P-06-256

Oskarshamn site investigation

Boremap mapping of core drilled MDZ boreholes KLX26A and KLX26B

Karl-Johan Mattsson, Gunnar Rauséus Geosigma AB

Jan Ehrenborg, Mírab Mineral Resurser AB

November 2007

Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00

ISSN 1651-4416 SKB P-06-256

Oskarshamn site investigation

Boremap mapping of core drilled MDZ boreholes KLX26A and KLX26B

Karl-Johan Mattsson, Gunnar Rauséus Geosigma AB

Jan Ehrenborg, Mírab Mineral Resurser AB

November 2007

Keywords: MDZ, KLX26A, KLX26B, Geology, Drill core mapping, Boremap, Fractures, BIPS, Laxemar.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

This report presents the Boremap mapping of MDZ boreholes KLX26A and KLX26B.

The purpose of the MDZ core drilled boreholes is to obtain enhanced knowledge and understanding for the assessment of hydraulic patterns and physical properties as well as the properties and need of injection, by comparing the relation of existing structures to lithology, orientation, geophysical character, rock stress, ground-water conditions and tectonics in the area of interest.

The lithology in KLX26A is dominated by diorite/gabbro (501033). Subordinate rock type comprises fine-grained granite (511058), Ävrö granite (501044), quartz monzodiorite (501036) and fine-grained diorite-gabbro (505102). The lithology in KLX26B is dominated by diorite/gabbro (501033). Subordinate rock type is fine-grained granite (511058).

Six sections in KLX26A and two sections in KLX26B have been highlighted based on increased fracture frequencies, alterations and structural features.

Sammanfattning

Denna rapport presenterar boremapkarteringen av MDZ borrhålen KLX26A och KLX26B.

Målsättningen med MDZ borrhålen är att erhålla ökad kunskap och förståelse för bedömning av det aktuella områdets hydrauliska mönster, fysikaliska egenskaper och behov av injektering genom att sammanställa befintliga strukturers koppling till litologi, geofysisk karaktär, bergspänning, grundvattenförhållanden och tektonik.

Litologin i KLX26A domineras av diorit/gabbro (501033). Underordnade bergarter är finkornig granit (511058), Ävrögranit (501044), kvartsmonzodiorit (501036) och finkornig dioritoid (505102). Litologin i KLX26B domineras av diorit/gabbro (501033). Underordnad bergart är finkornig granit (511058)

Sex sektioner i KLX26A samt två sektioner i KLX26B kan urskiljas baserat på förhöjd sprick-frekvens, sidobergsomvandlingar och geologiska strukturer.

Contents

1	Introdu	iction	7
2	Objecti	ive and scope	9
3 3.1 3.2 3.3 3.4	Equipn Descrip Other ea BIPS-in BIPS-in	nent tion of software quipment nage sequences nage: resolution, contrast and quality	11 11 11 11 11
4 4.1 4.2 4.3 4.4 4.5 4.6	Executi General Prepara Executi 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 Data ha Geologi 4.5.1 Noncon	tions on of measurements Fracture definitions Fracture alteration and joint alteration number Mapping of fractures not visible in the BIPS-image Definition of veins and dikes Mineral codes ndling ical summary table, general description Columns in the geological summary table formities	13 13 13 13 13 14 14 15 15 15 15 16 16 18
5 5.1 5.2 5.3	Results General Litholog Fracture	gy and structures e mineralogy	19 19 19 20
Appe	ndix 1a	Geological summary table KLX26A	23
Appe	ndix 1b	Geological summary table KLX26B	24
Appe	ndix 2	Search paths for the geological summary table	25
Appe	ndix 3a	BIPS-image of KLX26A	27
Appe	ndix 3b	BIPS-image of KLX26B	33
Appe	ndix 4a	WellCad diagram of KLX26A	37
Appe	ndix 4b	WellCad diagram of KLX26B	38
Appe	ndix 5	Legend to WellCad diagram	39
Appe	ndix 6a	In-data: Borehole length and diameter for KLX26A	41
Appe	ndix 6b	In-data: Borehole length and diameter for KLX26B	42
Appe	ndix 7	In-data: Reference marks for length adjustments for KLX26A	43
Appe	ndix 8a	In-data: Borehole deviation data for KLX26A	45
Appe	ndix 8b	In-data: Borehole deviation data for KLX26B	47

1 Introduction

This document reports the data gained from the mapping of MDZ boreholes (Minor Deformation Zone) KLX26A and KLX26B in the Laxemar area, which is one of the activities performed within the site investigation at Oskarshamn The work was carried out in accordance with activity plan AP PS 400-06-123. In Table 1-1 controlling documents for performing this activity are listed. Both activity plan and method descriptions are SKB's internal controlling documents. Rock type nomenclature that has been used is shown in Table 1-2.

The MDZ boreholes are situated within the Laxemar area (Figure 1-1). Mapping of the drill cores was performed between 2006-09-12 and 2006-09-19. Table 1-3 shows the orientation of the boreholes.

Detailed mapping of the drill core is essential for a three dimensional modelling of the geology at depth. The mapping is based on the use of BIPS-image (Borehole Image Processing System) of the borehole wall and by the study of the drill core itself. The BIPS-image enables the study of orientations, since the Boremap software calculates strike and dip of planar features such as foliations, rock contacts and fractures.

Number	Version
AP PS 400-06-123	1.0
Number	Version
SKB MD 143.008	1.0
SKB MD 143.006	2.0
SKB MD 146.005	1.0
SKB MD 132.004	1.0
SKB MD 620.010	2.0
	Number AP PS 400-06-123 Number SKB MD 143.008 SKB MD 143.006 SKB MD 146.005 SKB MD 132.004 SKB MD 620.010

Table 1-1. Controlling documents for the performance of the activity.

Table 1-2. Rock type nomenclature for the site investigation at Oskarshamn.

Rock type	Rock code	Rock description
Dolerite	501027	Dolerite
Fine-grained Götemar granite	531058	Granite, fine-to medium-grained, ("Götemar granite")
Coarse-grained Götemar granite	521058	Granite, coarse-grained, ("Götemar granite")
Fine-grained granite	511058	Granite, fine-to medium-grained
Pegmatite	501061	Pegmatite
Granite	501058	Granite, medium- to coarse-grained
Ävrö granite	501044	Granite to quartz monzodiorite, generally porphyritic
Quartz monzodiorite	501036	Quartz monzonite to monzodiorite, equigranular to weakly porphyritic
Diorite/gabbro	501033	Diorite to gabbro
Fine-grained dioritoid	501030	Intermediate magmatic rock
Fine-grained diorite-gabbro	505102	Mafic rock, fine-grained
Sulphide mineralization	509010	Sulphide mineralization
Sandstone	506007	Sandstone

Figure 1-1. Location of the core drilled MDZ boreholes.

Table 1-3. Orientation of t	the MDZ boreholes.
-----------------------------	--------------------

Borehole	Bearing (°)	Inclination (°)	Length (m)
KLX26A	093.50	-60.40	101.14
KLX26B	173.40	-60.00	50.37

2 Objective and scope

The core drilled boreholes KLX26A and KLX26B are drilled within the Minor Deformation Zone program (MDZ).

The purpose of the MDZ program is to obtain enhanced knowledge and understanding for the assessment of hydraulic patterns, physical properties and the need of injection by compiling the relation of existing structures to lithology, orientation, geophysical character, rock stress, ground-water conditions and tectonics in the area of interest.

3 Equipment

3.1 Description of software

Software used for the mapping was Boremap v. 3.7, with bedrock and mineral standards of SKB. The data presentation was made using WellCad v. 4, Microsoft Access and Microsoft Excel. Boremap is the software that unites orthodox core mapping with modern video mapping, where Boremap shows the image from BIPS (Borehole Image Processing System) and extracts the geometrical parameters: length, width, strike and dip from the image.

3.2 Other equipment

The following equipment is used to facilitate the core mapping: folding rule and pen, diluted hydrochloric acid, knife, water-filled atomiser and hand lens.

3.3 BIPS-image sequences

Table 3-1. BIPS-image length.

Borehole	Length (m)		
KLX26A	4.00–99.97		
KLX26B	4.00–50.07		

3.4 BIPS-image: resolution, contrast and quality

The visibility of thin fractures in BIPS depends on image resolution, image contrast and image quality. Resolution of the BIPS-image is perhaps the principal reason why very thin fractures as well as very thin apertures are not visible in the BIPS-image and the resolution depends on the BIPS video camera pixel size and illumination angle.

Thick fractures are always visible in both drill core and the BIPS-image. However, the visibility of thin fractures depends strongly on the contrast between the fracture and the wall rock. A bright fracture in a dark rock is clearly visible in the BIPS-image. But a bright coloured fracture in a light coloured rock might, however, be clearly visible in the drill core but not visible in the BIPS-image, especially if the fracture and wall rock have the same colour. The opposite is true for dark fractures.

In very rare cases when the BIPS-image contrast between a very thin fracture and the wall rock is very strong the fracture might be visible in the BIPS-image even if it is not visible in the drill core.

BIPS-image quality is sometimes limited due to:

- 1) blackish coatings probably related to the drilling equipment,
- 2) vertical bleached bands from the clayey mixture of drill cuttings and water,

- 3) light and dark bands at high angle to the drill hole related to the automatic aperture of the video camera,
- 4) vertical enlargements of pixels due to stick-slip movement of the camera probe.

Vertical bleached bands and blackish coatings are usually the main disturbances in the BIPSimage quality.

The image quality is classified into four levels; good, acceptable, bad and very bad. With good quality it means a more or less clear image which is easy to interpret. If the quality is acceptable it means that the image is not good, but the mapping can be performed without any problems. An image of bad quality is somewhat difficult to interpret while an image of very bad quality cannot be interpreted except from very obvious and outstanding features. When the BIPS-image quality is so bad that fractures and structures cannot be identified they can still be oriented using the *guide-line method* (Section 4.3.3). The BIPS-image quality for the MDZ boreholes is presented in Table 3-2.

Table 3-2. BIPS-image quality.

Borehole	Interval (m)	Quality
KLX26A	4.00-52.00	Good
	52.00-99.97	Acceptable
KLX26B	4.00-23.80	Good
	23.80–50.07	Acceptable

4 Execution

4.1 General

Mapping of the drill core of the borehole was performed and documented according to activity plan AP PS 400-06-123 (SKB, internal document) referring to the *Method Description for Boremap mapping* (SKB MD 143.006, v. 2.0), *Nomenklatur vid Boremapkartering* (SKB MD 143.008, v. 1.0), *Instruktion: Regler för bergarters benämningar vid platsundersökningen i Oskarshamn* (SKB MD 132.004, v. 1.0) and *Instruktion för längdkalibrering vid undersökningar i kärnborrhål* (SKB MD 620.010, v. 2.0), all of them SKB internal documents.

The drill core was displayed on inclined roller tables and mapped in its entire length with the Boremap software. The core mapping was carried out without any detailed geological knowledge of the area but with access to geophysical logs from the borehole and rock samples.

The term *oxidation* has been used as an alteration type until the mapping of KLX05. However, research has shown that the red colour of the bedrock is actually not only a result of oxidation. Since April 2005 the term *red staining* is used instead of the term *oxidation*.

The mapping was performed by Karl-Johan Mattsson and Gunnar Rauséus (Geosigma AB) and Jan Ehrenborg (MIRAB)

4.2 Preparations

Any depth registered in the BIPS-image deviates from the true depth in the borehole, a deviation which increases with depth, about 0.5 m/100 m. This problem is usually eliminated by adjusting the depth of the BIPS-image to reference slots cut into the borehole walls every fiftieth meter, but the MDZ boreholes lack these reference marks.

Necessary data adjustment is borehole diameter, reference marks, length and deviation; both collected from SICADA database (Appendices 6–8). The Boremap software uses all the data extracted from SICADA database to calculate the true orientations of the different observations.

4.3 Execution of measurements

Concepts used during the core mapping, are defined in this chapter.

4.3.1 Fracture definitions

Definitions of different fracture types and aperture crush zones and sealed fracture network are found in *Nomenklatur vid Boremapkartering* (SKB MD 143.008, v. 1.0), SKB internal document. Apertures for broken fractures have been mapped in accordance with the definitions in MD 143.008 v. 1.0.

Two types of fractures are mapped in Boremap; broken and unbroken. Broken are fractures that split the core while unbroken fractures do not split the core. All fractures are described with their fracture minerals and other characteristics, e.g. width, aperture and roughness. Visible apertures are measured down to 1 mm in the BIPS-image. Smaller apertures, which are impossible to detect in the BIPS-image, are denoted a value of 0.5 mm. If the core pieces don't fit well, the aperture is considered "probable". If the core pieces do fit well, but the fracture surfaces are dull or altered, the aperture is considered "possible".

All fractures with apertures > 0 mm are treated as open in the SICADA database. Only few broken fractures are given the aperture = 0 mm. Unbroken fractures usually have apertures = 0 mm. Unbroken fractures that have apertures > 0 mm are interpreted as partly open and are included in the open-category. Open and sealed fractures are finally frequency calculated and shown in Appendix 1.

4.3.2 Fracture alteration and joint alteration number

Joint alteration number is principally related to the thickness of, and the clay content in a fracture. Thick fractures rich in clay minerals are given joint alteration numbers between 2 and 3. The majority of the broken fractures are very thin to extremely thin and seldom contain clay minerals. These fractures receive joint alteration numbers between 1 and 2.

A subdivision of fractures with joint alteration numbers between 1 and 2 was introduced to facilitate both the evaluation process for fracture alterations and the possibility to compare the alterations between different fractures in the boreholes. The subdivision is based on fracture mineralogy as follows:

- a) fracture wall alterations,
- b) fracture mineral fillings assumed to have been deposited from circulating water-rich solutions,
- c) fracture mineral fillings most likely resulting from altered wall rock material.

Joint alteration number equal to 1: Fractures with or without wall rock alteration, e.g. oxidation or epidotization, and without mineral fillings is considered as fresh. The joint alteration number is thus set to 1.

Minerals such as calcite, quartz, fluorite, zeolites, laumontite and sulphides are regarded as deposited by circulating water-rich solutions and not as true fracture alteration minerals. The joint alteration number is thus set to 1.

Joint alteration number equal to 1.5: epidote, prehnite, hematite, chlorite and/or clay minerals are regarded as fracture minerals most likely resulting from altered wall rock. A weak alteration is thus assumed and the joint alteration number was set to 1.5. Extra considerations have been given to clay minerals since the occurrence of these minerals often resulted in a higher joint alteration number.

Joint alteration numbers higher than 1.5: When the mineral fillings is thick and contain a few mm of clay minerals, often together with epidote and chlorite, the joint alteration number is set to 2. In rare cases, when a fracture contains 5–10 mm thick clay, together with chlorite, the joint alteration number is set to 3.

When the alteration of a fracture is too thick (and/or intense) to give the fracture the joint alteration number 1.5 and too thin and/or weak to give it a 2, 1.7 and 1.8 is used.

4.3.3 Mapping of fractures not visible in the BIPS-image

Not all fractures are visible in the BIPS-images, and these fractures are orientated by using the *guide-line method*, based on the following data:

- Amplitude (measured along the drill core) which is the interval between fracture extremes along the drill core.
- The relation between the orientations of the fracture trace, measured on the drill core and a well defined structure visible in the BIPS-image.
- Absolute depth.

Orientation of fractures and other structures with the *guide-line method* is done in the following way: The first step is to calculate the amplitude of the fracture trace in the BIPS-image (with 76 mm diameter) from the measured fracture amplitude in the drill core (with 50 mm diameter). The second step is the correction of strike and dip. This is done by rotating the fracture trace in the BIPS-image relative to a feature with known orientation. The fracture trace is then put at the correct depth according to the depth measured on the drill core.

The *guide-line method* can be used to orientate any feature that is not visible in the BIPS-image. It is also a valuable tool to control that the personnel working with the drill core is observing the same feature as the personnel delineating the trace in the BIPS-image, especially in intervals rich in fractures.

The error of orientating fractures using the *guide-line method* is not known but experience and an estimation using stereographic plots indicated that the error is most likely insignificant. Accordingly, the *guide-line method* is so far considered better than mapping lots of non-oriented fractures. The fractures in question are mapped as "non-visible in BIPS" and can therefore be separated from fractures visible in BIPS which probably have a more accurate orientation.

4.3.4 Definition of veins and dikes

Rock occurrence is the way Boremap handles the occurrence of lithology up to 1 m wide. Chiefly two different rock occurrences are mapped: veins and dikes. These two are separated by their respectively length in the drill core; veins are set to 0–20 cm and dikes are set to 20–100 cm. Rock occurrences that covers more than 100 cm of the drill core are mapped under the feature *rock type*.

4.3.5 Mineral codes

In cases where properties and/or minerals are not represented in the mineral list, the following mineral codes have been used:

- X2 gypsum
- X5 bleached fracture walls
- X7 broken fracture with a fresh appearance and no mineral fill
- X8 fractures with epidotized/saussuritized walls
- X9 weathered appearance

4.4 Data handling

Mapping of the drill core is performed on-line on the SKB network, in order to obtain the best possible data security. Before every break (>15 minutes) a back-up is saved on the local disk. As a regular quality check every working day a summary report (from Boremap) and a WellCad plot is printed in order to find possible misprints. The mapping is also quality checked by a routine in Boremap before it is exported to and archived in SICADA database. Personnel from SKB also perform spot test controls and regular quality revisions. All primary data is stored in SKB's database SICADA and only these data are later used for interpretation and modelling.

4.5 Geological summary table, general description

A geological summary table (Appendix 1a and 1b) is an overview of the features mapped with the Boremap software. It also facilitates comparisons between Boremap information collected from different boreholes and is more objective than a pure descriptive borehole summary. All information is taken directly from the Boremap database using simple and well defined search paths for each geological parameter (Appendix 2).

The geological summary table consists of 23 columns, each one representing a specific geological parameter, presented as either intervals or frequencies (see Section 4.5.1 for column description). Intervals are calculated for parameters with a width ≥ 1 m and frequencies for parameters with a width < 1 m. Frequency information is treated as point observations. It should be noted that parameters with a thickness of only 1 mm get the same "value" as a similar parameter with a thickness of 999 mm since both are treated as point observations and used for frequency calculations.

Parameters are sometimes related in such a way that the mapping of one parameter cause a decrease in the frequency of another parameter. This type of intimate relationship between parameters has been noted for the following cases;

- There is a decrease in the frequency of *unbroken fractures* with oxidised walls and without mineral fillings in intervals mapped with *Alteration red staining*.
- No unbroken fractures are mapped in intervals of sealed fracture network.
- No broken fractures are mapped in intervals with crush.
- Hybrid rock and composite dikes generally include a large amount of fine to medium grained granite veins. These veins are not mapped and the frequency presented for veins + dikes in column 6 (Appendix 1a and 1b) are lower than the true frequency in composite dike intervals.

4.5.1 Columns in the geological summary table

The geological summary table includes the following 23 columns:

Column 1: *Rock type/Lithology*, interval column. Only lithologies longer than 1 m are presented here. Shorter lithologies are presented in column 6. This column is identical with the ordinary WellCad presentation.

Column 2: *Rock type/Grain size*, interval column. Interval limits follows column 1. This column is identical with the ordinary WellCad presentation.

Column 3: *Rock type/Texture*, interval column. Interval limits follows column 1. This column is identical with the ordinary WellCad presentation.

Column 4: *Alteration/Type*, interval column. No frequency column is presented for alteration/ type. The alteration/type column are identical with the ordinary WellCad presentation.

Column 5: *Alteration/Intensity*, interval column. This column is identical with the ordinary WellCad presentation.

Column 6: *Rock occurrence/Veins* + *Dikes* < 1 m wide, frequency column. This rock type column can be seen as the frequency complement to the rock type/lithology interval column. Only rock type sections that are thinner than 1 m can be described as rock occurrences in Boremap. Thicker rock type sections are mapped as rock type.

Column 7: *Structure/Shear zone < 1 m wide*, frequency column. This column includes ductile shear structures as well as brittle-ductile shear structures and these are mapped as rock occurrences in Boremap. Ductile sections in mm - cm scale are mapped as shear structures and in dm - m scale as sections with foliation in column 12.

Column 8: *Structure/Brecciated < 1 m wide*, frequency column. Breccias < 1 m wide are mapped as rock occurrence in Boremap. Very thin micro breccias along sealed/natural fracture planes are generally not considered.

Column 9: *Structure/Brecciated* $\geq 1 \text{ m wide}$, interval column. Breccias > 1 m wide are mapped as rock type/structure in Boremap.

Column 10: *Structure/Mylonite < 1 m wide*, frequency column. Mylonites < 1 m wide are mapped as rock occurrence/structure in Boremap.

Column 11: *Structure/Mylonite* $\ge l m$ *wide* is an interval column. Mylonites > 1 m wide are mapped as rock type/structure in Boremap.

Column 12: *Structure/Foliated* < 1 m *wide* is a frequency column. Sections with foliation < 1 m wide are mapped as rock occurrence/structure in Boremap. Very thin sections with foliation are called ductile shear structures and presented in column 7.

Column 13: *Structure/Foliated* $\ge 1 \text{ m wide}$ is an interval column. Sections with foliation $\ge 1 \text{ m}$ wide are mapped as rock type/structure in Boremap.

Column 14: *Sealed fractures/All*, frequency column. This column includes all fractures mapped as unbroken in the Boremap system as well as unbroken fractures interpreted to have broken up artificially during/after drilling.

Column 15: Sealed fractures/Broken fractures with aperture = 0, frequency column. This column includes unbroken fractures interpreted to have broken up artificially during/after drilling.

Column 16: Sealed fractures/Sealed fracture network < 1 m wide, frequency column. The sealed fracture network parameter is the only parameter that is generally evaluated directly from observations of the drill core. These types of sealed fractures can only in rare cases be observed in the BIPS-image.

Column 17: *Sealed fractures/Sealed fracture network* $\geq 1 \text{ m wide}$, interval column.

Column 18: *Open fractures/All, aperture* > 0, frequency column. This column includes all broken fractures, both fractures that with certainty were open before drilling and fractures that probably or possibly were open before drilling.

Column 19: *Open fractures/Uncertain, aperture* = 0.5 *probable* + 0.5 *possible*, frequency column. This column includes fractures that probably or possibly open before drilling.

Column 20: *Open fractures/Certain, aperture* = 0.5 *and* > 0.5, frequency column. This column includes fractures that certainly were open before drilling.

Column 21: *Open fractures/Joint alteration* > 1.5, frequency column. This column show fractures with stronger joint alteration than normal. This parameter is generally correlated with the location of lithologies with a more weathered appearance.

Column 22: *Open fractures/Crush < 1 m wide*, frequency column. This column includes shorter sections with crush.

Column 23: *Open fractures/Crush* $\geq 1 \text{ m wide}$, interval column. This column includes longer sections with crush.

4.6 Nonconformities

The uppermost 4 m of the boreholes is not covered by a BIPS-image. These sections have not been mapped.

Due to the lack of reference marks in KLX26B, recorded length from the BIPS-logging was used.

Core loss, in KLX26A, was mapped in the interval 40.033–41.030 m.

Core loss, in KLX26B, was mapped in five intervals: 27.930–28.060 m, 28.420–28.650 m, 32.244–32.374 m, 36.242–36.322 and 44.143–44.303 m.

5 Results

5.1 General

All results from the mapping are principally found in the appendices. Information from the SICADA database is shown in the geological summary tables in Appendix 1 and as WellCad diagrams in Appendix 4. The BIPS-images are presented in Appendix 3 and 3b. The search paths to the geological summary table are presented in Appendix 2 and in-data, such as borehole length, reference marks, deviation data and borehole diameter are presented in Appendices 6–8.

The MDZ boreholes KLX26A and KLX26B vary between 50.37 m and 100.14 m in length (Table 5-1).

Original data from the reported activity are stored in the primary database SICADA. Data are traceable in SICADA by the Activity Plan number (AP PS 400-06-123). Only data in databases are accepted for further interpretation and modelling. The data presented in this report are regarded as copies of the original data. Data in the databases may be revised, if needed. Such revisions will not necessarily result in a revision of the P-report, although the normal procedure is that major revisions entail a revision of the P-report. Minor revisions are normally presented as supplements, available at *www.skb.se*.

5.2 Lithology and structures

The lithology (Table 5-2) in KLX26A, is in the interval 4.00 to 93.00 m dominated by diorite/ gabbro (501033). This section is intersected by fine grained granite (511058) in the interval 23.00 to 46.00 m. The interval between 93.00 m and 101.00 m includes 2.00 to 4.00 m sections of quartz monzodiorite (501036), fine-grained diorite-gabbro (505102) and Ävrö granite (501044). The lithology in KLX26B is dominated by diorite/gabbro (501033), the diorite/gabbro is intersected by a fine-grained granite between 27.00 m and 44.00 m borehole length.

Six sections in KLX26A and two sections in KLX26B are recognized by anomalous fracture frequencies, alterations and structural features.

Table 5-1. Length of the MDZ drill cores.

Borehole	Length (m)
KLX26A	0–101.14
KLX26B	0–50.37

Table 5-2. Lithology in the MDZ boreholes.

Rock type	KLX26A (%)	KLX26B (%)
Diorite/gabbro (501033)	68.3	62.7
Fine-grained granite (511058)	19.6	37.3
Ävrö granite (501044)	5.5	
Quartz monzodiorite (501036)	4.3	
Fine-grained diorite-gabbro (505102)	2.3	

Section interval characteristics

KLX26A

- 1. 5-7 m. Increased frequency of open fractures and open fractures with an aperture > 0.5 mm, sealed fracture networks, crush zone and saussuritization occurs within this section.
- 2. 16–20 m. Increased frequency of open fractures and open fractures with an aperture > 0.5 mm, sealed fracture networks, breccia and brittle-ductile shear zone occurs within this section.
- 3. 37–56 m. Increased frequency of open fractures, sealed fracture networks, crush zone, core loss, brecciation, brittle-ductile and ductile shear zones, foliation, epidotization and red staining and occurs within this section. This interval also includes an intrusion of fine-grained granite (511058).
- 4. 58–66 m. Increased frequency of open fractures, sealed fracture networks, brittle-ductile and ductile shear zones, foliation and red staining and occurs within this section.
- 5. 73–77 m. Increased frequency of open fractures, sealed fracture networks, crush zone, brecciation, brittle-ductile and ductile shear zones, foliation, and epidotization occurs within this section.
- 6. 96–100 m. Increased frequency of open fractures, sealed fracture networks, crush zone, brittle-ductile and ductile shear zones occurs within this section. This interval also includes an intrusion of fine-grained diorite-gabbro (505102).

KLX26B

- 1. 4-9 m. Increased frequency of open fractures with an aperture > 0.5 mm, sealed fractures and brittle-ductile shear zones occurs within this section.
- 37–56 m. Increased frequency of open fractures and open fractures with an aperture > 0.5 mm, sealed fracture networks, core loss, brittle-ductile and ductile shear zones and foliation occurs within this section. This interval also includes an intrusion of fine-grained granite (511058).

5.3 Fracture mineralogy

Tables 5-3 and 5-4 show the frequency of minerals and rock wall alteration in sealed fractures and open fractures respectively. For X-mineral classification, see Section 4.3.5.

The most frequently occurring minerals in sealed fractures are for KXL26A, epidote, calcite and chlorite. Subordinated rock wall alterations and minerals are oxidized walls, pyrite, quartz and adularia. KLX26B is dominated by calcite and subordinated minerals are chlorite, quartz, epidote and hematite.

In KLX26A and KLX26B calcite and chlorite are the most frequently occurring minerals in open fractures, followed by pyrite, clay minerals, epidote and hematite. Interesting to mention is the occurrence of gypsum (X2) in KLX26A.

Mineral	KLX26A (%)	KLX26B (%)
Adularia	5.1	5.9
Calcite	85.9	87.9
Chlorite	76.9	66.5
Clay Minerals	39.5	10.9
Epidote	21.5	8.4
Flourite	-	0.8
Hematite	8.3	16.7
Iron Hydroxide	0.9	-
Oxidized Walls	5.1	0.4
Prehnite	0.5	0.4
Pyrite	36.0	22.2
Quartz	2.8	1.3
Red Feldspar	0.5	-
Sphalerite	0.2	-
Unknown Mineral	0.5	-
White Feldspar	0.7	-
Zeolite	0.5	-
X2	0.2	-
X5	0.5	-
Х7	1.2	4.6
X8	0.7	1.3
Х9	0.5	0.8

Table 5-3. Frequency of minerals and rock wall alteration in open fractures.

Table 5-4. Frequency of minerals and	I rock wall alteration in sealed fractures.
--------------------------------------	---

Mineral	KLX26A (%)	KLX26B (%)
Adularia	7.7	0.9
Calcite	46.3	78.3
Chlorite	41.3	34.9
Clay Minerals	0.3	-
Epidote	50.3	18.9
Hematite	2.4	12.3
Laumontite	-	1.9
Oxidized Walls	15.3	6.6
Prehnite	0.5	2.8
Pyrite	12.7	7.5
Quartz	11.1	24.5
Red Feldspar	0.8	0.9
Sphalerite	0.3	_
Unknown mineral	0.3	_
White Feldspar	2.6	0.9
X5	4.8	0.9
X7	0.8	0.9
X8	1.3	2.8
X9	0.3	_

Appendix 1a

Geological summary table KLX26A

Geological summary table KLX26B

TABLE HEAD LINES			INFORMATION SO	PRESENTATION	
Head lines	Sub head lines	Varcode	First suborder	Second suborder	Interval / frequence
Rock type	Lithology	5	Sub 1		Interval
	Grain size	5	Sub 5		Interval
	Texture	5	Sub 6		Interval
Alteration	Туре	7	Sub 1 = 700		Interval
	Intensity	7	Sub 1 = 700	Sub 2	Interval
Rock occurrence	Vein + dyke	31	Sub 1 = 2 and 18		Frequence
Structure	Shear zone, < 1m wide	31	Sub 4 = 41 and 42		Frequence
	Brecciated, < 1m wide	31	Sub 4 = 7		Frequence
	Brecciated, >/= 1m wide	5	Sub 3 = 7	Sub 4; 101 and 102 = 102	Interval
		5	Sub 3 = 7	Sub 4; 103 and 104 = 104	
	Mylonite, < 1 m wide	31	Sub 4 = 34		Frequence
	Mylonite, >/= 1 m wide	5	Sub 3 = 34	Sub 4; 101 and 102 = 102	Interval
		5	Sub 3 = 34	Sub 4; 103 and 104 = 104	
	Foliated, < 1 m wide	31	Sub 4 = 81		Frequence
	Foliated, >/= 1 m wide	5	Sub 3 = 81	Sub 4; 101 and 102 = 102	Interval
		5	Sub 3 = 81	Sub 4; 103 and 104 = 104	
Sealed fracture	All unbroken fractures	3			Frequence
	and broken fractures	2	SNUM 11= 0		
	Broken fractures, Aperture = 0	2	SNum 11 = 0		Frequence
	Sealed fracture network < 1 m wide	32	2		Frequence
	Sealed fracture network>/= 1 m wide	32			Interval
Open fractures	All, Aperture > 0	2 and 3	SNum 11>0		Frequence
	Uncertain, Aperture = 0.5 possible	2 and 3	SNum 11>0	Sub 12 = 3	Frequence
	and 0.5 probable	2 and 3	SNum 11>0	Sub 12 = 2	
	Certain, Aperture = 0.5 and >0.5	2 and 3	SNum 11>0	Sub 12 = 1	Frequence
	Joint alteration > 1.5	2	SNum16 > 1.5		Frequence
	Crush < 1 m wide	4			Frequence
	Crush >/= 1 m wide	4			Interval

Search paths for the geological summary table

BIPS-image of KLX26A

Borehole Image Report

Borehole Name:	KLX26A
Mapping Name:	KLX26A_JE_GR_1
Mapping Range:	4.000 - 102.000 m
Diameter:	76.0 mm
Printed Range:	4.000 - 99.872
Pages:	6

Image File Information:

File: G:\skb\bips\oskarshamn\KLX26A\KLX26A.BIP Date/Time: 2006-09-11 13:15:00 Start Depth: 4.000 m End Depth: Resolution: 99.872 m 1.00 mm/pixel (depth) Orientation: Gravmetric Image height: 95872 pixels 360 pixels BIP-III LAXEMAR Image width: BIP Version: Locality: Borehole: KLX26A Scan Direction: Down Color adjust: 0 0 0 (RGB)

Printed: 2006-10-03 15:31:47

Aspect: 150 %

Depth range: 4.000 - 24.000 m Azimuth: 0.0 Inclination: -90.0

4.000	8.000 8.001	12.000	16.000 16.003	20.000
4.200 4.200	8.200 8.201	0 1 10 1 12.200 12 202	16.200 16.203	20.200
4.400	8.400	12.400	16.400_	20.400
4.600	8.600	12.600	16.600_	20.405
4.800	8.800 8.800	12.800	16.800	20.800
4.800	8.801 9.000	12.802 13.000	16.804 17.000	20.805
5.000	9.001	13.003	17.004	21.005
5.200 5.200	9.200 9.201	13.200 13.203	17.200 17.204	21.200 21.205
5.400 5.400	9.400 9.402	13.400 13.403	17.400 17.404	21.400 21.405
5.600 5.600	9.600 9.602	13.600 13.603	17.600 17.604	21.600 21.605
5.800 5.801	9.800 9.802	13.800 13.803	17.800 17.804	21.800 21.805
6.000 6.001	10.000	14.000 14.003	18.000 18.004	22.000 22.005
6.200 6.201	10.200	14.200 14.203	18.200 18.204	22.200
6.400 6.401	10.400 10.402	14.400 14.403	18.400 18.404	22.400 22.405
6.600	10.600	14.600 14.603	18.600 18.604	22.600
6.800 6.801	10.800 10.802	14.800 14.803	18.800 18.804	22.800 22.805
7.000	11.000	15.000	19.000	23.000
7.200	11.200	15.200	19.200	23.200
7.400	11.400	15.400 15.403	19.400 19.404	23.400
7.600	11.600_ 11.602	15.600 15.603	19.600 19.604	23.600
7.800 7.801	11.800_ 11.802	15.800 15.803	19.800 19.804	23.800 23.806

Printed: 2006-10-03 15:31:47

Scale: 1 : 20

Aspect: 150 %

Depth range: 24.000 - 44.000 m Azimuth: 0.0 Inclination: -90.0

24.000	28.000	32.000	36.000	40.000	
24.000	20.007	DLUR 32.000	D L U B 20,000	0 L U R 40.010	d L U P
24.200 24.206	28.200	32.200 32.208	36.200 36.209	40.200 40.210	The second
24.400	28.400	32.400	36.400	40.400	
24.406	28.407	32.408	36.409	40.410	
24.600	28.600	32.600	36.600	40.600	
24.606	28.607	32.608	36.609	40.610	
24.800	28.800	32.800	36.800	40.800	ME
24.806	28.807	32.808	36.809	40.810	
25.000	29.000	33.000	37.000	41.000	
25.006	29.007	33.008	37.009	41.010	
25.200_	29.200	33.200	37.200	41.200	-
25.206	29.207	33.208	37.209	41.211	
25.400_ 25.406	29.400 29.407	33.400 33.408	37.400 37.409	41.400	
25.600	29.600	33.600	37.600	41.600	
25.606	29.607	33.608	37.609	41.611	
25.800_	29.800	33.800	37.800	41.800	
25.806	29.807	33.808	37.810	41.811	
26.000	30.000	34.000	38.000	42.000	
26.006	30.007	34.008	38.010	42.011	
26.200	30.200	34.200	38.200	42.200	
26.206	30.207	34.209	38.210	42.211	
26.400	30.400	34.400	38.400	42.400	
26.406	30.407	34.409	38.410	42.411	
26.600	30.600	34.600	38.600	42.600	Aler -
26.606	30.608	34.609	38.610	42.611	
26.800	30.800	34.800	38.800	42.800	-
26.806	30.808	34.809	38.810	42.811	
27.000	31.000	35.000	39.000	43.000	
27.007	31.008	35.009	39.010	43.011	
27.200_ 27.207	31.200 31.208	35.200 35.209	39.200 _{39.210}	43.200 43.211	
27.400_	31.400	35.400	39.400	43.400	
27.407	31.408	35.409	39.410	43.411	
27.600	31.600	35.600	39.600	43.600	- 20-
27.607	31.608	35.609	39.610	43.611	
27.800	31.800	35.800	39.800	43.800	
27.807	31.808	35.809	39.810	43.811	
					and the

Printed: 2006-10-03 15:31:47

Scale: 1:20

Aspect: 150 %

Depth range: 44.000 - 64.000 m Azimuth: 0.0 Inclination: -90.0

44.000	48.000	52.000		3.000	60.000
44.011	48.012	52.023		6.043	60.063
44.200_	48.200	52.200	- 56	3.200	60.200
44.211	48.212	52.224	56	6.244	60.264
44.400_	48.400	52.400	- 56	3.400	60.400
44.411	48.413	52.425		6.445	60.465
44.600_	48.600	52.600	- 56	3.600	60.600
44.611	48.613	52.626	56	<mark>3.646</mark>	60.666
44.800	48.800	52.800	- 56	5.800	60.800
44.812	48.813	52.827	56	5.847	60.867
45.000 45.012	49.000 49.013	53.000 53.028	57	7.000	61.000 61.068
45.200	49.200	53.200	57	7.200	61.200
45.212	49.213	53.229	57		61.269
45.400	49.400	53.400	- 57	7.400	61.400
45.412	49.413	53.430	57		61.470
45.600_	49.600	53.600	57	7.600	61.600
45.612	49.613	53.631		7.651	61.671
45.800 45.812	49.800 49.813	53.800 53.832	- 57	7.800	61.800 61.872
46.000	50.000	54.000	- 58	3.000	62.000
46.012	50.013	54.033	58	<mark>3.053</mark>	62.073
46.200	50.200	54.200		3.200	62.200
46.212	50.214	54.234		<mark>3.254</mark>	62.274
46.400	50.400	54.400	- 58	3.400	62.400
46.412	50.415	54.435	58	3.455	62.475
46.600	50.600	54.600	- 58	3.600	62.600
46.612	50.616	54.636	58	<mark>3.656</mark>	62.676
46.800	50.800	54.800	- 58	3.800	62.800
46.812	50.817	54.837	58	3.857	62.877
47.000	51.000	55.000	- 59	9.000	63.000
47.012	51.018	55.038	59	9.058	63.078
47.200	51.200	55.200	- 59	9.200	63.200
47.212	51.219	55.239		9.259	63.279
47.400	51.400	55.400	- 59	9.400	63.400
47.412	51.420	55.440	59	9.460	63.480
47.600	51.600	55.600	- 59	9.600	63.600
47.612	51.621	55.641	59	9.661	63.680
47.800	51.800	55.800	- 59	9.800	63.800
47.812	51.822	55.842	59	9.862	63.881
	1. S. S. S.	The second		ALC: NO	

Printed: 2006-10-03 15:31:47

Scale: 1 : 20

Aspect: 150 %

Depth range: 64.000 - 84.000 m Azimuth: 0.0 Inclination: -90.0

64.000	68.000	72.000		76.000	80.000	
64.082	68.102	72.122		76.142	80.162	
64.200 64.283	68.200 68.303	72.200 72.323		76.200 76.343	80.200 80.363	
64.400 64.484	68.400 68.504	72.400 72.524		76.400 76.544	80.400 80.564	
64.600 64.685	68.600 68.705	72.600 72.725		76.600 76.745	80.600 80.765	
64.800 64.886	68.800 68.906	72.800 72.926		76.800 76.946	80.800 80.966	
65.000 65.087	69.000 69.107	73.000 73.127		77.000 77.147	81.000 <mark>81.167</mark>	
65.200 65.288	69.200_ 69.308	73.200 73.328		77.200 77.348	81.200_ <mark>81.368</mark>	
65.400 65.489	69.400_ 69.509	73.400 73.529		77.400 77.549	81.400_ <mark>81.569</mark>	
65.600 65.690	69.600 69.710	73.600 73.730	and the second	77.600 77.750	81.600_ <mark>81.770</mark>	
65.800 65.891	69.800_ 69.911	73.800_ 73.931		77.800_ 77.951	81.800_ <mark>81.971</mark>	
66.000 66.092	70.000 70.112	74.000 74.132		78.000 78.152	82.000 82.172	
66.200 66.293	70.200 70.313	74.200 74.333		78.200 78.353	82.200 82.373	
66.400 66.494	70.400 70.514	74.400 74.534		78.400 78.554	82.400 82.574	
66.600 66.695	70.600 70.715	74.600 74.735		78.600 78.755	82.600 82.775	
66.800 66.896	70.800_ 70.916	74.800 74.936		78.800 78.956	82.800 <mark>82.976</mark>	
67.000 67.097	71.000_ 71.117	75.000 75.137		79.000 79.157	83.000 <mark>83</mark> .177	
67.200 67.298	71.200_ 71.318	75.200 75.338		79.200 79.358	83.200 <mark>83.378</mark>	
67.400 67.499	71.400_ 71.519	75.400 75.539		79.400 79.559	83.400 83.579	
67.600 67.700	71.600_ 71.720	75.600 75.740		79.600 79.760	83.600_ <mark>83.780</mark>	
67.800 67.901	71.800 71.921	75.800 75.941		79.800 79.961	83.800_ <mark>83.981</mark>	
			-12			

Printed: 2006-10-03 15:31:47

Scale: 1:20

Aspect: 150 %

Depth range: 84.000 - 99.872 m Azimuth: 0.0 Inclination: -90.0

84.000		88.000		92.000		96.000	
04.102	LUR	00.201	LU	92.221	LUE	96.241	
84.200_ 84.383		88.200 88.402		92.200 92.422		96.200_ 96.442	
84.400 84.584		88.400 88.603		92.400 92.623		96.400 96.643	
84.600 84.785		88.600 88.804		92.600 92.824		96.600_ 96.844	
84.800 84.986		88.800_ 89.005		92.800 93.025	R	96.800 97.045	
85.000 <mark>85.187</mark>		89.000 89.206		93.000 93.226		97.000_ 97.246	
85.200 85.388	3	89.200 89.407		93.200 93.427		97.200 97.447	
85.400_ 85.589		89.400 89.608		93.400_ 93.628		97.400 <mark>97.648</mark>	
85.600_ 85.790		89.600 89.809		93.600_ 93.829		97.600_ <mark>97.849</mark>	
85.800 <mark>85.991</mark>		89.800 90.010		93.800 94.030		97.800 <mark>98.050</mark>	
86.000 86.192		90.000_ 90.211		94.000 94.231		98.000_ 98.251	
86.200 86.393		90.200_ 90.412		94.200 94.432		98.200 98.452	
86.400 86.594		90.400 90.613		94.400_ 94.633		98.400_ <mark>98.653</mark>	
86.600 86.795		90.600 90.814		94.600 94.834		98.600 98.854	8
86.800 86.996		90.800 91.015		94.800 95.035		98.800 <mark>99.055</mark>	
87.000 87.197		91.000_ <mark>91.216</mark>		95.000_ <mark>95.236</mark>		99.000 99.256	
87.200 87.397		91.200 91.417		95.200 95.437		99.200 99.457	
87.400 87.598		91.400_ 91.618		95.400_ 95.638		99.400 99.658	
87.600 87.799		91.600_ <mark>91.819</mark>		95.600_ <mark>95.839</mark>		99.600 99.859	
87.800_ 88.000		91.800 92.020		95.800 96.040		99.800 100.060	
			S.S.S.S				

Printed: 2006-10-03 15:31:47

Scale: 1:20

Aspect: 150 %

BIPS-image of KLX26B

Borehole Image Report

Borehole Name:	KLX26B
Mapping Name:	KLX26B_KJM
Mapping Range:	4.001 - 50.370 m
Diameter:	76.0 mm
Printed Range:	4.000 - 50.208
Pages:	4

Image File Information:

D:\BIPS_Images\KLX26B\KLX26B.BIP 2006-09-11 14:43:00 File: Date/Time: Start Depth: 4.000 m End Depth: 50.208 m Resolution: 1.00 mm/pixel (depth) Orientation: Gravmetric Image height: 46208 pixels Image width: 360 pixels BIP Version: BIP-III Locality: LAXEMAR Borehole: KLX26B Scan Direction: Down Color adjust: 0 0 0 (RGB)

Borehole: KLX26B Mapping: KLX26B_KJM Depth range: 4.000 - 24.000 m Azimuth: 137.4 Inclination: -60.0

4.000	8.000	12.000	16.000	20.000
	8.000	12.000	16.000	20.000
4.200	8.200	12.200_	16.200	20.200
4.200	8.200	12.200	16.200	
4.400	8.400	12.400	16.400	20.400
4.400	8.400	12.400	16.400	20.400
4.600	8.600_	12.600	16.600	20.600
4.600	<mark>8.600</mark>	12.600	16.600	20.600
4.800 4.800	8.800	12.800 12.800	16.800 16.800	20.800
5.000	9.000	13.000	17.000	21.000
	9.000	13.000	17.000	21.000
5.200	9.200	13.200	17.200	21.200
5.200	9.200	13.200	17.200	21.200
5.400	9.400	13.400	17.400	21.400
5.400	9.400	13.400	17.400	21.400
5.600	9.600	13.600_	17.600	21.600
5.600	9.600	13.600	17.600	21.600
5.800	9.800	13.800	17.800	21.800
5.800	9.800	13.800	17.800	21.800
6.000	10.000	14.000_	18.000	22.000
6.000	10.000	14.000	18.000	22.000
6.200	10.200 ₋	14.200	18.200	22.200
6.200	10.200	14.200	18.200	22.200
6.400	10.400_	14.400	18.400	22.400
6.400	10.400	14.400	18.400	22.400
6.600	10.600_	14.600	18.600	22.600
6.600	10.600	14.600	18.600	22.600
6.800	10.800	14.800	18.800	22.800
6.800	10.800	14.800	18.800	22.800
7.000	11.000	15.000_	19.000	23.000
	11.000	15.000	19.000	23.000
7.200	11.200_	15.200	19.200	23.200
	11.200	15.200	19.200	23.200
7.400	11.400	15.400	19.400	23.400
7.400	11.400	15.400	19.400	23.400
7.600	11.600 ₋	15.600_	19.600	23.600
	11.600	15.600	19.600	23.600
7.800	11.800_	15.800	19.800	23.800
7.800	11.800	15.800	19.800	23.800
			No.	Sec.

Printed: 2006-10-03 16:15:32

Scale: 1:20

Aspect: 150 %

2 (4)

Borehole: KLX26B Mapping: KLX26B_KJM

Depth range: 24.000 - 44.000 m Azimuth: 137.4 Inclination: -60.0

24.000 24.000	28.000_ 28.000		32.000 32.000	14	36.000 36.000		40.000 40.000		6
24.200 24.200	28.200 28.200	DUUR	32.200 32.200	L U	36.200 36.200	L U R	40.200 40.200	L.U.	
24.400 24.400	28.400 28.400		32.400 32.400		36.400 36.400		40.400 40.400		
24.600 24.600	28.600 28.600	200	32.600 32.600		36.600 36.600	No.	40.600 40.600		
24.800 24.800	28.800 28.800	题	32.800 32.800		36.800 36.800		40.800 40.800		
25.000 25.000	29.000 29.000		33.000 33.000		37.000 37.000	No.	41.000 41.000		
25.200 25.200	29.200 29.200		33.200_ 33.200	權	37.200 37.200		41.200 41.200		
25.400 25.400	29.400_ 29.400	-	33.400_ 33.400		37.400 37.400		41.400 41.400		
25.600 25.600	29.600 29.600		33.600 33.600		37.600 37.600		41.600 41.600		
25.800_ 25.800	29.800 29.800		33.800 33.800		37.800_ 37.800		41.800_ 41.800	And A	
26.000 26.000	30.000_ 30.000		34.000_ 34.000		38.000_ 38.000		42.000 42.000		and and a second se
26.200 26.200	30.200 30.200		34.200 34.200		38.200 38.200		42.200 42.200		Contraction of the second
26.400 26.400	30.400 30.400		34.400 34.400		38.400 <u>38.400</u>		42.400 42.400		
26.600 26.600	30.600 30.600		34.600 34.600		38.600 <u>38.600</u>		42.600 42.600		1000
26.800 26.800	30.800 30.800		34.800 34.800		38.800 38.800		42.800 42.800		
27.000 27.000	31.000 31.000		35.000 35.000		39.000 39.000		43.000 43.000		
27.200_ 27.200	31.200_ 31.200		35.200 35.200		39.200 ₋ 39.200		43.200 43.200		
27.400 27.400	31.400_ 31.400		35.400_ 35.400		39.400 <u>39.400</u>		43.400 43.400		
27.600_ 27.600	31.600_ <mark>31.600</mark>		35.600_ 35.600		39.600 <u>39.600</u>		43.600 43.600		
27.800 27.800	31.800 <mark>31.800</mark>		35.800_ 35.800		39.800 39.800		43.800 43.800		and the second
		States -		· FREIRIE		124		15.55	

Printed: 2006-10-03 16:15:32

Scale: 1:20

Aspect: 150 %

3 (4)

Borehole: KLX26B Mapping: KLX26B_KJM Depth range: 44.000 - 50.208 m Azimuth: 137.4 Inclination: -60.0

44.000		48.000 48.000	
44.200	LUR	48.200 48.200	L US
44.400		48.400	
44.600		48.600	
44.800		48.800	
45.000		49.000	
45.000 45.200		49.000	
45.400	Tanka a	49.200 49.400	
45.400 45.600_		49.400 49.600	
45.600		49.600	
45.800		49.800	
46.000 46.000		50.000 50.000	
46.200 46.200		50.200_ 50.200	
46.400 46.400		50.400_	
46.600 46.600		50.600	
46.800 46.800		50.800_	
47.000 47.000		51.000_	
47.200 47.200		51.200_	
47.400 47.400		51.400_	
47.600 47.600		51.600_	
47.800_ 47.800		51.800_	

Printed: 2006-10-03 16:15:32

Scale: 1:20

Aspect: 150 %

4 (4)

Appendix 4a

WellCad diagram of KLX26A

WellCad diagram of KLX26B

Appendix 5

Legend to WellCad diagram

Title LEGEND	FOR LAXEMAR		Appendix: 5
Site Bore	LAXEMAR hole		
	ed data		
			MINEDAL
Äspö Diorite		ROCK ALTERATION	Biotite
Dolerite / Diabas		Chloriticized	Epidete
Fine-grained Götemargra	nite	Enidotisized	Epuote Elourite
Coarse-grained Götemarg	ranite	Weathered	White Feldspar
Fine-grained granite	*	Tectonized	Hematite
Pegmatite		Sericitisized	
Granite		Ouertz dissolution	
Ävrö granite		Silicification	
Quartz monzodiorite			Ouartz
Diorite / Gabbro		Albitization	Red Feldspar
Fine-grained dioritoid		Carbonatization	Muscovite
Fine-grained diorite-gabb	ro	Saussuritization	Unknown
Sulphide mineralization		Steatitization	Pyrite
Sandstone		Uralitization	Clay Minerals
Soil		Laumontitization	Laumontite
		Fract zone alteration	Prehnite
			Oxidized Walls
STRUCTURE	STRUCTURE ORIENTATION	ROCK ALTERATION INTENSITY	FRACTURE ALTERATION
Cataclastic	Cataclastic	No intensity	Slightly Altered
Schistose		Faint	
++++ Gneissic	o Bedded	Weak	Moderately Altered
Mylonitic		Medium	
Ductile Shear Zone	Gneissic	Strong	Highly Altered
Brittle-Ductile Zone		ROUGHNESS	
Veined	Sabistasa	Planar	
Banded	• Schistose	Undulating	Completely Altered
Massive		Stepped	/
Foliated	Brittle-Ductile Shear Zone	Irregular	Gouge
Brecciated	1	SURFACE	/
	Ductile Shear Zone	Rough	Fresh
A Hornfelsed	/	Smooth	
Porphyritic	🎸 Lineated	Slickensided	
Ophitic	,		
Equigranular	O Banded	CRUSH ALTERATION	FRACTURE DIRECTION
○ ○ ○ Augen-Bearing		Slightly Altered	STRUKTURE ORIENTATION
Unequigranular	Veined	Moderately Altered	Dip Direction 0 - 360°
Metamorphic		Highly Altered	0/360
GRAINSIZE	Brecciated	Completley Altered	
Aphanitic		Gouge	270° 90°
Fine-grained	Foliated	Fresh	
Fine to medium grained	- Fonattu		
Medium to coarse grained			180°
Coarse-grained	 Mylonitic 		Dip 0 - 90 °
Medium-grained			

In-data: Borehole length and diameter for KLX26A

Hole diam T – Drilling: Borehole diameter

KLX26A, 2006-08-08 06:00:00 - 2006-08-11 11:00:00

Sub secup (m)	Sub seclow (m)	Hole diam (m)	Comment
0.300	2.640	0.0960	
2.640	101.140	0.0758	

Printout from SICADA 2006-10-03 15:28:15.

Appendix 6b

In-data: Borehole length and diameter for KLX26B

Hole diam T – Drilling: Borehole diameter KLX26B, 2006-08-12 00:00:00

Sub secup (m)	Sub seclow (m)	Hole diam (m)	Comment
0.300	2.310	0.0960	
2.310	50.370	0.0758	

Printout from SICADA 2006-10-10 08:31:30.

In-data: Reference marks for length adjustments for KLX26A

Reference mark T – Reference mark in drillhole

KLX26A, 2006-08-18 09:00:00 - 2006-08-18 12:20:00 (50.00-80.00 m)

Bhlen (m)	Rotation speed (rpm)	Start flow (I/h)	Stop flow (I/h)	Stop pressure (bar)	Cutter time (s)	Trace detectable	Cutter diameter (mm)	Comment
50.00	400.00	350	1,000	44.0	44			
80.00	400.00	350	1,000	46.0	38			

Printout from SICADA 2006-10-03 15:14:04.

Appendix 8a

In-data: Borehole deviation data for KLX26A

Deviations protocol – KLX26A

SICADA – object_location

ldcode	Coord system	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Length (m)	Vertical depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination uncert (degrees)	Bearing uncert (degrees)	Radius uncert (m)	Origin	Indat
KLX26A	RT90-RHB70	6365546.49	1549029.90	15.63	0.00	0.00	-60.45	93.47	0.050	0.907	0.00	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365546.40	1549031.37	13.02	3.00	2.61	-60.45	93.47	0.050	0.907	0.02	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365546.31	1549032.85	10.41	6.00	5.22	-60.45	93.48	0.050	0.907	0.05	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365546.22	1549034.33	7.80	9.00	7.83	-60.45	93.50	0.050	0.907	0.07	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365546.13	1549035.80	5.19	12.00	10.44	-60.45	93.52	0.050	0.907	0.09	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365546.04	1549037.28	2.58	15.00	13.05	-60.45	93.54	0.050	0.907	0.12	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.95	1549038.76	-0.03	18.00	15.66	-60.40	93.54	0.050	0.907	0.14	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.86	1549040.24	-2.64	21.00	18.27	-60.31	93.57	0.050	0.907	0.16	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.75	1549041.72	-5.24	24.00	20.87	-60.26	94.50	0.050	0.907	0.19	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.64	1549043.21	-7.85	27.00	23.48	-60.22	94.52	0.050	0.907	0.21	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.52	1549044.69	-10.45	30.00	26.08	-60.19	94.25	0.050	0.907	0.23	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.42	1549046.18	-13.05	33.00	28.68	-60.17	93.81	0.050	0.907	0.26	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.32	1549047.67	-15.65	36.00	31.28	-60.15	93.67	0.050	0.907	0.28	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.22	1549049.16	-18.26	39.00	33.88	-60.11	93.86	0.050	0.907	0.31	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365545.11	1549050.66	-20.85	42.00	36.48	-59.95	94.78	0.050	0.907	0.33	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.98	1549052.15	-23.45	45.00	39.08	-59.90	95.30	0.050	0.907	0.35	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.83	1549053.65	-26.05	48.00	41.68	-59.86	96.01	0.050	0.907	0.38	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.67	1549055.15	-28.64	51.00	44.27	-59.78	96.03	0.050	0.907	0.40	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.51	1549056.65	-31.23	54.00	46.86	-59.76	96.03	0.050	0.907	0.43	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.35	1549058.16	-33.82	57.00	49.45	-59.68	96.10	0.050	0.907	0.45	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365544.19	1549059.67	-36.41	60.00	52.04	-59.61	96.34	0.050	0.907	0.47	Measured	2007-02-06 08:38

ldcode	Coord system	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Length (m)	Vertical depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination uncert (degrees)	Bearing uncert (degrees)	Radius uncert (m)	Origin	Indat
KLX26A	RT90-RHB70	6365544.02	1549061.17	-39.00	63.00	54.63	-59.56	96.41	0.050	0.907	0.50	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365543.84	1549062.68	-41.58	66.00	57.21	-59.55	97.28	0.050	0.907	0.52	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365543.64	1549064.19	-44.17	69.00	59.80	-59.52	97.49	0.050	0.907	0.55	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365543.44	1549065.70	-46.75	72.00	62.38	-59.45	97.60	0.050	0.907	0.57	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365543.24	1549067.22	-49.34	75.00	64.97	-59.39	97.60	0.050	0.907	0.59	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365543.04	1549068.73	-51.92	78.00	67.55	-59.34	97.10	0.050	0.907	0.62	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.87	1549070.25	-54.50	81.00	70.13	-59.28	95.64	0.050	0.907	0.64	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.73	1549071.78	-57.08	84.00	72.71	-59.27	95.22	0.050	0.907	0.67	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.59	1549073.31	-59.66	87.00	75.29	-59.24	95.22	0.050	0.907	0.69	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.44	1549074.83	-62.23	90.00	77.86	-59.22	95.60	0.050	0.907	0.71	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.29	1549076.36	-64.81	93.00	80.44	-59.16	95.60	0.050	0.907	0.74	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365542.13	1549077.89	-67.39	96.00	83.01	-59.15	96.55	0.050	0.907	0.76	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365541.96	1549079.42	-69.96	99.00	85.59	-59.14	96.60	0.050	0.907	0.79	Measured	2007-02-06 08:38
KLX26A	RT90-RHB70	6365541.83	1549080.51	-71.80	101.14	87.43	-59.14	96.60	0.050	0.907	0.81	Measured	2007-02-06 08:38

Printout from SICADA 2007-10-26 13:11:05.

Appendix 8b

In-data: Borehole deviation data for KLX26B

Deviations protocol – KLX26B

SICADA – object_location

ldcode	Coord system	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Length (m)	Vertical depth (m)	Inclination (degrees)	Bearing (degrees)	Inclination uncert (degrees)	Bearing uncert (degrees)	Radius uncert (m)	Origin	Indat
KLX26B	RT90-RHB70	6365550.66	1549025.61	15.82	0.00	0.00	-60.01	137.42	0.035	0.608	0.00	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365549.55	1549026.63	13.22	3.00	2.60	-60.01	137.42	0.035	0.608	0.02	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365548.45	1549027.64	10.63	6.00	5.20	-60.01	137.51	0.035	0.608	0.03	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365547.34	1549028.65	8.03	9.00	7.79	-60.00	137.60	0.035	0.608	0.05	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365546.23	1549029.66	5.43	12.00	10.39	-60.00	137.69	0.035	0.608	0.06	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365545.12	1549030.67	2.83	15.00	12.99	-59.97	137.78	0.035	0.608	0.08	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365544.01	1549031.68	0.23	18.00	15.59	-59.97	138.26	0.035	0.608	0.10	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365542.88	1549032.67	-2.36	21.00	18.19	-59.98	138.72	0.035	0.608	0.11	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365541.75	1549033.66	-4.96	24.00	20.78	-60.00	139.29	0.035	0.608	0.13	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365540.61	1549034.64	-7.56	27.00	23.38	-60.00	139.29	0.035	0.608	0.14	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365539.48	1549035.62	-10.16	30.00	25.98	-60.00	139.08	0.035	0.608	0.16	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365538.35	1549036.60	-12.76	33.00	28.58	-59.97	139.08	0.035	0.608	0.18	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365537.21	1549037.58	-15.35	36.00	31.17	-59.89	139.32	0.035	0.608	0.19	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365536.06	1549038.56	-17.95	39.00	33.77	-59.81	139.64	0.035	0.608	0.21	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365534.91	1549039.54	-20.54	42.00	36.36	-59.70	139.64	0.035	0.608	0.22	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365533.75	1549040.52	-23.13	45.00	38.95	-59.62	139.93	0.035	0.608	0.24	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365532.59	1549041.50	-25.71	48.00	41.54	-59.59	139.60	0.035	0.608	0.26	Measured	2007-02-06 08:39
KLX26B	RT90-RHB70	6365531.68	1549042.27	-27.76	50.37	43.58	-59.59	139.60	0.035	0.608	0.27	Measured	2007-02-06 08:39

Printout from SICADA 2007-10-26 13:12:17.