FLOAT	m	Hydraulic head in observationsection, at start of flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in observation section at stop of flow period
final_head_hf	FLOAT	m	Hydraulic head in obs. section at end of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in obs.section at start of flow period
press_at_flow_end_p		kPa	Groundwater pressure in obs. section at stop of flow period
final press pf	FLOAT	kPa	Groundwater pressure in obs.section at stop of the recovery
fluid temp teo	FLOAT	oC	Measured fluid temperature in obs.section,see descr.
fluid elcond eco	FLOAT	mS/m	Measured fluid el. conductivity in obs.section, see descr.
fluid salinity tdso	FLOAT	mg/l	Total dissolved solids of section fluid, based on EC see desc
fluid salinity tdsom		mg/l	Tot disolved solids of section fluid based on analysis, see
reference	CHAR	5	SKB report No for reports describing data and evaluation
comment	CHAR		Short comment to evaluated data.
error flag	CHAR		If error flag = "*" then an error occured and an error
in use	CHAR		If in use = "*" then the activity has been selected as
sign	CHAR		Activity QA signature

			(m)	(m)				(yyyymmdd)	(y	yyymmdd)	(m	(m)	(m)	(m)	(m)) (s) (m)	(m)	(m)
							formation	t start_flow_perio	stop_flov	w_perio test_b	or test_sec	test_secl		radial_dis	shortest_d	time_lag_	initial_he	head_at_flo_f	/inal_he
idcode	start_date	stop_date	secup	seclow	section_no	test_type	уре	d	d	ehole	up	ow	lp	tance_rs	istance_rt	press_dtl	ad_hi	w_end_hp a	ad_hf
HLX27	2006.12.07 15:07	2007.01.09 12:28	133.00	164.70		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	158.00	989.00			7.02	8.82	6.99
HLX27	2006.12.07 15:07	2007.01.09 12:28	0.00	132.00	2	2 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	107.00	1002.00			7.03	6.68	6.99
HLX28	2006.12.07 15:07	2007.01.09 12:28	0.00	154.00		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	80.00	413.00			13.58	13.33	13.41
HLX32	2006.12.07 15:07	2007.01.09 12:28	0.00	163.00		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	95.00	401.00			8.06	7.81	7.81
HLX36	2006.12.07 15:07	2007.01.09 12:28	50.00	199.50		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	105.00	764.00			13.93	14.00	14.00
HLX36	2006.12.07 15:07	2007.01.09 12:28	0.00	49.00	2	2 2		1 061207 15:38:00				515.00	25.00	770.00			10.62	10.64	10.64
HLX37	2006.12.07 15:07	2007.01.09 12:28	149.00	199.80		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19		515.00	175.00	745.00			13.79	13.61	13.62
HLX37	2006.12.07 15:07	2007.01.09 12:28		148.00	2	2 2		1 061207 15:38:00	070109 0	08:56:00 KLX19		515.00	130.00	775.00			13.78	13.59	13.60
HLX37	2006.12.07 15:07	2007.01.09 12:28		199.80	1	3 2		1 061207 15:38:00				515.00	100.00	795.00			15.14	15.15	15.15
HLX38	2006.12.07 15:07	2007.01.09 12:28		199.50		1 2		1 061207 15:38:00				515.00	103.00	478.00			5.77	5.77	5.77
HLX42	2006.12.07 15:07	2007.01.09 12:28		152.60		1 2		1 061207 15:38:00				515.00	100.00	970.00			10.72	10.54	10.63
HLX42	2006.12.07 15:07	2007.01.09 12:28		29.00		2 2		1 061207 15:38:00				515.00	10.00	1043.00			12.11	12.03	12.03
KLX11A	2006.12.07 15:07	2007.01.09 12:28				1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	500.00	724.00			14.52	14.37	14.38
KLX11E	2006.12.07 15:07	2007.01.09 12:28		121.00		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	70.00	846.00			15.22	15.03	15.05
KLX20A	2006.12.07 15:07	2007.01.09 12:28	0.00	457.00		1 2		1 061207 15:38:00	070109 0	08:56:00 KLX19	A 495.00	515.00	230.00	883.00			15.33	15.17	15.18
HLX27	2006.11.28 19:53	2006.12.05 15:52	133.00	164.70		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	158.00	1099.00			7.06	7.08	7.08
HLX27	2006.11.28 19:53	2006.12.05 15:52		132.00	2	2 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	107.00	1123.00			7.06	7.10	7.10
HLX28	2006.11.28 19:53	2006.12.05 15:52	0.00	154.00		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	80.00	661.00			13.41	13.60	13.60
HLX36	2006.11.28 19:53	2006.12.05 15:52	50.00	199.50		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	105.00	958.00			13.60	13.89	13.89
HLX36	2006.11.28 19:53	2006.12.05 15:52	0.00	49.00	2	2 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	25.00	979.00			10.67	10.64	10.63
HLX37	2006.11.28 19:53	2006.12.05 15:52	149.00	199.80		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	175.00	930.00			13.63	13.82	13.80
HLX37	2006.11.28 19:53	2006.12.05 15:52	118.00	148.00	2	2 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	130.00	962.00			13.62	13.80	13.79
HLX37	2006.11.28 19:53	2006.12.05 15:52	149.00	199.80		3 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	100.00	983.00			15.14	15.14	15.14
HLX38	2006.11.28 19:53	2006.12.05 15:52	0.00	199.50		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	103.00	722.00			5.80	5.80	5.80
HLX42	2006.11.28 19:53	2006.12.05 15:52	30.00	152.60		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	100.00	988.00			9.80	9.90	9.91
HLX42	2006.11.28 19:53	2006.12.05 15:52	0.00	29.00	2	2 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	10.00	1071.00			12.16	12.13	12.13
KLX11A	2006.11.28 19:53	2006.12.05 15:52	0.00	992.00		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	500.00	872.00			14.10	14.53	14.53
KLX11E	2006.11.28 19:53	2006.12.05 15:52	2.00	121.00		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	70.00	1057.00			14.90	15.25	15.24
KLX20A	2006.11.28 19:53	2006.12.05 15:52	0.00	457.00		1 2		1 061128 20:28:00	061205 1	13:10:00 KLX19	A 764.00	769.00	230.00	1060.00			15.06	15.36	15.36

			(m)	(m)			(kPa)	(kPa) (kPa)	(oC) (mS/m)	(mg/l)	(mg/l))	
							initial pr	press at flo	final pre	fluid te	fluid elc	fluid sali	fluid salini	referenc	
idcode	start_date	stop_date	secup	seclow	section_no	test_type		· – –		_	_	nity_tdso	_		comment
HLX27	2006.12.07 15:07	2007.01.09 12:28	133.00		1	2									no response due to pumping in source
HLX27	2006.12.07 15:07	2007.01.09 12:28	0.00		2	2	2								no response due to pumping in source
HLX28	2006.12.07 15:07	2007.01.09 12:28	0.00		1	2	2								response due to pumping in source
HLX32	2006.12.07 15:07	2007.01.09 12:28			1	2									response due to pumping in source
HLX36	2006.12.07 15:07	2007.01.09 12:28	50.00		1	2	2								no response due to pumping in source
HLX36	2006.12.07 15:07	2007.01.09 12:28			2	2	2								no response due to pumping in source
HLX37	2006.12.07 15:07	2007.01.09 12:28	149.00		1	2	2								response due to pumping in source
HLX37	2006.12.07 15:07	2007.01.09 12:28	118.00		2	2	2								response due to pumping in source
HLX37	2006.12.07 15:07	2007.01.09 12:28	149.00		3	2	2								no response due to pumping in source
HLX38	2006.12.07 15:07	2007.01.09 12:28	0.00	199.50	1	2	2								no response due to pumping in source
HLX42	2006.12.07 15:07	2007.01.09 12:28	30.00		1	2	2								no response due to pumping in source
HLX42	2006.12.07 15:07	2007.01.09 12:28	0.00	29.00	2	2	2								no response due to pumping in source
KLX11A	2006.12.07 15:07	2007.01.09 12:28	0.00	992.00	1	2	2								no response due to pumping in source
KLX11E	2006.12.07 15:07	2007.01.09 12:28	2.00		1	2	2								no response due to pumping in source
KLX20A	2006.12.07 15:07	2007.01.09 12:28	0.00	457.00	1	2	2								no response due to pumping in source
HLX27	2006.11.28 19:53	2006.12.05 15:52	133.00	164.70	1	2	2								no response due to pumping in source
HLX27	2006.11.28 19:53	2006.12.05 15:52	0.00	132.00	2	2	2								no response due to pumping in source
HLX28	2006.11.28 19:53	2006.12.05 15:52	0.00	154.00	1	2	2								no response due to pumping in source
HLX36	2006.11.28 19:53	2006.12.05 15:52	50.00	199.50	1	2	2								no response due to pumping in source
HLX36	2006.11.28 19:53	2006.12.05 15:52	0.00	49.00	2	2	2								no response due to pumping in source
HLX37	2006.11.28 19:53	2006.12.05 15:52	149.00	199.80	1	2	2								no response due to pumping in source
HLX37	2006.11.28 19:53	2006.12.05 15:52	118.00	148.00	2	2	2								no response due to pumping in source
HLX37	2006.11.28 19:53	2006.12.05 15:52	149.00	199.80	3	2	2								no response due to pumping in source
HLX38	2006.11.28 19:53	2006.12.05 15:52	0.00	199.50	1	2	2								no response due to pumping in source
HLX42	2006.11.28 19:53	2006.12.05 15:52	30.00	152.60	1	2	2								no response due to pumping in source
HLX42	2006.11.28 19:53	2006.12.05 15:52	0.00	29.00	2	2	2								no response due to pumping in source
KLX11A	2006.11.28 19:53	2006.12.05 15:52	0.00	992.00	1	2	2								no response due to pumping in source
KLX11E	2006.11.28 19:53	2006.12.05 15:52	2.00	121.00	1	2	2								no response due to pumping in source
KLX20A	2006.11.28 19:53	2006.12.05 15:52	0.00	457.00	1	2									no response due to pumping in source

Table		plu_inf_tes	st_obs_ed
		PLU interference test,Obse	ervation section evaluation
Column	Datatype	Unit	Column Description
site	CHAR	•	Investigation site name
activity_type	CHAR		Activity type code
start date	DATE		Date (yymmdd hh:mm:ss)
stop date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
dcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section no	INTEGER	number	Section number
est borehole	CHAR		Idcode of pumped/injected borehole
est_secup	FLOAT	m	Upper limit of pumped/injected section
est seclow	FLOAT	m	Lower limit of pumped/injected section
formation width b	FLOAT	m	b:Agifer thickness repr. for T(generally b=Lo),see descrip.
p	FLOAT	m	Hydraulic point of application, see table descr.
width of channel b		m	B:Inferred width of formation for evaluated TB
bo	FLOAT	m**3/s	TBo,T=transmissivity,B= width of formation, see table descr.
measl tbo	FLOAT	m**3/s	Estimated lower limit for evaluated TB, see table descript.
_measl_tbo	FLOAT	m**3/s	Estimated upper limit for evaluated TB, see table descript.
sbo	FLOAT	m	Storage capacity of 1D formation(flow or recovery),see descr
	FLOAT	m	Lof: 1D model for evaluation of leakage factor, see descr.
ransmissivity to	FLOAT	m**2/s	To=transmissivity,2D radial flow model, see table descr.
value type to	CHAR	111 2/3	0:true value (To),-1: <lower 1:="" meas.limit,="">upper meaus.limit</lower>
measl to	FLOAT	m**2/s	Estimated lower limit for evaluated To,see table descript.
	FLOAT	m**2/s	
u_measl_to storativity_so	FLOAT	111 2/5	Estimated upper limit of evaluated To,see table description
		1/s	So:Storativity, 2D rad flow model, see table descr.
leakage_coeff_o hydr cond kosf	FLOAT FLOAT	m/s	K //b ':Leakage coefficient,2D rad flow model,see descr. 3D model evaluation of hydraulic conductivity,see table des.
·	FLOAT		
_measl_kosf	FLOAT	m/s m/s	Estimated lowermeas. limit of Ks, see table description
u_measl_kosf			Estimated upper meas. limit of Ks,see table description
	FLOAT	1/m	3D model for evaluation of specific storage, se table descr.
dt1	FLOAT	S	Estimated start time of evaluation, see table description
it2	FLOAT	s	Estimated stop time of evaluation, see table description
1	FLOAT	s	Start time for evaluated parameter from start of flow period
2	FLOAT	s	Stop time for evaluated parameter from start of flow period
ite1	FLOAT	S	Start time for evaluated parameter from start of recovery
lte2	FLOAT	S	Stop time for evaluated parameter from start of recovery
ransmissivity_to_nlr		m**2/s	ToNLR: Transmissivity, based on Non Linear Regression, see desc
value_type_to_nlr	CHAR		0:true value (ToNLR),-1: <lower meas.limit,1:="">uppermeas.limit</lower>
torativity_so_nlr	FLOAT	****	So_NLR:Storativity based on None Linear Regression, see des.
ransmissivity_to_grf		m**2/s	ToGRF=transmissivity based on Generalized Radial Flow,see
alue_type_to_grf	CHAR		0:true value (ToGRF),-1: <lower meas.limit,1:="">upp meaus.limit</lower>
storativity_so_grf	FLOAT		So_GRF:Storativity based on Generalized Rad. Flow, see des.
low_dim_grf_o	FLOAT		Inferred flow dimension based on Generalized Rad. Flow model
comments	CHAR		short comment to the evaluated parameters(0ptional)
error_flag	CHAR		If error_flag = "*" then an error occured and an error
n_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Activity QA signature

			(m) (m			(m)	(m	(m)	(m)) (m)) (m**3/s)	(m**3/s)	(m**3/s)	(m)	(m)	(m**2/s)		(m**2/s)	(m**2/s)	
						test_borehol		test_secl	formation		width_of_c		l_measl_t	u_measl		leakage_f	transmis	value_ty	I_measl_t	u_measl	storativity
idcode	start_date	stop_date	secup	seclow	section_no	е	test_secup	ow	_width_b	lp	hannel_b	tbo	bo	_tbo	sbo	actor_lof	sivity_to	pe_to	0	_to	_so
HLX32	2006.12.07 15:07	2007.01.09 12:28	0.00	163.00	1	KLX19A	495.00	515.00		95.00							4.30E-05	0	2 00E=05	1.00E-04	1.41E-04

			(m)	(m)		(1/s) (m/s)	(m/s	(m/s)	(1/m)	(S)	(s)	(s) (s	s) (s)) (s) (m**2/s)			(m**2/s)				
						leakage_	hydr_co	I_measI_	u_measl	spec_stor						transmissi	value_typ	storativit	transmissi	value_typ	storativit	flow_di	comment
idcode	start_date	stop_date	secup	seclow	section_no	coeff_o	nd_kosf	kosf	_kosf	age_sosf	dt1	dt2	t1 t2	dte1	dte2	vity_to_nlr	e_to_nir	y_so_nir	vity_to_grf	e_to_grf	y_so_grf	m_grf_o	S
HLX32	2006.12.07 15:07	2007.01.09 12:28	0.00	163.00	1						280440	1498680											

Appendix 6

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,	constants			
A _w		Horizontal area of water surface in open borehole, not	$[L^2]$	m²
-		including area of signal cables, etc.		
b		Aquifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	[L]	m
L		Corrected borehole length	[L]	m
L ₀		Uncorrected borehole length	[L]	m
L _p		Point of application for a measuring section based on its centre point or centre of gravity for distribution of transmissivity in the measuring section.	[L]	m
L _w		Test section length.	[L]	m
dĽ		Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)	[L]	m
r		Radius	[L]	m
r _w		Borehole, well or soil pipe radius in test section.	[L]	m
r _{we}		Effective borehole, well or soil pipe radius in test section. (Consideration taken to skin factor)	[L]	m
r _s		Distance from test section to observation section, the shortest distance.	[L]	m
r _t		Distance from test section to observation section, the interpreted shortest distance via conductive structures.	[L]	m
r _D		Dimensionless radius, r _D =r/r _w	-	-
z		Level above reference point	[L]	m
Zr		Level for reference point on borehole	liLi	m
Z _{wu}		Level for test section (section that is being flowed), upper limitation	[L]	m
Z _{wl}		Level for test section (section that is being flowed), lower limitation	[L]	m
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m
Z _{ou}		Level for observation section, upper limitation	[L]	m
Z _{ol}		Level for observation section, lower limitation		m
Z _{os}		Level for sensor that measures response in observation section	[L]	m
E		Evaporation:	[L ³ /(T L ²)]	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m³/s
ET		Evapotranspiration	$[L^{3}/(T L^{2})]$	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m ³ /s
Р		Precipitation	[L ³ /T] [L ³ /(T L ²)]	mm/y, mm/d,
		hydrological budget:	[L ³ /T] [L ³ /(T L ²)]	m³/s
R		Groundwater recharge		mm/y, mm/d,
		hydrological budget:	[L ³ /T] [L ³ /(T L ²)]	m ³ /s
D		Groundwater discharge		mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m³/s
Q _R		Run-off rate	[L ³ /T]	m ³ /s
Q _p Q _I		Pumping rate Infiltration rate	[L ³ /T] [L ³ /T]	m³/s m³/s
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s
Q ₀		Flow in test section during undisturbed conditions (flow logging).	[L ³ /T]	m³/s
Q _p		Flow in test section immediately before stop of flow. Stabilised pump flow in flow logging.	[L ³ /T]	m³/s

Character	SICADA designation	Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m³/s
Q ₁		Flow in test section during pumping with pump flow Q _{p1} , (flow logging).	[L ³ /T]	m³/s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L ³ /T]	m³/s
ΣQ_0	SumQ0	Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)	[L ³ /T]	m³/s
ΣQ ₁	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L ³ /T]	m³/s
ΣQ_2	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{p2}	[L ³ /T]	m³/s
ΣQ_{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1 - \Sigma Q_0$	[L ³ /T]	m³/s
ΣQ_{C2}	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma Q_2 - \Sigma Q_0$	[L ³ /T]	m³/s
q		Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).	([L ³ /T*L ²]	m/s
V		Volume	[L ³]	m ³
V _w		Water volume in test section.	[L ³]	m ³
Vp		Total water volume injected/pumped during perturbation phase.	[L ³]	m ³
٧		Velocity	$([L^{3}/T^{*}L^{2}])$	m/s
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity)); $v_a=q/n_e$	([L ³ /T*L ²]	m/s
		-		
t		Time	[T]	hour,mi n,s
t _o		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_p).	[T]	S
t _F		Duration of recovery phase (from p_p to p_F).	[T]	S
t_1, t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
р		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
pa		Atmospheric pressure	$[M/(LT)^{2}]$	kPa
p _t		Absolute pressure; pt=pa+pg	$[M/(LT)^{2}]$	kPa
p _g		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ²]	kPa
p ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
p _i		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
ps		Pressure during recovery.	$[M/(LT)^2]$	kPa
pp		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
p _F		Pressure in measuring section at end of recovery.	[M/(LT) ²]	kPa
p _D		$p_D = 2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$, Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ²]	kPa

Character	SICADA designation	Explanation	Dimension	Unit
dp _f	<u>graneri</u>	$dp_f = p_i - p_f$ or $p_f = p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s		$dp_s = p_s - p_p$ or $p_p = p_p - p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dpp		$dp_p = p_i - p_p$ or $p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F		$dp_F = p_p - p_F$ or $p_F = p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_p+h_v$	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). $h=h_e+h_p$	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh _o , positive)	[L]	m
Sp		Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
h _s		Level above reference level during recovery phase.	Ĺ	m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p \text{ or } = h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F \text{ or } = h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

Character	SICADA designation	Explanation	Dimension	Unit
Te _o	Ŭ	Temperature in the observation section (taken from temperature logging). Temperature		°C
ECw		Electrical conductivity of water in test section.		mS/m
EC _{w0}		Electrical conductivity of water in test section.		mS/m
		undisturbed conditions.		m5/m
EC		Electrical conductivity of water in observation section		mS/m
EC₀ TDS _w		Total salinity of water in the test section.	$[M/L^3]$	mg/L
TDS _{w0}		Total salinity of water in the test section during	[M/L ³]	mg/L
		undisturbed conditions.		
TDS₀		Total salinity of water in the observation section.	$[M/L^3]$	mg/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to gravity)	[L/T ²]	m/s ²
_	ni	Constant (approx 3.1416).	r 1	
<u>π</u> r	pi	Desidual approx 5. 1410).	[-]	
ſ		Residual. r= p_c - p_m , r= h_c - h_m , etc. Difference between measured data (p_m , h_m , etc) and estimated data (p_c , h_c , etc)		
		· · · · · · · · · · · · · · · · · · ·		
ME		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN}), x: measured variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured variable considered.		
RMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)^{0.5}$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual. $SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameters	s		•	
Q/s		Specific capacity s=dp _p or s=s _p =h ₀ -h _p (open borehole)	[L ² /T]	m²/s
D		Interpreted flow dimension according to Barker, 1988.	[-]	-
dt ₁		Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	(ד) וד	S
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt _L		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m³/s
Т	1	Transmissivity	[L ² /T]	m²/s
	1	Transmissivity according to Moye (1967)	$[L^2/T]$	m²/s
M				
T _M T _Q		Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.	[L ² /T]	m²/s

Character	SICADA designation	Explanation	Dimension	Unit
T _D		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
T		Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log	[L ² /T]	m²/s
		diagram for perturbation phase in injection or pumping.		
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log	$[L^2/T]$	m²/s
		diagram for recovery phase in injection or pumping.		
Τ _T		Transient evaluation (log-log or lin-log). Judged best	$[L^2/T]$	m²/s
		evaluation of T_{Sf} , T_{Lf} , T_{Ss} , T_{Ls}		
T _{NLR}		Evaluation based on non-linear regression.	$[L^2/T]$	m²/s
T _{Tot}		Judged most representative transmissivity for particular	$[L^2/T]$	m²/s
		test section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
K		Hydraulic conductivity	[L/T]	m/s
K _s		Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m		Hydraulic conductivity matrix, intact rock	[L/T]	m/s
k		Intrinsic permeability	[L ²]	m ²
kb		Permeability-thickness product: kb=k·b	[L ³]	m ³
00				
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S		Storage coefficient, (Storativity)	[-]	-
S S*		Assumed storage coefficient	[-]	-
<u>S</u> y		Theoretical specific yield of water (Specific yield;	[-]	
Oy		unconfined storage. Defined as total porosity (n) minus retention capacity (S_r)	[-]	
S _{ya}		Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called S_y in literature)	[-]	-
Sr		Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.		-
S _f		Fracture storage coefficient	[-]	-
S _m		Matrix storage coefficient	[-]	-
S _{NLR}		Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}		Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[-]	-
<u>c</u>		Specific storage coefficient: confined storage	[1/]	1/m
Ss Ss*		Specific storage coefficient; confined storage. Assumed specific storage coefficient; confined storage.	[1/L] [1/L]	1/m 1/m
U _S		Assumed specific storage coefficient, confined storage.		1/11
C _f		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. c _r =b'/K' where b' is thickness of the aquitard	[T]	S
L _f		and K' its hydraulic conductivity across the aquitard Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.	[L]	m

Character	SICADA designation	Explanation	Dimension	Unit
ξ* C	Skin	Assumed skin factor	[-]	-
Č		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
C _D		$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.	[-]	-
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
T _{GRF}		Transmissivity interpreted using the GRF method	[L ² /T]	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
C _w		Water compressibility; corresponding to β in hydrogeological literature.	[(LT ²)/M]	1/Pa
Cr		Pore-volume compressibility, (rock compressibility); Corresponding to α /n in hydrogeological literature.	[(LT ²)/M]	1/Pa
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in c_t if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ²)/M]	1/Pa
nct		Porosity-compressibility factor: $nc_t = n \cdot c_t$	[(LT ²)/M]	1/Pa
nctb		Porosity-compressibility-thickness product: $nc_tb = n \cdot c_t b$	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
e		Transport aperture. $e = n_e b$	[L]	m
ρ	Density	Density	$[M/L^3]$	$kg/(m^3)$
ρ _w	Density-w	Fluid density in measurement section during pumping/injection	[M/L ³]	$kg/(m^3)$
ρο	Density-o	Fluid density in observation section	$[M/L^3]$	$kg/(m^3)$
$ ho_{sp}$	Density-sp	Fluid density in standpipes from measurement section	$[M/L^3]$	$kg/(m^3)$
μ	my	Dynamic viscosity	[M/LT]	Pas
μ_{w}	my	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s
FCT		Fluid coefficient for intrinsic permeability, transference of k to K; K=FC _T ·k; FC _T = $\rho_w \cdot g/\mu_w$	[1/LT]	1/(ms)
FCs		Fluid coefficient for porosity-compressibility, transference of c_t to S_s ; S_s =FC _S ·n·c _t ; FC _S = ρ_w ·g	[M/T ² L ²]	Pa/m
Index on K	, T and S			
S		S: semi-log		
L		L: log-log		
f		Pump phase or injection phase, designation following S or L (withdrawal)		
S		Recovery phase, designation following S or L (recovery)		
NLR		NLR: Non-linear regression. Performed on the entire test sequence, perturbation and recovery		
М		Моуе		
GRF		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		
Т		Judged best evaluation based on transient evaluation.		

Character	SICADA designation	Explanation	Dimension	Unit
Tot		Judged most representative parameter for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
e		Effective property (constant) within a domain in a		
0		numerical groundwater flow model.		
Index on p	and Q			
0		Initial condition, undisturbed condition in open holes		
i		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing phase)		
S		Recovery, shut-in phase		
р		Pressure or flow in measuring section at end of perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for "where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for "where" and "what" are used. Measured value		
Some misc	ellaneous inde	xes on p and h		
w		Test section (final difference pressure during flow phase in test section can be expressed dp _{wp} ; First index shows "where" and second index shows "what")		
0		Observation section (final difference pressure during flow phase in observation section can be expressed dp _{op} ; First index shows "where" and second index shows "what")		
f		Fresh-water head. Water is normally pumped up from section to measuring hoses where pressure and level are observed. Density of the water is therefore approximately the same as that of the measuring section. Measured groundwater level is therefore normally represented by what is defined as point-water head. If pressure at the measuring level is recalculated to a level for a column of water with density of fresh water above the measuring point it is referred to as fresh-water head and h is indicated last by an f. Observation section (final level during flow phase in observation section can be expressed h_{opf} ; the first index shows "where" and the second index shows "what" and the last one "recalculation")		