P-07-193

Oskarshamn site investigation

Hydraulic Injection Tests in Borehole KLX17A, 2007

Subarea Laxemar

Cristian Enachescu, Reinder van der Wall, Philipp Wolf Golder Associates GmbH

July 2007

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

ISSN 1651-4416 SKB P-07-193

Oskarshamn site investigation

Hydraulic Injection Tests in Borehole KLX17A, 2007

Subarea Laxemar

Cristian Enachescu, Reinder van der Wall, Philipp Wolf Golder Associates GmbH

July 2007

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

Hydraulic injection tests have been performed in Borehole KLX17A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX17A performed between 09th of May and 01st of June 2007.

The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m, 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 69.00–701.08 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX17A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX17A. Testerna utfördes mellan den 09 maj till den 01 juni 2007.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m, 20 m och 5 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 69,00–701,08 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).

Borehole KLX17A – Summary of results.

Contents

1	Introd	uction	9
2 2.1 2.2 2.3	Object Boreho Injectio Contro	t ive and scope ble on tests l of equipment	11 11 13 15
3 3.1 3.2. 3.3	Equip Descrij Sensor Data ac	ment ption of equipment s cquisition system	17 17 21 22
4	Execut	tion	23
4.1 4.2 4.3	Prepara Length Execut 4.3.1 4.3.2	ations Correction ion of field work Test principle Test procedure	23 23 23 23 23 24
4.4	Data ha	andling/post processing	25
4.5	Analys	es and interpretations	26
	4.5.1 4.5.2 4.5.3	Analysis software Analysis approach Analysis methodology	26 26 26
	4.5.4	Correlation between Storativity and Skin factor	28
	4.5.5	Determination of the ri-index and calculation of the radius of influence (ri)	28
	4.5.6	Steady state analysis	29
	457	Flow models used for analysis	29
	4.5.8	Calculation of the static formation pressure and equivalent freshwater head	30
	459	Derivation of the recommended transmissivity and the	20
		confidence range	30
4.6	Nonco	nformities	32
5	Degult	~	22
5	100 m	single help injection tests	22
J.1	5 1 1	Section 60.00, 160.00 m test no. 1 injection	33
	5.1.1	Section $160.00 - 109.00$ m, test no. 1, injection	3/
	513	Section $269.00-369.00$ m, test no. 1, injection	34
	514	Section 369 00–469 00 m test no. 1, injection	35
	515	Section 469 00–69 00 m test no. 1 injection	36
	516	Section 569 00–669 00 m test no 1 and 2 injection	36
5.2	20 m s	ingle-hole injection tests	37
	5.2.1	Section 69.00–89.00 m. test no. 1. injection	37
	5.2.2	Section 87.00–107.00 m. test no. 1. injection	38
	5.2.3	Section 107.00–127.00 m, test no. 1, injection	39
	5.2.4	Section 127.00–147.00 m, test no. 1, injection	39
	5.2.5	Section 147.00–167.00 m, test no. 1, injection	40
	5.2.6	Section 149.00–169.00 m, test no. 1, injection	41
	5.2.7	Section 169.00–189.00 m, test no. 1, injection	41
	5.2.8	Section 189.00–209.00 m, test no. 1, injection	42
	5.2.9	Section 209.00–229.00 m, test no. 1, injection	43
	5.2.10	Section 229.00–249.00 m, test no. 1, injection	44

	5.2.11	Section 249.00–269.00 m, test no. 1, injection	44
	5.2.12	Section 269.00–289.00 m, test no. 1, injection	45
	5.2.13	Section 289.00–309.00 m, test no. 1, injection	46
	5.2.14	Section 309.00–329.00 m, test no. 1, injection	47
	5.2.15	Section 329.00–349.00 m, test no. 1, injection	47
	5.2.16	Section 349.00–369.00 m, test no. 1, injection	48
	5.2.17	Section 369.00–389.00 m, test no. 1, injection	48
	5.2.18	Section 389.00–409.00 m, test no. 1, injection	49
	5.2.19	Section 409.00–429.00 m, test no. 1, injection	50
	5.2.20	Section 428.00–448.00 m, test no. 1, injection	50
	5.2.21	Section 448.00–468.00 m. test no. 1. injection	51
	5.2.22	Section 449.00–469.00 m, test no. 1, injection	52
	5.2.23	Section 469.00–489.00 m, test no. 1 and 2, pulse injection	
		and injection	53
	5.2.24	Section 489.00–509.00 m, test no. 1, pulse injection	54
	5.2.25	Section 509.00–529.00 m, test no. 1, injection	54
	5.2.26	Section 529.00–549.00 m, test no. 1, pulse injection	54
	5.2.27	Section 549.00–569.00 m, test no. 1, injection	55
	5.2.28	Section 569.00–589.00 m, test no. 1 and 2, pulse injection	55
	5.2.29	Section 589.00–609.00 m, test no. 1, injection	56
	5.2.30	Section 609.00–629.00 m, test no. 1, injection	56
	5.2.31	Section 629.00–649.00 m, test no. 1, injection	57
	5.2.32	Section 649.00–669.00 m, test no. 1, injection	57
	5.2.33	Section 669.00–689.00 m, test no. 1, injection	58
	5.2.34	Section 674.00–694.00 m, test no. 1, injection	58
5.3	5 m sir	ngle-hole injection tests	59
	5.3.1	Section 339.00–344.00 m, test no. 1, injection	59
	5.3.2	Section 344.00–349.00 m, test no. 1, injection	60
	5.3.3	Section 369.00–374.00 m, test no. 1, injection	60
	5.3.4	Section 374.00–379.00 m, test no. 1, injection	61
	5.3.5	Section 379.00–384.00 m, test no. 1, pulse injection	62
	5.3.6	Section 384.00–389.00 m, test no. 1, injection	62
	5.3.7	Section 387.00–392.00 m, test no. 1, injection	63
	5.3.8	Section 392.00–397.00 m, test no. 1, injection	64
	5.3.9	Section 397.00–402.00 m, test no. 1, injection	64
	5.3.10	Section 402.00–407.00 m, test no. 1, injection	65
	5.3.11	Section 404.00–409.00 m, test no. 1, injection	65
	5.3.12	Section 409.00–414.00 m, test no. 1, injection	66
	5.3.13	Section 414.00–419.00 m, test no. 1, injection	66
	5.3.14	Section 419.00–424.00 m, test no. 1, injection	67
	5.3.15	Section 420.00–425.00 m, test no. 1, injection	68
	5.3.16	Section 425.00–430.00 m, test no. 1, injection	68
	5.3.17	Section 430.00–435.00 m, test no. 1, injection	69
	5.3.18	Section 435.00–440.00 m, test no. 1 and 2, pulse injection	70
	5.3.19	Section 440.00–445.00 m, test no. 1, injection	70
	5.3.20	Section 444.00–449.00 m, test no. 1, injection	71
	5.3.21	Section 449.00–454.00 m, test no. 1, pulse injection	71
	5.3.22	Section 454.00–459.00 m, test no. 1, injection	72
	5.3.23	Section 459.00–464.00 m, test no. 1, pulse injection	72
	5.3.24	Section 464.00–469.00 m, test no. 1, injection	73
	5.3.25	Section 469.00–474.00 m, test no. 1, injection	73
	5.3.26	Section 474.00–479.00 m, test no. 1, injection	74
	5.3.27	Section 479.00–484.00 m, test no. 1, injection	75
	5.3.28	Section 484.00–489.00 m, test no. 1, injection	75
	5.3.29	Section 649.00-654.00 m, test no. 1, injection	75
	5.3.30	Section 654.00-659.00 m, test no. 1, injection	76

	5.3.31	Section 659.00–664.00 m, test no. 1, injection	76		
	5.3.32	Section 664.00–669.00 m, test no. 1, injection	77		
	5.3.33	Section 669.00–674.00 m, test no. 1, injection	77		
	5.3.34	Section 674.00–679.00 m, test no. 1, injection	78		
	5.3.35	Section 679.00–684.00 m, test no. 1, injection	78		
	5.3.36	Section 684.00–689.00 m, test no. 1, injection	79		
	5.3.37	Section 689.00–694.00 m, test no. 1, injection	80		
5.4	Single	packer injection test	81		
	5.4.1	Section 689.00–701.08 m, test no. 1, injection	81		
6	Summ	ary of results	83		
6.1	Genera	l test data and results	84		
6.2	Correla	ation analysis	97		
	6.2.1	Comparison of steady state and transient analysis results	97		
	6.2.2	Comparison between the matched and theoretical wellbore			
		storage coefficient	97		
7	Conclu	isions	101		
7.1	1 Transmissivity				
7.2	Equivalent freshwater head				
7.3	Flow r	egimes encountered	101		
8	Refere	nces	103		

Appendices attached on CD

- Appendix 1 File description table
- Appendix 2 Test analyses diagrams
- Appendix 3 Test summary sheets
- Appendix 4 Nomenclature
- Appendix 5 Sicada data tables

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2006/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX17A between 09th of May and 01st of June 2007 following the methodology described in SKB MD 323.001e and in the activity plan AP PS 400-07-009 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA and are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX17A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX17A is situated in the Laxemar area approximately 5 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from August to October 2006 at 701.08 m length with an inner diameter of 197 m to a depth of 65.35 m and further on of 76 mm to the bottom of the borehole. The inclination of the borehole is -61.34°. The upper 11.95 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208–323 mm. A cone casing is placed from 62.02 m to 66.76 m ranging from diameter (outer diameter) 84–104 mm.

The work was carried out in accordance with activity plan AP PS 400-07-009. In Table 1-1 controlling documents for performing this activity are listed. Activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Activity plan Hydraulic pumping and injection tests in borehole KLX17A.	Number AP PS 400-07-009	Version 1.0
Method descriptions	Number	Version
Hydraulic injection tests.	SKB MD 323.001e	1.0
Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning.	SKB MD 600.004	1.0
Instruktion för längdkalibrering vid undersökningar I kärnborrhål.	SKB MD 620.010	1.0
Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn.	SKB SDPO-003	1.0
Miljökontrollprogram Platsundersökningar.	SKB SDP-301	1.0
Hantering av primärdata vid platsundersökningar.	SKB SDP-508	1.0

Table 1-1. Controlling documents for the performance of the activity.

Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX17A.

2 Objective and scope

The objective of the hydrotests in borehole KLX17A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analyses and reporting. Furthermore, a single packer test was conducted at a depth of 689.00 m to the bottom of the hole. The used single packer tool consists of a 5 m section but the lower packer was not connected to the pressure lines and therefore not inflated.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 09th of May and 01st of June 2007.

Between 349.00 m to 369.00 m and 489.00 m to 649.00 m no 5 m tests were performed because the appropriate 20 m sections show a flow below measurement limit (1 ml/min). The position range of the 5 m tests were calculated for covering a true vertical depth of 300 m to 700 m with consideration of the borehole inclination of -61.34° and adapting to the next appropriate section limits of the 20 m sections. Due to the inclination and length of the borehole, the 5 m sections cover finally a true vertical depth of 294.85 m to 594.23 m below top of casing (ToC).

2.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 2-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the borehole at the ground surface. The borehole diameter in Table 2-2 refers to the final diameter of the drill bit after drilling to full depth.

No. of injection tests*	Interval	Positions	Time/test	Total test time
6	100 m	69.00–669.00 m	125 min	12.5 hrs
34	20 m	69.00–694.00 m	90 min	51.0 hrs
37	5 m	339.00–694.00 m	90 min	55.5 hrs
Single Packer**	12.08 m	689.00–701.08 m	90 min	1.5 hrs
			Total:	120.5 hrs

Table 2-1.	Performed	injection	tests at	borehole	KLX17A.

* Excluding repeated tests; ** conducted with a 5 m tool (bottom packer not inflated).

Title	Value				
Old idcode name (s): Comment: Borehole length (m): Reference level:	KLX17A No comment exists 701.08 TOC				
Drilling period (s):	From date 2006-08-07 2006-09-13	To date 2006-08-15 2006-10-23	Secup (m) 0.15 65.42	Seclow (m) 65.42 701.08	Drilling type Percussion drilling Core drilling
Starting point coordinate:	Length (m)	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Coord system
(centerpoint of TOC)	0.00 3.00	6366848.75 6366850.16	1546862.09 1546862.37	27.63 25.00	RT90-RHB70 RT90-RHB70
Angles:	Length (m)	Bearing	Inclination (– = down)		
	0.000	11.21	-61.34	RT90-RHB70	
Borehole diameter:	Secup (m) 0.15 2.60 11.95 65.35 65.42 66.76	Seclow (m) 2.60 11.95 65.35 65.42 66.76 701.08	Hole diam (m) 0.339 0.248 0.197 0.159 0.086 0.076		
Core diameter:	Secup (m) 65.42 65.85	Seclow (m) 65.85 701.08	Core diam (m) 0.072 0.050		
Casing diameter:	Secup (m) 0.00 0.15 2.50	Seclow (m) 11.95 2.50 2.60	Case in (m) 0.200 0.310 0.280	Case out (m) 0.208 0.323 0.323	
Cone dimensions:	Secup (m) 62.02 65.02	Seclow (m) 65.02 66.76	Cone in (m) 0.100 0.080	Cone out (m) 0.104 0.084	
Grove milling:	Length (m) 75,000 100,000 250,000 250,000 300,000 350,000 400,000 450,000 550,000 600,000 650,000 680,000	Trace detecta YES YES YES YES YES YES YES YES YES YES	able		

Table 2-2. Information about KLX17A (from SICADA 2007-01-17).

2.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-07-009 and the Method Description for hydraulic injection tests, SKB MD 323.001e (SKB internal documents). Tests were done in 100 m test sections between 69.00–669.00 m below ToC, in 20 m test sections between 69.00-694.00 m below ToC and in 5 m test sections between 339.00-694.00 m below ToC with the exception of the sections between 349.00-369.00 m and 489.00-649.00 m (see Table 2-3). The initial criteria for performing injection tests in 20 m and 5 m sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m and 20 m tests covering the smaller test sections (see Figure 2-1). An additional single packer test was performed from 689.00 m to the bottom of the borehole. The measurements were performed with SKB's custom made equipment for hydraulic testing called PSS2.

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start date, time	Test stop date, time
KLX17A	69.00–169.00	3	1	070509 13:47:00	070509 15:57:00
KLX17A	169.00-269.00	3	1	070509 17:46:00	070509 19:36:00
KLX17A	269.00-369.00	3	1	070510 09:35:00	070510 11:25:00
KLX17A	369.00-469.00	3	1	070510 13:23:00	070510 15:12:00
KLX17A	469.00-569.00	3	1	070510 16:42:00	070510 22:58:00
KLX17A	569.00-669.00	3	1	070511 10:16:00	070511 11:59:00
KLX17A	569.00-669.00	3	2	070511 14:16:00	070511 16:24:00
KLX17A	69.00-89.00	3	1	070513 11:15:00	070513 12:47:00
KLX17A	87.00-107.00	3	1	070513 14:08:00	070513 15:31:00
KLX17A	107.00-127.00	3	1	070513 16:09:00	070513 17:35:00
KLX17A	127.00-147.00	3	1	070513 18:16:00	070513 21:44:00
KLX17A	147.00–167.00	3	1	070514 08:51:00	070514 10:16:00
KLX17A	149.00–169.00	3	1	070514 10:40:00	070514 12:06:00
KLX17A	169.00–189.00	3	1	070514 13:27:00	070514 14:56:00
KLX17A	189.00–209.00	3	1	070514 15:33:00	070514 16:57:00
KLX17A	209.00-229.00	3	1	070514 17:32:00	070514 19:44:00
KLX17A	229.00-249.00	3	1	070515 08:47:00	070515 10:21:00
KLX17A	249.00–269.00	3	1	070515 10:58:00	070515 13:29:00
KLX17A	269.00-289.00	3	1	070515 14:02:00	070515 16:21:00
KLX17A	289.00-309.00	3	1	070515 16:55:00	070515 20:24:00
KLX17A	309.00-329.00	3	1	070516 08:46:00	070516 10:12:00
KLX17A	329.00-349.00	3	1	070516 10:45:00	070516 12:34:00
KLX17A	349.00-369.00	3	1	070516 13:20:00	070516 14:09:00
KLX17A	369.00-389.00	3	1	070516 14:43:00	070516 16:06:00
KLX17A	389.00-409.00	3	1	070516 16:39:00	070516 18:49:00
KLX17A	409.00-429.00	3	1	070517 08:43:00	070517 10:09:00
KLX17A	428.00-448.00	3	1	070517 10:43:00	070517 12:11:00
KLX17A	448.00-468.00	3	1	070517 13:34:00	070517 15:21:00
KLX17A	449.00-469.00	3	1	070517 15:47:00	070517 17:32:00
KLX17A	469.00-489.00	4B	1	070517 18:06:00	070517 21:46:00
KLX17A	469.00-489.00	3	2	070520 17:54:00	070520 20:53:00
KLX17A	489.00-509.00	4B	1	070518 08:47:00	070518 10:32:00
KLX17A	509.00-529.00	3	1	070518 11:04:00	070518 12:01:00
KLX17A	529.00-549.00	4B	1	070518 12:36:00	070518 14:22:00
KLX17A	549.00-569.00	3	1	070518 15:13:00	070518 16:08:00

Table 2-3. Tests performed.

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start date, time	Test stop date, time
KLX17A	569.00–589.00	3	1	070518 16:44:00	070518 17:35:00
KLX17A	569.00-589.00	4B	2	070518 18:44:00	070518 21:18:00
KLX17A	589.00-609.00	3	1	070519 08:59:00	070519 09:57:00
KLX17A	609.00-629.00	3	1	070519 10:33:00	070519 11:30:00
KLX17A	629.00-649.00	3	1	070519 12:19:00	070519 14:12:00
KLX17A	649.00-669.00	3	1	070519 15:31:00	070519 18:47:00
KLX17A	669.00-689.00	3	1	070520 08:53:00	070520 10:21:00
KLX17A	674.00-694.00	3	1	070520 11:04:00	070520 12:51:00
KLX17A	339.00-344.00	3	1	070522 13:43:00	070522 15:25:00
KLX17A	344.00-349.00	3	1	070522 15:54:00	070522 16:44:00
KLX17A	369.00-374.00	3	1	070523 09:07:00	070523 10:33:00
KLX17A	374.00-379.00	3	1	070523 10:58:00	070523 11:47:00
KLX17A	379.00-384.00	4B	1	070523 13:07:00	070523 15:21:00
KLX17A	384.00-389.00	3	1	070523 15:49:00	070523 17:24:00
KLX17A	387.00-392.00	3	1	070523 17:48:00	070523 23:02:00
KLX17A	392.00-397.00	3	1	070524 10:35:00	070524 11:24:00
KLX17A	397.00-402.00	3	1	070524 13:08:00	070524 14:37:00
KLX17A	402.00-407.00	3	1	070524 15:07:00	070524 15:56:00
KLX17A	404.00-409.00	3	1	070524 16:22:00	070524 17:11:00
KLX17A	409.00-414.00	3	1	070524 17:35:00	070524 19:01:00
KLX17A	414.00-419.00	3	1	070525 08:18:00	070525 10:11:00
KLX17A	419.00-424.00	3	1	070525 10:36:00	070525 12:07:00
KLX17A	420.00-425.00	3	1	070525 12:56:00	070525 14:20:00
KLX17A	425.00-430.00	3	1	070525 14:50:00	070525 16:17:00
KLX17A	430.00-435.00	3	1	070525 16:44:00	070525 18:08:00
KLX17A	435.00-440.00	4B	1	070526 08:17:00	070526 09:21:00
KLX17A	435.00-440.00	4B	2	070530 16:22:00	070531 03:12:00
KLX17A	440.00-45.00	3	1	070526 09:56:00	070526 10:47:00
KLX17A	444.00-449.00	3	1	070526 11:16:00	070526 12:24:00
KLX17A	449.00-454.00	4B	1	070526 13:34:00	070526 15:46:00
KLX17A	454.00-459.00	3	1	070526 16:14:00	070526 17:07:00
KLX17A	459.00-464.00	4B	1	070527 08:14:00	070527 10:26:00
KLX17A	464.00-469.00	3	1	070527 10:58:00	070527 12:40:00
KLX17A	469.00-474.00	3	1	070527 14:03:00	070527 16:41:00
KLX17A	474.00-479.00	3	1	070527 17:09:00	070527 17:57:00
KLX17A	479.00-484.00	3	1	070528 08:04:00	070528 08:53:00
KLX17A	484.00-489.00	3	1	070528 09:21:00	070528 10:11:00
KLX17A	649.00-654.00	3	1	070528 13:43:00	070528 14:32:00
KLX17A	654.00-659.00	3	1	070528 15:01:00	070528 15:50:00
KLX17A	659.00-664.00	3	1	070528 16:16:00	070528 17:05:00
KLX17A	664.00-669.00	3	1	070528 17:28:00	070528 20:41:00
KLX17A	669.00-674.00	3	1	070529 08:10:00	070529 09:01:00
KLX17A	674.00-679.00	3	1	070529 09:34:00	070529 11:48:00
KLX17A	679.00-684.00	3	1	070529 13:00:00	070529 14:30:00
KLX17A	684.00-689.00	3	1	070529 15:01:00	070529 17:29:00
KLX17A	689.00-694.00	3	1	070529 17:58:00	070529 19:22:00
KLX17A	689.00–701.08	3	1	070601 16:46:00	070601 19:13:00

¹⁾ 3: Injection test; 4B Pulse injection test.

* eventually tests performed after specific discussion with SKB

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX17A were conducted.

2.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101-123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in respectively prior to every test performance.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

3 Equipment

3.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1-6.

Figure 3-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 3. Computer room, displays and gas regulators.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 5. Positioner, bottom end of down-inhole string.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1,5 m with OD 72 mm, stiff ends, tightening length 1,0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Contact carrier SS 1,0 m carrying connections for sensors below and
- upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50 L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 3-2.

Figure 3-2. Schematic drawing of the down-hole equipment in the PSS2 system.

3.2. Sensors

Keyword	Sensor	Name	Value/Range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162–1464abs	9–30 4–20 0–13.5 ± 0,1	VDC mA MPa % of FS	
$T_{sec,surf,air}$	Temperature	BGI	18–24 4–20 0–32 ± 0.1	VDC mA °C °C	
\mathbf{Q}_{big}	Flow	Micro motion Elite sensor	0–100 ± 0.1	kg/min %	Massflow
Q_{small}	Flow	Micro motion Elite sensor	0–1.8 ± 0.1	kg/min %	Massflow
p _{air}	Pressure	Druck PTX 630	9–30 4–20 0–120 ± 0.1	VDC mA KPa % of FS	
p _{pack}	Pressure	Druck PTX 630	9–30 4–20 0–4 ± 0.1	VDC mA MPa % of FS	
p _{in,out}	Pressure	Druck PTX 1400	9–28 4–20 0–2.5 ± 0.15	VDC mA MPa % of FS	
L	Level Indicator				Length correction

Table 3-1. Technical specifications of sensors.

Table 3-2. Sensor positions and wellbore storage (WBS) controlling factors.

Borehole information		Sensors		Equipment affecting WBS coefficient			
ID	Test section (m)	Туре	Position (m fr ToC)	Position	Function	Outer diameter (mm)	Net water volume in test section (m³)
KLX17A	69.00–169.00	p _a p T p₅ L	67.00 168.13 167.96 171.00 172.25	Test section	Signal cable Pump string Packer line	9.1 33 6	0.359
KLX17A	69.00–89.00	p₂ p T p₅ L	67.00 88.13 87.96 91.00 92.25	Test section	Signal cable Pump string Packer line	9.1 33 6	0.072
KLX17A	339.00–344.00	p _a p T p _b L	337.00 343.13 342.96 346.00 347.25	Test section	Signal cable Pump string Packer line	9.1 33 6	0.018
KLX17A	689.00–701.08	p _a p T p _b L	687.00 673.13 672.96 696.00 697.25	Test section	Signal cable Pump string Packer line	9.1 33 6	0.043

3.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 3-3.

Figure 3-3. Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

4 Execution

4.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling injection tank with water out of the borehole HLX14.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

4.2 Length Correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of these groves are given by SKB in the Activity Plan (see Table 2-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the test sections to avoid wrong placements and minimize elongation effects of the test string.

4.3 Execution of field work

4.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Regularly the CHi and CHir phases were analysed quantitatively, in cases of very low section transmissivity, the PI phase was analysed.

Figure 4-1. Flow chart for test performance.

4.3.2 Test procedure

A typical test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Preliminary Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation.

The preliminary pulse injection (Step 4) derives the first estimations of the formation transmissivity. It is conducted by applying a pressure difference of approx. 200 kPa to the static formation pressure. If the pulse recovery indicates a very low transmissivity (flow probably below 1 ml/min) the pulse recovery is prolonged and no constant head injection test is performed. The decision to continue the pulse or to conduct an injection tests is based on the pressure response of the pulse recovery. A pressure recovery less than 50% during the first ten minutes of the pulse indicates a low transmissivity. In such a case no injection test will be conducted. The pressure static recovery (PSR) after packer inflation and before the pulse gives a direct measure of the magnitude of the packer compliance. A steep PSR indicates extremely low test section transmissivity. In such a case the packer compliance would influence the subsequent pulse test too much and introduce very large uncertainties. Therfore tests with this behaviour would be stopped after PSR phase.

If the preliminary pulse injection test indicates a formation transmissivity with a flow above 1 ml/min a constant head injection test (Step 5 and 6) is carried out. It is applied with a constant injection pressure of approx. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section is measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually (determined by the preliminary pulse injection). In those cases, the constant difference pressure was usually unequal to 200 kPa but close to that value.

In cases when the derived transmissivity of a test section influences the subsequent test program the constant head injection was conducted even if the preliminary pulse indicates a very tight section (e.g. flow below 1 ml/min). The injection phase is then performed to verify the results of the pulse.

The duration for each phase is presented in Table 4-1.

4.4 Data handling/post processing

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for consistency reviews.

Step	Phase	Time
1	• Position test tool to new test section (correct position using the borehole markers)	Approx. 30 min
2	 Inflate packers with appr. 2,000 kPa 	25 min
3	Close test valve	10 min
	 Check tubing integrity with appr. 800 kPa 	5 min
	• De-air system	2 min
4	 Pretest, pulse injection (duration depends on the formation transmissivity) 	
5*	 Set automatic flow control parameters or setting for manual test 	5 min
	Start injection	20 to 45 min
6*	Close test valve, start recovery	20 min. or more
	Open test valve	10 min
7	Deflate packers	25 min
	Move to next test depth	

 Table 4-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation.

*Step 5 and 6 conducted if the preliminary pulse indicates a formation transmissivity with a sufficient flow.

4.5 Analyses and interpretations

4.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

4.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the Jacob-Lohman method /Jacob and Lohman 1952/ was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986, Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Pulse tests are analysed by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakrabarty and Enachescu 1997/.

4.5.3 Analysis methodology

Each of the relevant test phases is subsequently analysed using the following steps:

- Injection Tests
 - Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
 - Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
 - Non-linear regression in semi-log coordinates (superposition HORNER plot; /Horner 1951/). In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

• Pre-test for the Injection Tests

The test cycle always starts with a pulse injection phase with the aim of deriving a first estimation of the formation transmissivity. In cases when the pulse recovery is slow (indicating low transmissivity) the pulse phase is extended and analysed as the main phase for the test.

The transmissivity derived from a pulse test is strongly influenced by the wellbore storage coefficient used as an input in the analysis. The wellbore storage coefficient is calculated as C = dV/dP where dV is the volume difference injected during the brief flow period of the pulse and dP is the initial pressure difference of the pulse. dV is directly measured either by using the flowmeter readings or water level measurements in the injection vessel.

It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 4-2 below shows an example of a typical pressure versus time evolution for such a tight section.

 Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An example of type curves is presented in Figure 4-3.

Figure 4-2. Typical pressure versus time plot of a Pulse injection test.

Figure 4-3. Deconvolution type curve set for pulse test analysis.

4.5.4 Correlation between Storativity and Skin factor

For the analysis of the conducted hydraulic tests below 100 m depth a storativity of $1 \cdot 10^{-6}$ and for hydraulic tests above 100 m a storativity of $1 \cdot 10^{-3}$ is assumed (SKB MD 320.004e). Based on this assumption the skin is calculated. In the following the correlation between storativity and skin for the relevant test phases will be explained in greater detail.

• Injection phase (CHi)/Pulse tests (Pi)

Due to the fact that the early time data of the CHi and Pi phases, respectively, is not available or too noisy (attributed to the automatic regulation system) the storativity and the skin factor become correlated. Consequently they cannot be solved independently any more. In this case as a result of the analysis one determines the correlation group $e^{2\xi}/S$. This means that in such cases the skin factor can only be calculated when assuming the storativity as known.

• Recovery phase (CHir)

The wellbore storage coefficient (C) is determined by matching the early time data with the corresponding type curve. The derived C-value is introduced in the equation of the type curve parameter:

$$(C_D e^{2\xi})_M = \frac{C \rho g}{2\pi r_w^2 S} e^{2\xi}$$

The equation above has two unknowns, the storativity (*S*) and the skin factor (ξ) which expresses the fact that for the case of constant rate and pressure recovery tests the storativity and the skin factor are 100% correlated. Therefore, the equation can only be either solved for skin by assuming that the storativity is known or solved for storativity by assuming the skin as known.

4.5.5 Determination of the ri-index and calculation of the radius of influence (ri)

The analysis provides also the radius of influence and the ri-index, which describes the late time behaviour of the derivative.

RI-Index

The determination of the ri-Index is based on the shape of the derivative plotted in log-log coordinates and describes the behaviour of the derivative after the time t_2 , representing the end of the near wellbore response. The ri-index also describes the flow regime at the end of the test. Following ri-indices can be assigned:

- ri-index = 0: The middle and late time derivative shows a horizontal stabilization. This pressure response indicates that the size of the hydraulic feature is greater than the radius of influence. The calculated radius of influence is based on the entire test time t_P .
- ri-index = 1: The derivative shows an upward trend at late times, indicating a decrease of transmissivity or a barrier boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t_2 .
- ri-index = -1: The derivative shows a downward trend at late times, indicating an increase of transmissivity or a constant head boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t₂.

Figure 4-4 presents the relationship between the shape of derivative and the ri-index.

If no radial flow stabilization can be observed the ri-index is based on the flow regime at the end of the test: i.e. ri-index = 1 for tests with a derivative showing an upward trend at the end and a ri-index=-1 for tests with a derivative showing a downward trend. In such cases the calculated radius of influence is based on the entire test time t_{p} .

The assignment of the ri-index is based on /Rhen 2005/.

Figure 4-4. Schematic plot of the assignments for the ri-indices.

Calculation of the radius of influence

The radius of influence (ri) is calculated as follows:

$$ri = 1.89 \times \sqrt{\frac{T_T}{S_T} \times t_2}$$
 [m]

- T_T recommended inner zone transmissivity [m²/s]
- t₂ time when hydraulic formation properties changes (see previous chapter) [s]
- S_T for the calculation of the ri the storage coefficient (S) is estimated from the transmissivity /Rhen et al. 2006/:

 $S_{\rm T} = 0.0007 \cdot T_{\rm T}^{0.5} [-]$

4.5.6 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

4.5.7 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly be identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.5.8 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p^*), corrected for atmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drill hole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 4-5 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p^* - p_{atm})}{\rho \times g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \times g}$$

4.5.9 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

Figure 4-5. Schematic methodologies for calculation of the freshwater head.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality, was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.6 Nonconformities

Malfunctions of the pressure transducer at position Pa (pressure above test section) were observed during performance of the 5 m section tests at depths below of ca 390 m borehole length. As this value is of minor importance for the evaluation of the performed injection tests, it was agreed by SKB to proceed with the testing program. For the subsequent following single packer test, the Pa and Pb pressure transducers were exchanged in their positions to allow measurement of the Pa pressure during the single packer test performance.

5 Results

In the following, results of all tests are presented and analysed. Chapter 5.1 present the 100 m tests, 5.2 the 20 m tests, 5.3 the 5 m tests and 5.4 the single packer test. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 6-1 and 6-2 of the Summary chapter. In addition, the results are presented in appendices 3 and 5.

The results are stored in the primary data base (SICADA). The SICADA data base contains data that will be used for further interpretation (modelling). The data are traceable in SICADA by the Activity plan number (AP PS 400-07-009; SKB controlling document).

5.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX17A are presented and analysed.

5.1.1 Section 69.00–169.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 199 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 24.4 L/min at start of the CHi phase to 11.0 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a good quality for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a derivative with a horizontal stabilisation at early times, followed by a downward trend and a further stabilisation at middle times, indicating radial flow. A further downward trend at late times cannot be explained by the chosen flow model. The CHi phase was analysed using an infinite acting composite model. For the analysis of the CHir phase a composite model with radial flow, wellbore storage and skin was chosen. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $1.4 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-6}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,424.8 kPa.

Both phases show a relatively good consistency. In case a further full test analysis is planned, the late time downward trend of the derivative at the CHi phase can probably explained by using a different flow dimension for the outer zone.

5.1.2 Section 169.00–269.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 214 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 6.0 L/min at start of the CHi phase to 3.3 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilisation at early times, followed by a downward trend and further horizontal stabilisation at late times, indicating an increase of transmissivity at some distance from the borehole. The CHi phase was analysed using a radial composite flow model. The CHir phase shows a unit downward trend at middles times indicating a positive skin, followed by a slight horizontal stabilisation at late times. For the analysis of the CHir phase a composite radial flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $4.0 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows a very good horizontal derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ m²/s to $8.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,278.8 kPa.

The analysis of the CHi and CHir phases show some inconsistency by the skin factor (negative for the CHi and positive for the CHir phase). However, no further analysis is recommended.

5.1.3 Section 269.00–369.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 224 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 1.93 L/min at start of the CHi phase to 0.60 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilisation at middle and late times, indicating radial flow geometry. The CHi phase was analysed using a radial homogenous flow model. The CHir phase shows a gentle downward trend at middles times indicating a negative skin, followed by a slight horizontal stabilisation at late times. For the analysis of the CHir phase a homogenous radial flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $2.7 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ m²/s to $5.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,119.6 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

5.1.4 Section 369.00–469.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 210 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 27.4 L/min at start of the CHi phase to 23.4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery which leads to a noisy derivative but is still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilisation at early times, followed by an upward trend and a further horizontal stabilisation at late times. This is indicating a decrease of transmissivity at some distance to the borehole. The CHi phase was analysed using a radial composite flow model. The CHir phase shows a unit downward trend at middles times indicating a positive skin, followed by a horizontal stabilisation at late times. For the analysis of the CHir phase a homogenous radial flow model with wellbore storage and skin was chosen. This homogenous model is consistent with the composite model of the CHi phase. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $6.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ m²/s to $1.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,970.6 kPa.

The analysis of the CHi and CHir phases show some inconsistency in respect to the flow model used for analysis (two shell composite for the CHi phase and homogenous for the CHir phase). However, no further analysis is recommended.

5.1.5 Section 469.00-69.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 215 kPa with a slightly increase of pressure during the injection. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.010 L/min at start of the CHi phase to 0.0023 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward trend at middle times and a horizontal stabilisation at late times. This is indicating a decrease of transmissivity at some distance to the borehole. The CHi phase was analysed using a composite model with radial flow. The CHir phase shows an upward trend at middle times, followed by a hump and downward trend at late times. Despite of an extended 4 hours recovery, the CHir derivative is showing only wellbore storage and skin effects but was not long enough to allow for a horizontal stabilisation at late times. For the analysis of the CHir phase a composite radial flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-5.

Selected representative parameters

The recommended transmissivity of $6.2 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase (outer zone). The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-10}$ m²/s to $4.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,789.1 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

5.1.6 Section 569.00–669.00 m, test no. 1 and 2, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. As there was a malfunction of the regulation unit observed at the first injection test at this section, the regulation unit was restarted and a second test was performed at the same section. Only the CHi and CHir phases of the second test were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 212 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.011 L/min at start of the CHi phase to 0.0088 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy horizontal stabilisation at middle and late times. The CHi phase was analysed using a homogenous model with radial flow. The CHir phase shows a unit downward slope at late times, which is indicating a positive skin. The CHir derivative is showing only wellbore storage and skin effects but was not long enough to allow for a horizontal stabilisation at late times. For the analysis of the CHir phase a homogenous radial flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $6.7 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase which shows a horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-10}$ m²/s to $1.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,617.6 kPa.

The analysis of the CHi and CHir phases shows good consistency if considering the limited quality of the CHi derivative. No further analysis is recommended.

5.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX17A are presented and analysed.

5.2.1 Section 69.00-89.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.49 L/min at start of the CHi phase to 0.18 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, indicating a radial flow. A homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ m²/s to $3.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 734.3 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.2 Section 87.00–107.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 1.17 L/min at start of the CHi phase to 0.63 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a unit downward slope at early times which is indicating a positive skin. A horizontal stabilisation at middle to late times was observed. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $6.6 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows a noisy but clear horizontal stabilisation with less skin. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-7}$ m²/s to $3.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 895.3 kPa.

The analyses of the CHi and CHir phases show good consistency with the exception of the very high skin factor (18.1) of the CHir phase. No further analysis is recommended.
5.2.3 Section 107.00–127.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 201 kPa. A slightly increase of the pressure in the section above by 3 kPa was observed during the CHi phase, indicating some hydraulic connection between the section and the section above through the formation. The injection rate decreased from 19.8 L/min at start of the CHi phase to 12.1 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi–log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle times followed by a downward trend at late times, indicating an increase of transmissivity at some distance to the borehole. A composite radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a unit downward slope at middle and late times which is indicating a positive skin. The derivative tends at late times to a horizontal stabilisation. A composite radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $2.0 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows a noisy but clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-6}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,065.6 kPa.

The analyses of the CHi and CHir phases show good consistency with the exception of the skin factor of the CHi (positive) and the CHir (negative) phase. No further analysis is recommended.

5.2.4 Section 127.00–147.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually with a pressure difference of 230 kPa. No hydraulic connection to adjacent sections was observed during the CHi phase. The injection rate decreased from 0.015 L/min at start of the CHi phase to 0.0057 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times, followed by an upward trend and a further horizontal stabilisation at late times, indicating a decrease of transmissivity at some distance to the borehole. A two shell composite radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a upward slope at middle and a horizontal stabilisation at late times which is consistent with the CHi analysis. A composite radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows a good data quality and clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ m²/s to $6.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,235.4 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.5 Section 147.00-167.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 201 kPa. No hydraulic connection to adjacent sections was observed during the CHi phase. The injection rate decreased from 0.075 L/min at start of the CHi phase to 0.043 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times. A homogenous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at middle to late times which tends to some horizontal stabilisation at late times. A first kind of horizontal stabilisation is already covered by the downward trend of the skin effect and not clearly visible. However, a composite radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $4.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows a noisy but clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-8}$ m²/s to $1.0 \cdot 10^{-7}$ m²/s. The flow dimension

displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,407.3 kPa.

The analyses of the CHi and CHir phases show some inconsistency for the flow model used for analysis (homogenous for the CHi phase and two shell composite for the CHir phase). However, no further analysis is recommended.

5.2.6 Section 149.00–169.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 200 kPa. No hydraulic connection to adjacent sections was observed during the CHi phase. The injection rate decreased from 0.071 L/min at start of the CHi phase to 0.039 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times. A homogenous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at middle to late times which tends to some horizontal stabilisation at late times. A first kind of horizontal stabilisation is already covered by the downward trend of the skin effect and not clearly visible. However, a composite radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $4.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows a noisy but clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-8}$ m²/s to $1.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,424.8 kPa.

The analyses of the CHi and CHir phases show some inconsistency for the flow model used for analysis (homogenous for the CHi phase and two shell composite for the CHir phase). However, no further analysis is recommended.

5.2.7 Section 169.00–189.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 241 kPa. No hydraulic connection to adjacent sections was observed during the CHi phase. The injection rate decreased from 1.16 L/min at start of the CHi phase to 0.43 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times followed by an upward trend and a further horizontal stabilisation at late times. A two shell composite radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat derivative at middle times followed by a slight upward trend and further flat derivative at late times. A composite radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $4.6 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the most clear horizontal derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ m²/s to $8.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,584.2 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.8 Section 189.00-209.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 200 kPa. No hydraulic connection to adjacent sections was observed during the CHi phase. The injection rate decreased from 4.53 L/min at start of the CHi phase to 2.76 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHi data are a bit noisy due to regulation effects; the CHir phase shows a very fast recovery resulting in a bit noisy derivative curve. However, both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a noisy but flat derivative at middle and late times. A homogenous radial flow model was chosen for the analysis of both phases. The analysis of the CHir phase includes wellbore storage and skin effects. The analysis is presented in Appendix 2-14.

The recommended transmissivity of $7.3 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the most clear horizontal derivative stabilisation by less skin effect. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-6}$ m²/s to $2.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,771.4 kPa.

The analyses of the CHi and CHir phases show good consistency and despite of the noisy derivatives still a sufficient quality. No further analysis is recommended.

5.2.9 Section 209.00–229.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 201 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.029 L/min at start of the CHi phase to 0.016 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times followed by a downward trend and further horizontal stabilisation at late times, indicating an increase of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at late times. A change of transmissivity is already covered by wellbore storage and skin effects at early and middle times. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $1.6 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the better horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-9}$ m²/s to $4.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,938.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.10 Section 229.00-249.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.060 L/min at start of the CHi phase to 0.013 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times followed by an upward trend and further horizontal stabilisation at late times, indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a slightly upward derivative at early times, followed by a clear upward trend and a tendency for a further horizontal stabilisation at late times. A change of transmissivity is partly covered by wellbore storage and skin effects at early and middle times. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $3.6 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the better horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-9}$ m²/s to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,105.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.11 Section 249.00-269.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually with a pressure difference of 237 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.014 L/min at start of the CHi phase to 0.0038 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the data and derivative of the CHi phase are very noisy. However, both phases show no problems and are still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but flat derivative at middle and late times. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows only a wellbore storage affected part of the recovery. For a full analysis, a total recovery time of at minimum 10 hours would have been necessary. However, a homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-17.

Selected representative parameters

The recommended transmissivity of $3.0 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows a very noisy but already clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ m²/s to $6.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,284.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.12 Section 269.00-289.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually with a pressure difference of 207 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.004 L/min at start of the CHi phase to 0.0011 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the data and derivative of the CHi phase are very noisy. However, both phases show no problems and are still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but flat derivative at early times followed by an upward trend and further horizontal stabilisation at middle and late times. This is indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows only a wellbore storage affected part of the recovery. For a full analysis, a total recovery time of at minimum 10 hours would have been necessary. Nevertheless, the shape of derivative indicates some upward trend in addition to the unit slope of the wellbore storage effect. Therefore, a two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-18.

Selected representative parameters

The recommended transmissivity of $8.7 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows a very noisy but relative clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-10}$ m²/s to $2.0 \cdot 10^{-9}$ m²/s.

The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,450.0 kPa.

Despite of the relative high uncertainty depending of the data quality of the CHi phase and the relative short CHir phase, the analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.13 Section 289.00-309.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually with a pressure difference of 222 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 0.035 L/min at start of the CHi phase to 0.009 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the data and derivative of the CHi phase are noisy. However, both phases show no problems and are still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but nearly flat derivative at early times followed by an upward trend and further horizontal stabilisation at late times. This is indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. According to the extended recovery phase, the derivative of the CHir phase shows flat derivative at middle times followed by an upward trend and further horizontal stabilisation at late times. With the given assumption of a radial flow, it was not possible to match the derivative fairly good with the calculated type curve. Nevertheless, a two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of $2.8 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows a noisy but relative clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ m²/s to $4.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,621.4 kPa.

Despite of the relative high uncertainty depending of the data quality of the CHi phase and the poor match of late time derivative data at the CHir phase, the analyses of the CHi and CHir phases show good consistency. In case further analysis is planned, a total test simulation eventually with consideration of non-radial flow geometry should help to better analyse the recovery data.

5.2.14 Section 309.00-329.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 209 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.67 L/min at start of the CHi phase to 0.58 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward trend at middle times bending to a kind of horizontal stabilisation at late times, indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a nearly flat derivative at early times followed by an upward trend and further horizontal stabilization at late times. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (outer zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-7}$ m²/s to $3.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,786.2 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.15 Section 329.00-349.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.017 L/min at start of the CHi phase to 0.0082 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the flow rate close to the measurement limit of the flowmeter, the flow data are affected by background noise. Nevertheless, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but nevertheless flat derivative at middle and late times. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a trend to horizontal stabilisation at late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-21.

Selected representative parameters

The recommended transmissivity of $7.6 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows the better horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-9}$ m²/s to $3.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,955.4 kPa.

The analyses of the CHi and CHir phases show good consistency despite of a high skin factor used for analysis of the CHir phase. No further analysis is recommended.

5.2.16 Section 349.00-369.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 117 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-22.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.2.17 Section 369.00-389.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.12 L/min at start of the

CHi phase to 0.049 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the flow data are affected by background noise. Nevertheless, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but nevertheless flat derivative at middle and late times. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $9.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase, which shows the better horizontal stabilisation of the derivative and less background noise. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ m²/s to $2.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,290.3 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the relative high uncertainty due to background noise at the CHi data. No further analysis is recommended.

5.2.18 Section 389.00-409.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.015 L/min at start of the CHi phase to 0.0068 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data are affected by background noise. Due to the expected low transmissivity, the CHir phase was extended to one hour to allow a full recovery. Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but nevertheless flat derivative at middle and late times. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a trend to a horizontal stabilisation at late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-24.

The recommended transmissivity of $5.4 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows a still noisy but better horizontal derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-9}$ m²/s to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,459.6 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the relative high uncertainty due to background noise at the CHi data and the late time data of the CHir phase. No further analysis is recommended.

5.2.19 Section 409.00-429.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection to the bottom zone was observed during the CHi phase which is explained by some crossflow through the formation. The injection rate decreased from 22.7 L/min at start of the CHi phase to 19.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, indicating a radial flow. A homogeneous radial flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-25.

Selected representative parameters

The recommended transmissivity of $7.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality at horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ m²/s to $1.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,627.6 kPa.

The analyses of the CHi and CHir phases show consistency. The very large skin factor of the CHi and CHir phases may be explained by turbulent flow due to high flow rates. No further analysis is recommended.

5.2.20 Section 428.00-448.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence

consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A slight hydraulic connection to the section above was observed during the CHi phase which is explained by some crossflow through the formation. This is consistent with a consistent observation during the previous test at the section 409.00–429.00 m where a crossflow to the section below was observed. The injection rate decreased from 15.1 L/min at start of the CHi phase to 11.35 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The start of the injection is strongly influenced by effects of the automatic regulation system, the start of the CHir phase shows a very fast recovery. Nevertheless, both phases are still amenable for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. Due to some uncertainties at early time data caused by effects of the automatic regulation system, the early time data could not be matched with a type curve. However, a two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-26.

Selected representative parameters

The recommended transmissivity of $5.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality at horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-6}$ m²/s to $8.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,791.9 kPa.

The analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow models. This may be attributed to the noisy early time data of the CHi phase due to regulation effects. The resulting transmissivities of the CHi phase (outer zone) and the CHir phase are consistent. The very large skin factor of the CHir phase may be explained by non-Darcy flow due to high flow rates. In case of a further analysis, a full test simulation should help to explain the described effects.

5.2.21 Section 448.00-468.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 236 kPa. A slight hydraulic connection to the section below was observed during the CHi phase which is explained by some crossflow through the formation. The injection rate decreased from 0.015 L/min at start of the CHi phase to 0.0042 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase lasted not long enough to allow for a horizontal stabilisation of the derivative. However, a tendency for any horizontal stabilisation (still covered by skin effects) could be derived from the shape of the derivative. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows a clear horizontal stabilisation of the late time data. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-10}$ m²/s to $3.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,944.3 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.22 Section 449.00-469.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 226 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.015 L/min at start of the CHi phase to 0.0040 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase lasted not long enough to allow for a horizontal stabilisation of the derivative at late times. However, a tendency for a horizontal stabilisation (still covered by skin effects) could be derived from the shape of the late time data of the derivative. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $1.6 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase, which shows a noisy but clear horizontal stabilisation of the late time data. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-10}$ m²/s to $3.0 \cdot 10^{-9}$ m²/s.

The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,955.4 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.23 Section 469.00–489.00 m, test no. 1 and 2, pulse injection and injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity; therefore the recovery of the pulse injection was extended to three hours to allow for a nearly full pressure recovery. By analysing this pulse injection, some difficulties were observed and it was decided to perform instead of the pulse a constant head recovery test at the same section when pulling out the tool. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. The recovery was extended for two hours. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 243 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 0.015 L/min at start of the CHi phase to 0.0031 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a clear upward trend at middle times and a noisy but flat derivative at late times, indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. At the CHir phase, an upward trend at middle times is already mainly covered by wellbore storage effects but still visible. The CHir phase lasted not long enough to allow for a complete horizontal stabilisation of the derivative at late times. However, a tendency for a horizontal stabilisation (still covered by skin effects) could be derived from the shape of the late time data of the derivative. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-29.

Selected representative parameters

The recommended transmissivity of $7.9 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows a noisy but horizontal stabilisation of the late time data. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-10}$ m²/s to $6.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,126.4 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.24 Section 489.00-509.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity; therefore the recovery of the pulse injection was extended to one hour. However, after one hour just 20% of the initial pulse pressure was recovered. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection (T probably smaller than 1.0 10^{-11} m²/s). A following injection confirmed a flow rate below of 0.001 L/min and was skipped after 5 min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-30.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.25 Section 509.00-529.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). A following injection confirmed a flow rate below of 0.001 L/min and was skipped after 5 min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-31.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.26 Section 529.00-549.00 m, test no. 1, pulse injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity; therefore the recovery of the

pulse injection was extended to one hour. However, after one hour no further pressure recovery could be observed. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). According to the low flow rate during the pulse injection, no further constant head injection was performed. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-32.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.27 Section 549.00-569.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection after 10 min (T probably smaller than 1.0 10^{-11} m²/s). A following constant head injection confirmed a flow rate below of 0.001 L/min and was skipped after 5 min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-33.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.28 Section 569.00–589.00 m, test no. 1 and 2, pulse injection

Comments to test

The first test at this section was skipped after a leakage in the pipe string was observed during the pipe check. The leaking pipes were replaced and a second test in the same section was started. The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity; therefore the recovery of the pulse injection was extended to two hours. It was observed that the pressure did not recover but already started to rise again during the extended pulse recovery, therefore the pulse test was skipped after two hours. The flow rate during the pulse injection was already decreasing below of 0.001 L/min (T probably smaller than $1.0 \ 10^{-11} \text{ m}^2/\text{s}$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-34.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.29 Section 589.00-609.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection after 10 min (T probably smaller than 1.0 10^{-11} m²/s). A following constant head injection confirmed a flow rate below of 0.001 L/min and was skipped after 5 min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-35.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.30 Section 609.00-629.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection after 10 min (T probably smaller than $1.0 \ 10^{-11} \text{ m}^2/\text{s}$). A following constant head injection confirmed a flow rate below of 0.001 L/min and was skipped after 5 min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-36.

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.31 Section 629.00–649.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity. As the flow rate during the pulse injection was already decreasing below of 0.001 L/min, it was decided to skip the pulse injection after 10 min (T probably smaller than 1.0 10^{-11} m²/s). A following constant head injection confirmed a flow rate below of 0.001 L/min. None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-37.

Selected representative parameters

Based on the test response (very slow pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.2.32 Section 649.00-669.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 262 kPa. A hydraulic connection to the bottom zone was observed which is indicating some crossflow through the formation. The injection rate decreased from 0.034 L/min at start of the CHi phase to 0.0090 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase shows a horizontal stabilisation of the derivative data at late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-38.

The recommended transmissivity of $1.0 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase, which shows the best quality of late time derivative horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-9}$ m²/s to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,619.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.33 Section 669.00-689.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection to the bottom zone was observed which is indicating some crossflow through the formation. The injection rate decreased from 0.029 L/min at start of the CHi phase to 0.018 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase shows a horizontal stabilisation of the derivative data at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-39.

Selected representative parameters

The recommended transmissivity of $1.7 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase, which shows the best quality of the derivative horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-9}$ m²/s to $3.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,787.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.34 Section 674.00-694.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. A hydraulic connection to the bottom zone was observed which is indicating some crossflow through the formation. The injection rate decreased from 0.11 L/min at start of the CHi phase to 0.025 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase shows a horizontal stabilisation of the derivative data at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-40.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase, which shows the best quality of the derivative horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-8}$ m²/s to $5.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,833.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.3 5 m single-hole injection tests

In the following, the 5 m section tests conducted in borehole KLX17A are presented and analysed.

5.3.1 Section 339.00–344.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 253 kPa. No hydraulic connections to the adjacent sections were observed during the CHi phase. The injection rate decreased from 0.0028 L/min at start of the CHi phase to 0.0015 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase was not long enough to allow a horizontal stabilisation of late time derivative data. The shape of the derivative displays only wellbore storage and skin effects. Despite of these restrictions, a homogeneous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-41.

Selected representative parameters

The recommended transmissivity of $7.7 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHi phase, which shows a very noisy but already clear derivative horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-10}$ m²/s to $3.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,908.0 kPa.

The analyses of the CHi and CHir phases show some inconsistency and uncertainty. Due to the very noisy CHi data, the recommended transmissivity includes a high range of uncertainty. According to the too short CHir phase, no horizontal stabilisation of late time derivative values is displayed. No further analysis is recommended.

5.3.2 Section 344.00-349.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by 40 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-42.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.3 Section 369.00-374.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively. The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connections to the adjacent sections were observed during the CHi phase. The injection rate decreased from 0.066 L/min at start of the CHi phase to 0.044 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate and additional effects of the automatic flow regulation, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase shows a trend to a flat derivative at middle times, followed by a unit downward trend and a final horizontal stabilisation at late times. This is indicating an increase of transmissivity at some distance to the borehole. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-43.

Selected representative parameters

The recommended transmissivity of $5.4 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows a very noisy but already clear derivative horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ m²/s to $4.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,164.3 kPa.

The analyses of the CHi and CHir phases show some inconsistency and uncertainty. Due to the very noisy CHi data, the recommended transmissivity includes a high range of uncertainty. The flow models used for the CHi (homogenous) and CHir phase (two shell composite) differ, but it cannot be excluded that a potentially appropriate two shell composite model is covered by the noisy data of the CHi phase. No further analysis is recommended.

5.3.4 Section 374.00-379.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 170 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-44.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.5 Section 379.00-384.00 m, test no. 1, pulse injection

Comments to test

The test was conducted as pulse injection (PI) with a pressure difference of 239 kPa. No hydraulic connection between the test section and the adjacent zones was observed. The decision to conduct a pulse injection instead of a constant head injection with subsequent pressure recovery was made because the injection rate dropped below of the lower measurement limit of the small flowmeter (< 1 ml/min) within the 10 sec of pulse injection. The recovery of the pulse was extended to one hour to allow for more than 95% recovery. The pulse injection was analysed using a wellbore storage coefficient calculated from the volume of water needed to elevate the pressure in the test section by 239 kPa (0.004 L). The PI phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the convolved PI pressure shows a horizontal stabilization at middle times, followed by an upward trend and a final flat derivative at late times. This is indicating a decrease of transmissivity at some distance to the borehole. The PI phase was analyzed using a two shell composite model with radial flow. The analysis is presented in Appendix 2-45.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-10}$ m²/s was derived from the analysis of the PI phase (outer zone) where the data are not too noisy and the derivative shows a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-10}$ m²/s to $1.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth could not be extrapolated from the analysis.

No further analysis is recommended.

5.3.6 Section 384.00–389.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 196 kPa. No hydraulic connections to the adjacent sections were observed during the CHi phase. The injection rate decreased from 0.0082 L/min at start of the CHi phase to 0.0035 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data of the CHi phase are relative noisy. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but flat derivative at middle and late times, indicating a radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The CHir phase shows a trend to a flat derivative

at late times, a full horizontal stabilisation was not yet displayed. A homogenous radial flow model with wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-46.

Selected representative parameters

The recommended transmissivity of $3.4 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase, which shows a much better data quality and a nearly horizontal stabilisation at late times. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ m²/s to $6.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,288.7 kPa.

The analyses of the CHi and CHir phases show a good consistency. No further analysis is recommended.

5.3.7 Section 387.00–392.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed but the pressure transducer in the section above (Pa) started to show irregular pressure values due to a malfunction. The injection rate decreased from 0.0077 L/min at start of the CHi phase to 0.0034 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data are affected by background noise. Due to the expected low transmissivity, the CHir phase was extended to four hours to allow a full recovery. Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a very noisy but nevertheless flat derivative at middle and late times. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat derivative at late times, already influenced by effects of the resolution of the pressure transducer. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-47.

Selected representative parameters

The recommended transmissivity of $3.2 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality and an already horizontal derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-9}$ m²/s to $6.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,315.8 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the relative high uncertainty due to background noise at the CHi data and the late time data effects of the CHir phase. No further analysis is recommended.

5.3.8 Section 392.00-397.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 93 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-48.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.9 Section 397.00-402.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 207 kPa. No hydraulic connection to the adjacent zones was observed but the pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.0085 L/min at start of the CHi phase to 0.0056 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate close to the measurement limit of the flowmeter, the flow data are affected by background noise. Both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but nevertheless clear downward trend at middle times followed by a flat derivative at late times. This is indicating an increase of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat derivative at late times. A previous downward trend is already covered by the wellbore storage and skin effects of the early and middle time data and therefore not clearly visible. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-49.

Selected representative parameters

The recommended transmissivity of $5.6 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows a noisy but still clear horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-9}$ m²/s to

 $4.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,412.9 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the uncertainty due to background noise at the CHi data. No further analysis is recommended.

5.3.10 Section 402.00-407.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 57 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-50.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.11 Section 404.00-409.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 120 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-51.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.12 Section 409.00-414.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed but the pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.097 L/min at start of the CHi phase to 0.033 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The flow rate during the CHi phase is a bit noisy due to effects of the automatic regulation system and the recovery started relative fast. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but very noisy derivative at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. However, to match the type curve an additional downward trend which is already covered by wellbore storage and skin effects was implemented in the analysis. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis where the inner zone transmissivity of the CHir phase is consistent with the CHi phase transmissivity. The analysis is presented in Appendix 2-52.

Selected representative parameters

The recommended transmissivity of $4.8 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows a good horizontal stabilisation of the derivative and the more simple flow model. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-8}$ m²/s to $3.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,506.6 kPa.

The analyses of the CHi and CHir phases show some inconsistency, in this case especially in the different flow models used for analysis and the late time transmissivity of the CHir phase. In case a further analysis is performed, a full test simulation may help to explain the observed inconsistencies.

5.3.13 Section 414.00-419.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed but the pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.056 L/min at start of the CHi phase to 0.030 L/min at the end, indicating a medium interval transmissivity

(consistent with the pulse recovery). The flow rate during the CHi phase is a bit noisy due to effects of the automatic regulation system and the recovery started relative fast. However, both phases are still adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but very noisy derivative at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. However, to match the type curve an additional downward trend which is already covered by wellbore storage and skin effects was implemented in the analysis. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis where the inner zone transmissivity of the CHir phase is consistent with the CHi phase transmissivity. The analysis is presented in Appendix 2-53.

Selected representative parameters

The recommended transmissivity of $3.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows a horizontal stabilisation of the derivative and the more simple flow model. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-8}$ m²/s to $2.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,544.9 kPa.

The analyses of the CHi and CHir phases show some inconsistency, in this case especially in the different flow models used for analysis and the late time transmissivity of the CHir phase. In case a further analysis is performed, a full test simulation may help to explain the observed inconsistencies.

5.3.14 Section 419.00-424.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

A first injection start was skipped due to a very instable flow regulation. A second injection start was successful after readjusting the regulation input parameters (P and I values). The CHi phase was conducted using a pressure difference of 201 kPa. A hydraulic connection to the bottom zone was observed, indicating some crossflow through the formation. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 17.42 L/min at start of the CHi phase to 11.76 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery started relative fast. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but noisy derivative at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. Both analyses include a relative high positive skin factor. The analysis is presented in Appendix 2-54.

The recommended transmissivity of $3.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows a good horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ m²/s to $6.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,591.5 kPa.

The analyses of the CHi and CHir phases show good consistency. The relative high skin factor may be related to non-Darcy flow. No further analysis is recommended.

5.3.15 Section 420.00-425.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. A hydraulic connection to the bottom zone was observed, indicating some crossflow through the formation. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 21.51 L/min at start of the CHi phase to 11.65 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery started relative fast. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but noisy derivative at middle and late times, indicating radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at middle to late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. Both analyses include a relative high positive skin factor. The analysis is presented in Appendix 2-55.

Selected representative parameters

The recommended transmissivity of $3.5 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows a good and less noisy horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-6}$ m²/s to $6.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,602.3 kPa.

The analyses of the CHi and CHir phases show good consistency. The relative high skin value may be related to non-Darcy flow. No further analysis is recommended.

5.3.16 Section 425.00-430.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a

sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection to the bottom zone was observed, indicating some crossflow through the formation. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 13.51 L/min at start of the CHi phase to 7.21 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery started relative fast. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but noisy derivative at middle and late times, indicating radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at middle to late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. Both analyses include a relative high positive skin factor. The analysis is presented in Appendix 2-56.

Selected representative parameters

The recommended transmissivity of $1.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows a good and less noisy horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,645.1 kPa.

The analyses of the CHi and CHir phases show good consistency. The relative high skin value may be related to non-Darcy flow. No further analysis is recommended.

5.3.17 Section 430.00-435.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 7.06 L/min at start of the CHi phase to 5.84 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The recovery started relative fast. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but noisy derivative at middle and late times, indicating radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at middle to late times. A homogenous model with radial flow, wellbore storage and skin was chosen for the analysis. Both analyses include a relative high positive skin factor. The analysis is presented in Appendix 2-57.

The recommended transmissivity of $1.7 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows a good and less noisy horizontal stabilisation of the derivative. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-6}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,686.0 kPa.

The analyses of the CHi and CHir phases show good consistency. The relative high skin value may be related to non-Darcy flow. No further analysis is recommended.

5.3.18 Section 435.00-440.00 m, test no. 1 and 2, pulse injection

Comments to test

The first test at this section was skipped after a malfunction of the automatic injection test procedure stopped the pulse recovery and deflated the packers. A second test in the same section was performed by stopping at that section during the pulling out procedure to allow for a stabilisation of pressures and to minimise effects of borehole history. The test design consisted of a pulse injection test conducted with the goal of deriving the formation transmissivity. The pressure response and the recovery of the pulse test indicated a very low formation transmissivity; therefore the recovery of the pulse injection was extended to ten hours overnight. It was observed that the pressure did not recover but already started to rise again during the extended pulse recovery, therefore the pulse test was skipped. The flow rate during the pulse injection was already decreasing below of 0.001 L/min (T probably smaller than 1.0 10^{-11} m²/s). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-58.

Selected representative parameters

Based on the test response (no pulse recovery and flow rate below of 0.001 L/min) the interval transmissivity is set to $1.0 \cdot 10^{-11}$ m²/s.

No further analysis is recommended.

5.3.19 Section 440.00-445.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 70 kPa in 20 min and kept rising. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-59.

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.20 Section 444.00-449.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 245 kPa then started to drop down slowly but did not stabilise in 20 min and kept decreasing. This phenomenon is caused by prolonged packer expansion in a very tight section and some additional reaction of the formation (eventually opening of small fissures and T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-60.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.21 Section 449.00–454.00 m, test no. 1, pulse injection

Comments to test

The test was conducted as pulse injection (PI) with a pressure difference of 199 kPa. No hydraulic connection between the test section and the adjacent zones was observed. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The decision to conduct a pulse injection instead of a constant head injection with subsequent pressure recovery was made because the injection rate dropped below of the lower measurement limit of the small flowmeter (< 1 ml/min) within the 10 sec of pulse injection. The recovery of the pulse was extended to 1.5 hours to allow for 95% recovery. The pulse injection was analysed using a wellbore storage coefficient calculated from the volume of water needed to elevate the pressure in the test section by 199 kPa (0.002 L). The PI phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the convolved PI pressure shows a horizontal stabilization at early times, followed by an upward trend and a final flat derivative at late times. This is indicating a decrease of transmissivity at some distance to the borehole. The PI phase was analysed using a two shell composite model with radial flow. The analysis is presented in Appendix 2-61.

The recommended transmissivity of $4.6 \cdot 10^{-11}$ m²/s was derived from the analysis of the PI phase (outer zone) where the data are of good quality and the derivative shows a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-11}$ m²/s to $2.0 \cdot 10^{-10}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth could not be extrapolated from the analysis.

No further analysis is recommended.

5.3.22 Section 454.00-459.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 40 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-62.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.23 Section 459.00-464.00 m, test no. 1, pulse injection

Comments to test

The test was conducted as pulse injection (PI) with a pressure difference of 195 kPa. No hydraulic connection between the test section and the adjacent zones was observed. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The decision to conduct a pulse injection instead of a constant head injection with subsequent pressure recovery was made because the injection rate dropped below of the lower measurement limit of the small flowmeter (< 1 ml/min) within the 10 sec of pulse injection. The recovery of the pulse was extended to 1.5 hours to allow for more than 95% recovery. The pulse injection was analysed using a wellbore storage coefficient calculated from the volume of water needed to elevate the pressure in the test section by 199 kPa (0.004 L). The PI phase is adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the convolved PI pressure shows a horizontal stabilization at middle and late times. This is indicating a radial flow (flow dimension of two). The PI phase was analysed using a homogenous model with radial flow. The analysis is presented in Appendix 2-63.

The recommended transmissivity of $1.1 \cdot 10^{-10}$ m²/s was derived from the analysis of the PI phase. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-11}$ m²/s to $2.0 \cdot 10^{-10}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth could not be extrapolated from the analysis.

No further analysis is recommended.

5.3.24 Section 464.00-469.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.0073 L/min at start of the CHi phase to 0.0034 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate close to the measurement limit of the flow meter, the CHi phase shows some background noise. However, both phases are of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat but noisy derivative at middle and late times, indicating radial flow. A homogenous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at middle and late times. Due to the still too short recovery period, no stabilisation of the derivative was derived. To match the derivative with the type curve, an additional downward trend at late times was implemented in the type curve which is already covered by the effect of the skin factor. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-64.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase (inner zone) which shows the best match with the type curve. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-10}$ m²/s to $8.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,968.1 kPa.

The analyses of the CHi and CHir phases show some inconsistency according to the flow model chosen for analysis. Probably the major background noise of the CHi phase is covering a two shell composite model. No further analysis is recommended.

5.3.25 Section 469.00-474.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. No hydraulic connection to the adjacent zones was observed. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.0098 L/min at start of the CHi phase to 0.0025 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate close to the measurement limit of the flow meter, the CHi phase shows some background noise. However, both phases are of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward trend at middle times and a flat but very noisy derivative at late times, indicating a decrease of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat derivative at early times, an upward trend at middle times and a further horizontal stabilisation at late times. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-65.

Selected representative parameters

The recommended transmissivity of $5.9 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHir phase (outer zone) which shows the best match with the type curve and horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $4.0 \cdot 10^{-10}$ m²/s to $8.0 \cdot 10^{-9}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,006.6 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the background noise of the CHi phase. No further analysis is recommended.

5.3.26 Section 474.00-479.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 30 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-66.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.
5.3.27 Section 479.00-484.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 29 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-67.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.28 Section 484.00-489.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 23 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-68.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.29 Section 649.00-654.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 27 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \ 10^{-11} \ m^2/s$). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-69.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.30 Section 654.00-659.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 700 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-70.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.31 Section 659.00-664.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 28 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-71.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.32 Section 664.00-669.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 207 kPa. Some hydraulic connection to the bottom zone was observed during the CHi phase, indicating a crossflow through the formation. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.028 L/min at start of the CHi phase to 0.0087 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate, the CHi phase shows some background noise. However, both phases are still of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at early times followed by a downward trend at middle times and a flat but very noisy derivative at late times, indicating an increase of transmissivity at some distance to the borehole. A two shell composite model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at middle times and a horizontal stabilisation at late times. The early and middle times are already covered by effects of the wellbore storage and skin factor. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-72.

Selected representative parameters

The recommended transmissivity of $6.1 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase (outer zone) which shows the best match with the type curve and horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-10}$ m²/s to $1.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,624.0 kPa.

The analyses of the CHi and CHir phases show good consistency despite of a relative wide confidence range which is caused by the background noise of the CHi phase and the multiplier between the transmissivities of the inner and outer zones. No further analysis is recommended.

5.3.33 Section 669.00-674.00 m, test no. 1, injection

Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approximately 58 kPa in 20 min and kept rising without pressure stabilisation. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than $1.0 \cdot 10^{-11}$ m²/s). None of the test phases is analysable.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the flow model cannot be determined. No analysis was performed. The measured data are presented in Appendix 2-73.

Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is set to $1.0 \cdot 10^{-11} \text{ m}^2/\text{s}$.

No further analysis is recommended.

5.3.34 Section 674.00-679.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 193 kPa. No hydraulic connection to the adjacent zones was observed during the test phases. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. The injection rate decreased from 0.0070 L/min at start of the CHi phase to 0.0043 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate, the CHi phase shows some background noise. However, both phases are still of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative from early to late times, indicating a radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. The early and middle times are already covered by effects of the wellbore storage and skin factor. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-74.

Selected representative parameters

The recommended transmissivity of $7.9 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase which shows the best match with the type curve and a good horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-9}$ m²/s to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,706.3 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the background noise of the CHi phase. No further analysis is recommended.

5.3.35 Section 679.00-684.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 191 kPa. No hydraulic connection but a short pressure peak was observed in the bottom zone at start of the CHi

phase. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. During the packer compliance period (PSR-phase) the interval pressure dropped by 25 kPa and then stabilised. The injection rate decreased from 0.0086 L/min at start of the CHi phase to 0.0052 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate, the CHi phase shows some background noise. However, both phases are still of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative from early to late times, indicating a radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at late times. The early and middle times are already covered by effects of the wellbore storage and skin factor. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-75.

Selected representative parameters

The recommended transmissivity of $1.7 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase which shows the best match with the type curve and a good horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-9}$ m²/s to $3.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,732.3 kPa.

The analyses of the CHi and CHir phases show good consistency despite of the background noise of the CHi phase. No further analysis is recommended.

5.3.36 Section 684.00–689.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. According to the very noisy data of the CHi phase, this test phase was not analysed. Only the CHir phase was analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 198 kPa. No hydraulic connection but a short pressure peak was observed in the bottom zone at start of the CHi phase. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. During the packer compliance period (PSR-phase) the interval pressure dropped by 5 kPa and then stabilised. The injection rate decreased from 0.0042 L/min at start of the CHi phase to 0.0020 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate close to the measurement limit of the flowmeter, the CHi phase shows major background noise. Only the CHir phase is of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. The derivative of the CHir phase shows a downward trend at late times. The whole test phase is already covered by effects of the wellbore storage and skin factor. A horizontal stabilisation was not observed at late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-76.

Selected representative parameters

The recommended transmissivity of $9.9 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHir phase which shows a good match with the type curve. The confidence range for the interval transmissivity is estimated to be $5.0 \cdot 10^{-9}$ m²/s to $2.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,787.2 kPa.

The analysis of the CHir phase shows a good quality despite of the missing horizontal stabilisation at late times. No further analysis is recommended.

5.3.37 Section 689.00-694.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 193 kPa. A hydraulic connection was observed in the bottom zone during the CHi phase, indicating some crossflow through the formation. The pressure transducer in the section above (Pa) did not display any values due to a malfunction. During the packer compliance period (PSR-phase) the interval pressure dropped by 8 kPa and then stabilised. The injection rate decreased from 0.012 L/min at start of the CHi phase to 0.0071 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate close to the measurement limit of the flowmeter, the CHi phase shows some background noise. However, the CHi and CHir phases are of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative from early to late times, indicating a radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at late times but already a tendency for horizontal stabilisation. The whole CHir phase is already covered by effects of the wellbore storage and skin factor. An additional downward trend at middle times, indicating an increase of transmissivity at some distance to the borehole, is already covered by effects of the skin factor. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-77.

Selected representative parameters

The recommended transmissivity of $5.9 \cdot 10^{-9}$ m²/s was derived from the analysis of the CHi phase which shows a noisy derivative but still a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-9}$ m²/s to $3.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,825.4 kPa.

The analysis of the CHi and CHir phases show a good consistency despite of the different flow models used for analysis. No further analysis is recommended.

5.4 Single packer injection test

In the following, the single packer test conducted in borehole KLX17A is presented and analysed.

5.4.1 Section 689.00–701.08 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relative low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

A first try to conduct a CHi phase was skipped due to a malfunction of the automatic regulation system which did not react to regulate the flow after start of the injection. The second start of the CHi phase was conducted after rebooting the system automatically using a pressure difference of 202 kPa. No hydraulic connection was observed in the section above during the CHi phase. The injection rate decreased from 0.042 L/min at start of the CHi phase to 0.015 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). According to the low flow rate, the CHi phase shows some background noise. However, the CHi and CHir phases are of good quality and adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle to late times, indicating a radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward trend at middle times followed by a flat derivative at late times. An additional downward trend at middle times, indicating an increase of transmissivity at some distance to the borehole, is already covered by effects of the skin factor. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-78.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (outer zone) which shows the best data quality and clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $6.0 \cdot 10^{-9}$ m²/s to $3.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,827.2 kPa.

The analysis of the CHi and CHir phases show a good consistency despite of the different flow models used for analysis. No further analysis is recommended.

6 Summary of results

This chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

6.1 General test data and results

Table 6-1. General test data from hydraulic tests in KLX17A (for nomenclature see appendix 4 and below).

Borehole secup	Borehole	Date and time for test. start	Date and time for test, stop	Q _p	Q _m	t _p	t _F	p ₀	pi	p _p	p _F	Te _w	Test phases measured Analysed test phases
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm	(m**³/s)	(m**³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	marked bold
69.00	169.00	20070509 13:47	20070509 15:57	1.83E–04	1.67E–04	1800	1800	1423	1431	1630	1429	9.1	CHi/CHir
169.00	269.00	20070509 17:46	20070509 19:36	5.47E-05	5.76E-05	1800	1800	2278	2282	2496	2283	10.4	CHi/CHir
269.00	369.00	20070510 09:35	20070510 11:25	9.97E-06	1.14E–05	1800	1800	3124	3125	3349	3144	11.7	CHi/CHir
369.00	469.00	20070510 13:23	20070510 15:12	3.89E-04	4.04E-04	1800	1800	3977	3965	4175	3974	13.3	CHi/CHir
469.00	569.00	20070510 16:42	20070510 22:58	3.83E-08	5.33E-08	1800	14400	4808	4838	5053	4811	14.6	CHi/CHir
569.00	669.00	20070511 14:16	20070511 16:24	1.47E-07	1.52E–07	1800	1800	5623	5628	5840	5636	15.6	CHi/CHir
69.00	89.00	20070513 11:15	20070513 12:47	3.00E-06	3.33E-06	1200	1200	736	744	944	750	8.0	CHi/CHir
87.00	107.00	20070513 14:08	20070513 15:31	1.05E-05	1.15E–05	1200	1200	892	896	1096	896	8.3	CHi/CHir
107.00	127.00	20070513 16:09	20070513 17:35	2.02E-04	2.09E-04	1200	1200	1064	1068	1269	1070	8.5	CHi/CHir
127.00	147.00	20070513 18:16	20070513 21:44	9.50E-08	1.17E–07	1200	7200	1237	1245	1475	1244	8.7	CHi/CHir
147.00	167.00	20070514 08:51	20070514 10:16	7.17E-07	7.52E-07	1200	1200	1406	1409	1610	1411	9.0	CHi/CHir
149.00	169.00	20070514 10:40	20070514 12:06	6.50E-07	6.77E-07	1200	1200	1424	1428	1628	1428	9.0	CHi/CHir
169.00	189.00	20070514 13:27	20070514 14:56	7.15E-06	8.47E-06	1200	1200	1596	1601	1842	1632	9.3	CHi/CHir
189.00	209.00	20070514 15:33	20070514 16:57	4.60E-05	4.70E-05	1200	1200	1767	1771	1971	1771	9.6	CHi/CHir
209.00	229.00	20070514 17:32	20070514 19:44	2.67E-07	2.95E-07	1200	3600	1938	1944	2145	1942	9.9	CHi/CHir
229.00	249.00	20070515 08:47	20070515 10:21	2.17E-07	3.17E-07	1200	1200	2105	2113	2313	2152	10.1	CHi/CHir
249.00	269.00	20070515 10:58	20070515 13:29	6.33E-08	9.87E-08	1200	1200	2275	2285	2522	2370	10.4	CHi/CHir
269.00	289.00	20070515 14:02	20070515 16:21	1.83E-08	2.67E-08	1200	1200	2447	2469	2676	2482	10.7	CHi/CHir
289.00	309.00	20070515 16:55	20070515 20:24	1.50E-07	2.00E-07	1200	7200	2618	2627	2849	2628	11.0	CHi/CHir
309.00	329.00	20070516 08:46	20070516 10:12	9.67E-06	1.07E-05	1200	1200	2784	2784	2993	2807	11.2	CHi/CHir
329.00	349.00	20070516 10:45	20070516 12:34	1.37E-07	1.45E–07	1200	2400	2953	2956	3157	2956	11.5	CHi/CHir
349.00	369.00	20070516 13:20	20070516 14:09	#NV	#NV	#NV	#NV	3123	#NV	#NV	#NV	11.8	-
369.00	389.00	20070516 14:43	20070516 16:06	8.17E–07	8.32E-07	1200	1200	3293	3291	3491	3291	12.1	CHi/CHir
389.00	409.00	20070516 16:39	20070516 18:49	1.13E–07	1.17E–07	1200	3600	3463	3461	3661	3460	12.3	CHi/CHir
409.00	429.00	20070517 08:43	20070517 10:09	3.21E-04	3.30E-04	1200	1200	3627	3624	3824	3629	12.2	CHi/CHir
428.00	448.00	20070517 10:43	20070517 12:11	1.89E-04	1.92E-04	1200	1200	3791	3790	3990	3793	13.0	CHi/CHir

Borehole secup	Borehole seclow	Date and time for test, start	Date and time for test, stop	Q _p	Q _m	t _p	t _F	p ₀	p _i	p _p	p⊧	Te _w	Test phases measured Analysed test phases
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm	(m**³/s)	(m**³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	marked bold
448.00	468.00	20070517 13:34	20070517 15:21	7.00E-08	8.67E-08	1200	1200	3963	3962	4198	3986	13.3	CHi/CHir
449.00	469.00	20070517 15:47	20070517 17:32	6.67E-08	8.17E-07	1200	1200	3969	3976	4202	4000	13.3	CHi/CHir
469.00	489.00	20070517 18:06	20070517 21:46	#NV	#NV	10	7200	4136	4138	4372	4136	13.6	Pi
469.00	489.00	20070520 17:54	20070520 20:53	5.17E-08	7.50E-08	1200	7200	4140	4140	4383	4148	13.6	CHi/CHir
489.00	509.00	20070518 08:47	20070518 10:32	#NV	#NV	10	3600	4302	4309	4553	4497	13.9	Pi
509.00	529.00	20070518 11:04	20070518 12:01	#NV	#NV	#NV	#NV	4470	#NV	#NV	#NV	14.1	-
529.00	549.00	20070518 12:36	20070518 14:22	#NV	#NV	#NV	#NV	4637	#NV	#NV	#NV	14.4	Pi
549.00	569.00	20070518 15:13	20070518 16:08	#NV	#NV	#NV	#NV	4803	#NV	#NV	#NV	14.6	-
569.00	589.00	20070518 18:44	20070518 18:44	#NV	#NV	#NV	#NV	5019	#NV	#NV	#NV	14.9	Pi
589.00	609.00	20070519 08:59	20070519 09:57	#NV	#NV	#NV	#NV	5154	#NV	#NV	#NV	15.2	-
609.00	629.00	20070519 10:33	20070519 11:30	#NV	#NV	#NV	#NV	5320	#NV	#NV	#NV	15.4	-
629.00	649.00	20070519 12:19	20070519 14:12	#NV	#NV	#NV	#NV	5460	#NV	#NV	#NV	15.6	-
649.00	669.00	20070519 15:31	20070519 18:47	1.50E-07	1.78E–07	1200	7200	5630	5624	5886	5622	15.9	CHi/CHir
669.00	689.00	20070520 08:53	20070520 10:21	3.00E-07	3.30E-07	1200	1200	5789	5787	5987	5800	16.1	CHi/CHir
674.00	694.00	20070520 11:04	20070520 12:51	4.17E–07	4.70E-07	1200	2400	5831	5833	6034	5842	16.2	CHi/CHir
339.00	344.00	20070522 13:43	20070522 15:25	2.50E-08	2.53E-08	1200	1200	2916	2923	3176	2925	11.4	CHi/CHir
344.00	349.00	20070522 15:54	20070522 16:44	#NV	#NV	#NV	#NV	2958	#NV	#NV	#NV	11.5	-
369.00	374.00	20070523 09:07	20070523 10:33	7.27E-07	7.37E-07	1200	1200	3167	3163	3364	3164	11.9	CHi/CHir
374.00	379.00	20070523 10:58	20070523 11:47	#NV	#NV	#NV	#NV	3210	#NV	#NV	#NV	12.0	-
379.00	384.00	20070523 13:07	20070523 15:21	#NV	3.98E-07	10	3706	3254	3283	3522	3264	12.0	Pi
384.00	389.00	20070523 15:49	20070523 17:24	5.83E-08	6.45E-08	1200	1200	3297	3300	3496	3301	12.1	CHi/CHir
387.00	392.00	20070523 17:48	20070523 23:02	5.67E-08	6.05E-08	1200	14400	3324	3323	3524	3317	12.2	CHi/CHir
392.00	397.00	20070524 10:35	20070524 11:24	#NV	#NV	#NV	#NV	3363	#NV	#NV	#NV	12.2	-
397.00	402.00	20070524 13:08	20070524 14:37	9.27E-08	9.27E-08	1200	1200	3408	3415	3622	3413	12.3	CHi/CHir
402.00	407.00	20070524 15:07	20070524 15:56	#NV	#NV	#NV	#NV	3452	#NV	#NV	#NV	12.4	-
404.00	409.00	20070524 16:22	20070524 17:11	#NV	#NV	#NV	#NV	3469	#NV	#NV	#NV	12.4	-
409.00	414.00	20070524 17:35	20070524 19:01	5.50E-07	5.67E-07	1200	1200	3512	3507	3705	3506	12.5	CHi/CHir
414.00	419.00	20070525 08:18	20070525 10:11	5.00E-07	4.95E-07	1200	1200	3549	3544	3744	3544	12.5	CHi/CHir
419.00	424.00	20070525 10:36	20070525 12:07	1.96E-04	2.00E-04	1200	1200	3591	3590	3791	3592	12.3	CHi/CHir

Borehole secup	Borehole seclow	Date and time for test, start	Date and time for test, stop	Q _p	Q _m	t _p	t⊧	p ₀	pi	p _p	p _F	Te _w	Test phases measured Analysed test phases
(m)	(m)	YYYYMMDD hh:mm	YYYYMMDD hh:mm	(m**³/s)	(m**³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	marked bold
420.00	425.00	20070525 12:56	20070525 14:20	1.94E–04	2.00E-04	1200	1200	3604	3600	3802	3604	12.3	CHi/CHir
425.00	430.00	20070525 14:50	20070525 16:17	1.20E-04	1.22E-04	1200	1200	3649	3644	3844	3644	12.4	CHi/CHir
430.00	435.00	20070525 16:44	20070525 18:08	9.73E-05	9.88E-05	1200	1200	3689	3686	3886	3687	12.8	CHi/CHir
435.00	440.00	20070526 08:17	20070526 09:21	#NV	1.62E–07	10	1200	3726	#NV	#NV	#NV	12.9	Pi
435.00	440.00	20070530 16:22	20070531 03:12	#NV	2.05E-07	10	36000	3728	3761	3951	3985	12.9	Pi
440.00	445.00	20070526 09:56	20070526 10:47	#NV	#NV	#NV	#NV	3770	#NV	#NV	#NV	13.0	-
444.00	449.00	20070526 11:16	20070526 12:24	#NV	#NV	#NV	#NV	3804	#NV	#NV	#NV	13.1	-
449.00	454.00	20070526 13:34	20070526 15:46	#NV	2.33E-07	10	5400	3849	3853	4043	3862	13.1	Pi
454.00	459.00	20070526 16:14	20070526 17:07	#NV	#NV	#NV	#NV	3890	#NV	#NV	#NV	13.2	-
459.00	464.00	20070527 08:14	20070527 10:26	#NV	3.50E-07	10	5400	3929	3932	4115	3940	13.2	Pi
464.00	469.00	20070527 10:58	20070527 12:40	5.67E-08	6.63E-08	1200	3600	3972	3969	4169	3970	13.4	CHi/CHir
469.00	474.00	20070527 14:03	20070527 16:41	4.08E-08	5.25E-08	1200	3600	4016	4019	4216	4034	13.4	CHi/CHir
474.00	479.00	20070527 17:09	20070527 17:57	#NV	#NV	#NV	#NV	4055	#NV	#NV	#NV	13.5	-
479.00	484.00	20070528 08:04	20070528 08:53	#NV	#NV	#NV	#NV	4093	#NV	#NV	#NV	13.6	-
484.00	489.00	20070528 09:21	20070528 10:11	#NV	#NV	#NV	#NV	4137	#NV	#NV	#NV	13.6	-
649.00	654.00	20070528 13:43	20070528 14:32	#NV	#NV	#NV	#NV	5503	#NV	#NV	#NV	15.7	-
654.00	659.00	20070528 15:01	20070528 15:50	#NV	#NV	#NV	#NV	5544	#NV	#NV	#NV	15.8	-
659.00	664.00	20070528 16:16	20070528 17:05	#NV	#NV	#NV	#NV	5587	#NV	#NV	#NV	15.8	-
664.00	669.00	20070528 17:28	20070528 20:41	1.45E–07	1.73E–07	1200	7200	5631	5627	5834	5625	15.9	CHi/CHir
669.00	674.00	20070529 08:10	20070529 09:01	#NV	#NV	#NV	#NV	5670	#NV	#NV	#NV	16.0	-
674.00	679.00	20070529 09:34	20070529 11:48	7.17E–08	7.58E-08	1200	3600	5711	5709	5902	5709	16.0	CHi/CHir
679.00	684.00	20070529 13:00	20070529 14:30	8.67E-08	9.65E-08	1200	1200	5751	5730	5921	5736	16.1	CHi/CHir
684.00	689.00	20070529 15:01	20070529 17:29	3.28E-08	3.70E-08	1200	3600	5792	5791	5989	5786	16.1	CHi/CHir
689.00	694.00	20070529 17:58	20070529 19:22	1.18E–07	1.33E–07	1200	1200	5833	5828	6021	5829	16.2	CHi/ CHir
689.00	701.08	20070601 16:46	20070601 19:13	2.53E-07	2.88E-07	1200	3600	5831	5829	6031	5831	16.2	CHi/CHir

Nomenclature	
Q _p	Flow in test section immediately before stop of flow [m3/s]
Q _m	Arithmetical mean flow during perturbation phase [m³/s]
t _p	Duration of perturbation phase [s]
t _f	Duration of recovery phase [s]
p ₀	Pressure in borehole before packer inflation [kPa]
p _i	Pressure in test section before start of flowing [kPa]
p _p	Pressure in test section before stop of flowing [kPa]
p _F	Pressure in test section at the end of the recovery [kPa]
Te _w	Temperature in test section
Test phases	CHi Constant Head injection phase
	CHir: Recovery phase following the constant head injection phase
	Pi: Pulse injection phase
#NV	not analysed/no values

Interval	position	Stationary	flow	Transien	t analysis												0 4 4	
	1	parameter	s T	Flow reg	lime	Formatio	n paramet	ers T	-	-	-	-	•		.14	.14	Static co	Iditions
up m btoc	n btoc	Q/s m²/s	I _M m²/s	Perturb. Phase	Recovery Phase	ln m²/s	I _{f2} m²/s	l _{s1} m²/s	I _{s2} m²/s	l⊤ m²/s	I _{™IN} m²/s	n _{TMAX} m²/s	C m³/Pa	ς -	at₁ min	at₂ min	p^ kPa	n _{wif} masl
69.00	169.00	9.0E-06	2.2E-05	22	WBS22	3.5E-06	1.4E–05	1.9E–06	1.2E–05	1.4E–05	2.0E-06	4.0E-05	1.1E–09	-4.5	2.78	10.92	1425.8	15.85
169.00	269.00	2.5E-06	3.3E-06	22	WBS22	2.8E-06	4.0E-06	3.1E–06	5.2E-06	4.0E-06	1.0E-06	8.0E-06	4.0E-09	-0.4	1.38	21.54	2278.8	15.95
269.00	369.00	4.4E-07	5.7E–07	2	WBS2	3.0E+07	#NV	2.7E-07	#NV	2.7E-07	1.0E–07	5.0E–07	1.8E–09	-3.2	2.36	26.22	3119.6	15.61
369.00	469.00	1.8E-05	2.4E-05	22	WBS2	6.3E–05	3.5E-05	6.8E–05	#NV	6.8E–05	2.0E-05	1.0E-04	4.8E-09	12.9	0.50	11.16	3970.6	16.98
469.00	569.00	1.8E-09	2.3E-09	22	WBS22	2.2E-09	6.2E-10	9.4E-10	3.8E-10	6.2E-10	2.0E-10	4.0E-09	2.1E–10	-0.9	7.86	23.10	4789.1	16.13
569.00	669.00	6.8E-09	8.8E-09	2	WBS2	6.7E-09	#NV	7.5E–10	#NV	6.7E–09	5.0E-10	1.0E-08	2.6E-11	1.7	0.68	21.54	5617.6	17.31
69.00	89.00	1.5E-07	1.5E–07	2	WBS2	1.5E–07	#NV	1.2E–07	#NV	1.2E–07	8.0E-08	3.0E-07	1.8E–10	2.0	1.42	12.72	734.3	15.16
87.00	107.00	5.2E-07	5.4E-07	2	WBS2	6.6E–07	#NV	1.9E–06	#NV	6.6E-07	3.0E-07	3.0E-06	1.7E–10	4.4	0.98	19.08	895.3	15.85
107.00	127.00	9.9E-06	1.0E–05	22	WBS22	2.0E-05	4.1E-05	4.4E-06	2.7E-05	2.0E-05	2.0E-06	4.0E-05	1.3E–08	4.4	0.07	3.02	1065.6	15.76
127.00	147.00	4.1E-09	4.2E-09	22	WBS22	3.7E-09	1.5E–09	3.7E-09	1.5E–09	1.5E–09	1.0E-09	6.0E-09	7.0E–11	-1.0	32.52	93.00	1235.4	15.62
147.00	167.00	3.5E-08	3.7E-08	2	WBS22	4.5E-08	#NV	4.4E-08	6.3E-08	4.5E-08	2.0E-08	1.0E-07	6.4E-11	2.6	0.05	17.94	1407.3	15.71
149.00	169.00	3.2E-08	3.3E-08	2	WBS22	4.5E-08	#NV	3.8E-08	5.9E–08	4.5E-08	2.0E-08	1.0E-07	5.9E–11	3.4	0.21	17.10	1424.8	15.75
169.00	189.00	2.9E-07	3.0E-07	22	WBS22	3.0E-07	1.5E–07	4.6E-07	1.5E–07	4.6E-07	1.0E-07	8.0E-07	5.4E–09	-0.9	2.25	6.72	1584.2	14.59
189.00	209.00	2.3E-06	2.4E-06	2	WBS2	7.3E–06	#NV	9.9E-06	#NV	7.3E–06	4.0E-06	2.0E-05	2.1E-10	12.1	0.62	16.92	1771.4	16.28
209.00	229.00	1.3E-08	1.4E–08	22	WBS22	4.7E-09	1.6E–08	6.6E–09	2.6E-08	1.6E–08	2.0E-09	4.0E-08	1.3E–10	-1.7	5.03	15.84	1938.5	15.93
229.00	249.00	1.1E–08	1.1E–08	22	WBS22	8.9E–09	3.6E-09	4.8E-09	3.2E-09	3.6E-09	2.0E-09	2.0E-08	1.1E–11	-1.7	0.12	0.64	2105.7	15.61
249.00	269.00	2.6E-09	2.7E-09	2	WBS2	3.0E-09	#NV	2.7E-09	#NV	3.0E-09	1.0E-09	6.0E-09	3.0E-10	3.0	1.42	12.36	2284.7	16.55
269.00	289.00	8.7E-10	9.1E–10	22	WBS22	8.7E–10	1.7E–10	1.2E–09	1.7E–10	8.7E-10	1.0E-10	2.0E-09	6.2E–11	-0.7	0.18	0.63	2450.0	16.13
289.00	309.00	6.6E-09	6.9E-09	22	WBS22	1.3E–08	2.8E-09	2.6E-08	3.7E-09	2.8E-09	1.0E-09	4.0E-08	8.8E-11	1.0	3.56	18.18	2621.4	16.36
309.00	329.00	4.5E-07	4.8E-07	22	WBS22	1.1E–06	3.4E-07	2.2E-06	3.2E-07	3.2E-07	2.0E-07	3.0E-06	8.1E–10	1.2	1.72	17.88	2786.2	15.94
329.00	349.00	6.7E-09	7.0E-09	2	WBS2	7.6E–09	#NV	2.3E-08	#NV	7.6E–09	4.0E-09	3.0E-08	5.8E–11	2.7	0.15	16.26	2955.4	16.02
349.00	369.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E-13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
369.00	389.00	4.0E-08	4.2E-08	2	WBS2	6.8E–08	#NV	9.5E-08	#NV	9.5E-08	3.0E-08	2.0E-07	5.9E–11	9.4	1.54	11.70	3290.3	15.89
389.00	409.00	5.6E-09	5.8E-09	2	WBS2	5.4E–09	#NV	1.3E-08	#NV	1.3E–08	3.0E-09	2.0E-08	6.3E–11	9.4	11.52	25.08	3459.6	16.06
409.00	429.00	1.6E-05	1.7E–05	2	WBS2	4.8E-05	#NV	7.5E–05	#NV	7.5E–05	2.0E-05	1.0E-04	2.3E-09	19.1	0.17	14.76	3627.6	16.10
428.00	448.00	9.3E-06	9.7E-06	22	WBS2	1.5E–05	4.9E-05	5.9E-05	#NV	5.9E-05	8.0E-06	8.0E-05	1.6E–09	30.8	0.20	14.76	3791.9	16.64
448.00	468.00	2.9E-09	3.0E-09	2	WBS2	1.5E–09	#NV	1.4E-09	#NV	1.5E–09	8.0E-10	3.0E-09	8.1E–11	-0.9	1.25	16.14	3944.3	15.15
449.00	469.00	2.9E-09	3.0E-09	2	WBS2	1.6E–09	#NV	1.4E–09	#NV	1.6E–09	8.0E-10	3.0E-09	8.4E–11	-0.6	1.49	15.78	3955.4	15.43

Table 6-2. Results from analysis of hydraulic tests in KLX17A (for nomenclature see appendix 4 and below).

Interval	position	Stationary parameter	r flow 's	Transier Flow reg	nt analysis Jime	Formatio	n paramet	ers									Static co	nditions
up m btoc	low m btoc	Q/s m²/s	T _M m²/s	Perturb. Phase	Recovery Phase	T _{f1} m²/s	T _{f2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T⊤ m²/s	T _{™IN} m²/s	T _{TMAX} m²/s	C m³/Pa	ξ _	dt₁ min	dt₂ min	p* kPa	h _{wif} masl
469.00	489.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#N∨	#NV	#NV
469.00	489.00	2.1E-09	2.2E-09	22	WBS22	4.3E-09	7.9E–10	2.2E-09	6.0E-10	7.9E–10	4.0E-10	6.0E-09	1.1E–10	-0.2	5.51	17.82	4126.4	15.86
489.00	509.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
509.00	529.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
529.00	549.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E–11	#NV	#NV	#NV	#NV	#NV	#NV
549.00	569.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
569.00	589.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
589.00	609.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
609.00	629.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
629.00	649.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
649.00	669.00	5.6E-09	5.9E–09	2	WBS2	4.7E-09	#NV	1.0E-08	#NV	1.0E-08	2.0E-09	2.0E-08	1.1E–10	4.5	23.28	105.00	5619.1	17.46
669.00	689.00	1.5E-08	1.5E–08	2	WBS2	1.5E–08	#NV	1.7E–08	#NV	1.7E–08	8.0E-09	3.0E-08	5.2E–11	1.4	3.45	18.30	5787.1	17.99
674.00	694.00	2.0E-08	2.1E–08	2	WBS2	2.1E-08	#NV	2.5E-08	#NV	2.5E-08	1.0E-08	5.0E-08	5.1E–11	1.5	2.85	34.86	5833.7	18.60
339.00	344.00	9.7E-10	8.0E-10	2	WBS2	7.7E–10	#NV	1.7E–09	#NV	7.7E–10	4.0E-10	3.0E-09	2.2E-11	1.7	0.49	15.90	2908.0	15.48
344.00	349.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
369.00	374.00	3.6E-08	2.9E-08	2	WBS22	5.4E-08	#NV	7.4E-08	2.5E-07	5.4E-08	3.0E-08	4.0E-07	1.5E–11	4.0	0.30	15.96	3164.3	15.89
374.00	379.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
379.00	384.00	#NV	#NV	#NV	22	#NV	#NV	8.8E–10	2.9E-10	2.9E-10	1.0E-10	1.0E-09	1.5E–11	7.7	16.86	58.98	#NV	#NV
384.00	389.00	2.9E-09	2.4E-09	2	WBS2	2.4E-09	#NV	3.4E-09	#NV	3.4E-09	1.0E-09	6.0E-09	3.4E-11	2.8	9.90	17.70	3288.7	15.73
387.00	392.00	2.8E-09	2.3E-09	2	WBS2	2.3E-09	#NV	3.2E-09	#NV	3.2E-09	1.0E-09	6.0E-09	3.2E-11	2.8	11.76	145.20	3315.8	15.92
392.00	397.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
397.00	402.00	4.4E-09	3.7E–09	22	WBS22	3.9E-09	5.6E-09	5.3E–09	1.5E–08	5.6E-09	3.0E-09	4.0E-08	1.4E–11	2.8	0.71	17.82	3412.9	17.28
402.00	407.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
404.00	409.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
409.00	414.00	2.7E-08	2.3E-08	2	WBS22	4.8E-08	#NV	4.2E-08	1.7E–07	4.8E-08	2.0E-08	3.0E-07	1.3E–11	5.9	0.97	18.72	3506.6	16.57
414.00	419.00	2.5E-08	2.0E-08	2	WBS22	3.5E-08	#NV	3.0E-08	1.0E-07	3.5E-08	2.0E-08	2.0E-07	1.3E–11	4.4	0.71	16.68	3544.9	16.21
419.00	424.00	9.6E-06	7.0E-06	2	WBS2	2.9E-05	#NV	3.2E-05	#NV	3.2E-05	1.0E-05	6.0E-05	1.5E–09	13.6	0.75	14.76	3591.5	16.69
420.00	425.00	9.4E-06	7.8E-06	2	WBS2	3.1E–05	#NV	3.5E-05	#NV	3.5E-05	4.0E-06	6.0E-05	1.9E–09	13.5	0.57	15.48	3602.3	16.94
425.00	430.00	5.9E-06	4.9E-06	2	WBS2	1.7E–05	#NV	1.9E–05	#NV	1.9E–05	1.0E-05	4.0E-05	8.2E-10	13.9	0.41	13.26	3645.1	17.03

Interval	position	Stationary parameter	r flow 's	Transier Flow reg	nt analysis Jime	Formatio	n paramet	ers									Static co	nditions
up m btoc	low m btoc	Q/s m²/s	T _M m²/s	Perturb. Phase	Recovery Phase	T _{f1} m²/s	T _{f2} m²/s	T₅₁ m²/s	T _{s2} m²/s	T⊤ m²/s	T _{™IN} m²/s	T _{™AX} m²/s	C m³/Pa	ξ _	dt₁ min	dt₂ min	p* kPa	h _{wif} masl
430.00	435.00	4.8E-06	3.9E-06	2	WBS2	1.6E–05	#NV	1.7E–05	#NV	1.7E–05	4.0E-06	4.0E-05	8.1E–10	13.9	1.27	15.90	3686.0	16.93
435.00	440.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E–11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
435.00	440.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
440.00	445.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
444.00	449.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
449.00	454.00	#NV	#NV	#NV	22	#NV	#NV	1.1E–10	4.6E-11	4.6E-11	2.0E-11	2.0E-10	1.2E–11	0.6	10.08	83.40	#NV	#NV
454.00	459.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
459.00	464.00	#NV	#NV	#NV	2	#NV	#NV	1.1E–10	#NV	1.1E–10	6.0E-11	2.0E-10	1.9E–11	-0.5	0.16	64.80	#NV	#NV
464.00	469.00	2.8E-09	2.3E-09	2	WBS22	1.5E–09	#NV	1.5E–09	3.9E-09	1.5E–09	8.0E-10	8.0E-09	4.7E–11	-0.8	#NV	#NV	3968.1	16.72
469.00	474.00	2.0E-09	1.7E-09	22	WBS22	3.2E-09	7.2E-10	6.8E–09	5.9E-10	5.9E–10	4.0E-10	8.0E-09	2.1E–11	-0.4	27.54	59.82	4006.6	16.39
474.00	479.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
479.00	484.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
484.00	489.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
649.00	654.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
654.00	659.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
659.00	664.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
664.00	669.00	6.9E-09	5.7E-09	22	WBS22	2.2E-10	1.1E–09	6.1E–10	6.1E–09	6.1E–09	1.0E–10	1.0E-08	1.4E–11	-3.1	14.70	105.00	5624.0	17.96
669.00	674.00	#NV	#NV	#NV	#NV	#NV	#NV	#NV	#NV	1.0E-11	1.0E–13	1.0E-11	#NV	#NV	#NV	#NV	#NV	#NV
674.00	679.00	3.6E-09	3.0E-09	2	WBS2	4.3E-09	#NV	7.9E–09	#NV	7.9E–09	2.0E-09	2.0E-08	2.2E-11	8.0	8.52	52.08	5706.3	18.05
679.00	684.00	4.5E-09	3.7E-09	2	WBS2	5.9E-09	#NV	1.7E-08	#NV	1.7E–08	3.0E-09	3.0E-08	1.9E–11	15.8	6.30	17.40	5732.3	16.55
684.00	689.00	1.6E-09	1.3E-09	#NV	WBS2	#NV	#NV	9.9E-09	#NV	9.9E–09	5.0E-09	2.0E-08	8.8E-11	20.8	#NV	#NV	5787.2	18.00
689.00	694.00	6.0E-09	5.0E-09	2	WBS22	5.9E-09	#NV	8.0E-09	1.6E–08	5.9E–09	3.0E-09	3.0E-08	1.6E–11	1.5	0.33	16.20	5825.4	17.75
689.00	701.08	1.2E-08	1.2E-08	2	WBS22	1.0E–08	#NV	1.2E-08	1.5E–08	1.5E–08	6.0E-09	3.0E-08	4.1E-11	0.4	11.22	54.60	5827.2	17.93

Nomenclature	
Q/s	Specific capacity.
Тм	Transmissivity according to /Moye 1967/.
Flow regime	The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set.
	of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2).
	a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
T _f	Transmissivity derived from the analysis of the perturbation phase (CHi). In case a homogeneous flow model was used only one T_f value is reported, in case a two zone composite flow model was used both T_{f1} (inner zone) and T_{f2} (outer zone) are given.
Ts	Transmissivity derived from the analysis of the recovery phase (CHir or Pi). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_{s1} (inner zone) and T_{s2} (outer zone) are given.
Τ _τ	Recommended transmissivity.
T _{TMIN}	Confidence range lower limit.
T _{TMAX}	Confidence range upper limit.
С	Wellbore storage coefficient.
ξ	Skin factor (calculated based on a Storativity of 1.10 ⁻⁶).
dt ₁	Estimated start time of evaluation.
dt ₂	Estimated stop time of evaluation.
p*	The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHir phase using straight line or type-curve extrapolation.
h _{wif}	Fresh-water head (based on transducer depth and p*).
#NV	Not analysed/no values.

Borehole secup (m)	Borehole seclow (m)	Recommended transmissivity Τ _τ (m²/s)	ri-index (–)	Radius of Influence (m)	
69.00	169.00	1 41F-05	655	1	112 03
169.00	269.00	3.97E-06	1 800	0	135.28
269.00	369.00	2 70E-07	1,800	0	69.09
369.00	469.00	6 76E-05	1800	0	274 81
469.00	569.00	6.23E-10	14400	0	42.83
569.00	669.00	6.67E-09	1800	0	27.39
69.00	89.00	1 16F-07	1200	0	45.67
87.00	107.00	6.60E-07	1200	0	70.53
107.00	127.00	2.03E-05	181	_1	64 51
127 00	147.00	1.50E-09	7200	0	37 72
147 00	167.00	4 49E-08	1200	0	36.02
149.00	169.00	4 45E-08	1200	0	35.94
169.00	189.00	4.60E_07	403	1	37 35
189.00	209.00	7.34E_06	1200	0	128.80
209.00	200.00	1.57E_08	950	_1	24.65
200.00	249.00	3.56E_00	38	-1	3.40
229.00	249.00	2.00E 00	1200	0	18 30
249.00	289.00	2.99L-09 8 72E_10	38	1	2 30
209.00	209.00	2 83E 00	1200	0	18.05
309.00	329.00	2.05L-09	1200	0	58.67
320.00	329.00	3.10E-07	1200	0	22.00
240.00	349.00	1.00E 11	1200 #NIV		23.09
349.00	369.00	1.00E-11	#INV	#IN V	#INV
200.00	369.00	9.54E-00	1200	0	43.49
309.00	409.00	5.41E-09	1200	0	21.22
409.00	429.00	7.40E-05	1200	0	229.98
428.00	448.00	5.94E-05	1200	0	217.25
448.00	468.00	1.47E-09	1200	0	15.32
449.00	469.00	1.63E-09	1200	0	15.72
469.00	489.00	#NV	#NV	#NV	#NV
469.00	489.00	7.87E-10	1200	0	13.11
489.00	509.00	1.00E-11	#NV	#NV	#NV
509.00	529.00	1.00E-11	#NV	#NV	#NV
529.00	549.00	1.00E-11	#NV	#NV	#NV
549.00	569.00	1.00E-11	#NV	#NV	#NV
569.00	589.00	1.00E-11	#NV	#NV	#NV
589.00	609.00	1.00E-11	#NV	#NV	#NV
609.00	629.00	1.00E–11	#NV	#NV	#NV
629.00	649.00	1.00E–11	#NV	#NV	#NV
649.00	669.00	1.00E-08	7200	0	60.61
669.00	689.00	1.69E–08	1200	0	28.21
674.00	694.00	2.54E-08	2400	0	44.18
339.00	344.00	7.74E–10	1200	0	13.05
344.00	349.00	1.00E–11	#NV	#NV	#NV
369.00	374.00	5.44E-08	1200	0	37.79
374.00	379.00	1.00E-11	#NV	#NV	#NV

Table 6-3. Results from the ri-index calculation of hydraulic tests in KLX17A (see Chapter 4.5.5 for details and nomenclature).

Borehole secup	Borehole seclow	RecommendedTime t_2 for radius of influence calculation (m^2/s) (s)		ri-index	Radius of Influence
(m)	(m)	(m²/s)	(s)	()	(m)
379.00	384.00	2.93E-10	3706	0	17.99
384.00	389.00	3.40E-09	1062	-1	17.78
387.00	392.00	3.17E-09	14400	0	64.32
392.00	397.00	1.00E–11	#NV	#NV	#NV
397.00	402.00	5.61E-09	1200	0	21.42
402.00	407.00	1.00E–11	#NV	#NV	#NV
404.00	409.00	1.00E–11	#NV	#NV	#NV
409.00	414.00	4.78E-08	1200	0	36.59
414.00	419.00	3.50E-08	1200	0	33.85
419.00	424.00	3.21E-05	1200	0	186.26
420.00	425.00	3.48E-05	1200	0	190.06
425.00	430.00	1.90E-05	1200	0	163.38
430.00	435.00	1.68E–05	1200	0	158.43
435.00	440.00	1.00E–11	#NV	#NV	#NV
435.00	440.00	1.00E–11	#NV	#NV	#NV
440.00	445.00	1.00E–11	#NV	#NV	#NV
444.00	449.00	1.00E–11	#NV	#NV	#NV
449.00	454.00	4.56E-11	5400	0	13.64
454.00	459.00	1.00E–11	#NV	#NV	#NV
459.00	464.00	1.05E–10	5400	0	16.80
464.00	469.00	1.54E–09	#NV	-1	#NV
469.00	474.00	5.95E-10	3600	0	21.17
474.00	479.00	1.00E–11	#NV	#NV	#NV
479.00	484.00	1.00E–11	#NV	#NV	#NV
484.00	489.00	1.00E–11	#NV	#NV	#NV
649.00	654.00	1.00E–11	#NV	#NV	#NV
654.00	659.00	1.00E–11	#NV	#NV	#NV
659.00	664.00	1.00E–11	#NV	#NV	#NV
664.00	669.00	6.08E–09	7200	0	53.52
669.00	674.00	1.00E–11	#NV	#NV	#NV
674.00	679.00	7.88E–09	3600	0	40.38
679.00	684.00	1.71E–08	1200	0	28.30
684.00	689.00	9.91E-09	#NV	-1	#NV
689.00	694.00	5.92E-09	1200	0	21.71
689.00	701.08	1.50E-08	3600	0	47.43

The Figures 6-1 to 6-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.

Figure 6-1. Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injection tests, freshwater head extrapolated.

Figure 6-2. Results summary – profile of transmissivity.

Figure 6-3. Results summary – profile of hydraulic conductivity.

6.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

6.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M) and specific capacities (Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that the transmissivities derived from the steady state analysis differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

6.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result of a unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval.

The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). The water compressibility depends on the temperature and salinity. However, for temperature and salinity values as encountered at the Oskarshamn site the water compressibility varies only slightly between $4.5 \cdot 10^{-10}$ and $5.0 \cdot 10^{-10}$ 1/Pa.

Figure 6-4. Correlation analysis of transmissivities derived by steady state and transient methods.

A water compressibility of $5 \cdot 10^{-10}$ 1/Pa and a rock compressibility of $1 \cdot 10^{-10}$ 1/Pa was assumed for the analysis. In addition, the test zone compressibility is influenced by the test tool (packer compliance). The test tool compressibility was calculated as follow:

$$c = \frac{\Delta V}{\Delta p} \times \frac{1}{V} \qquad [1/Pa]$$

- ΔV Volume change of 2 Packers (The volume change was estimated at 7.10⁻⁷ m³/100 kPa based on the results of laboratory tests conducted by GEOSIGMA) [m³].
- Δp Pressure change in test section (usually 2.10⁵ Pa) [Pa].
- V Volume in test section [m³].

The following table presents the calculated compressibilities for each relevant section length. The average value for the test tool compressibility based on different section lengths is $1 \cdot 10^{-10}$ 1/Pa.

The sum of the compressibilities (water, rock, test tool) leads to a test zone compressibility with a value of $7 \cdot 10^{-10}$ 1/Pa. This value is used for the calculation of the theoretical wellbore storage coefficient.

The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients differ mainly up to two orders of magnitude from the theoretical. This phenomenon was already observed at the previous boreholes. A two or three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. This discrepancy is not fully understood, but following hypotheses may be formulated:

- increased compressibility of the packer system
- as shown by previous work conducted at site, the phenomenon of increased wellbore storage coefficients can be explained by turbulent flow induced by the test in the vicinity of the borehole. Considering the fact that deviations concerning the wellbore storage rather occur in test sections with a higher transmissivity (which can lead to turbulent flow) seems to rest upon this hypothesis.

Length of test section [m]	Volume in test section [m³]	Compressibility [1/Pa]
5	0.023	3·10 ⁻¹⁰
20	0.091	8·10 ⁻¹¹
100	0.454	2·10 ⁻¹¹
	Average compressibility:	1.10-10

Table 6-4.	Test tool c	ompressibility	values	based on	packer dis	placement.
		•••••••••••••••••••••••••••••••••••••••				

Figure 6-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

7 Conclusions

7.1 Transmissivity

Figure 6-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 4.5.9.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

If the conducted preliminary pulse injection (Pi) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. In three cases the preliminary pulse was prolonged and the recommended transmissivity range from $4.6 \cdot 10^{-11}$ m²/s to $2.9 \cdot 10^{-10}$ m²/s.

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range between $5.9 \cdot 10^{-10}$ m²/s and $7.5 \cdot 10^{-05}$ m²/s.

A few of the 20 m sections show a slightly higher transmissivity than the appropriate 100 m section. The same was observed at a few of the 5 m section tests in comparison to the appropriate 20 m sections. In these cases, a crossflow or hydraulic connection to adjacent zones cannot be excluded by performing the relevant 20 m respectively 5 m section tests. At some of the relevant 20 m and 5 m sections an increase of Pb was observed during injection which is consistent with the crossflow hypothesis.

7.2 Equivalent freshwater head

Figure 6-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 4.5.8.

The head profile shows the freshwater head ranges from 14.59 m to 18.60 m. The highest freshwater heads were measured between 664 m and 701 m, whereas the lowest freshwater heads were measured between 169 m and 189 m.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities. In several cases, no freshwater head was calculated due to the high uncertainty of the formation pressure.

7.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as 1.10⁻⁸ m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed.

8 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation. pp. 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.-Oct. 1997. pp. 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aquifer. Transactions, American Geophysical Union, Volume 33, No 4, pp. 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration. Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp. 1591–1602.

Rhen I, 2005. Reporting influence radius – proposal (2005-02-09).

Rhen I, Forsmark T, Forssman I, Zetterlund M, 2006. Evaluation of hydrogeo-logical properties for Hydraulic Conductor Domains (HCD) and Hydraulic Rock Domains (HRD). SKB R-06-22, Svensk Kärnbränslehantering AB.

SKB 2001. Platsundersökningar. Undersökningsmetoder och generellt genomförandeprogram. SKB R-01-10, Svensk Kärnbränslehantering AB.

SKB 2002. Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

SKB 2006. Program för platsundersökning vid Simpevarp. SKB R-05-37, Svensk Kärnbränslehantering AB.

Borehole: KLX17A

APPENDIX 1

File Description Table

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- A	AND	FILE	PROTO	DCOL	Testorder dated : 2007-04-13						
Teststart		Interval boundaries		Nan	ne of Datafiles	Testtype	Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-09	13:47	69.00	169.00	KLX17A_0069.00_200705091347.ht2	KLX17A_69.00-169.00_070509_1_CHir_Q_r.csv	Chir	03.06.2007	09.05.2007			
2007-05-09	17:46	169.00	269.00	KLX17A_0169.00_200705091746.ht2	KLX17A_169.00-269.00_070509_1_CHir_Q_r.csv	Chir	03.06.2007	09.05.2007			
2007-05-10	09:35	269.00	369.00	KLX17A_0269.00_200705100935.ht2	KLX17A_269.00-369.00_070510_1_CHir_Q_r.csv	Chir	03.06.2007	10.05.2007			
2007-05-10	13:23	369.00	469.00	KLX17A_0369.00_200705101323.ht2	KLX17A_369.00-469.00_070510_1_CHir_Q_r.csv	Chir	03.06.2007	10.05.2007			
2007-05-10	16:42	469.00	569.00	KLX17A_0469.00_200705101642.ht2	KLX17A_469.00-569.00_070511_1_CHir_Q_r.csv	Chir	03.06.2007	11.05.2007			
2007-05-11	10:16	569.00	669.00	KLX17A_0569.00_200705111016.ht2	KLX17A_569.00-669.00_070511_1_CHir_Q_r.csv	Chir	03.06.2007	11.05.2007			
2007-05-11	14:16	569.00	669.00	KLX17A_0569.00_200705111416.ht2	KLX17A_569.00-669.00_070511_2_CHir_Q_r.csv	Chir	03.06.2007	11.05.2007			
2007-05-13	11:15	69.00	89.00	KLX17A_0069.00_200705131115.ht2	KLX17A_69.00-89.00_070513_1_CHir_Q_r.csv	Chir	03.06.2007	13.05.2007			
2007-05-13	14:08	87.00	107.00	KLX17A_0087.00_200705131408.ht2	KLX17A_87.00-107.00_070513_1_CHir_Q_r.csv	Chir	03.06.2007	13.05.2007			
2007-05-13	16:09	107.00	127.00	KLX17A_0107.00_200705131609.ht2	KLX17A_107.00-127.00_070513_1_CHir_Q_r.csv	Chir	03.06.2007	13.05.2007			
2007-05-13	18:16	127.00	147.00	KLX17A_0127.00_200705131816.ht2	KLX17A_127.00-147.00_070513_1_CHir_Q_r.csv	Chir	03.06.2007	14.05.2007			
2007-05-14	08:51	147.00	167.00	KLX17A_0147.00_200705140851.ht2	KLX17A_147.00-167.00_070514_1_CHir_Q_r.csv	Chir	03.06.2007	14.05.2007			
2007-05-14	10:40	149.00	169.00	KLX17A_0149.00_200705141040.ht2	KLX17A_149.00-169.00_070514_1_CHir_Q_r.csv	Chir	03.06.2007	14.05.2007			
2007-05-14	13:27	169.00	189.00	KLX17A_0169.00_200705141327.ht2	KLX17A_169.00-189.00_070514_1_CHir_Q_r.csv	Chir	03.06.2007	14.05.2007			
2007-05-14	15:33	189.00	209.00	KLX17A_0189.00_200705141533.ht2	KLX17A_189.00-209.00_070514_1_CHir_Q_r.csv	Chir	03.06.2007	14.05.2007			
2007-05-14	17:32	209.00	229.00	KLX17A_0209.00_200705141732.ht2	KLX17A_209.00-229.00_070514_1_CHir_Q_r.csv	Chir	03.06.2007	15.05.2007			

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- A	AND	FILEP	PROTO	OCOL	Testorder dated : 2007-04-13						
Teststart	1	Interval boundaries		Name of Datafiles T		Testtype	Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-15	08:47	229.00	249.00	KLX17A_0229.00_200705150847.ht2	KLX17A_229.00-249.00_070515_1_CHir_Q_r.csv	Chir	03.06.2007	15.05.2007			
2007-05-15	10:58	249.00	269.00	KLX17A_0249.00_200705151058.ht2	KLX17A_249.00-269.00_070515_1_CHir_Q_r.csv	Chir	03.06.2007	15.05.2007			
2007-05-15	14:02	269.00	289.00	KLX17A_0269.00_200705151402.ht2	KLX17A_269.00-289.00_070515_1_CHir_Q_r.csv	Chir	03.06.2007	15.05.2007			
2007-05-15	16:55	289.00	309.00	KLX17A_0289.00_200705151655.ht2	KLX17A_289.00-309.00_070515_1_CHir_Q_r.csv	Chir	03.06.2007	15.05.2007			
2007-05-16	08:46	309.00	329.00	KLX17A_0309.00_200705160846.ht2	KLX17A_309.00-329.00_070516_1_CHir_Q_r.XLS	Chir	03.06.2007	16.05.2007			
2007-05-16	10:45	329.00	349.00	KLX17A_0329.00_200705161045.ht2	KLX17A_329.00-349.00_070516_1_CHir_Q_r.csv	Chir	03.06.2007	16.05.2007			
2007-05-16	13:20	349.00	369.00	KLX17A_0349.00_200705161320.ht2	KLX17A_349.00-369.00_070516_1_CHir_Q_r.csv	Chir	03.06.2007	16.05.2007			
2007-05-16	14:43	369.00	389.00	KLX17A_0369.00_200705161443.ht2	KLX17A_369.00-389.00_070516_1_CHir_Q_r.XLS	Chir	03.06.2007	16.05.2007			
2007-05-16	16:39	389.00	409.00	KLX17A_0389.00_200705161639.ht2	KLX17A_389.00-409.00_070516_1_CHir_Q_r.csv	Chir	03.06.2007	16.05.2007			
2007-05-17	08:43	409.00	429.00	KLX17A_0409.00_200705170843.ht2	KLX17A_409.00-429.00_070517_1_CHir_Q_r.csv	Chir	03.06.2007	17.05.2007			
2007-05-17	10:43	428.00	448.00	KLX17A_0428.00_200705171043.ht2	KLX17A_428.00-448.00_070517_1_CHir_Q_r.csv	Chir	03.06.2007	17.05.2007			
2007-05-17	13:34	448.00	468.00	KLX17A_0448.00_200705171334.ht2	KLX17A_448.00-468.00_070517_1_CHir_Q_r.csv	Chir	03.06.2007	17.05.2007			
2007-05-17	15:47	449.00	469.00	KLX17A_0449.00_200705171547.ht2	KLX17A_449.00-469.00_070517_1_CHir_Q_r.csv	Chir	03.06.2007	17.05.2007			
2007-05-17	18:06	469.00	489.00	KLX17A_0469.00_200705171806.ht2	KLX17A_469.00-489.00_070517_1_Pi_Q_r.csv	Pi	03.06.2007	18.05.2007			
2007-05-18	08:47	489.00	509.00	KLX17A_0489.00_200705180847.ht2	KLX17A_489.00-509.00_070518_1_Pi_Q_r.csv	Pi	03.06.2007	18.05.2007			
2007-05-18	11:04	509.00	529.00	KLX17A_0509.00_200705181104.ht2	KLX17A_509.00-529.00_070518_1_CHir_Q_r.csv	Chir	03.06.2007	18.05.2007			

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- A	ND	FILEP	PROTO	OCOL	Testorder dated : 2007-04-13						
Teststart	1	Interval boundaries		Nan	Name of Datafiles		Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-18	12:36	529.00	549.00	KLX17A_0529.00_200705181236.ht2	KLX17A_529.00-549.00_070518_1_Pi_Q_r.csv	Pi	03.06.2007	18.05.2007			
2007-05-18	15:13	549.00	569.00	KLX17A_0549.00_200705181513.ht2	KLX17A_549.00-569.00_070518_1_CHir_Q_r.csv	Chir	03.06.2007	18.05.2007			
2007-05-18	16:44	569.00	589.00	KLX17A_0569.00_200705181644.ht2	KLX17A_569.00-589.00_070518_1_CHir_Q_r.csv	Chir	03.06.2007	18.05.2007			
2007-05-18	18:44	569.00	589.00	KLX17A_0569.00_200705181844.ht2	KLX17A_569.00-589.00_070518_2_Pi_Q_r.csv	Pi	03.06.2007	18.05.2007			
2007-05-19	08:59	589.00	609.00	KLX17A_0589.00_200705190859.ht2	KLX17A_589.00-609.00_070519_1_CHir_Q_r.csv	Chir	03.06.2007	19.05.2007			
2007-05-19	10:33	609.00	629.00	KLX17A_0609.00_200705191033.ht2	KLX17A_609.00-629.00_070519_1_CHir_Q_r.csv	Chir	03.06.2007	19.05.2007			
2007-05-19	12:19	629.00	649.00	KLX17A_0629.00_200705191219.ht2	KLX17A_629.00-649.00_070519_1_CHir_Q_r.csv	Chir	03.06.2007	19.05.2007			
2007-05-19	15:31	649.00	669.00	KLX17A_0649.00_200705191531.ht2	KLX17A_649.00-669.00_070519_1_CHir_Q_r.csv	Chir	03.06.2007	20.05.2007			
2007-05-20	08:53	669.00	689.00	KLX17A_0669.00_200705200853.ht2	KLX17A_669.00-689.00_070520_1_CHir_Q_r.csv	Chir	03.06.2007	20.05.2007			
2007-05-20	11:04	674.00	694.00	KLX17A_0674.00_200705201104.ht2	KLX17A_674.00-694.00_070520_1_CHir_Q_r.csv	Chir	03.06.2007	20.05.2007			
2007-05-20	17:54	469.00	489.00	KLX17A_0469.00_200705201754.ht2	KLX17A_469.00-489.00_070520_2_CHir_Q_r.csv	Chir	03.06.2007	22.05.2007			
2007-05-22	13:43	339.00	344.00	KLX17A_0339.00_200705221343.ht2	KLX17A_339.00-344.00_070522_1_CHir_Q_r.csv	Chir	03.06.2007	22.05.2007			
2007-05-22	15:54	344.00	349.00	KLX17A_0344.00_200705221554.ht2	KLX17A_344.00-349.00_070522_1_CHir_Q_r.csv	Chir	03.06.2007	22.05.2007			
2007-05-23	09:07	369.00	374.00	KLX17A_0369.00_200705230907.ht2	KLX17A_369.00-374.00_070523_1_CHir_Q_r.csv	Chir	03.06.2007	23.05.2007			
2007-05-23	10:58	374.00	379.00	KLX17A_0374.00_200705231058.ht2	KLX17A_374.00-379.00_070523_1_CHir_Q_r.csv	Chir	03.06.2007	23.05.2007			

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- A	AND	FILEP	PROTO	OCOL	Testorder dated : 2007-04-13						
Teststart	I	Interval boundaries		Nan	Name of Datafiles		Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-23	13:07	379.00	384.00	KLX17A_0379.00_200705231307.ht2	KLX17A_379.00-384.00_070523_1_Pi_Q_r.csv	Pi	03.06.2007	23.05.2007			
2007-05-23	15:49	384.00	389.00	KLX17A_0384.00_200705231549.ht2	KLX17A_384.00-389.00_070523_1_CHir_Q_r.csv	Chir	03.06.2007	23.05.2007			
2007-05-23	17:48	387.00	392.00	KLX17A_0387.00_200705231748.ht2	KLX17A_387.00-392.00_070523_1_CHir_Q_r.csv	Chir	03.06.2007	24.05.2007			
2007-05-24	10:35	392.00	397.00	KLX17A_0392.00_200705241035.ht2	KLX17A_392.00-397.00_070524_1_CHir_Q_r.csv	Chir	03.06.2007	24.05.2007			
2007-05-24	13:08	397.00	402.00	KLX17A_0397.00_200705241308.ht2	KLX17A_397.00-402.00_070524_1_CHir_Q_r.csv	Chir	03.06.2007	24.05.2007			
2007-05-24	15:07	402.00	407.00	KLX17A_0402.00_200705241507.ht2	KLX17A_402.00-407.00_070524_1_CHir_Q_r.csv	Chir	03.06.2007	24.05.2007			
2007-05-24	16:22	404.00	409.00	KLX17A_0404.00_200705241622.ht2	KLX17A_404.00-409.00_070524_1_CHir_Q_r.csv	Chir	03.06.2007	24.05.2007			
2007-05-24	17:35	409.00	414.00	KLX17A_0409.00_200705241735.ht2	KLX17A_409.00-414.00_070524_1_CHir_Q_r.csv	Chir	03.06.2007	25.05.2007			
2007-05-25	08:18	414.00	419.00	KLX17A_0414.00_200705250818.ht2	KLX17A_414.00-419.00_070525_1_CHir_Q_r.csv	Chir	03.06.2007	25.05.2007			
2007-05-25	10:36	419.00	424.00	KLX17A_0419.00_200705251036.ht2	KLX17A_419.00-424.00_070525_1_CHir_Q_r.csv	Chir	03.06.2007	25.05.2007			
2007-05-25	12:56	420.00	425.00	KLX17A_0420.00_200705251256.ht2	KLX17A_420.00-425.00_070525_1_CHir_Q_r.csv	Chir	03.06.2007	25.05.2007			
2007-05-25	14:50	425.00	430.00	KLX17A_0425.00_200705251450.ht2	KLX17A_425.00-430.00_070525_1_CHir_Q_r.csv	Chir	03.06.2007	25.05.2007			
2007-05-25	16:44	430.00	435.00	KLX17A_0430.00_200705251644.ht2	KLX17A_430.00-435.00_070525_1_CHir_Q_r.csv	Chir	03.06.2007	26.05.2007			
2007-05-26	08:17	435.00	440.00	KLX17A_0435.00_200705260817.ht2	KLX17A_435.00-440.00_070526_1_Pi_Q_r.csv	Pi	03.06.2007	26.05.2007			
2007-05-26	09:56	440.00	445.00	KLX17A_0440.00_200705260956.ht2	KLX17A_440.00-445.00_070526_1_CHir_Q_r.csv	Chir	03.06.2007	26.05.2007			

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- A	AND	FILEF	ROTO	OCOL	Testorder dated : 2007-04-13						
Teststart	I	Interval boundaries		Nan	ne of Datafiles	Testtype	Copied to	Plotted	Sign.		
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-26	11:16	444.00	449.00	KLX17A_0444.00_200705261116.ht2	KLX17A_444.00-449.00_070526_1_CHir_Q_r.csv	Chir	03.06.2007	26.05.2007			
2007-05-26	13:34	449.00	454.00	KLX17A_0449.00_200705261334.ht2	KLX17A_449.00-454.00_070526_1_Pi_Q_r.csv	Pi	03.06.2007	26.05.2007			
2007-05-26	16:14	454.00	459.00	KLX17A_0454.00_200705261614.ht2	KLX17A_454.00-459.00_070526_1_CHir_Q_r.csv	Chir	03.06.2007	27.05.2007			
2007-05-27	08:14	459.00	464.00	KLX17A_0459.00_200705270814.ht2	KLX17A_459.00-464.00_070527_1_Pi_Q_r.csv	Pi	03.06.2007	27.05.2007			
2007-05-27	10:58	464.00	469.00	KLX17A_0464.00_200705271058.ht2	KLX17A_464.00-469.00_070527_1_CHir_Q_r.csv	Chir	03.06.2007	27.05.2007			
2007-05-27	14:03	469.00	474.00	KLX17A_0469.00_200705271403.ht2	KLX17A_469.00-474.00_070527_1_CHir_Q_r.csv	Chir	03.06.2007	27.05.2007			
2007-05-27	17:09	474.00	479.00	KLX17A_0474.00_200705271709.ht2	KLX17A_474.00-479.00_070527_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	08:04	479.00	484.00	KLX17A_0479.00_200705280804.ht2	KLX17A_479.00-484.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	09:21	484.00	489.00	KLX17A_0484.00_200705280921.ht2	KLX17A_484.00-489.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	13:43	649.00	654.00	KLX17A_0649.00_200705281343.ht2	KLX17A_649.00-654.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	15:01	654.00	659.00	KLX17A_0654.00_200705281501.ht2	KLX17A_654.00-659.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	16:16	659.00	664.00	KLX17A_0659.00_200705281616.ht2	KLX17A_659.00-664.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	28.05.2007			
2007-05-28	17:28	664.00	669.00	KLX17A_0664.00_200705281728.ht2	KLX17A_664.00-669.00_070528_1_CHir_Q_r.csv	Chir	03.06.2007	29.05.2007			
2007-05-29	08:10	669.00	674.00	KLX17A_0669.00_200705290810.ht2	KLX17A_669.00-674.00_070529_1_CHir_Q_r.csv	Chir	03.06.2007	29.05.2007			
2007-05-29	09:34	674.00	679.00	KLX17A_0674.00_200705290934.ht2	KLX17A_674.00-679.00_070529_1_CHir_Q_r.csv	Chir	03.06.2007	29.05.2007			

HYDROTESTING WITH PSS					DRILLHOLE IDENTIFICATION NO.: KLX17A						
TEST- AND FILEPROTOCOL					Testorder dated : 2007-04-13						
Teststart Interval boundaries		ies	Name of Datafiles		Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)			
2007-05-29	13:00	679.00	684.00	KLX17A_0679.00_200705291300.ht2	KLX17A_679.00-684.00_070529_1_CHir_Q_r.csv	Chir	03.06.2007	29.05.2007			
2007-05-29	15:01	684.00	689.00	KLX17A_0684.00_200705291501.ht2	KLX17A_684.00-689.00_070529_1_CHir_Q_r.csv	Chir	03.06.2007	29.05.2007			
2007-05-29	17:58	689.00	694.00	KLX17A_0689.00_200705291758.ht2	KLX17A_689.00-694.00_070529_1_CHir_Q_r.csv	Chir	03.06.2007	30.05.2007			
2007-05-30	16:22	435.00	440.00	KLX17A_0435.00_200705301622.ht2	KLX17A_435.00-440.00_070530_2_Pi_Q_r.csv	Pi	03.06.2007	01.06.2007			
2007-06-01	16:46	689.00	701.08	KLX17A_0689.00_200706011646.ht2	KLX17A_689.00-701.08_070601_1_CHir_Q_r.csv	Chir	03.06.2007	02.06.2007			

Borehole: KLX17A

APPENDIX 2

Analysis diagrams

APPENDIX 2-1

Test 69.00 – 169.00 m

Analysis diagrams

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 169.00 – 269.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 269.00 - 369.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 369.00 – 469.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 469.00 – 569.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 569.00 – 669.00 m

Pressure and flow rate vs. time; cartesian plot (repeated)

Interval pressure and temperature vs. time; cartesian plot (repeated)

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 69.00 – 89.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 87.00 – 107.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 107.00 – 127.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match
Test 127.00 – 147.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 147.00 – 167.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 149.00 – 169.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 169.00 – 189.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

Page 2-13/4

CHIR phase; log-log match

CHIR phase; HORNER match

Test 189.00 – 209.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 209.00 – 229.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 229.00 – 249.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 249.00 – 269.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 269.00 – 289.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match
Test 289.00 – 309.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 309.00 – 329.00 m

Pressure and flow rate vs. time; cartesian plot

tD

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 329.00 – 349.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 349.00 – 369.00 m

Pressure and flow rate vs. time; cartesian plot

Not analysed

CHI phase; log-log match

Not analysed

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 369.00 – 389.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 389.00 – 409.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 409.00 – 429.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

10¹⁵

tD

CHI phase; log-log match

10¹³

10¹⁴

10 -5

10¹⁷

10¹⁶

CHIR phase; log-log match

CHIR phase; HORNER match

Test 428.00 – 448.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 448.00 – 468.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match
Test 449.00 – 469.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 469.00 – 489.00 m

Pressure and flow rate vs. time; cartesian plot (repeated)

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 489.00 – 509.00 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 509.00 – 529.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 529.00 – 549.00 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 549.00 – 569.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

Page 2-33/4

CHIR phase; HORNER match

Test 569.00 – 589.00 m

Pressure and flow rate vs. time; cartesian plot (repeated)

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 589.00 – 609.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

Page 2-35/4

CHIR phase; HORNER match

Test 609.00 – 629.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 629.00 – 649.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

Page 2-37/4

CHIR phase; HORNER match

Test 649.00 – 669.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

10

tD/CD

CHIR phase; log-log match

10

CHIR phase; HORNER match

10³

Test 669.00 – 689.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 674.00 – 694.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

10 -4

10 ²

10

CHI phase; log-log match

1/q, (1/q)' [min/l]

CHIR phase; log-log match

CHIR phase; HORNER match

Test 339.00 – 344.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

SKB Laxemar / KLX17A 339.00-344.00 / CHir 10 ⁻³

<u>10</u> -4

10

CHIR phase; log-log match

CHIR phase; HORNER match

Test 344.00 – 349.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 369.00 – 374.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 374.00 – 379.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 379.00 – 384.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Pulse injection; deconvolution match

Test 384.00 – 389.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 387.00 – 392.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 392.00 – 397.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 397.00 – 402.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 402.00 – 407.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 404.00 – 409.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

Page 2-51/4

CHIR phase; HORNER match

Test 409.00 – 414.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

SKB Laxemar / KLX17A 409.00-414.00 / CHir

10

10

10

CHIR phase; log-log match

CHIR phase; HORNER match

p-p0, (p-p0)' [kPa]

Test 414.00 – 419.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 419.00 – 424.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 420.00 – 425.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 425.00 – 430.00 m

Pressure and flow rate vs. time; cartesian plot

10¹⁵ tD 10 ¹⁶

10¹⁷

CHI phase; log-log match

10 ¹³

10 14

10

10 18

CHIR phase; log-log match

CHIR phase; HORNER match

Test 430.00 – 435.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 435.00 – 440.00 m

Pressure and flow rate vs. time; cartesian plot (repeated)

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 440.00 – 445.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 444.00 – 449.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

CHIR phase; HORNER match

Test 449.00 – 454.00 m

Pressure and flow rate vs. time; cartesian plot

Pulse injection; deconvolution match

Test 454.00 – 459.00 m

Pressure and flow rate vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

Not analysed

Page 2-62/4

CHIR phase; HORNER match

Test 459.00 – 464.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Pulse injection; deconvolution match

Test 464.00 – 469.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

10²

10

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match
Test 469.00 – 474.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; HORNER match

Test 474.00 – 479.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 479.00 – 484.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 484.00 – 489.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 649.00 – 654.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 654.00 – 659.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 659.00 – 664.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed

Test 664.00 – 669.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 669.00 – 674.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHIR phase; log-log match

Not analysed
Test 674.00 – 679.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 679.00 – 684.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 684.00 – 689.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Not analysed

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 689.00 – 694.00 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Test 689.00 – 701.08 m

Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

CHI phase; log-log match

CHIR phase; log-log match

CHIR phase; HORNER match

Borehole: KLX17A

APPENDIX 3

Test Summary Sheets

	Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]	CHi					
Area:	Laxemar	Test no:			1			
Borehole ID:	KLX17A	Test start:	070509 1		070509 13:47			
Test section from - to (m):	Test section from - to (m): 69.00-169.00 m		Philipp Wolf Linda Höckert					
Section diameter, 2-r _w (m):	0.076	Responsible for	Cristian Enachescu					
Linear plot Q and p		test evaluation:		Pacayonyporiad				
		Indata		Indata				
1900 x	1 25.00	n. (kPa) –	1/23	mata				
KLX17A_69.00-169.00_070509_1_CHir_Q_r	• P section	$p_0 (kPa) =$	1423					
1700	• P balow • Q	$p_i(kPa) =$	1431	n_ (kPa) -	1429			
1500	2000	$p_{p}(R a) =$	1 82E 04	ρ _F (κι α) =	1429			
		$Q_p (m^2/s) =$	1.85E-04	t_ (c) _	1800			
6 1 1300 -	15.00 G	(p(s)) =	1 00E 06	$l_F(S) =$	1.00E.06			
90	ection Ra	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06			
	- 10.00 ਵ	$EC_w (mS/m) =$	0.1					
900		Temp _w (gr C)=	9.1		0.02			
	- 5.00	Derivative fact.=	0.08	Derivative fact.=	0.02			
	intelesting and a second second second and the second second second second second second second second second s							
500 0.00 0.25 0.50 0.75 1.00 Elapsed T	1.25 1.50 1.75 2.00 2.25	Posulte		Posults				
		$O(z_1/z_2^2/z_1)$	9.0E-06	Results				
Log Log plot incl. derivator, fl	aw pariod	Q/s (m/s) =	9.0L-00					
Log-Log plot mer. derivates- m	ow period	I _M (m ⁻ /s)=	1.2E-05		transiant			
		Flow regime.		Flow regime.				
Elapsed time [h]		$dt_1 (min) =$	2.70	$dl_1(min) =$	4.49			
	0.3	$dl_2(mn) =$	10.92	$dl_2(mn) =$	12.30			
	10 -1	$T(m^2/s) =$	1.4E-05	T (m²/s) =	1.2E-05			
e e e e e e e e e e e e e e e e e e e		S(-) =	1.0E-06	S(-) =	1.0E-06			
10	0.03	$K_s (M/S) =$	1.4E-07	$K_s (M/S) =$	1.2E-07			
	10 2	$S_{s}(1/m) =$	1.0E-08	$S_{s}(1/m) =$	1.0E-08			
	110011	C (m³/Pa) =	NA	C (m³/Pa) =	1.1E-09			
10 -1	0.03	$C_{\rm D}(-) =$	NA 1.50	$C_{\rm D}(-) =$	1.2E-01			
	10 ⁻³	ζ(-) =	-4.50	ξ(-) =	-5.31			
	-	$T_{m}(m^{2}/c) =$	NA	$T_{m}(m^{2}/c) =$	NA			
10 [°] 10 ¹ 10	10 ² 10 ³ 10 ⁴	$S_{GRF}(117S) =$	NA	$S_{GRF}(11/3) =$	NA			
		$D_{\text{ORF}}(-) =$	NA	$D_{CRF}(-) =$	NA			
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters				
		dt (min) =	2 78	$C (m^3/P_2)$	1 1E-09			
Elansed time In1		$dt_1(min) =$	10.92	$C(III/Pa) = C_{Pa}(-) = -$	1.1E 00			
10 1	⁰	$T_{12}(m^{2}/c) =$	1 4E-05	E (-) -	-4 50			
	10 3	$T_{T}(117/S) =$	1.4E 00	S(-) –	4.00			
	300	С() – К (m/s) –	1.6E 00					
10 °.		$S_{s}(1/m) =$	1.4E 07					
and the second	10 2	Comments:	1.02 00					
		The recommended t	ronomicsivity of	$1.4 \bullet 10.5 m^{2}/s was$	darived from			
		the analysis of the C	Hi phase (outer	zone), which shows	the best data			
	10 1	and derivative quali	ty. The confider	ice range for the inte	erval			
	man and a second se	transmissivity is estimated to be $2.0 \cdot 10-6 \text{ m}^2/\text{s}$ to $4.0 \cdot 10-5 \text{ m}^2/\text{s}$. The						
•	3	³ flow dimension displayed during the test was 2. The static pressure						
່ 10 ^ຢ ໍ່ 10 ¹ ຍາເວຍ	10 ² 10 ³ 10 ³	measured at transdu straight line extrapo	lation in the Ho	rner plot to a value o	of 1,424.8 kPa.			

	Test Sur	nmary Sheet			
Project:	Oskarshamn site investigat	ion <u>Test type:[1]</u>			CHir
Area:	Laxen	nar Test no:			1
Borehole ID:	KLX1	7A Test start:	070510 09		
Test section from - to (m):	269.00-369.00) m Responsible for		Philipp W	
		test execution:			Linda Höckert
Section diameter, $2 \cdot r_w$ (m):	0.0	76 Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		p ₀ (kPa) =	3124		
3400 KLX17A_269.00-369.00_070510_1_CHir_Q_r	P secton	_m (kPa) =	3125	j	
3200	• P bakow • P bakow • Q	$p_{p}(kPa) =$	3349	p _F (kPa) =	3144
	1.	\tilde{Q}_{p} (m ³ /s)=	9.97E-06		
3000 ·	- 1	[∞] _p (m / c) =	1800	t _F (s) =	1800
C			1.00E-06	S el S [*] (-)=	1.00E-06
Downshools		$EC_w (mS/m) =$			
200	•	Temp _w (gr C)=	11.7	;	
	+ a	Derivative fact.=	0.05	Derivative fact.=	0.02
		2			
2200 0.25 0.50 0.75 1	.00 1.25 1.50 1.75 2.00			1	
Elapser	Time [h]	Results		Results	
		$Q/s (m^2/s) =$	4.4E-07		
Log-Log plot incl. derivates- f	low period	$T_M (m^2/s) =$	5.7E-07		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (1 10 ⁻² 0 ⁻¹ 0 ⁰	dt_1 (min) =	0.56	dt ₁ (min) =	2.36
10 2	30	dt_2 (min) =	25.68	$dt_2 (min) =$	26.22
		$T(m^{2}/s) =$	3.0E-07	$T(m^2/s) =$	2.7E-07
	10	S (-) =	1.0E-06	S(-) =	1.0E-06
10 1	3	$K_s (m/s) =$	3.0E-09	K _s (m/s) =	2.7E-09
		$S_{s}(1/m) =$	1.0E-08	S _s (1/m) =	1.0E-08
	10000000000000000000000000000000000000	C (m ³ /Pa) =	NA	C (m³/Pa) =	1.8E-09
10 0		$\int_{a}^{b} C_{D}(-) =$	NA	C _D (-) =	2.0E-01
		ξ(-) =	-2.59	ξ(-) =	-3.23
	10 ⁻¹	1			
· · · · · · · · · · · · · · · · · · ·	·····	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 10 to	10 10 10	S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt_1 (min) =	2.36	⁷ C (m ³ /Pa) =	1.8E-09
Elapsed time []	1] 1	dt_2 (min) =	26.22	$C_{D}(-) =$	2.0E-01
10		$T_{T} (m^{2}/s) =$	2.7E-07	ξ(-) =	-3.23
	300	S (-) =	1.0E-06	j	
	10 2	$K_s (m/s) =$	2.7E-09	J	
10 °	and the second sec	$S_{s}(1/m) =$	1.0E-08	i	
	30	Comments:			
	The recommended transmissivity of 2.7•10-7 m2/s was derived from				
10 -1		the analysis of the derivative quality ?	Utir phase, which The confidence of	ch shows the best da	ta and 1 transmissivity
	3	is estimated to be $1.0 \cdot 10.7$ m2/s to $5.0 \cdot 10.7$ m2/s. The flow dimension			
		displayed during th	e test was 2. The	e static pressure mea	isured at
10 [°] 10 [°]	10 [°] 10 [°] 10 [°]	transducer depth, w	as derived from	the CHir phase usin	ig straight line
10/01)	extrapolation in the	Horner plot to a	a value of 3,119.6 kl	Pa.

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	r Test no:			1
Borehole ID:	KLX17A	Test start:	070513 11		
Test section from - to (m):	69.00-89.00 n	Responsible for			Philipp Wolf
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu
,		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
1000	1.050	p ₀ (kPa) =	736		
KLX17A_69.00-89.00_070513_1_CHir_Q_r	Paerton Paerton Doba	p _i (kPa) =	744		
200 	P balow Q 1 0.40	p _p (kPa) =	944	p _F (kPa) =	750
900 -	0.35	$Q_{p} (m^{3}/s) =$	3.00E-06		
80) R		tp (s) =	1200	t _F (s) =	1200
5 500-	and the second sec	S el S [*] (-)=	1.00E-03	S el S [*] (-)=	1.00E-03
4 90 400 120	1 II II 10 00.0	$EC_w (mS/m) =$			
700 -	0.15	Temp _w (ar C)=	8.0		
680 -	0.10	Derivative fact =	0.04	Derivative fact =	0.02
	- 0.05		0.01		
950 0.00 0.20 0.40 0.60	0.00 1.00 1.20 1.40 1.60				†
Elapio	d i me (h)	Results		Results	
		Q/s (m ² /s)=	1.5E-07		
Log-Log plot incl. derivates- f	low period	T_{M} (m ² /s)=	1.5E-07		
	•	Flow regime:	transient	Flow regime:	transient
Elapsed time (N	dt_1 (min) =	0.15	dt_1 (min) =	1.42
10 3		dt_2 (min) =	18.18	dt_2 (min) =	12.72
		$T(m^{2}/s) =$	1.5E-07	$T(m^{2}/s) =$	1.2E-07
	30	S(-) =	1 0E-03	S(-) =	1.0E-03
10 5	10 ¹	K (m/s) =	7.5E-09	K (m/s) =	6.0E-09
		$S_{\rm s}(1/m) =$	5.0E-05	S (1/m) -	5.0E-05
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	$O_{s}(1/11) = O_{s}(1/11)$	0.0E 00	$O_{s}(1/11) = 0$	1.8E-10
	o	C(m/Pa) =		C (m /Pa) =	2.05-05
10 °	10 ng. (ng)	$C_{\rm D}(-) =$	NA 4.22	$C_{\rm D}(-) =$	2.0E-03
· · · · · · · · · · · · · · · · · · ·	0.3	(-) =	4.32	(-) =	1.90
	- -	$T_{CRF}(m^2/s) =$	NA	$T_{CBF}(m^2/s) =$	NA
10 ² 10 ³	10 ⁴ 10 ² 10 ¹⁰	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRE}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	ntative paran	neters.	
		dt ₁ (min) =	1.42	C (m ³ /Pa) –	1.8F-10
Elacsed time Ihi		$dt_1(\min) =$	12 72	$C(m/na) = C_{D}(-) =$	2 0E-05
10 2 10.4	10 ⁻¹	$T_{1}(m^{2}/c) =$	1 2F-07	(-) -	1.98
	3000	$T_{T}(1175) =$	1.2E 01	() –	
	10 3	C(m) = K(m)	6.0E-00		┫────┤
10 13		$R_{s}(11/s) =$	0.0E-09		
	300	$O_{s}(1/11) =$	5.0⊑-05		
			, .		1 . 16
	10	The recommended transmissivity of 1.2•10-7 m2/s was derived from the analysis of the CHir phase, which shows the batter data and			
10°	30	derivative quality	The confidence i	ange for the interval	l transmissivity
		is estimated to be 8.0•10-8 m2/s to 3.0•10-7 m2/s. The flow dimension			
	10 '	displayed during the	e test is 2 (radia	flow). The static pr	essure
10 ⁰ 10 ¹ D/CD	10 ² 10 ³ 10 ⁴	measured at transdu	icer depth, was o	lerived from the CH	ir phase using
		straight nne extrapo	nation in the Ho	mer prot to a value	л 734.3 кPa.

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]	CHir				
Area:	Laxema	Test no:			1		
Borehole ID:	KLX17A	Test start:	070513 14:				
Test section from - to (m):	87.00-107.00 m	Responsible for test execution:		Philipp Wol Linda Höcker			
Section diameter, 2.r _w (m):	0.076	Responsible for		Cristi	an Enachescu		
Linear plot Q and p		test evaluation:		Recovery period			
		Indata		Indata			
		p ₀ (kPa) =	892				
1200 KLX17A_87.00-107.00_070513_1_CHir_Q_r	• P sector	p _i (kPa) =	896				
100.	* Publove * P balow Q * 1.00	p _p (kPa) =	1096	p _F (kPa) =	896		
		$Q_{p} (m^{3}/s) =$	1.05E-05				
5, 1000 ·	10.00	tp(s) =	1200	t _F (s) =	1200		
A cause of	الله ي الله ي الله الله ي الله الله الله الله	S el S [*] (-)=	1.00E-03	S el S [*] (-)=	1.00E-03		
000 0000 1000 0000 0000 0000 0000 0000		EC _w (mS/m)=		(/			
-	0.40	Temp _w (gr C)=	8.3				
800 -	020	Derivative fact.=	0.03	Derivative fact.=	0.02		
المربق المربقة ا							
700 0.20 0.40 0.50 Elapsed	0.80 1.00 1.20 1.40 Time [h]	Poculto		Poculto			
			E 2E 07	Results			
Les les platinel derivates ($Q/s (m^{-}/s) =$	5.2E-07				
Log-Log plot Incl. derivates- fi	low period	$T_{M} (m^{2}/s) =$	5.4E-07	-			
		Flow regime:	transient	Flow regime:	transient		
Elapsed time (h	J 19, ⁻² 19, ⁻¹	$dt_1 (min) =$	0.98	$dt_1 (min) =$	0.44		
	10	$at_2 (min) =$	19.08	$dt_2 (min) =$	10.14		
		$T (m^2/s) =$	6.6E-07	$T(m^2/s) =$	1.9E-06		
	3	S (-) =	1.0E-03	S (-) =	1.0E-03		
10 1	4.4 (Max 800) (1.9 M 4.4 (M 4	$K_s (m/s) =$	3.3E-08	$K_s (m/s) =$	9.5E-08		
	••••••	$S_s(1/m) =$	5.0E-05	$S_s(1/m) =$	5.0E-05		
		C (m³/Pa) =	NA	C (m³/Pa) =	1.7E-10		
10 °		$C_D(-) =$	NA	$C_D(-) =$	1.9E-05		
•	- (2): [minu] 10 ∜ (minu]	(-) =	4.35	(-) =	18.10		
		2/ \		2/ \			
10 3 10 4	10 ⁵ 10 ⁶ 10 ⁷	$I_{GRF}(m^{-}/s) =$		$T_{GRF}(m^{-}/s) =$			
		$S_{GRF}(-) =$		$S_{GRF}(-) =$			
	· .	$D_{GRF}(-) =$		$D_{\text{GRF}}(-) =$			
Log-Log plot Incl. derivatives-	recovery period	Selected represe		eters.			
		$at_1 (min) =$	0.98	C (m³/Pa) =	1.7E-10		
Elapsed time (h)	ا ــــــــــــــــــــــــــــــــــــ	$at_2 (min) =$	19.08	C _D (-) =	1.9E-05		
		$T_T (m^2/s) =$	6.6E-07	(-) =	4.35		
1	300	S (-) =	1.0E-03				
		$K_s (m/s) =$	3.3E-08				
10	10 2	$S_{s}(1/m) =$	5.0E-05				
	30	Comments:					
		The recommended	transmissivity of	6.6•10-7 m2/s was	derived from		
10 ⁰	10 ¹ PP0.	the analysis of the C	HI phase, which	n shows a noisy but of the fidence range for the	clear horizontal		
		transmissivity is estimated to be 3.0•10-7 m2/s to 3.0•10-6 m2/s. The					
	3	flow dimension disp	played during th	e test is 2 (radial flo	w). The static		
40 ¹ 2	10 ⁻⁰	pressure measured	at transducer dej	oth, was derived from	n the CHir		
10 10 tD/CD	10 10	phase using straight	line extrapolati	on in the Horner plo	t to a value of		
895.3 kPa.							

	Test Sum	mary Sheet				
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir	
Area:	Laxema	ar Test no:			1	
Borehole ID:	KLX17	A Test start:	070513 18:			
Test section from - to (m):	127.00-147.00	m Responsible for		Philipp Wo		
Section diameter. 2-r _w (m):	0.07	6 Responsible for		Linda Höcke Cristian Enachesc		
		test evaluation:				
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
1900	1.0015	p ₀ (kPa) =	1237	r		
ки	X17A_127.00-147.00_070513_1_CHir_Q_r • P section • P show	p _i (kPa) =	1245	í		
1400	• P bolow • Q • 0.012	p _p (kPa) =	1475	p _F (kPa) =	1244	
		$Q_{p} (m^{3}/s) =$	9.50E-08			
		tp (s) =	1200	t _F (s) =	7200	
		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
00000000 12000		$EC_w (mS/m) =$			1	
		Temp _w (gr C)=	8.7	·		
	······································	Derivative fact =	0.08	Derivative fact.=	0.02	
1000 0.00 0.50 1.00 1.50	2.00 2.50 3.00 3.50					
Elapsee	ime [n]	Results		Results		
		$Q/s (m^2/s) =$	4.1E-09			
Log-Log plot incl. derivates- f	low period	$T_{M} (m^{2}/s) =$	4.2E-09			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time	n (h)	dt_1 (min) =	3.21	dt ₁ (min) =	32.52	
10 2 10	······································	dt_2 (min) =	16.02	dt_2 (min) =	93.00	
	10 3	$T(m^{2}/s) =$	1.5E-09	$T(m^{2}/s) =$	1.5E-09	
		S (-) =	1.0E-06	S (-) =	1.0E-06	
10		$K_s(m/s) =$	7.5E-11	K _s (m/s) =	7.5E-11	
· • • • • • • • • • • • • • • • • • • •	10 ²	$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08	
6 10 °		$\frac{1}{2}C(m^{3}/P_{2}) =$	NA	$C (m^{3}/P_{2}) =$	7.0F-11	
× · · · · ·	- 10 ¹	$C_{n}(-) =$	NA	$C_{n}(-) =$	7 7E-03	
	•	= () ال	-0.57	() = (ε) =	-1.01	
10		S (-) –	0.07	S(-) –	1.01	
	10 °	$T_{aa}(m^{2}/s) =$	NA	$T_{aa}(m^2/s) =$	NA	
10 ° 10 '	10 ² 10 ³ 10 ⁴	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRE}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.		
		$dt_{4}(min) =$	32.52	$C(m^3/D_2)$	7 0F-11	
		dt_2 (min) -	02.02	$C_{D}(-) =$	7 7E-03	
10 ¹	"10,"10,"	$T_{1}(m^{2}/c)$	1 5E-09	۲ <u>۲</u>	-1.01	
	300	$T_{T}(III/S) =$	1.0E-06	~ (-) =	1.01	
	102	S(-) =	7.5E-11	·		
	in the second	$R_{s}(11/s) =$	7.3L-11			
	30	$G_{s}(1/11) =$	5.0E-08	1		
R ALE			,,	615.10.0	1 1.6	
	10 1	the analysis of the (u ansmissivity of CHir phase (oute	1 1.3•10-9 m2/s was er zone) which show	uerived from	
10 -1		quality and clear horizontal stabilisation. The confidence range for t			the range for the	
		interval transmissiv	vity is estimated	to be 1.0•10-9 m2/s	to 6.0•10-9	
	10 [°]	m2/s. The flow dim	ension displaye	d during the test is 2	(radial flow).	
10 ⁻¹ 10 ⁰	D 10 1 10 2 10 2	The static pressure	measured at trar	sducer depth, was d	lerived from the	
		CHIP phase using ty of 1.225.4 kPc	pe curve extrap	olation in the Horne	r plot to a value	

	Test Sun	nmary Sheet				
Project:	Oskarshamn site investigati	on <u>Test type:[1]</u>		CHi		
Area:	Laxem	nar Test no:			1	
Borehole ID:	KLX1	7A Test start:	0705		070514 13:27	
Test section from - to (m):	169.00-189.00	m Responsible for		Philipp Wolf Linda Höckert		
Section diameter, 2.rw (m):	0.0	76 Responsible for		Crist	ian Enachescu	
		test evaluation:				
Linear plot Q and p		Flow period		Recovery period		
			1504	Indata		
1000	•	$p_0 (KPa) =$	1590	 	───┤	
KLX17A_169.00-189.00_070514_1_cmii_w_i	P sectorn P above P balow Q	$p_i(KPa) =$	1001	p (kPp) −	1622	
1800	1.00	$p_p(KPa) =$	1 042 7 15E 04	р _ғ (кРа) =	1032	
		$Q_p (m^3/s) =$	7.15E-00		1200	
<u><u><u>a</u></u> 1700</u>		tp (s) =	1200	t _F (S) =	1200	
		S el S (-)=	1.00E-06	S el S (-)=	1.00E-06	
		^b EC _w (mS/m)=				
		Temp _w (gr C)=	9.3			
1500	0.2	Derivative fact.=	0.05	Derivative fact.=	0.05	
1400	· · · · · · · · · · · · · · · · · · ·				 	
0.00 0.20 0.40 0.60 0. Elapsed	80 1.00 1.20 1.40 1.60 Time[N]	Results		Results	<u> </u>	
		Q/s $(m^{2}/s) =$	2.9E-07		Ι	
Log-Log plot incl. derivates- f	low period	T_{M} (m ² /s)=	3.0E-07			
	· .	Flow regime:	transient	Flow regime:	transient	
Elaosed time (h	A	dt₁ (min) =	0.40	dt₁ (min) =	2.25	
10 2		dt_{2} (min) =	1.65	dt_{2} (min) =	6.72	
		$T (m^2/c) =$	3 0F-07	$T_{m_{2}}(m_{2}) =$	4 6F-07	
	10 1	S(-) =	1 0F-06	I (III /S) = S (_) =	1.0E-06	
d		S(-) = -	1.0E 00	S(-) = -	2 3E-08	
10	3	$r_{s}(11/5) = 0$	5 0E-08	$N_{s}(11/3) =$	2.3L-00	
· · · · · · · · · · · · · · · · · · ·	10 °	$S_{s}(1/11) =$		$S_{s}(1/11) =$	5.00-00	
		⁴ C (m [°] /Pa) =		C (m)/Pa) =	5.4E-U3	
10 ⁰	0.3	$^{*}C_{D}(-) =$	NA	$C_{\rm D}(-) =$	5.9E-UI	
· · · · · · · · · · · · · · · · · · ·		ξ(-) =	-0.92	ξ(-) =	-0.88	
· · ·	10 "					
10 ² 10 ²	10 ⁴ 10 ⁵ 10 ⁶	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
D		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected repres	entative paran	neters.		
		dt_1 (min) =	2.25	$C (m^{3}/Pa) =$	5.4E-09	
Elapsed time	[n]	dt_2 (min) =	6.72	C _D (-) =	5.9E-01	
10 2		$T_T(m^2/s) =$	4.6E-07	ξ(-) =	-0.88	
	10	S (-) =	1.0E-06			
10 *		$K_s (m/s) =$	2.3E-08	1		
	10	² S _s (1/m) =	5.0E-08			
	Comment of the Commen	"Comments:				
		The recommended	transmissivity of	f 4.6•10-7 m2/s was	derived from	
. :/	10	⁸ the analysis of the	CHir phase (inne	r zone), which show	vs the most clear	
10 -1		horizontal derivativ	ve stabilisation.	The confidence rang	e for the	
	10	m2/s. The flow din	vity is estimated	to be 1.0•10-7 m2/s	to $8.0 \cdot 10^{-7}$	
		The static pressure	measured at trar	isducer depth, was d	(radial from the	
10 ⁻¹ 10 ⁰ tDr	10 ¹ 10 ² 10 ³	CHir phase using t	vpe curve extrap	olation in the Horne	r plot to a value	
		of 1 584 2 kPa	1		1	

	Test Sum	mary Sheet				
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>	CHi			
Area:	Laxema	ar Test no:			1	
Borehole ID:	KLX17	A Test start:	070514 15		070514 15:33	
Test section from - to (m):	189.00-209.00 r	n Responsible for		Philipp Wo		
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
		p₀ (kPa) =	1767			
2000 KLX17A_189.00-209.00_070514_1_CHir_Q_r	\$0	$p_{i}(kPa) =$	1771			
	Piseton Piseton Pistove Distovi O	$p_{\rm r}({\rm kPa}) =$	1971	p⊢(kPa) =	1771	
1900 -	4.0	$p_p(K a) =$	4 60E 05		1771	
		$Q_p (m^2/s) =$	4.00E-03	t (a)	1200	
[top] son	30 (1997)	tp (s) =	1.005.04	$l_F(S) =$	1.00E.06	
8 1990 6 6		S el S (-)=	1.00E-06	S el S (-)=	1.00E-06	
Down	20 4	$EC_w (mS/m) =$		ļ	\mid	
1700 -		Temp _w (gr C)=	9.6			
	•	Derivative fact.=	0.05	Derivative fact.=	0.02	
1000 0.20 0.40 0.00	000 100 120 100 100 100 100 100 100 100				╂────┤	
Elaps	sed Time [h]	Results		Results	<u> </u>	
		Q/s $(m^{2}/s) =$	2.3E-06			
Log-Log plot incl. derivates-	flow period	T_{M} (m ² /s)=	2.4E-06			
<u> </u>	·	Flow regime:	transient	Flow regime:	transient	
			0.62	dt₁ (min) =	0.15	
10 ²	······································	$dt_{o}(min) =$	16.92	$dt_{o}(min) =$	5 74	
	10 °	$T_{m}^{2}(n)$	7 3E-06	$T(m^2/c)$	9 9E-06	
		1(11/5) =	1.0E-06	1(11/5) =	1.0E-06	
	0.3	$K_{(m/c)} =$	1.0E 00	(m/c) =	1.0E 00	
10	F10 -1	$R_{s}(11/3) =$	5.7E-07	$R_{s}(11/3) =$	4.9E-07	
		$S_{s}(1/11) =$	J.UL-00	$S_{s}(1/11) =$	0.0E-08	
	•	^a C (m ² /Pa) =		C (m ² /Pa) =	2.1E-10	
10 °		$= C_{\rm D}(-) =$	NA 40.40	$C_{\rm D}(-) =$	2.3E-02	
	10 ⁻²	ς(-) =	12.10	ζ(-) =	20.30	
	• • • • • • • • • • • • • • • • • • •	- (2)	ΝΑ	- (2)	ΝΑ	
10 ¹⁵ 10 ¹⁶	10 ¹⁷ 10 ¹⁸ 10 ¹⁹	$I_{GRF}(m^{-}/s) =$		$I_{GRF}(m^{-}/s) =$		
	ພ	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
Legier niet in derivatives	receivery period	$D_{\text{GRF}}(-) =$		$D_{\text{GRF}}(-) =$	INA	
Log-Log plot incl. derivatives	- recovery period	dt (min)			245.40	
		$dt_1 (min) =$	0.62	C (m˘/Pa) =	2.1E-10	
Elapsed time	[h] 10, ⁻²	$dt_2 (min) =$	16.92	$C_{\rm D}(-) =$	2.3E-02	
		$T_T (m^2/s) =$	7.3E-06	ς(-) =	12.10	
	300	S (-) =	1.0E-06			
	10 2	$K_s (m/s) =$	3.7E-07			
10		$S_{s}(1/m) =$	5.0E-08			
	30	Comments:				
		The recommended transmissivity of 7.3•10-6 m2/s was derived from				
10 °	10	the analysis of the C	Hi phase, which	h shows the most cle	ar horizontal	
· · · · ·	3	interval transmissiv	ion by less skin	to be $4.0 \cdot 10 - 6 \text{ m}^{2/6}$	to $2.0 \cdot 10^{-5}$	
	•	m2/s. The flow dim	ension displaye	d during the test is 2	(radial flow).	
	10 [°]	The static pressure	measured at trar	sducer depth, was d	erived from the	
טע 10 נטע	u 10 10 D	CHir phase using st	raight line extra	polation in the Horn	er plot to a	
		value of 1.771.4 kP	a			

	Test S	umr	nary Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir
Area:	Lax	emar	Test no:			1
Borehole ID:	KL	X17A	Test start:			070515 10:58
Test section from - to (m):	249.00-269	.00 m	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2.r _w (m):		0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p	1		Flow period		Recovery period	
			Indata		Indata	
			$p_{o}(kPa) =$	2275		
2800 KI X17A 249 00-269 00 070515 1 CHir O r	-	0.015	p₀ (kPa) =	2285		
	P above P below Q		$p_{\rm r}({\rm kr}{\rm a}) =$	2203	n₋ (kPa) =	2370
2500	\cdot	• 0.012	$p_{p}(kr a) = 0$	6 33E 08	p _F (ki u) =	2370
			$Q_p (m/s) =$	0.33E-08	t_ (c) _	1200
G1 2400		ate [Inmin]	(p(s)) =	1.00E.06	(F(3)) =	1.00E.06
Pad ol com	\	njection R	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
§ 2000	******	0.006 =	$EC_w (mS/m) =$	10.4		
-			Temp _w (gr C)=	10.4		0.04
		- 0.003	Derivative fact.=	0.09	Derivative fact.=	0.06
2100		0.000				
0.00 0.30 0.60 0.30 1.20 Elapsed	1.50 1.80 2.10 2.40 Time [h]	2.70	Results		Results	
			$\Omega/a_{\rm c}$ (m ² /a)	2.6E-09	lioouno	
Log-Log plot incl. derivates- fl	low period		$Q/S (\Pi/S) =$	2.0E 00		
			$T_{\rm M}$ (III /S)=	transiont	Flow rogimo:	transiont
			dt. (min) –		r tow regime.	#NIV
Elapsed time [b]			$dt_1 (min) =$	12.36	$dt_1 (min) =$	#NV
		3000	$\operatorname{dl}_2(\operatorname{IIIII}) =$	2 05 00	$\operatorname{dl}_2(\operatorname{IIIII}) =$	
		10 3	I(m/s) =	3.0E-09	I (m /s) =	2.7E-09
			S(-) = K(m/a)	1.0E-00	S(-) = K(m/c)	1.0E-00
10 · · · · · · · · · · · · · · · · · · ·	and the second s	300	$R_s (11/s) =$	T.3E-10	$R_s(\Pi/S) =$	1.3E-10
	-	10 ² 5	$S_{s}(1/11) =$	5.0E-00	$S_{s}(1/11) =$	5.0E-06
		1,01,01 [m	C (m [°] /Pa) =		C (m [°] /Pa) =	3.0E-10
10 *	· · · · ·	30	$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	3.3E-02
· · ·		10	ζ(-) =	3.00	ς(-) =	1.72
	•		$T_{}(m^2/c) =$	NA	$T_{}(m^2/c) =$	NA
10 ³ 10 ⁴	10 ⁵ 10 ⁶ 10 ⁷		$S_{CRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{CRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	eters	
	,		dt₁ (min) =	1.42	$C(m^3/P_0) =$	3.0F-10
Elacsed time II	N _		dt_2 (min) =	12.36	$C_{\rm D}(-) =$	3.3E-02
10 10	¹ .0t ⁰ .0t	7	$T_{12}(m^2/c)$	3 0E-09	ε _μ -	3.00
		300	$T_{T}(M/S) =$	1.0E-06	S (-) =	0.00
		- 10 ²	S(-) = K(m/c) = -	1.0E-00		
10 °	\sim		$S_{(11/3)} =$	5 05-00		
		30	$C_{s}(1/11) =$	5.0∟-00		
a start		, Indeal	The recommended	tronomicainite -	F 2 0•10 0	darived from
		10 1 90	the analysis of the C	CHi phase, which	h shows a verv noise	but already
10			clear horizontal stal	bilisation. The c	onfidence range for	the interval
			transmissivity is est	imated to be 1.0	•10-9 m2/s to 6.0•1	0-9 m2/s. The
		10 0	flow dimension disp	played during th	e test is 2 (radial flo	w). The static
10 ⁻¹ 10 ⁰	10 ¹ 10 ² 10	ł	pressure measured a	at transducer dep	oth, was derived from	n the CHir
			2 284 7 LD-	i ve extrapolatio	n in me nomer plot	to a value of

	Test S	umn	narv Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir
Area:	Lax	emar	Test no:			1
Borehole ID:	KL	X17A	Test start:			070515 14:02
Test section from - to (m):	269.00-289.	.00 m	Responsible for			Pilipp Wolf
Section diameter, 2.rw (m):	(0.076	Responsible for		Crist	an Enachescu
,			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
2750	:	0.004	p ₀ (kPa) =	2447		
KLX17A_269.00-289.00_070515_	1_CHir_Q_r P sector VP slove VP below		p _i (kPa) =	2469		
2820 -	° · · · ·		p _p (kPa) =	2676	p _F (kPa) =	2482
		0.003	Q _p (m ³ /s)=	1.83E-08		
		[uim	tp (s) =	1200	t _F (s) =	1200
		fion Rate [1	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
2450		Inject	EC _w (mS/m)=			
<u>.</u>		0.001	Temp _w (gr C)=	10.7		
2390			Derivative fact.=	0.11	Derivative fact.=	0.07
	<u>-</u>					
220 •	1.50 2.00 Fime [h]	2.50	Posulte		Posulte	
			$\Omega(a_1(m^2/a))$	8 7E-10	Results	
l og-l og plot incl. derivates- fl	ow period		Q/S (III/S) =	9.7E 10		
			T_{M} (III /S)=		Flow regime:	transient
			dt. (min) –		dt. (min) –	1 15
Elapsed time [h]	10, ⁻¹		dt_1 (min) = dt_2 (min) =	0.10	dt_1 (min) = dt_2 (min) =	1.15
	10	4	$T_{1}(m^{2}(a)) = \frac{1}{2}$	8.7E-10	$T_{2}(mn) =$	1.35 1.2E-09
	30	00	S(-) =	1.0E-06	T(m/s) = S(-)	1.2E 05
10.1	:		$K_{1}(m/s) =$	4.4E-11	$K_{1}(m/s) =$	6.0E-11
	10 Participant 10	3	$S_{c}(1/m) =$	5.0E-08	$S_{c}(1/m) =$	5.0E-08
and the second sec	30	(mint)	$C (m^{3}/P_{2}) =$	NA	$C (m^{3}/P_{2}) =$	6.2E-11
2	· · · · ·	14, (14	$C_{D}(-) =$	NA	$C_{D}(-) =$	6.8E-03
	10	2	ξ(-) =	-0.65	ξ(-) =	-0.95
	-		5()		5()	
			$T_{CPF}(m^2/s) =$	NA	$T_{CPF}(m^2/s) =$	NA
10 ¹⁰ 10 ¹	10 ⁻² 10 ⁻³ 10 ⁻⁴		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	
			dt ₁ (min) =	0.18	$C(m^3/Pa) =$	6.2E-11
-4 -3 Elapsed time (h)	l ø		dt_2 (min) =	0.63	$C_{D}(-) =$	6.8E-03
10		300	$T_{T}(m^{2}/s) =$	8.7E-10	ξ(-) =	-0.65
		2	S (-) =	1.0E-06		
		10	$K_s (m/s) =$	4.4E-11		
10 0		30	S _s (1/m) =	5.0E-08		
2	for the second sec	. [0	Comments:			
2 	A A A A A A A A A A A A A A A A A A A	10 90 (od-d) 1	The recommended	transmissivity of	f 8.7•10-10 m2/s wa	s derived from
10 ⁻¹		. Ус. з	the analysis of the (CHi phase (inner	zone), which shows	s a very noisy
/:·			but relative clear ho	orizontal stabilis	ation. The confidence to be $1.0 \cdot 10^{-10} \cdot 10^{-24}$	the range for the $2.0 \cdot 10^{-9}$
		10 0	m2/s. The flow dim	ing is estimated	d during the test is 2	(radial flow).
	10 [°] 10 ¹ 40 ²		The static pressure	measured at trar	sducer depth, was d	erived from the
10/00	. 10 10		CHir phase using ty	pe curve extrap	olation in the Horne	r plot to a value

	Test Sum	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	Test no:			1
Borehole ID:	KLX17A	Test start:			070516 08:46
Test section from - to (m):	309.00-329.00 m	Responsible for			Philipp Wolf Linda Höckert
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		p₀ (kPa) =	2784		
3100	\$ •Psection	p _i (kPa) =	2784		
KLX17A_309.00-329.00_070516_1_CHir_Q_r	• Pabore • P babor 0	$p_{\rm p}(\rm kPa) =$	2993	p _∈ (kPa) =	2807
3000 -		$O_{(m^{3}/s)}$	9.67E-06	r i X - 7	
· · · · · · · · · · · · · · · · · · ·	12	$\frac{Q_p(m/s)}{tp(s)} =$	1200	t₌ (s) =	1200
		S el S [*] (-)-	1.00E-06	sr (e) S el S [*] (-)−	1.00E-06
C 2000		EC _w (mS/m)=	11002 00	3 8 3 (-)=	11002 00
	0.6	Temp(ar C)=	11.2		
2700		Derivative fact =	0.03	Derivative fact =	0.02
	• 03		0100		0.02
2000 0.30 0.60 Elapse	0.0 0.30 1.20 1.50 d Time [h]				
		Results		Results	
		Q/s (m²/s)=	4.5E-07		
Log-Log plot incl. derivates- f	low period	T _M (m²/s)=	4.7E-07		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (b] 	$dt_1 (min) =$	9.18	$dt_1 (min) =$	1.72
10 -		dt_2 (min) =	15.12	$dt_2 (min) =$	17.88
	3	T (m²/s) =	3.4E-07	T (m²/s) =	3.2E-07
		S (-) =	1.0E-06	S (-) =	1.0E-06
10 *	10 °	$K_s (m/s) =$	1.7E-08	$K_s (m/s) =$	1.6E-08
		$S_s(1/m) =$	5.0E-08	$S_s(1/m) =$	5.0E-08
	0.3	C (m³/Pa) =	NA	C (m³/Pa) =	8.1E-10
10 ^{.0}	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$C_{D}(-) =$	NA	$C_D(-) =$	8.9E-02
· · · · ·	· · ·	ξ(-) =	6.29	ξ(-) =	1.22
	0.03	2		2	
10 10 10 10	10 ¹¹ 10 ¹² 10 ¹³	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
	·····	$D_{GRF}(-) =$		$D_{GRF}(-) =$	
Log-Log plot Incl. derivatives	- recovery period	Selected represe	Intative paran	neters.	
		$dt_1 (min) =$	1.72	C (m)/Pa) =	8.1E-10
Elapsed time (r	^{1]}	$dt_2 (min) =$	17.88	$C_D(-) =$	8.9E-02
		$T_T (m^2/s) =$	3.2E-07	ς(-) =	1.22
	300	S(-) =	1.0E-06		
	10 ²	$K_s (m/s) =$	1.6E-08		
10	and the second s	$S_{s}(1/m) =$	5.0E-08		
	30	Comments:			
" · · · ·		The recommended the analysis of the C	transmissivity of	$13.2 \cdot 10-7 \text{ m}2/\text{s}$ was	derived from
10 0	10 1	and derivative quali	ty. The confide	a zone, which show nee range for the inte	erval
· ·	3	transmissivity is est	imated to be 2.0	•10-7 m2/s to 3.0•10	0-6 m2/s. The
		flow dimension disp	played during th	e test is 2 (radial flo	w). The static
10 "	10 ² 10 ³ 10 ⁴	pressure measured a	at transducer dej	oth, was derived from	n the CHir
1D/CZ		phase using type cu	rve extrapolatio	n in the Horner plot	to a value of

Test Summary Sheet						
Project:	Oskarshamn site investigati	on <u>Test ty</u>	<u>be:[1]</u>			CHir
Area:	Laxem	nar Test no	:			1
Borehole ID:	KLX1	7A Test sta	art:			070516 10:45
Test section from - to (m):	329.00-349.00	m Respor	sible for ecution:			Philipp Wolf Linda Höckert
Section diameter, $2 \cdot r_w$ (m):	0.0	76 Respor	sible for		Crist	ian Enachescu
Linear plot Q and p		Flow p	eriod		Recovery period	
		Indata			Indata	
		p₀ (kPa) =	2953		
3250 KLX17A_329.00-349.00_070516_1_CHir_Q_r	0.02	p _i (kPa) =	2956		
	Pacton Patow Pbelow Q	p _r (kPa)	, 	3157	p _⊏ (kPa) =	2956
3150	002	$\rho_{\rm p}(\alpha)$	o)	1 37E-07	PF (∝)	2700
		Q _p (m /	s)= _	1.37£ 07	t _r (s) -	2400
8 3000 · · · · · · · · · · · · · · · · ·	0.01		-	1 00E 06	$r_{\rm F}$ (3) =	1 00E 06
		Sel S	(-)= S/m)_	1.00E-00	Sel S (-)=	1.00E-00
5 2000	0.01	ECw (m	5/m)=	11.5		
		I emp _w (gr C)=	11.5		
2850	0.00	Derivat	ve fact.=	0.10	Derivative fact.=	0.02
2750	i	2				
Elapsed	Fime [h]	Results	3		Results	
		O/s (m	$^{2}(c) =$	6.7F-09		
l og-l og plot incl. derivates- fl	ow period	$\frac{0}{5}$ (m ²)	$(3)^{-1}$	7.0E-09		╂────┤
		Flow re	s)= aime:		Flow regime:	transient
		dt (min			r iow regime.	
Elapsed time	[h]	dt (min	$\frac{1}{1}$	16.26	$dt_1 (min) =$	7.00
	10	$\frac{u_2}{-1}$	i) =	7 65 00	$a_2(1111) =$	20.20
		1 (m /s) =	7.0E-09	I (m /s) =	2.3E-00
10 ¹		2 (-)	=	1.0E-06	S (-) =	1.0E-06
		K _s (m/s) =	3.8E-10	κ_{s} (m/s) =	1.1E-09
Ê 10 ⁰		S _s (1/m) =	5.0E-08	$S_{s}(1/m) =$	5.0E-08
	10	C (m [°] /F	°a) =	NA	C (m³/Pa) =	6.2E-11
	*	[∗] C _D (-)	=	NA	$C_D(-) =$	6.8E-03
10 1	10	. ξ(-)	=	2.70	ξ(-) =	15.20
		T _{CPE} (m	$^{2}/s) =$	NA	$T_{CPF}(m^2/s) =$	NA
10 ⁻⁴ 10 ⁻⁵	10 ⁶ 10 ⁷ 10 ⁸	$S_{GRF}(-)$	=	NA	$S_{GRF}(-) =$	NA
		D _{GRF} (-)	=	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selecte	d represe	entative param	neters.	
<u> </u>		dt₁ (mir	ı) =	0.15	$C (m^3/Pa) =$	6.2E-11
Elased line	IN I	dt ₂ (mir) =	16.26	$C_{D}(-) =$	6.8E-03
10 ²	······································	$T_{m^{2}/m^{2}}$		7 6F-09	۲) م	2 70
		S (-)	s) = =	1.0E-06	- () (
		. K (m/s) _	3.8E-10		
10	No.	S (1/m) –	5.0E-08		
a second s	A.	Comm) –	0.0E 00		
R 10.0	·· · · · · · · · · · · · · · · · · · ·		-1115.		57 6-10 0 2/2	denime d'Errom
		the analy	mmended	Thi phase which	f 7.6•10-9 m2/s was h shows the better h	derived from
		stabilisa	tion of the	derivative. The c	confidence range for	the interval
10 -1	10	transmis	sivity is est	imated to be 4.0	•10-9 m2/s to 3.0•10	0-8 m2/s. The
		flow din	nension disp	played during the	e test is 2 (radial flo	w). The static
10 ⁰ 40 ¹	10 ² 10 ³ 4 ¹⁰	pressure	measured a	at transducer de	oth, was derived from	n the CHir
	do la	phase us	ing straight kPa	t line extrapolati	on in the Horner plo	t to a value of

Test Summary Sheet						
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			CHir	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX17/	A Test start:			070516 13:20	
Test section from - to (m):	349.00-369.00 n	n Responsible for test execution:	Philipp Wolf Linda Höckert			
Section diameter, 2-r _w (m):	0.07	6 Responsible for		Crist	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
		p ₀ (kPa) =	3123			
3350	• P section	p _i (kPa) =	#NV			
RLX1/A_342.00-369.00_0/0516_1_CHIF_U_F	Pabore Platow Q	p _p (kPa) =	#NV	p _F (kPa) =	#NV	
3250 -		$Q_{p} (m^{3}/s) =$	#NV			
		tp(s) =	#NV	t _F (s) =	#NV	
2 3150		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
	• 0004 • 0004	$EC_w (mS/m) =$				
		Temp _w (gr C)=	11.8			
3050 -	+ 0.002	Derivative fact.=	#NV	Derivative fact.=	#NV	
2950 0.00 0.15 0.30 0.4	×5 0.00 0.75 0.20					
Elapsed 1	Time [h]	Results		Results		
		$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period	T_{11} (m ² /s)-	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt₁ (min) =	#NV	dt₁ (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T_{m}^{2}(c) =$	1 0F-11	$T(m^{2}/c) =$	NA	
		S(-) =	1.0E-06	S(-) =	NA	
		$K_{a}(m/s) =$	5.0E-13	$K_{a}(m/s) =$	NA	
		$S_{a}(1/m) =$	5.0E-08	$S_{a}(1/m) =$	NA	
Not ar	nalysed	$C_{s}(1,11) = 0$	NA	$C_{s}(1,1,1) = C_{s}(1,1,1)$	NA	
		$C_{(III /Pa)} = C_{2}(-) =$	NA	$C_{n}(-) =$	NA	
		دل) <u>–</u> درا) –	NA	E (-) -	NA	
		S (⁻) –		S (-) –		
		$T \left(m^{2}/r\right)$	ΝΔ	$T \left(m^{2}(z)\right)$	ΝΔ	
		$I_{GRF}(m/s) =$		$I_{GRF}(m/s) =$	NA	
		$S_{GRF}(-)$ =		$D_{GRF}(-) =$		
l og-l og plot incl. derivatives-	recovery period		ntative naran			
		dt (min) -	#N\/	$C (m^{3}/D_{-})$	NA	
		dt_{a} (min) -	#NV	$C_{\rm p}(11)$ /Pa) =	NA	
		$dt_2(mn) =$		$\mathcal{C}_{\mathcal{D}}(-) =$		
		$I_{T}(m/s) =$	1.0E-11	ς (-) =		
		S(-) = K(m/c) = -	5.0E-13			
		$S_{s}(11/s) =$	5.0E-13			
		$G_{s}(1/11) =$	J.UE-00			
Not ar	nalysed	Based on the test	enoneo (nrolor -	ad packar complia-	pa) the interval	
		transmissivity is set	to 1.0•10-11 m.	2/s.	(c) inc incrvar	

	Test Su	mm	narv Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
Area:	Laxe	mar	Test no:			1
Borehole ID:	KLX	17A	Test start:			070516 14:43
Test section from - to (m):	369.00-389.0	00 m	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2.r _w (m):	0.	.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p ₀ (kPa) =	3293		
3800	Pattion	0.15	p _i (kPa) =	3291		<u> </u>
KLX17A_369.00-389.00_070516_1_CHir_Q_r	Pabove P below Q		$p_{\rm p}(kPa) =$	3491	p _∈ (kPa) =	3291
3800		0.12	$\int (m^3/c) -$	8 17E-07	FF (*** **)	
		-	$\frac{Q_p(m/s)}{tp(s)} =$	1200	tr (s) =	1200
60 3000		o [hmin] o	$\frac{1}{2} \left(\frac{1}{2} \right)^{*} \left(\frac{1}{2} \right)^{*}$	1.00E-06		1.00E-06
	·	n jection Ru	S = S (-) = EC (mS/m) - EC	1.002.00	Sel S (-)=	1.001 00
§ 300	a second a s	0.06 #	$EC_w (IIIO/III) =$	12.1		
			Derivetive fact -	0.04	Dorivotivo fact –	0.01
2000		0.03	Derivative Tact.=	0.04	Derivative fact.=	0.01
0.00 0.20 0.40 0.60 Elap	080 1.00 1.20 1.4 sed Time [h]	40	Deculto		Deculto	
		-	Results	4.05.09	Results	
	()		$Q/s (m^{-}/s) =$	4.0E-08		
Log-Log plot Incl. derivates-	flow period		$T_M (m^2/s) =$	4.2E-08	- 1	(m
			Flow regime:	transient	Flow regime:	transient
Elapsed 8	me [h]		$dt_1 (min) =$	0.45	$dt_1 (min) =$	1.54
10		10 2	$dt_2 (min) =$	16.56	$dt_2 (min) =$	11.70
			$T(m^2/s) =$	6.8E-08	$T(m^2/s) =$	9.5E-08
			S (-) =	1.0E-06	S (-) =	1.0E-06
		10	$K_s (m/s) =$	3.4E-09	$K_s (m/s) =$	4.8E-09
			$S_{s}(1/m) =$	5.0E-08	$S_s(1/m) =$	5.0E-08
		10 ° 10	C (m³/Pa) =	NA	C (m³/Pa) =	5.9E-11
		4	C _D (-) =	NA	$C_D(-) =$	6.5E-03
10 -1	·	10 -1	ξ(-) =	5.25	ξ(-) =	9.44
			$T_{opr}(m^2/s) =$	NA	$T_{opr}(m^2/s) =$	NA
10 7 10 8	10 ^{.9} 10 ^{.10} 10 ^{.11} 10	1	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	s- recovery period		Selected represe	ntative paran	neters.	
			dt_1 (min) =	1.54	C (m ³ /Pa) =	5.9E-11
Elapsed time	[h]		dt_2 (min) =	11.70	$C_{\rm D}(-) =$	6.5E-03
10 ²	10 ^{°°} , , , , , 10 ^{°1} , , , , , 10 [°]		$T_{-}(m^2/s) =$	9.5E-08	$\xi(-) =$	9.44
			S (-) =	1.0E-06	5()	
	300		K _s (m/s) =	4.8E-09		
10 ¹			$S_{s}(1/m) =$	5.0E-08		
	×		Comments:			
	30	o-p0j [kPa]	The recommended t	ransmissivity of	f 9.5•10-8 m2/s was	derived from
10 °		p-60. (t	the analysis of the C	CHir phase, which	ch shows the better h	orizontal
	10 1	1	stabilisation of the o	lerivative and le	ss background noise	. The
	• •		confidence range fo	r the interval tra	insmissivity is estim	ated to be
	3		3.0•10-8 m2/s to 2.0	J•10-7 m2/s. The flow) The static	e flow dimension dis	splayed during
10 ⁻⁰ 10 ⁻¹ 80/0	10 ² 10 ³ 10 ⁴		depth, was derived	from the CHir n	hase using type curv	e extrapolation
			in the Horner plot to	a value of 3.29	0.3 kPa.	- mapping of

	Test Summ	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070516 16:39
Test section from - to (m):	389.00-409.00 m	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2.rw (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Ω and p		test evaluation:		Recovery period	
		Indata		Indata	
		p_{o} (kPa) =	3463	indutu	
3800	0.015	p_0 (kPa) =	3461		
KLX17A_389.00	-409.00_070516_1_CHir_Q_r P socion	$p_{p}(kPa) =$	3661	p _F (kPa) =	3460
3700	0.012	Ω_{r} (m ³ /s)=	1.13E-07		
£ 2000	0.000	$\frac{d_{\beta}(m/s)}{tp(s)} =$	1200	t _F (s) =	3600
e e e e e e e e e e e e e e e e e e e	Rate [trimp	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
2000	labele e	$EC_w (mS/m) =$		0010()=	<u> </u>
		Temp _w (gr C)=	12.3		<u>├</u> ───┤
3400	0.003	Derivative fact.=	0.07	Derivative fact.=	0.01
2000 a.25 a.56 a.75 1.00	1.25 1.50 1.75 2.00 2.25				
Енарако н	ine (n)	Results		Results	
		Q/s (m ² /s)=	5.6E-09		
Log-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	5.8E-09		
		Flow regime:	transient	Flow regime:	transient
-3 -2 Elapsed time	[h] _1 _0 _1	dt ₁ (min) =	1.43	dt ₁ (min) =	11.52
10 2	.10	dt ₂ (min) =	17.58	dt_2 (min) =	25.08
	10 ³	T (m²/s) =	5.4E-09	T (m²/s) =	1.3E-08
10 1		S (-) =	1.0E-06	S (-) =	1.0E-06
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 ²	$K_s (m/s) =$	2.7E-10	$K_s (m/s) =$	6.4E-10
	· · · ·	S _s (1/m) =	5.0E-08	S _s (1/m) =	5.0E-08
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	6.3E-11
· · · · · ·	10 ਵ ਵ	C _D (-) =	NA	C _D (-) =	7.0E-03
10 -1		ξ(-) =	1.74	ξ(-) =	9.40
	10 0				
· · · · · · · · · · · · · · · · · · ·		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 10 ±C	טר טר ו	S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	ieters.	
		dt ₁ (min) =	1.43	C (m ³ /Pa) =	6.3E-11
Elapsed time [h]	2, ⁻¹	dt_2 (min) =	17.58	$C_D(-) =$	7.0E-03
10	10 3	$T_T (m^2/s) =$	5.4E-09	ξ(-) =	1.74
		S (-) =	1.0E-06		
	300	$K_s (m/s) =$	2.7E-10		
10	10 ²	$S_{s}(1/m) =$	5.0E-08		
	×	Comments:			
a jeta		The recommended	transmissivity of	f 5.4•10-9 m2/s was	derived from
10 ⁰		the analysis of the C horizontal derivativ	H1 phase, which e stabilisation 7	h shows a still noisy The confidence rang	but better
		interval transmissiv	ity is estimated	to be $3.0 \cdot 10-9 \text{ m}2/\text{s}$	to 2.0•10-8
	3	m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
	10 ² 10 ² 10 ⁴	The static pressure	measured at tran	sducer depth, was d	erived from the
10C0		CHIP phase using st value of 3 459 6 kP	raight line extra	polation in the Horn	er plot to a

	Test Su	mn	nary Sheet			
Project:	Oskarshamn site investigat	tion	Test type:[1]			CHir
Area:	Laxer	mar	Test no:			1
Borehole ID:	KLX1	17A	Test start:			070517 08:43
Test section from - to (m):	409.00-429	9.00	Responsible for			Philipp Wolf
Section diameter, 2·r _w (m):	0.0	076	Responsible for		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p_{a} (kPa) =	3627	indutu	
3000		30	$p_0(k Pa) =$	3624		
KLX17A_403.00-429.00_070517_1_CHir_Q_r	P su clón P above P below Q	- 14	p (kPa) =	3824	n₋(kPa) =	3629
3800		2	$p_{p}(\mathbf{x}, \mathbf{u}) = 0$	3 21E 04	p _F (ki u) =	5025
<u> </u>		• 20	$Q_p (m^3/s) =$	3.21E-04	t (a)	1200
हि. 5700- 8 इ.		[Inim]	tp (s) =	1.005.06	$l_F(S) =$	1.00E.06
	·	ction Rate	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
§ 3800 ·		Injo	EC _w (mS/m)=			
		- 10	Temp _w (gr C)=	12.2		
3800		- 5	Derivative fact.=	0.01	Derivative fact.=	0.03
	-					
3400 0.50 0.50 Elapsed Ti	0.90 1.20 1.5 me[h]	50	Poculto		Poculto	
					Results	
	<u> </u>		Q/s (m ⁻ /s)=	1.6E-05		
Log-Log plot incl. derivates- flo	w period		T _M (m²/s)=	1.6E-05		
			Flow regime:	transient	Flow regime:	transient
Elapsed sing [h]			$dt_1 (min) =$	0.49	dt ₁ (min) =	0.17
10 2		л	$dt_2 (min) =$	17.52	dt_2 (min) =	14.76
	10	D	$T(m^{2}/s) =$	4.8E-05	T (m²/s) =	7.5E-05
10 1		-2	S (-) =	1.0E-06	S (-) =	1.0E-06
		D	$K_s (m/s) =$	2.4E-06	$K_s (m/s) =$	3.7E-06
10 0			S _s (1/m) =	5.0E-08	$S_{s}(1/m) =$	5.0E-08
	10	o , ,	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2.3E-09
^{10⁻¹}		1/0.01/	$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	2.5E-01
	-	D ~	$\xi(-) =$	9.60	ξ(-) =	19.10
10 2		-5	5(7		5()	
	10	D	$T_{aa}(m^2/s) =$	NA	$T_{aa}(m^2/s) =$	NA
10 ¹³ 10 ¹⁴ 1D	10 ¹⁵ 10 ¹⁶ 10 ¹⁷		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{CRF}(-) =$	NA
l og-l og plot incl. derivatives-	recovery period		Selected represe	ntative naran	eters	
			$dt_{\ell}(min) =$	0 17	$C(m^3/D_{\rm P})$	2 3E-09
			$dt_1 (min) =$	14.76	$C(m/Pa) = C_{-}(-) = -$	2.6E 00
Liapsed time [n]			$\operatorname{ut}_2(\operatorname{mm}) =$	7 55 05	$C_D(-) =$	2.32-01
	300		$I_{T}(m^{-}/s) =$	7.5E-05	ς(-) =	19.10
• • • • • • • • • • • • • • • • • • •			S (-) =	1.0E-06		
	10 2	2	$K_s (m/s) =$	3.7E-06		
10			$S_{s}(1/m) =$	5.0E-08		
	*	kPa	Comments:			
	•	- 20. (p. p0/1	The recommended t	ransmissivity of	f 7.5•10-5 m2/s was	derived from
10 *	· · · · · · · · · · · · · · · · · · ·	20	une analysis of the C	HIT phase, white	ilisation. The confid	ata and
	3 - A - A - A - A - A - A - A - A - A -		the interval transmis	sivity is estimat	ted to be $2.0 \cdot 10-5$ m	$2/s$ to $1.0 \cdot 10-4$
			m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
	10°	•	The static pressure	measured at tran	sducer depth, was d	erived from the
10 10 to/cD	טי 10		CHir phase using st	raight line extra	polation in the Horn	er plot to a

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070517 10:43
Test section from - to (m):	428.00-448.00	Responsible for			Philipp Wolf
Section diameter 2.r (m):	0.076	test execution:		Crist	Linda Hockert
	0.070	test evaluation:		Olist	
Linear plot Q and p	-	Flow period	-	Recovery period	l
		Indata		Indata	
		p ₀ (kPa) =	3791		
	• Piscion • Piscon	p _i (kPa) =	3790		
4000	P balow Q 18	p _p (kPa) =	3990	p _F (kPa) =	3793
	15	$Q_{p} (m^{3}/s) =$	1.89E-04		1
<u>6</u> .300	• •	tp(s) =	1200	t _F (s) =	1200
	12 Up	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
1 4 C (((((((((((((((((($EC_w (mS/m) =$		0010()-	1
		Temp _w (gr C)=	13.0		1
3700 -		Derivative fact =	0.04	Derivative fact.=	0.04
·	- 3				
3000 0.30 0.00	0,00 1,20 1,50				
Elapsev	I Time [b]	Results		Results	<u> </u>
		Ω/s (m ² /s)-	9.3E-06		1
l og-l og plot incl. derivates- f	ow period	$T_{m}(m^{2}/c) =$	9.7E-06		
		Flow regime:	transient	Flow regime:	transient
		dt. (min) –	0.78	dt. (min) –	0.20
10 ^{-10,1}	h]10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	$dt_1 (min) =$	15.90	$dt_1(min) =$	14.76
		$a_{2}(1111) =$	1 55 05	$a_2(1111) =$	5 OF OF
10 1	10 -1	1 (m/s) =	1.3E-03	I (m /s) =	5.9E-05
		S(-) =	1.0E-06	S(-) =	1.0E-06
10 0	10 -2	K_{s} (m/s) =	7.5E-07	K_{s} (m/s) =	3.0E-06
		$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08
0 0 10 -1		C (m /Pa) =	NA	C (m)/Pa) =	1.6E-09
		$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	1.8E-01
10 4	• • •	ξ(-) =	2.96	ξ(-) =	30.80
l		$T_{GBF}(m^2/s) =$	NA	$T_{GBF}(m^2/s) =$	NA
10 10 st	10 10 10	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.	
		dt ₁ (min) =	0.20	$C (m^3/Pa) =$	1.6E-09
Elapsed time (h		dt_2 (min) =	14.76	$C_{\rm D}(-) =$	1.8E-01
10 2		$T_{T}(m^{2}/s) =$	5.9E-05	ξ(-) =	30.80
	300	S (-) =	1.0E-06	5()	1
	10 2	$K_{s}(m/s) =$	3.0E-06		
10 12		$S_{c}(1/m) =$	5.0E-08		
	30	Comments:			
		The recommended	transmissivity of	f 5 9•10-5 m2/s was	derived from
		the analysis of the C	CHir phase, which	ch shows the better of	lata and
•	and a second and a second a	derivative quality at	t horizontal stab	ilisation. The confid	ence range for
	-	the interval transmis	ssivity is estima	ted to be 8.0•10-6 m	2/s to 8.0•10-5
	10 °	m ² /s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10 ¹ 10 ²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	CHir phase using st	neasured at trar raight line extra	polation in the Horn	er plot to a
		crim phase using st	ingin inic exua	Polation in the HOII	or protito a

	Test Sı	ımr	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			Pi
Area:	Laxe	emar	Test no:			1
Borehole ID:	KL>	<17A	Test start:			070518 08:47
Test section from - to (m):	489.00-50	9.00	Responsible for test execution:	Philipp Wolf Linda Höckert		
Section diameter, 2-r _w (m):	C	0.076	Responsible for		Cristian Enache	
Linear plot Q and p			Flow period		Recovery period	
P W. # P			Indata		Indata	
			$p_{o}(kPa) =$	4302		
46.00		0.010	p ₀ (kPa) =	4309		
KLK1/A_480.	Patove Polov Polov		$p_{i}(kra) =$	4567	n_ (kPa) -	1107
4500 ·		= 0.008	$p_p(R(a)) =$	4555 #NIV	ρ _F (Ki α) –	4497
			$Q_p (m^{\circ}/s) =$	#IN V	t (a)	2,000
₹ 400 5	•	0.006 [Imiii	tp (s) =	10.2	t _F (S) =	3600
		oction R ate	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
4300		- 0.004 ⁹	EC _w (mS/m)=			
			Temp _w (gr C)=	13.9		
4200 -		• 0.002	Derivative fact.=	#NV	Derivative fact.=	#NV
400		0.000				
0.00 0.30 0.60 0.5 Elapsed	0 1.20 1.90 1 Time [h]	.80	Results		Results	
			Ω/s (m ² /s)-	#NV		
l og-l og plot incl. derivates- fl	ow period		$T_{11} (m^2/c) =$	#NV		
			Flow regime:	transient	Flow regime:	transient
			dt. (min) –	#NIV	dt. (min) –	#NIV
			$dt_1 (min) =$	#NV	$dt_1(min) =$	#NV
			dl_2 (mm) =		$dl_2(mn) =$	#IN V
			$T(m^2/s) =$	1.0E-11	$T(m^2/s) =$	NA
			S (-) =	1.0E-06	S(-) =	NA
			$K_s (m/s) =$	5.0E-13	$K_s (m/s) =$	NA
Not ar	nalvsed		$S_{s}(1/m) =$	5.0E-08	$S_s(1/m) =$	NA
			C (m³/Pa) =	NA	C (m³/Pa) =	NA
			$C_{D}(-) =$	NA	$C_D(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-)$ =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	neters.	
			dt ₁ (min) =	#NV	C (m ³ /Pa) =	NA
			dt_2 (min) =	#NV	C _D (-) =	NA
			$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA
			S (-) =	1.0E-06	- ()	
			$K_s (m/s) =$	5.0E-13		
			$S_{s}(1/m) =$	5.0E-08		
N	alved		Comments.			
	ни <i>у</i> эод		Based on the test re below of 0.001 L/m m2/s.	sponse (very slo in) the interval (w pulse recovery an ransmissivity is set t	d flow rate to 1.0•10-11

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX174	Test start:			070518 11:04	
Test section from - to (m):	509.00-529.00	Responsible for			Philipp Wolf	
Section diameter, 2.r _w (m):	0.07	6 Responsible for		Crist	ian Enachescu	
Linear plat O and p		test evaluation:				
Linear plot & and p		Flow periou		Recovery period		
		p_0 (kPa) =	4470	Illuata		
4800	0.010 • P section • P above	$p_i(kPa) =$	#NV			
NEA119_20309922300_or ex ru_1_com_e_;	• P balow • Q	$p_{p}(kPa) =$	#NV	p _F (kPa) =	#NV	
400 -		$Q_{n} (m^{3}/s) =$	#NV			
த தல்ல -	3 2000 F	tp(s) =	#NV	t _F (s) =	#NV	
d onne so At	Rase (thm	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downing to the second s	0.004	EC _w (mS/m)=				
		Temp _w (gr C)=	14.1			
4400 -	- 0.002	Derivative fact.=	#NV	Derivative fact.=	#NV	
4300 0.00 0.40 Elapsed T	0.000 0.00 0.00 1.00 Time [h]					
		Results	···· ·· /	Results		
· · · · · · · · · · · · · · · ·		Q/s (m ² /s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	#NV			
		Flow regime:	transient	Flow regime:	transient	
		$dt_1 (min) =$	#NV	$dt_1 (min) =$	#NV	
		$dt_2 (min) =$	#NV	$dt_2 (min) =$	#INV	
		$1 (m^{-}/s) =$	1.0E-11	1 (m ⁻ /s) =		
		S(-) = K(m/s) = -	5.0E-13	S(-) = K(m/s) =	NA	
		$R_{s}(11/s) =$	5.0E-13	$R_{s}(11/s) =$	NA	
Not an	nalysed	$C_{s}(1/11) = C_{s}(1/11)$	0.0L 00	$C_{s}(1/11) = C_{s}(m^{3}/P_{0}) = 0$	NA	
		$C(m/Fa) = C_{D}(-) =$	NA	$C(\Pi/Pa) = C_{D}(-) =$	NA	
		ε _D () =	NA	ε ₍₋₎ =	NA	
		· · · · · · · · · · · · · · · · · · ·		5() -		
		$T_{CPF}(m^2/s) =$	NA	$T_{CDF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.		
		dt_1 (min) =	#NV	C (m ³ /Pa) =	NA	
		dt_2 (min) =	#NV	C _D (-) =	NA	
		$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	5.0E-13			
		S _s (1/m) =	5.0E-08			
Not an	nalysed	Comments:				
		Based on the test re below of 0.001 L/m m2/s.	sponse (very slo in) the interval t	w pulse recovery an transmissivity is set t	id flow rate to 1.0•10-11	

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Pi
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070518 12:36
Test section from - to (m):	529.00-549.00	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2.r _w (m):	0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
• •		Indata		Indata	
		p ₀ (kPa) =	4637		
4930 KLX17A_529.00-549.00_070518_1_Pi	• P section • P section	p; (kPa) =	4644		
	Plaker Q	$p_{\rm n}(kPa) =$	4874	n- (kPa) =	4873
4630	0.008	$p_{p(, 2)}$	#NV		
÷ A		$Q_p (m/s) =$	10.02	+ (c) -	3600
(8,4750) (8,4750) (8,4750)	10.000 g	$(p_{1}(s)) =$	1.00E.06	(F(3)) =	1 00E 06
Loop Press	jed ton R a	S el S (-)=	1.00E-00	S el S (-)=	1.00E-00
8 4620	0.004 8	$EC_w (mS/m) =$	14.4		
		Temp _w (gr C)=	14.4		
4530	0.002	Derivative fact.=	#NV	Derivative fact.=	#NV
4450 0.00 0.30 0.60 0.92 Elapsed T					
		Results		Results	
		Q/s (m^{2}/s)=	#NV		
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	#NV		
	-	Flow regime:	transient	Flow regime:	transient
		 dt₁ (min) =	#NV	 dt₁ (min) =	#NV
		dt_2 (min) =	#NV	dt_2 (min) =	#NV
		$T(m^{2}/c) =$	1.0E-11	$T(m^2/e) =$	NA
		S (-) =	1.0E-06	S(-) =	NA
		K (m/e) -	5.0E-13	V (m/e) -	NIΔ
		$R_{s}(11/m) =$	5.0E-08	$C_{s}(11/m) =$	NIΔ
Not an	alysed	$S_{s}(1/11) =$		$S_{s}(1/11) =$	
		$C(m^{2}/Pa) =$		$C(m^{2}/Pa) =$	
		$C_D(-) =$		$C_{\rm D}(-) =$	
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.	
		$dt_1 (min) =$	#NV	C (m ³ /Pa) =	NA
		dt_2 (min) =	#NV	C _D (-) =	NA
		$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA
		S (-) =	1.0E-06		
		$K_s (m/s) =$	5.0E-13		
		$S_{s}(1/m) =$	5.0E-08		
Not an	alvsed	Comments:			
		Based on the test re below of 0.001 L/m m2/s.	sponse (very slo in) the interval t	w pulse recovery an transmissivity is set	d flow rate to 1.0•10-11

	Test Sı	ımr	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Area:	Laxe	emar	Test no:			1
Borehole ID:	KL>	<17A	Test start:			070518 15:13
Test section from - to (m):	549.00-56	9.00	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2-r _w (m):	C	0.076	Responsible for test evaluation:		Cristi	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p₀ (kPa) =	4803		
5150 KLX17A_549.00-569.00_070518_1_CHir_Q_r	P section A P shows	0.010	p; (kPa) =	#NV		
4949	• Platow • Q		p (kPa) =	#NV	n₋ (kPa) =	#NV
		800.0	$p_{p}(kr a) = 0$	#NV	p _F (ki u) –	
4950 -			$Q_p (\text{III} / \text{S}) =$	#NV	t_ (c) _	#NIV
legione ·	•	e [Itmin]	(p(s)) =	#INV	(F(3)) =	#INV
000 June 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		jection R at	SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00
4750	. ·	- 0.004 E	$EC_w (mS/m) =$	14.6		
			Temp _w (gr C)=	14.6		
4650 -		0.002	Derivative fact.=	#NV	Derivative fact.=	#NV
4550	0.80 0.80 1 ime[h]	0.000				
			Results	-	Results	
			Q/s (m ² /s)=	#NV		
Log-Log plot incl. derivates- fl	ow period		T _M (m ² /s)=	#NV		
			Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	#NV	dt ₁ (min) =	#NV
			dt_2 (min) =	#NV	dt_2 (min) =	#NV
			$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA
			S (-) =	1.0E-06	S (-) =	NA
			$K_s(m/s) =$	5.0E-13	$K_s (m/s) =$	NA
			$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	NA
Not an	alysed		$C_{(m^{3}/Pa)} =$	NA	C (m ³ /Pa) -	NA
			$C_{D}(-) =$	NA	$C_{D}(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			5() -		– () د	
			\mathbf{T} (m^2/c)	ΝΔ	$T \left(re^{2}/r\right)$	ΝΔ
			$\Gamma_{GRF}(\Pi / S) =$	NA	$\Gamma_{GRF}(\Pi / S) =$	NA
			$D_{GRF}(\cdot) =$		$O_{GRF}() =$	
Log log plot incl. dorivativos-	racovery period		Selected represe		DGRF(-) -	112
Log-Log plot mol. derivatives-	recovery period		dt. (min) –	#NIV		NΔ
			$dt_1(min) =$	#INV #NIV/	し (m /Pa) = C- (-)	
			$u_{12}(11111) =$		$C_D(-) =$	
			$I_{T}(m^{2}/s) =$	1.0E-11	ς (-) =	NA
		S (-) =	1.0E-06			
			$K_s (m/s) =$	5.0E-13		
			$S_{s}(1/m) =$	5.0E-08		
Not an	alysed		Comments:			
			Based on the test re below of 0.001 L/m m2/s.	sponse (very slo in) the interval t	w pulse recovery an cransmissivity is set t	d flow rate to 1.0•10-11

	Test Sum	marv Sheet			
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			Pi
Area:	Laxema	ar Test no:			2
Borehole ID:	KLX17	A Test start:			070518 18:44
Test section from - to (m):	569.00-589.0	0 Responsible for			Philipp Wolf
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for		Crist	an Enachescu
l inear plot Q and p		Flow period		Recovery period	
Ellow hist 2 and b		Indata		Indata	
		n_{a} (kPa) =	5019	induc.	
5350 KI X174 669.00-578.00 070618 3	• P secion	$p_0 (kr \alpha) =$	#NV		
NLA 174_303.009.003.00_07.00.00_0	_PLQ_r + P above ■ P balow - Q	$p_i(\mathbf{R} \alpha) =$	#NV	n (kPa) -	#NV
5250	- a cos	$\frac{p_{p}(r_{a})}{2} = \frac{3}{2}$	#1N V 1 67E 04	ρ _F (κra) =	#1N V
		$Q_p (m) =$	1.0/E-04	(/-)	1200
F 5150 -	+ 0.006 j	tp (s) =		t _F (s) =	1.000.00
hde Press	•	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
Soco D	a a a a a	EC _w (mS/m)=			
<u>.</u>		Temp _w (gr C)=	14.9		
4260	- a.002	Derivative fact.=	#NV	Derivative fact.=	#NV
4450 0.00 0.30 0.60 0.90 1.20 Elapsed T	1.50 1.80 2.10 2.40 2.70 Time FM				
		Results		Results	
		$Q/s (m^2/s) =$	#DIV/0!		
Log-Log plot incl. derivates- fl	ow period	T_{M} (m ² /s)=	#DIV/0!		
		Flow regime:	transient	Flow regime:	transient
		 dt₁ (min) =	#NV	dt₁ (min) =	#NV
		dt_{a} (min) =	#NV	dt_{2} (min) =	#NV
		$T(m^2/c) =$	1 0F-11	$T(m^2/c) =$	NΔ
		S(-) =	1.0E-06	P(11) = P(1)	NΔ
		S(-) = -	5.0E-13	S(-) = -	
		$R_{s}(11/5) =$	5.0L-13	$N_{s}(11/5) =$	
Not an	alysed	$S_{s}(1/11) =$	0.0E-00	$S_{s}(1/11) =$	
		C (m [°] /Pa) =	NA	C (m)/Pa) =	NA
		$C_D(-) =$	NA	$C_{D}(-) =$	NA
		ξ(-) =	NA	ξ(-) =	NA
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	#NV	C (m ³ /Pa) =	NA
		dt_2 (min) =	#NV	$C_{D}(-) =$	NA
		$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA
		S (-) =	1.0E-06	5()	
		$K_s(m/s) =$	5.0E-13		
		$S_{c}(1/m) =$	5.0E-08		
Not en	-ld	Comments:	0.02.00		I
Not an	arysed	Based on the test re	sponse (verv slo	w pulse recovery or	d flow rate
		below of 0.001 L/m	(very sic	transmissivity is set	to 1.0•10-11
		m2/s.			

Test Summary Sheet						
Project:	Oskarshamn site investigatio	on <u>Test type:[1]</u>			CHir	
Area:	Laxem	ar Test no:			1	
Borehole ID:	KLX17	A Test start:			070519 08:59	
Test section from - to (m):	589.00-609.0	00 Responsible for test execution:			Philipp Wolf Linda Höckert	
Section diameter, 2.r _w (m):	0.07	76 Responsible for test evaluation:		Cristian Enachescu		
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
	1 0.010	p ₀ (kPa) =	5154			
5500 KLX17A_589.00-609.00_070519_1_CHir_Q_r	P section P store P show	p _i (kPa) =	#NV			
54m -	90.00	p _p (kPa) =	#NV	p _F (kPa) =	#NV	
		Q _p (m ³ /s)=	#NV			
e 9. 5300 -	0.005	_ tp (s) =	#NV	t _F (s) =	#NV	
Pressure	• •	s el S (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downhold	0.004	EC _w (mS/m)=				
		Temp _w (gr C)=	15.2			
5100 -	0.002	Derivative fact.=	#NV	Derivative fact.=	#NV	
	<u>Ř</u>					
5000 0.00 0.20 0.40	0.00 0.00 1.00					
Elapsed	fime [h]	Results		Results		
		$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period	T_{M} (m ² /s)=	#NV			
	· ·	Flow regime:	transient	Flow regime:	transient	
		$dt_1 (min) =$	#NV	dt_1 (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^2/s) =$	1.0E-11	$T(m^2/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		K_{s} (m/s) =	5.0E-13	K _s (m/s) =	NA	
		$S_{s}(1/m) =$	5.0E-08	S₅ (1/m) =	NA	
Not ar	alysed	$C (m^3/P_2) =$	NA	$C (m^3/P_a) =$	NA	
		$C_{n}(-) =$	NA	$C_{D}(-) =$	NA	
		ε(-) =	NA	۶ (-) =	NA	
		שני - יוו	1	אר –		
		$T_{}(m^2/s) =$	NA	$T_{}(m^2/c) =$	NA	
		$S_{CPE}(-) =$	NA	$S_{GRF}(1173) =$	NA	
		$D_{CPE}(-) =$	NA	$D_{CDE}(-) =$	NA	
l og-Log plot incl. derivatives-	recoverv period	Selected repres	entative paran	PGRF ()	1.4.	
	1000.0.9 point =	dt₁ (min) =	#NV	$C (m^3/P_2) =$	NA	
		dt_2 (min) =	#NV	$C_{n}(-) =$	NA	
		$T_{-}(m^{2}/s) =$	1.0E-11	۲) =	NA	
		S(-) =	1.0E-06	א() –	1	
		$K_{a}(m/s) =$	5.0E-13			
		$S_{s}(1/m) =$	5.0E-08			
NI-4	l d	Comments:	0.02 00			
Not ar	lalysed	Based on the test r	asponsa (varv slo	w pulse recovery or	d flow rate	
		below of 0.001 L/n m2/s.	nin) the interval	transmissivity is set	to 1.0•10-11	

Test Summary Sheet						
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Area:	Lax	emar	Test no:			1
Borehole ID:	KL	X17A	Test start:			070519 10:33
Test section from - to (m):	609.00-62	29.00	Responsible for test execution:	Philipp Wolf Linda Höckert		
Section diameter, 2·r _w (m):	(0.076	Responsible for test evaluation:		Crist	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
		- 0.005	p ₀ (kPa) =	5320		
KLX17A_509.00-629.00_070519_1_CHir_Q_r	P section P above P helow	0.000	p _i (kPa) =	#NV		
20.50 -		+ 0.004	p _p (kPa) =	#NV	p _F (kPa) =	#NV
	· (Q _p (m ³ /s)=	#NV		
- - 		0.003 g	tp (s) =	#NV	t _F (s) =	#NV
		n Rate (Mmi	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
5000 E000		lupecto	EC _w (mS/m)=			
			Temp _w (gr C)=	15.4		
50:50 -		- 0.001	Derivative fact.=	#NV	Derivative fact.=	#NV
5150 0.40 0.20 0.40	0.80 0.80	0.000				
Elapsed I	me (n)		Results		Results	<u>n</u>
			Q/s $(m^{2}/s) =$	#NV		
Log-Log plot incl. derivates- fl	ow period		T_{M} (m ² /s)=	#NV		
			Flow regime:	transient	Flow regime:	transient
			dt₁ (min) =	#NV	dt ₁ (min) =	#NV
			dt_2 (min) =	#NV	dt_2 (min) =	#NV
			$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA
			S (-) =	1.0E-06	S (-) =	NA
			$K_s (m/s) =$	5.0E-13	$K_s (m/s) =$	NA
			$S_{s}(1/m) =$	5.0E-08	$S_{s}(1/m) =$	NA
Not an	alysed		$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	NA
			$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			5()		5()	
			$T_{a=-}(m^2/s) =$	NA	$T_{aa}(m^2/s) =$	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{CRF}(-) =$	NA	$D_{CRE}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	eters.	
- <u> </u>			dt₁ (min) =	#NV	$C (m^3/P_2) =$	NA
			dt_2 (min) =	#NV	$C_{D}(-) =$	NA
			$T_{1}(m^{2}/c) =$	1.0E-11	ε ₀ () –	NA
			S(-) =	1.0E-06	י () אין די	
			С() – К (m/s) –	5.0E-13		
			$R_{s}(11/3) =$	5.0E-08		
.	11		Commente:	0.02-00		
Not an	arysed		Based on the test re below of 0.001 L/m m2/s.	sponse (very slo in) the interval t	w pulse recovery an ransmissivity is set	d flow rate o 1.0•10-11

	Test St	ımn	nary Sheet				
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir	
Area:	Laxe	əmar	Test no:			1	
Borehole ID:	KLX	<17A	Test start:			070519 12:19	
Test section from - to (m):	629.00-64	9.00	Responsible for	Philipp Wolf			
Section diameter, 2-r _w (m):	0).076	Responsible for		Cristian Enachescu		
l inear plot Q and p			Flow period	<u> </u>	Recovery period		
Filled hist 2 and b			Indata		Indata		
			p₀ (kPa) =	5460			
5800	• P section • P above	0.010	p; (kPa) =	#NV			
KLX17A_629.00-649.00_070519_1_CHir_Q_r	P balow Q		$p_{n}(kPa) =$	#NV	p₌ (kPa) =	#NV	
5700	N	0.008	$O(m^{3}/s) =$	#NV			
· ·	:		$\frac{Q_p(m/s)}{m/s} =$	#NV	t₌ (s) =	#NV	
G 3500 1		Rate [l/m in]	우 (-)-	1.00E-06	د (د) د ما د [*] (_)_	1.00E-06	
AL STORY AND A STO	j	Injection F	FC (mS/m)=		Sel S (-)=		
8 500		6.004	Temp.,(ar C)=	15.6			
5400		- 0.002	Derivative fact.=	#NV	Derivative fact.=	#NV	
			Donvativo		Donvativo taca		
		0.000		1			
0.00 0.25 0.50 0.75 1.00 Elapsed Tr	J 1.25 1.50 1.75 ∠a Лime[h]	.00	Rosults		Results		
			$\Omega = (m^2/n)$	#N\/	Results	1	
Log_Log plot incl. derivates, fl	low pariod		$Q/s (m/s) = - \frac{2}{s}$	#NV			
LOG-LOG PIOLINGI. derivates- in			I _M (m ⁻ /s)=	#INV	Flow rogime:	transiant	
			How regime.		How regime.		
			$dt_1(min) =$	#IN V #NI\/	$dt_1(min) =$	#IN V #NI\/	
			$dt_2 (ffin) =$	#INV	dt_2 (mm) =	#IN V	
			I (m⁻/s) =	1.00-11	$1 (m^{-}/s) =$		
			S (-) =		S(-) =		
			$K_s(m/s) =$	5.UE-13	$K_s(III/S) =$		
Not an	nalysed		$S_{s}(1/m) =$	5.UE-UO	$S_{s}(1/m) =$		
			C (m)/Pa) =		C (m)/Pa) =		
			$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			2		2		
			$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	NA	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	NA	
			$D_{GRF}(-) =$	NA	D _{GRF} (-) =	INA	
Log-Log plot Incl. derivatives-	recovery period		Selected represe		eters.		
			$dt_1(min) =$	#IN V	C (m) =		
			$dt_2 (min) =$		$C_{\rm D}(-) =$		
			$T_T(m^2/s) =$	1.0E-11	ς (-) =	NA	
			S(-) =				
			$\kappa_{\rm s} ({\rm ffl/s}) =$	5.0E-13			
			$S_s(1/m) =$	5.0E-08			
Not an	nalysed		Comments:	<i>.</i>		1.9	
			Based on the test re below of 0.001 L/m m2/s.	sponse (very slo iin) the interval t	w pulse recovery an ransmissivity is set t	d flow rate to 1.0•10-11	

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070520 08:53
Test section from - to (m):	669.00-689.00	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu
l inear plot Q and p		Flow period		Recovery period	
P		Indata		Indata	
		p_{o} (kPa) =	5789		
61 00	0.035	p₀(kPa) =	5787		
KLX17A_669.00-689.00_070520_1_CHir_Q_r	- Pakcon Pakov Pakov Q 0030	$p_r(kPa) =$	5987	p _⊏ (kPa) =	5800
6000 ·	<u>.</u>	$\rho_{\rm p}({\rm in } {\rm d}) =$	3 00F-07	p _F (m u) =	
	0.023	$\frac{Q_p (\Pi / S)}{tn (s)} =$	3.00E 07	t _r (s) -	1200
	0.020 0	$(p_{(3)}) =$	1.00E.06	$r_{\rm F}$ (3) =	1 00E 06
	0.015	S el S (-)= EC (mS/m)-	1.00E-00	5 el 5 (-)=	1.00E-00
§ 300	-	$EC_w (IIIS/III) =$	16.1		
	0.010	Temp _w (gr C)=	10.1	Derivative fact	0.02
	0.005	Derivative fact.=	0.08	Derivative fact.=	0.02
5600					
0.00 0.30 0.60 Elaps	0.90 1.20 1.50	Results		Results	L
		$\Omega/c_{\rm c}$ (m ² /c)-	1.5E-08	litoounio	
l og l og plot incl. derivates	flow period	$Q/S (\Pi /S) =$	1.6E 00		
		T_{M} (III /S)=	transient	Flow regime:	transient
		dt. (min) –		dt. (min) –	3 45
Elapsed in	ne [h] 10 ⁻² 10 ⁻¹	$dt_1 (min) =$	14.16	$dt_1 (min) =$	18 20
		$a_{2}(1111) =$	1 55 09	$a_2(1111) =$	1 7E 09
-		1 (m/s) =	1.3E-08	I (m /s) =	1.7 - 00
10	10 0 00 00 00 00 00 00 00 00 00 00 00 00	S(-) = K(m/c) = -	T.0E-00	S(-) = K(m/c) =	9.55 10
		$R_{s}(11/s) =$	7.3E-10	$R_{s}(11/s) =$	6.3E-10
۲۵۰ -		$S_{s}(1/11) =$	5.0E-00	$S_{s}(1/11) =$	5.0E-08
		C (m ² /Pa) =		C (m ² /Pa) =	5.2E-11
· ·	··· · · ·	$C_{\rm D}(-) =$	INA	$C_{\rm D}(-) =$	5.7E-03
10-1	• • • •	ς (-) =	1.09	ς(-) =	1.44
		$T_{CDF}(m^2/s) =$	NA	$T_{CBF}(m^2/s) =$	NA
10 ² 10 ³	10 10 10 10 10	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	s- recovery period	Selected represe	ntative paran	neters.	
		dt_1 (min) =	3.45	$C(m^3/Pa) =$	5.2E-11
Elapsed time	[h]	dt_2 (min) =	18.30	$C_{\rm D}(-) =$	5.7E-03
10 2		$T_{T}(m^{2}/s) =$	1.7E-08	ξ(-) =	1.44
	a	S (-) =	1.0E-06	5()	1
	10	$K_s(m/s) =$	8.5E-10		
10 1	300	$S_{s}(1/m) =$	5.0E-08		
		Comments:			
		The recommended	transmissivity of	f 1.7•10-8 m2/s was	derived from
10 ° · · · · · · · · · · · · · · · · · ·		the analysis of the C	CHir phase, which	ch shows the best qu	ality of the
	» •	derivative horizonta	al stabilisation. T	The confidence range	e for the
· / ·	• •	interval transmissiv	ity is estimated	to be 8.0•10-9 m2/s	to 3.0•10-8
		m2/s. The flow dim	ension displayed	a during the test is 2 assucer depth was d	(radial flow).
10 ⁰ 10 ¹ tD/C	10 ² 10 ³ 10 ⁴	CHir phase using st	raight line extra	polation in the Horn	er plot to a
		value of 5 787 1 kP	9		1

	Test Sr	ımr	narv Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
Area:	Laxe	emar	Test no:			1
Borehole ID:	KLX	(17A	Test start:	t: 070520		070520 11:04
Test section from - to (m):	674.00-69	4.00	Responsible for	Philipp Wolf		
Soction diamotor 2 r (m):		076	test execution:		Criet	Linda Höckert
	U	.070	test evaluation:		Clist	
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p ₀ (kPa) =	5831		
6400 KLX17A_674.00-694.00_070520_1_CHir_Q_r	• P section	0.12	p _i (kPa) =	5833		
830 .	P shove P bidov O		$p_{p}(kPa) =$	6034	p _F (kPa) =	5842
e2 00 -		0.09	Ω_{r} (m ³ /s)=	4.17E-07	, ,	
<u>₹</u> ⁶¹⁰⁰			$d_p (m/3) =$	1200	t _⊏ (s) =	2400
000 mmm		Rate [//min]	S el S [*] (-)-	1.00E-06	S el S [*] (-)-	1.00E-06
www.ide		In jection	EC _w (mS/m)=		0 0 0 0 ()=	
****			Temp(ar C)=	16.2		
5800		0.03	Derivative fact =	0.05	Derivative fact =	0.03
570		-		0.05		0.05
5600	·	0.00				
entre autor autor des estas Elapsed	7.20 1.30 Time [h]	120	Results		Results	
			$\Omega/c_{\rm c}$ (m ² /c)-	2 0E-08	lioouno	
l og-l og plot incl. derivates- fl	ow period		Q/S (III/S) =	2.0E 00		
Log-Log plot men derivates- n			I_{M} (m /s)=	z. TE-00	Flow regime:	transient
			r iow regime.		r tow regime.	
Elapsed time	[h] 10, ⁻¹	7	$dt_1 (min) =$	16.50	dt_1 (min) = dt_1 (min) =	2.03
			$u_2(1111) =$	2 15 09	$\operatorname{dl}_2(\operatorname{IIIIII}) =$	2 55 08
		10 2	1 (m/s) =	2.1E-08	I(m/s) =	2.3E-00
10 1		1	S(-) =	1.0E-06	S(-) =	1.0E-06
		ľ	K_{s} (m/s) =	1.0E-09	$\kappa_{\rm s} ({\rm ffl/s}) =$	1.3E-09
₽ ₽ ₽ ₽ ₽ ₽		10	$S_{s}(1/m) =$	5.UE-08	$S_{s}(1/m) =$	5.0E-08
		101101	C (m˘/Pa) =		C (m [°] /Pa) =	5.1E-11
	4 AT	10 0	$C_{\rm D}(-) =$		$C_{\rm D}(-) =$	5.6E-03
10		-	ζ(-) =	0.62	ς(-) =	1.45
		10 -1	$T_{(m^{2}/c)}$	NA	$T_{(m^{2}/2)}$	NA
10 ² 10 ² 11 ² 11	10 ⁴ 10 ⁵ 10	ų	$I_{GRF}(III / S) =$	NA	$S_{ORF}(III / S) =$	NA
			$D_{\text{GRF}}(\cdot) =$	NA	$D_{GRF}(-) =$	NA
l og-l og plot incl. derivatives-	recovery period		Selected represe	ntative paran		
			dt. (min) =	2 85	$C(m^3/D_{2})$	5 1E-11
			dt_1 (min) = dt_2 (min) =	34.86	$C(m/Pa) = C_{-}(-) = -$	5.6E-03
10 ²			$T_{12}(m^{2}/c)$	2 5E-08	$\varepsilon_{\rm D}() = \varepsilon_{\rm C}(-)$	0.0E 05
			$T_{T}(m/s) =$	1.0E-06	S (-) =	1.40
	10	,	S(-) = K(m/s) = -	1.0E-00		
	30	0	$R_{s}(11/3) =$	5.0E-08		
			$S_{s}(1/11) =$	0.0E-00		
a .	10	2 Teday	The recommended in	tronomiosivity of	$52.5 \cdot 10.8 m^{2/a}$ was	darived from
and the second sec		0-00	the analysis of the C	CHir phase, which	ch shows the best au	ality of the
	» <u>***//</u> »		derivative horizonta	al stabilisation.	The confidence range	e for the
	10	1	interval transmissiv	ity is estimated	to be 1.0•10-8 m2/s	to 5.0•10-8
			m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10 ⁰ 10 ¹ tD/CD	10 ² 10 ³ 10 ⁴ 3		The static pressure :	measured at trar	sducer depth, was d	erived from the
			value of 5.833.7 kP	angin inte extra		er prot to a

	Test Sum	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemai	Test no:			1
Borehole ID:	KLX17A	Test start:			070522 13:43
Test section from - to (m):	339.00-344.00	Responsible for test execution:			Philipp Wolf Linda Höckert
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period	<u> </u>	Recovery period	
P P		Indata		Indata	
		$p_{o}(kPa) =$	2916		
3250	0.005	p₀ (kPa.) =	2913		┢─────┤
KLX17A_339.00-344.00_070522_1_CHir_Q_r 3200 -	Patcon Patcon Pbelow Q	p (kPa) =	3176	n₋(kPa) =	2925
1	• 0.004	$p_p(R(a)) =$	2 50E 08	ρ _F (κι α) –	2923
3150		$Q_p (m^{\circ}/s) =$	2.50E-08	t (a)	1200
عند 100 -	- 0.003 g	tp(s) =	1200	t _F (S) =	1200
	ction Ras	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
2 3000 ·	0.002 2	EC _w (mS/m)=			
3000		Temp _w (gr C)=	11.4		
		Derivative fact.=	0.18	Derivative fact.=	0.02
2900 0.00 0.20 0.40 0.60 Planeet	1.00 1.20 1.40 1.60 1.50				
		Results		Results	
		$Q/s (m^2/s) =$	9.7E-10		
Log-Log plot incl. derivates- f	low period	$T_{M} (m^{2}/s) =$	8.0E-10		
		Flow regime:	transient	Flow regime:	transient
Elanset time Ihi		dt_1 (min) =	0.49	dt_1 (min) =	#NV
10 ²	. 10 ¹ 10 ⁰ 10 ¹	dt_2 (min) =	15.90	dt_2 (min) =	#NV
	• I ¹⁰	$T(m^{2}/s) =$	7.7E-10	$T(m^{2}/s) =$	1.7E-09
	3000	S(-) =	1 0E-06	S(-) =	1.0E-06
	•	K (m/s) –	1.6E 00	С() – К (m/s) –	3.5E-10
	10 ³	$R_{s}(11/3) =$	1.5E 10 2.0E-07	$R_{s}(11/3) =$	2.0E-07
	· · · · · ·	$S_{s}(1/11) =$	2.0L-07	$O_{s}(1/11) =$	2.0E-07
		C (m ² /Pa) =		C (m ⁷ /Pa) =	2.22-11
10 °	10 ²	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	2.4E-03
		ζ(-) =	1.68	ζ(-) =	7.98
***	30	$T_{CBF}(m^2/s) =$	NA	$T_{CDF}(m^2/s) =$	NA
10 ⁻² 10 ⁻³ 10	10 [°] 10 [°]	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	ntative paran	neters.	
0 01		dt₁ (min) =	0.49	$C (m^{3}/P_{2}) =$	2.2E-11
Elapsed tim	s [14]	dt_2 (min) =	15.90	$C_{n}(-) =$	2 4F-03
10 2 10 2	······································	$T_{1}(m^{2}/c) =$	7 7E-10	ε _μ = ε _μ	1.68
	10 ³	$T_{T}(1175) =$	1.0E-06	5(-) -	1.00
		S (-) =	1.0E-00		
10		$R_{s}(11/s) =$	1.3E-10		
		$S_s(1/11) =$	2.0E-07		
10°		Comments:			
	10	The recommended t	transmissivity of	f 7.7•10-10 m2/s wa	s derived from
		clear derivative bor	izontal stabilisat	tion. The confidence	e range for the
10-1		interval transmissiv	ity is estimated	to be $4.0 \cdot 10 - 10 \text{ m}2/s$	s to 3.0•10-9
	10 ⁰	m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10-1 10 0	10 ⁻¹ 10 ⁻² 1n ⁻³	The static pressure	measured at trar	sducer depth, was d	erived from the
	ICD	CHir phase using ty	pe curve extrap	olation in the Horne	r plot to a value

Test Summary Sheet						
Project:	Oskarshamn site investigatio	n <u>Test type:[1]</u>			CHir	
Area:	Laxema	ar Test no:			1	
Borehole ID:	KLX17	A Test start:			070522 15:54	
Test section from - to (m):	344.00-349.0	0 Responsible for test execution:	Philipp Wolf Linda Höckert			
Section diameter, $2 \cdot r_w$ (m):	0.07	6 Responsible for test evaluation:		Cristian Enachescu		
Linear plot Q and p		Flow period	Recovery period			
		Indata		Indata		
3150	0.010	p ₀ (kPa) =	2958			
KLX17A_344.00-349.00_070522_1_CHir_Q_r	• P section • P shree	$p_i (kPa) =$	#NV			
3100 -	• P balow • Q • Q	$p_{p}(kPa) =$	#NV	p _∈ (kPa) =	#NV	
	ί. ·.	$O_{1}(m^{3}/c) =$	#NV	FT X 7		
କ୍ତି 3000 -	•	$\frac{Q_p (\Pi / S)}{tn (S)} =$	#NV	tr (s) =	#NV	
() ourresew		(p(0)) =	1.00E.06	t⊧ (0) –	1.00E.06	
5 3000 -	0.004 ⁰	S el S (-)= EC (mS/m)-	1.002-00	S el S (-)=	1.00E-00	
¯ •		$EC_w (IIIS/III) =$	11.5			
2000	••••••••••••••••••••••••••••••••••••••	Temp _w (gr C)=	11.5	Dania ati ya ƙast	//NTX7	
		Derivative fact.=	#N V	Derivative fact.=	#IN V	
2200	aaaa					
0.00 0.15 0.30 0.45 Elapsed Ti	i 0.60 0.75 0.90 ime (h)					
		Results		Results		
		Q/s (m ² /s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	#NV	$dt_1 (min) =$	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA	
Not an	nalysed	$C_{\rm c}$ (m ³ /Pa) =	NA	$C_{1}(m^{3}/Pa) =$	NA	
		$C_{D}(-) =$	NA	$C_{\rm D}(-) =$	NA	
		$\xi(-) =$	NA	ξ(-) =	NA	
		5() –		5() -		
		$T \left(m^{2}/c\right)$	ΝΔ	$T \left(re^{2}/r\right)$	ΝΔ	
		$I_{GRF}(fff / S) =$		$I_{GRF}(fff / S) =$		
		$D_{GRF}(-) =$		$S_{GRF}(-) =$		
Log log plot incl. dorivativos-	racovery period	D _{GRF} (-) =		$D_{GRF}(-) =$	אין	
Log-Log plot mol. derivatives-		dt. (min) -	#NIV		ΝΔ	
		$dt_1(min) =$	#INV #NI\/	C (m /Pa) =		
		$dl_2(mn) =$		$C_D(-) =$		
		$I_{T}(m^{2}/s) =$	1.0E-11	ς(-) =	NA	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	2.0E-12			
		$S_{s}(1/m) =$	2.0E-07			
Not an	alysed	Comments:				
		Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m	ed packer compliand 2/s.	ce) the interval	

	Test Sum	marv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	r Test no:			1
Borehole ID:	KLX17A	Test start:			070523 09:07
Test section from - to (m):	369.00-374.00	Responsible for		Reinde	er van der Wall
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	ian Enachescu
		test evaluation:			-
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	1
3450		p ₀ (kPa) =	3167		
KLX17A_369.00-374.00_070523_1_CHir_Q_r	P action A P above Pabove	p _i (kPa) =	3163		
3400	• • • • • • • • • • • • • • • • • • •	p _p (kPa) =	3364	p _F (kPa) =	3164
3350 -		Q _p (m ³ /s)=	7.27E-07		
	1	tp (s) =	1200	t _F (s) =	1200
	a transformed and transformed	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
9993250 ·		EC _w (mS/m)=			
3200		Temp _w (gr C)=	11.9		
	+ 0.02	Derivative fact.=	0.10	Derivative fact.=	0.05
3150 -					
3100 0.30 0.60 Elapt	2 1,20 1,20 1,50 sed Time [N]	Results		Results	
		Ω/s (m ² /s)-	3.5E-08		1
l og-l og plot incl. derivates-	flow period	$T_{\rm c}(m^2/c) =$	2 9E-08		
		Flow regime:	transient	Flow regime:	transient
		dt. (min) –	0.30	dt. (min) –	0.37
Elapsed in	ne [h]	$dt_1 (min) =$	15.06	$dt_1 (min) =$	1.03
	10 ²	$\frac{dt_2}{dt_2}$ (mm) =	13.90 E 4E 08	$a_2(1111) =$	7.45.09
		I (m ⁻ /s) =	5.4E-06	I (m ⁻ /s) =	7.4E-08
10 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ +0 ⁰⁰⁰	S (-) =	1.0E-06	S (-) =	1.0E-06
• • •	10	K_{s} (m/s) =	1.1E-08	κ_{s} (m/s) =	1.5E-08
• 6 10 °		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
	10 [°]	C (m³/Pa) =	NA	C (m [°] /Pa) =	1.5E-11
· · · .		${}^{2}C_{D}(-) =$	NA	$C_D(-) =$	1.6E-03
10 ⁻¹	• • • •	ξ(-) =	4.04	ξ(-) =	8.18
		$T_{GRF}(m^2/s) =$	NA	$T_{GRE}(m^2/s) =$	NA
10 5 10	10 ⁷ 10 ⁸ 10 ⁹	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	entative paran	neters.	
		dt_1 (min) =	0.30	$C_{\rm m}^{\rm 3}/Pa) =$	1.5E-11
Ebpsed in	me (h)	dt_2 (min) =	15.96	$C_{D}(-) =$	1.6E-03
10 ²	10, ~10, ~10, ~10, ~	$T_{\tau}(m^2/s) =$	5.4E-08	ξ(-) =	4.04
		S(-) =	1.0F-06	5() -	
		$K_{1}(m/s) =$	1 1E-08		
10	- 10 ⁻²	$S_{s}(1/m) =$	2.0E-07		
	×.		2.06-07		<u> </u>
8 10 °	and the second s	The recommended	tronomicainite -	f 5 / • 10 8 - 2/2	darived from
-	10	the analysis of the (Thi phase which	h shows a very noisy	v but already
	" a am o ream	clear derivative hor	izontal stabilisat	tion. The confidence	e range for the
10 -1	10 ⁰	interval transmissiv	ity is estimated	to be 3.0•10-8 m2/s	to 4.0•10-7
		m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10 [°] 10 ¹	10 ² 10 ³ 10 ⁴	The static pressure	measured at trar	sducer depth, was d	erived from the
	סטמ	value of 3 164 3 kP	raignt line extra	polation in the Horn	er plot to a

Test Summary Sheet						
Project:	Oskarshamn site investiga	tion	Test type:[1]			CHir
Area:	Laxe	mar	Test no:			1
Borehole ID:	KLX	17A	Test start:			070523 10:58
Test section from - to (m):	374.00-379	9.00	Responsible for test execution:	Reinder van der Wall Linda Höckert		
Section diameter, 2.r _w (m):	0.	076	Responsible for		Cristi	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p ₀ (kPa) =	3210		
3400 KLX17A_374.00-379.00_070523_1_CHir_Q_r	P sector	1.010	p _i (kPa) =	#NV		
3350 -	P adow P balow Q	005	p _p (kPa) =	#NV	p _F (kPa) =	#NV
	· · · · · · · · · · · · · · · · · · ·		$Q_{p} (m^{3}/s) =$	#NV		
§ 3300 -		1.005 g	tp (s) =	#NV	t _F (s) =	#NV
Pressure of		n Rate (I/mi	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
0 31200 -	:	1 Injection	EC _w (mS/m)=			
7	· ·		Temp _w (gr C)=	12.0		
3200	a a a a a a a a a a a a a a a a a a a	1.002	Derivative fact.=	#NV	Derivative fact.=	#NV
	•					
3150 0.00 0.15 0.30 0.4		.000				
Elapsed 1	Time [h]		Results		Results	
			Ω/s (m ² /s)-	#NV		
Log-Log plot incl. derivates- fl	ow period		$\frac{(m^2/s)}{(m^2/s)}$	#NV		
			Flow regime:	transient	Flow regime:	transient
			dt_{4} (min) =	#NV	dt_{ℓ} (min) =	#NV
			$dt_{1}(min) =$	#NV	dt_{1} (min) =	#NV
			$T(m^2/c)$	1 0E-11	$T_{m}^{2}(n)$	NΔ
			S(-) =	1.0E-06	S(-) =	NA
			K (m/s) –	2.0E-12	C () – K (m/s) –	NA
			S (1/m) -	2.0E 12	S (1/m) -	NA
Not ar	nalysed		$C_{s}(1,11) = C_{s}(1,11)$		$C_{s}(1,111) = C_{s}(1,111)$	NA
			$C_{(III / Pa)} =$	NA	$C_{(III / Pa)} =$	NA
			۲ <u>۲</u>	ΝΔ	$\varepsilon_{\rm B}() = \varepsilon_{\rm C}(-)$	NA
			S (-) =		S (-) =	
			$T_{aa}(m^2/s) =$	NA	$T_{aa}(m^{2}/s) =$	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{CRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	eters.	I
5 . 5	·····		dt₁ (min) =	#NV	$C (m^3/P_2) =$	NA
			dt_2 (min) =	#NV	$C_{D}(-) =$	NA
			$T_{-}(m^{2}/s) =$	1 0F-11	ε(-) –	NA
			S(-) =	1.0E-06	S() –	
			K_ (m/s) =	2 0E-12		
			$S_{(1/m)} =$	2.0E-07		
Х Т	alwad		Comments:	2.52 07		
inot ar	larysed		Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m?	ed packer compliand 2/s.	ce) the interval

	Test Summ	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Pi
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070523 13:07
Test section from - to (m):	379.00-384.00	Responsible for	Reinder van der Wa		
Section diameter, 2.r _w (m):	0.076	Responsible for		Cristi	an Enachescu
Linear plot Ω and p		test evaluation:		Recovery period	
Linear plot & and p		Indata		Indata	
		no (kPa) =	3254	indata	
3600	0.010	p; (kPa) =	3283		
KLX17A_379.00-384.00_070523_1_PLQ_r	P section P sectors P sectors P balow P balow	$p_i(kra) =$	3523	n- (kPa) -	3264
3500 -	- 0.008	$p_p(K a) =$	#NV	p _F (Ki a) =	5204
		$Q_p (M/S) =$	π1 V	t_ (s) _	3660
C	0.000	(p(3)) =	1.00E.06	$(3)^{}$	1.00E.06
8 3400 8	dido n far	Sel S (-)= EC (mS/m)-	1.00E-00	Sel S (-)=	1.00E-00
	0.004 2	$EC_w (IIIS/III) =$	12.0		
300		Temp _w (gr C)=	12.0	Device the free t	0.02
	0.002	Derivative fact.=	#1N V	Derivative fact.=	0.02
	· · · · · · · · · · · · · · · · · · ·				
0.00 0.25 0.50 0.75 1.00 Elapsed	1.25 1.50 1.75 2.00 2.25 Time [h]	Desults		Desults	
			#NI\/	Results	
		$Q/s (m^{-}/s) =$	#IN V		
Log-Log plot incl. derivates- f	low period	T _M (m²/s)=	#NV	-	
		Flow regime:	transient	Flow regime:	transient
		$dt_1 (min) =$	#NV	dt_1 (min) =	16.86
		$dt_2 (min) =$	#NV	$dt_2 (min) =$	58.98
		$T(m^2/s) =$	NA	$T(m^2/s) =$	2.9E-10
		S (-) =	NA	S (-) =	1.0E-06
		$K_s (m/s) =$	NA	$K_s (m/s) =$	5.9E-11
Not a	nalysed	$S_s(1/m) =$	NA	$S_s(1/m) =$	2.0E-07
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.5E-11
		$C_D(-) =$	NA	$C_D(-) =$	1.7E-03
		ξ(-) =	NA	ξ(-) =	7.66
		T _{GRF} (m²/s) =	NA	T _{GRF} (m²/s) =	NA
		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.	
		dt ₁ (min) =	16.86	C (m ³ /Pa) =	1.5E-11
Elapsed time	h] 	dt_2 (min) =	58.98	$C_D(-) =$	1.7E-03
10		$T_T (m^2/s) =$	2.9E-10	ξ(-) =	7.66
		S (-) =	1.0E-06		
10 ¹	10	$K_s (m/s) =$	5.9E-11		
		$S_s(1/m) =$	2.0E-07		
	10 ⁻²	Comments:			
	d particular	The recommended t	transmissivity of	f 2.9•10-10 m2/s was	s derived from
		the analysis of the P	1 phase (outer z	one) where the data	are not too
10 1	• [10	confidence range for	r the interval tra	insmissivity is estimated	ated to be
		1.0•10-10 m2/s to 1	.0•10-9 m2/s. T	he flow dimension d	isplayed during
10 ⁷ 10 ⁸	10 ⁻⁴	the test is 2 (radial f	flow). The static	pressure measured a	at transducer
, , ti	, <u> </u>	depth could not be e	extrapolated from	m the analysis.	

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070523 15:49
Test section from - to (m):	384.00-389.00	Responsible for test execution:		Reinde	r van der Wall Linda Höckert
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		p₀ (kPa) =	3297		1
2860	0010	$p_i(kPa) =$	3300		
KLX17A_384.00-389.00_070523_1_CHir_Q_r 3000	P above P bolow P bolow Q	$p_{p}(kPa) =$	3496	p _F (kPa) =	3301
	- 0.008	$O(m^3/s) =$	5.83E-08	r i X - 7	
		$\frac{d_p(m/3)}{tp(s)} =$	1200	t⊧ (s) =	1200
4 5 500	4.006 (regulation of the second secon	S el S [*] (-)-	1.00E-06	S el S [*] (-)-	1.00E-06
200	Indexestion Reserves and Reserves	5 er 3 (-)= FC _w (mS/m)=	11002.00	3 el 3 (-)=	11002 00
		Temp(ar C)=	12.1		
		Derivative fact.=	0.07	Derivative fact.=	0.04
3290 - - -	· ·				
2000 0.20 0.40 0.80 0. Elapsed	x0 1.00 1.20 1.40 1.60 Time [h]				
		Results		Results	
		Q/s (m^{2}/s)=	2.9E-09		
Log-Log plot incl. derivates- f	ow period	T _M (m²/s)=	2.4E-09		
		Flow regime:	transient	Flow regime:	transient
21	h] . 19. ⁻²	dt ₁ (min) =	0.35	$dt_1 (min) =$	9.90
10		dt_2 (min) =	15.42	dt_2 (min) =	17.70
1	10	T (m²/s) =	2.4E-09	T (m²/s) =	3.4E-09
10 1		S (-) =	1.0E-06	S (-) =	1.0E-06
	and the second se	$K_s (m/s) =$	4.8E-10	$K_s (m/s) =$	6.8E-10
· · · · · · · · · · · · · · · · · · ·	10 2	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
	digit di	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	3.4E-11
	10 ¹	C _D (-) =	NA	C _D (-) =	3.8E-03
10 1		ξ(-) =	1.03	ξ(-) =	2.80
	10 0	$\mathbf{T} = (\mathbf{m}^2/\mathbf{n})$	ΝΔ	$\mathbf{T} = (\mathbf{m}^2/\mathbf{c})$	ΝΔ
10 [°] 10 [°]	10 ³ 10 ⁴ 10 ⁵	$S_{ORF}(1175) =$	NA	$S_{OPF}(-) =$	NA
		$D_{CRF}(-) =$	NA	$D_{CRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param		
		dt₁ (min) =	9.90	$C (m^3/P_0) =$	3.4F-11
Elapsed time	[h] <u>,</u>	dt_2 (min) =	17.70	$C(m/Pa) = C_{D}(-) =$	3.8E-03
10 ²		$T_{1}(m^{2}/c) =$	3 4F-09	= () ال	2.80
	10 3	S(-) =	1.0E-06	5() -	2.00
10 17		$K_{c}(m/s) =$	6.8F-10		
	110 ²	$S_{a}(1/m) =$	2.0E-07		
and the second se		Comments:	2.02 01		
a 10 °	Carling and the second	The recommended t	ransmissivity of	f 3.4•10-9 m2/s was	derived from
j. de la	0 10 ¹ 2	the analysis of the C	CHir phase, which	ch shows a much bet	ter data quality
10 -1		and a nearly horizon	ntal stabilisation	at late times. The c	onfidence range
	F10 °	for the interval trans	smissivity is esti	mated to be 1.0•10-	9 m2/s to
		6.0•10-9 m2/s. The	tlow dimension	displayed during the	e test is 2 r denthe was
10 ⁻¹ 10 ⁰ tDN	10 ¹ 10 ² 10 ³	derived from the CI	Tir phase using t	type curve extranola	tion in the
		Horner plot to a val	ue of 3 288 7 kF	$D_{\rm R}$	aon in the

Test Summary Sheet							
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir	
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KLX17A		Test start:	070524 10:35			
Test section from - to (m):): 392.00-397.00		Responsible for test execution:	Reinder van der Wall Frik Löfgren			
Section diameter, 2-r _w (m):	0	.076	Responsible for	Cristian Enachescu			
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
			n. (kPa) –	3363	indutu		
3550		0.010	$p_0 (k P a) =$	#NW			
KLX17A_392.00-397.00_070524_1_CHir_Q_r	P section P show P below		р _і (кра) =	#IN V		115 XX X	
*			p _p (kPa) =	#N V	р _ғ (кРа) =	#NV	
3600 -	ę.		Q _p (m ³ /s)=	#NV			
P		0.006 j	tp (s) =	#NV	t _F (s) =	#NV	
95 198		h Rate (Ive	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downhole		ujection	EC _w (mS/m)=				
			Temp(ar C)=	12.2			
3400	<u> </u>	0.002	Derivative fact -	#NV	Derivative fact –	#NV	
	· · ·		Derivative Tact.=	<i>π</i> 1 v	Derivative lact.=	πin v	
	:						
3350 0.00 0.15 0.30 0.44 Elapsed T	5 0.60 0.75 0. Time [h]	+ 0.000 90					
			Results	Results			
			$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period		T_{M} (m ² /s)=	#NV			
	•		Flow regime:	transient	Flow regime:	transient	
			dt. (min) –	#N\/	dt. (min) –	#NIV	
			$dt_1 (min) =$	#NV	$dt_1(min) =$	#NV	
			$at_2 (min) =$	#IN V	$at_2 (min) =$	#IN V	
			T (m²/s) =	1.0E-11	T (m²/s) =	NA	
			S (-) =	1.0E-06	S (-) =	NA	
			$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
			$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA	
Not an	alysed		$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	NA	
			$\frac{C_{\rm D}(-)}{C_{\rm D}(-)} =$	NA	$C_{\rm D}(-) =$	NA	
			ε ₍₎ -	ΝΔ	ε ₍₎	ΝΔ	
			ς(-) =	117	ς (-) =		
			0		0		
		T _{GRF} (m²/s) =	NA	T _{GRF} (m²/s) =	NA		
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.		
			dt ₁ (min) =	#NV	C (m ³ /Pa) =	NA	
			dt_2 (min) =	#NV	$C_{D}(-) =$	NA	
Not analysed			$T_{-}(m^{2}/s) =$	1.0F-11	٤ (-) =	NA	
		S(-) =	1.0E-06	- ()			
		S(-) = -	1.0E-00				
		K_s (III/S) =	2.0E-12				
		$S_{s}(1/m) =$	2.0E-07				
		Comments:					
		Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m2	ed packer compliand 2/s.	ce) the interval		

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:	070524 13:08		
Test section from - to (m):	397.00-402.00	Responsible for test execution:	Reinder van der Wall Erik Löfgren		
Section diameter, 2-r _w (m):	0.076	Responsible for test evaluation:		Crist	an Enachescu
Linear plot Q and p		Flow period	Recovery period		
		Indata		Indata	
		p₀ (kPa) =	3408		
3050 KI X17A 397 00-402 00 070524 1 CHir O r	0.010	p; (kPa) =	3415		<u> </u>
3000	P station P balow P balow	$p_r(kPa) =$	3622	p⊢(kPa) =	3413
	e	$\rho_{\beta}(\mathbf{n}, \mathbf{u}) = 0$	9 27E-08	p _F (m u) =	5115
3350 -		$Q_p (\Pi / S) =$	1200	t _r (s) -	1200
li di la consecuto de la consec	2 000 g	(p(3)) =	1.00E.06	$(3) = 0^{*}(3)$	1.00E.06
2_300	jyetiken Ba	SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00
A 3480 -	0.004	$EC_w (mS/m) =$	10.0		
t		Temp _w (gr C)=	12.3		
3400 -	0.002	Derivative fact.=	0.09	Derivative fact.=	0.03
- 2330 0.00 0.30 0.00					
Elaps	ed Time (h)	Results		Results	
		Ω/c (m^2/c) -	4.4F-09		
l og-l og plot incl. derivates-	flow period	$U/S (117) = T (m^2/c)$	3.6E-09		┢────┤
		T_{M} (III /S)=	transient	Flow regime:	transient
		dt (min) –		r iow regime.	
10 ² 10 ² 10 ²	me [n]	$dt_1 (min) =$	17.92	$dt_1 (min) =$	3.20
	10 ³	dl_2 (mm) =	17.82	dl_2 (mm) =	16.14
		$T(m^2/s) =$	5.6E-09	$T(m^2/s) =$	1.5E-08
10 ¹		S (-) =	1.0E-06	S (-) =	1.0E-06
	10 ²	$K_s (m/s) =$	1.1E-09	$K_s (m/s) =$	3.0E-09
10 ⁰		$S_s(1/m) =$	2.0E-07	$S_s(1/m) =$	2.0E-07
		C (m³/Pa) =	NA	C (m ³ /Pa) =	1.4E-11
	* • • • • • • • • • • • • • • • • • • •	$C_D(-) =$	NA	$C_D(-) =$	1.6E-03
10 -1		ξ(-) =	2.77	ξ(-) =	8.19
	10 °				
10 ⁻³ 10 ⁻⁴	10 [°] 10 [°] 10 [°]	T _{GRF} (m ² /s) =	NA	T _{GRF} (m ² /s) =	NA
	1D	$S_{GRF}(-) =$	NA	S _{GRF} (-) =	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives	- recovery period	Selected represe	ntative param	neters.	
		dt_1 (min) =	0.71	C (m ³ /Pa) =	1.4E-11
Elapsed tir	me (h)	dt_2 (min) =	17.82	C _D (-) =	1.6E-03
10 2		$T_T (m^2/s) =$	5.6E-09	ξ(-) =	2.77
	10 3	S (-) =	1.0E-06		
10 1		$K_s (m/s) =$	1.1E-09		
	10 2	$S_{s}(1/m) =$	2.0E-07		
and the second sec	、	Comments:		•	
74 10 °	and the second sec	The recommended	transmissivity of	f 5.6•10-9 m2/s was	derived from
	10 ' 9	the analysis of the C	CHi phase (outer	zone), which shows	s a noisy but
10 1	A # 4 #	still clear horizontal	stabilisation of	the derivative. The	confidence
	10 °	range for the interval $4.0 \cdot 10^{\circ}$ m ² / ₂ T	al transmissivity	is estimated to be 3	.0-10-9 m2/s to
		(radial flow) The st	atic pressure me	easured at transduce	r depth, was
10 [°] 10 ¹	10 ² 10 ³ 10 ⁴ DICD	derived from the CHir phase using straight line extrapolation in the			
	Horner plot to a value of 3.412.9 kPa.				

Test Summary Sheet							
Project:	Oskarshamn site investigation		Test type:[1]	CHir			
Area:	Laxemar		Test no:	1			
Borehole ID:	KLX17A		Test start:	070524 15:07			
Test section from - to (m):	402.00-407.00		Responsible for test execution:	Reinder van der Wall Erik Löfaren			
Section diameter, 2.r _w (m):	0.0	076	Responsible for test evaluation:	Cristian Enachescu			
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
3000	100	010	p ₀ (kPa) =	3452			
KLX17A_402.00-407.00_070524_1_CHir_Q_r	P section		p _i (kPa) =	#NV			
	P above P Defore Q	008	p _p (kPa) =	#NV	p _F (kPa) =	#NV	
3350 -	•	-	$Q_{p} (m^{3}/s) =$	#NV			
2	•	005 7	tp(s) =	#NV	t _F (s) =	#NV	
2000 -		Rate (Mmir	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
e antropage a sector		E Injection F	EC_{w} (mS/m)=				
		-	Temp (ar C) =	12.4			
3450		002	Derivative fact -	#NV	Derivative fact –	#NV	
			Derivative lact.=	#1 \ v	Derivative lact.=	<i>π</i> 1 N V	
0.00 0.15 0.30 0.40 Elapsed T	5 0.00 0.75 0.90 Time (h)	-	- <i>i</i>		D <i>K</i>		
			Results	Kesuits			
			$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	#NV			
			Flow regime:	transient	Flow regime:	transient	
		ſ	dt_1 (min) =	#NV	dt ₁ (min) =	#NV	
		ſ	$dt_2 (min) =$	#NV	dt ₂ (min) =	#NV	
		ľ	$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		ľ	S (-) =	1.0E-06	S (-) =	NA	
			$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
		ľ	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA	
Not an	alysed	ŀ	$C (m^3/P_2) =$	NA	$C (m^{3}/P_{2}) =$	NA	
			$C_{\rm p}(-) =$	NA	$C_{n}(-) =$	NA	
		ŀ	$\frac{\xi(z)}{\xi(z)} = -$	NA	۲) ال	NA	
		ŀ	S(-) -		S(-) –		
		ŀ	- (2)	ΝΑ	- (2)	ΝΑ	
			$I_{GRF}(m/s) =$		I _{GRF} (m /s) =		
		ŀ	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
			$D_{\text{GRF}}(-) =$	INA	$D_{\text{GRF}}(-) =$	INA	
Log-Log plot Incl. derivatives-	recovery period	_	aelected represe				
		ļ	$at_1 (min) =$	#NV	C (m)/Pa) =	NA	
Not analysed		ļ	$at_2 (min) =$	#NV	C _D (-) =	NA	
			$T_T (m^2/s) =$	1.0E-11	ξ(-) =	NA	
			S (-) =	1.0E-06			
			$K_s (m/s) =$	2.0E-12			
		$S_{s}(1/m) =$	2.0E-07				
			Comments:				
			Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m2	ed packer compliand 2/s.	ce) the interval	

Test Summary Sheet							
Project:	Oskarshamn site investigation		Test type:[1]	CHir			
Area:	Laxemar		Test no:	1			
Borehole ID:	KLX17A		Test start:	070524 16:22			
Test section from - to (m):	404.00-40	9.00	Responsible for	Reinder van der Wall Erik Löfgren			
Section diameter, 2.r _w (m):	0).076	Responsible for	Cristian Enachescu			
Linear plot Q and p			Flow period	<u> </u>	Recovery period		
		Indata		Indata			
			p ₀ (kPa) =	3469			
3700		0.010	p _i (kPa) =	#NV			
KLX17A_404.00-409.00_070524_1_CHir_Q_r	P section P showe P below Q		$p_{p}(kPa) =$	#NV	p _F (kPa) =	#NV	
3650 -		0.008	$O(m^3/s) =$	#NV			
	• ·		$\frac{d_p (m/s)}{tp (s)} =$	#NV	t _⊏ (s) =	#NV	
8 300 - 8 9		o [l/mim] of	S el S [*] (-)-	1.00E-06	S el S [*] (_)-	1.00E-06	
ar de la cara		vjection Ra	5 er 3 (-)= FC _w (mS/m)=	11002.00	3 8 3 (-)=	11002 00	
§ 350 -		0.004	Temp(ar C)=	12.4			
			Derivative fact =	#NV	Derivative fact =	#NV	
300		- 0.002					
140 -		0.000					
0.00 0.15 0.30 0.4 Elapsed	45 0.60 0.75 0. Time (h)	1.90	Results		Results		
			Ω/c (m^2/c)	#NV	lioouno		
l og-l og plot incl. derivates- fl	ow period		$\frac{Q}{S} (\frac{m}{s}) =$	#NV			
			Flow regime:	transient	Flow regime:	transient	
			dt_{ℓ} (min) =	#NV	dt_{ℓ} (min) =	#NV	
			dt_{1} (min) =	#NV	dt_{1} (min) =	#NV	
			$T_{1}(m^{2}/c)$	1.0E-11	$T_{1}(m^{2}/c)$	NA	
			S(-) =	1.0E 11	S(-) =	NA	
			S(-) = K(m/s) = -	1.0E-00	S(-) = K(m/s) = -		
			$R_{s}(11/3) =$	2.0E-12	$R_{s}(11/3) =$		
Not ar	nalysed		$O_{\rm s}$ (1/11) =	2.0E-07	$O_{s}(1/11) =$		
			C (m /Pa) =		C (m /Pa) =		
			$C_D(-) =$		$C_D(-) =$		
			ς(-) =	NA	ς(-) =	NA	
			- (2)	ΝΑ	- (2)	ΝΔ	
			$I_{GRF}(M/S) =$		$I_{GRF}(M/S) =$		
			$S_{GRF}(-) =$		$S_{GRF}(-) =$		
Log Log plot incl. dorivativos	racewory period		$D_{GRF}(-) =$		$D_{GRF}(-) =$		
			dt. (min) –	#NIV		NΔ	
			$dt_1(min) =$	#ΝV	C (m /Pa) =	ΝΔ	
			$dl_2(mm) =$		$C_D(-) =$		
Not analysed		$I_{T}(m^{-}/s) =$	1.0E-11	ς(-) =	NA		
		S(-) = K(m(a))	1.0E-06				
		$\kappa_{\rm s} (\rm III/S) =$	2.0E-12				
		$S_s(1/11) =$	2.0E-07				
		Comments:	(1	1 1 1'			
		transmissivity is set	to 1.0•10-11 m	ed packer compliand 2/s.	ce) the interval		
	Test Su	mn	narv Sheet				
---	--	------------------	---------------------------	---------------------	--	-------------------------------	
Project:	Oskarshamn site investiga	tion	Test type:[1]			CHir	
Area:	Laxer	mar	Test no:			1	
Borehole ID:	KLX'	17A	Test start:			070524 17:35	
Test section from - to (m):	409.00-414	4.00	Responsible for		Reinde	er van der Wall	
Section diameter, 2.r _w (m):	0.0	076	Responsible for		Cristi	Erik Lofgren ian Enachescu	
			test evaluation:				
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
3800	1¢	0.10	p ₀ (kPa) =	3512			
KLX17A_409.00-414.00_070524_1_CHir_Q_r	● P section ● P above		p _i (kPa) =	3507			
3750 -	• P balow • Q	0.08	p _p (kPa) =	3705	p _F (kPa) =	3506	
• • • •	**************************************	ſ	$Q_{p} (m^{3}/s) =$	5.50E-07			
3700 -	•	0.06 E	tp (s) =	1200	t _F (s) =	1200	
8 3850 -		n Rate (Ym	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
Downhood		50. Injection	EC _w (mS/m)=		()		
3800	ta a summer provide statement og	ŀ	Temp _w (gr C)=	12.5			
	-	0.02	Derivative fact.=	0.07	Derivative fact.=	0.05	
3350	* *	ŀ	201110111011001				
	,	2.00					
uto uto Elapse	d Time [h]		Rosults		Posults		
		·		2 7E_08	Results		
Legiter plating derivator f	low ported		$Q/s (m^{-}/s) =$	2.7E-08			
Log-Log plot Incl. derivates- f	low period		T _M (m²/s)=	2.2E-08	- ·		
			Flow regime:	transient	Flow regime:	transient	
21.10, ⁻⁴ Elapsed time	·[h]		$dt_1 (min) =$	0.97	dt_1 (min) =	0.46	
10			$dt_2 (min) =$	18.72	$dt_2 (min) =$	13.68	
1		10	T (m²/s) =	4.8E-08	T (m²/s) =	1.7E-07	
10 ¹			S (-) =	1.0E-06	S (-) =	1.0E-06	
		10 1	$K_s (m/s) =$	9.6E-09	$K_s (m/s) =$	3.4E-08	
			$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07	
		kţî (mini)	C (m³/Pa) =	NA	C (m ³ /Pa) =	1.3E-11	
	· · · · · ·	10° byt	C _D (-) =	NA	C _D (-) =	1.4E-03	
10 -1		ľ	ξ(-) =	5.93	ξ(-) =	5.59	
		10 ⁻¹					
-		ľ	$T_{CPF}(m^2/s) =$	NA	$T_{cpc}(m^2/s) =$	NA	
10 10 10	10 ^{°°} 10 ¹⁰ 10 ¹¹ tD	ŀ	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		ŀ	$D_{GRF}(-) =$	NA	$D_{GRE}(-) =$	NA	
Log-Log plot incl. derivatives	- recovery period		Selected represe	ntative paran	eters.		
	·····, p·····		$dt_1(min) =$	0.97	$C(m^3/P_0) =$	1.3F-11	
Elapsed time	a (h)	ŀ	$dt_1(min) =$	18 72	$C(\Pi/Pa) = C_{Pa}(r) = -$	1.6E 11	
10 ²		-	$dt_2(mm) =$	1 85-08	$C_D(-) =$	5.03	
		10 3	$I_{T}(m^{-}/s) =$	4.8E-08	ς(-) =	5.93	
			S (-) =	1.0E-06			
10		10 2	$\kappa_{\rm s}$ (m/s) =	9.6E-09			
	•		$S_{s}(1/m) =$	2.0E-07			
e 10 ⁰		([kPa]	Comments:				
		10 ⁻¹	The recommended t	transmissivity of	4.8•10-8 m2/s was	derived from	
		٩.	stabilisation of the	lerivative and the	a shows a good nori:	zontai model The	
10 -1	***		confidence range fo	or the interval tra	insmissivity is estimated	ated to be	
		ed.	2.0•10-8 m2/s to 3.0	0•10-7 m2/s. Th	e flow dimension di	splayed during	
10 10 10	10 ² 10 ³ 10 ⁴		the test is 2 (radial f	flow). The static	pressure measured	at transducer	
	CD III		depth, was derived i	from the CHir p	hase using straight line using f_{2}^{2} for f_{1}	ine	

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070525 08:18
Test section from - to (m):	414.00-419.00	Responsible for	Reinder van der Wa		
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot O and p		test evaluation:		Personany postor	
Linear plot Q and p		Flow period		Recovery period	
			2540	Inuala	
3850	0.06	$p_0 (kPa) =$	2544		
KLX17A_414.00-419.00_070525_1_CHir_Q_r 3800	P section P bloce P balow	$p_i(kPa) =$	3544		2544
	1	$p_p(kPa) =$	5 005 07	р _F (кра) =	3544
3750	0.04	$Q_p (m^{\circ}/s) =$	5.00E-07	t (a)	1200
9 3700 -	- - -	tp(s) =	1.005.06	$t_F(S) =$	1.005.06
8 9 9 3 3550	see a see	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
â	<u>د</u> ۵.02	$EC_w (mS/m) =$	12.5		
3800	·	Temp _w (gr C)=	12.5		0.02
3850		Derivative fact.=	0.05	Derivative fact.=	0.02
3500 0.00 0.25 0.50 0.75 11	00 1.25 1.50 1.75 2.00				┢────┤
Elapsed	Time [b]	Results		Results	<u> </u>
		Q/s (m ² /s)=	2.5E-08		
Log-Log plot incl. derivates- f	ow period	$T_{M} (m^{2}/s) =$	2.0E-08		
		Flow regime:	transient	Flow regime:	transient
10 ⁻³ Elapsed time	h] 10 ⁻¹ 10 ⁻⁰ 10 ⁻¹	dt ₁ (min) =	0.71	dt ₁ (min) =	0.48
10 2		dt_2 (min) =	16.68	dt_2 (min) =	7.02
	10 2	$T(m^{2}/s) =$	3.5E-08	$T(m^{2}/s) =$	1.0E-07
10 ¹		S (-) =	1.0E-06	S (-) =	1.0E-06
•••		$K_s (m/s) =$	7.0E-09	$K_s (m/s) =$	2.0E-08
	10 • • • •	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.3E-11
		$C_{D}(-) =$	NA	$C_{D}(-) =$	1.5E-03
10 -1		ξ(-) =	4.43	ξ(-) =	5.57
	an d				
1		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 [°] 10 [′] 8	10 [°] 10 [°] 10 ^{°°}	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt ₁ (min) =	0.71	C (m ³ /Pa) =	1.3E-11
Ebpsed time	$[h]$ 10^{-2} 10^{-1} 10^{0}	dt ₂ (min) =	16.68	C _D (-) =	1.5E-03
10 2		$T_{T}(m^{2}/s) =$	3.5E-08	ξ(-) =	4.43
	10 3	S (-) =	1.0E-06		
10		$K_s (m/s) =$	7.0E-09		
	10 2	S _s (1/m) =	2.0E-07		
		Comments:			
	· · · · · · · · · · · · · · · · · · ·	The recommended	transmissivity of	f 3.5•10-8 m2/s was	derived from
	· · · · · · · · · · · · · · · · · · ·	the analysis of the C	CHi phase, which	h shows a horizontal	stabilisation of
10 -1		the derivative and the for the interval trans	he more simple	Now model. The continuated to be $2.0-10$	$\frac{1111}{8}$ m ² /s to
	10 °	$2.0 \cdot 10-7 \text{ m}2/\text{s}$. The	flow dimension	displayed during the	e test is 2
1		(radial flow). The s	tatic pressure m	easured at transduce	r depth, was
10 ¹ 10 ¹	10 [°] 10 [°] 10 ⁴	derived from the Cl	Hir phase using	straight line extrapol	lation in the
		Horner plot to a val	ue of 3 5// 0 1-1	و ر	

	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemai	Test no:			1	
Borehole ID:	KLX17A	Test start:		070525 10:3		
Test section from - to (m):	419.00-424.00	Responsible for	Reinder van der Wa			
Section diameter 2.r., (m):	0.076	test execution:		Crist	Erik Lötgren	
	0.070	test evaluation:		Chot		
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
3000	1 23	p ₀ (kPa) =	3591			
KLX17A_419.00-424.00_070525_1_CHir_Q_r	• Paction • Pahna	p _i (kPa) =	3590			
3850	* P below Q * 20	p _p (kPa) =	3791	p _F (kPa) =	3592	
300	3 2000-000-000-000-000-000-000-000-000-00	$Q_{p} (m^{3}/s) =$	1.96E-04			
Read and the second sec	15 🕫	tp (s) =	1200	t _F (s) =	1200	
	a contract of the second s	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
3700 ·	0 10 10	$EC_w (mS/m) =$				
3650	-	Temp _w (gr C)=	12.3			
	<u>.</u>	Derivative fact.=	0.02	Derivative fact.=	0.02	
3600	· · · · · · · · · · · · · · · · · · ·					
2050 0.20 0.40 0.60 Elapse	0 0.80 1.00 1.20 1.40 1.60 d Time (h)					
		Results		Results		
		Q/s $(m^{2}/s) =$	9.6E-06			
Log-Log plot incl. derivates- f	low period	$T_{M} (m^{2}/s) =$	7.9E-06			
		Flow regime:	transient	Flow regime:	transient	
Elapsed time	[4]	dt ₁ (min) =	1.72	dt ₁ (min) =	0.75	
10 10	.10,	dt_2 (min) =	17.82	dt_2 (min) =	14.76	
	10 °	$T(m^{2}/s) =$	2.9E-05	T (m ² /s) =	3.2E-05	
10 2		S (-) =	1.0E-06	S (-) =	1.0E-06	
	10 ⁻¹	$K_s (m/s) =$	5.8E-06	$K_s (m/s) =$	6.4E-06	
10 1		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07	
	10 ⁻²	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	1.5E-09	
10 0		$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	1.7E-01	
· .	10 ⁻³	ξ(-) =	10.73	ξ(-) =	13.57	
10 -1	• • • •	S() -		5() -		
	10 4	$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA	
10 ¹⁰ 10 ¹⁰ 10 ¹⁰	0 10 10 10 10 10 10 10 10 10 10 10 10 10	S _{GRF} (-) =	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	· recovery period	Selected represe	entative paran	neters.		
		dt_1 (min) =	0.75	C (m ³ /Pa) =	1.5E-09	
10, ⁴ 10, ³	. 10, ²	dt_2 (min) =	14.76	$C_{\rm D}(-) =$	1.7E-01	
10		$T_{\tau}(m^2/s) =$	3.2E-05	ξ(-) =	13.57	
		S (-) =	1.0E-06	5()		
10 2	10 3	$K_{s}(m/s) =$	6.4E-06			
		$S_{a}(1/m) =$	2.0F-07			
10	10 2	Comments:				
		The recommended	transmissivity of	f 3 2•10-5 m2/s was	derived from	
10 °	10 ¹	the analysis of the (CHir phase, which	ch shows a good hor	izontal	
		stabilisation of the	derivative. The c	confidence range for	the interval	
10 -1	10 0	transmissivity is est	imated to be 1.0	•10-5 m2/s to 6.0•1	0-5 m2/s. The	
		flow dimension dis	played during th	e test is 2 (radial flo	w). The static	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵ 10 ⁻¹	pressure measured a phase using straight	at transducer dej t line extrapolati	on in the Horner plo	in the CHir of to a value of	

	Test Su	mr	narv Sheet			
Project:	Oskarshamn site investiga	tion	Test type:[1]			CHir
Area:	Laxe	mar	Test no:			1
Borehole ID:	KLX	17A	Test start:			070525 12:56
Test section from - to (m):	420.00 - 425	5.00	Responsible for		Reinde	er van der Wall
Section diameter 2 r (m);	0	076	test execution:		Criet	Erik Löfgren
Section diameter, $2 \cdot r_w$ (m).	0.	076	test evaluation:		Clist	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
			p ₀ (kPa) =	3604		
3000 KI X174, 420 00-425 00, 070525 1, CHir, Q, r	P section P above	25	p _i (kPa) =	3600		
3850	• P balow • Q		p _p (kPa) =	3802	p _F (kPa) =	3604
3800		20	$Q_{\rm p} (m^3/s) =$	1.94E-04	,	
		15 -	tp(s) =	1200	t _F (s) =	1200
1 3750 . 		Rato [Mmin	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
1 3700- 9 3700-		Injection	$EC_w (mS/m) =$			
			Temp _w (gr C)=	12.3		
		- 5	Derivative fact.=	0.01	Derivative fact.=	0.02
3000						
3550						
e.co e.so eso Elapse	d Time [h]	1.50	Results		Results	·
			$\Omega/s_{\rm c}$ (m ² /s)-	9.4F-06		
l og-l og plot incl. derivates- f	low period		$T_{m}(m^{2}/c) =$	7.8E-06		
			$T_{\rm M}$ (III /S)=	transient	Flow regime:	transient
			dt. (min) –	0.68	dt_{ℓ} (min) –	0.57
Elapsed time	[h] 10 ⁻²		$dt_1 (min) =$	16.86	dt_1 (min) = dt_2 (min) =	15.48
	-		$a_{2}(1111) =$	2 15 05	$\frac{dt_2}{dt_2}$ (mm) =	2 55 05
		10 -1	1 (m/s) =	3.1E-03	I (m /s) =	3.3L-03
10 1	-		S(-) =	1.0E-00	S(-) = K(m/c)	T.0E-06
· · ·		10 -2	$R_s (\Pi/S) =$	0.1E-00	$R_s (11/s) =$	7.0E-00
₽ 10 ^{.0}		live	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
		tion attention	C (m˘/Pa) =		C (m)/Pa) =	1.9E-09
		10 3	$C_{\rm D}(-) =$	NA 44.47	$C_{\rm D}(-) =$	2.1E-01
10 -1	· · · · ·		ζ(-) =	11.17	ζ(-) =	13.45
		10 -4	- (2))	ΝΑ	- (2)	ΝΙΔ
10 ¹⁴ 10 ¹⁵ t	10 ¹⁶ 10 ¹⁷ 10 ¹⁸		$I_{GRF}(m^{-}/s) =$		I _{GRF} (m ⁻ /s) =	
			$S_{GRF}(-) =$		$S_{GRF}(-) =$	
Log Log plot incl. derivatives	recovery period		$D_{GRF}(-) =$		$D_{GRF}(-) =$	INA
Log-Log plot lincl, derivatives-	recovery period		dt (min)			1.05.00
			$dl_1 (min) =$	0.57	C (m) =	1.9E-09
Elapsed time	(h) -2	ł	$dt_2 (min) =$	15.48	$C_{\rm D}(-) =$	2.1E-01
			$T_T (m^2/s) =$	3.5E-05	ς(-) =	13.45
10 2		10 3	S(-) =	1.0E-06		
	70000000000000000000000000000000000000		$K_s (m/s) =$	7.0E-06		
10 1		10 2	$S_{s}(1/m) =$	2.0E-07		
		- da	Comments:			
a 10 ⁻⁰	an and a market	10 1 00	The recommended	transmissivity of	$f 3.5 \bullet 10-5 \text{ m}2/\text{s}$ was	derived from
· · .			horizontal stabilisat	ion of the derive	ative. The confidence	e range for the
10 -1		10 0	interval transmissiv	ity is estimated	to be $4.0 \cdot 10-6 \text{ m}2/\text{s}$	to 6.0•10-5
			m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10 ¹ 10 ²	10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	10 -1	The static pressure	measured at tran	sducer depth, was d	erived from the
1D/	CD		CHir phase using st	raight line extra	polation in the Horn	er plot to a

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxema	r Test no:			1
Borehole ID:	KLX17A	Test start:			070525 14:50
Test section from - to (m):	425.00-430.00	Responsible for		Reinde	er van der Wall
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear alst O and a		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata	2640	Indata	
3000	:	$p_0 (kPa) =$	3049		łł
KLX17A_425.00-430.00_070525_1_CHir_Q_r	P section Palove Pbilov 12	p _i (KPa) =	2844	n (kPa) -	3644
	-	$p_p(\mathbf{k} \mathbf{r} \mathbf{a}) =$	1 20E 04	р _F (кга) =	3044
3800 -		$Q_p (m^2/s) =$	1.20E-04	t (c) -	1200
(P)	a contract of the second secon	(p(s)) =	1.00E.06	$l_{\rm F}$ (S) =	1 00E 06
9 3120 -	- - - - - - - - - - - - - - - - - - -	Sel S (-)= EC (mS/m)-	1.00E-06	S el S (-)=	1.00E-06
8 3700 -		$EC_w (IIIS/III) =$	12.4		┝────┤
		Temp _w (gr C)=	0.01	Dorivative fact	0.02
3050		Derivative Tact.=	0.01		0.02
2000 0.30 0.60 Elap	0.00 1.20 1.50				
		Results		Results	
		Q/s (m ² /s)=	5.9E-06		
Log-Log plot incl. derivates-	flow period	$T_{M} (m^{2}/s) =$	4.9E-06		
		Flow regime:	transient	Flow regime:	transient
to ⁴ Elapsed tim	e[h] 10 ⁻² 10 ⁻¹ 10 ⁰	dt ₁ (min) =	0.30	dt ₁ (min) =	0.41
10 3		dt_2 (min) =	13.44	dt_2 (min) =	13.26
	- 10 °	$T(m^{2}/s) =$	1.7E-05	T (m²/s) =	1.9E-05
10 ²		S (-) =	1.0E-06	S (-) =	1.0E-06
		$K_s (m/s) =$	3.5E-06	$K_s (m/s) =$	3.8E-06
10 ¹	•	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
	10 -2	C (m³/Pa) =	NA	C (m³/Pa) =	8.2E-10
10		${}^{a}C_{D}(-) =$	NA	$C_D(-) =$	9.0E-02
10 -1	10 ⁻³	ξ(-) =	11.52	ξ(-) =	13.87
	••	2	N 1 A	2	
10 ¹³ 10 ¹⁴ 10	10 ⁻⁶	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$		$S_{GRF}(-) =$	
Log Log plot incl. dorivatives	receivery period	$D_{\text{GRF}}(-) =$		$D_{GRF}(-) =$	INA
Log-Log plot incl. derivatives		dt (min) -			0 2E 10
		$dt_1 (min) =$	12.26	$C(m^{2}/Pa) =$	0.0E.02
10 ⁻³	ne [h]10 1010 10 10 10 10	$dt_2(mn) =$	1 05 05	$C_D(-) =$	9.0E-02
		$I_{T}(m/s) =$	1.9E-03	ς(-) =	13.07
10 2		S (-) =	1.0E-00		┥───┤
		$S_{s}(11/s) = $	0.0E-00		╉────┤
10 1	to ²	Comments:	2.01 07		┸───┤
		The recommended	transmissivity of	F 1 9•10-5 m2/s was	derived from
10 0	10	the analysis of the C	CHir phase, which	ch shows a good and	less noisy
· · · · ·		horizontal stabilisat	ion of the derivation	ative. The confidenc	e range for the
10 -1	10 ⁰	interval transmissiv	ity is estimated	to be 1.0•10-5 m2/s	to 4.0•10-5
		m2/s. The flow dim	ension displayed	during the test is 2	(radial flow).
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵ DICD	CHir phase using st	raight line extra	polation in the Horn	er plot to a
		value of 3 645 1 kP	a		r u

	Test Sumr	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070525 16:44
Test section from - to (m):	430.00-435.00	Responsible for	Reinder van der Wall Frik Löfgren		
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		test evaluation:		Pocovon/ poriod	
		Indata		Indata	
			2680	Indata	
3950	10	$p_0 (k Pa) =$	3089		
• KLX17A_430.00-435.00_070525_1_CHir_Q_r	P section Pacoe Patore	$p_i(kPa) =$	2886	n (kPa) –	2697
· · · · · · · · · · · · · · · · · · ·	°° *	$p_p(kPa) =$	3880	р _F (кРа) =	308/
3850 -		$Q_p (m^3/s) =$	9.73E-05	t (-)	1200
	e Grind	tp (s) =	1200	t _F (s) =	1200
8 2 3800 - 2 2	94 94 U U U U U U U U U U U U U U U U U U U	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06
	•	EC _w (mS/m)=			
···		Temp _w (gr C)=	12.8		
3700	2	Derivative fact.=	0.02	Derivative fact.=	0.02
3650	0.00 1.20 1.50				
		Results		Results	
		Q/s $(m^{2}/s) =$	4.8E-06		
Log-Log plot incl. derivates- fl	ow period	$T_{M} (m^{2}/s) =$	3.9E-06		
		Flow regime:	transient	Flow regime:	transient
Elapsed time	h]	dt ₁ (min) =	0.41	dt ₁ (min) =	1.27
10 2		dt_2 (min) =	16.08	dt ₂ (min) =	15.90
• •		$T(m^{2}/s) =$	1.6E-05	T (m ² /s) =	1.7E-05
10 12	10 -1	S (-) =	1.0E-06	S (-) =	1.0E-06
		$K_s (m/s) =$	3.1E-06	$K_s (m/s) =$	3.4E-06
		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
10 10 10 10 10 10 10 10 10 10 10 10 10 1		$C (m^3/Pa) =$	NA	$C(m^3/Pa) =$	8.1E-10
P	۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	$C_{D}(-) =$	NA	$C_{D}(-) =$	9.0E-02
10 -1	10 ⁻³	$\frac{\xi(-)}{\xi(-)} =$	11.67	ξ(-) =	13.88
		5()		5()	
		$T_{GRE}(m^2/s) =$	NA	$T_{GRE}(m^2/s) =$	NA
10 ⁻¹⁴ 10 ⁻¹³ IE	10 " 10 " 10 "	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.	<u>, II</u>
		dt_1 (min) =	1.27	$C(m^3/Pa) =$	8.1E-10
Elapsed time	[h]	dt_2 (min) =	15.90	$C_{D}(-) =$	9.0E-02
10 10 10		$T_{-}(m^2/s) =$	1.7E-05	ξ(-) =	13.88
		S(-) =	1.0E-06	5()	<u> </u>
10 ²	10 3	$K_{s}(m/s) =$	3.4E-06		<u>├</u> ───┤
		$S_{a}(1/m) =$	2.0F-07		
10	10 2	Comments:	2.02 01		<u> </u>
		The recommended i	transmissivity of	f 1 7•10-5 m2/s was	derived from
10 0	10 ¹	the analysis of the C	CHir phase, which	ch shows a good and	less noisy
		horizontal stabilisat	ion of the derivation	ative. The confidenc	e range for the
10 -1	10 °	interval transmissiv	ity is estimated	to be 4.0•10-6 m2/s	to 4.0•10-5
		m2/s. The flow dim	ension displayed	d during the test is 2	(radial flow).
10 ¹ 10 ² 10	10 ⁴ 10 ⁵ 10 ⁻¹	The static pressure :	measured at tran	sducer depth, was d	erived from the
u.iv		value of 3.686.0 kP	aigin iiic extra	poration in the fiom	er prot to a

	Test Su	mn	narv Sheet			
Project:	Oskarshamn site investiga	tion	Test type:[1]			Pi
Area:	Laxer	mar	Test no:			2
Borehole ID:	KLX	17A	Test start:			070530 16:22
Test section from - to (m):	435.00-440).00	Responsible for test execution:	Reinder van der Wall Erik Löfgren		
Section diameter, $2 \cdot r_w$ (m):	0.0	076	Responsible for		Cristi	an Enachescu
Linear plot Q and p			Flow period		Recovery period	
P P		_	Indata		Indata	
			p₀ (kPa) =	3728		
4100	۵۵	10	p; (kPa) =	3761		
KL X17A_435.00-440.00_07063	0_2_PI_Q_r		p (kPa) =	3951	n₋ (kPa) =	3985
4000 -	۵۵	108	$p_{\beta}(\mathbf{x}, \mathbf{u}) = 0$	#NV	ρ _F (m α) =	5705
	•		$Q_p (m/s) =$	10	t_ (s) _	36000
and ansee	• • • • •	00 [Mmin]	(p(3)) =	1.00E.06	$(3)^{*} =$	1 00E 06
2 300 -	!	Injection R	Sel S (-)= EC (mS/m)-	1.00E-00	S el S (-)=	1.00E-00
8		04 -	$LC_w (IIIS/III) =$	12.0		
3800			Temp _w (gr C)=	12.9 #NIV	Derivetive feet	#NX7
	5.05 1		Derivative fact.=	#1N V	Derivative fact.=	#1 N V
3700		00				
0.00 2.00 4.00 6.0 Elapsed T	0 8.00 10.00 12.00				-	
			Results		Results	
			$Q/s (m^2/s) =$	#NV		
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	#NV		
			Flow regime:	transient	Flow regime:	transient
			dt_1 (min) =	#NV	dt ₁ (min) =	#NV
			dt_2 (min) =	#NV	dt_2 (min) =	#NV
			T (m²/s) =	1.0E-11	T (m²/s) =	NA
			S (-) =	1.0E-06	S (-) =	NA
			$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA
Notar	alwad		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA
	larysed		C (m ³ /Pa) =	NA	C (m³/Pa) =	NA
			C _D (-) =	NA	$C_D(-) =$	NA
			ξ(-) =	NA	ξ(-) =	NA
			$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative param	neters.	
			dt ₁ (min) =	#NV	C (m ³ /Pa) =	NA
			dt_2 (min) =	#NV	$C_{D}(-) =$	NA
			$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA
			S (-) =	1.0E-06		
			$K_s (m/s) =$	2.0E-12		
		$S_{s}(1/m) =$	2.0E-07			
Not an	alvsed		Comments:			
	ary sea		Based on the test re	sponse (no pulse	e recovery and flow	rate below of
			0.001 L/min) the int	terval transmissi	vity is set to 1.0•10-	11 m2/s.

	Test Su	mm	nary Sheet				
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir	
Area:	Laxer	mar	Test no:			1	
Borehole ID:	KLX ²	17A	Test start:	070526 09:56			
Test section from - to (m):	440.00-445	5.00	Responsible for		Reinder van der Wall		
Section diameter, 2·r _w (m):	Section diameter, 2-r _w (m): 0.076		Responsible for		Cristi	an Enachescu	
Linear plot Q and p			test evaluation:		Recoveryinerios		
			Indata		Indata		
		E	$n_{\rm e}$ (kPa) =	3770	indutu		
3950	0.1	2.010	$p_0 (kr a) =$	#NV			
KLX17A_440.00-445.00_070526_1_CHir_Q_r	P section P above P blow	Ë	$p_i(kPa) =$	#NV	n_ (kPa) -	#NW	
3900 -	· • •	2.008	$p_p(\kappa a) =$	#1NV	ρ _F (κι α) –	#1 \ v	
	•	($Q_p (m^{\circ}/s) =$	#IN V	t (a)		
[6g3] ann	•	2.006 [ujuu] e	tp (s) =	#IN V	t _F (S) =	#IN V	
8 380 - 9		ecton Rat	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06	
		2.004 ²	$EC_w (mS/m) =$				
3000			Temp _w (gr C)=	13.0			
	· · · · · · · · · · · · · · · · · · ·	3.002	Derivative fact.=	#NV	Derivative fact.=	#NV	
3750 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	tis 0.60 0.75 0.90 Time (h)	2.000					
		Ī	Results		Results		
		Ī	Q/s (m²/s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	ŀ	T _M (m²/s)=	#NV			
			Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =	#NV	dt ₁ (min) =	#NV	
			dt_2 (min) =	#NV	dt ₂ (min) =	#NV	
		Ē	$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
			S(-) =	1.0E-06	S (-) =	NA	
		h	$K_s(m/s) =$	2.0E-12	$K_{s}(m/s) =$	NA	
			$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA	
Not ar	nalysed		$C (m^{3}/P_{2}) =$	NA	$C (m^{3}/P_{2}) =$	NA	
		- E	$C_{n}(-) =$	NA	$C(III / Fa) = C_{D}(-) =$	NA	
		1	$\frac{\varepsilon_{\rm D}()}{\varepsilon_{\rm C}} =$	NA	ε ₍₋) -	NA	
		÷	S(-) =		<u> </u>		
			\mathbf{T} (\mathbf{r}^2 (\mathbf{r})	ΝΑ	$- (^{2}/-)$	ΝΔ	
			$I_{GRF}(M/S) =$		$I_{GRF}(M/S) =$		
		H	$S_{GRF}(-) =$		$S_{GRF}(-) =$		
Log log plot incl. dorivativos-	racovery period		D _{GRF} (-) =	na ntativo parag	D _{GRF} (-) -	INA	
Log-Log plot mol. derivatives-			dt (min) -	mauve parall		NΛ	
		ľ	$dt_{1}(min) =$	#INV	C (m [°] /Pa) =		
		-	$dt_2(min) =$		$C_{\rm D}(-) =$	NA	
		-	$T_T(m^2/s) =$	1.0E-11	ς (-) =	NA	
		Ē	S (-) =	1.0E-06			
		ļ	$\kappa_s (m/s) =$	2.0E-12			
		-	$S_{s}(1/m) =$	2.0E-07			
Not ar	nalysed		Comments:				
]	Based on the test re	sponse (prolong	ed packer compliand	ce) the interval	
		1	transmissivity is set	to 1.0•10-11 m2	2/S.		

Test Summary Sheet							
Project:	Oskarshamn site investigation	n <u>Test type:[1]</u>			CHir		
Area:	Laxema	r Test no:			1		
Borehole ID:	KLX17/	Test start:			070526 11:16		
Test section from - to (m):	444.00-449.00	Responsible for	Reinder van der Wall Frik Löfgren				
Section diameter, 2-r _w (m):	0.07	6 Responsible for		Cristi	an Enachescu		
Linear plot Q and p		Flow period	<u> </u>	Recoverv period			
		Indata		Indata			
		p ₀ (kPa) =	3804				
4100	• P sedion	$p_i(kPa) =$	#NV				
KLX17A_444.00-449.00_070526_1_CHir_Q_r	 P above P ballow Q 	$p_{p}(kPa) =$	#NV	p _∈ (kPa) =	#NV		
4000 -	a.oos	$\int (m^3/s) -$	#NV	, ,			
		$\frac{d_p(m/s)}{d_p(s)} =$	#NV	t _⊏ (s) =	#NV		
a. 9 9 2 2 300	are the second se	S el S [*] (-)-	1.00E-06	S el S [*] (-)-	1.00E-06		
2 mm	- 	FC _w (mS/m)=	11002.00	3 8 3 (-)=	11002 00		
° <u>+</u>	· · · · · · · · · · · · · · · · · · ·	$Temp_{u}(ar C) =$	13.1				
3800	0.002	Derivative fact =	#NV	Derivative fact =	#NV		
	1	Bollitative label=					
3700 0.20 0.40 0.65	0.000 0.000 1.00 1.20						
Elapsed T	ime [h]	Results		Results	I		
		Ω/s (m ² /s)-	#NV				
Log-Log plot incl. derivates- fl	ow period	U/3 (III /3)=	#NV				
		Flow regime:	transient	Flow regime:	transient		
		dt₁ (min) =	#NV	dt₁ (min) =	#NV		
		dt_2 (min) =	#NV	dt_2 (min) =	#NV		
		$T(m^2/s) =$	1.0E-11	$T(m^{2}/s) =$	NA		
		S(-) =	1.0E-06	S (-) =	NA		
		$K_s(m/s) =$	2.0E-12	$K_s(m/s) =$	NA		
		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA		
Not an	alysed	$C_{\rm c}$ (m ³ /Pa) =	NA	$C_{\rm m}^{3}/Pa) =$	NA		
		$\frac{C_{D}(-)}{C_{D}(-)} =$	NA	$C_{D}(-) =$	NA		
		$\frac{\xi(-)}{\xi(-)} =$	NA	$\xi(-) =$	NA		
		5()		5()			
		$T_{opr}(m^2/s) -$	NA	$T_{opc}(m^2/s) =$	NA		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRE}(-) =$	NA	$D_{GRF}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.			
		dt_1 (min) =	#NV	$C(m^3/Pa) =$	NA		
		dt_2 (min) =	#NV	$C_{\rm D}(-) =$	NA		
		$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA		
		S (-) =	1.0E-06	- ()			
		$K_s (m/s) =$	2.0E-12				
		S _s (1/m) =	2.0E-07				
Not an	alvsed	Comments:					
		Based on the test re	sponse (prolong	ed packer compliand	ce) the interval		
		transmissivity is set	to 1.0•10-11 m.	2/s.			

	Test Sum	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Pi
Area:	Laxema	Test no:			1
Borehole ID:	KLX17A	Test start:			070526 13:34
Test section from - to (m):	449.00-454.00	Responsible for test execution:	Reinder van der Wall Erik Löfgren		
Section diameter, 2.r _w (m):	0.076	Responsible for		Cristi	an Enachescu
Linear plot Ω and p		test evaluation:		Recovery period	
		Indata		Indata	
		nuata n. (kPa) –	38/19	inuata	
4100	0.10	$p_0 (k Pa) =$	3853		
KLX17A_449.0	00-454.00_070526_1_PI_Q_r	$p_i(kPa) =$	4043	n_(kPa) -	3862
	0.08	$p_p(x a) =$	#NV	ρ _F (κι α) =	5662
4000 -	2	$Q_p (m^2/s) =$	π1 V	t_ (s) _	5400
491 no 169	• 0.08 [0]	(p(3)) =	1 00E 06	$r_{\rm F}(3) =$	1 00E 06
9 0 3050	- 	SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00
8	• 0.04 <i>·</i>	$EC_w (IIIS/III) =$	12.1		
	······	Temp _w (gr C)=	4NIV	Darivativa faat	0.00
3850		Derivative fact.=	#1N V	Derivative fact.=	0.09
3800	0.00				
0.00 0.25 0.50 0.75 1.00 Elapsed T	1.25 1.50 1.75 2.00 2.25 ime [h]	Poculte		Poculte	
		$O(z_1/z_2^2/z_2)$	#NI\/	Results	
Log Log plot incl. derivatos, fl	ownoriad	Q/s (m /s)=	#NV		
Log-Log plot met. derivates- m		I_{M} (m /s)=	#INV	Flow rogimo:	transiont
		dt. (min) –		dt. (min) –	
		$dt_1 (min) =$	#NV	dt_1 (min) = dt_2 (min) =	83.40
		$dt_2(mm) = T(m^2/c)$	πινν	$T_{2}(mn) =$	4 6E-11
		1 (m/s) =	NA	1 (m/s) =	1.0E-06
		K (m/s) =	ΝΔ	S (-) = K (m/s) =	9.2E-12
		$R_{s}(11/3) =$	NA	$R_{s}(11/3) =$	2.0E-07
Not an	alysed	$O_{\rm s}$ (1/11) =		$O_{s}(1/11) = O_{s}(1/11)$	1.2E-11
		$C(m/Pa) = C_{2}(-) = -$		$C(m/Pa) = C_{p}(a) = -$	1.2E 11 1.4E-03
		ε(-) –	NA	E (-) -	0.58
		S(-) –		S(-) –	0.00
		$T_{}(m^2/c) =$	NA	$T_{}(m^2/c) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.	
0 01	<i>,</i> ,	dt_1 (min) =	10.08	C (m ³ /Pa) =	1.2E-11
-aElapsed time (h)	I 0 1	dt_2 (min) =	83.40	$C_{\rm D}(-) =$	1.4E-03
10 2		$T_{\tau}(m^2/s) =$	4.6E-11	$\xi(-) =$	0.58
	10 °	S (-) =	1.0E-06		
10 1		$K_s (m/s) =$	9.2E-12		
		$S_{s}(1/m) =$	2.0E-07		
	10 ·1	Comments:	_		
10 °	A POLY TRACK	The recommended	transmissivity of	4.6•10-11 m2/s was	s derived from
· · · · · ·	10 -2 8	the analysis of the F	Pi phase (outer z	one) where the data	are of good
10 4	orvolu tad	quality and the deriv	vative shows a c	lear horizontal stabi	lisation. The
	r essur	confidence range for $2.0 \cdot 10^{-11} \text{ m}^{2/\text{s}}$ to 2	or the interval tra	Insmissivity is estimated and the flow dimension	displayed
1	10 ⁻³	during the test is 2 ((radial flow). Th	e static pressure mea	asured at
10 " 10 ["] 10	10 10 ⁻ 10 [*]	transducer depth co	uld not be extraj	polated from the ana	lysis.

Test Summary Sheet							
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir	
Area:	Laxe	mar	Test no:			1	
Borehole ID:	KLX	17A	Test start:			070526 16:14	
Test section from - to (m):	454.00-459	9.00	Responsible for test execution:		Reinder van der Wall Frik Löfgren		
Section diameter, $2 \cdot r_w$ (m):	0.	.076	Responsible for test evaluation:		Cristi	an Enachescu	
Linear plot Q and p			Flow period	•	Recovery period		
			Indata		Indata		
4010 1		. 0 10	p ₀ (kPa) =	3890			
KI X17A 454 00-459 00 070526 1 CHir Q r	• P section	0.10	p _i (kPa) =	#NV			
NLA I region we make the second at the second	P balow Q	0.08	p _p (kPa) =	#NV	p _F (kPa) =	#NV	
4000 -	••		$\Omega_{r} (m^{3}/s) =$	#NV			
	•	0.06 -	tp(s) =	#NV	t _F (s) =	#NV	
8 2800 L	•	n Rate (fmi	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
		Injection 10.04	FC (mS/m)=	*···= · ·	3613 (-)-	*···-= · ·	
			Temp(gr C)=	13.2			
3000 ·		0.02	Derivative fact =	#NV	Derivative fact =	#NV	
	•		Derivative lact	7111		11111	
2860		0.00					
0.00 0.10 0.28 0.38 ⊍.≪ Elapser	0.50 0.80 0.70 0.80 v. J Time[h]	.90	Deerille		Desulta		
			Results	<i>μ</i> ΝΙ\/	Results	1	
			Q/s (m ² /s)=	#NV			
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	#NV			
			Flow regime:	transient	Flow regime:	transient	
			dt_1 (min) =	#NV	$dt_1 (min) =$	#NV	
			dt_2 (min) =	#NV	dt_2 (min) =	#NV	
			$T(m^2/s) =$	1.0E-11	$T(m^2/s) =$	NA	
			S (-) =	1.0E-06	S (-) =	NA	
			$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
N-4	1 1		$S_{s}(1/m) =$	2.0E-07	S _s (1/m) =	NA	
Not an	lalysed		C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA	
			$C_{D}(-) =$	NA	$C_{D}(-) =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			5(7)		5()		
			$T_{aa}(m^2/s) =$	NA	$T_{aa}(m^2/s) =$	NA	
			$S_{CPF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{\text{GRF}}(-) =$	NA	$D_{ORF}(-) =$	NA	
l og-l og plot incl. derivatives-	recovery period		Selected represe	ntative param		I • • •	
			dt. (min) –	#NIV		ΝΔ	
			$dt_1 (min) =$	#NV	C (m /Pa) =		
			$u_2(\Pi\Pi) =$		$C_D(-) =$		
			$I_{T}(m^{-}/s) =$	1.0E-11	ς(-) =	INA	
			<u>S(-)</u> =	1.0E-06			
			$K_s (m/s) =$	2.0E-12			
			S _s (1/m) =	2.0E-07			
Not an	alysed		Comments:				
			Based on the test re	sponse (prolong	ed packer compliand	ce) the interval	
			transmissivity is set	to 1.0•10-11 m	2/s.		

	Test Summ	narv Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			Pi
Area:	Laxemar	Test no:			1
Borehole ID:	KLX17A	Test start:			070527 08:14
Test section from - to (m):	459.00-464.00	Responsible for test execution:		Reinde	r van der Wall Erik Löfgren
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu
l inear plot Ω and p		test evaluation:		Recovery period	
		Indata		Indata	
		nuata n. (kPa) –	3020	indata	r
4150	0.50	p ₀ (kPa) =	3032		╉────┤
KLX17A_459.00-464	* P section 00_070527_1_PI_Q_r / P bitove • P bitove Q	$p_i(kPa) =$	4115	n_(kPa) -	3940
4100	+ 0.08 •	$p_{p}(R a) =$	4115 #NV	$p_F(RIa) =$	3940
		$Q_p (m^2/s) =$	#197	t (c) -	5400
8 4000		(p(s)) =	1.00E.06	$i_{\rm F}({\rm s}) =$	1 00E 06
		SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00
⁸ ****	• • • •	$EC_w (IIIS/III) =$	12.0		
		Temp _w (gr C)=	15.2 #NW	Derivative feet	0.08
	······································	Derivative fact.=	#1N V	Derivative fact.=	0.08
3800					┣────┤
0.00 0.25 0.50 0.75 1.00 Elapsed	1.25 1.50 1.75 2.00 2.25 Time [b]	Poculto		Poculto	L
			#NI\/	Results	
Level en whether a device the second		$Q/s (m^{-}/s) =$	#INV		Į
Log-Log plot incl. derivates- in	low period	$I_M (m^{-}/s) =$	#INV	Elow rogimo:	transiant
		riow regime.		riow regime.	
		$dt_1(min) =$	#NV	dt_1 (min) = dt_2 (min) =	64.80
		$T_{2}(1111) =$		$d_{12}(1111) =$	04.80 1 1E-10
		I(m/s) =		I(m/s) =	1.1E-10
		S (-) =	ΝΔ	S(-) = K(m/s) = -	2.1E-11
		$R_{s}(11/3) =$	ΝΔ	$R_{s}(11/3) =$	2.1E-11 2.0E-07
Not ar	nalysed	$O_{s}(1/11) = O_{s}(1/11)$	ΝΔ	$O_{\rm s}$ (1/11) =	2.0E-07
		$C(m/Pa) = C_{p}(z) = -$	NA	$C(m/Pa) = C_{2}(r) = -$	2.1E-03
		$O_{\rm D}()$ =	NA	$O_{\rm D}()$ =	-0.52
		(-) –		(-) –	0.02
		$T_{m^{2}/2}$	NA	$T_{m}^{2}(n) =$	NA
		$S_{GRF}(1175) =$	NA	$S_{GRF}(III / S) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.	<u> </u>
		dt₁ (min) =	0.16	C (m ³ /Pa) =	1.9E-11
Elapsed time (h]	dt_2 (min) =	64.80	$C_{\rm D}(-) =$	2.1E-03
10 2		$T_{T}(m^{2}/s) =$	1.1E-10	(-) =	-0.52
		S (-) =	1.0E-06	()	├ ───┤
10 1	10 °	$K_s (m/s) =$	2.1E-11		
		$S_{s}(1/m) =$	2.0E-07		
	10-1	Comments:			·
10 °	10	The recommended	transmissivity of	f 1.1•10-10 m2/s was	s derived from
· · · · · · · · · · · · · · · · · · ·		the analysis of the F	i phase. The co	nfidence range for th	ne interval
10-1	10 ⁻⁷ - 7	transmissivity is est	imated to be 6.0	•10-11 m2/s to 2.0•	10-10 m2/s. The
 `	d pressur	flow dimension disp	played during the	e test is 2 (radial flo	w). The static
	10 -3	the analysis.	a transducer dej	jui could not be extr	apotateu from
10 ⁻¹ 10 ⁰ tD	10 ¹ 10 ² 10 ³				

	Test Su	ımn	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
Area:	Laxe	emar	Test no:			1
Borehole ID:	KLX	(17A	Test start:			070527 10:58
Test section from - to (m):	464.00-46	9.00	Responsible for		Reinde	er van der Wall
Section diameter. 2.r., (m):	0	.076	test execution: Responsible for		Crist	Erik Lotgren
,, ,			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
4200		T ^{0.008}	p ₀ (kPa) =	3972		
, j	KLX17A_464.00-469.00_070527_1_CHir_Q_r		p _i (kPa) =	3969		
4150	P section P above		p _p (kPa) =	4169	p _F (kPa) =	3970
4100	• P sater • Q	0.005	Q _p (m ³ /s)=	5.67E-08		
Read or		[upun]	tp (s) =	1200	t _F (s) =	3600
400 ···································		0 2000 Rate (S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Down	-4 \	Injec	EC _w (mS/m)=			
		0.002	Temp _w (gr C)=	13.4		
3850			Derivative fact.=	0.12	Derivative fact.=	0.07
300 0m 0m 100	150 200 2	0.000				<u> </u>
Elapsed	Fime [h]		Results		Results	<u> </u>
			Q/s $(m^{2}/s) =$	2.8E-09		
Log-Log plot incl. derivates- fl	ow period		T_{M} (m ² /s)=	2.3E-09		
			Flow regime:	transient	Flow regime:	transient
. 10 ⁻³ 10 ⁻²	10. ⁻¹ 10. ⁰		dt₁ (min) =	1.03	dt ₁ (min) =	#NV
10 2			dt_2 (min) =	15.48	dt ₂ (min) =	#NV
			T (m ² /s) =	1.5E-09	$T(m^{2}/s) =$	1.5E-09
10 1		10 3	S (-) =	1.0E-06	S (-) =	1.0E-06
· · · · · · · · · · · · · · · · · · ·	the second states		$K_s (m/s) =$	3.0E-10	$K_s (m/s) =$	3.1E-10
· · · · · · · · · · · · · · · · · · ·		10 2	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
		1/qf [mim]	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	4.7E-11
· · · · · · · ·	- 	1/4/	$C_{D}(-) =$	NA	C _D (-) =	5.2E-03
10 -1	<u>.</u>	10 1	ξ(-) =	-0.55	ξ(-) =	-0.82
		ł				
1		10°	$T_{GRF}(m^2/s) =$	NA	T _{GRF} (m ² /s) =	NA
10 10 #	10 10 10 3		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			$D_{GRF}(-)$ =	NA	$D_{GRF}(-)$ =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	
			dt ₁ (min) =	#NV	C (m ³ /Pa) =	4.7E-11
Elapsed lime	(h)	_	dt ₂ (min) =	#NV	C _D (-) =	5.2E-03
10 2			$T_T (m^2/s) =$	1.5E-09	ξ(-) =	-0.82
			S (-) =	1.0E-06		
10 1		10 '	$K_s (m/s) =$	3.1E-10		
		-	S _s (1/m) =	2.0E-07		
10 ⁻¹		2 [490].10540	Comments: The recommended the analysis of the C with the type curve. transmissivity is est flow dimension disp pressure measured a	transmissivity of CHir phase (inne The confidence imated to be 8.0 played during th at transducer dep	f 1.5•10-9 m2/s was r zone) which show e range for the interv •10-10 m2/s to 8.0• e test is 2 (radial flo oth, was derived from	derived from s the best match ral 10-9 m2/s. The w). The static m the CHir
10 ⁻¹ 10 [°]	3D 10 ⁻¹ 10 ⁻² 10 ⁻²	3	phase using type cu	rve extrapolatio	n in the Horner plot	to a value of

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	Test no:			1	
Borehole ID:	KLX17A	Test start:			070527 17:09	
Test section from - to (m):	474.00-479.00	Responsible for test execution:		Reinder van der Wall Frik Löfgren		
Section diameter, $2 \cdot r_w$ (m):	0.076	Responsible for		Cristi	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
· · ·		Indata		Indata		
		p ₀ (kPa) =	4055			
4250	0.010 • P saction	p _i (kPa) =	#NV			
REATING 4/4.004/95.00_970527_T_CHIT_C_T	P balow P balow Q	$p_{\rm p}(kPa) =$	#NV	p _F (kPa) =	#NV	
4200 -	• • • • • • • • • • • • • • • • • • •	$O_{(m^{3}/s)}$	#NV	FT ()		
-	\$.	$\frac{Q_p(\Pi/S)}{ID(S)} =$	#NV	tr. (s) =	#NV	
20 anses (10)	• • • • • • • • • • • • • • • • • • •	(0) = 0	1.00E-06		1.00E-06	
P abd mo	Planeton R	Sel S (-)= EC (mS/m)-	1.002-00	5 ei 5 (-)=	1.00L-00	
	• • •	$EC_w (III3/III) =$	12.5			
4100	- 0.002	Temp _w (gr C)=	13.5	Dania ati ya ƙast	1187	
		Derivative fact.=	#IN V	Derivative fact.=	#IN V	
	· · · · · · · · · · · · · · · · · · ·			L		
0.00 0.15 0.30 0.4 0.00 0.15 Elapsed T	5 0.60 0.75 0.90 Time [h]					
		Results	-	Results		
		Q/s (m²/s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt ₁ (min) =	#NV	dt ₁ (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T (m^2/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	NA	
Not ar	nalysed	$C_{\rm m}^{\rm m}$ (m ³ /Pa) =	NA	$C_{\rm m}$ (m ³ /Pa) =	NA	
		$C_{\rm D}(-) =$	NA	$C_{D}(-) =$	NA	
		$\frac{\xi(-)}{\xi(-)} =$	NA	ξ(-) =	NA	
		5() -		5() -		
		\mathbf{T} (zz^2/z)	ΝΑ	$T_{(1-2^2/2)}$	ΝΔ	
		$T_{GRF}(fff / S) =$		$I_{GRF}(fff /S) =$		
		$O_{GRF}(-) =$		$O_{GRF}(-) =$		
Log Log plot incl. derivatives	receivery period	D _{GRF} (-) =		D _{GRF} (-) =		
Log-Log plot mol. derivatives-		dt. (min) –	#NIV		NΔ	
		$dt_1(min) =$	#IN V #NIV/	C (m [°] /Pa) =		
		$dt_2(min) =$		$C_{\rm D}(-) =$		
		$T_T (m^2/s) =$	1.0E-11	ς(-) =	NA	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	2.0E-12			
		S _s (1/m) =	2.0E-07	<u> </u>		
Not ar	nalysed	Comments:				
		Based on the test re	sponse (prolong	ed packer compliant	ce) the interval	
		transmissivity is set	to 1.0•10-11 m	2/s.		
		•				

	Test Summary Sheet					
Project:	Oskarshamn site investigati	on <u>Test type:[1]</u>			CHir	
Area:	Laxem	ar Test no:			1	
Borehole ID:	KLX1	7A Test start:			070528 08:04	
Test section from - to (m):	479.00-484.	00 Responsible for test execution:		Reinde	r van der Wall Erik Löfgren	
Section diameter, $2 \cdot r_w$ (m):	0.0	76 Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
		p ₀ (kPa) =	4093			
420		$p_i (kPa) =$	#NV		<u> </u>	
KLX17A_479.00-484.00_070528_1_CHir_Q_r	P section P above P below Q	$p_{\rm p}(kPa) =$	#NV	p _F (kPa) =	#NV	
4200 -	• 0.008	$O_{1}(m^{3}/c) =$	#NV			
		$\frac{Q_p(\Pi / S)}{tn(S)} =$	#NV	t _r (s) =	#NV	
(g)			1.00E-06		1.00E-06	
4 492 000	•	Sei S (-)= EC (mS/m)-	1.002-00	S el S (-)=	1.002-00	
		$EC_w (IIIS/III) =$	12.6		<u> </u>	
4500		Temp _w (gr C)=	15.0 #NV	Derivetive feet	#NIX7	
	T 0.002	Derivative fact.=	#IN V	Derivative fact.=	#N V	
0.00 0.15 0.30 0.4 Elapsed 1	5 0.60 0.75 0.90 Time [h]					
		Results		Results		
		$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	#NV	dt_1 (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
		$S_{s}(1/m) =$	2.0E-07	S _s (1/m) =	NA	
Not ar	nalysed	$C (m^3/Pa) =$	NA	$C (m^{3}/Pa) =$	NA	
		$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	NA	
		$\xi(-) =$	NA	ξ(-) =	NA	
		5()		3()	<u> </u>	
		$T_{}(m^2/c) =$	NA	$T_{}(m^2/c) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{CPF}(-) =$	NA	
		$D_{ORF}(-) =$	NA	$D_{ODE}(-) =$	NA	
l og-l og plot incl. derivatives-	recovery period	Selected repres	entative naran	neters	1	
33 Plot mon derivatives-		dt (min) –	#NIV	$C(m^3/D_{-})$	NA	
		dt_{a} (min) -	#NIV	$C_{n}(-) =$	NA	
		$T_{2}(mn) = \frac{1}{2}$				
		$I_T (m/s) =$	1.0E-11	ς(-) =	INA.	
		3(-) =	1.0E-00	<u> </u>	 	
		$K_{\rm s}$ (m/s) =	2.0E-12		┟────┤	
		$S_s(1/m) =$	2.0E-07		L	
Not ar	nalysed	Comments:	<i>,</i> .			
		Based on the test re	esponse (prolong	ed packer compliant	ce) the interval	
		u ansmissivity is se	1.01.0•10-11 m	4.3.		

	Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir		
Area:	Laxemar	Test no:			1		
Borehole ID:	KLX17A	Test start:		070528 09:21			
Test section from - to (m):	484.00-489.00	Responsible for test execution:		Reinder van der Wall Frik Löfgren			
Section diameter, 2-r _w (m):	0.076	Responsible for test evaluation:		Cristi	an Enachescu		
Linear plot Q and p		Flow period		Recovery period			
		Indata		Indata			
		p ₀ (kPa) =	4237				
4300	• P series •	$p_i (kPa) =$	#NV				
KLX17A_484.00-489.00_070528_1_CHir_Q_r	P stores P balaw Q	$p_{r}(kPa) =$	#NV	p⊢(kPa) =	#NV		
4250 -	• • • •	$\rho_{\mu}(m^{3}/c)$	#NV	FF (··· •·)			
7		$Q_p (\Pi / S) =$	#NV	t _r (s) -	#NV		
		(p(0)) =	1.00E-06	(0) =	1.00E-06		
		Sel S (-)= EC (mS/m)-	1.002-00	Sel S (-)=	1.002-00		
l*		$LC_w (IIIS/III) =$	12.6				
4150		$Temp_w(gr C) =$	13.0	Device the free t	#NTN 7		
l l	•	Derivative fact.=	#IN V	Derivative fact.=	#IN V		
4100	<u></u>						
0.00 0.15 0.30 0.45 Elapsed Ti	0.60 0.75 0.90 me [h]						
		Results		Results			
		Q/s (m^{2}/s)=	#NV				
Log-Log plot incl. derivates- flo	ow period	T _M (m²/s)=	#NV				
		Flow regime:	transient	Flow regime:	transient		
		dt_1 (min) =	#NV	dt ₁ (min) =	#NV		
		dt_2 (min) =	#NV	dt_2 (min) =	#NV		
		$T(m^{2}/s) =$	1.0E-11	T (m²/s) =	NA		
		S (-) =	1.0E-06	S (-) =	NA		
		$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA		
N		$S_{s}(1/m) =$	2.0E-07	S _s (1/m) =	NA		
Not an	alysed	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA		
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA		
		ξ(-) =	NA	ξ(-) =	NA		
		$T_{ops}(m^2/s) =$	NA	$T_{opr}(m^2/s) =$	NA		
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	eters.			
.		dt₁ (min) =	#NV	C (m ³ /Pa) –	NA		
		dt_2 (min) =	#NV	$C_{D}(-) =$	NA		
		$T_{-}(m^{2}/s) =$	1.0F-11	ξ(-) =	NA		
		S(-) =	1.0E-06	- ()			
		$K_{-}(m/s) =$	2 0E-12				
		$R_{s}(1/m) =$	2.0E 12				
NT	.1 1	Commente:	2.00 07				
Not an	alysed	Pasad on the test re	enonce (prolong	ad nackar complian	a) the interval		
		transmissivity is set	to 1.0•10-11 m	eu packer compitant 2/s.	<i>(c)</i> the interval		

	Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX17A	Test start:			070528 13:43	
Test section from - to (m):	649.00-654.00	Responsible for test execution:		Reinde	er van der Wall Erik Löfgren	
Section diameter, 2-r _w (m):	0.076	Responsible for test evaluation:		Cristi	an Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
		p ₀ (kPa) =	5503			
5660	• R scriite	p _i (kPa) =	#NV			
KLX17A_649.00-654.00_070528_1_CHir_Q_r	P Mattain P Jabovi P Nalovi Q	$p_{\rm p}(kPa) =$	#NV	p _⊏ (kPa) =	#NV	
5600 ·	• 0.008	$O_{1}(m^{3}/c) =$	#NV	FF (** •)		
 	•	$Q_p (\Pi / S) =$	#NV	t _r (s) -	#NV	
2013	88 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 -	(p(3)) =	1 00E 06	$(3)^{*}$	#1\V	
		SelS (-)=	1.00E-00	Sel S (-)=	1.00E-00	
	a.cov 2	EC _w (mS/m)=	1.5.7			
5500		Temp _w (gr C)=	15.7			
	•	Derivative fact.=	#NV	Derivative fact.=	#NV	
5400 0.000 0.15 0.30 0.44 Elapsed T	0.000 0.75 0.90 filme [h]					
		Results		Results		
		Q/s (m ² /s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt ₁ (min) =	#NV	dt ₁ (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		$K_{s}(m/s) =$	2.0E-12	$K_s(m/s) =$	NA	
		$S_{c}(1/m) =$	2.0F-07	$S_{c}(1/m) =$	NA	
Not an	nalysed	$C_{(m^{3}/P_{0})} =$	NA	$C_{3}(m^{3}/P_{0}) =$	NA	
		$C_{(III / Fa)} = C_{ra}(-) =$	NA	$C(\Pi / Pa) =$	NA	
		ε ₍₎ –	NA	ε ₍₎ =	NA	
		ς(-) =		ς (-) =		
		\mathbf{T} (m^2/c)	ΝΔ	$T \left(re^{2}/r\right)$	ΝΔ	
		$I_{GRF}(III /S) =$	NA	$\Gamma_{GRF}(\Pi / S) =$	NA	
		$O_{GRF}(-) =$		$O_{GRF}(-) =$		
Log log plot incl. dorivativos-	recovery period	Selected represe	ntativo paran		117	
Log-Log plot mol. derivatives-		dt (min) -	manve parall		NΛ	
		$dt_1(min) =$	#IN V	C (m [°] /Pa) =		
		$u_2(mn) =$	#INV	$C_{\rm D}(-) =$	NA NA	
		$T_T (m^2/s) =$	1.0E-11	ς(-) =	NA	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	2.0E-12			
		S _s (1/m) =	2.0E-07			
Not an	alysed	Comments:				
		Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m2	ed packer compliand 2/s.	ce) the interval	

	Test Summary Sheet					
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxema	r Test no:			1	
Borehole ID:	KLX17A	Test start:			070528 15:01	
Test section from - to (m):	654.00-659.00	Responsible for test execution:		Reinde	er van der Wall Erik Löfgren	
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
		p ₀ (kPa) =	5544			
6400	0.010	p _i (kPa) =	#NV			
6300 · · · · · · · · · · · · · · · · · ·	P section P above P blow 0 none	$p_{p}(kPa) =$	#NV	p _F (kPa) =	#NV	
8200 -	$\int (m^3/s) -$	#NV	, ,			
600. Ž		$\frac{Q_p(\Pi / S)}{tn(S)} =$	#NV	tr (s) =	#NV	
20 5 0000 - 8			1.00E-06		1.00E-06	
60 5000 -	Interest in the second s	SeiS (-)= EC (mS/m)-	1.002-00	S el S (-)=	1.002-00	
800 -		$LC_w (III3/III) =$	15.9			
5700	· · · · · · · · · · · · · · · · · · ·	Temp _w (gr C)=	15.8	Device the fact	#NTX7	
5000	/ . <u>``</u>	Derivative fact.=	#IN V	Derivative fact.=	#IN V	
0.00 0.15 0.30 0.45 Elapsed T	5 060 0.75 0.90 Time [h]					
		Results		Results		
		Q/s (m²/s)=	#NV			
Log-Log plot incl. derivates- fl	ow period	T _M (m²/s)=	#NV			
		Flow regime:	transient	Flow regime:	transient	
		dt_1 (min) =	#NV	dt ₁ (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^{2}/s) =$	1.0E-11	$T(m^{2}/s) =$	NA	
		S (-) =	1.0E-06	S (-) =	NA	
		$K_s (m/s) =$	2.0E-12	$K_s (m/s) =$	NA	
		S _s (1/m) =	2.0E-07	S _s (1/m) =	NA	
Not an	nalysed	$C (m^3/Pa) =$	NA	$C(m^3/Pa) =$	NA	
		$C_{D}(-) =$	NA	$C_{D}(-) =$	NA	
		ξ(-) =	NA	ξ(-) =	NA	
		5()		5()		
		$T_{}(m^2/c) =$	NA	$T_{}(m^2/c) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(1175) =$	NA	
		$D_{\text{GRF}}(\mathbf{r}) =$	NΔ	$D_{\text{GRF}}(-) =$	NΔ	
l og-l og plot incl. derivatives-	recovery period	Selected represe	ntative naran			
33 Plot mon derivatives-		dt (min) -	#N\/	$C \left(m^{3}/D_{-} \right)$	NA	
		dt_{a} (min) =	#N\/	$C_{\rm n}$ (m /Pa) =	NΔ	
		$\operatorname{dt}_2(\operatorname{min}) =$		$C_D(-) =$		
		$I_{T}(m^{-}/s) =$	1.0E-11	ς(-) =	INA	
		3 (-) =	1.0E-06			
		κ_{s} (m/s) =	2.0E-12			
		$S_{s}(1/m) =$	2.0E-07			
Not an	alysed	Comments:				
		Based on the test re	sponse (prolong	ged packer compliant	ce) the interval	
		transmissivity is set	10 1.0•10-11 m	2/8.		

Test Summary Sheet						
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX17A	Test start:			070528 16:16	
Test section from - to (m):	659.00-664.00	Responsible for test execution:		Reinder van der Wall Frik Löfgren		
Section diameter, 2.r _w (m):	0.076	Responsible for test evaluation:		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period		
		Indata		Indata		
5750 -	0.010	p ₀ (kPa) =	5587			
KLX17A_659.00-664.00_070528_1_CHir_Q_r	• P section •	p _i (kPa) =	#NV			
5700 -	- P Jaconu P Paulow 0 0000	p _p (kPa) =	#NV	p _F (kPa) =	#NV	
		$Q_{p} (m^{3}/s) =$	#NV			
දු කො	• •	tp (s) =	#NV	t _F (s) =	#NV	
		S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
5 5000 T		EC _w (mS/m)=		(/		
		Temp _w (gr C)=	15.8			
5550 -	• • • • • • • • • • • • • • • • • • • •	Derivative fact.=	#NV	Derivative fact.=	#NV	
	:					
5500 0.15 0.30 0.45	s aso a75 aso					
Elapsed T	ime (h)	Results		Results		
		$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M}$ (m ² /s)=	#NV			
	••• •••	Flow regime:	transient	Flow reaime:	transient	
		dt_{4} (min) =	#NV	dt_4 (min) =	#NV	
		$dt_n(\min) =$	#NV	dt_1 (min) =	#NV	
		$T (m^2/c) =$	1 0F-11	$T_{12}(m_{12})$	NΔ	
		l (III /s) = ♀ (-) =	1.0E-06	1 (III /S) = 9 (-) =	NΔ	
		S(-) = -	2 0E-12	S(-) = -	NΔ	
		$R_{s}(11/s) =$	2.0L-12 2.0E-07	$R_{s}(11/s) =$		
Not an	alysed	$S_{s}(1/11) =$		$S_{s}(1/11) =$		
		C (m ⁻ /Pa) =		C (m ⁻ /Pa) =		
		$C_{\rm D}(-) =$		$C_D(-) =$		
		ζ(-) =	NA	ζ(-) =	NA	
		2	N 1 A	2		
		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot Incl. derivatives-	recovery period	Selected represe		a a a a a a a a a a a a a a a a a a a		
		$dt_1 (min) =$	#NV	C (m [°] /Pa) =	NA	
		$dt_2 (min) =$	#NV	$C_{\rm D}(-) =$	NA	
		$T_T (m^2/s) =$	1.0E-11	ς(-) =	NA	
		S (-) =	1.0E-06			
		$K_s (m/s) =$	2.0E-12			
		$S_s(1/m) =$	2.0E-07			
Not an	alysed	Comments:				
		Based on the test re transmissivity is set	sponse (prolong to 1.0•10-11 m2	ed packer compliand 2/s.	ce) the interval	

	Test Sı	ımr	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir	
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KL>	<17A	Test start:			070529 08:10	
Test section from - to (m):	669.00-674.00		Responsible for test execution:		Reinder van der Wall Frik Löfaren		
Section diameter, 2-r _w (m):	C	0.076	Responsible for		Cristi	an Enachescu	
Linear plot Q and p			Flow period		Recovery period		
			Indata		Indata		
			n. (kPa) –	5670	indutu		
5900		0.010	$p_0 (k R_2) =$	#NW			
- KLX17A_669.00-674.00_070529_1_CHir_Q_r	 P section P sbove P below 		р _і (кра) =	#IN V		//N.Y.Y.	
5890 ·	· 0	0.008	р _р (кРа) =	#N V	р _ғ (кРа) =	#NV	
5800 -	7		Q _p (m ³ /s)=	#NV			
Forte .	••	0.006 (uju	tp (s) =	#NV	t _F (s) =	#NV	
1 1 2 2 2 3 750	•	on Rate [l	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
entry and the second se		0.004	EC _w (mS/m)=				
5700	~		Temp _w (gr C)=	16.0			
· · · · · · · · · · · · · · · · · · ·	•	0.002	Derivative fact =	#NV	Derivative fact =	#NV	
sebo	·.						
5000	···	0.000					
0.00 0.15 0.30 0.44 Elapsed T	i 0.60 0.75 0. Ime [h]	90					
			Results		Results		
			$Q/s (m^2/s) =$	#NV			
Log-Log plot incl. derivates- fl	ow period		T _M (m²/s)=	#NV			
			Flow regime:	transient	Flow regime:	transient	
			dt_1 (min) =	#NV	dt₁(min) =	#NV	
			dt_1 (min) –	#NV	dt_{r} (min) -	#NIV	
			$a_{2}(1111) =$		$a_2(mn) =$		
			T (m ⁻ /s) =	1.0E-11	1 (m ⁻ /s) =	NA	
			S(-) =	1.0E-06	S (-) =	NA	
			$K_s (m/s) =$	2.0E-12	K _s (m/s) =	NA	
Not an	alvead		$S_{s}(1/m) =$	2.0E-07	$S_s(1/m) =$	NA	
Not all	arysed		C (m ³ /Pa) =	NA	C (m³/Pa) =	NA	
			$C_{D}(-) =$	NA	$C_{D}(-) =$	NA	
			ξ(-) =	NA	ξ(-) =	NA	
			5(7		5()		
			$- (^{2}/-)$	ΝΔ	τ (m ² /m ² /	ΝΔ	
			$I_{GRF}(M/S) =$		$I_{GRF}(M/S) =$		
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
	· ·		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	-	
			$dt_1 (min) =$	#NV	C (m ³ /Pa) =	NA	
			dt_2 (min) =	#NV	C _D (-) =	NA	
			$T_{T}(m^{2}/s) =$	1.0E-11	ξ(-) =	NA	
			S (-) =	1.0E-06			
		$K_s(m/s) =$	2.0E-12				
		$S_{s}(1/m) =$	2.0F-07				
N. (Comments:				
Not an	alysed		Deced on the test of				
			transmissivity is set	to 1.0•10-11 m	ed packer compliand 2/s.	ce) the interval	

	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemar	Test no:			1	
Borehole ID:	KLX17A	Test start:		070529 09		
Test section from - to (m):	674.00-679.00	Responsible for		Reinde	er van der Wall	
Occitica disasten Ora (m.).	0.070	test execution:		Quint	Erik Löfgren	
Section diameter, 2-r _w (m):	0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p		Flow period		Recovery period	1	
		Indata		Indata		
		p ₀ (kPa) =	5711		1	
5200	0.010	p _i (kPa) =	5709		1	
5900	P dow P dow P dow Q	$p_{p}(kPa) =$	5902	p _F (kPa) =	5709	
	- 0.008	$Q_{\rm m} ({\rm m}^3/{\rm s}) =$	7.17E-08	, , ,	1	
585	- 0.005	$\frac{d\beta}{d\beta} (m/d)^2 =$	1200	t _F (s) =	3600	
	Rate Philip	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
	0.004 B	$EC_w (mS/m) =$		0010()-		
5790		Temp _w (gr C)=	16.0			
	- e.002	Derivative fact.=	0.09	Derivative fact.=	0.08	
5700 ·						
5600 0.25 0.50 0.75 1.00	1.25 1.50 1.75 2.00 2.25				1	
Elapsed	Time (h)	Results		Results	1	
		$Q/s (m^2/s) =$	3.6E-09		T	
Log-Log plot incl. derivates- f	low period	$T_{\rm M}$ (m ² /s)=	3.0E-09			
0 01	•	Flow regime:	transient	Flow regime:	transient	
Elassed time	Th	dt_1 (min) =	0.22	dt_1 (min) =	8.52	
10 ²	······································	dt_2 (min) =	17.40	dt_2 (min) =	52.08	
	10 3	$T(m^2/s) =$	4.3E-09	$T(m^{2}/s) =$	7.9E-09	
		S (-) =	1.0E-06	S (-) =	1.0E-06	
10 • • • • • • • • • • • • • • • • • • •	a a a a a a a a a a a a a a a a a a a	$K_s(m/s) =$	8.6E-10	$K_s(m/s) =$	1.6E-09	
1 		$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07	
		$C_{\rm (m^3/Pa)} =$	NA	$C (m^3/Pa) =$	2.2E-11	
		$C_{D}(-) =$	NA	$C_{D}(-) =$	2.4E-03	
10-4		$\xi(-) =$	3.23	ξ(-) =	7.97	
		3(7		5(7	1	
	10	$T_{opr}(m^2/s) =$	NA	$T_{ops}(m^2/s) =$	NA	
10 ⁴ 10	10 ⁶ 10 ⁷	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives	recovery period	Selected represe	entative paran	neters.		
		dt ₁ (min) =	8.52	$C (m^3/Pa) =$	2.2E-11	
Elapsed time [h]	101	dt_2 (min) =	52.08	$C_{D}(-) =$	2.4E-03	
10 2		$T_{T}(m^{2}/s) =$	7.9E-09	ξ(-) =	7.97	
		S (-) =	1.0E-06		1	
	300	$K_s (m/s) =$	1.6E-09		1	
10		$S_{s}(1/m) =$	2.0E-07			
at item	10	Comments:				
and a second sec	30	The recommended	transmissivity of	f 7.9•10-9 m2/s was	derived from	
10 2	A A A A A A A A A A A A A A A A A A A	the analysis of the C	CHir phase whic	h shows the best ma	tch with the	
/.	10	type curve and a go	od horizontal st	abilisation. The cont	fidence range	
		for the interval trans 2.0•10-8 m $2/s$. The	smissivity is esti	mated to be 2.0•10-	9 m2/s to	
	3	(radial flow). The st	tatic pressure m	easured at transduce	r depth, was	
10 10 ⁻	10 10 10 ⁻	derived from the Cl	Hir phase using	type curve extrapola	tion in the	
		Horner plot to a val	lue of 5,706 3 kl	Da		

Test Summary Sheet							
Project:	Oskarshamn site investigation	Test type:[1]			CHir		
Area:	Laxema	r Test no:			1		
Borehole ID:	KLX17	A Test start:			070529 13:00		
Test section from - to (m):	679.00-684.00	Responsible for		Reinde	er van der Wall		
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	ian Enachescu		
Lineer plat O and p		test evaluation:					
Linear plot Q and p		Flow period		Recovery period			
			5751	Indata			
5860		$p_0 (kPa) =$	5751		 		
KLX17A_679.00-684.00_070529_1_CHir_Q_r	 P akcion > P above P belove 	р _і (кРа) =	5730		5726		
5000 -	- 0.008	$p_p(\kappa Pa) =$	5921	р _F (кРа) =	5736		
		$Q_p (m^3/s) =$	8.6/E-08		1200		
580 -	0.000 Friendl	tp (s) =	1200	t _F (S) =	1200		
00 le 7 mereo - 1 mereo -	Bit Control of Control	S el S (-)=	1.00E-06	S el S (-)=	1.00E-06		
Š 5000	0.004 2	EC _w (mS/m)=					
		Temp _w (gr C)=	16.1				
5750	0.022	Derivative fact.=	0.07	Derivative fact.=	0.06		
5700	20 1.00 1.20 1.40 1.60						
Elapsed	Time (h)	Results		Results			
		Q/s (m^{2}/s)=	4.5E-09				
Log-Log plot incl. derivates- fl	ow period	T_{M} (m ² /s)=	3.7E-09		<u> </u>		
		Flow regime:	transient	Flow regime:	transient		
Eboset time ([h]	dt_1 (min) =	0.25	dt_1 (min) =	6.30		
10 ²	······································	dt_2 (min) =	17.04	dt_2 (min) =	17.40		
	10 ³	$T_{2}(m^{2}/s) =$	5.9E-09	$T(m^{2}/s) =$	1.7E-08		
		S(-) =	1.0E-06	S(-) =	1.0E-06		
10 • • • • • • • • • • • • • • • • • • •	• 10 ²	$K_{a}(m/s) =$	1 2E-09	$K_{a}(m/s) =$	3 4E-09		
÷		$S_{s}(1/m) =$	2 0F-07	$S_{a}(1/m) =$	2.0E-07		
E 10 [°]	an ana ang ang ang ang ang ang ang ang a	$c_{s}()$	NA	$C_{\rm s}(1,1,1)$	1.9E-11		
<u>م</u> م م م م م م م م م م م م م م م م م م	10 1	$\frac{1}{2}C_{n}(-) =$	NA	$C_{n}(-) =$	2 1E-03		
		$\xi(-) = -$	3 59	ε _D () –	15 77		
10	10 °	S(-) –	0.00	5(-) –	10.77		
		$T_{CRF}(m^2/s) =$	NA	$T_{cpr}(m^2/s) =$	NA		
10 ⁴ 10 ⁵ 10 ⁵	10 [°] 10 [°] 10 [°]	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA		
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran	neters.			
		dt_1 (min) =	6.30	$C_{\rm r}$ (m ³ /Pa) =	1.9E-11		
Elapsed time (h)		dt_2 (min) =	17.40	$C_{D}(-) =$	2.1E-03		
10 ²	10, ⁻¹ 10, ⁰	$T_{-}(m^{2}/s) =$	1.7E-08	ξ(-) =	15.77		
		S(-) =	1.0F-06	5() -			
		$K_{c}(m/s) =$	3.4F-09				
10 ⁻¹	10 ²	$S_{s}(1/m) =$	2 0E-07		<u> </u>		
A starting and the		Comments:	2.52 07		<u> </u>		
	30	The recommended	transmissivity	f 1 7•10-8 m ² /c was	derived from		
	Autor 10 1	the analysis of the C	CHir phase which	h shows the best ma	tch with the		
10		type curve and a go	od horizontal st	abilisation. The conf	idence range		
	3 and and a	for the interval trans	smissivity is esti	mated to be 3.0•10-	9 m2/s to		
		$3.0 \cdot 10-8 \text{ m}2/\text{s}$. The	flow dimension	displayed during the	e test is 2		
10 ⁰ 10 ¹ tD/CD	10 ² 10 ³ 10 ⁴	(radial flow). The siderived from the Cl	and pressure me	easured at transduce	t deptn, was		
		Horner plot to a val	ue of 5.732.3 kl	ope cuive exitapola			

	Test Sum	nary Sheet				
Project:	Oskarshamn site investigation	Test type:[1]			CHir	
Area:	Laxemai	Test no:			1	
Borehole ID:	KLX17A	Test start:			070529 15:01	
Test section from - to (m):	684.00-689.00	Responsible for		Reinder van der Wall		
Section diameter, 2.r _w (m):	0.076	Responsible for		Crist	an Enachescu	
		test evaluation:				
Linear plot Q and p		Flow period		Recovery period		
		Indata	5700	Indata	1	
000	0.005	$p_0 (kPa) =$	5792			
KLX17A_684.00-689.00_070529_1_CHir_Q_r	P section P below P below O	р _і (кРа) =	5791		5706	
ecco -	- 0.004	$p_p(\kappa Pa) =$	5989	р _ғ (кра) =	5786	
5960		$Q_p (m^3/s) =$	3.28E-08	t (-)	2,000	
[eq] ann	+ 0.000 Generation	tp (s) =	1200	t _F (S) =	3600	
8 5900 9	bester ta	Sel S (-)=	1.00E-06	S el S (-)=	1.00E-06	
5800	0.002 #	$EC_w (mS/m) =$	1.5.1			
		Temp _w (gr C)=	16.1			
5800	•••••••••••••••••••••••••••••••••••••••	Derivative fact.=	#N V	Derivative fact.=	0.02	
5750	i					
Elapsed 1	Time [h]	Results		Results		
		$Q/s (m^2/s) =$	1.6E-09			
Log-Log plot incl. derivates- fl	low period	$T_{\rm M}$ (m ² /s)=	1.3E-09			
		Flow regime:	transient	Flow regime:	transient	
		dt₁ (min) =	#NV	dt₁ (min) =	#NV	
		dt_2 (min) =	#NV	dt_2 (min) =	#NV	
		$T(m^{2}/s) =$	NA	$T(m^2/s) =$	9.9F-09	
		S(-) =	NA	S(-) =	1.0E-06	
		$K_{c}(m/s) =$	NA	$K_{c}(m/s) =$	2.0F-09	
		$S_{c}(1/m) =$	NA	$S_{c}(1/m) =$	2.0E-07	
Not ar	nalysed	$C_{\rm s}(1,1,1)$	NA	$C_{\rm s}(m^{3}/P_{\rm 2}) =$	8.8F-11	
		$C_{n}(-) =$	NA	$C(\Pi/Pa) = C_{D}(-) =$	9.7E-03	
		ξ(-) =	NA	ε (-) =	20.75	
		5() -				
		$T_{opr}(m^2/s) =$	NA	$T_{opc}(m^2/s) =$	NA	
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
		$D_{GRF}(-) =$	NA	$D_{GRE}(-) =$	NA	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative param	neters.		
		dt_1 (min) =	#NV	C (m ³ /Pa) =	8.8E-11	
2 Elapsed time [h]		dt_2 (min) =	#NV	$C_{\rm D}(-) =$	9.7E-03	
10 2		$T_{T}(m^{2}/s) =$	9.9E-09	ξ(-) =	20.75	
	300	S (-) =	1.0E-06	5()		
		$K_s(m/s) =$	2.0E-09			
10 ¹	10 ²	$S_{s}(1/m) =$	2.0E-07			
	*te	Comments:				
R	Å	The recommended	transmissivity of	f 9.9•10-9 m2/s was	derived from	
10 °	101	the analysis of the C	CHir phase which	h shows a good mate	ch with the type	
		curve. The confider	ice range for the	interval transmissiv	ity is estimated	
· · /	3	to be 5.0•10-9 m2/s	to 2.0•10-8 m2/	s. The flow dimensi	on displayed	
		transducer depth. w	as derived from	the CHir phase usin	g type curve	
10 [°] 10 [°] 10 [°]	10 ² 10 ³ 10 ⁴	extrapolation in the	Horner plot to a	value of 5,787.2 kI	Pa.	

	Test Sun	nmary Sheet			
Project:	Oskarshamn site investigati	on Test type:[1]			CHir
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX17	7A Test start:			070529 17:58
Test section from - to (m):	689.00-694.	00 Responsible for		Reinde	er van der Wall
Section diameter, 2.r _w (m):	0.0	76 Responsible for		Crist	tian Enachescu
		test evaluation:		-	-
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
6500	0.015	p ₀ (kPa) =	5833		
KLX17A_689.00-694.00_070529_1_CHir_Q_r	P sector P sector	p _i (kPa) =	5828		
	• P balow • Q • 0.012	p _p (kPa) =	6021	p _F (kPa) =	5829
6300 -		$Q_{p} (m^{3}/s) =$	1.18E-07		
		tp (s) =	1200	t _F (s) =	1200
850	······································	S el S (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
8000 ·	- 0.005	[≗] EC _w (mS/m)=			
e000	1 1 1	Temp _w (gr C)=	16.2		
5000	0.003	Derivative fact.=	0.05	Derivative fact.=	0.06
0.00 0.30 0.60 Elapsed	0.90 1.20 1.50 Time [h]	Results		Results	
		$\Omega/c_{\rm c}$ (m ² /c)-	6.0E-09	ittoouno	
l og-l og plot incl. derivates- fl	ow period	U/S (III/S) =	5.0E-09		
		Flow regime:	transient	Flow regime:	transient
		dt_{ℓ} (min) =	0.33	dt_{4} (min) =	1 65
Elapsed time 10 ⁻⁴	¹] 	$dt_1(min) =$	16.20	$dt_1(min) =$	3.18
	10	$T_{1}(m^{2}(n)) = T_{1}(m^{2}(n))$	5 9E-09	$T_{1}(m^{2}/c)$	8.0E-09
		1 (m/s) =	1.0E-06	S(-) =	0.0E 09
10 1	· · · · · · · · · · · · · · · · · · ·	K (m/s) =	1.0E 00	K (m/s) –	1.6E-09
	- :	$S_{s}(1/m) =$	2.0E-07	$S_{s}(1/m) =$	2.0E-07
ê 10 [°]		$C_{s}(1/11) = 0$	NA	$C_{s}(1/11) = C_{s}(m^{3}/P_{0}) =$	1.6E-11
· · ·	10 ¹	$C_{\rm m}(-) =$	NA	$C(m/Pa) = C_{p}(-) =$	1.8E-03
		ε _D () =	1 46	ε ₍₋₎ –	3.18
10	10	S(-) -	1.40	S(-) –	0.10
		$T_{}(m^2/c) =$	NA	$T_{}(m^2/c) =$	NA
10 ² 10 ³ #	10 ⁴ 10 ⁵ 10 ⁶	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	entative paran	neters.	
		dt_1 (min) =	0.33	$C_{\rm (m^3/Pa)} =$	1.6E-11
Elapsed time	h)	dt_2 (min) =	16.20	$C_{D}(-) =$	1.8E-03
10 2		$T_{T}(m^2/s) =$	5.9E-09	ξ(-) =	1.46
	10	S (-) =	1.0E-06	5()	1
10 1		$K_s (m/s) =$	1.2E-09		1
the state of the s		$S_{s}(1/m) =$	2.0E-07		1
A CONTRACTOR OF A CONTRACTOR O		Comments:			
	A MARTINE .	The recommended	transmissivity of	f 5.9•10-9 m2/s was	derived from
	10 ⁻¹	the analysis of the G	CHi phase which	1 shows a noisy deriv	vative but still a
10 ⁻¹	:	clear horizontal stat	bilisation. The c	onfidence range for	the interval
	10	transmissivity is est	timated to be 3.0	▶10-9 m2/s to 3.0•10	0-8 m2/s. The
		pressure measured	at transducer de	z (radial flo oth, was derived from	m the CHir
10 [°] 10 ¹ tD/C	10 ² 10 ³ 10 ⁴	phase using type cu	rve extrapolatio	n in the Horner plot	to a value of
		5 825 4 kPa	-		

	Test Su	ımn	nary Sheet				
Project:	Oskarshamn site investiga	ation	Test type:[1]	CHi			
Area:	Laxe	emar	Test no:			1	
Borehole ID:	KLX	Test start:		070601 16:46			
Test section from - to (m):	689.00-70	1.08	Responsible for		Reinder van der Wa		
Section diameter 2.r (m):	0	076	test execution:		Crist	Erik Lötgren	
	0	.070	test evaluation:		Olist		
Linear plot Q and p			Flow period	Recovery period			
			Indata		Indata		
6200	1	0.05	p ₀ (kPa) =	5831			
6150	'A_689.00-701.08_070601_1_CHir_Q_r P section P store solution		p _i (kPa) =	5829			
8100	.0	0.04	p _p (kPa) =	6031	p _F (kPa) =	5831	
			$Q_{p} (m^{3}/s) =$	2.53E-07			
		. 0.03 [uim	tp (s) =	1200	t _F (s) =	3600	
2 000		ion Rate (M	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
02 (990)		Inject	EC _w (mS/m)=				
900	and the second s		Temp _w (gr C)=	16.2			
		0.01	Derivative fact.=	0.06	Derivative fact.=	0.08	
5800							
5750 0.00 0.50 1.00 Elaose	1.50 2.00 2.5 ad Time IN	0.00 50					
			Results		Results		
			Q/s $(m^{2}/s) =$	1.2E-08			
Log-Log plot incl. derivates- f	low period		T_{M} (m ² /s)=	1.2E-08			
	-		Flow regime:	transient	Flow regime:	transient	
Elapsed tim	e[h]		dt₁ (min) =	1.07	dt ₁ (min) =	11.22	
10 2 10.4		1	dt_2 (min) =	16.20	dt_2 (min) =	54.60	
			$T(m^{2}/s) =$	1.0E-08	T (m²/s) =	1.5E-08	
10 '			S (-) =	1.0E-06	S (-) =	1.0E-06	
	n og og som en andere	10	$K_s (m/s) =$	8.5E-10	$K_s (m/s) =$	1.2E-09	
			$S_{s}(1/m) =$	8.3E-08	$S_{s}(1/m) =$	8.3E-08	
0 10 °		10 ¹ [juju].	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	4.1E-11	
		1/q. (1/q	$C_{\rm D}(-) =$	NA	$C_{\rm D}(-) =$	4.5E-03	
10 -1			ξ(-) =	0.33	ξ(-) =	0.41	
	.*	10	5()		5()	1	
		1	$T_{CPF}(m^2/s) =$	NA	$T_{cpr}(m^2/s) =$	NA	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵	T s	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{GRF}(-) =$	NA	$D_{GRF}(-) =$	NA	
Log-Log plot incl. derivatives	- recovery period		Selected represe	entative paran	eters.		
			dt ₁ (min) =	11.22	$C(m^3/Pa) =$	4.1E-11	
.) Elapsed time	[4]		dt_2 (min) =	54.60	$C_{\rm D}(-) =$	4.5E-03	
10 1		800	$T_{T}(m^2/s) =$	1.5E-08	ξ(-) =	0.41	
			S (-) =	1.0E-06	5()	1	
	11	10 2	$K_s (m/s) =$	1.2E-09		1	
10 ° · · · · · · · · · · · · · · · · · ·	~	10	$S_{s}(1/m) =$	8.3E-08			
	man fic.		Comments:				
	-	- - - - -	The recommended	transmissivity of	f 1.5•10-8 m2/s was	derived from	
10 -1		P 00.6	the analysis of the C	CHir phase (oute	r zone) which show	s the best data	
	3	³ quality and clear horizontal stabilisation. The confidence range for the				e range for the	
	5	interval transmissivity is estimated to be $6.0 \cdot 10-9 \text{ m}2/\text{s}$ to $3.0 \cdot 10-8 \text{ m}2/\text{s}$				to 3.0•10-8	
			m_2/s . The flow dim The static pressure	ension displayed measured at trar	a during the test is 2 addicer denth was d	(radial flow).	
10 ⁰ 10 ¹	10 ² 10 ³ 10 ⁴		CHir phase using ty	pe curve extrap	olation in the Horne	r plot to a value	

Borehole: KLX17A

APPENDIX 4

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,	constants			
A _w		Horizontal area of water surface in open borehole, not	$[L^2]$	m ²
		including area of signal cables, etc.		
b		Aquifer thickness (Thickness of 2D formation)	[L]	m
В		Width of channel	[L]	m
L		Corrected borehole length	[L]	m
L ₀		Uncorrected borehole length	[L]	m
L _p		Point of application for a measuring section based on its	[L]	m
		centre point or centre of gravity for distribution of		
		transmissivity in the measuring section.		
L _w		Test section length.	[L]	m
dL		Step length, Positive Flow Log - overlapping flow logging.	[L]	m
		(step length, PFL)		
r		Radius	[L]	m
r _w		Borehole, well or soil pipe radius in test section.	[L]	m
r _{we}		Effective borehole, well or soil pipe radius in test section.	[L]	m
		(Consideration taken to skin factor)		
r _s		Distance from test section to observation section, the	[L]	m
		shortest distance.		
r _t		Distance from test section to observation section, the	[L]	m
		interpreted shortest distance via conductive structures.		
r _D		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
Zr		Level for reference point on borehole	[L]	m
Z _{wu}		Level for test section (section that is being flowed), upper	[L]	m
		limitation		
Z _{wl}		Level for test section (section that is being flowed), lower	[L]	m
		Imitation		
Z _{ws}		Level for sensor that measures response in test section	[L]	m
		(section that is flowed)		
Z _{ou}		Level for observation section, upper limitation		m
Z _{ol}		Level for observation section, lower limitation		m
Z _{os}		Level for sensor that measures response in observation	[L]	m
		Section		
		Eveneration	rl ³ // T l ² \1	
E		Evaporation:	[L /(I L)]	mm/y,
		budrological budget:	гі ³ /ті	m/a , m^{3}/a
ст			[L / 1]	mm/v
		Evapolianspiration		mm/d
		bydrological budget:	п ³ /т1	m^{3}/c
D		Precipitation	[L / 1] $[L^3/(T ^2)]$	mm/v
r		Fredpitation		mm/d
		hydrological hydget:	[] ³ /T]	m ³ /s
R		Groundwater recharge	$[L^{3}/(T + 2)]$	mm/v
IX.		Cloundwater roonalge		mm/d
		hydrological budget:	[] ³ /T]	m^3/s
D		Groundwater discharge	$\frac{12}{1}$ $\frac{7}{1}$ $\frac{7}{1}$ $\frac{1}{2}$	mm/v
2				mm/d.
		hydrological budget:	$[L^3/T]$	m ³ /s
Q _R		Run-off rate	[L ³ /T]	m ³ /s
		Pumping rate	[L ³ /T]	m ³ /s
Q		Infiltration rate	[L ³ /T]	m ³ /s
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$	[L ³ /T]	m ³ /s
		(Flow rate)		
Q ₀		Flow in test section during undisturbed conditions (flow	[L ³ /T]	m ³ /s
Ĩ		logging).		
Qp		Flow in test section immediately before stop of flow.	[L ³ /T]	m³/s
		Stabilised pump flow in flow logging.		

Character	SICADA designation	Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	$[L^3/T]$	m ³ /s
Q ₁		Flow in test section during pumping with pump flow Q _{p1} , (flow logging).	[L ³ /T]	m³/s
Q ₂		Flow in test section during pumping with pump flow Q_{p1} , (flow logging).	[L ³ /T]	m³/s
			ru 3/ -1	37
ΣQ	SumQ	Cumulative volumetric flow along borehole		m ⁻ /S
ΣQ ₀	SumQ0	conditions (ie, not pumped)		m°/s
ΣQ_1	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q_{p1}	[L³/T]	m³/s
ΣQ ₂	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q_{n^2}	[L ³ /T]	m³/s
ΣQ _{C1}	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma \Omega_4 - \Sigma \Omega_6$	[L ³ /T]	m³/s
ΣQ _{C2}	SumQC2	Corrected cumulative volumetric flow along borehole,	[L ³ /T]	m³/s
q		Volumetric flow per flow passage area (Specific	([L ³ /T*L ²]	m/s
N/		discharge (Darcy velocity, Darcy flux, Filtration velocity)).	rı 31	3
V		Volume Water volume in test section	[L] [1 ³]	m^{3}
V _w		Valer volume in test section.	[L] [1] ³ 1	m^3
Vp		nbase	[[]]	111
V		Velocity	([³ /T* ²]	m/s
V		Mean transport velocity (Average linear velocity (Average	$([L^{7}]^{+}L^{2}]$	m/s
*a		linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$		11,0
t		Time	[T]	hour,mi n,s
t _o		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as p_0).	[T]	S
t _F		Duration of recovery phase (from p_p to p_F).	[T]	S
t_1, t_2 etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$. Dimensionless time	-	-
p		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ²]	kPa
p _a		Atmospheric pressure	$[M/(LT)^{2}]$	kPa
p _t		Absolute pressure; pt=pa+pg	$[M/(LT)^2]$	kPa
Pg		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	$[M/(LT)^2]$	kPa
р ₀		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ²]	kPa
p _i		Pressure in measuring section before start of flow.	$[M/(LT)^{2}]$	kPa
Pf		Pressure during perturbation phase.	[M/(LT) ²]	kPa
p _s		Pressure during recovery.	[M/(LT) ²]	kPa
p _p		Pressure in measuring section before flow stop.	$[M/(LT)^2]$	kPa
P _F		Pressure in measuring section at end of recovery.	$[M/(LT)^2]$	kPa
P _D		$p_{\rm D}=2\pi\cdot T\cdot p/(Q\cdot \rho_{\rm w}g)$, Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface	[M/(LT) ²]	kPa
L				

Character	SICADA designation	Explanation	Dimension	Unit
dp _f		$dp_f = p_i - p_f$ or $= p_f - p_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dp_f usually expressed positive.	[M/(LT) ²]	kPa
dp _s		$dp_s = p_s - p_p$ or $p_p = p_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_s usually expressed positive.	[M/(LT) ²]	kPa
dpp		$dp_p = p_i - p_p$ or $p_p - p_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dp_p expressed positive.	[M/(LT) ²]	kPa
dp _F		$dp_F = p_p - p_F$ or $p_F = p_F - p_p$, maximal pressure increase/drawdown of pressure surface between two points of time during recovery phase. dp_F expressed positive.	[M/(LT) ²]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). $H=h_e+h_o+h_v$	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head); (indication of h for phase as for p). $h=h_e+h_p$	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
Sp		Drawdown in measuring section before flow stop.	[L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
h _s		Level above reference level during recovery phase.		m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$, drawdown/pressure increase of pressure surface between two points of time during perturbation phase. dh_f usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$, pressure increase/drawdown of pressure surface between two points of time during recovery phase. dh_s usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p$ or $= h_p - h_i$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_p expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F$ or $= h_F - h_p$, maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. dh_F expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

Character	SICADA designation	Explanation	Dimension	Unit
Teo		Temperature in the observation section (taken from		°C
-		temperature logging). Temperature		
ECw		Electrical conductivity of water in test section.		mS/m
EC _{w0}		Electrical conductivity of water in test section during		mS/m
		undisturbed conditions.		
ECo		Electrical conductivity of water in observation section		mS/m
TDS _w		Total salinity of water in the test section.	$[M/L^3]$	mg/L
TDS _{w0}		Total salinity of water in the test section during	$[M/L^3]$	mg/L
		undisturbed conditions.		
TDS _o		Total salinity of water in the observation section.	[M/L ³]	mg/L
g		Constant of gravitation (9.81 m*s ⁻²) (Acceleration due to	[L/T ²]	m/s²
		gravity)		
π	pi	Constant (approx 3.1416).	[-]	
r		Residual. $r = p_c - p_m$, $r = h_c - h_m$, etc. Difference between		
		measured data (p_m , h_m , etc) and estimated data (p_c , h_c ,		
		etc)		
ME		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME_NME=ME/(xxxx-xxxx) x: measured		
		variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n} r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN}), x: measured variable considered		
RMS				
		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN}), x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual.		
		$SEMR = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameters	5		Lu 2/==1	27
Q/S		Specific capacity $s=ap_p$ or $s=s_p=n_0-n_p$ (open borehole)		m /s
D		Interpreted flow dimension according to Barker, 1988.		-
		characteristic counted from start of flow phase and recovery phase respectively.	[']	5
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dtL		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one- dimensional structure	[L ³ /T]	m ³ /s
Т		Transmissivity	[L ² /T]	m²/s
Тм		Transmissivity according to Move (1967)	$L^2/T1$	m²/s
T _Q		Evaluation based on Q/s and regression curve between Q/s and T as example see Rhén et al (1997) p. 190	[L ² /T]	m²/s
Ts		Transmissivity evaluated from slug test	$[L^2/T]$	m²/s
5	1		1 K - 1	

Character	SICADA designation	Explanation	Dimension	Unit
T _D		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
T		Transmissivity evaluated from Impeller flow log	$[L^2/T]$	m²/s
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log	[L²/T]	m²/s
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log	[L ² /T]	m²/s
T _T		Transient evaluation (log-log or lin-log). Judged best	[L ² /T]	m²/s
Тыла		Evaluation based on non-linear regression	[] ² /T]	m²/s
		Judged most representative transmissivity for particular	$[1^{2}/T]$	m^2/s
- 100		test section and (in certain cases) evaluation time with	[= / .]	, c
		respect to available data (made by SKB at a later stage).		
к		Hydraulic conductivity	[] /T]	m/s
K.		Hydraulic conductivity based on spherical flow model		m/s
K		Hydraulic conductivity based on spherical new model		m/s
k		Intrinsic permeability		m ²
kh		Permeability-thickness product: kb-k.b	[L_] [1 ³]	m ³
ito -			[[]]	
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one- dimensional structure	[L]	m
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S		Storage coefficient, (Storativity)	[-]	-
S*		Assumed storage coefficient	[-]	-
Sy		Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S_r)	[-]	-
S _{ya}		Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called S_y in literature)	[-]	-
Sr		Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage. Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.	[-]	-
S _f		Fracture storage coefficient	[-]	-
Sm		Matrix storage coefficient	[-]	-
S _{NLR}		Storage coefficient, evaluation based on non-linear regression	[-]	-
S _{Tot}		Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).	[-]	-
9		Specific storage coefficient: confined storage	[1/]]	1/m
S *		Assumed specific storage coefficient: confined storage		1/m
0 _s		Assumed specific storage coefficient, confined storage.		1/111
Cf		Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. $c_{f=}b'/K'$ where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard.	[T]	S
L _f		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.	[L]	m
ξ	Skin	Skin factor	[-]	-

Character	SICADA	Explanation	Dimension	Unit
	designation			
ξ*	Skin	Assumed skin factor	[-]	-
С		Wellbore storage coefficient	$[(LT^2) \cdot M^2]$	m³/Pa
CD		$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$, Dimensionless wellbore storage coefficient	[-]	-
<u>0</u>	Stor-ratio	$\omega = S_f / (S_f + S_m)$, storage ratio (Storativity ratio): the ratio	[-]	-
		of storage coefficient between that of the fracture and total storage.		
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
_				2.
T _{GRF}		Transmissivity interpreted using the GRF method	[L²/T]	m²/s
S _{GRF}		Storage coefficient interpreted using the GRF method	[1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
C _w		Water compressibility; corresponding to β in	[(LT ²)/M]	1/Pa
Cr		Pore-volume compressibility, (rock compressibility); Corresponding to α/n in hydrogeological literature.	[(LT ²)/M]	1/Pa
Ct		$c_t = c_r + c_w$, total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in c_t if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ²)/M]	1/Pa
nc.		Porosity-compressibility factor: nc.= n·c.	$[(LT^2)/M]$	1/Pa
nctb		Porosity-compressibility-thickness product: nctb= n·ctb	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
е		Transport aperture. $e = n_e \cdot b$	[L]	m
ρ	Density	Density	[M/L ³]	$kg/(m^3)$
$ ho_w$	Density-w	Fluid density in measurement section during pumping/injection	[M/L ³]	kg/(m ³)
ρο	Density-o	Fluid density in observation section	$[M/L^3]$	$kg/(m^3)$
ρ_{sp}	Density-sp	Fluid density in standpipes from measurement section	$[M/L^3]$	$kg/(m^3)$
μ	my	Dynamic viscosity	[M/LT]	Pas
μ _w	my	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s
FC⊤		Fluid coefficient for intrinsic permeability, transference of k to K; K=FC _T ·k; FC _T = $\rho_w \cdot g/\mu_w$	[1/LT]	1/(ms)
FCs		Fluid coefficient for porosity-compressibility, transference of c to S_{s} : S_{s} =FCs·n·c : FCs=0w·q	[M/T ² L ²]	Pa/m
Index on K,	T and S		1	1
S		S: semi-log		
L		L: log-log		
f		Pump phase or injection phase, designation following S or L (withdrawal)		
s		Recovery phase, designation following S or L (recovery)		
NLR		NLR: Non-linear regression. Performed on the entire test sequence, perturbation and recovery		
м		Move		
GRF		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture		
Т		Judged best evaluation based on transient evaluation.		

Character	SICADA	Explanation	Dimension	Unit
	designation			
Tot		Judged most representative parameter for particular test		
		section and (in certain cases) evaluation time with		
		respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
е		Effective property (constant) within a domain in a		
		numerical groundwater flow model.		
Index on p	and Q		T	
0		Initial condition, undisturbed condition in open holes		
i		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing		
		phase)		
S		Recovery, shut-in phase		
р		Pressure or flow in measuring section at end of		
		perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for		
		"where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for		
		"where" and "what" are used. Measured value		
Some misc	ellaneous index	xes on p and h	1	1
w		Test section (final difference pressure during flow phase		
		in test section can be expressed dp _{wp} ; First index shows		
		"where" and second index shows "what")		
0		Observation section (final difference pressure during flow		
		phase in observation section can be expressed dp _{op} ;		
		First index shows "where" and second index shows		
,		["what")		
T		Fresh-water nead. Water is normally pumped up from		
		section to measuring noses where pressure and level are		
		observed. Density of the water is therefore approximately		
		the same as that of the measuring section. Measured		
		groundwater level is therefore hornally represented by		
		manual is defined as point-water nead. If pressure at the		
		measuring level is recalculated to a level for a column of		
		point it is referred to as fresh-water head and h is		
		indicated last by an f. Observation section (final lovel		
		during flow phase in observation section can be		
		expressed h the first index shows "where" and the		
		second index shows "what" and the last one		
		"recalculation")		
1		"recalculation")		

Borehole: KLX17A

APPENDIX 5

SICADA data tables
Borehole: KLX17A

APPENDIX 5-1

SICADA data tables (Injection tests)

SKB		SIC	ADA/	'Data	Impo	rt Temp	late		(Sim)	Dified version v1.4)					
									SND &	Elyouala AD 2004					
File Identity			1				Compiled By	,							
Created By						Quality Chec	k For Deliver	/							
Created						Deli	very Approva								
			2												
Activity Type		KLX 17A				Project	t	AP PS 4	00-07-009						
		KLX 17A - Injection	lest												
Activity Informa	KLX 17A Project AP PS 400-07-009 KLX 17A - Injection test Additional Activity Data civity Information Additional Activity Data														
	Activity Type KLX 17A Project AF KLX 17A - Injection test Additional Activity Data Image: Constraint of the project of th														
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	manager	Field crew	data	Report					
KLX 17A	2007-05-07 08:00	2007-06-04 08:30	69.00	701.08		Golder Associates	Philipp Wolf, Reinder van der Wall	Philipp Wolf, Linda Höckert, Reinder van der Wall, Erik Löfgren	Philipp Wolf, Reinder van der Wall, Jörg Böhner	Reinder van der Wall					

Table

plu_s_hole_test_d

PLU Injection and pumping, General information

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_hp	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_pp	FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	oC	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity, see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC, see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application

idoodo	atart data	aton data		o o o low	section_	toot turno	formation_	start flow pariod	aton flow pariod	flow_rate_end_q	value_type_q	mean_flow_r		a magal	ot volume un
	Start_uate	Stop_uate	secup	seciow	no	test_type		start_now_period		P 4.025.04	p				
KLX 17A	2007-05-09 13:47:00		69.00	169.00	4			2007-05-09 14:55:16	2007-05-09 15:25:16	1.83E-04	0	1.07E-04	1.07E-08	8.33E-04	3.00E-01
KLX 17A	2007-05-09 17:46:00	2007-05-09 19:36:00	169.00	269.00			3 I	2007-05-09 18:34:34	2007-05-09 19:04:34	5.47E-05	0	5.76E-05	1.07E-08	8.33E-04	1.04E-01
KLA 17A	2007-05-10 09.35.00	2007-05-10 11.25.00	209.00	460.00	/		2 1	2007-05-10 10.23.20	2007-05-10 10.55.20	9.97E-00		1.14E-03	1.07E-00	0.33E-04	2.05E-02
	2007-05-10 13.23.00	2007-05-10 15.12.00	460.00	409.00 560.00				2007-05-10 14.10.59	2007-05-10 14.40.59	3.09E-04		4.04E-04	1.07E-00	0.33E-04	7.20E-01
KLA 17A	2007-05-10 10.42.00	2007-05-10 22.56.00	409.00	660.00	/		2 1	2007-05-10 16.20.05	2007-05-10 16.50.05	3.03E-00		1 52E 07	1.07E-00	0.33E-04	9.00E-03
	2007-05-11 14.10.00	2007-05-11 10.24.00	60.00	009.00				2007-05-11 15.22.02	2007-05-11 15:52:02	2.005.06	0		1.07E-00	0.33E-04	2.73E-04
KLA 17A	2007-05-13 11.15.00	2007-05-13 12.47.00	97.00	107.00	1		2 1	2007-05-13 12.05.49	2007-05-13 12.25.49	3.00E-06		3.33E-00	1.07E-00	0.33E-04	4.00E-03
	2007-05-13 14.08.00	2007-05-13 15.31.00	107.00		(2 1	2007-05-13 14.49.10	2007-05-13 13:09:18	2.02E.04	0	2.00E.04	1.07E-00	0.33E-04	2 50E 01
	2007-05-13 10:09:00	2007-05-13 17.35.00	107.00	147.00			ו ס 1	2007-05-13 10:55:59	2007-05-13 17:13:39				1.07E-00	0.33E-04	2.50E-01
KLA 17A	2007-05-13 16.10.00	2007-05-13 21.44.00	147.00	167.00	/			2007-05-13 19.22.34	2007-05-13 19.42.34	9.50E-00	0	7.52E.07	1.07E-00	0.33E-04	0.02E.04
KLA 17A	2007-05-14 06.51.00	2007-05-14 10.10.00	147.00	160.00				2007-05-14 09.34.10	2007-05-14 09.54.10	7.17E-07			1.07E-00	0.33E-04	9.02E-04
KLA 17A	2007-05-14 10.40.00	2007-05-14 12.00.00	149.00	109.00				2007-05-14 11.24.16	2007-05-14 11.44.16	0.50E-07	0		1.07E-00	0.33E-04	0.12E-04
KLA ITA	2007-05-14 13.27.00	2007-05-14 14.50.00	109.00		·			2007-05-14 14.14.50	2007-05-14 14.34.30	7.15E-00	0	0.472-00	1.07E-00	0.33E-04	1.02E-02
KLA 17A	2007-05-14 15.33.00	2007-05-14 10.57.00	200.00	209.00				2007-05-14 10.15.10	2007-05-14 10:35.10	4.00E-05		4.70E-03	1.07E-00	0.33E-04	2.04E-02
NLA 17A	2007-05-14 17.32.00	2007-05-14 19.44.00	209.00	229.00	·			2007-05-14 10.22.40	2007-05-14 16.42.40	2.07 E-07	0	2.95E-07	1.07E-00	0.33E-04	3.34E-04
KLA ITA	2007-05-15 06.47.00	2007-05-15 10.21.00	229.00	249.00				2007-05-15 19.39.41	2007-05-15 19.59.41	2.17E-07		3.17E-07	1.07E-00	0.33E-04	3.00E-04
NLX 17A	2007-05-15 10:58:00	2007-05-15 13:29:00	249.00	269.00	/		3 I	2007-05-15 12:47:00	2007-05-15 13:07:00	0.33E-08	0	9.87E-08	1.07E-08	8.33E-04	1.18E-04
KLA ITA	2007-05-15 14.02.00	2007-05-15 10.21.00	209.00	209.00				2007-05-15 15.39.33	2007-05-15 15:59:33	1.03E-00		2.07E-00	1.07E-00	0.33E-04	3.20E-03
KLX 17A	2007-05-15 16:55:00	2007-05-15 20:24:00	289.00	309.00			3 I 2 1	2007-05-15 18:02:33	2007-05-15 18:22:33	1.50E-07	0	2.00E-07	1.07E-08	8.33E-04	2.40E-04
NLA 17A	2007-05-16 00.40.00	2007-05-10 10.12.00	309.00	240.00				2007-05-16 09.30.55	2007-05-16 09:50:55	9.07 E-00	0		1.07E-00	0.33E-04	1.20E-02
KLA ITA	2007-05-16 10.45.00		329.00	349.00				2007-00-10 11.32.03	2007-05-16 11.52.03	1.37 E-07	0	1.45E-07	1.07E-00	0.33E-04	1.74E-04
KLX 17A	2007-05-16 13:20:00		349.00	369.00				#INV	#INV		-1		1.07E-08	8.33E-04	
KLA ITA	2007-05-10 14.43.00		309.00	400.00				2007-05-10 15.24.10	2007-05-16 15.44.18	0.17E-07	0	0.32E-07	1.07E-00	0.33E-04	9.90E-04
KLX 17A	2007-05-16 16:39:00		389.00	409.00			3 1	2007-05-16 17:27:32	2007-05-16 17:47:32	1.13E-07	0	1.1/E-0/	1.07E-08	8.33E-04	1.40E-04
KLX 17A	2007-05-17 08:43:00	2007-05-17 10:09:00	409.00	429.00	/		3 I 2 1	2007-05-17 09:27:05	2007-05-17 09:47:05	3.21E-04	0	3.30E-04	1.07E-08	8.33E-04	3.90E-01
	2007-05-17 10.43.00	2007-05-17 12.11.00	420.00	440.00				2007-05-17 11.29.50	2007-05-17 11.49.50	1.09E-04			1.07E-00	0.33E-04	2.30E-01
NLA 17A	2007-05-17 13.34.00	2007-05-17 15.21.00	440.00	400.00	·			2007-05-17 14.39.34	2007-05-17 14:59:34	7.00E-00	0		1.07E-00	0.33E-04	1.04E-04
KLA 17A	2007-05-17 15.47.00	2007-05-17 17.32.00	449.00	409.00				2007-05-17 10.50.27	2007-05-17 17.10.27	0.07E-00		0.1/E-0/	1.07E-00	0.33E-04	9.00E-04
KLX 17A	2007-05-20 17:54:00	2007-05-20 20:53:00	469.00	489.00			3 I 2 1	2007-05-20 18:31:42 #NIV	2007-05-20 18:51:42	5.17E-08	1	7.50E-08	1.07E-08	8.33E-04	9.00E-05
NLA 17A	2007-05-10 11.04.00	2007-05-10 12.01.00	509.00	529.00				#INV	#INV	#INV	-1	#INV	1.07E-00	0.33E-04	#IN V
	2007-05-18 15.13.00	2007-05-18 10.08.00	560.00	509.00			ו ס 1	#INV #NIV/	#INV	#INV	-1	#NV	1.07E-00	0.33E-04	#INV
KLA 17A	2007-05-16 10.44.00	2007-05-10 17.35.00	509.00	600.00	<u></u>			#INV	#INV	#INV	- 1	#INV	1.07E-00	0.33E-04	#IN V
	2007-05-19 08.59.00	2007-05-19 09.57.00	600.00	620.00				#INV	#INV	#INV	-1	#NV	1.07E-00	0.33E-04	#INV
KLA 17A	2007-05-19 10.33.00	2007-05-19 11.30.00	620.00	640.00				#INV	#INV	#INV #NIV/	- 1	#INV	1.07E-00	0.33E-04	#IN V
KLA 17A	2007-05-19 12.19.00	2007-05-19 14.12.00	640.00	660.00	/		2 1	#INV	#INV	1 50E 07	-1		1.07E-00	0.33E-04	2 14E 04
	2007-05-19 15.51.00	2007-05-19 10.47.00	660.00	680.00				2007-05-19 10.25.47	2007-05-19 10:45:47	1.50E-07			1.07E-00	0.33E-04	2.14E-04
KLA 17A	2007-05-20 06.55.00	2007-05-20 10.21.00	674.00	604.00	/		2 1	2007-05-20 09.39.55	2007-05-20 09.59.55	3.00E-07		3.30E-07	1.07E-00	0.33E-04	5.90E-04
KLA 17A	2007-05-20 11.04.00	2007-05-20 12.51.00	220.00	244.00				2007-05-20 11.49.40	2007-05-20 12.09.40	4.17E-07		4.70E-07	1.07E-00	0.33E-04	2.04E-04
KLA 17A	2007-05-22 13.43.00	2007-05-22 15.25.00	339.00	240.00				2007-00-22 14.43.10 #NIV	2007-05-22 15.03.16	2.50E-00	1	2.55E-00	1.07E-00	0.33E-04	3.04E-03
NLA 17A	2007-05-22 15.54.00	2007-05-22 10.44.00	344.00	274.00				#INV	#INV		- 1		1.07E-00	0.33E-04	
KLA ITA	2007-05-23 09.07.00	2007-05-23 10.33.00	309.00	374.00				2007-00-20 09.01.17	2007-05-23 10.11.17	1.21 E-01	0	1.31	1.07E-00	0.33E-04	0.04E-04
KLA 17A	2007-05-23 10.56.00	2007-05-23 11.47.00	374.00	280.00	<u></u>			#INV	#INV		-1		1.07E-00	0.33E-04	
KLA 17A	2007-05-23 15.49.00	2007-05-23 17.24.00	304.00	202.00				2007-05-23 10.42.33	2007-05-23 17.02.33	5.03E-00			1.07E-00	0.33E-04	7.74E-03
NLA 1/A	2007-05-23 17:48:00	2007-05-23 23:02:00	387.00	392.00			ا م	2007-05-23 18:40:42	2007-05-23 19:00:42	5.0/E-U8		0.05E-08	1.0/E-08	8.33⊑-04	1.20E-05
	2007-05-24 10:35:00	1 2007-05-24 11:24:00	392.00	402.00	(#INV	#INV		-1		1.0/E-08	0.33E-04	
	2007-05-24 13:08:00	2007-05-24 14.37:00	397.00	402.00			ا رد بر اد	2007-00-24 10.0012 #NIV	2007-00-24 14.10.12	9.∠1 ⊑-U0 #NN/		9.21 E-08	1.07 - 00	0.330-04	I.II⊑-U4 #ki\/
	2007-05-24 15:07:00	2007-05-24 15:50:00	402.00	407.00	<u></u>		ן ג ונ	#INV #NIV	#NV	#INV	-1	#INV	1.0/E-08	0.33E-04	#INV
	2007-05-24 10:22:00	2007-05-24 17.11.00	404.00	409.00	(#INV	#INV		- 1	#NV	1.0/ E-U8	0.335-04	
	2007-05-24 17:35:00	2007-05-24 19.01.00	409.00	414.00	1		ا ۱	2007-05-24 10.19.01	2007-05-24 10.39.01	5.00E-07		3.0/E-0/	1.07	0.330-04	0.0UE-04
NLA I/A	18:00 -05-25 08:18	1 2007-00-20 10:11:00	414.00	419.00	1		ר וי	2007-00-20 09:29:01	2007-05-25 09:49:01	0.00E-07	1 0	4.95E-07	1.0/E-U8	0.33E-04	5.94E-04

			dur flow p	dur rec ph	initial head	ow end h	final head	initial press	press at flow e	final press p	fluid temp t	fluid elcond e	fluid salinity t	fluid salinity t			
idcode	secup	seclow	hase_tp	ase_tf	hi	p	hf	pi	nd_pp	f	ew	cw	dsw	dswm	reference	comments	lp
KLX 17A	69.00	169.00	1800	1800			15.85	1431	1630	1429	9.1					1	119.00
KLX 17A	169.00	269.00	1800	1800			15.95	2282	2496	2283	10.4	ł				1	219.00
KLX 17A	269.00	369.00	1800	1800			15.61	3125	3349	3144	11.7	7					319.00
KLX 17A	369.00	469.00	1800	1800			16.98	3965	4175	3974	13.3	3				1	419.00
KLX 17A	469.00	569.00	1800	14400		1	16.13	4838	5053	4811	14.6	6					519.00
KLX 17A	569.00	669.00	1800	1800			17.31	5628	5840	5636	15.6	6					619.00
KLX 17A	69.00	89.00	1200	1200			15.16	744	944	750	8.0)					79.00
KLX 17A	87.00	107.00	1200	1200			15.85	896	1096	896	8.3	3					97.00
KLX 17A	107.00	127.00	1200	1200			15.76	1068	1269	1070	8.5	5					117.00
KLX 17A	127.00	147.00	1200	7200			15.62	1245	1475	1244	8.7	7					137.00
KLX 17A	147.00	167.00	1200	1200			15.71	1409	1610	1411	9.0)					157.00
KLX 17A	149.00	169.00	1200	1200			15.75	1428	1628	1428	9.0)					159.00
KLX 17A	169.00	189.00	1200	1200			14.59	1601	1842	1632	9.3	3					179.00
KLX 17A	189.00	209.00	1200	1200			16.28	1771	1971	1771	9.6	3				ļ	199.00
KLX 17A	209.00	229.00	1200	3600			15.93	1944	2145	1942	9.9)				ļ	219.00
KLX 17A	229.00	249.00	1200	1200			15.61	2113	2313	2152	10.1						239.00
KLX 17A	249.00	269.00	1200	1200			16.55	2285	2522	2370	10.4	•					259.00
KLX 1/A	269.00	289.00	1200	1200			16.13	2469	2676	2482	10.7						279.00
KLX 1/A	289.00	309.00	1200	7200			16.36	2627	2849	2628	11.0)					299.00
KLX 17A	309.00	329.00	1200	1200			15.94	2784	2993	2807	11.2				+	+	319.00
	329.00	349.00	1200	2400			10.02	2930	3157	2930	11.5	2			-		359.00
	349.00	200.00	#INV	#INV 1200			#INV	#INV 2201	#INV 2401	#INV 2201	11.0						359.00
	309.00	400.00	1200	2600			16.09	3291	3491	3291	12.	2					379.00
	409.00	409.00	1200	1200			16.00	3624	382/	3620	12.						110.00
	403.00	448.00	1200	1200			16.10	3790	3024	3703	12.2	-					438.00
	448.00	468.00	1200	1200			15.15	3962	4108	3986	13.0	2				1	458.00
KLX 17A	449.00	469.00	1200	1200			15.13	3976	4100	4000	13.3	3					459.00
KLX 17A	469.00	489.00	1200	7200			15.86	4140	4383	4148	13.6	3				1	479.00
KLX 17A	509.00	529.00	#NV	/ 200 #NV			#NV	#NV	#N\	/ #NV	14.1						519.00
KLX 17A	549.00	569.00	#NV	#NV			#NV	#NV	#NV	/ #NV	14.6	3				1	559.00
KLX 17A	569.00	589.00	#NV	#NV		1	#NV	#NV	#N\	#NV	14.9)				1	579.00
KLX 17A	589.00	609.00	#NV	#NV			#NV	#NV	#NV	#NV	15.2	2				1	599.00
KLX 17A	609.00	629.00	#NV	#NV			#NV	#NV	#N\	/ #NV	15.4	ł				1	619.00
KLX 17A	629.00	649.00	#NV	#NV			#NV	#NV	#NV	#NV	15.6	6					639.00
KLX 17A	649.00	669.00	1200	7200			17.46	5624	5886	5622	15.9)				1	659.00
KLX 17A	669.00	689.00	1200	1200			17.99	5787	5987	5800	16.1						679.00
KLX 17A	674.00	694.00	1200	2400			18.60	5833	6034	5842	16.2	2					684.00
KLX 17A	339.00	344.00	1200	1200			15.48	2923	3176	2925	11.4	ł					341.50
KLX 17A	344.00	349.00	#NV	#NV			#NV	#NV	#N\	′ #NV	11.5	5					346.50
KLX 17A	369.00	374.00	1200	1200			15.89	3163	3364	3164	11.9	9					371.50
KLX 17A	374.00	379.00	#NV	#NV			#NV	#NV	#NV	#NV	12.0)					376.50
KLX 17A	384.00	389.00	1200	1200			15.73	3300	3496	3301	12.1						386.50
KLX 17A	387.00	392.00	1200	14400			15.92	3323	3524	3317	12.2	2					389.50
KLX 17A	392.00	397.00	#NV	#NV			#NV	#NV	#NV	#NV	12.2	2	L			1	394.50
KLX 17A	397.00	402.00	1200	1200			17.28	3415	3622	3413	12.3	3				1	399.50
KLX 17A	402.00	407.00	#NV	#NV			#NV	#NV	#N\	#NV	12.4	l	ļ				404.50
KLX 17A	404.00	409.00	#NV	#NV		ļ	#NV	#NV	#N\	#NV	12.4	k					406.50
KLX 17A	409.00	414.00	1200	1200			16.57	3507	3705	3506	12.5	5					411.50
KLX 17A	414.00	419.00	1200	1200			16.21	3544	3744	3544	12.5	5				1	416.50

					section		formation			flow_rate_end_q	value_type_q	mean_flow_r			
idcode	start_date	stop_date	secup	seclow	no	test_type	type	start_flow_period	stop_flow_period	р	рр	ate_qm	q_measll	q_measlu	tot_volume_vp
KLX 17A	2007-05-25 10:36:00	2007-05-25 12:07:00	419.00	424.00)	3	3 1	2007-05-25 11:25:01	2007-05-25 11:45:01	1.96E-04	0	2.00E-04	1.67E-08	8.33E-04	2.40E-01
KLX 17A	2007-05-25 12:56:00	2007-05-25 14:20:00	420.00	425.00)	3	3 1	2007-05-25 13:38:36	2007-05-25 13:58:36	1.94E-04	0	2.00E-04	1.67E-08	8.33E-04	2.40E-01
KLX 17A	2007-05-25 14:50:00	2007-05-25 16:17:00	425.00	430.00)	3	3 1	2007-05-25 15:35:15	2007-05-25 15:55:15	1.20E-04	0	1.22E-04	1.67E-08	8.33E-04	1.47E-01
KLX 17A	2007-05-25 16:44:00	2007-05-25 18:08:00	430.00	435.00)	3	3 1	2007-05-25 17:26:29	2007-05-25 17:46:29	9.73E-05	0	9.88E-05	1.67E-08	8.33E-04	1.19E-01
KLX 17A	2007-05-26 09:56:00	2007-05-26 10:47:00	440.00	445.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	, #NV
KLX 17A	2007-05-26 11:16:00	2007-05-26 12:24:00	444.00	449.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	, #NV
KLX 17A	2007-05-26 16:14:00	2007-05-26 17:07:00	454.00	459.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 17A	2007-05-27 10:58:00	2007-05-27 12:40:00	464.00	469.00)	3	3 1	2007-05-27 11:58:46	2007-05-27 12:18:46	5.67E-08	0	6.63E-08	1.67E-08	8.33E-04	7.96E-05
KLX 17A	2007-05-27 14:03:00	2007-05-27 16:41:00	469.00	474.00)	3	3 1	2007-05-27 15:19:09	2007-05-27 15:39:09	4.08E-08	0	5.25E-08	1.67E-08	8.33E-04	6.30E-05
KLX 17A	2007-05-27 17:09:00	2007-05-27 17:57:00	474.00	479.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	, #NV
KLX 17A	2007-05-28 08:04:00	2007-05-28 08:53:00	479.00	484.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	, #NV
KLX 17A	2007-05-28 09:21:00	2007-05-28 10:11:00	484.00	489.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 17A	2007-05-28 13:43:00	2007-05-28 14:32:00	649.00	654.00)	3	8 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 17A	2007-05-28 15:01:00	2007-05-28 15:50:00	654.00	659.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	, #NV
KLX 17A	2007-05-28 16:16:00	2007-05-28 17:05:00	659.00	664.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 17A	2007-05-28 17:28:00	2007-05-28 20:41:00	664.00	669.00)	3	3 1	2007-05-27 18:19:03	2007-05-27 18:39:03	1.45E-07	0	1.73E-07	1.67E-08	8.33E-04	2.08E-04
KLX 17A	2007-05-29 08:10:00	2007-05-29 09:01:00	669.00	674.00)	3	3 1	#NV	#NV	#NV	-1	#NV	1.67E-08	8.33E-04	#NV
KLX 17A	2007-05-29 09:34:00	2007-05-29 11:48:00	674.00	679.00)	3	3 1	2007-05-29 10:26:27	2007-05-29 10:46:27	7.17E-08	0	7.58E-08	1.67E-08	8.33E-04	9.10E-05
KLX 17A	2007-05-29 13:00:00	2007-05-29 14:30:00	679.00	684.00)	3	3 1	2007-05-29 13:48:24	2007-05-29 14:08:24	8.67E-08	0	9.65E-08	1.67E-08	8.33E-04	1.16E-04
KLX 17A	2007-05-29 15:01:00	2007-05-29 17:29:00	684.00	689.00)	3	3 1	2007-05-29 16:07:46	2007-05-29 16:27:46	3.28E-08	0	3.70E-08	1.67E-08	8.33E-04	4.44E-05
KLX 17A	2007-05-29 17:58:00	2007-05-29 19:22:00	689.00	694.00)	3	3 1	2007-05-29 18:40:52	2007-05-29 19:00:52	1.18E-07	0	1.33E-07	1.67E-08	8.33E-04	1.59E-04
KLX 17A	2007-06-01 16:46:00	2007-06-01 19:13:00	689.00	701.08	3	3	3 1	2007-06-01 17:51:58	2007-06-01 18:11:58	2.53E-07	0	2.88E-07	1.67E-08	8.33E-04	3.46E-04

			dur_flow_p	dur_rec_ph	initial_head_	ow_end_h	final_head_	initial_press_	press_at_flow_e	final_press_p	fluid_temp_t	fluid_elcond_e	fluid_salinity_t	fluid_salinity_t			
idcode	secup	seclow	hase_tp	ase_tf	hi	р	hf	pi	nd_pp	f	ew	cw	dsw	dswm	reference	comments	lp
KLX 17A	419.00	424.00	1200	1200			16.69	3590	3791	3592	12.3						421.50
KLX 17A	420.00	425.00	1200	1200			16.94	3600	3802	3604	12.3						422.50
KLX 17A	425.00	430.00	1200	1200			17.03	3644	3844	3644	12.4						427.50
KLX 17A	430.00	435.00	1200	1200			16.93	3686	3886	3687	12.8						432.50
KLX 17A	440.00	445.00	#NV	#NV			#NV	#NV	#NV	/ #NV	13.0						442.50
KLX 17A	444.00	449.00	#NV	#NV			#NV	#NV	#NV	/ #NV	13.1						446.50
KLX 17A	454.00	459.00	#NV	#NV			#NV	#NV	#NV	#NV	13.2						456.50
KLX 17A	464.00	469.00	1200	3600			16.72	3969	4169	3970	13.4						466.50
KLX 17A	469.00	474.00	1200	3600			16.39	4019	4216	4034	13.4						471.50
KLX 17A	474.00	479.00	#NV	#NV			#NV	#NV	#NV	#NV	13.5						476.50
KLX 17A	479.00	484.00	#NV	#NV			#NV	#NV	#NV	/ #NV	13.6						481.50
KLX 17A	484.00	489.00	#NV	#NV			#NV	#NV	#NV	#NV	13.6						486.50
KLX 17A	649.00	654.00	#NV	#NV		ļ	#NV	#NV	#NV	#NV	15.7						651.50
KLX 17A	654.00	659.00	#NV	#NV			#NV	#NV	#NV	#NV	15.8						656.50
KLX 17A	659.00	664.00	#NV	#NV			#NV	#NV	#NV	#NV	15.8						661.50
KLX 17A	664.00	669.00	1200	7200			17.96	5627	5834	5625	15.9						666.50
KLX 17A	669.00	674.00	#NV	#NV		-	#NV	#NV	#NV	#NV	16.0						671.50
KLX 17A	674.00	679.00	1200	3600			18.05	5709	5902	5709	16.0						676.50
KLX 17A	679.00	684.00	1200	1200			16.55	5730	5921	5736	16.1						681.50
KLX 17A	684.00	689.00	1200	3600		Į	18.00	5791	5989	5786	16.1						686.50
KLX 17A	689.00	694.00	1200	1200			17.75	5828	6021	5829	16.2						691.50
KLX 17A	689.00	701.08	1200	3600			17.93	5829	6031	5831	16.2						695.04

Table		plu_s_hole_test_	_ed1
	PLU Sin	gle hole tests, pumping/injecti	on. Basic evaluation
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date			Date (yymmad hn:mm:ss)
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description!
formation_type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
lp 	FLOAT	m	Hydraulic point of application for test section, see descr.
secien_class	FLOAT	m ***2/2	Planned ordinary test interval during test campaign.
spec_capacity_q_s	CHAR	m2/s	Specific capacity (Q/s) of test section, see table descript.
transmissivity to	FLOAT	m**2/s	Tranmissivity based on O/s, see table description
value type to	CHAR	11 23	0:true value1:TO <lower meas.limit.1:tq="">upper meas.limit.</lower>
bc tq	CHAR		Best choice code. 1 means TQ is best choice of T, else 0
transmissivity moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
bc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m/s	K_M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
width_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
tb	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
I_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
u_measi_to	FLOAT	m=-3/s	Estimated upper meas. limit or evaluated TB,see description
assumed sh	FLOAT	m	SB.S-storativity, b-width of formation see
leakage factor If	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity tt	FLOAT	m**2/s	TT:Transmissivity of formation. 2D radial flow model.see
value type tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
I_measl_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated TT,see table descr
u_measl_q_s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity_s	FLOAT		S:Storativity of formation based on 2D rad flow,see descr.
assumed_s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
bc_s	FLOAT		Best choice of S (Storativity) ,see descr.
ri 	FLOAT	m	Radius of influence
ri_index	CHAR	4/2	ri index=index of radius of influence :-1,0 or 1, see descr.
leakage_coell	FLOAT	1/S	K /b .2D fad now model evaluation of leakage coeff,see desc
value type ksf	CHAR	11//5	0.true value -1.Ksflower meas limit 1.Ksf>unner meas limit
I measl ksf	FLOAT	m/s	Estimated lower meas limit for evaluated Ksf see table desc.
u measl ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf, see table descr
spec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
с	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
cd	FLOAT		CD: Dimensionless wellbore storage coefficient
skin	FLOAT		Skin factor;best estimate of flow/recovery period,see descr.
dt1	FLOAT	S	Estimated start time of evaluation, see table description
dt2	FLOAT	S	Estimated stop time of evaluation. see table description
t1	FLOAT	s	Start time for evaluated parameter from start flow period
lZ dte1	FLOAT	s	Stop time for evaluated parameter from start of recovery
dte2	FLOAT	s	Start time for evaluated parameter from start of recovery
p horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
transmissivity t nlr	FLOAT	m**2/s	T NLR Transmissivity based on None Linear Regression
storativity_s_nlr	FLOAT		S_NLR=storativity based on None Linear Regression, see
value_type_t_nlr	CHAR		0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_nlr	CHAR		Best choice code. 1 means T_NLR is best choice of T, else 0
c_nlr	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr.
cd_nlr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
skin_nlr	FLOAT		Skin factor based on Non Linear Regression, see desc.
transmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Genelized Radial Flow,see
value_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
pc_t_grt storativity a c=f			Best choice code. 1 means I_GRF is best choice of I, else 0
flow dim orf	FLOAT		S_ORT.SUDIALIVILY DASED ON GENERALIZED RADIal FIOW, SEE DES.
comment	VARCHAR	no unit	Short comment to the evaluated parameters
error flag	CHAR		If error flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)

							formation tv				value type q			tra	ansmissivity mov
idcode	start_date	stop_date	secup	seclow	section_no	test_type	pe	lp	seclen_class	spec_capacity_q_s	s	transmissivity_tq	value_type_tq_bc_	tq e	
KLX 17A	2007-05-09 13:47:00	2007-05-09 15:57:00	69.00	169.00)		3 1	119.0	0 100	9.00E-06	0				2.17E-05
KLX 17A	2007-05-09 17:46:00	2007-05-09 19:36:00	169.00	269.00)	:	3 1	219.0	0 100	2.51E-06	0				3.26E-06
KLX 17A	2007-05-10 09:35:00	2007-05-10 11:25:00	269.00	369.00)		3 1	319.0	0 100	4.36E-07	0				5.68E-07
KLX 17A	2007-05-10 13:23:00	2007-05-10 15:12:00	369.00	469.00)		3 1	419.0	0 100	1.82E-05	0				2.37E-05
KLX 17A	2007-05-10 16:42:00	2007-05-10 22:58:00	469.00	569.00)		3 1	519.0	0 100	1.75E-09	0				2.28E-09
KLX 17A	2007-05-11 14:16:00	2007-05-11 16:24:00	569.00	669.00)		3 1	619.0	0 100	6.79E-09	0				8.84E-09
KLX 17A	2007-05-13 11:15:00	2007-05-13 12:47:00	69.00	89.00)	:	3 1	79.0	20	1.47E-07	0				1.54E-07
KLX 17A	2007-05-13 14:08:00	2007-05-13 15:31:00	87.00	107.00)		3 1	97.0	20	5.15E-07	0				5.39E-07
KLX 17A	2007-05-13 16:09:00	2007-05-13 17:35:00	107.00	127.00)	:	3 1	117.0	0 20	9.87E-06	0				1.03E-05
KLX 17A	2007-05-13 18:16:00	2007-05-13 21:44:00	127.00	147.00)		3 1	137.0	0 20	4.05E-09	0				4.24E-09
KLX 17A	2007-05-14 08:51:00	2007-05-14 10:16:00	147.00	167.00)	:	3 1	157.0	0 20	3.50E-08	0				3.66E-08
KLX 17A	2007-05-14 10:40:00	2007-05-14 12:06:00	149.00	169.00)		3 1	159.0	0 20	3.19E-08	0				3.34E-08
KLX 17A	2007-05-14 13:27:00	2007-05-14 14:56:00	169.00	189.00)		3 1	179.0	0 20	2.91E-07	0				3.04E-07
KLX 17A	2007-05-14 15:33:00	2007-05-14 16:57:00	189.00	209.00)		3 1	199.0	0 20	2.26E-06	0				2.36E-06
KLX 17A	2007-05-14 17:32:00	2007-05-14 19:44:00	209.00	229.00)		3 1	219.0	0 20	1.30E-08	0				1.36E-08
KLX 17A	2007-05-15 08:47:00	2007-05-15 10:21:00	229.00	249.00)	:	3 1	239.0	0 20	1.06E-08	0				1.11E-08
KLX 17A	2007-05-15 10:58:00	2007-05-15 13:29:00	249.00	269.00)	:	3 1	259.0	0 20	2.62E-09	0				2.74E-09
KLX 17A	2007-05-15 14:02:00	2007-05-15 16:21:00	269.00	289.00)	:	3 1	279.0	0 20	8.69E-10	0				9.09E-10
KLX 17A	2007-05-15 16:55:00	2007-05-15 20:24:00	289.00	309.00)	:	3 1	299.0	0 20	6.63E-09	0				6.93E-09
KLX 17A	2007-05-16 08:46:00	2007-05-16 10:12:00	309.00	329.00)		3 1	319.0	0 20	4.54E-07	0				4.75E-07
KLX 17A	2007-05-16 10:45:00	2007-05-16 12:34:00	329.00	349.00)	:	3 1	339.0	0 20	6.67E-09	0				6.98E-09
KLX 17A	2007-05-16 13:20:00	2007-05-16 14:09:00	349.00	369.00)	:	3 1	359.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-16 14:43:00	2007-05-16 16:06:00	369.00	389.00)		3 1	379.0	0 20	4.01E-08	0				4.19E-08
KLX 17A	2007-05-16 16:39:00	2007-05-16 18:49:00	389.00	409.00)		3 1	399.0	0 20	5.56E-09	0				5.82E-09
KLX 17A	2007-05-17 08:43:00	2007-05-17 10:09:00	409.00	429.00)		3 1	419.0	0 20	1.58E-05	0				1.65E-05
KLX 17A	2007-05-17 10:43:00	2007-05-17 12:11:00	428.00	448.00)		3 1	438.0	0 20	9.28E-06	0				9.71E-06
KLX 17A	2007-05-17 13:34:00	2007-05-17 15:21:00	448.00	468.00)		3 1	458.0	0 20	2.91E-09	0				3.04E-09
KLX 17A	2007-05-17 15:47:00	2007-05-17 17:32:00	449.00	469.00)		3 1	459.0	0 20	2.89E-09	0				3.03E-09
KLX 17A	2007-05-20 17:54:00	2007-05-20 20:53:00	469.00	489.00)		3 1	479.0	0 20	2.09E-09	0				2.18E-09
KLX 17A	2007-05-18 11:04:00	2007-05-18 12:01:00	509.00	529.00)		3 1	519.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-18 15:13:00	2007-05-18 16:08:00	549.00	569.00)		3 1	559.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-18 16:44:00	2007-05-18 17:35:00	569.00	589.00)		3 1	579.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-19 08:59:00	2007-05-19 09:57:00	589.00	609.00)		3 1	599.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-19 10:33:00	2007-05-19 11:30:00	609.00	629.00)		3 1	619.0	20	#NV	-1				#NV
KLX 17A	2007-05-19 12:19:00	2007-05-19 14:12:00	629.00	649.00)		3 1	639.0	0 20	#NV	-1				#NV
KLX 17A	2007-05-19 15:31:00	2007-05-19 18:47:00	649.00	669.00)		3 1	659.0	0 20	5.62E-09	0				5.88E-09
KLX 17A	2007-05-20 08:53:00	2007-05-20 10:21:00	669.00	689.00)		3 1	679.0	0 20	1.47E-08	0				1.54E-08
KLX 17A	2007-05-20 11:04:00	2007-05-20 12:51:00	674.00	694.00)		3 1	684.0	20	2.03E-08	0				2.13E-08
KLX 17A	2007-05-22 13:43:00	2007-05-22 15:25:00	339.00	344.00)		3 1	341.5	0 5	9.69E-10	0				8.00E-10
KLX 17A	2007-05-22 15:54:00	2007-05-22 16:44:00	344.00	349.00)		3 1	346.5	0 5	#NV	-1				#NV
KLX 17A	2007-05-23 09:07:00	2007-05-23 10:33:00	369.00	374.00)		3 1	371.5	0 5	3.55E-08	0				2.93E-08
KLX 17A	2007-05-23 10:58:00	2007-05-23 11:47:00	374.00	379.00)		3 1	376.5	0 5	#NV	-1				#NV
KLX 17A	2007-05-23 15:49:00	2007-05-23 17:24:00	384.00	389.00)		3 1	386.5	0 5	2.92E-09	0				2.41E-09
KLX 17A	2007-05-23 17:48:00	2007-05-23 23:02:00	387.00	392.00)		3 1	389.5	0 5	2.77E-09	0				2.28E-09
KLX 17A	2007-05-24 10:35:00	2007-05-24 11:24:00	392.00	397.00)		3 1	394.5	0 5	#NV	-1				#NV
KLX 17A	2007-05-24 13:08:00	2007-05-24 14:37:00	397.00	402.00)		3 1	399.5	0 5	4.42E-09	0				3.65E-09
KLX 17A	2007-05-24 15:07:00	2007-05-24 15:56:00	402.00	407.00)		3 1	404.5	0 5	#NV	-1				#NV
KLX 17A	2007-05-24 16:22:00	2007-05-24 17:11:00	404.00	409.00)		3 1	406.5	0 5	#NV	-1				#NV
KLX 17A	2007-05-24 17:35:00	2007-05-24 19:01:00	409.00	414.00)		3 1	411.5	0 5	2.73E-08	0				2.25E-08
KLX 17A	2007-05-25 08:18:00	2007-05-25 10:11:00	414.00	419.00)		3 1	416.5	0 5	2.45E-08	0				2.02E-08

					hvdr cond	m formation wig	width of channel				1		leakage fact	value type			
idcode	secup	seclow	bc_tm	value_type_tm	oye	th_b	b	tb	l_measl_tb	u_measl_tb	sb	assumed_sb	or_lf transmissivity_tt	tt	bc_tt	l_measl_q_s	u_measl_q_s
KLX 17A	69.00	169.00) () (0 2.17E	07			-				1.40E-05	i C) 1	2.00E-06	4.00E-05
KLX 17A	169.00	269.00) () (0 3.26E	08							4.00E-06	6 C) 1	1.00E-06	8.00E-06
KLX 17A	269.00	369.00) () (0 5.68E	09							2.70E-07	' () 1	1.00E-07	5.00E-07
KLX 17A	369.00	469.00) () (0 2.37E	07							6.76E-05	5 C) 1	2.00E-05	1.00E-04
KLX 17A	469.00	569.00) () (0 2.28E	11							6.20E-10) () 1	2.00E-10	4.00E-09
KLX 17A	569.00	669.00) () (0 8.84E	11							6.70E-09) () 1	5.00E-10	1.00E-08
KLX 17A	69.00	89.00) () (0 7.70E	09							1.16E-07	' () 1	8.00E-08	3.00E-07
KLX 17A	87.00	107.00) () (0 2.70E	08							6.60E-07	′ () 1	3.00E-07	3.00E-06
KLX 17A	107.00	127.00) () (0 5.15E	07							2.03E-05	i C) 1	2.00E-06	4.00E-05
KLX 17A	127.00	147.00) () (0 2.12E	10							1.50E-09) () 1	1.00E-09	6.00E-09
KLX 17A	147.00	167.00) () (0 1.83E	09							4.49E-08	B () 1	2.00E-08	1.00E-07
KLX 17A	149.00	169.00) () (0 1.67E	09							4.45E-08	B () 1	2.00E-08	1.00E-07
KLX 17A	169.00	189.00) () (0 1.52E	08							4.60E-07	′ () 1	1.00E-07	8.00E-07
KLX 17A	189.00	209.00) () (0 1.18E	07							7.34E-06	6 C) 1	4.00E-06	2.00E-05
KLX 17A	209.00	229.00) () (0 6.80E	10							1.60E-08	B () 1	2.00E-09	4.00E-08
KLX 17A	229.00	249.00) () (0 5.55E	10							3.60E-09) () 1	2.00E-09	2.00E-08
KLX 17A	249.00	269.00) () (0 1.37E	10							2.99E-09) () 1	1.00E-09	6.00E-09
KLX 17A	269.00	289.00) () (0 4.55E	11							8.72E-10) () 1	1.00E-10	2.00E-09
KLX 17A	289.00	309.00) () (0 3.47E	10							2.80E-09) () 1	1.00E-09	4.00E-08
KLX 17A	309.00	329.00) () (0 2.38E	08							3.20E-07	' () 1	2.00E-07	3.00E-06
KLX 17A	329.00	349.00) () (0 3.49E	10							7.60E-09) () 1	4.00E-09	3.00E-08
KLX 17A	349.00	369.00) () -	1 #	٧V							1.00E-11	-1	1 1	1.00E-13	1.00E-11
KLX 17A	369.00	389.00) () (0 2.10E	09							9.54E-08	3 C) 1	3.00E-08	2.00E-07
KLX 17A	389.00	409.00) () (0 2.91E	10							5.41E-09) () 1	3.00E-09	2.00E-08
KLX 17A	409.00	429.00) () (0 8.25E	07							7.46E-05	5 C) 1	2.00E-05	1.00E-04
KLX 17A	428.00	448.00) () (0 4.86E	07							5.94E-05	5 C) 1	8.00E-06	8.00E-05
KLX 17A	448.00	468.00) () (0 1.52E	10							1.47E-09) () 1	8.00E-10	3.00E-09
KLX 17A	449.00	469.00) () (0 1.52E	10							1.63E-09) () 1	8.00E-10	3.00E-09
KLX 17A	469.00	489.00) () (0 1.09E	10							7.90E-10) () 1	4.00E-10	6.00E-09
KLX 17A	509.00	529.00) () -	1 #	٧V							1.00E-1 ²	-1	1 1	1.00E-13	1.00E-11
KLX 17A	549.00	569.00) () -	1 #	٧V							1.00E-11	-1	1 1	1.00E-13	1.00E-11
KLX 17A	569.00	589.00) () -	1 #	٧V							1.00E-11	-1	1 1	1.00E-13	1.00E-11
KLX 17A	589.00	609.00) ()	1 #	٧V							1.00E-1	-1	1 1	1.00E-13	1.00E-11
KLX 17A	609.00	629.00) () -	1 #	٧V							1.00E-1 ²	-1	1 1	1.00E-13	1.00E-11
KLX 17A	629.00	649.00) () -	1 #	٧V							1.00E-11	-1	1 1	1.00E-13	1.00E-11
KLX 17A	649.00	669.00) () (0 2.94E	10							1.00E-08	B () 1	2.00E-09	2.00E-08
KLX 17A	669.00	689.00) () (0 7.70E	10							1.69E-08	B () 1	8.00E-09	3.00E-08
KLX 17A	674.00	694.00) () (0 1.07E	09							2.54E-08	B () 1	1.00E-08	5.00E-08
KLX 17A	339.00	344.00) () (0 1.60E	10							7.74E-10) () 1	4.00E-10	3.00E-09
KLX 17A	344.00	349.00) () -	1 #	٧V							1.00E-11	-1	1 1	1.00E-13	1.00E-11
KLX 17A	369.00	374.00) () (0 5.86E	09							5.44E-08	3 C) 1	3.00E-08	4.00E-07
KLX 17A	374.00	379.00) () -	1 #	٧V							1.00E-1 ²	-1	1 1	1.00E-13	1.00E-11
KLX 17A	384.00	389.00) () (0 4.82E	10							3.40E-09) () 1	1.00E-09	6.00E-09
KLX 17A	387.00	392.00) () (0 4.56E	10							3.17E-09) () 1	1.00E-09	6.00E-09
KLX 17A	392.00	397.00) () -	1 #	٧V							1.00E-1	-1	1 1	1.00E-13	1.00E-11
KLX 17A	397.00	402.00) () (0 7.30E	10							5.61E-09) () 1	3.00E-09	4.00E-08
KLX 17A	402.00	407.00) () -	1 #	٧V							1.00E-1 ²	-1	1 1	1.00E-13	1.00E-11
KLX 17A	404.00	409.00) () -	1 #	٧V							1.00E-1	-1	1	1.00E-13	1.00E-11
KLX 17A	409.00	414.00) () (0 4.50E	09							4.78E-08	3 C) 1	2.00E-08	3.00E-07
KLX 17A	414 00	419.00) () (0 4.04E	09							3.50E-08	3 () 1	2 00E-08	2.00E-07

							leakage c			l measl ks u measl ks		assumed ss					
idcode	secup	seclow	storativity_s	assumed_s	bc_s ri	ri_index	oeff	hydr_cond_ksf	value_type_ksf	ff f	spec_storage_ssf	f c		cd	skin	dt1	dt2
KLX 17A	69.00	169.00	1.00E-06	1.00E-06	112.03	-1	1					1.13	E-09	1.2E-01	-4.50	167	655
KLX 17A	169.00	269.00	1.00E-06	1.00E-06	135.28	0)					4.03	E-09	4.4E-01	-0.39	83	1292
KLX 17A	269.00	369.00	1.00E-06	1.00E-06	69.09	C)					1.77	E-09	2.0E-01	-3.23	142	1573
KLX 17A	369.00	469.00	1.00E-06	1.00E-06	274.81	C)					4.79	E-09	5.3E-01	12.90	30	670
KLX 17A	469.00	569.00	1.00E-06	1.00E-06	42.83	0)					2.10	E-10	2.3E-02	-0.88	472	1386
KLX 17A	569.00	669.00	1.00E-06	1.00E-06	27.39	C)					2.61	E-11	2.9E-03	1.67	41	1292
KLX 17A	69.00	89.00	1.00E-03	1.00E-03	45.67	C)					1.75	E-10	1.9E-05	1.98	85	763
KLX 17A	87.00	107.00	1.00E-03	1.00E-03	70.53	C)					1.68	E-10	1.9E-05	4.35	59	1145
KLX 17A	107.00	127.00	1.00E-06	1.00E-06	64.51	-1	1					1.26	E-08	1.4E+00	4.44	4	181
KLX 17A	127.00	147.00	1.00E-06	1.00E-06	37.72	C)					6.97	E-11	7.7E-03	-1.01	1951	5580
KLX 17A	147.00	167.00	1.00E-06	1.00E-06	36.02	C)					6.42	E-11	7.1E-03	2.60	3	1076
KLX 17A	149.00	169.00	1.00E-06	1.00E-06	35.94	C)					5.94	E-11	6.5E-03	3.37	13	1026
KLX 17A	169.00	189.00	1.00E-06	1.00E-06	37.35	1	1					5.35	E-09	5.9E-01	-0.88	135	403
KLX 17A	189.00	209.00	1.00E-06	1.00E-06	128.80	C)					2.08	E-10	2.3E-02	12.10	37	1015
KLX 17A	209.00	229.00	1.00E-06	1.00E-06	24.65	-1	1					1.26	E-10	1.4E-02	-1.71	302	950
KLX 17A	229.00	249.00	1.00E-06	1.00E-06	3.40	1	1					1.11	E-11	1.2E-03	-1.66	7	38
KLX 17A	249.00	269.00	1.00E-06	1.00E-06	18.30	C)					2.99	E-10	3.3E-02	3.00	85	742
KLX 17A	269.00	289.00	1.00E-06	1.00E-06	2.39	1						6.16	E-11	6.8E-03	-0.65	11	38
KLX 17A	289.00	309.00	1.00E-06	1.00E-06	18.05	()					8.81	E-11	9.7E-03	1.00	214	1091
KLX 17A	309.00	329.00	1.00E-06	1.00E-06	58.67	()					8.08	E-10	8.9E-02	1.22	103	1073
KLX 17A	329.00	349.00	1.00E-06	1.00E-06	23.09		,					5.84	E-11	6.4E-03	2.70	9	976
KLX 17A	349.00	369.00	1.00E-06	1.00E-06	#NV	#NV	/					E 00	#NV	#NV	#NV	#NV	#NV
KLA ITA	309.00	369.00	1.00E-06	1.00E-06	43.49							0.00	E-11	0.5E-03	9.44	92	102
	389.00	409.00	1.00E-00	1.00E-00	21.22							0.33	= 00	2 EE 01	1.74	10	1000
	409.00	429.00	1.00E-00	1.00E-00	229.90							2.27	= 00	1 9E 01	19.10	10	000
	428.00	448.00	1.00E-00	1.00E-00	217.20		, ,					8.11	E-09	8 0E 03	0.00	75	000
	440.00	469.00	1.00E-00	1.00E-00	15.32							8.44	E-11	0.3E-03	-0.53	89	900
KLX 17A	469.00	489.00	1.00E-06	1.00E-06	13.11		2					1.06	E-10	1 2E-02	-0.33	331	1060
KI X 17A	509.00	529.00	1.00E-06	1.00E-06	#NV	#N\\	/					1.001	#NIV	#NV	=0.10 #NV	#NV	#NV
KLX 17A	549.00	569.00	1.00E-06	1.00E-00	#NV	#N\	/						#NV	#NV	#NV	#NV	#NV
KI X 17A	569.00	589.00	1.00E-06	1.00E-06	#NV	#N\	/						#NV	#NV	#NV	#NV	#NV
KI X 17A	589.00	609.00	1.00E-06	1.00E-06	#NV	#N\	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	609.00	629.00	1.00E-06	1.00E-06	#NV	#NV	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	629.00	649.00	1.00E-06	1.00E-06	#NV	#NV	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	649.00	669.00	1.00E-06	1.00E-06	60.61	C)					1.11	E-10	1.2E-02	4.51	1397	6300
KLX 17A	669.00	689.00	1.00E-06	1.00E-06	28.21	C)					5.20	E-11	5.7E-03	1.44	207	1098
KLX 17A	674.00	694.00	1.00E-06	1.00E-06	44.18	0)					5.10	E-11	5.6E-03	1.45	171	2092
KLX 17A	339.00	344.00	1.00E-06	1.00E-06	13.05	0)					2.16	E-11	2.4E-03	1.68	29	954
KLX 17A	344.00	349.00	1.00E-06	1.00E-06	#NV	#N∖	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	369.00	374.00	1.00E-06	1.00E-06	37.79	0)					1.45	E-11	1.6E-03	4.04	18	958
KLX 17A	374.00	379.00	1.00E-06	1.00E-06	#NV	#N∨	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	384.00	389.00	1.00E-06	1.00E-06	17.78	-1						3.41	E-11	3.8E-03	2.80	594	1062
KLX 17A	387.00	392.00	1.00E-06	1.00E-06	64.32	C)					3.23	E-11	3.6E-03	2.83	706	8712
KLX 17A	392.00	397.00	1.00E-06	1.00E-06	#NV	#NV	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	397.00	402.00	1.00E-06	1.00E-06	21.42	C)					1.42	E-11	1.6E-03	2.77	43	1069
KLX 17A	402.00	407.00	1.00E-06	1.00E-06	#NV	#NV	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	404.00	409.00	1.00E-06	1.00E-06	#NV	#NV	/						#NV	#NV	#NV	#NV	#NV
KLX 17A	409.00	414.00	1.00E-06	1.00E-06	36.59	C)					1.29	E-11	1.4E-03	5.93	58	1123
KLX 17A	414.00	419.00	1.00E-06	1.00E-06	33.85	0	D					1.33	E-11	1.5E-03	4.43	43	1001

							- 4 41 14	walkes Arms Arms								- 4 41 - 14	6	T
idcode	secun	seclow	t1 t2 dto1	dto2	n horner	transmissivity t nlr	storativity_s_	value_type_t_ni	bc t nir	c nir	cd nir	skin nlr	transmissivity t arf	value_type_t_g	be t arf	storativity_s_g	riow_aim_g	comment
	60.00	160.00		utez	1/25.9	transmissivity_t_m		·	00_(_IIII	c	cu_iiii	SKIII_III	transmissivity_t_gri		bc_t_gn			comment
KLX 17A	169.00	269.00			2278.8													-
KLX 17A	269.00	369.00			3119.6													
KLX 17A	369.00	469.00			3970.6													-
KL X 17A	469.00	569.00			4789 1													-
KL X 17A	569.00	669.00			5617.6													-
KLX 17A	69.00	89.00			734.3													
KLX 17A	87.00	107.00			895.3													
KLX 17A	107.00	127.00			1065.6													
KLX 17A	127.00	147.00			1235.4													
KLX 17A	147.00	167.00			1407.3													
KLX 17A	149.00	169.00			1424.8													
KLX 17A	169.00	189.00			1584.2													
KLX 17A	189.00	209.00			1771.4													
KLX 17A	209.00	229.00			1938.5													
KLX 17A	229.00	249.00			2105.7													
KLX 17A	249.00	269.00			2284.7													
KLX 17A	269.00	289.00			2450.0													
KLX 17A	289.00	309.00			2621.4													
KLX 17A	309.00	329.00			2786.2													
KLX 17A	329.00	349.00			2955.4													
KLX 17A	349.00	369.00			#NV													
KLX 17A	369.00	389.00			3290.3													
KLX 17A	389.00	409.00			3459.6													
KLX 17A	409.00	429.00			3627.6													
KLX 17A	428.00	448.00			3791.9													
KLX 17A	448.00	468.00			3944.3													
KLX 17A	449.00	469.00			3955.4													
KLX 17A	469.00	489.00			4126.4													
KLX 17A	509.00	529.00			#NV													_
KLX 17A	549.00	569.00			#NV													
KLX 17A	569.00	589.00			#NV													
KLX 17A	589.00	609.00			#NV													
KLX 17A	609.00	629.00			#NV													
KLX 17A	629.00	649.00			#NV													
KLX 17A	649.00	669.00			5619.1													
KLX 17A	669.00	689.00			5787.1													
KLX 17A	674.00	694.00			5833.7													
KLX 17A	339.00	344.00			2908.0													
KLX 17A	344.00	349.00			#NV													
KLX 17A	369.00	374.00			3164.3													
KLX 17A	374.00	379.00			#NV													
NLX 17A	384.00	389.00		-	3288.7						+	-						+
NLX 17A	387.00	392.00		-	3315.8						+	-						+
NLX 17A	392.00	397.00			#NV													
	397.00	402.00			3412.9					-	+	-						
	402.00	407.00			#NV					-	+	-						
	404.00	409.00			#INV 3506.6		-	1			+			+		+		+
KLX 17A	414 00	419.00			3544 0					-						-		+
	+14.00	+19.00		1	5544.9	1	1	1	1	1	1	1	1	1	1	1	1	1

							formation ty				value type a				transmissivity mov
idcode	start date	stop date	secup	seclow	section no	test type	pe	lp	seclen class	spec capacity q s	s transm	nissivitv ta	value type to	bc ta	e
	2007 05 25 10:26:00	2007 05 25 12:07:00	410.00	424.00			2 1	404 50		0.570.06	0				7.000.06
KLA ITA	2007-05-25 10.36.00	2007-05-25 12.07.00	419.00	424.00)		3 1	421.50		9.37E-00	0			<u> </u>	7.00E-00
KLX 17A	2007-05-25 12:56:00	2007-05-25 14:20:00	420.00	425.00)		3 1	422.50)	9.43E-06	0			<u> </u>	7.78E-06
KLX 17A	2007-05-25 14:50:00	2007-05-25 16:17:00	425.00	430.00)		3 1	427.50) 5	5.89E-06	0			L	4.87E-06
KLX 17A	2007-05-25 16:44:00	2007-05-25 18:08:00	430.00	435.00)		3 1	432.50) 5	5 4.77E-06	0				3.94E-06
KLX 17A	2007-05-26 09:56:00	2007-05-26 10:47:00	440.00	445.00)		3 1	442.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-26 11:16:00	2007-05-26 12:24:00	444.00	449.00)		3 1	446.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-26 16:14:00	2007-05-26 17:07:00	454.00	459.00)		3 1	456.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-27 10:58:00	2007-05-27 12:40:00	464.00	469.00)		3 1	466.50) 5	5 2.78E-09	0				2.29E-09
KLX 17A	2007-05-27 14:03:00	2007-05-27 16:41:00	469.00	474.00)		3 1	471.50) 5	5 2.03E-09	0				1.68E-09
KLX 17A	2007-05-27 17:09:00	2007-05-27 17:57:00	474.00	479.00)		3 1	476.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-28 08:04:00	2007-05-28 08:53:00	479.00	484.00)		3 1	481.50) 5	5 #NV	-1				#NV
KLX 17A	2007-05-28 09:21:00	2007-05-28 10:11:00	484.00	489.00)		3 1	486.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-28 13:43:00	2007-05-28 14:32:00	649.00	654.00)		3 1	651.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-28 15:01:00	2007-05-28 15:50:00	654.00	659.00)		3 1	656.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-28 16:16:00	2007-05-28 17:05:00	659.00	664.00)		3 1	661.50) 5	5 #NV	-1				#N\
KLX 17A	2007-05-28 17:28:00	2007-05-28 20:41:00	664.00	669.00)		3 1	666.50) 5	6.87E-09	0				5.67E-09
KLX 17A	2007-05-29 08:10:00	2007-05-29 09:01:00	669.00	674.00)		3 1	671.50) 5	5 #NV	-1				#NV
KLX 17A	2007-05-29 09:34:00	2007-05-29 11:48:00	674.00	679.00)		3 1	676.50) 5	5 3.64E-09	0				3.01E-09
KLX 17A	2007-05-29 13:00:00	2007-05-29 14:30:00	679.00	684.00)		3 1	681.50) 5	5 4.45E-09	0				3.67E-09
KLX 17A	2007-05-29 15:01:00	2007-05-29 17:29:00	684.00	689.00)		3 1	686.50) 5	5 1.63E-09	0				1.34E-09
KLX 17A	2007-05-29 17:58:00	2007-05-29 19:22:00	689.00	694.00)		3 1	691.50) 5	6.01E-09	0				4.96E-09
KLX 17A	2007-06-01 16:46:00	2007-06-01 19:13:00	689.00	701.08	3		3 1	695.04	12	2 1.23E-08	0				1.19E-08

					hydr_cond_m	formation_wid	width_of_channel_						leakage_fact		value_type_			
idcode	secup	seclow	bc_tm	value_type_tm	oye	th_b	b	tb	l_measl_tb	u_measl_tb	sb	assumed_st	or_lf	transmissivity_tt	tt	bc_tt	l_measl_q_s	u_measl_q_s
KLX 17A	419.00	424.00	(0 0	1.40E-06									3.21E-05	0	1	1.00E-05	6.00E-05
KLX 17A	420.00	425.00	(0 0	1.56E-06									3.48E-05	0	1	4.00E-06	6.00E-05
KLX 17A	425.00	430.00	(0 0	9.74E-07									1.90E-05	0	1	1.00E-05	4.00E-05
KLX 17A	430.00	435.00	(0 0	7.88E-07									1.68E-05	0	1	4.00E-06	4.00E-05
KLX 17A	440.00	445.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	444.00	449.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	454.00	459.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	464.00	469.00	(0 0	4.58E-10									1.54E-09	0	1	8.00E-10	8.00E-09
KLX 17A	469.00	474.00	(0 0	3.36E-10									5.95E-10	0	1	4.00E-10	8.00E-09
KLX 17A	474.00	479.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	479.00	484.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	484.00	489.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	649.00	654.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	654.00	659.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	659.00	664.00	() -1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	664.00	669.00	(0 0	1.13E-09									6.08E-09	0	1	1.00E-10	1.00E-08
KLX 17A	669.00	674.00	(-1	#NV									1.00E-11	-1	1	1.00E-13	1.00E-11
KLX 17A	674.00	679.00	(0 0	6.02E-10									7.88E-09	0	1	2.00E-09	2.00E-08
KLX 17A	679.00	684.00	(0 0	7.34E-10									1.71E-08	0	1	3.00E-09	3.00E-08
KLX 17A	684.00	689.00	(0 0	2.68E-10									9.91E-09	0	1	5.00E-09	2.00E-08
KLX 17A	689.00	694.00	(0 0	9.92E-10									5.92E-09	0	1	3.00E-09	3.00E-08
KLX 17A	689.00	701.08	(0 0	9.85E-10									1.50E-08	0	1	6.00E-09	3.00E-08

								leakage c			I measl ks	u measl ks		assumed ss					
idcode	secup	seclow	storativity_s	assumed_s	bc_s	ri	ri_index	oeff	hydr_cond_ksf	value_type_ks	f f	f	spec_storage_ssf	f	с	cd	skin	dt1	dt2
KLX 17A	419.0) 424.00	1.00E-06	6 1.00E-06	6	186.26	C								1.53E-09	1.7E-01	13.57	4	45 886
KLX 17A	420.0	425.00	1.00E-06	6 1.00E-06	6	190.06	C								1.91E-09	2.1E-01	13.45	:	34 929
KLX 17A	425.0	430.00	1.00E-06	6 1.00E-06	6	163.38	C								8.21E-10	9.0E-02	13.87	2	25 796
KLX 17A	430.0	435.00	1.00E-06	6 1.00E-06	6	158.43	C								8.14E-10	9.0E-02	13.90		76 954
KLX 17A	440.0	445.00	1.00E-06	6 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	444.0	449.00	1.00E-06	1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	454.0	459.00	1.00E-06	i 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	464.0	469.00	1.00E-06	6 1.00E-06	6	#NV	-1								4.73E-11	5.2E-03	-0.82	#N	IV #NV
KLX 17A	469.0	0 474.00	1.00E-06	6 1.00E-06	6	21.17	C								2.05E-11	2.3E-03	-0.40	16	52 3589
KLX 17A	474.0	479.00	1.00E-06	5 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	479.0	484.00	1.00E-06	5 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	484.0	489.00	1.00E-06	5 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	649.0	654.00	1.00E-06	6 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	654.0	659.00	1.00E-06	6 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	659.0	664.00	1.00E-06	6 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	664.0	669.00	1.00E-06	5 1.00E-06	6	53.52	C								1.43E-11	1.6E-03	-3.12	88	32 6300
KLX 17A	669.0	674.00	1.00E-06	6 1.00E-06	6	#NV	#NV								#NV	#NV	#NV	#N	IV #NV
KLX 17A	674.0	679.00	1.00E-06	6 1.00E-06	6	40.38	C								2.21E-11	2.4E-03	7.97	5	11 3125
KLX 17A	679.0	684.00	1.00E-06	6 1.00E-06	6	28.30	C								1.87E-11	2.1E-03	15.77	3	/8 1044
KLX 17A	684.0	689.00	1.00E-06	6 1.00E-06	6	#NV	-1								8.82E-11	9.7E-03	20.75	#N	IV #NV
KLX 17A	689.0	694.00	1.00E-06	6 1.00E-06	6	21.71	C								1.60E-11	1.8E-03	1.46	2	20 972
KLX 17A	689.0	701.08	3 1.00E-06	6 1.00E-06	6	47.43	0								4.07E-11	4.5E-03	0.41	6	/3 3276

									storativity_s_	value_type_t_nl						value_type_t_g		storativity_s_g	flow_dim_g	
idcode	secup	seclow	t1	t2	dte1	dte2	p_horner	transmissivity_t_nlr	nir	r	bc_t_nlr	c_nir	cd_nlr	skin_nlr	transmissivity_t_grf	rf	bc_t_grf	rf	rf	comment
KLX 17A	419.00	424.00)				3591.5	i												
KLX 17A	420.00	425.00					3602.3	1												
KLX 17A	425.00	430.00)				3645.1													
KLX 17A	430.00	435.00)				3686.0													
KLX 17A	440.00	445.00					#NV	r												
KLX 17A	444.00	449.00)				#N\	r												
KLX 17A	454.00	459.00)				#N\	r												
KLX 17A	464.00	469.00)				3968.1													
KLX 17A	469.00	474.00)				4006.6	i												
KLX 17A	474.00	479.00)				#NV	r												
KLX 17A	479.00	484.00)				#N\	r												
KLX 17A	484.00	489.00)				#N\	r												
KLX 17A	649.00	654.00)				#N\	r												
KLX 17A	654.00	659.00)				#N\	r												
KLX 17A	659.00	664.00)				#NV	1												
KLX 17A	664.00	669.00)				5624.0													
KLX 17A	669.00	674.00)				#NV	r												
KLX 17A	674.00	679.00)				5706.3													
KLX 17A	679.00	684.00)				5732.3													
KLX 17A	684.00	689.00					5787.2													
KLX 17A	689.00	694.00					5825.4	•												
KLX 17A	689.00	701.08					5827.2													

KLX17A

r

Page 5-1/17

Tal	ble	plu_s_ho Data of observation se	le_test_obs ections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

idcode KLX 17A KLX 17A

KLX 17A

KLX 17A

KLX 17A

KLX 17A

KLX 17A

KLX 17A

KLX 17A

2007-05-23 17:48:00 2007-05-23 23:02:00

2007-05-24 10:35:00 2007-05-24 11:24:00

2007-05-24 13:08:00 2007-05-24 14:37:00

2007-05-24 15:07:00 2007-05-24 15:56:00

2007-05-24 16:22:00 2007-05-24 17:11:00

2007-05-24 17:35:00 2007-05-24 19:01:00

2007-05-25 08:18:00 2007-05-25 10:11:00

392.00

397.00

402.00

407.00

409.00

414.00

419.00

387.00

392.00

397.00

402.00

404.00

409.00

414.00

393.00

398.00

403.00

408.00

410.00

415.00

420.00

start_datestop_datesecupsection_noobs_secupobs_secuppi_abovepi_abovepi_abovepi_abovepi_abovepi_blow <th< th=""><th>y pf_below comments 45 1444 </th></th<>	y pf_below comments 45 1444
2007-05-09 13:47:00 2007-05-09 15:57:00 69:00 270:00 701.08 570 571 1445 2007-05-09 17:46:00 2007-05-09 17:46:00 2007-05-10 1429 1430 1430 2283 2283 2283 2283 3135 2 2 2283 283	45 1444 97 2297 34 3134 71 3970 97 4786 ₩ #NV 71 771
2007-05-09 17:46:00 2007-05-09 19:36:00 169:00 269:00 370:00 701.08 1429 1430 1430 2297 1 2007-05-10 99:35:00 2007-05-10 11:25:00 269:00 369:00 370:00 701.08 2283 2283 2283 3135 3 2007-05-10 16:32:00 2007-05-10 15:2:00 369:00 469:00 570:00 701.08 3969 3969 3970 4799 4 2007-05-11 14:16:00 2007-05-10 69:00 69:00 670:00 701.08 4801 4801 4802 #NV 2007-05-13 11:5:00 2007-05-13 15:31:00 69:00 69:00 701.08 588 589 589 771 2007-05-13 16:00:0 2007-05-13 15:31:00 87:00 107.00 108:00 701.08 722 747 746 926 2007-05-13 18:16:00 2007-05-13 17:35:00 107.00 127.00 128:00 701.08 1139 1117 1110 1267 207 2007-05-14 0:30:00 2007-05-14 10:6:00 </td <td>97 2297 34 3134 71 3970 97 4786 V #NV 71 771</td>	97 2297 34 3134 71 3970 97 4786 V #NV 71 771
2007-05-10 0935:00 2007-05-10 11:25:00 269:00 369:00 470:00 701:08 2283 2283 2283 3135 5 2007-05-10 13:23:00 2007-05-10 15:12:00 369:00 469:00 470:00 701:08 3369 3130 3131 3973 3 2007-05-10 16:42:00 269:00 569:00 669:00 670:00 701:08 3969 3969 3970 479 4 2007-05-13 11:15:00 2007-05-13 16:3:1:00 89:00 90:00 701:08 4801 4801 4802 #NV 2007-05-13 14:0:6:00 2007-05-13 17:35:00 107:00 128:00 701:08 926 929 930 1095 3007 2007-05-13 18:6:00 2007-05-13 18:1:0:0 127:00 147:00 148:00 701:08 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1454 145	34 3134 71 3970 97 4786 V #NV 71 771
2007-05-10 13:23:00 2007-05-10 15:12:00 369:00 469:00 570:00 701:08 3130 3131 3973 5 2007-05-10 16:42:00 2007-05-10 16:42:00 2007-05-10 16:42:00 2007-05-11 11:15:00 2007-05-13 11:15:00 2007-05-13 12:47:00 69:00 66:00 67:00 701:08 589 589 589 771 2007-05-13 11:15:00 2007-05-13 15:31:00 87:00 107:00 108:00 701:08 589 589 589 771 2007-05-13 16:09:00 2007-05-13 15:31:00 87:00 107:00 128:00 701:08 722 747 746 926 2007-05-13 16:09:00 2007-05-13 16:09:00 127:00 147:00 148:00 701:08 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287 1287<	71 3970 97 4786 V #NV 71 771
2007-05-10 16:42:002007-05-10 22:58:00469:00569:00569:00570:00701.08396939693970479942007-05-11 11:10:002007-05-11 16:24:00569:00669:00670:00701.08480148014802#NV2007-05-13 11:15:002007-05-13 12:47:0069:0089:0090:00701.085895895897712007-05-13 14:08:002007-05-13 15:31:0087:00107:00108:00701.087527477469262007-05-13 18:09:002007-05-13 17:35:00107:00127:00128:00701.0811391117111012672007-05-14 18:002007-05-14 12:06:00147:00167:00168:00701.081270127014762007-05-14 10:40:002007-05-14 12:06:00149:00169:00170:00701.0812871287128714842007-05-14 13:27:002007-05-14 16:57:00189:00190:00701.08146114621462162516252007-05-14 17:32:002007-05-15 10:21:00229:00230:00701.0818841803179819672007-05-15 08:47:002007-05-15 10:21:00229:00229:00230:00701.081382137213823062007-05-15 16:21:00209:00289:00300:00701.08196919691969213622007-05-15 16:20:00209:00289:00300:00701.08247924792479	97 4786 JV #NV 71 771
2007-05-11 14:16:00 2007-05-11 16:24:00 569.00 669.00 90.00 701.08 4801 4801 4802 #NV 2007-05-13 11:15:00 2007-05-13 12:47:00 69.00 89.00 90.00 701.08 589 589 589 771 2007-05-13 16:00:00 2007-05-13 17:35:00 107.00 127.00 128.00 701.08 926 929 930 1095 926 2007-05-13 18:16:00 2007-05-13 17:35:00 107.00 127.00 148.00 701.08 926 929 930 1095 920 930 1095 920 930 1095 920 930 1095 920 930 1095 920 930 1095 920 930 1095 920 930 1095 920 930 1095 920 1200 1210 12480 701.08 1287 1436 920 1200 1210 1287 1436 920 1200 1280 1200 1280 1287 1456 <t< td=""><td>V #NV 71 771</td></t<>	V #NV 71 771
2007-05-13 11:15:002007-05-13 12:47:0069:0089:0090:00701.085895895897712007-05-13 14:08:002007-05-13 15:31:0087:00107:00108:00701.087527477469262007-05-13 16:00:002007-05-13 17:35:00107:00127:00128:00701.0892692993010952007-05-13 18:16:002007-05-13 21:44:00127:00147:00148:00701.0811391117111012672007-05-14 08:51:002007-05-14 10:16:00147:00167:00168:00701.0812871287128714842007-05-14 13:27:002007-05-14 16:57:00189:00190:00701.081287128714841462146214622007-05-14 15:32:002007-05-14 16:57:00189:00209:00210:00701.0818041803179819672007-05-15 16:21:00209:00229:00230:00701.0818041803179819672007-05-15 16:21:00229:00249:00250:00701.0818041803179819672007-05-15 16:21:00229:00249:00270:00701.0823102310230622007-05-15 16:21:00229:00289:00270:00701.0824792479247622007-05-15 16:21:00269:00289:00300:00701.08247924792479247622007-05-16 16:32:002007-05-16 16:32:0	71 771
2007-05-13 14:08:002007-05-13 15:31:0087.00107.00108.00701.087527477469262007-05-13 16:09:002007-05-13 17:35:00107.00127.00128.00701.089269299301095701.082007-05-13 18:16:002007-05-13 21:44:00127.00147.00148.00701.0811391117111012672007-05-14 08:51:002007-05-14 10:16:00147.00167.00168.00701.081270127014362007-05-14 10:40:002007-05-14 12:06:00149.00169.00170.00701.0812871287128714542007-05-14 13:27:002007-05-14 14:56:00169.00189.00190.00701.0816321633163317962007-05-14 15:33:002007-05-14 16:57:00189.00229.00230.00701.0816321633163317962007-05-15 08:47:002007-05-15 10:21:00229.00229.00230.00701.0818641803179819672007-05-15 16:20:002007-05-15 16:21:00229.00249.00250.00701.08186919691969213623062007-05-15 16:20:002007-05-15 16:21:00229.00249.00270.00701.08231023102309247622007-05-15 16:20:002007-05-15 16:21:00289.00309.00310.00701.0824792479247924822007-05-16 16:00:00309.00329.00 <td< td=""><td></td></td<>	
2007-05-13 16:09:002007-05-13 17:35:00107.00127.00128.00701.0892692993010952007-05-13 18:16:002007-05-13 21:44:00127.00147.00148.00701.0811391117111012672007-05-14 08:51:002007-05-14 10:16:00147.00167.00168.00701.0812701270127014362007-05-14 10:40:002007-05-14 12:06:00149.00169.00170.00701.0812871287128714542007-05-14 13:27:002007-05-14 16:57:00189.00190.00701.0814611462146216252007-05-14 15:33:002007-05-14 16:57:00189.00209.00210.00701.0816321633163317962007-05-15 0:51:002007-05-15 10:21:00209.00229.00230.00701.0818041803179819672007-05-15 16:50:002007-05-15 16:21:00229.00229.00270.00701.0813801396247622007-05-15 16:50:002007-05-15 16:21:00249.00270.00701.08213821372138230622007-05-15 16:50:002007-05-16 16:21:00289.00290.00270.00701.08247924792479246822007-05-16 16:50:002007-05-16 16:21:00289.00330.00701.08247924792479247822007-05-16 16:00:00309.00330.00701.08247924792479 </td <td>26 926</td>	26 926
2007-05-13 18:16:002007-05-13 21:44:00127.00147.00147.00148.00701.0811391117111012672007-05-14 08:51:002007-05-14 10:16:00147.00167.00168.00701.0812701270127014362007-05-14 10:40:002007-05-14 12:06:00149.00169.00170.00701.0812871287128714542007-05-14 13:27:002007-05-14 14:56:00169.00189.00190.00701.0814611462146216252007-05-14 15:33:002007-05-14 16:57:00189.00209.00210.00701.0816321633173819662007-05-14 17:32:002007-05-15 10:21:00229.00229.00230.00701.0818641803179819672007-05-15 10:21:00209.00249.00250.00701.08196919691969213622007-05-15 16:21:00209.00289.00270.00701.08231023102309247622007-05-15 14:02:002007-05-16 16:21:00269.00289.00310.00701.08247924792479264822007-05-16 08:46:002007-05-16 10:12:00309.00330.00701.08286626462647281522007-05-16 16:30:002007-05-16 16:12:00349.00350.00701.08286528652865315422007-05-16 16:30:002007-05-16 16:30:00349.00350.00701.08281	96 1096
2007-05-14 08:51:002007-05-14 10:16:00147.00167.00168.00701.0812701270127014362007-05-14 10:40:002007-05-14 12:06:00149.00169.00170.00701.0812871287128714542007-05-14 13:27:002007-05-14 14:56:00169.00189.00290.00701.0814611462146216252007-05-14 15:33:002007-05-14 16:57:00189.00209.00210.00701.0816321633163317962007-05-14 17:32:002007-05-14 19:44:00209.00229.00230.00701.0818041803179819672007-05-15 08:47:002007-05-15 13:29:00229.00249.00250.00701.0812882137213823062007-05-15 16:58:002007-05-15 16:21:00229.00289.00290.00701.0823102310230924762007-05-16 16:50:002007-05-15 16:21:00289.00309.00310.00701.0824792479247924682007-05-16 10:12:002007-05-16 10:12:00329.00330.00701.08281628162817281522007-05-16 13:20:002007-05-16 10:12:00329.00350.00701.08281628162817281522007-05-16 10:45:002007-05-16 12:34:00349.00369.00370.00701.0828162816281728452007-05-16 13:20:002007-05-16 12:34:00349.00369.00370.00<	67 1266
2007-05-14 10:40:002007-05-14 12:06:00149:00169:00170:00701.0812871287128714542007-05-14 13:27:002007-05-14 14:56:00169:00189:00190:00701.0814611462146216252007-05-14 15:33:002007-05-14 16:57:00189:00209:00210:00701.0816321633163317962007-05-14 17:32:002007-05-14 19:44:00209:00229:00230:00701.0818041803179819672007-05-15 08:47:002007-05-15 10:21:00229:00249:00250:00701.0819691969213622007-05-15 10:58:002007-05-15 13:29:00249:00269:00270:00701.08213821372138230622007-05-15 10:58:002007-05-15 16:21:00289:00290:00701.08231023102309247622007-05-15 16:55:002007-05-15 16:22:400289:00309:00310:00701.0824792479247822007-05-16 16:5002007-05-16 10:12:00309:00330:00701.0824792479247822007-05-16 10:45:002007-05-16 12:34:00329:00330:00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349:00350:00701.08315431543154332333212007-05-16 13:20:002007-05-16 16:06:00369:00389:00390:00701.08 <td>36 1436</td>	36 1436
2007-05-14 13:27:002007-05-14 14:56:00169:00189:00190:00701.0814611462146216252007-05-14 15:33:002007-05-14 16:57:00189:00209:00210:00701.0816321633163317962007-05-14 17:32:002007-05-14 19:44:00209:00229:00230:00701.0818041803179819672007-05-15 08:47:002007-05-15 10:21:00229:00249:00250:00701.08196919691969213622007-05-15 10:58:002007-05-15 13:29:00249:00269:00270:00701.08213821372138230622007-05-15 14:02:002007-05-15 16:21:00269:00289:00290:00701.08231023102309247622007-05-15 16:50:02007-05-15 16:21:00289:00309:00310:00701.08247924792479246822007-05-16 16:50:02007-05-16 10:12:00309:00330:00701.08247924792479264822007-05-16 10:12:00309:00329:00330:00701.08281628162817298422007-05-16 13:20:002007-05-16 14:90:00349:00350:00701.08298529852985315432007-05-16 13:20:002007-05-16 14:90:00349:00369:00370:00701.08315431543154332333212007-05-16 14:43:002007-05-16 16:06:00369:	54 1454
2007-05-14 15:33:002007-05-14 16:57:00189:00209:00210:00701.0816321633163317962007-05-14 17:32:002007-05-14 19:44:00209:00229:00230:00701.0818041803179819672007-05-15 08:47:002007-05-15 10:21:00229:00249:00250:00701.081969196919692136222007-05-15 10:58:002007-05-15 13:29:00249:00269:00270:00701.082138213721382306222007-05-15 14:02:002007-05-15 16:21:00269:00289:00290:00701.0823102310231023092476222007-05-15 16:55:002007-05-15 16:21:00269:00289:00300:00310:00701.0824792479247924792648222007-05-16 10:50:002007-05-16 10:12:00309:00330:00701.08246626462647281522007-05-16 10:45:002007-05-16 12:34:00329:00349:00350:00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349:00369:00370:00701.0831543154315433233323332333212007-05-16 16:39:002007-05-16 18:49:00389:00390:00701.0833213321332234913	25 1625
2007-05-14 17:32:002007-05-14 19:44:00209:00229:00230:00701.0818041803179819672007-05-15 08:47:002007-05-15 10:21:00229:00249:00250:00701.08196919691969213622007-05-15 10:58:002007-05-15 13:29:00249:00269:00270:00701.08213821372138230622007-05-15 14:02:002007-05-15 16:21:00269:00289:00290:00701.08231023102309247622007-05-15 16:55:002007-05-15 16:21:00269:00309:00310:00701.08247924792479264822007-05-16 10:50:002007-05-16 10:12:00309:00329:00330:00701.0826462647281522007-05-16 10:45:002007-05-16 12:34:00329:00349:00350:00701.0828162816281728822007-05-16 11:40:002007-05-16 14:09:00349:00350:00701.0829852985315433223321332233212007-05-16 16:39:002007-05-16 16:06:00369:00389:00390:00701.08315431543154332333212007-05-16 16:39:002007-05-16 18:49:00389:00409:00410:00701.0833213321332234913	96 1796
2007-05-15 08:47:002007-05-15 10:21:00229.00249.00250.00701.08196919691969213622007-05-15 10:58:002007-05-15 13:29:00249.00269.00270.00701.08213821372138230622007-05-15 14:02:002007-05-15 16:21:00269.00289.00290.00701.08231023102309247622007-05-15 16:55:002007-05-15 20:24:00289.00309.00310.00701.08247924792479264822007-05-16 08:46:002007-05-16 10:12:00309.00329.00330.00701.08264626462647281522007-05-16 10:45:002007-05-16 12:34:00329.00349.00350.00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349.00369.00370.00701.08298529852985315432007-05-16 14:43:002007-05-16 16:06:00369.00389.00390.00701.08315431543154332332007-05-16 16:39:002007-05-16 18:49:00389.00409.00410.00701.0833213321332234913	67 1966
2007-05-15 10:58:002007-05-15 13:29:00249:00269:00270:00701.0821382137213823062007-05-15 14:02:002007-05-15 16:21:00269:00289:00290:00701.08231023102309247622007-05-15 16:55:002007-05-15 20:24:00289:00309:00310:00701.08247924792479264822007-05-16 08:46:002007-05-16 10:12:00309:00329:00330:00701.08264626462647281522007-05-16 10:45:002007-05-16 12:34:00329:00349:00350:00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349:00369:00370:00701.08298529852985315432007-05-16 14:43:002007-05-16 16:06:00369:00389:00390:00701.08315431543154332332007-05-16 16:39:002007-05-16 18:49:00389:00409:00410:00701.0833213321332234913	36 2135
2007-05-15 14:02:002007-05-15 16:21:00269.00289.00290.00701.08231023102309247622007-05-15 16:55:002007-05-15 20:24:00289.00309.00310.00701.08247924792479264822007-05-16 08:46:002007-05-16 10:12:00309.00329.00330.00701.08264626462647281522007-05-16 10:45:002007-05-16 12:34:00329.00349.00350.00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349.00369.00370.00701.08298529852985315432007-05-16 14:43:002007-05-16 16:06:00369.00389.00390.00701.08315431543154332332007-05-16 16:39:002007-05-16 18:49:00389.00409.00410.00701.0833213321332234913	06 2306
2007-05-1516:55:002007-05-1520:24:00289:00309:00310:00701.08247924792479247926482007-05-1608:46:002007-05-1610:12:00309:00329:00330:00701.08264626462647281522007-05-1610:45:002007-05-1612:34:00329:00349:00350:00701.08281628162817298422007-05-1613:20:002007-05-1614:09:00349:00369:00370:00701.08298529852985315432007-05-1614:43:002007-05-1616:06:00369:00389:00390:00701.08315431543154332333212007-05-1616:39:002007-05-1618:49:00389:00410:00701.0833213321332234913	77 2477
2007-05-16 08:46:002007-05-16 10:12:00309.00329.00330.00701.0826462646264728152007-05-16 10:45:002007-05-16 12:34:00329.00349.00350.00701.08281628162817298422007-05-16 13:20:002007-05-16 14:09:00349.00369.00370.00701.08298529852985315432007-05-16 14:43:002007-05-16 16:06:00369.00389.00390.00701.08315431543154332332007-05-16 16:39:002007-05-16 18:49:00389.00409.00410.00701.0833213321332234913	47 2647
2007-05-16 10:45:00 2007-05-16 12:34:00 329.00 349.00 350.00 701.08 2816 2816 2817 2984 2 2007-05-16 10:45:00 2007-05-16 14:09:00 349.00 369.00 370.00 701.08 2816 2816 2817 2984 2 2007-05-16 13:20:00 2007-05-16 14:09:00 349.00 369.00 370.00 701.08 2985 2985 2985 3154 323 322 300.00 300.00 701.08 3154 3154 3154 3323 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3321 3321 3322 3491 332	14 2814
2007-05-16 13:20:00 2007-05-16 14:09:00 349.00 369.00 370.00 701.08 2985 2985 2985 3154 3233 2007-05-16 14:43:00 2007-05-16 16:06:00 369.00 390.00 701.08 3154 3154 3154 3323 3323 3321 3322 3491 33491	84 2984
2007-05-16 14:43:00 2007-05-16 16:06:00 369.00 389.00 390.00 701.08 3154 3154 3154 3323 3323 3323 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321 3322 3491 3321	54 3154
2007-05-16 16:39:00 2007-05-16 18:49:00 389.00 409.00 410.00 701.08 3321 3322 3491 3	23 3323
	92 3492
	88 3664
2007-05-17 10:43:00 2007-05-17 12:11:00 428:00 448:00 449:00 701:08 3652 3655 3654 3819	18 3818
	86 3986
	94 3994
	22 4134
2007-05-18 11:04:00 2007-05-18 12:01:00 509 00 529 00 530 00 701 08 4337 4337 4336 4497 4	96 4496
2007-05-18 15:13:00 2007-05-18 16:08:00 549 00 569 00 570 00 701.08 4672 4672 4671 4831 4	31 4828
2007-05-18 16:44:00 2007-05-18 17:35:00 569:00 589:00 599:00 599:00 701:08 4836 4836 4837 4995	95 4993
2007-05-19 08:59:00 2007-05-19 08:57:00 589 00 609 00 60100 701 08 5027 5027 5028 5182	82 5180
2007-05-19 10:33:00 2007-05-19 11:30:00 609 00 629 00 630.00 701.08 5192 5192 5192 5192 5192	49 5346
2007.05.19 12:19:00 2007.05.19 14:12:00 609 00 649 00 650 00 701.08 532 5332 5333 5486 4	86 5485
2007.05.19 15:31:00 207.05.10 18:47:00 649.00 669.00 670.00 701.08 5492 5401 5405 5652 4	58 5650
2007.05.20 08:5300 2007.05.20 10 10:11:00 668 00 689 00 690 00 701.00 701.00 5452 5451 5451 5451 5451	24 5821
2007.05.20 11/010 2007.05.20 12 102 100 005.00 005.00 005.00 005.00 005.00 701.00 5005 005.000	87 5867
2007-05-22 11:01:00 2007-05-22 12:01:00 011:00 001:00 001:00 0000 701:00 0000 00	44 2944
2007-05-22 15:5:00 2007-05-22 15:5:00 334:00 344:00 344:00 345:00 701:00 2511 2310 2909 2943 2 2007-05-22 15:5:00 2007-05-22 15:5:00 334:00 340:00 344:00 701:00 2511 2310 2905 2913 2051 2051 2051 2051 2051 2051 2051 2051	87 2087
2007-05-22 10.07.00 2007-05-22 10.07.00 075.00 075.00 075.00 701.00 2551 2551 2551 2551 2551 2551 2551 25	07 3107
2007-05-23 05-07-00 2007-05-23 10:35:00 309:00 374:00 374:00 375:00 701:06 3101 3101 3101 3197 3 2007-05-23 10:55:00 2007-05-23 11:35:00 309:00 374:00 374:00 370 00 370:00 701:06 3101 3101 3101 3101 3197 300	30 3230
2007-05-23 15:00:00 2007-05-23 11:41:00 374:00 375:00 300:00 701:00 3203 3203 3204 3239 3 2007-05-23 15:40:00 2007-05-23 11:41:00 374:00 379:00 200,00 701:00 3203 3203 3204 3239 3	24 2224

701.08

701.08

701.08

701.08

701.08

701.08

701.08

3324

#NV

#NV

#NV

#NV

#NV

#NV

3323

#NV

#NV

#NV

#NV

#NV

#NV

3319

#NV

#NV

#NV

#NV

#NV

#NV

3349

3391

3434

3477

3494

3536

3575

3349

3391

3435

3477

3494

3536

3575

3348

3391

3434

3477

3494

3535

3575

idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX 17A	2007-05-25 10:36:00	2007-05-25 12:07:00	419.00	424.00		425.00	701.08	#NV	#NV	#NV	3619	3626	3623	
KLX 17A	2007-05-25 12:56:00	2007-05-25 14:20:00	420.00	425.00		426.00	701.08	#NV	#NV	#NV	3629	3637	3633	
KLX 17A	2007-05-25 14:50:00	2007-05-25 16:17:00	425.00	430.00		431.00	701.08	#NV	#NV	#NV	3672	3694	3674	
KLX 17A	2007-05-25 16:44:00	2007-05-25 18:08:00	430.00	435.00		436.00	701.08	#NV	#NV	#NV	3712	3711	3711	
KLX 17A	2007-05-26 09:56:00	2007-05-26 10:47:00	440.00	445.00		446.00	701.08	#NV	#NV	#NV	3796	3796	3795	
KLX 17A	2007-05-26 11:16:00	2007-05-26 12:24:00	444.00	449.00		450.00	701.08	#NV	#NV	#NV	3828	3828	3827	
KLX 17A	2007-05-26 16:14:00	2007-05-26 17:07:00	454.00	459.00		460.00	701.08	#NV	#NV	#NV	3913	3913	3912	
KLX 17A	2007-05-27 10:58:00	2007-05-27 12:40:00	464.00	469.00		470.00	701.08	#NV	#NV	#NV	3993	3993	3993	
KLX 17A	2007-05-27 14:03:00	2007-05-27 16:41:00	469.00	474.00		475.00	701.08	#NV	#NV	#NV	4036	4036	4035	
KLX 17A	2007-05-27 17:09:00	2007-05-27 17:57:00	474.00	479.00		480.00	701.08	#NV	#NV	#NV	4078	4078	4078	
KLX 17A	2007-05-28 08:04:00	2007-05-28 08:53:00	479.00	484.00		485.00	701.08	#NV	#NV	#NV	4120	4120	4119	
KLX 17A	2007-05-28 09:21:00	2007-05-28 10:11:00	484.00	489.00		490.00	701.08	#NV	#NV	#NV	4162	4162	4161	
KLX 17A	2007-05-28 13:43:00	2007-05-28 14:32:00	649.00	654.00		655.00	701.08	#NV	#NV	#NV	5531	5531	5530	
KLX 17A	2007-05-28 15:01:00	2007-05-28 15:50:00	654.00	659.00		660.00	701.08	#NV	#NV	#NV	5572	5572	5571	
KLX 17A	2007-05-28 16:16:00	2007-05-28 17:05:00	659.00	664.00		665.00	701.08	#NV	#NV	#NV	5613	5613	5612	
KLX 17A	2007-05-28 17:28:00	2007-05-28 20:41:00	664.00	669.00		670.00	701.08	#NV	#NV	#NV	5654	5660	5652	
KLX 17A	2007-05-29 08:10:00	2007-05-29 09:01:00	669.00	674.00		675.00	701.08	#NV	#NV	#NV	5692	5692	5691	
KLX 17A	2007-05-29 09:34:00	2007-05-29 11:48:00	674.00	679.00		680.00	701.08	#NV	#NV	#NV	5732	5733	5731	
KLX 17A	2007-05-29 13:00:00	2007-05-29 14:30:00	679.00	684.00		685.00	701.08	#NV	#NV	#NV	5754	5759	5760	
KLX 17A	2007-05-29 15:01:00	2007-05-29 17:29:00	684.00	689.00		690.00	701.08	#NV	#NV	#NV	5808	5808	5809	
KLX 17A	2007-05-29 17:58:00	2007-05-29 19:22:00	689.00	694.00		695.00	701.08	#NV	#NV	#NV	5854	5869	5856	
KLX 17A	2007-06-01 16:46:00	2007-06-01 19:13:00	689.00	701.08		702.08	701.08	5791	5791	5791	5892	6090	5890	

Borehole: KLX17A

APPENDIX 5-2

SICADA data tables (Pulse injection tests)

SKB		SI	[CAD	A/Dat	a Imp	ort Temj	olate		(SK	Simplified version v1.8) B & Ergodata AB 2006		
File Identity Created By Created				File Time Zone		Quality	Compiled By Check For Delivery Delivery Approva					
Activity Type		HY665 PLU Pulse Test				Project		PLU K	KLX 17A			
Activity Informa	ation					Additional Activity	Data C40	1160	P20	P200	P220	R240
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company evaluating data	Company performing field work	Instrument	Field crew manager	Field crew	Person evaluating data	Length calibration type
KLX 17A	2007-05-17 18:06:00	2007-05-31 03:12:00	378.00	589.00		Golder Associates	Golder Associates	PSS 2	Philipp Wolf, Reinder van der Wall	Philipp Wolf, Linda Höckert, Reinder van der Wall, Erik Löfgren	Philipp Wolf, Reinder van der Wall, Jörg Böhner	

Table		plu_slug	_test_ed
		Slug- & pulse test, calcula	ted and evaluated results
Column	Datatuna	Unit	Column Description
site		Unit	
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	
seclow	FLOAT	m	Lower section limit (m)
start date	DATE		Date (vvmmdd hh:mm:ss)
ston date	DATE		Date (vymmdd hh:mm:ss)
activity type	CHAR		Activity type code
sian	CHAR		Activity QA signature
error flag	CHAR		*: Data for the activity is erroneous and should not be used
test type	CHAR		Type of test, one of 7, see table description
formation type	CHAR		1: Rock, 2: Soil (superficial deposits)
start flow period	DATE		Date and time of flow phase start (YYYYMMDD hhmmss)
dur flow phase tp	FLOAT	S	Time for the flowing phase of the test (tp)
dur rec phase tf	FLOAT	S	Time for the recovery phase of the test (tF)
initial head h0	FLOAT	m	Initial formation hydraulic head, see table description
initial displacem dh0	FLOAT	m	Initial displacement of hydraulic head, see table description
displacem dh0 p	FLOAT	m	Initial displacement of slugtest, see table description
displacem_dh0_f	FLOAT	m	Initial displacement of bailtest, see table description
head_at_flow_end_hp	FLOAT	m	Hydraulic head at end of flow phase, see table description
final_head_hf	FLOAT	m	Hydraulic head at the end of the recovery, see table descr.
initial_press_pi	FLOAT	kPa	Initial formation pressure
initial_press_diff_dp0	FLOAT	kPa	Initial pressure change from pi at time dt=0,pulse test
press_change_dp0_p	FLOAT	kPa	Initial pressure change;pulse test-measured
press_at_flow_end_pp	FLOAT	kPa	Final pressure at the end of the flowing period
final_press_pf	FLOAT	kPa	Final pressure at the end of the recovery period
formation_width_b	FLOAT	m	b:Interpreted formation thickness repr. for evaluated T,see
transmissivity_ts	FLOAT	m**2/s	Ts: Transmissivity based on slugtest, see table description
value_type_ts	CHAR		0:true value,-1:Ts <lower meas.limit,1:ts="">upper meas.limit</lower>
bc_ts	CHAR		Best choice code.1 means Ts is best choice of transm.,else 0
transmissivity_tp	FLOAT	m**2/s	TP: Transmissivity based on pulse test, see table descript.
value_type_tp	CHAR		0:true value,-1:Tp <lower meas.limit,1:tp="">upper meas.limit</lower>
bc_tp	CHAR		Best choice code.1 means Tp is best choice of transm.,else 0
I_meas_limit_t	FLOAT	m**2	Estimated lower measurement limit for Ts orTp,see descript.
u_meas_limit_t	FLOAT	m**2	Estimated upper measurement limit for Ts & Tp, see descript.
storativity_s	FLOAT		S= Storativity, see table description
assumed_s	FLOAT		S*=assumed storativity, see table description
skin	FLOAT		Skin factor
assumed_skin	FLOAT		Asumed skin factor
с	FLOAT	m**3/pa	Well bore storage coefficient
fluid_temp_tew	FLOAT	oC	Fluid temperature in the test section, see table description
fluid_elcond_ecw	FLOAT	mS/m	Fluid electric conductivity in test section, see table descri
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of the test section fluid (EC), see descr.
fluid_salinity_tdswm	FLOAT	mg/l	Total salinity of the test section fluid (samples), see descr
dt1	FLOAT	S	Estimated start time of evaluation, see table description
dt2	FLOAT	S	Estimated stop time of evaluation, see table description
reference	CHAR		SKB report No for reports describing data and evaluation
comments	CHAR		Short comment to evaluated parameters

			(m)	(m)					(S)	(s)	(m)	(m)	(m)	(m)	(m)	(m)	(kPa)	(kPa
							formation_t			dur_rec_	initial_hea	initial_displ	displace	displace	ow_end_h	final_hea	initial_pr	initial_press_
idcode	start_date	stop_date	secup	seclow	section_no	test_type	уре	start_flow_period	dur_flow_phase_tp	phase_tf	d_h0	acem_dh0	m_dh0_p	m_dh0_f	р	d_hf	ess_pi	diff_dp0
KLX 17A	2007-05-17 18:06:00	2007-05-17 21:46:00	469.00	489.00		4B	1	2007-05-17 18:44:53	10	7200							4138	234
KLX 17A	2007-05-18 08:47:00	2007-05-18 10:32:00	489.00	509.00		4B	1	2007-05-18 09:25:51	10	#NV							4309	244
KLX 17A	2007-05-18 12:36:00	2007-05-18 14:22:00	529.00	549.00		4B	1	2007-05-18 13:15:06	10	#NV							4644	230
KLX 17A	2007-05-18 18:44:00	2007-05-18 21:18:00	569.00	589.00		4B	1	2007-05-18 19:16:24	10	#NV							#NV	#NV
KLX 17A	2007-05-23 13:07:00	2007-05-23 15:21:00	379.00	384.00		4B	1	2007-05-23 14:16:41	10	3706							3283	239
KLX 17A	2007-05-26 08:17:00	2007-05-26 09:21:00	435.00	440.00		4B	1	2007-05-26 08:59:01	10	#NV							#NV	#NV
KLX 17A	2007-05-30 16:22:00	2007-05-31 03:12:00	435.00	440.00		4B	1	2007-05-30 17:09:51	10	#NV							3761	190
KLX 17A	2007-05-26 13:34:00	2007-05-26 15:46:00	449.00	454.00		4B	1	2007-05-26 14:12:39	10	5400							3853	190
KLX 17A	2007-05-27 08:14:00	2007-05-27 10:26:00	459.00	464.00		4B	1	2007-05-26 08:53:24	10	5400							3932	183

	(m)	(m) (kPa) (kPa)	(kPa	i) (n	n) (m**2/s	3)		(m**2/s	S)		(m**2	!) (n	1**2)				(m**3/pa) (oC	(mS/m)) (mg/l)	(mg/l)	(S)	(S)		
			hange_d	press_at_fl	final_pre	formation	transmiss	i value_typ		transmis	value_ty		I_meas_limi	t u_meas_l	imi storativit	assumed		assumed		fluid_te	fluid_elc	inity_tds	nity_tds				
idcode	secup	seclow	р0_р	ow_end_pp	ss_pf	_width_b	vity_ts	e_ts	bc_ts	sivity_tp	pe_tp	bc_tp	_t	t_t	y_s	_s	skin	_skin	с	mp_tew	ond_ecw	w	wm	dt1	dt2	reference	comments
KLX 17A	469.00	489.00)	4372	4130	6				#NV	-	1 0	#NV	#NV	1.00E-06	1.00E-06	#NV		#NV	13.6				#NV	#NV		
KLX 17A	489.00	509.00)	4553	449	7				1.00E-1	1 -	1 1	1.00E-13	3 1.00E	-11 1.00E-06	6 1.00E-06	#NV		#NV	13.9				#NV	#NV		
KLX 17A	529.00	549.00)	4874	4873	3				1.00E-1	1 -	1 1	1.00E-13	3 1.00E	-11 1.00E-06	6 1.00E-06	#NV		#NV	14.4				#NV	#NV		
KLX 17A	569.00	589.00)	#NV	#NV					1.00E-1	1 -	1 1	1.00E-13	3 1.00E	-11 1.00E-06	6 1.00E-06	#NV		#NV	14.9				#NV	#NV		
KLX 17A	379.00	384.00)	3522	3264	1				2.93E-10	0	0 1	1.00E-10	0 1.00E	-09 1.00E-06	6 1.00E-06	7.7		1.51E-11	12.0				1012	3539		
KLX 17A	435.00	440.00)	#NV	#NV					1.00E-1	1 -	1 1	1.00E-13	3 1.00E	-11 1.00E-06	5 1.00E-06	#NV		#NV	12.9				#NV	#NV		
KLX 17A	435.00	440.00)	3951	398	5				1.00E-1	1 -	1 1	1.00E-13	3 1.00E	-11 1.00E-06	6 1.00E-06	#NV		#NV	12.9				#NV	#NV		
KLX 17A	449.00	454.00)	4043	3862	2				4.56E-1	1 1	0 1	2.00E-11	1 2.00E	-10 1.00E-06	5 1.00E-06	0.6		1.23E-11	13.1				605	5004		
KLX 17A	459.00	464.00)	4115	3940)				1.05E-10	0 0	0 1	6.00E-11	1 2.00E	-10 1.00E-06	6 1.00E-06	-0.5		1.91E-11	13.2				10	3888		

Tal	ble	plu_s_ho	le_test_obs
		Data of observation s	ections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
sign	CHAR		Activity QA signature
error_flag	CHAR		*: Data for the activity is erroneous and should not be used
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

			(m)	(m)		(m)	(m)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	
idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX 17A	2007-05-17 18:06:00	2007-05-17 21:46:00	469.00	489.00		490.00	701.08	4003	4002	4003	4163	4162	4159	
KLX 17A	2007-05-18 08:47:00	2007-05-18 10:32:00	489.00	509.00		510.00	701.08	4172	4172	4174	4332	4332	4329	
KLX 17A	2007-05-18 12:36:00	2007-05-18 14:22:00	529.00	549.00		550.00	701.08	4508	4508	4505	4665	4665	4662	
KLX 17A	2007-05-18 18:44:00	2007-05-18 21:18:00	569.00	589.00		590.00	701.08	4861	4861	4859	5015	5015	5013	
KLX 17A	2007-05-23 13:07:00	2007-05-23 15:21:00	379.00	384.00		385.00	701.08	3248	3248	3249	3283	3283	3282	
KLX 17A	2007-05-26 08:17:00	2007-05-26 09:21:00	435.00	440.00		441.00	701.08	#NV	#NV	#NV	3751	3751	3751	
KLX 17A	2007-05-30 16:22:00	2007-05-31 03:12:00	435.00	440.00		441.00	701.08	#NV	#NV	#NV	3728	3728	3734	
KLX 17A	2007-05-26 13:34:00	2007-05-26 15:46:00	449.00	454.00		455.00	701.08	#NV	#NV	#NV	3871	3871	3869	
KLX 17A	2007-05-27 08:14:00	2007-05-27 10:26:00	459.00	464.00		465.00	701.08	#NV	#NV	#NV	3953	3953	3952	