# P-07-192

# Oskarshamn site investigation

# Hydraulic injection tests in borehole KLX15A, 2007

**Subarea Laxemar** 

Cristian Enachescu, Stephan Rohs, Reinder van der Wall, Philipp Wolf Golder Associates GmbH

October 2007

#### Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864

SE-102 40 Stockholm Sweden Tel 08-459 84 00

+46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19



# Oskarshamn site investigation

# Hydraulic injection tests in borehole KLX15A, 2007

#### **Subarea Laxemar**

Cristian Enachescu, Stephan Rohs, Reinder van der Wall, Philipp Wolf Golder Associates GmbH

October 2007

*Keywords:* Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

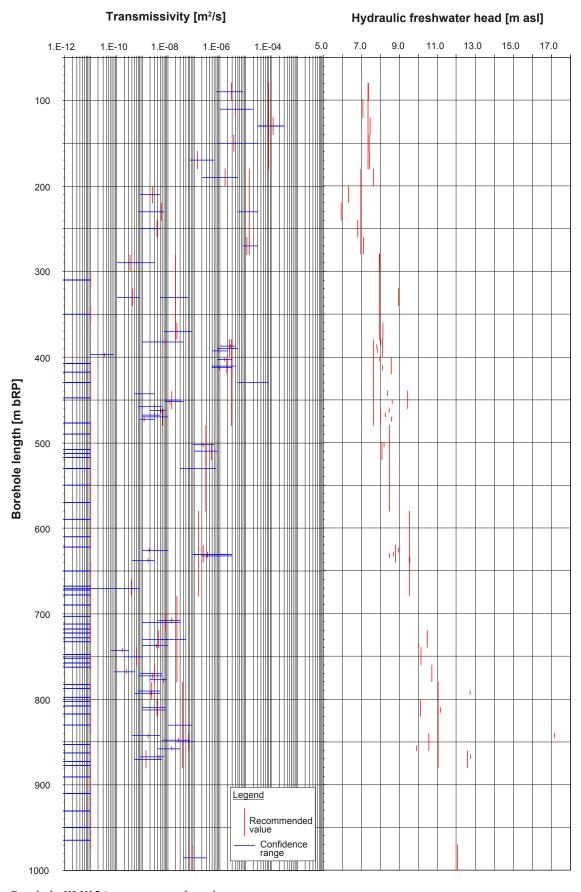
Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

## **Abstract**

Hydraulic injection tests have been performed in borehole KLX15A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX15A performed between 10<sup>th</sup> and 30<sup>th</sup> of April 2007.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m, 20 m and 5 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and cross-over flows. Constant pressure injection tests were conducted between 80.00–1,000.43 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

# Sammanfattning

Injektionstester har utförts i borrhål KLX15A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX15A. Testerna utfördes mellan den 10 april till den 30 april 2007.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m, 20 m och 5 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 80,00–1 000,43 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).



Borehole KLX15A – summary of results.

# Contents

| 1   | Introd | luction                                                     | 9  |
|-----|--------|-------------------------------------------------------------|----|
| 2   | Object | tive and scope                                              | 11 |
| 2.1 | Boreho | <u> •</u>                                                   | 11 |
| 2.2 |        | on tests                                                    | 13 |
| 2.3 |        | of equipment                                                | 16 |
| 3   | Equip  | ment                                                        | 17 |
| 3.1 |        | ption of equipment                                          | 17 |
| 3.2 | Sensor |                                                             | 21 |
| 3.3 | Data a | equisition system                                           | 22 |
| 4   | Execu  | tion                                                        | 23 |
| 4.1 | Prepar | ations                                                      | 23 |
| 4.2 | Length | correction                                                  | 23 |
| 4.3 | Execut | tion of field work                                          | 23 |
|     | 4.3.1  | Test principle                                              | 23 |
|     | 4.3.2  | Test procedure                                              | 25 |
| 4.4 | Data h | andling/post processing                                     | 26 |
| 4.5 | Analys | ses and interpretations                                     | 26 |
|     | 4.5.1  | Analysis software                                           | 26 |
|     | 4.5.2  | Analysis approach                                           | 26 |
|     | 4.5.3  | Analysis methodology                                        | 26 |
|     | 4.5.4  | Correlation between storativity and skin factor             | 28 |
|     | 4.5.5  | Determination of the ri-index and calculation of the radius |    |
|     |        | of influence (ri)                                           | 29 |
|     | 4.5.6  | Steady state analysis                                       | 30 |
|     | 4.5.7  | Flow models used for analysis                               | 30 |
|     | 4.5.8  | Calculation of the static formation pressure and equivalent |    |
|     |        | freshwater head                                             | 30 |
|     | 4.5.9  | Derivation of the recommended transmissivity and the        |    |
|     |        | confidence range                                            | 31 |
| 4.6 | Nonco  | nformities                                                  | 32 |
| 5   | Result | s                                                           | 33 |
| 5.1 | 100 m  | single-hole injection tests                                 | 33 |
|     | 5.1.1  | Section 80.00–180.00 m, test no. 1, injection               | 33 |
|     | 5.1.2  | Section 180.00–280.00 m, test no. 1, injection              | 34 |
|     | 5.1.3  | Section 280.00–380.00 m, test no. 1, injection              | 34 |
|     | 5.1.4  | Section 380.00–480.00 m, test no. 1, injection              | 35 |
|     | 5.1.5  | Section 480.00–580.00 m, test no. 1, injection              | 36 |
|     | 5.1.6  | Section 580.00–680.00 m, test no. 1, injection              | 36 |
|     | 5.1.7  | Section 680.00–780.00 m, test no. 1, injection              | 37 |
|     | 5.1.8  | Section 780.00–880.00 m, test no. 1, injection              | 38 |
| 5.2 |        | ingle-hole injection tests                                  | 38 |
|     | 5.2.1  | Section 80.00–100.00 m, test no. 1, injection               | 38 |
|     | 5.2.2  | Section 100.00–120.00 m, test no. 1, injection              | 39 |
|     | 5.2.3  | Section 120.00–140.00 m, test no. 1, injection              | 40 |
|     | 5.2.4  | Section 140.00–160.00 m, test no. 1, injection              | 40 |
|     | 5.2.5  | Section 160.00–180.00 m, test no. 1, injection              | 41 |
|     | 5.2.6  | Section 180.00–200.00 m, test no. 1, injection              | 42 |
|     | 5.2.7  | Section 200.00–220.00 m, test no. 1, injection              | 42 |

```
Section 220.00–240.00 m, test no. 1, injection
              Section 240.00-260.00 m, test no. 1, injection
      5.2.9
                                                                                 44
      5.2.10 Section 260.00–280.00 m, test no. 1, injection
                                                                                 44
      5.2.11 Section 280.00–300.00 m, test no. 1, injection
                                                                                 45
      5.2.12 Section 300.00–320.00 m, test no. 1, injection
                                                                                 46
      5.2.13 Section 320.00–340.00 m, test no. 1, pulse injection
                                                                                 46
      5.2.14 Section 340.00–360.00 m, test no. 1, injection
                                                                                 47
      5.2.15 Section 360.00–380.00 m, test no. 1, injection
                                                                                 47
      5.2.16 Section 380.00–400.00 m, test no. 1, injection
                                                                                 48
      5.2.17 Section 400.00–420.00 m, test no. 1, injection
                                                                                 48
                                                                                 49
      5.2.18 Section 420.00–440.00 m, test no. 1, injection
      5.2.19 Section 440.00-460.00 m, test no. 1, injection
                                                                                 49
      5.2.20 Section 460.00–480.00 m, test no. 1, injection
                                                                                 50
      5.2.21 Section 480.00–500.00 m, test no. 1, injection
                                                                                 50
      5.2.22 Section 500.00–520.00 m, test no. 1, injection
                                                                                 51
      5.2.23 Section 520.00-540.00 m, test no. 1, injection
                                                                                 51
      5.2.24 Section 540.00–560.00 m, test no. 1, injection
                                                                                 52
      5.2.25 Section 560.00–580.00 m, test no. 1, injection
                                                                                 52
      5.2.26 Section 580.00–600.00 m, test no. 1 and 2, injection
                                                                                 52
      5.2.27 Section 600.00–620.00 m, test no. 1, injection
                                                                                 53
                                                                                 53
      5.2.28 Section 620.00–640.00 m, test no. 1, injection
      5.2.29 Section 640.00–660.00 m, test no. 1, pulse injection
                                                                                 54
                                                                                 54
      5.2.30 Section 660.00–680.00 m, test no. 1, pulse injection
      5.2.31 Section 680.00–700.00 m, test no. 1, injection
                                                                                 55
      5.2.32 Section 700.00–720.00 m, test no. 1, injection
                                                                                 55
      5.2.33 Section 720.00–740.00 m, test no. 1, injection
                                                                                 56
      5.2.34 Section 740.00-760.00 m, test no. 1, injection
                                                                                 56
      5.2.35 Section 760.00–780.00 m. test no. 1. injection
                                                                                 57
      5.2.36 Section 780.00–800.00 m, test no. 1, injection
                                                                                 58
      5.2.37 Section 800.00–820.00 m, test no. 1, injection
                                                                                 58
      5.2.38 Section 820.00–840.00 m, test no. 1, injection
                                                                                 59
                                                                                 59
      5.2.39 Section 840.00–860.00 m, test no. 1, injection
      5.2.40 Section 860.00–880.00 m, test no. 1, injection
                                                                                 60
      5.2.41 Section 880.00–900.00 m, test no. 1, injection
                                                                                 61
      5.2.42 Section 900.00–920.00 m, test no. 1, injection
                                                                                 61
      5.2.43 Section 920.00–940.00 m, test no. 1, injection
                                                                                 61
      5.2.44 Section 940.00–960.00 m, test no. 1, injection
                                                                                 62
      5.2.45 Section 955.00–975.00 m, test no. 1, injection
                                                                                 62
5.3
      5 m single-hole injection tests
                                                                                 62
      5.3.1
              Section 380.00-385.00 m, test no. 1, injection
                                                                                 62
      5.3.2
              Section 385.00–390.00 m, test no. 1, injection
                                                                                 63
      5.3.3
              Section 390.00–395.00 m, test no. 1, injection
                                                                                 64
      5.3.4
              Section 395.00–400.00 m, test no. 1, pulse injection
                                                                                 64
      5.3.5
              Section 400.00–405.00 m, test no. 1, injection
                                                                                 65
                                                                                 65
      5.3.6
              Section 405.00–410.00 m, test no. 1, injection
              Section 410.00–415.00 m, test no. 1, injection
      5.3.7
                                                                                 66
      5.3.8
              Section 415.00-420.00 m, test no. 1, injection
                                                                                 66
      5.3.9
              Section 440.00–445.00 m, test no. 1, injection
                                                                                 67
      5.3.10 Section 445.00–450.00 m, test no. 1, injection
                                                                                 67
      5.3.11 Section 450.00–455.00 m, test no. 1, injection
                                                                                 68
      5.3.12 Section 455.00–460.00 m, test no. 1, injection
                                                                                 68
      5.3.13 Section 460.00–465.00 m, test no. 1, injection
                                                                                 69
      5.3.14 Section 465.00–470.00 m, test no. 1, injection
                                                                                 70
      5.3.15 Section 470.00–475.00 m, test no. 1, injection
                                                                                 70
      5.3.16 Section 475.00–480.00 m, test no. 1, injection
                                                                                 71
```

43

5.2.8

|     | 5 3 17 | Section 500.00–505.00 m, test no. 1, injection                              | 71               |
|-----|--------|-----------------------------------------------------------------------------|------------------|
|     |        | Section 505.00–510.00 m, test no. 1, injection                              | 72               |
|     |        | Section 510.00–515.00 m, test no. 1, injection                              | 72               |
|     |        | Section 515.00–520.00 m, test no. 1, injection                              | 73               |
|     |        | Section 620.00–625.00 m, test no. 1, injection                              | 73               |
|     |        |                                                                             |                  |
|     |        | Section 623.00–628.00 m, test no. 1, injection                              | 73               |
|     |        | Section 628.00–633.00 m, test no. 1, injection                              | 74               |
|     |        | Section 630.00–635.00 m, test no. 1, injection                              | 75<br>75         |
|     |        | Section 635.00–640.00 m, test no. 1, injection                              | 75               |
|     |        | Section 660.00–665.00 m, test no. 1, injection                              | 76               |
|     |        | Section 665.00–670.00 m, test no. 1, injection                              | 76               |
|     |        | Section 670.00–675.00 m, test no. 1, injection                              | 77               |
|     |        | Section 675.00–680.00 m, test no. 1, injection                              | 77               |
|     |        | Section 700.00–705.00 m, test no. 1, injection                              | 77               |
|     |        | Section 705.00–710.00 m, test no. 1, injection                              | 78<br><b>7</b> 8 |
|     |        | Section 710.00–715.00 m, test no. 1, injection                              | 78               |
|     |        | Section 715.00–720.00 m, test no. 1, injection                              | 79               |
|     |        | Section 720.00–725.00 m, test no. 1, injection                              | 79               |
|     |        | Section 725.00–730.00 m, test no. 1, injection                              | 79               |
|     |        | Section 730.00–735.00 m, test no. 1, injection                              | 80               |
|     |        | Section 735.00–740.00 m, test no. 1, injection                              | 80               |
|     |        | Section 740.00–745.00 m, test no. 1, pulse injection                        | 81               |
|     |        | Section 745.00–750.00 m, test no. 1, injection                              | 81               |
|     | 5.3.40 | Section 750.00–755.00 m, test no. 1, injection                              | 82               |
|     | 5.3.41 | Section 755.00–760.00 m, test no. 1, injection                              | 82               |
|     | 5.3.42 | Section 760.00–765.00 m, test no. 1, injection                              | 82               |
|     | 5.3.43 | Section 765.00–770.00 m, test no. 1, pulse injection                        | 83               |
|     | 5.3.44 | Section 770.00–775.00 m, test no. 1, injection                              | 83               |
|     |        | Section 775.00–780.00 m, test no. 1, injection                              | 84               |
|     | 5.3.46 | Section 780.00–785.00 m, test no. 1, pulse injection                        | 85               |
|     | 5.3.47 | Section 785.00–790.00 m, test no. 1, injection                              | 85               |
|     | 5.3.48 | Section 790.00–795.00 m, test no. 1, injection                              | 85               |
|     | 5.3.49 | Section 795.00–800.00 m, test no. 1, injection                              | 86               |
|     | 5.3.50 | Section 800.00–805.00 m, test no. 1, injection                              | 86               |
|     | 5.3.51 | Section 805.00–810.00 m, test no. 1, injection                              | 86               |
|     | 5.3.52 | Section 810.00–815.00 m, test no. 1, injection                              | 87               |
|     | 5.3.53 | Section 815.00–820.00 m, test no. 1, injection                              | 87               |
|     | 5.3.54 | Section 840.00–845.00 m, test no. 1, injection                              | 88               |
|     | 5.3.55 | Section 845.00–850.00 m, test no. 1, injection                              | 88               |
|     | 5.3.56 | Section 850.00–855.00 m, test no. 1, injection                              | 89               |
|     | 5.3.57 | Section 855.00–860.00 m, test no. 1, injection                              | 89               |
|     | 5.3.58 | Section 860.00–865.00 m, test no. 1, injection                              | 90               |
|     |        | Section 865.00–870.00 m, test no. 1, injection                              | 90               |
|     |        | Section 870.00–875.00 m, test no. 1, injection                              | 91               |
|     |        | Section 875.00–880.00 m, test no. 1, injection                              | 91               |
| 5.4 |        | packer injection test                                                       | 92               |
|     | 5.4.1  | Section 970.00–1,000.43 m, single packer, test no. 1, injection             | 92               |
| (   |        |                                                                             |                  |
| 6   |        | ary of results                                                              | 93               |
| 6.1 |        | al test data and results                                                    | 94               |
| 6.2 |        | ation analysis                                                              | 110              |
|     | 6.2.1  | 1 2                                                                         | 110              |
|     | 6.2.2  | Comparison between the matched and theoretical wellbore storage coefficient | 110              |
|     |        | storage coefficient                                                         | 110              |
|     |        |                                                                             |                  |

| 7<br>7.1<br>7.2<br>7.3 | Conclusions Transmissivity Equivalent freshwater head Flow regimes encountered | 113<br>113<br>113<br>113 |
|------------------------|--------------------------------------------------------------------------------|--------------------------|
| 8                      | References                                                                     | 115                      |
|                        | endices attached on CD                                                         |                          |
| Appe                   | ndix 1 File description table                                                  |                          |
| Appe                   | ndix 2 Test analyses diagrams                                                  |                          |
| Appe                   | ndix 3 Test summary sheets                                                     |                          |
|                        | ndix 4 Nomenclature<br>ndix 5 SICADA data tables                               |                          |

## 1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2006/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX15A between 12<sup>th</sup> and 28<sup>th</sup> of April 2007 following the methodology described in SKB MD 323.001e and in the activity plan AP PS 400-07-007 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA and are traceable by the activity plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX15A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX15A is situated in the Laxemar area approximately 4 km west of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from December 2006 to February 2007 at 1,000.43 m length with an inner diameter of 198 m to a depth of 76.03 m and further on of 76 mm to the bottom of the borehole. The inclination of the borehole is –54.42°. The upper 76.03 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 210 mm–323 mm. A cone casing is placed from 73.15 m to 77.58 m ranging from diameter (outer diameter) 84 mm–104 mm.

The work was carried out in accordance with activity plan AP PS 400-07-007. In Table 1-1 controlling documents for performing this activity are listed. Activity plan and method descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Table 1-1. Controlling documents for the performance of the activity.

| Activity plan                                                                   | Number           | Version |
|---------------------------------------------------------------------------------|------------------|---------|
| Hydraulic pumping and injection tests in borehole KLX15A                        | AP PS 400-07-007 | 1.0     |
| Method descriptions                                                             | Number           | Version |
| Hydraulic injection tests                                                       | SKB MD 323.001e  | 1.0     |
| Instruktion för rengöring av borrhålsutrustning och viss markbaserad utrustning | SKB MD 600.004   | 1.0     |
| Instruktion för längdkalibrering vid undersökningar i kärnborrhål               | SKB MD 620.010   | 1.0     |
| Allmäna ordning-, skydds- och miljöregler för platsundersökningar Oskarshamn    | SKB SDPO-003     | 1.0     |
| Miljökontrollprogram. Platsundersökningar                                       | SKB SDP-301      | 1.0     |
| Hantering av primärdata vid platsundersökningar                                 | SKB SDP-508      | 1.0     |
|                                                                                 |                  |         |

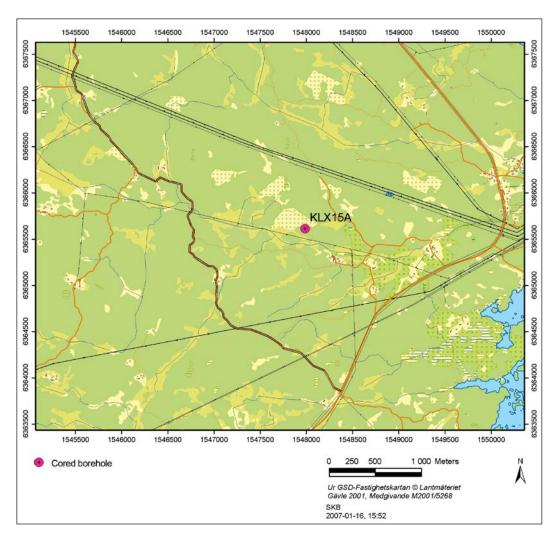



Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX15A.

# 2 Objective and scope

The objective of the hydrotests in borehole KLX15A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m, 20 m and 5 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m, 20 m and 5 m test sections, analyses and reporting. Furthermore, a single packer test was conducted at a depth of 970.00 m to the bottom of the hole. The used single packer tool consists of a 5 m section but the lower packer was not connected to the pressure lines and therefore not inflated.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 12th and 28th April 2007.

Between 480.00 m and 500.00 m, 520.00 m and 620.00 m, 640.00 m and 660.00 m, 680.00 m and 700.00 m, 820.00 m and 840.00 m and below of 880.00 m no 5 m tests were performed because the appropriate 20 m sections show a flow below measurement limit (1 mL/min). The position range of the 5 m tests were calculated for covering a true vertical depth of 300 m to 700 m with consideration of the borehole inclination of –54.42° and adapting to the next appropriate section limits of the 20 m sections.

#### 2.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 2-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the borehole at the ground surface. The borehole diameter in Table 2-2 refers to the final diameter of the drill bit after drilling to full depth.

Table 2-1. Performed injection tests at borehole KLX15A.

| No. of injection tests* | Interval | Positions         | Time/test | Total test time      |
|-------------------------|----------|-------------------|-----------|----------------------|
| 8                       | 100 m    | 80.00–880.00 m    | 125 min   | 16.7 hrs             |
| 45                      | 20 m     | 80.00–975.00 m    | 90 min    | 67.5 hrs             |
| 61                      | 5 m      | 380.00-880.00 m   | 90 min    | 91.5 hrs             |
| Single Packer** Total:  | 30.43 m  | 970.00–1,000.43 m | 90 min    | 1.5 hrs<br>177.2 hrs |

<sup>\*</sup> Excluding repeated tests.

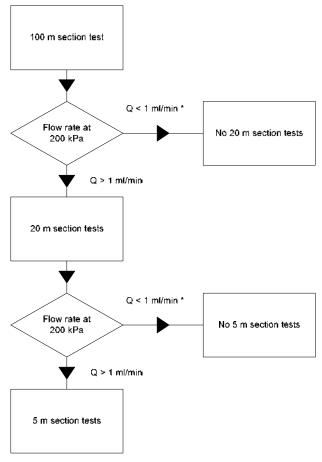

<sup>\*\*</sup> Conducted with a 5 m tool (bottom packer not inflated).

Table 2-2. Information about KLX15A (from SICADA 2007-03-28).

| Title                      | Value              |                     |                      |                       |                     |
|----------------------------|--------------------|---------------------|----------------------|-----------------------|---------------------|
| Old idcode name(s):        | KLX15A             |                     |                      |                       |                     |
| Comment:                   | No comment e       | xists               |                      |                       |                     |
| Borehole length (m):       | 1,000.43           |                     |                      |                       |                     |
| Reference level:           | TOC                |                     |                      |                       |                     |
| Reference level.           | 100                |                     |                      |                       |                     |
| Drilling period(s):        | From date          | To date             | Secup (m)            | Seclow (m)            | Drilling type       |
|                            | 2006-12-21         | 2006-12-29          | 0.30                 | 76.13                 | Percussion drilling |
|                            | 2007-01-17         | 2007-02-25          | 76.13                | 1,000.43              | Core drilling       |
| Starting point coordinate: | Length (m)         | Northing (m)        | Easting (m)          | Elevation (m.a.s.l.)  | Coord system        |
| (centerpoint of TOC)       | 0.00               | 6365614.168         | 1547987.466          | 14.590                | RT90-RHB70          |
| (contorpoint or 100)       | 3.00               | 6365612.516         | 1547986.903          | 12.150                | RT90-RHB70          |
|                            |                    |                     |                      |                       |                     |
| Angles:                    | Length (m)         | Bearing             | Inclination (- =     | down)                 |                     |
|                            | 0.000              | 198.8263            | -54.4246             |                       | RT90-RHB70          |
| Borehole diameter:         | Secup (m)          | Seclow (m)          | Hole diam (m)        |                       |                     |
|                            | 0.30               | 6.00                | 0.341                |                       |                     |
|                            | 6.00               | 11.65               | 0.233                |                       |                     |
|                            | 11.65              | 76.03               | 0.198                |                       |                     |
|                            | 76.03              | 76.13               | 0.165                |                       |                     |
|                            | 76.13              | 76.71               | 0.086                |                       |                     |
|                            | 76.71              | 77.58               | 0.086                |                       |                     |
|                            | 77.58              | 1,000.43            | 0.076                |                       |                     |
| Core diameter:             | Secup (m)          | Seclow (m)          | Core diam (m)        |                       |                     |
|                            | 76.13              | 76.71               | 0.072                |                       |                     |
|                            | 76.71              | 1,000.43            | 0.050                |                       |                     |
| Casing diameter:           | Secup (m)          | Seclow (m)          | Case in (m)          | Case out (m)          |                     |
| odding diameter.           | 0.00               | 76.03               | 0.200                | 0.210                 |                     |
|                            | 0.30               | 6.00                | 0.310                | 0.323                 |                     |
| Cone dimensions:           | Cooun (m)          | Coolow (m)          | Cono in (m)          | Cono out (m)          |                     |
| Corie dimensions.          | Secup (m)<br>73.15 | Seclow (m)<br>76.15 | Cone in (m)<br>0.100 | Cone out (m)<br>0.104 |                     |
|                            | 76.15<br>76.15     | 76.15<br>77.85      | 0.080                | 0.084                 |                     |
|                            | 70.15              | 77.65               | 0.060                | 0.004                 |                     |
| Grove milling:             | Length (m)         | Trace detectab      | le                   |                       |                     |
|                            | 100.000            | YES                 |                      |                       |                     |
|                            | 150.000            | YES                 |                      |                       |                     |
|                            | 200.000            | YES                 |                      |                       |                     |
|                            | 250.000            | YES                 |                      |                       |                     |
|                            | 300.000            | YES                 |                      |                       |                     |
|                            | 350.000            | YES                 |                      |                       |                     |
|                            | 400.000            | YES                 |                      |                       |                     |
|                            | 450.000            | YES                 |                      |                       |                     |
|                            | 500.000            | YES                 |                      |                       |                     |
|                            | 550.000            | YES                 |                      |                       |                     |
|                            | 600.000            | YES                 |                      |                       |                     |
|                            | 650.000            | YES                 |                      |                       |                     |
|                            | 700.000            | YES                 |                      |                       |                     |
|                            | 750.000            | YES                 |                      |                       |                     |
|                            | 800.000            | YES                 |                      |                       |                     |
|                            | 850.000            | YES                 |                      |                       |                     |
|                            | 900.000            | YES                 |                      |                       |                     |
|                            | 950.000            | YES                 |                      |                       |                     |
|                            | 980.000            | YES                 |                      |                       |                     |

# 2.2 Injection tests

Injection tests were conducted according to the Activity Plan AP PS 400-07-007 and the method description for hydraulic injection tests, SKB MD 323.001e (SKB internal documents). Tests were done in 100 m test sections between 80.00-880.00 m below ToC, in 20 m test sections between 80.00-975.00 m below ToC and in 5 m test sections between 380.00-880.00 m below ToC with the exception of the sections between 480.00 m-500.00 m, 520.00 m-620.00 m, 640.00 m-660.00 m, 680.00 m-700.00 m, 820.00 m-840.00 m and below of 880.00 m (see Table 2-3). The initial criteria for performing injection tests in 20 m and 5 m sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m and 20 m tests covering the smaller test sections (see Figure 2-1). An additional single packer test was performed from 970.00 m to the bottom of the borehole. The measurements were performed with SKBs custom made equipment for hydraulic testing called PSS2.



<sup>\*</sup> eventually tests performed after specific discussion with SKB

Figure 2-1. Flow chart for test sections.

Table 2-3. Tests performed.

| Bh ID  | Test section (m bToC) | Test type <sup>1)</sup> | Test no | Test start<br>Date, Time | Test stop<br>Date, Time |
|--------|-----------------------|-------------------------|---------|--------------------------|-------------------------|
| KLX15A | 80.00–180.00          | 3                       | 1       | 070412 07:48:00          | 070412 10:08:00         |
| KLX15A | 180.00-280.00         | 3                       | 1       | 070412 13:56:00          | 070412 16:07:00         |
| KLX15A | 280.00-380.00         | 3                       | 1       | 070412 17:54:00          | 070412 20:31:00         |
| KLX15A | 380.00-480.00         | 3                       | 1       | 070412 22:07:00          | 070412 23:57:00         |
| KLX15A | 480.00-580.00         | 3                       | 1       | 070413 06:20:00          | 070413 08:19:00         |
| KLX15A | 580.00-680.00         | 3                       | 1       | 070413 10:28:00          | 070413 12:19:00         |
| KLX15A | 680.00-780.00         | 3                       | 1       | 070413 15:02:00          | 070413 17:27:00         |
| KLX15A | 780.00-880.00         | 3                       | 1       | 070413 19:23:00          | 070413 21:53:00         |
| KLX15A | 80.00-100.00          | 3                       | 1       | 070414 19:23:00          | 070414 20:46:00         |
| KLX15A | 100.00-120.00         | 3                       | 1       | 070414 22:09:00          | 070414 23:32:00         |
| KLX15A | 120.00-140.00         | 3                       | 1       | 070415 00:09:00          | 070415 01:31:00         |
| KLX15A | 140.00-160.00         | 3                       | 1       | 070415 07:52:00          | 070415 09:21:00         |
| KLX15A | 160.00-180.00         | 3                       | 1       | 070415 10:15:00          | 070415 11:42:00         |
| KLX15A | 180.00-200.00         | 3                       | 1       | 070415 12:35:00          | 070415 14:01:00         |
| KLX15A | 200.00-220.00         | 3                       | 1       | 070415 14:59:00          | 070415 16:43:00         |
| KLX15A | 220.00-240.00         | 3                       | 1       | 070415 17:16:00          | 070415 19:09:00         |
| KLX15A | 240.00-260.00         | 3                       | 1       | 070415 19:47:00          | 070415 22:15:00         |
| KLX15A | 260.00-280.00         | 3                       | 1       | 070415 22:53:00          | 070416 00:21:00         |
| KLX15A | 280.00-300.00         | 3                       | 1       | 070416 00:56:00          | 070416 04:49:00         |
| KLX15A | 300.00-320.00         | 3                       | 1       | 070416 06:46:00          | 070416 07:39:00         |
| KLX15A | 320.00-340.00         | 4B                      | 1       | 070416 08:19:00          | 070416 10:26:00         |
| KLX15A | 340.00-360.00         | 3                       | 1       | 070416 11:08:00          | 070416 11:57:00         |
| KLX15A | 360.00-380.00         | 3                       | 1       | 070416 13:33:00          | 070416 15:03:00         |
| KLX15A | 380.00-400.00         | 3                       | 1       | 070416 15:49:00          | 070416 17:16:00         |
| KLX15A | 400.00-420.00         | 3                       | 1       | 070416 17:49:00          | 070416 19:13:00         |
| KLX15A | 420.00-440.00         | 3                       | 1       | 070416 19:51:00          | 070416 20:47:00         |
| KLX15A | 440.00-460.00         | 3                       | 1       | 070416 22:04:00          | 070416 23:37:00         |
| KLX15A | 460.00-480.00         | 3                       | 1       | 070417 00:11:00          | 070417 05:32:00         |
| KLX15A | 480.00-500.00         | 3                       | 1       | 070417 06:50:00          | 070417 07:38:00         |
| KLX15A | 500.00-520.00         | 3                       | 1       | 070417 08:22:00          | 070417 09:52:00         |
| KLX15A | 520.00-540.00         | 3                       | 1       | 070417 10:40:00          | 070417 11:29:00         |
| KLX15A | 540.00-560.00         | 3                       | 1       | 070417 13:13:00          | 070417 14:02:00         |
| KLX15A | 560.00-580.00         | 3                       | 1       | 070417 14:39:00          | 070417 15:28:00         |
| KLX15A | 580.00-600.00         | 3                       | 1       | 070417 16:09:00          | 070417 16:42:00         |
| KLX15A | 580.00-600.00         | 3                       | 2       | 070417 17:01:00          | 070417 17:56:00         |
| KLX15A | 600.00-620.00         | 3                       | 1       | 070417 18:29:00          | 070417 19:23:00         |
| KLX15A | 620.00-640.00         | 3                       | 1       | 070417 19:54:00          | 070417 21:59:00         |
| KLX15A | 640.00-660.00         | 4B                      | 1       | 070417 22:57:00          | 070417 23:59:00         |
| KLX15A | 660.00-680.00         | 4B                      | 1       | 070418 00:38:00          | 070418 05:25:00         |
| KLX15A | 680.00-700.00         | 3                       | 1       | 070418 06:55:00          | 070418 07:46:00         |
| KLX15A | 700.00–720.00         | 3                       | 1       | 070418 08:32:00          | 070418 10:34:00         |
| KLX15A | 720.00–740.00         | 3                       | 1       | 070418 11:25:00          | 070418 13:21:00         |
| KLX15A | 740.00–760.00         | 3                       | 1       | 070418 14:06:00          | 070418 16:13:00         |
| KLX15A | 760.00–780.00         | 3                       | 1       | 070418 16:45:00          | 070418 18:35:00         |
| KLX15A | 780.00–800.00         | 3                       | 1       | 070418 19:14:00          | 070418 22:09:00         |
| KLX15A | 800.00–820.00         | 3                       | 1       | 070418 23:25:00          | 070419 01:11:00         |
|        |                       | -                       | -       |                          |                         |

| Bh ID            | Test section<br>(m bToC)       | Test type <sup>1)</sup> | Test no | Test start<br>Date, Time           | Test stop<br>Date, Time |
|------------------|--------------------------------|-------------------------|---------|------------------------------------|-------------------------|
| KLX15A           | 840.00–860.00                  | 3                       | 1       | 070419 07:59:00                    | 070419 09:31:00         |
| KLX15A           | 860.00-880.00                  | 3                       | 1       | 070419 10:19:00                    | 070419 13:12:00         |
| KLX15A           | 880.00-900.00                  | 3                       | 1       | 070419 14:46:00                    | 070419 15:34:00         |
| KLX15A           | 900.00-920.00                  | 3                       | 1       | 070419 16:30:00                    | 070419 17:21:00         |
| KLX15A           | 920.00-940.00                  | 3                       | 1       | 070419 17:52:00                    | 070419 18:22:00         |
| KLX15A           | 940.00-960.00                  | 3                       | 1       | 070419 20:42:00                    | 070419 21:31:00         |
| KLX15A           | 955.00-975.00                  | 3                       | 1       | 070419 22:03:00                    | 070419 22:53:00         |
| KLX15A           | 380.00-385.00                  | 3                       | 1       | 070421 12:18:00                    | 070421 14:33:00         |
| KLX15A           | 385.00-390.00                  | 3                       | 1       | 070421 15:06:00                    | 070421 16:31:00         |
| KLX15A           | 390.00-395.00                  | 3                       | 1       | 070421 16:56:00                    | 070421 18:20:00         |
| KLX15A           | 395.00-400.00                  | 4B                      | 1       | 070421 18:45:00                    | 070421 20:28:00         |
| KLX15A           | 400.00-405.00                  | 3                       | 1       | 070421 21:08:00                    | 070421 22:31:00         |
| KLX15A           | 405.00-410.00                  | 3                       | 1       | 070421 22:58:00                    | 070421 23:47:00         |
| KLX15A           | 410.00-415.00                  | 3                       | 1       | 070422 00:11:00                    | 070422 01:33:00         |
| KLX15A           | 415.00-420.00                  | 3                       | 1       | 070422 06:38:00                    | 070422 07:26:00         |
| KLX15A           | 440.00–445.00                  | 3                       | 1       | 070422 08:18:00                    | 070422 10:14:00         |
| KLX15A           | 445.00–450.00                  | 3                       | 1       | 070422 10:48:00                    | 070422 11:37:00         |
| KLX15A           | 450.00–455.00                  | 3                       | 1       | 070422 13:05:00                    | 070422 14:33:00         |
| KLX15A           | 455.00–460.00                  | 3                       | 1       | 070422 15:03:00                    | 070422 16:45:00         |
| KLX15A           | 460.00-465.00                  | 3                       | 1       | 070422 17:10:00                    | 070422 18:37:00         |
| KLX15A           | 465.00-470.00                  | 3                       | 1       | 070422 17:10:00                    | 070422 20:50:00         |
| KLX15A           | 470.00–475.00                  | 3                       | 1       | 070422 13:02:00                    | 070422 23:12:00         |
| KLX15A           | 475.00–475.00                  | 3                       | 1       | 070422 23:36:00                    | 070423 00:24:00         |
| KLX15A           | 500.00-505.00                  | 3                       | 1       | 070423 00:58:00                    | 070423 00:24:00         |
| KLX15A           | 505.00-510.00                  | 3                       | 1       | 070423 06:34:00                    | 070423 02:17:00         |
| KLX15A           | 510.00–515.00                  | 3                       | 1       | 070423 07:57:00                    | 070423 07:25:00         |
| KLX15A<br>KLX15A | 515.00–520.00                  | 3                       | 1       | 070423 07:37:00                    | 070423 08:45:00         |
| KLX15A<br>KLX15A | 620.00–625.00                  | 3                       | 1       | 070423 13:19:00                    | 070423 10:03:00         |
| KLX15A<br>KLX15A | 623.00–628.00                  | 3                       | 1       | 070423 14:31:00                    | 070423 14:08:00         |
|                  |                                | 3                       | 1       | 070423 14:31:00                    | 070423 17:57:00         |
| KLX15A           | 628.00–633.00                  |                         | •       |                                    |                         |
| KLX15A           | 630.00–635.00                  | 3                       | 1       | 070423 18:21:00                    | 070423 19:41:00         |
| KLX15A           | 635.00–640.00<br>660.00–665.00 | 3                       | 1       | 070423 20:25:00<br>070423 22:41:00 | 070423 22:02:00         |
| KLX15A           |                                | 3                       | 1       |                                    | 070423 23:30:00         |
| KLX15A           | 665.00–670.00                  | 3                       | 1       | 070423 23:55:00                    | 070424 01:02:00         |
| KLX15A           | 670.00–675.00                  | 3                       | 1       | 070424 01:07:00                    | 070424 01:55:00         |
| KLX15A           | 675.00–680.00                  | 3                       | 1       | 070424 06:35:00                    | 070424 07:25:00         |
| KLX15A           | 700.00–705.00                  | 3                       | 1       | 070424 08:09:00                    | 070424 08:58:00         |
| KLX15A           | 705.00–710.00                  | 3                       | 1       | 070424 09:27:00                    | 070424 12:06:00         |
| KLX15A           | 710.00–715.00                  | 3                       | 1       | 070424 12:23:00                    | 070424 13:15:00         |
| KLX15A           | 715.00–720.00                  | 3                       | 1       | 070424 13:42:00                    | 070424 14:31:00         |
| KLX15A           | 720.00–725.00                  | 3                       | 1       | 070424 15:00:00                    | 070424 15:49:00         |
| KLX15A           | 725.00–730.00                  | 3                       | 1       | 070424 16:16:00                    | 070424 17:04:00         |
| KLX15A           | 730.00–735.00                  | 3                       | 1       | 070424 17:29:00                    | 070424 18:18:00         |
| KLX15A           | 735.00–740.00                  | 3                       | 1       | 070424 18:46:00                    | 070424 20:38:00         |
| KLX15A           | 740.00–745.00                  | 4B                      | 1       | 070424 21:17:00                    | 070424 23:09:00         |
| KLX15A           | 745.00–750.00                  | 3                       | 1       | 070424 23:35:00                    | 070425 00:24:00         |
| KLX15A           | 750.00–755.00                  | 3                       | 1       | 070425 00:48:00                    | 070425 01:37:00         |
| KLX15A           | 755.00–760.00                  | 3                       | 1       | 070425 06:31:00                    | 070425 07:20:00         |

| Bh ID  | Test section<br>(m bToC) | Test type <sup>1)</sup> | Test no | Test start<br>Date, Time | Test stop<br>Date, Time |
|--------|--------------------------|-------------------------|---------|--------------------------|-------------------------|
| KLX15A | 760.00–765.00            | 3                       | 1       | 070425 07:45:00          | 070425 08:33:00         |
| KLX15A | 765.00-770.00            | 4B                      | 1       | 070425 09:00:00          | 070425 10:53:00         |
| KLX15A | 770.00–775.00            | 3                       | 1       | 070425 13:20:00          | 070425 17:15:00         |
| KLX15A | 775.00–780.00            | 3                       | 1       | 070425 17:38:00          | 070425 19:01:00         |
| KLX15A | 780.00-785.00            | 4B                      | 1       | 070425 19:31:00          | 070425 21:08:00         |
| KLX15A | 785.00-790.00            | 3                       | 1       | 070425 21:31:00          | 070425 22:19:00         |
| KLX15A | 790.00-795.00            | 3                       | 1       | 070425 22:42:00          | 070426 00:12:00         |
| KLX15A | 795.00-800.00            | 3                       | 1       | 070426 00:40:00          | 070426 01:26:00         |
| KLX15A | 800.00-805.00            | 3                       | 1       | 070426 06:31:00          | 070426 07:20:00         |
| KLX15A | 805.00-810.00            | 3                       | 1       | 070426 12:24:00          | 070426 13:13:00         |
| KLX15A | 810.00-815.00            | 3                       | 1       | 070426 13:40:00          | 070426 15:11:00         |
| KLX15A | 815.00-820.00            | 3                       | 1       | 070426 15:35:00          | 070426 16:24:00         |
| KLX15A | 840.00-845.00            | 3                       | 1       | 070426 17:00:00          | 070426 18:41:00         |
| KLX15A | 845.00-850.00            | 3                       | 1       | 070426 19:05:00          | 070426 20:28:00         |
| KLX15A | 850.00-855.00            | 3                       | 1       | 070426 21:12:00          | 070426 22:01:00         |
| KLX15A | 855.00-860.00            | 3                       | 1       | 070426 22:24:00          | 070426 23:47:00         |
| KLX15A | 860.00-865.00            | 3                       | 1       | 070427 00:09:00          | 070427 01:16:00         |
| KLX15A | 865.00-870.00            | 3                       | 1       | 070427 01:20:00          | 070427 03:30:00         |
| KLX15A | 870.00-875.00            | 3                       | 1       | 070427 06:28:00          | 070427 07:17:00         |
| KLX15A | 875.00-880.00            | 3                       | 1       | 070427 07:43:00          | 070427 08:23:00         |
| KLX15A | 970.00-1,000.43          | 3                       | 1       | 070428 10:58:00          | 070428 13:52:00         |

<sup>1) 3:</sup> Injection test; 4B Pulse injection test.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX15A were conducted.

# 2.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101-123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in respectively prior to every test performance.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

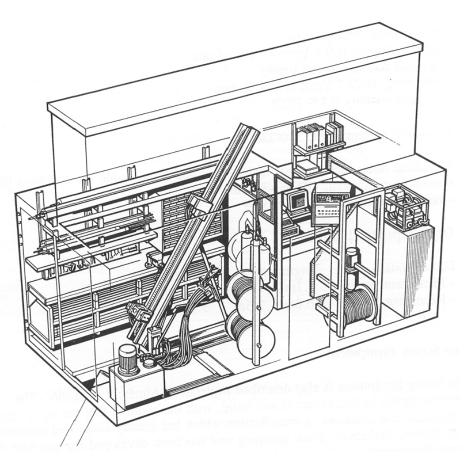
# 3 Equipment

# 3.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc. shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1–6.



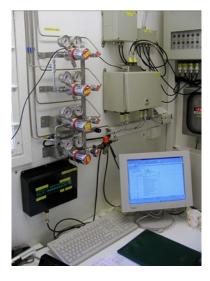


Figure 3-1. A view of the layout and equipment of PSS2.



Photo 1. Hydraulic rig.



**Photo 2.** Rack for pump, down-hole equipment, workbench and drawers for tools.



**Photo 3.** Computer room, displays and gas regulators.



**Photo 4.** Pressure vessels for test valve, packers and injection.



**Photo 5.** Positioner, bottom end of down-in-hole string.



Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1,5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3 kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below and
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 ( $\pm$  1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 3-2.

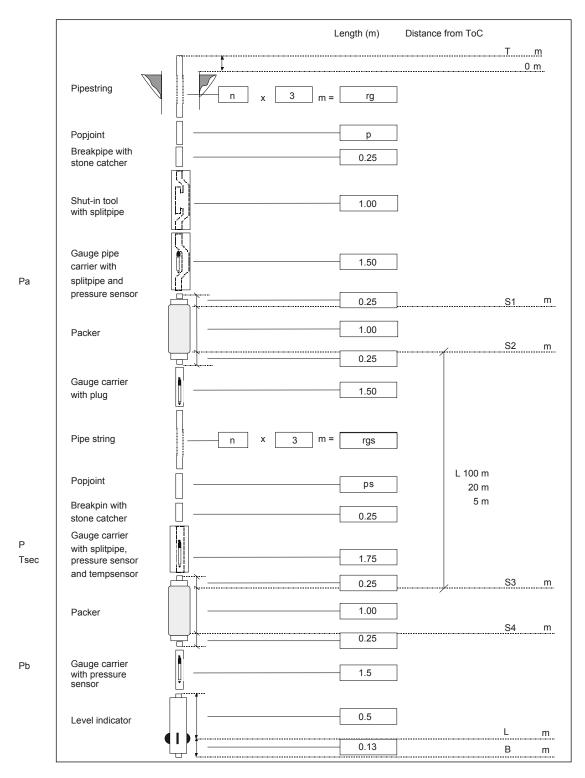
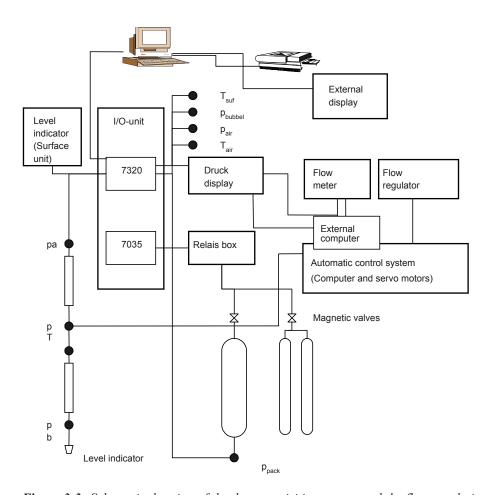



Figure 3-2. Schematic drawing of the down-hole equipment in the PSS2 system.

# 3.2 Sensors

Table 3-1. Technical specifications of sensors.

| Keyword                         | Sensor          | Name                         | Value/range                     | Unit                        | Comments          |
|---------------------------------|-----------------|------------------------------|---------------------------------|-----------------------------|-------------------|
| P <sub>sec,a,b</sub>            | Pressure        | Druck PTX<br>162-1464abs     | 9–30<br>4–20<br>0–13.5<br>± 0.1 | VDC<br>mA<br>MPa<br>% of FS |                   |
| $T_{sec,surf,air}$              | Temperature     | BGI                          | 18–24<br>4–20<br>0–32<br>± 0.1  | VDC<br>mA<br>°C<br>°C       |                   |
| $\mathbf{Q}_{\text{big}}$       | Flow            | Micro motion<br>Elite sensor | 0–100<br>± 0.1                  | kg/min<br>%                 | Massflow          |
| $\boldsymbol{Q}_{\text{small}}$ | Flow            | Micro motion<br>Elite sensor | 0–1.8<br>± 0.1                  | kg/min<br>%                 | Massflow          |
| P <sub>air</sub>                | Pressure        | Druck PTX 630                | 9–30<br>4–20<br>0–120<br>± 0.1  | VDC<br>mA<br>KPa<br>% of FS |                   |
| P <sub>pack</sub>               | Pressure        | Druck PTX 630                | 9–30<br>4–20<br>0–4<br>± 0.1    | VDC<br>mA<br>MPa<br>% of FS |                   |
| $p_{\text{in,out}}$             | Pressure        | Druck PTX 1400               | 9–28<br>4–20<br>0–2.5<br>± 0.15 | VDC<br>mA<br>MPa<br>% of FS |                   |
| L                               | Level indicator |                              |                                 |                             | Length correction |


Table 3-2. Sensor positions and wellbore storage (WBS) controlling factors.

| Borehole i | nformation       | Senso               | ors                        | Equipment af | fecting WBS co | efficient                 |                                                |
|------------|------------------|---------------------|----------------------------|--------------|----------------|---------------------------|------------------------------------------------|
| ID         | Test section (m) | Type                | Position<br>(m fr ToC)     | Position     | Function       | Outer<br>diameter<br>(mm) | Net water<br>volume in<br>test section<br>(m³) |
| KLX15A     | 80.00-180.00     | p <sub>a</sub>      | 78.00                      | Test section | Signal cable   | 9.1                       |                                                |
|            |                  | p<br>T              | 179.13<br>178.96           |              | Pump string    | 33                        | 0.359                                          |
|            |                  | p <sub>b</sub><br>L | 182.00<br>183.25           |              | Packer line    | 6                         |                                                |
| KLX15A     | 80.00-100.00     | p <sub>a</sub>      | 78.00                      | Test section | Signal cable   | 9.1                       |                                                |
|            |                  | p                   | 99.13                      |              | Pump string    | 33                        | 0.072                                          |
|            |                  | T<br>p₅<br>L        | 98.96<br>102.00<br>103.25  |              | Packer line    | 6                         |                                                |
| KLX15A     | 380.00-385.00    | p <sub>a</sub>      | 378.00                     | Test section | Signal cable   | 9.1                       |                                                |
|            |                  | p<br>T              | 384.13<br>383.96           |              | Pump string    | 33                        | 0.018                                          |
|            |                  | p <sub>b</sub><br>L | 387.00<br>388.25           |              | Packer line    | 6                         |                                                |
| KLX15A     | 970.00-1,000.43  | p <sub>a</sub>      | 968.00                     | Test section | Signal cable   | 9.1                       |                                                |
|            |                  | p<br>T              | 974.13                     |              | Pump string    | 33                        | 0.109                                          |
|            |                  | ı<br>p₅<br>L        | 973.96<br>977.00<br>978.25 |              | Packer line    | 6                         |                                                |

# 3.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 3-3.



*Figure 3-3.* Schematic drawing of the data acquisition system and the flow regulation control system in PSS2.

#### 4 Execution

## 4.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and disinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling injection tank with water out of the borehole HLX14.
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

## 4.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of these groves are given by SKB in the activity plan (see Table 2-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the test sections to avoid wrong placements and minimize elongation effects of the test string.

#### 4.3 Execution of field work

#### 4.3.1 Test principle

The test design consisted of a preliminary pulse injection test (Pi) conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Regularly the CHi and CHir phases were analysed quantitatively, in cases of very low section transmissivity, the Pi phase was analysed.

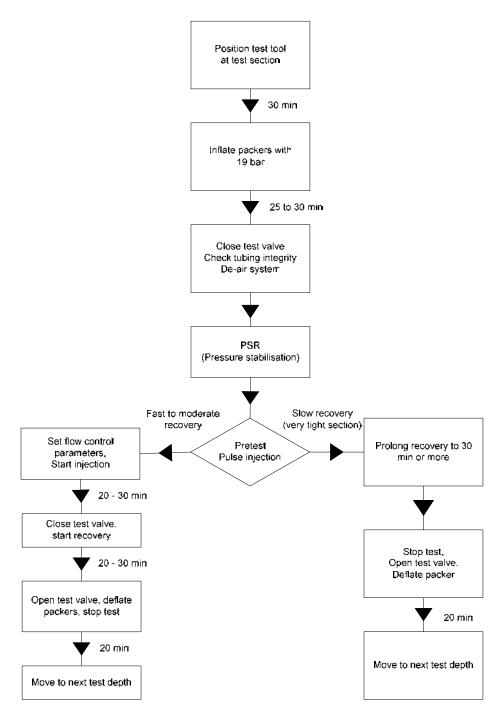



Figure 4-1. Flow chart for test performance.

#### 4.3.2 Test procedure

A typical test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Preliminary Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation.

The preliminary pulse injection (Step 4) derives the first estimations of the formation transmissivity. It is conducted by applying a pressure difference of approx. 200 kPa to the static formation pressure. If the pulse recovery indicates a very low transmissivity (flow probably below 1 mL/min) the pulse recovery is prolonged and no constant head injection test is performed. The decision to continue the pulse or to conduct an injection test is based on the pressure response of the pulse recovery. A pressure recovery less than 50 % during the first ten minutes of the pulse indicates a low transmissivity. In such a case no injection test will be conducted.

The pressure static recovery (PSR) after packer inflation and before the pulse gives a direct measure of the magnitude of the packer compliance. A steep PSR indicates extremely low test section transmissivity. In such a case the packer compliance would influence the subsequent pulse test too much and introduce very large uncertainties. Therfore tests with this behaviour would be stopped after PSR phase.

If the preliminary pulse injection test indicates a formation transmissivity with a flow above 1 mL/min a constant head injection test (Step 5 and 6) is carried out. It is applied with a constant injection pressure of approx. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section is measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually (determined by the preliminary pulse injection). In those cases, the constant difference pressure was usually unequal but close to 200 kPa.

In cases when the derived transmissivity of a test section influences the subsequent test program the constant head injection was conducted even if the preliminary pulse indicates a very tight section (e.g. flow below 1 mL/min). The injection phase is then performed to verify the results of the pulse.

The duration for each phase is presented in Table 4-1.

Table 4-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation.

| Step | Phase                                                                                                        | Time            |
|------|--------------------------------------------------------------------------------------------------------------|-----------------|
| 1    | <ul> <li>Position test tool to new test section (correct position using the<br/>borehole markers)</li> </ul> | Approx. 30 min. |
| 2    | <ul> <li>Inflate packers with appr. 1,900 kPa</li> </ul>                                                     | 25 min.         |
| 3    | Close test valve                                                                                             | 10 min.         |
|      | <ul> <li>Check tubing integrity with appr. 800 kPa</li> </ul>                                                | 5 min.          |
|      | De-air system                                                                                                | 2 min.          |
| 4    | <ul> <li>Pretest, pulse injection (duration depends on the formation transmissivity)</li> </ul>              | _               |
| 5*   | Set automatic flow control parameters or setting for manual test                                             | 5 min.          |
|      | Start injection                                                                                              | 20 to 30 min.   |
| 6*   | Close test valve, start recovery                                                                             | 20 min. or more |
|      | Open test valve                                                                                              | 10 min.         |
| 7    | Deflate packers                                                                                              | 25 min.         |
|      | Move to next test depth                                                                                      | _               |

<sup>\*</sup> Step 5 and 6 conducted if the preliminary pulse indicates a formation transmissivity with a sufficient flow.

# 4.4 Data handling/post processing

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (\*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The \*.ht2 files were processed to \*.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The \*.dat files were synthesised in Excel to a \*.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in \*.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for consistency reviews.

## 4.5 Analyses and interpretations

#### 4.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

### 4.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the Jacob-Lohman method /Jacob and Loman 1952/ was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986/ and /Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Pulse tests are analysed by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakrabarty and Enachescu 1997/.

#### 4.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

#### • Injection Tests

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition Horner plot; /Horner 1951/). In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

#### • Pre-test for the Injection Tests

The test cycle always starts with a pulse injection phase with the aim of deriving a first estimation of the formation transmissivity. In cases when the pulse recovery is low (indicating low transmissivity) the pulse phase is extended and analysed as the main phase for the test.

The transmissivity derived from a pulse test is strongly influenced by the wellbore storage coefficient used as an input in the analysis. The wellbore storage coefficient is calculated as C = dV/dP where dV is the volume difference injected during the brief flow period of the pulse and dP is the initial pressure difference of the pulse. dV is directly measured either by using the flowmeter readings or water level measurements in the injection vessel.

It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 4-2 below shows an example of a typical pressure versus time evolution for such a tight section.

• Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An example of type curves is presented in Figure 4-3.

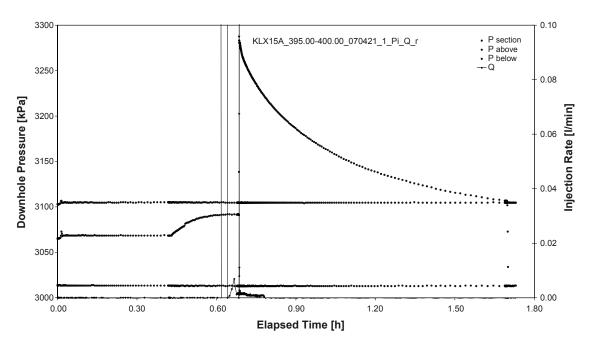



Figure 4-2. Typical pressure versus time plot of a Pulse injection test.

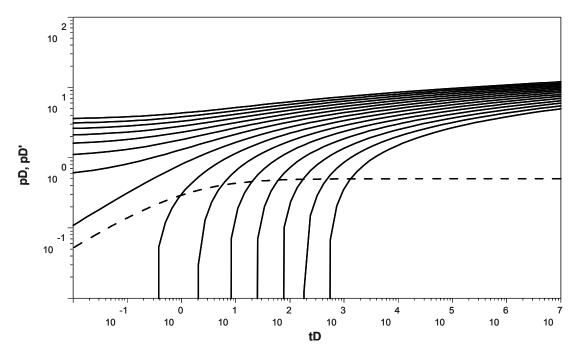



Figure 4-3. Deconvolution type curve set for pulse test analysis.

#### 4.5.4 Correlation between storativity and skin factor

For the analysis of the conducted hydraulic tests below 100 m depth a storativity of  $1 \cdot 10^{-6}$  and for hydraulic tests above 100 m a storativity of  $1 \cdot 10^{-3}$  is assumed (SKB MD 320.004e). Based on this assumption the skin will be calculated. In the following the correlation between storativity and skin for the relevant test phases will be explained in greater detail.

#### • Injection phase (CHi) / Pulse tests (Pi)

Due to the fact that the early time data of the CHi and Pi phases, respectively, is not available or too noisy (attributed to the automatic regulation system) the storativity and the skin factor become correlated. Consequently they cannot be solved independently any more. In this case as a result of the analysis one determines the correlation group  $e^{2\xi}/S$ . This means that in such cases the skin factor can only be calculated when assuming the storativity as known.

#### Recovery phase (CHir)

The wellbore storage coefficient (C) is determined by matching the early time data with the corresponding type curve. The derived C-value is introduced in the equation of the type curve parameter:

$$(C_D e^{2\xi})_M = \frac{C \rho g}{2\pi r_w^2 S} e^{2\xi}$$

The equation above has two unknowns, the storativity (S) and the skin factor ( $\xi$ ) which expresses the fact that for the case of constant rate and pressure recovery tests the storativity and the skin factor are 100% correlated. Therefore, the equation can only be either solved for skin by assuming that the storativity is known or solved for storativity by assuming the skin as known.

# 4.5.5 Determination of the ri-index and calculation of the radius of influence (ri)

The analysis provides also the radius of influence and the ri-index, which describes the late time behaviour of the derivative.

#### Ri-index

The determination of the ri-index is based on the shape of the derivative plotted in log-log coordinates and describes the behaviour of the derivative after the time  $t_2$ , representing the end of the near wellbore response. The ri-index also describes the flow regime at the end of the test. Following ri-indices can be assigned:

- ri-index = 0: The middle and late time derivative shows a horizontal stabilization. This pressure response indicates that the size of the hydraulic feature is greater than the radius of influence. The calculated radius of influence is based on the entire test time t<sub>P</sub>.
- ri-index = 1: The derivative shows an upward trend at late times, indicating a decrease of transmissivity or a barrier boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t<sub>2</sub>.
- ri-index = -1: The derivative shows a downward trend at late times, indicating an increase of transmissivity or a constant head boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t<sub>2</sub>.

Figure 4-4 presents the relationship between the shape of derivative and the ri-index.

If no radial flow stabilization can be observed the ri-index is based on the flow regime at the end of the test: i.e. ri-index = 1 for tests with a derivative showing an upward trend at the end and a ri-index = -1 for tests with a derivative showing a downward trend. In such cases the calculated radius of influence is based on the entire test time  $t_P$ .

The assignment of the ri-index is based on /Rhen 2005/.

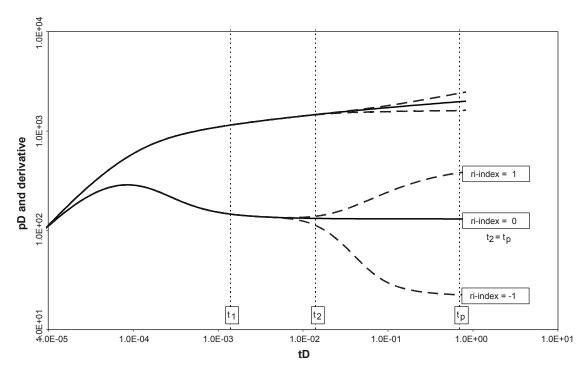



Figure 4-4. Schematic plot of the assignments for the ri-indices.

#### Calculation of the radius of influence

The radius of influence (ri) is calculated as follows:

$$ri = 1.89 * \sqrt{\frac{T_T}{S_T} * t_2}$$
 [m]

 $T_T$  recommended inner zone transmissivity [m<sup>2</sup>/s]

- t<sub>2</sub> time when hydraulic formation properties changes (see previous chapter) [s]
- $S_T$  for the calculation of the ri the storage coefficient (S) is estimated from the transmissivity /Rhen et al. 2006/:

$$S_T = 0.0007 * T_T^{0.5} [-]$$

#### 4.5.6 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

### 4.5.7 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, a radial flow regime was assumed as the most simple flow model available. The value of p\* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

# 4.5.8 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p\*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred,
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p\*), corrected for atmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drill hole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 4-5 shows the methodology schematically.

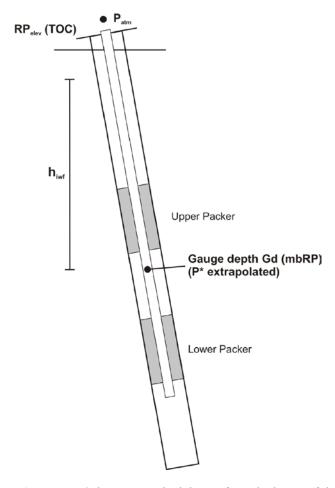



Figure 4-5. Schematic methodologies for calculation of the freshwater head.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p * - p_{atm})}{\rho \cdot g}$$

which is the p\* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head  $h_{iwf}$  is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p*-p_{alm})}{\rho \cdot g}.$$

# 4.5.9 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality, was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

#### 4.6 Nonconformities

After performing the 100 m test sections it was observed that the level indicator gives no signal any more by passing the grove millings when running in for the 20 m and 5 m section tests. As the relevant correction values were already documented from the 100 m section tests, these correction values were used for the 20 m and 5 m section tests accordingly.

Malfunctions of the pressure transducer at position Pa (pressure above test section) and of the temperature sensor were observed. As these values are of minor importance for the evaluation of the performed injection tests, it was agreed by SKB to proceed with the testing programme.

## 5 Results

In the following, results of all tests are presented and analysed. Section 5.1 present the 100 m tests, 5.2 the 20 m tests, 5.3 the 5 m tests and 5.4 the single packer test. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 6-1 and 6-2 of the Summary chapter. In addition, the results are presented in Appendices 3 and 5.

The results are stored in the primary data base (SICADA). The SICADA data base contains data that will be used for further interpretation (modelling). The data are traceable in SICADA by the Activity plan number (AP PS 400-07-007; SKB controlling document).

# 5.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX15A are presented and analysed.

#### 5.1.1 Section 80.00-180.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 36 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 54.4 L/min at start of the CHi phase to 26.5 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows relatively fast recovery, but it is still amenable for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a derivative with a horizontal stabilization at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. Due to the fast recovery the derivative is not very conclusive. For the analysis of the CHir phase a homogeneous radial flow model with wellbore storage and skin was chosen. The analysis is presented in Appendix 2-1.

#### Selected representative parameters

The recommended transmissivity of  $7.7\cdot10^{-5}$  m²/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0\cdot10^{-5}$  m²/s to  $3.0\cdot10^{-4}$  m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 1,407.6 kPa.

Both phases show a good consistency. No further analysis is recommended.

#### 5.1.2 Section 180.00–280.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a relatively high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted with a pressure difference of 201 kPa. No hydraulic connection to the adjacent sections was observed during the CHi phase. The injection rate decreased from 26.4 L/min at start of the CHi phase to 7.7 L/min at the end, indicating a relatively high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilization at middle times, followed by a downward trend at late times, indicating an increase of transmissivity at some distance from the borehole. The CHi phase was analysed using a radial composite flow model. The CHir phase shows a unit downward trend at middles times indicating a positive skin, followed by a slight horizontal stabilisation at late times. For the analysis of the CHir phase a homogeneous radial flow model with wellbore storage and skin was chosen. This homogeneous model with positive skin is consistent with the composite model used for the CHi phase. The analysis is presented in Appendix 2-2.

#### Selected representative parameters

The recommended transmissivity of  $1.4 \cdot 10^{-5}$  m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-6}$  m²/s to  $3.0 \cdot 10^{-5}$  m²/s. The flow dimension displayed during the test was 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,157.8 kPa.

The analysis of the CHi and CHir phases shows good consistency. No further analysis is recommended.

## 5.1.3 Section 280.00-380.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate to low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 22 mL/min at start of the CHi phase to 17 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). After the oscillations the regulation unit worked well. However, the recorded flow rate is noisy. The CHir phase shows no problems and is adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relative flat derivative at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a downward trend at middle and late times. This is indicative for a transition from wellbore storage and skin dominated flow to pure formation flow. The CHir phase was analysed using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-3.

#### Selected representative parameters

The recommended transmissivity of  $1.9 \cdot 10^{-8}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows a horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-9}$  m<sup>2</sup>/s to  $6.0 \cdot 10^{-8}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,916.3 kPa.

Apart from the high positive skin derived from the CHir phase, the analyses of both phases show consistency. No further analysis is recommended.

#### 5.1.4 Section 380.00–480.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a high to moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.82 L/min at start of the CHi phase to 1.92 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a clear horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. Similar to the CHi phase, the CHir phase shows a horizontal derivative at middle times. The CHir phase was analysed using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-4.

#### Selected representative parameters

The recommended transmissivity of  $2.8\cdot10^{-6}$  m²/s was derived from the analysis of the CHir phase, because it shows the best derivative stabilisation. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-5}$  m²/s to  $5.0\cdot10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,657.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

#### 5.1.5 Section 480.00-580.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 18 mL/min at start of the CHi phase to 14 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The regulation unit worked well, but the recorded flow rate is noisy. The CHir phase recovered very fast, which adds uncertainty to the derivative analysis. The results should be regarded as order of magnitude only.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative. However, the CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a steep downward trend at middle times, which is consistent with a relative high positive skin factor. The late time derivative is not very conclusive. The CHir phase was matched using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-5.

#### Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-7}$  m²/s was derived from the analysis of the CHi phase, which shows the slight better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0 \cdot 10^{-8}$  m²/s to  $7.0 \cdot 10^{-7}$  m²/s. The flow dimension is assumed to be 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.403.1 kPa.

No further analysis is recommended.

#### 5.1.6 Section 580.00-680.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 2.81 L/min at start of the CHi phase to 0.82 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an downward slope at middle times and a slight horizontal stabilisation at late times, indicating an increase of transmissivity

at some distance from the borehole. With the exception of the slight stabilisation at late times, the derivative of the CHir phase is consistent to the CHi phase. Therefore a two shell composite radial flow model for the CHi phase and a composite radial flow model with wellbore storage and skin for the analysis of the CHir phase were chosen. The analysis is presented in Appendix 2-6.

## Selected representative parameters

The recommended transmissivity of  $1.5 \cdot 10^{-7}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-7}$  m²/s to  $3.0 \cdot 10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.145.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.1.7 Section 680.00–780.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate to low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 79 mL/min at start of the CHi phase to 31 mL/min at the end, indicating a middle to low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a derivative with an upward slope at middle and late times. The CHi phase was analysed using a two shell composite radial flow model with a decreasing transmissivity at some distance to the borehole. The CHir phase shows a horizontal stabilisation at early times followed by an upward trend at middle and late times times. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-7.

### Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-8}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-9}$  m<sup>2</sup>/s to  $5.0 \cdot 10^{-8}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, could not be extrapolated from the CHir phase due to the very low outer zone transmissivity.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.1.8 Section 780.00–880.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate to low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 196 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 71 mL/min at start of the CHi phase to 39 mL/min at the end, indicating a middle to low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy but shows a horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model with. The late derivative of the CHir phase is consistent with the CHi phase. It shows a horizontal stabilisation, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-8.

## Selected representative parameters

The recommended transmissivity of  $3.7\cdot10^{-8}$  m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-8}$  m²/s to  $8.0\cdot10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6,601.3 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

# 5.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX15A are presented and analysed.

## 5.2.1 Section 80.00-100.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, from 5.23 L/min at start of the CHi phase to 3.19 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilisation at early and middle times and a downward trend without horizontal stabilisation at late times. The Chi phase was matched using a radial flow composite model. The derivative of the CHir phase is consistent with the CHi derivative, with the exception of a continuously downward trend at late times. A radial composite flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-9.

## Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase (inner zone), which shows the best horizontal stabilisation and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-7}$  m<sup>2</sup>/s to  $8.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 801.0 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.2 Section 100.00–120.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 4.1 L/min at start of the CHi phase to 2.94 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward slope at middle times, which finally tends to horizontal stabilisation at late time. The CHi phase was analysed using a radial flow composite model with an increasing transmissivity at some distance of the borehole. The behaviour of the CHir phase is consistent with the CHi phase, but the clear horizontal stabilisation is not visible. A radial composite flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-10.

### Selected representative parameters

The recommended transmissivity of  $4.1 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-6}$  m<sup>2</sup>/s to  $2.0 \cdot 10^{-5}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 950.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.3 Section 120.00-140.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 32 kPa. A hydraulic connection between test interval and bottom zone (the pressure rose by 4 kPa) was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 44.3 L/min at start of the CHi phase to 25.9 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The shunt valve was adjusted during the injection phase to control the pressure in the regulation system. Because of this the regulation unit was not able to maintain stable flow conditions. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative and does not allow flow model identification. The CHi phase was analysed using a homogenous radial flow model. However, the CHir phase shows a horizontal stabilisation at middle times and an upward trend at late times, which is typical for a change of transmissivity away from the borehole. A two shell composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-11.

### Selected representative parameters

The recommended transmissivity of  $1.1\cdot10^{-4}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $3.0\cdot10^{-5}$  m²/s to  $3.0\cdot10^{-4}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,105.9 kPa.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the poor data quality of the CHi phase. However, regarding the derived transmissivities both phases show relatively good consistency. No further analysis is recommended.

## 5.2.4 Section 140.00-160.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.9 L/min at start of the CHi phase to 2.7 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward slope at middle times, which a horizontal stabilisation at late time. The CHi phase was analysed using a radial flow composite model with an increasing transmissivity at some distance of the borehole. The derivative of the CHir phase is consistent with the CHi derivative. A radial composite flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-12.

## Selected representative parameters

The recommended transmissivity of  $3.6 \cdot 10^{-6}$  m²/s was derived from the analysis of the CHi phase (outer zone), which shows a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-7}$  m²/s to  $3.0 \cdot 10^{-5}$  m²/s, which encompasses the derived outer and inner zone transmissivities of the CHi and CHir phases. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,256.9 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.5 Section 160.00–180.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate to low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 0.16 L/min at start of the CHi phase to 0.11 L/min at the end, indicating a medium to low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is quite noisy throughout the test phase. An average of the derivative can be considered as horizontal stabilisation, indicating radial flow. The CHi phase was analysed using a homogeneous radial flow model. The derivative of the CHir phase shows wellbore storage and skin dominated flow without reaching horizontal stabilisation. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-13.

### Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-7}$  m²/s was derived from the analysis of the CHi phase, which shows the best horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $7.0\cdot10^{-8}$  m²/s to  $6.0\cdot10^{-7}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,408.5 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.6 Section 180.00-200.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 2.46 L/min at start of the CHi phase to 0.97 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). At middle and late times the regulation unit functioned well, but the recorded data is noisy. The CHir phase recovered very fast, which influences the quality of the early time data.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward slope at middle times. At late times the derivative is noisy, but trends to horizontal stabilisation indicating radial flow. The CHi phase was analysed using a radial composite flow model with increasing transmissivity at some distance from the borehole. The derivative was matched using a homogeneous radial flow model with wellbore storage and skin, which is consistent with the high positive skin factor. The analysis is presented in Appendix 2-14.

### Selected representative parameters

The recommended transmissivity of  $1.6\cdot10^{-6}$  m²/s was derived from the analysis of the CHi phase (outer zone), which shows a better horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $2.0\cdot10^{-7}$  m²/s to  $5.0\cdot10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,561.9 kPa.

The analyses of the CHi and CHir phases show inconsistency, concerning the chosen flow models. If further analysis is planned, a total test simulation should help to solve the inconsistency.

## 5.2.7 Section 200.00-220.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is a bit noisy, due to the low flow rates, but shows a horizontal stabilisation, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a downward trend at late times and is still influenced by wellbore storage and skin dominated flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-15.

## Selected representative parameters

The recommended transmissivity of  $2.6 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows a horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  m<sup>2</sup>/s to  $5.0 \cdot 10^{-9}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,700.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.8 Section 220.00-240.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 14 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward slope at early and middle times and tends to horizontal stabilisation at late times. The CHi phase was analysed using a two shell composite radial flow model with an increasing transmissivity at some distance to the borehole. Similar to the CHi phase, the CHir phase shows a downward trend at middle times but no clear horizontal stabilisation at late times. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-16.

### Selected representative parameters

The recommended transmissivity of  $5.5 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHi phase (outer zone), which shows a slight horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-10}$  m²/s to  $7.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,847.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.9 Section 240.00-260.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 196 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 9 mL/min at start of the CHi phase to 2 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the derivative of the CHi phase is very noisy and the results should be regarded as an order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is quite noisy throughout the test phase. Therefore the derivative analysis did not allow flow model identification. However, the CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a continuous downward trend at middle and late times. This is indicative for a transition from wellbore storage and skin dominated flow to pure formation flow. The CHir phase was analysed using a homogenous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-17.

### Selected representative parameters

The recommended transmissivity of  $3.6 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows a better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  m²/s to  $5.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,006.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.10 Section 260.00-280.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 292 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 30.9 L/min at start of the CHi phase to 9.5 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase shows a downward slope at middle and late times and does not reach horizontal stabilisation. The CHi phase was analysed using a two shell composite radial flow model with an increasing transmissivity at some distance to the borehole. The pressure response of the CHir phase shows a continuous downward trend at middle and late times, which is indicative for the transition from wellbore storage and skin dominated flow to pure formation flow. A homogenous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-18.

## Selected representative parameters

The recommended transmissivity of  $1.1\cdot10^{-5}$  m²/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-06}$  m²/s to  $3.0\cdot10^{-05}$  m²/s. A flow dimension of 2 was assumed for the test. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,159.2 kPa.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency is attributed to the positive skin used for the analysis of the CHir phase. No further analysis is recommended.

## 5.2.11 Section 280.00-300.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 10 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The regulation unit worked well. However, the recorded flow data is noisy. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy but shows a clear horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using a homogeneous radial flow model. The derivative of the CHir phase shows an upward trend at middle and late times and is still influenced by near wellbore properties, like wellbore storage and skin. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-19.

### Selected representative parameters

The recommended transmissivity of  $3.4\cdot10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows the best horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-10}$  m<sup>2</sup>/s to  $3.0\cdot10^{-09}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,301.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.12 Section 300.00-320.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 15 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-20.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.13 Section 320.00-340.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 5 kPa within 15 min. During the brief injection phase of the pulse injection a total volume of about 5.9 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 211 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $4.5 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

### Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a slight horizontal stabilisation at middle times with an upward slope, indicating a decrease of transmissivity at some distance to the borehole. The PI phase was analysed using a composite model with radial flow. The analysis is presented in Appendix 2-21.

### Selected representative parameters

The recommended transmissivity of  $4.4 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-10}$  to  $8.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The analysis was conducted using a flow dimension of 2.

## 5.2.14 Section 340.00-360.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 14 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-22.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.15 Section 360.00-380.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 30 mL/min at start of the CHi phase to 20 mL/min at the end, indicating a medium to low interval transmissivity (consistent with the pulse recovery). The Chi phase is noisy, but still adequate for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

### Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the derivative of the CHi phase is noisy but shows a trend of horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogenous radial flow model. The derivative of the CHir phase shows a downward trend at middle and late, without reaching clear horizontal stabilisation. A homogenous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-23.

## Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-8}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows a slight horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-09}$  m<sup>2</sup>/s to  $8.0 \cdot 10^{-08}$  m<sup>2</sup>/s. A flow dimension of 2 was assumed for the test. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,918.2 kPa.

The analyses of the CHi and CHir phases show good consistency, with the exception of the high skin derived from the CHir phase. No further analysis is recommended.

## 5.2.16 Section 380.00-400.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 222 kPa. A hydraulic connection between test interval and bottom zone (the pressure rose by 8 kPa) was observed. The injection rate decreased from 2.5 L/min at start of the CHi phase to 1.5 L/min at the end, indicating a middle interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relative flat derivative at middle and late times. The CHi phase was analysed using a homogenous radial flow model. The CHir phase shows a kind of horizontal stabilisation at late times, indicating radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-24.

## Selected representative parameters

The recommended transmissivity of  $2.4\cdot10^{-6}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-7}$  m²/s to  $5.0\cdot10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.067.2 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.17 Section 400.00-420.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.59 L/min at start of the CHi phase to 0.86 L/min at the end, indicating a middle interval transmissivity (consistent with the pulse recovery). Both phases are a bit noisy but show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relative flat derivative and a homogenous radial flow model was used for the analysis of this test phase. The CHir phase shows a flat derivative at late times, indicating radial flow. A homogeneous radial flow model

with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-25.

## Selected representative parameters

The recommended transmissivity of  $1.9 \cdot 10^{-6}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-7}$  m²/s to  $4.0 \cdot 10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,220.8 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.2.18 Section 420.00-440.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 28 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1E–11 m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-26.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

### 5.2.19 Section 440.00-460.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 50 mL/min at start of the CHi phase to 20 mL/min at the end, indicating a low to middle interval transmissivity (consistent with the pulse recovery). During the injection phase the regulation unit switched to the vessel. The readjustment of the vessel pressure caused a short peak in the flow curve. Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases shows a horizontal stabilisation at middle and late times. A homogenous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-27.

## Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-8}$  m²/s was derived from the analysis of the CHir phase, which shows a better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-9}$  m²/s to  $3.0\cdot10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,526.8 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.20 Section 460.00-480.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 196 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 10 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). During the injection phase the system switched to the injection vessel. The readjustment of the vessel pressure caused an oscillating flow and the results of the analysis should be regarded carefully. The CHir phase shows no problems and is adequate for quantitative analysis, too.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase is noisy due to the above mentioned readjustments. However a homogeneous radial flow model was used to match the derivative. The derivative of the CHir phase shows a short horizontal stabilisation at middle times, followed by an upward slope indicating a decreasing transmissivity at some distance from the borehole. Therefore, a composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-28.

## Selected representative parameters

The recommended transmissivity of  $6.1 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $1.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.661.1 kPa.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. This inconsistency can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

### 5.2.21 Section 480.00-500.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 25 kPa in 20 minutes. This phenomenon is caused

by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-29.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.22 Section 500.00-520.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 0.19 L/min at start of the CHi phase to 0.18 L/min at the end, indicating a middle interval transmissivity (consistent with the pulse recovery). The CHir phase shows a very fast recovery, which adds uncertainties to the analysis. The CHi phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relative flat derivative at middle and late times, indicating radial flow. The CHi phase was matched using a homogeneous radial flow model. Due to the very fast recovery of the CHir phase the early time data of the derivative is not conclusive. A homogeneous radial flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-30.

## Selected representative parameters

The recommended transmissivity of  $4.8\cdot10^{-7}$  m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-7}$  m²/s to  $8.0\cdot10^{-7}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,957.5 kPa.

No further analysis is recommended.

## 5.2.23 Section 520.00-540.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 14 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-31.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.24 Section 540.00-560.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 14 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-32.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.25 Section 560.00-580.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 11 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-33.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

### 5.2.26 Section 580.00-600.00 m, test no. 1 and 2, injection

## Comments to test

Due to wrong test depth calculation the test was repeated.

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 21 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-34.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.27 Section 600.00-620.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 48 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-35.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.28 Section 620.00-640.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 229 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.8 L/min at start of the CHi phase to 1.2 L/min at the end, indicating a middle interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a downward slope at middle times and a trend of horizontal stabilisation at late times. The CHi phase was matched using a radial composite flow model. The derivative of the CHir phase shows a downward slope at middle time, indicating an increase of transmissivity at some distance from the borehole. A two shell composite model with increasing transmissivity was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-36.

## Selected representative parameters

The recommended transmissivity of  $2.3 \cdot 10^{-7}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-8}$  m<sup>2</sup>/s to  $3.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth,

was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.845.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.29 Section 640.00-660.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, the pulse recovered very slowly and stabilized after a short time. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$ ). The pulse injection phase is also still influenced by the packer expansion. None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-37.

## Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.30 Section 660.00-680.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 6 kPa within 15 min. During the brief injection phase of the pulse injection a total volume of about 13 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 257 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 5.1·10<sup>-11</sup> m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

### Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows a continuously upward trend with a change in the inclination at late times, but no horizontal stabilisation was reached. A two shell composite radial flow model was chosen for the analysis of the Pi phase. Due to no horizontal stabilisation, the outer zone transmissivity should be regarded as the upper limit. The analysis is presented in Appendix 2-38.

## Selected representative parameters

The recommended transmissivity of  $3.9 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-12}$  to  $8.0 \cdot 10^{-10}$  m<sup>2</sup>/s. This range encompasses the outer zone transmissivity and is based on the results of the appropriate 5 m tests. The analysis was conducted using a flow dimension of 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

## 5.2.31 Section 680.00-700.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 24 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-39.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.32 Section 700.00-720.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 84 mL/min at start of the CHi phase to 16 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward slope at middle times without horizontal stabilisation at late times. The CHi phase was matched using a radial composite flow model. The derivative of the CHir phase shows a horizontal stabilisation at middle times followed by an upward slope at late times. A two shell composite model with decreasing transmissivity was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-40.

### Selected representative parameters

The recommended transmissivity of  $8.1 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $3.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.33 Section 720.00-740.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the control unit, from 31 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a slight upward trend at middle and late times. The CHi phase was matched using a radial composite flow model. The derivative of the CHir phase shows a horizontal stabilisation at middle times followed by an upward slope at late times. A two shell composite model with decreasing transmissivity at some distance from the borehole was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-41.

## Selected representative parameters

The recommended transmissivity of  $4.2 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $1.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.590.2 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.34 Section 740.00-760.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHir phases and the Pi phase to compare the results were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 194 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 10 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to strong regulation effects – switching between the middle and small valve – the injection phase is not analysable. The CHir phase shows no problems and is adequate for quantitative analysis. In addition the Pi phase was analysed.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHir phase shows a flat derivative at late times, indicating formation flow stabilisation and radial flow. The CHir phase was matched using a homogeneous radial flow model with wellbore storage and skin. The Pi phase was analysed using homogeneous radial flow model and the results are consistent with the CHir phase. The analysis is presented in Appendix 2-42.

## Selected representative parameters

The recommended transmissivity of  $6.1\cdot10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0\cdot10^{-10}$  m<sup>2</sup>/s to  $1.0\cdot10^{-9}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,731.5 kPa.

The analyses of the CHir and Pi phases show good consistency. No further analysis is recommended.

## 5.2.35 Section 760.00-780.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 26 mL/min at start of the CHi phase to 11 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a clear horizontal stabilisation at middle and late times. A homogeneous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-43.

### Selected representative parameters

The recommended transmissivity of  $3.0\cdot10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0\cdot10^{-10}$  m²/s to  $6.0\cdot10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.881.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.36 Section 780.00-800.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 16 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flowrate, the CHi phase is a bit noisy but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis too.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy but tends to horizontal stabilisation at late times. The CHi phase was analysed using a homogeneous radial flow model. The derivative of the CHir phase shows a horizontal stabilisation at middle times followed by an upward slope at late times. A two shell composite model with decreasing transmissivity at some distance from the borehole was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-44.

## Selected representative parameters

The recommended transmissivity of  $2.3\cdot10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0\cdot10^{-10}$  m²/s to  $5.0\cdot10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. This inconsistency can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

## 5.2.37 Section 800.00-820.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 201 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 11 mL/min at start of the CHi phase to 6 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Because of the low injection rate, the CHi phase is a bit noisy but still adequate for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis too.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy but tends to horizontal stabilisation at late times. The CHi phase was analysed using a homogeneous radial flow model. The derivative of the CHir phase shows a horizontal stabilisation at middle times followed by an upward slope at late times. A two shell composite model with decreasing transmissivity at some distance from the borehole was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-45.

## Selected representative parameters

The recommended transmissivity of  $3.8 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-09}$  m²/s to  $8.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.163.3 kPa.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. This inconsistency can be attributed to the poor data quality of the CHi phase. No further analysis is recommended.

## 5.2.38 Section 820.00-840.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 20 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-46.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

### 5.2.39 Section 840.00-860.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 50 mL/min at start of the CHi phase to 32 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The recorded data of the CHi phase is a little bit noisy, but still amenable for quantitative analysis. The CHir phase shows a relatively fast recovery, but shows no further problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times. The derivative of the CHir phase shows a horizontal stabilisation at middle and late times, indicating radial flow. Both phases were analysed using a radial infinite acting homogeneous flow model. The analysis is presented in Appendix 2-47.

## Selected representative parameters

The recommended transmissivity of  $6.1 \cdot 10^{-8}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-8}$  m²/s to  $1.0 \cdot 10^{-7}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.453.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.40 Section 860.00-880.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 187 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3 mL/min at start of the CHi phase to 1.7 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the CHi phase is noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase is noisy but shows a flat derivative at middle and late times. No clear flow stabilisation was reached during the CHir phase and the data is still influenced by near wellbore effects like wellbore storage and skin. Both phases were analysed using a radial infinite acting homogeneous flow model. The analysis is presented in Appendix 2-48.

## Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-9}$  m²/s was derived from the analysis of the CHi phase, which shows the better horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $5.0\cdot10^{-10}$  m²/s to  $6.0\cdot10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,616.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.2.41 Section 880.00-900.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 32 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-49.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.42 Section 900.00-920.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 138 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-50.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

### 5.2.43 Section 920.00-940.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 98 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-51.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.44 Section 940.00-960.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 113 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-52.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.2.45 Section 955.00-975.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 58 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-53.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

# 5.3 5 m single-hole injection tests

In the following, the 5 m section tests conducted in borehole KLX15A are presented and analysed.

## 5.3.1 Section 380.00–385.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to moderate formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 223 kPa. No hydraulic connection to adjacent zones was observed. The injection rate decreased from 12 mL/min at start of the CHi phase to 6 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the analysis. However, both phases are adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a upward trend at middle times, indicating a change of the transmissivity at some distance to the borehole. The CHi phase was analysed using a radial composite flow model. The derivative of the CHir phase shows a downward trend at middle times, indicating a large positive skin. There is a slight indication of horizontal stabilisation in the late time derivative. A radial homogeneous flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-54.

## Selected representative parameters

The recommended transmissivity of  $7.1 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHi phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $4.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2.954.4 kPa.

The analyses of the CHi and CHir phases show small inconsistency regarding the chosen flow model. This inconsistency can be attributed to the fast recovery and high skin values of the CHir phase. No further analysis is recommended.

## 5.3.2 Section 385.00–390.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. A hydraulic connection between test interval and bottom zone (the pressure rose by 6 kPa) was observed. The injection rate decreased from 2.1 L/min at start of the CHi phase to 1.2 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivatives of the Chi phase shows a clear horizontal stabilisation at middle and late times, indicating radial flow. The derivative of the CHir phase shows no clear horizontal stabilisation at late times, the derivative seems to flatten. That was interpreted as the transition to radial flow. A homogenous radial flow model was used for the analysis of both phases. The analysis is presented in Appendix 2-55.

### Selected representative parameters

The recommended transmissivity of  $2.6 \cdot 10^{-6}$  m²/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-6}$  m²/s to  $4.0 \cdot 10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 2,989.7 kPa.

The analyses of the CHi and CHir phases show good consistency concerning the derived transmissivities. No further analysis is recommended.

## 5.3.3 Section 390.00–395.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 216 kPa. A hydraulic connection between test interval and bottom zone was observed. The pressure below increased during the injection phase up to a total of 5 kPa. The injection rate decreased from 1.5 L/min at start of the CHi phase to 0.8 L/min at the end, indicating a middle interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relative noisy, but flat derivative at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a downward trend at middle and late times. The CHir phase did not reach radial flow conditions. This is indicative for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogenous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-56.

### Selected representative parameters

The recommended transmissivity of  $9.1 \cdot 10^{-7}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows the best derivative quality and horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-7}$  m<sup>2</sup>/s to  $2.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.027.3 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.4 Section 395.00-400.00 m, test no. 1, pulse injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 23 kPa within 15 min after closing the test valve. During the brief injection phase of the pulse injection a total volume of about 3.2 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 196 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $1.7 \cdot 10^{-11}$  m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows horizontal stabilisation at late times, indicating radial flow. The PI phase was analysed using a composite model with radial flow, wellbore storage and skin. The analysis is presented in Appendix 2-57.

## Selected representative parameters

The recommended transmissivity of  $3.5 \cdot 10^{-11}$  m<sup>2</sup>/s was derived from the analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-11}$  to  $8.0 \cdot 10^{-11}$  m<sup>2</sup>/s. The analysis was conducted using a flow dimension of 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

## 5.3.5 Section 400.00-405.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 1.0 L/min at start of the CHi phase to 0.55 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi and CHir phase show a relative flat derivative at middle and late times, indicating radial flow. Both phases were analysed using a homogeneous radial flow model. The analysis is presented in Appendix 2-58.

### Selected representative parameters

The recommended transmissivity of  $1.5 \cdot 10^{-6}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-7}$  m<sup>2</sup>/s to  $3.0 \cdot 10^{-6}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,103.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.6 Section 405.00–410.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 39 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-59.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.7 Section 410.00-415.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 0.6 L/min at start of the CHi phase to 0.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase shows a relatively fast recovery, which adds uncertainty to the derivative analysis. However, both phases are adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a noisy horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using a homogeneous radial flow model. Due to the fast recovery the early data of the CHir phase are of poor quality. The CHir phase shows a noisy but clear horizontal stabilisation at middle and late times. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-60.

## Selected representative parameters

The recommended transmissivity of  $9.4\cdot10^{-7}$  m²/s was derived from the analysis of the CHi phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0\cdot10^{-7}$  m²/s to  $3.0\cdot10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.178.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

### 5.3.8 Section 415.00–420.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 32 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-61.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.9 Section 440.00–445.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 222 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 7.0 mL/min at start of the CHi phase to 3.5 L/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the Chi phase is noisy. However, both phases are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi and CHir phase show relatively flat and horizontal derivatives at middle and late times. Both phases were analysed using a homogeneous radial flow model. The analysis is presented in Appendix 2-62.

### Selected representative parameters

The recommended transmissivity of  $7.8 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase, which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-10}$  m<sup>2</sup>/s to  $3.0 \cdot 10^{-9}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3.405.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.10 Section 445.00-450.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 500 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-63.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.11 Section 450.00-455.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed. The regulation unit needed some time to get stable pressure conditions. Therefore, the early time data of the Chi phase are of poor quality. The injection rate decreased from 26.0 mL/min at start of the CHi phase to 17.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHir phase and the late time data of the Chi phase are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relative flat and horizontal derivative at late times, indicating radial flow. For the analysis of the CHi phase a infinite acting homogeneous radial flow model was used. The derivative of the CHir phase shows a horizontal stabilisation at middle times, followed by an upward trend at late times. This behaviour is interpreted as a decrease of transmissivity at some distance from the borehole. A two shell composite radial flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-64.

### Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-8}$  m²/s was derived from the analysis of the CHi phase, which shows the best horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-9}$  m²/s to  $4.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3.481.8 kPa.

The analyses of the CHi and CHir phases show some inconsistency regarding the chosen flow model. This can be caused by the poor data quality of the early time Chi data. However, regarding the derived transmissivities both phases show consistency. No further analysis is recommended.

## 5.3.12 Section 455.00-460.00 m, test no. 1, injection

## Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 25.0 mL/min at start of the CHi phase to 8.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate, the recorded data of the flow rate is a bit noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a relatively flat and horizontal derivative at early times, followed by a downward slope at middle and late times, indicating an increasing transmissivity at some distance from the borehole. For the analysis of the CHi phase a radial composite flow model was used. The derivative of the CHir phase shows a downward slope at middle and late times without reaching horizontal stabilisation. A two shell composite radial flow model was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-65.

## Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHi phase (inner zone), which shows the best horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-10}$  m²/s to  $6.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show consistency regarding the derived transmissivities. No further analysis is recommended.

## 5.3.13 Section 460.00-465.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 7.0 mL/min at start of the CHi phase to 3.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relatively flat and horizontal derivative at middle and late times. For the analysis of the CHi phase an infinite acting homogeneous radial flow model was used. The derivative of the CHir phase shows a downward slope at middle and early late times. The very late time data can be interpreted as the beginning of a horizontal stabilisation, which is characteristic for radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-66.

## Selected representative parameters

The recommended transmissivity of  $5.4\cdot10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0\cdot10^{-9}$  m²/s to  $8.0\cdot10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3.554.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.14 Section 465.00-470.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 227 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 6.0 mL/min at start of the CHi phase to 3.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but relatively horizontal derivative at middle and late times. For the analysis of the CHi phase an infinite acting homogeneous radial flow model was used. The late time derivative of the CHir phase shows an indication of horizontal stabilisation, which can be attributed to radial flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-67.

### Selected representative parameters

The recommended transmissivity of  $2.9 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $5.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3.589.7 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.15 Section 470.00-475.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 212 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 5.0 mL/min at start of the CHi phase to 2.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy and allows no flow model identification. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a flattening downward trend which tends to horizontal stabilisation at late times. This indicates a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-68.

## Selected representative parameters

The recommended transmissivity of  $1.2 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  m<sup>2</sup>/s to  $3.0 \cdot 10^{-9}$  m<sup>2</sup>/s. The flow dimension during the test was assumed to be 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 3,629.9 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.16 Section 475.00-480.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 57 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-69.

### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.17 Section 500.00-505.00 m, test no. 1, injection

### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 0.35 L/min at start of the CHi phase to 0.19 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The CHir phase recovered very fast, which adds uncertainty to the derivative analysis. The results should be regarded carefully. The CHi phase shows no problems and is adequate for quantitative analysis.

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows flat horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase was analysed using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-70.

## Selected representative parameters

The recommended transmissivity of  $2.3 \cdot 10^{-7}$  m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $9.0 \cdot 10^{-8}$  m²/s to  $6.0 \cdot 10^{-7}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,847.9 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies, which can be attributed to the poor quality of the CHir data. No further analysis is recommended.

## 5.3.18 Section 505.00-510.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 40 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-71.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.19 Section 510.00-515.00 m, test no. 1, injection

### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 50 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-72.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.20 Section 515.00-520.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 49 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-73.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.21 Section 620.00-625.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 174 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-74.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.22 Section 623.00-628.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 224 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 6.0 mL/min at start of the CHi phase to 3.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the recorded data of the flow rate is a bit noisy, but still amenable for quantitative analysis. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase is noisy but shows

horizontal stabilisation at middle and late times, indicating radial flow. The CHi phase was analysed using an infinite acting homogeneous radial flow model. The derivative of the CHir phase shows a flattening downward trend without reaching clear horizontal stabilisation. This indicates a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-75.

## Selected representative parameters

The recommended transmissivity of  $1.9 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $1.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,759.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies. This can be attributed to the noisy flow rate and the fact, that the CHir phase did not reach radial flow. No further analysis is recommended.

## 5.3.23 Section 628.00-633.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

At the 1<sup>st</sup> trial, the system could not reach stable pressure conditions. Therefore it was decided to stop the injection and repeat it.

The CHi phase was conducted using a pressure difference of 224 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 2.9 L/min at start of the CHi phase to 1.1 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal part at middle times, followed by a downward trend at late times. The CHi phase was analysed using a two shell composite radial flow model with an increasing transmissivity at some distance to the borehole. Similar to the CHi phase, the CHir phase shows a downward slope at middle and late times without reaching clear horizontal stabilisation. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-76.

#### Selected representative parameters

The recommended transmissivity of  $3.4\cdot10^{-7}$  m²/s was derived from the analysis of the CHi phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-7}$  m²/s to  $2.0\cdot10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,793.4 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.24 Section 630.00-635.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 202 kPa. No hydraulic connection to the adjacent sections was observed. The regulation unit needed some time to get stable pressure conditions. Therefore the early time data of the Chi phase are of poor data quality. The injection rate decreased from 3.5 L/min at start of the CHi phase to 1.2 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a downward slope at middle and late times, without reaching horizontal stabilisation. The CHi phase was analysed using a two shell composite radial flow model with an increasing transmissivity at some distance to the borehole. Similar to the CHi phase, the CHir phase shows a downward slope at middle and late times without reaching clear horizontal stabilisation. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-77.

#### Selected representative parameters

The recommended transmissivity of  $3.3 \cdot 10^{-7}$  m²/s was derived from the analysis of the CHi phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-7}$  m²/s to  $3.0 \cdot 10^{-6}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,806.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.25 Section 635.00-640.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 210 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 2 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the very low flow rate the recorded data of the flow rate is very noisy and the results of the CHi phase analysis should be regarded as order of magnitude only. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. Due to the poor data quality the CHi phase allows no determination of an flow model. However, in case of the present test an infinite acting homogeneous radial flow model was used for the analysis of the CHi phase. The Chir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-78.

## Selected representative parameters

The recommended transmissivity of  $1.7\cdot10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $4.0\cdot10^{-10}$  m²/s to  $3.0\cdot10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 4,852.9 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.26 Section 660.00-665.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 36 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-79.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.27 Section 665.00-670.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 25 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-80.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.28 Section 670.00-675.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 281 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-81.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.29 Section 675.00-680.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 37 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-82.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.30 Section 700.00-705.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 95 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-83.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.31 Section 705.00-710.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 49 mL/min at start of the CHi phase to 15 mL/min at the end, indicating a low to medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a continuous upward slope at middle times and does not reach horizontal stabilisation. The CHi phase was analysed using a two shell composite radial flow model with a decreasing transmissivity at some distance to the borehole. The Chir phase shows a horizontal stabilisation at early times, followed by an upward trend without reaching horizontal stabilisation. A composite radial flow model with wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-84.

## Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-8}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $4.0\cdot10^{-9}$  m²/s to  $3.0\cdot10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure could not be extrapolated due to the low transmissivity.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.32 Section 710.00-715.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 231 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-85.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.33 Section 715.00-720.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 15 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-86.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.34 Section 720.00-725.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 50 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-87.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.35 Section 725.00-730.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 85 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-88.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.36 Section 730.00-735.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 33 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-89.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.37 Section 735.00-740.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 25 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low to medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows an upward trend at middle times followed by horizontal stabilisation at late times. This behaviour is indicative for a decrease of transmissivity at some distance from the borehole and radial flow. A two shell composite flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows slight horizontal stabilisation at early times and an upward slope at middle and late times. The CHir phase was analysed using a composite radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-90.

#### Selected representative parameters

The recommended transmissivity of  $3.6\cdot10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0\cdot10^{-9}$  m²/s to  $1.0\cdot10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 5,585.8 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.38 Section 740.00-745.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 48 kPa within 15 min. This can be explained by prolonged packer expansion in a relative tight section and adds uncertainty to the determination of the initial pulse pressure. During the brief injection phase of the pulse injection a total volume of about 1.9 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 209 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to  $9.1 \cdot 10^{-12}$  m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

## Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows after a slight horizontal stabilisation an upward trend at middle times. The derivative tends to horizontal stabilisation on a higher level at late times, indicating a decrease of transmissivity. The PI phase was analysed using a composite model with radial flow, wellbore storage and skin. The analysis is presented in Appendix 2-91.

## Selected representative parameters

The recommended transmissivity of  $1.8\cdot 10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $6.0\cdot 10^{-11}$  to  $3.0\cdot 10^{-10}$  m<sup>2</sup>/s. The analysis was conducted using a flow dimension of 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

#### 5.3.39 Section 745.00-750.00 m, test no. 1, injection

## Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 51 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-92.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.40 Section 750.00-755.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 108 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-93.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.41 Section 755.00-760.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 83 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-94.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.42 Section 760.00-765.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 67 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-95.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.3.43 Section 765.00-770.00 m, test no. 1, pulse injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 24 kPa within 15 min. This can be explained either by prolonged packer expansion in a relatively tight section or by the fact that the initial formation pressure is higher than the pressure measured on the test depth. During the brief injection phase of the pulse injection a total volume of about 4.1 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 202 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 2.1·10<sup>-11</sup> m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

## Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend with a change in the inclination at middle times. The derivative tends to horizontal stabilisation at late times, indicating a decrease of transmissivity. The PI phase was analysed using a composite model with radial flow, wellbore storage and skin. The analysis is presented in Appendix 2-96.

## Selected representative parameters

The recommended transmissivity of  $2.5 \cdot 10^{-10}$  m<sup>2</sup>/s was derived from the analysis of the Pi phase (inner zone). The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-11}$  to  $5.0 \cdot 10^{-10}$  m<sup>2</sup>/s. The analysis was conducted using a flow dimension of 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

#### 5.3.44 Section 770.00-775.00 m, test no. 1, injection

## Comments to test

Due to technical problems with the regulation unit the first injection phase was skipped and repeated. The second test cycle showed no problems, the regulation unit worked well.

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 190 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 15 mL/min at start of the CHi phase to 7 mL/min at the end, indicating a low to medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases show a flat and relative horizontal derivative at middle and late times, indicating radial flow. Both phases were analysed using a homogeneous radial flow model. The analysis is presented in Appendix 2-97.

## Selected representative parameters

The recommended transmissivity of  $2.6 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the analysis of the CHi phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $7.0 \cdot 10^{-10}$  m<sup>2</sup>/s to  $6.0 \cdot 10^{-9}$  m<sup>2</sup>/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.843.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

## 5.3.45 Section 775.00-780.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 180 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 6 mL/min at start of the CHi phase to 3 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Because of the low flow rate the measured flow data is noisy and the results of the CHi analysis should be regarded carefully. The CHir phase shows no problems and is adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy horizontal derivative at middle and late times. The CHi phase was analysed using a homogeneous radial flow model. The CHir phase shows a short horizontal stabilisation at middle times, followed by an upward slope at late times, indicating a change of transmissivity at some distance from the borehole. A two shell composite radial flow model with wellbore storage and skin was used for the analysis. The analysis is presented in Appendix 2-98.

## Selected representative parameters

The recommended transmissivity of  $6.8 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best horizontal stabilisation and derivative quality. The confidence range for the interval transmissivity is estimated to be  $2.0 \cdot 10^{-9}$  m²/s to  $9.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,909.7 kPa.

The analyses of the CHi and CHir phases show inconsistency regarding the chosen flow model. This inconsistency can be attributed to the low flow rate which causes a noisy CHi phase derivative. No further analysis is recommended.

## 5.3.46 Section 780.00–785.00 m, test no. 1, pulse injection

#### Comments to test

The intention was to design the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and opening/closing the test valve for conducting the preliminary pulse injection, the pulse recovered very slowly and stabilized after a short time. This phenomenon is caused by a combination of prolonged packer expansion and a very tight section (T probably smaller than 1.0·10<sup>-11</sup>). The pulse injection phase is also still influenced by the packer expansion. None of the test phases is analysable.

No analysis was performed. The measured data is presented in Appendix 2-99.

## Selected representative parameters

Based on the test response the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.47 Section 785.00-790.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 121 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-100.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.48 Section 790.00-795.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 190 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 12 mL/min at start of the CHi phase to 4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

#### Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilisation at early times, followed by an upward trend at middle and late times. A composite radial flow model with a decreasing transmissivity at some distance from the borehole was used for the analysis of both phases. The analysis is presented in Appendix 2-101.

## Selected representative parameters

The recommended transmissivity of  $2.2 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best derivative quality. The confidence range for the interval transmissivity is estimated to be  $5.0 \cdot 10^{-10}$  m²/s to  $5.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6,009.0 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

## 5.3.49 Section 795.00-800.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 53 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-102.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.50 Section 800.00-805.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 106 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-103.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

#### 5.3.51 Section 805.00-810.00 m, test no. 1, injection

## Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 40 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-104.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.52 Section 810.00-815.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 16 mL/min at start of the CHi phase to 5 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of both phases show a horizontal stabilisation at early times, followed by an upward slope with horizontal stabilisation at late times. A composite radial flow model with a decreasing transmissivity at some distance from the borehole was used for the analysis of both phases. The analysis is presented in Appendix 2-101.

#### Selected representative parameters

The recommended transmissivity of  $4.9 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best horizontal stabilisation and derivative quality. The confidence range for the interval transmissivity is estimated to be  $1.0 \cdot 10^{-9}$  m²/s to  $8.0 \cdot 10^{-9}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using type curve extrapolation in the Horner plot to a value of 6.137.8 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

#### 5.3.53 Section 815.00-820.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 81 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-106.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.54 Section 840.00-845.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 164 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 2 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the measured flow data is noisy and the results of the CHi analysis should be regarded carefully. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative and does not allow flow model identification. The CHi phase was analysed using a homogeneous radial flow model. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-107.

#### Selected representative parameters

The recommended transmissivity of  $1.7 \cdot 10^{-9}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $4.0 \cdot 10^{-10}$  m²/s to  $5.0 \cdot 10^{-9}$  m²/s. For the analysis of both tests a flow dimension of 2 was assumed. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.411.2 kPa.

The analyses of the CHi and CHir phases show consistency No further analysis is recommended.

## 5.3.55 Section 845.00-850.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 239 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 15 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low to medium interval transmissivity

(consistent with the pulse recovery). The regulation unit functioned well, but the recorded flow data is noisy. The CHir phase shows a relative fast recovery, but is still adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase does not allow flow model identification. However, the CHi phase was analysed using a homogeneous radial flow model. The CHir phase shows a steep downward trend at middle times, which is typical for a high positive skin. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-108.

## Selected representative parameters

The recommended transmissivity of  $2.4 \cdot 10^{-8}$  m²/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $6.0 \cdot 10^{-9}$  m²/s to  $7.0 \cdot 10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.391.7 kPa.

No further analysis is recommended.

## 5.3.56 Section 850.00-855.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 69 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-109.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.57 Section 855.00-860.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased, after initial oscillations induced by the regulation unit, from 19 mL/min at start of the CHi phase to 10 mL/min at the end, indicating a low to medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the derivative of the CHi phase shows a horizontal stabilisation at middle and late times. The CHi phase was analysed using a homogeneous radial flow model. The CHir phase derivative shows a horizontal stabilisation at middle times, followed by an upward slope and a new stabilisation at a higher level, indicating a decreasing transmissivity at some distance from the borehole. The derivative at late times tends to horizontal stabilisation. A radial composite flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-110.

## Selected representative parameters

The recommended transmissivity of  $1.4\cdot10^{-8}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $4.0\cdot10^{-9}$  m²/s to  $3.0\cdot10^{-8}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.447.4 kPa.

The radial flow analyses of the CHi and CHir phases show inconsistency regarding the chosen flow models. If further analysis is planned, a totoal test simulation should help resolving this inconsistency.

## 5.3.58 Section 860.00-865.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 168 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-111.

#### Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.59 Section 865.00-870.00 m, test no. 1, injection

#### Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 181 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 2 mL/min at start of the CHi phase to 1 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). Due to the low flow rate the measured flow data is noisy and the results of the CHi analysis should be regarded carefully. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative and does not allow flow model identification. The CHi phase was analysed using a homogeneous radial flow model. The CHir phase shows a downward trend at late times, which is typical for a transition from wellbore storage and skin dominated flow to pure formation flow. A homogeneous radial flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-112.

## Selected representative parameters

The recommended transmissivity of  $4.4 \cdot 10^{-9}$  m<sup>2</sup>/s was derived from the analysis of the CHir phase, which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $8.0 \cdot 10^{-10}$  m<sup>2</sup>/s to  $7.0 \cdot 10^{-9}$  m<sup>2</sup>/s. The flow dimension for the analysis was assumed to be 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 6.546.8 kPa.

No further analysis is recommended.

## 5.3.60 Section 870.00-875.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 150 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-113.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

No further analysis recommended.

## 5.3.61 Section 875.00-880.00 m, test no. 1, injection

#### Comments to test

The intention was to conduct the test as a constant pressure injection test phase (CHi), followed by a pressure recovery phase (CHir). However, after inflating the packers and closing the test valve, the pressure kept rising by approx. 43 kPa in 20 minutes. This phenomenon is caused by prolonged packer expansion in a very tight section (T probably smaller than 1.0·10<sup>-11</sup> m²/s). None of the test phases is analysable.

The measured data is presented in Appendix 2-114.

## Selected representative parameters

Based on the test response (prolonged packer compliance) the interval transmissivity is lower than  $1.0 \cdot 10^{-11}$  m<sup>2</sup>/s.

## 5.4 Single packer injection test

In the following, the single packer test conducted in borehole KLX15A is presented and analysed.

# 5.4.1 Section 970.00–1,000.43 m, single packer, test no. 1, injection *Comments to test*

For the single packer test the tool was build like a double packer system with 5 m interval length. The inflation line for the bottom packer has been plugged that only the top packer was inflated. The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The recovery of the pulse test indicated a low to medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The first injection showed a sudden increase in the flow rate after approx. 5 min. This clear change in flow rate can be attributed to clean up effects in the borehole vicinity. The recorded pressure data of the subsequent conducted recovery is noisy, as well. None of the test phases are analysable. Therefore the injection and recovery phase was repeated.

The second CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 60 mL/min at start of the CHi phase to 40 mL/min at the end, indicating a low to medium interval transmissivity (consistent with the pulse recovery). A similar effect of increase in flow rate was observed, but the disturbance is relatively small. Due to the low flow rate and the described flow rate effects the measured flow data is noisy and the results of the CHi analysis should be regarded carefully. The CHir phase shows no problems and is adequate for quantitative analysis.

## Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows an upward slope at middle and late times, without reaching horizontal stabilisation. The CHi phase was analysed using a radial composite flow model with a decreasing transmissivity at some distance from the borehole. Similar to the CHi phase, the derivative of the CHir phase shows an upward trend at middle and late times. A radial composite flow model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-115.

#### Selected representative parameters

The recommended transmissivity of  $8.3 \cdot 10^{-8}$  m²/s was derived from the analysis of the CHir phase (inner zone), which shows the better data and derivative quality. The confidence range for the interval transmissivity is estimated to be  $4.0 \cdot 10^{-8}$  m²/s to  $3.0 \cdot 10^{-7}$  m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 7,289.6 kPa.

The analyses of the CHi and CHir phases show consistency No further analysis is recommended.

## 6 Summary of results

This chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

## 6.1 General test data and results

Table 6-1. General test data from hydraulic tests in KL15A (for nomenclature see Appendix 4 and below).

| Borehole secup | Borehole seclow | Date and time for test, start | Date and time for test, stop | Qp       | Q <sub>m</sub> | t <sub>p</sub> | t <sub>F</sub> | p <sub>0</sub> | p <sub>i</sub> | p <sub>p</sub> | p <sub>F</sub> | Te <sub>w</sub> | Test phases measured                |
|----------------|-----------------|-------------------------------|------------------------------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-------------------------------------|
| (m)            | (m)             | •                             | YYYYMMDD hh:mm               | (m³/s)   | (m³/s)         | (s)            | (s)            | (kPa)          | (kPa)          | (kPa)          | (kPa)          | (°C)            | Analysed test phases<br>marked bold |
| 80.00          | 180.00          | 070412 07:48                  | 070412 10:08                 | 4.42E-04 | 5.20E-04       | 1800           | 1800           | 1405           | 1405           | 1441           | 1411           | 8.8             | CHi / CHir                          |
| 180.00         | 280.00          | 070412 13:56                  | 070412 16:07                 | 1.28E-04 | 1.42E-04       | 1800           | 1800           | 2164           | 2164           | 2365           | 2166           | 10.0            | CHi / CHir                          |
| 280.00         | 380.00          | 070412 17:54                  | 070412 20:31                 | 2.83E-07 | 2.92E-07       | 1800           | 3600           | 2913           | 2917           | 3116           | 2917           | 11.1            | CHi / CHir                          |
| 380.00         | 480.00          | 070412 22:07                  | 070412 23:57                 | 3.20E-05 | 3.37E-05       | 1800           | 1800           | 3660           | 3661           | 3862           | 3665           | 12.3            | CHi / CHir                          |
| 480.00         | 580.00          | 070413 06:20                  | 070413 08:19                 | 2.28E-06 | 2.32E-06       | 1800           | 1800           | 4403           | 4401           | 4602           | 4403           | 13.9            | CHi / CHir                          |
| 580.00         | 680.00          | 070413 10:28                  | 070413 12:19                 | 1.36E-05 | 1.57E-05       | 1800           | 1800           | 5142           | 5148           | 5345           | 5148           | #NV             | CHi / CHir                          |
| 680.00         | 780.00          | 070413 15:02                  | 070413 17:27                 | 5.17E-07 | 7.33E-07       | 1800           | 1800           | 5878           | 5891           | 6091           | 5964           | #NV             | CHi / CHir                          |
| 780.00         | 880.00          | 070413 19:23                  | 070413 21:53                 | 6.50E-07 | 7.50E-07       | 1800           | 3600           | 6596           | 6605           | 6801           | 6604           | #NV             | CHi / CHir                          |
| 80.00          | 100.00          | 070414 19:23                  | 070414 20:46                 | 5.32E-05 | 5.57E-05       | 1200           | 1200           | 804            | 805            | 1003           | 803            | 7.7             | CHi / CHir                          |
| 100.00         | 120.00          | 070414 22:09                  | 070414 23:32                 | 4.90E-05 | 5.05E-05       | 1200           | 1200           | 954            | 954            | 1154           | 954            | 7.9             | CHi / CHir                          |
| 120.00         | 140.00          | 070415 00:09                  | 070415 01:31                 | 4.32E-04 | 4.92E-04       | 1200           | 1200           | 1105           | 1105           | 1137           | 1109           | 8.3             | CHi / CHir                          |
| 140.00         | 160.00          | 070415 07:52                  | 070415 09:21                 | 4.47E-05 | 4.65E-05       | 1200           | 1200           | 1257           | 1257           | 1457           | 1257           | 8.5             | CHi / CHir                          |
| 160.00         | 180.00          | 070415 10:15                  | 070415 11:42                 | 1.77E-06 | 1.85E-06       | 1200           | 1200           | 1409           | 1409           | 1609           | 1410           | 8.8             | CHi / CHir                          |
| 180.00         | 200.00          | 070415 12:35                  | 070415 14:01                 | 1.62E-05 | 1.67E-05       | 1200           | 1200           | 1561           | 1562           | 1762           | 1562           | 9.1             | CHi / CHir                          |
| 200.00         | 220.00          | 070415 14:59                  | 070415 16:43                 | 5.00E-08 | 5.17E-08       | 1200           | 1200           | 1714           | 1721           | 1921           | 1719           | 9.3             | _                                   |
| 220.00         | 240.00          | 070415 17:16                  | 070415 19:09                 | 8.33E-08 | 9.20E-08       | 1200           | 1200           | 1865           | 1867           | 2067           | 1876           | 9.5             | CHi / CHir                          |
| 240.00         | 260.00          | 070415 19:47                  | 070415 22:15                 | 3.33E-08 | 3.77E-08       | 1200           | 3600           | 2016           | 2019           | 2215           | 2015           | 9.8             | CHi / CHir                          |
| 260.00         | 280.00          | 070415 22:53                  | 070416 00:21                 | 1.60E-04 | 1.72E-04       | 1200           | 1200           | 2163           | 2164           | 2456           | 2170           | 10.0            | CHi / CHir                          |
| 280.00         | 300.00          | 070416 00:56                  | 070416 04:49                 | 2.05E-08 | 3.60E-08       | 1200           | 7200           | 2314           | 2351           | 2549           | 2346           | 10.2            | CHi / CHir                          |
| 300.00         | 320.00          | 070416 06:46                  | 070416 07:39                 | #NV      | #NV            | #NV            | #NV            | 2462           | #NV            | #NV            | #NV            | 10.4            | -                                   |
| 320.00         | 340.00          | 070416 08:19                  | 070416 10:26                 | #NV      | 9.80E-07       | 10             | 4860           | 2612           | 2620           | 2831           | 2631           | 10.7            | Pi                                  |
| 340.00         | 360.00          | 070416 11:08                  | 070416 11:57                 | #NV      | #NV            | #NV            | #NV            | 2764           | #NV            | #NV            | #NV            | 10.9            | _                                   |
| 360.00         | 380.00          | 070416 13:33                  | 070416 15:03                 | 3.17E-07 | 3.32E-07       | 1200           | 1200           | 2916           | 2920           | 3119           | 2919           | 11.1            | CHi / CHir                          |
| 380.00         | 400.00          | 070416 15:49                  | 070416 17:16                 | 2.47E-05 | 2.60E-05       | 1200           | 1200           | 3067           | 3070           | 3292           | 3072           | 11.4            | CHi / CHir                          |

| Borehole     | Borehole      | Date and time                  | Date and time                 | $Q_p$    | <b>Q</b> <sub>m</sub> | t <sub>p</sub> | t <sub>F</sub> | <b>p</b> <sub>0</sub> | p <sub>i</sub> | p <sub>p</sub> | p <sub>F</sub> | Te <sub>w</sub> | Test phases measured             |
|--------------|---------------|--------------------------------|-------------------------------|----------|-----------------------|----------------|----------------|-----------------------|----------------|----------------|----------------|-----------------|----------------------------------|
| secup<br>(m) | seclow<br>(m) | for test, start YYYYMMDD hh:mm | for test, stop YYYYMMDD hh:mm | (m³/s)   | (m³/s)                | (s)            | (s)            | (kPa)                 | (kPa)          | (kPa)          | (kPa)          | (°C)            | Analysed test phases marked bold |
| 400.00       | 420.00        | 070416 17:49                   | 070416 19:13                  | 1.43E-05 | 1.49E-05              | 1200           | 1200           | 3219                  | 3222           | 3422           | 3223           | 11.6            | CHi / CHir                       |
| 420.00       | 440.00        | 070416 19:51                   | 070416 20:47                  | #NV      | #NV                   | #NV            | #NV            | 3369                  | #NV            | #NV            | #NV            | 11.8            | -                                |
| 440.00       | 460.00        | 070416 22:04                   | 070416 23:37                  | 4.00E-07 | 4.67E-07              | 1200           | 1200           | 3517                  | 3520           | 3720           | 3543           | 12.1            | CHi / CHir                       |
| 460.00       | 480.00        | 070417 00:11                   | 070417 05:32                  | 8.00E-08 | 8.42E-08              | 1200           | 14400          | 3662                  | 3669           | 3865           | 3663           | 12.3            | CHi / CHir                       |
| 480.00       | 500.00        | 070417 06:50                   | 070417 07:38                  | #NV      | #NV                   | #NV            | #NV            | 3808                  | #NV            | #NV            | #NV            | 12.5            | -                                |
| 500.00       | 520.00        | 070417 08:22                   | 070417 09:52                  | 2.92E-06 | 3.02E-06              | 1200           | 1200           | 3957                  | 3957           | 4157           | 3958           | 12.7            | CHi / CHir                       |
| 520.00       | 540.00        | 070417 10:40                   | 070417 11:29                  | #NV      | #NV                   | #NV            | #NV            | 4106                  | #NV            | #NV            | #NV            | 13.0            | -                                |
| 540.00       | 560.00        | 070417 13:13                   | 070417 14:02                  | #NV      | #NV                   | #NV            | #NV            | 4255                  | #NV            | #NV            | #NV            | 13.2            | -                                |
| 560.00       | 580.00        | 070417 14:39                   | 070417 15:28                  | #NV      | #NV                   | #NV            | #NV            | 4404                  | #NV            | #NV            | #NV            | 13.4            | -                                |
| 580.00       | 600.00        | 070417 17:01                   | 070417 17:56                  | #NV      | #NV                   | #NV            | #NV            | 4553                  | #NV            | #NV            | #NV            | 13.7            | -                                |
| 600.00       | 620.00        | 070417 18:29                   | 070417 19:23                  | #NV      | #NV                   | #NV            | #NV            | 4700                  | #NV            | #NV            | #NV            | 13.9            | -                                |
| 620.00       | 640.00        | 070417 19:54                   | 070417 21:59                  | 2.05E-05 | 2.32E-05              | 1200           | 3600           | 4847                  | 4849           | 5078           | 4849           | 14.2            | CHi / CHir                       |
| 640.00       | 660.00        | 070417 22:57                   | 070417 23:59                  | #NV      | #NV                   | #NV            | #NV            | 4700                  | #NV            | #NV            | #NV            | 14.4            | -                                |
| 660.00       | 680.00        | 070418 00:38                   | 070418 05:25                  | #NV      | 2.17E-06              | 10             | 14400          | 5138                  | 5146           | 5373           | 5342           | 14.6            | Pi                               |
| 680.00       | 700.00        | 070418 06:55                   | 070418 07:46                  | #NV      | #NV                   | #NV            | #NV            | 5285                  | #NV            | #NV            | #NV            | 14.9            | CHi / CHir                       |
| 700.00       | 720.00        | 070418 08:32                   | 070418 10:34                  | 2.67E-07 | 4.88E-07              | 1200           | 2400           | 5432                  | 5448           | 5648           | 5540           | 15.1            | CHi / CHir                       |
| 720.00       | 740.00        | 070418 11:25                   | 070418 13:21                  | 1.67E-07 | 2.52E-07              | 1200           | 2400           | 5579                  | 5600           | 5799           | 5628           | 15.4            | CHi / CHir                       |
| 740.00       | 760.00        | 070418 14:06                   | 070418 16:13                  | 1.67E-08 | 5.20E-08              | 1200           | 1200           | 5727                  | 5744           | 5938           | 5791           | 15.6            | Pi / CHir                        |
| 760.00       | 780.00        | 070418 16:45                   | 070418 18:35                  | 1.83E-07 | 2.30E-07              | 1200           | 1200           | 5870                  | 5889           | 6089           | 5921           | 15.8            | CHi / CHir                       |
| 780.00       | 800.00        | 070418 19:14                   | 070418 22:09                  | 8.33E-08 | 1.21E-07              | 1200           | 5400           | 6015                  | 6034           | 6236           | 6061           | 16.1            | CHi / CHir                       |
| 800.00       | 820.00        | 070418 23:25                   | 070419 01:11                  | 1.00E-07 | 1.31E-07              | 1200           | 1200           | 6164                  | 6177           | 6378           | 6206           | 16.3            | CHi / CHir                       |
| 820.00       | 840.00        | 070419 01:51                   | 070419 02:43                  | #NV      | #NV                   | #NV            | #NV            | 6306                  | #NV            | #NV            | #NV            | 16.6            | -                                |
| 840.00       | 860.00        | 070419 07:59                   | 070419 09:31                  | 5.33E-07 | 5.98E-07              | 1200           | 1200           | 6450                  | 6457           | 6655           | 6459           | 16.8            | CHi / CHir                       |
| 860.00       | 880.00        | 070419 10:19                   | 070419 13:12                  | 2.83E-08 | 2.83E-08              | 1200           | 3600           | 6590                  | 6617           | 6804           | 6646           | 17.0            | CHi / CHir                       |
| 880.00       | 900.00        | 070419 14:46                   | 070419 15:34                  | #NV      | #NV                   | #NV            | #NV            | 6739                  | #NV            | #NV            | #NV            | 17.2            | -                                |
| 900.00       | 920.00        | 070419 16:30                   | 070419 17:21                  | #NV      | #NV                   | #NV            | #NV            | 6881                  | #NV            | #NV            | #NV            | 17.5            | -                                |
| 920.00       | 940.00        | 070419 17:52                   | 070419 18:22                  | #NV      | #NV                   | #NV            | #NV            | 7026                  | #NV            | #NV            | #NV            | 17.7            | -                                |

| (m) (n<br>940.00 96 |        | for test, start YYYYMMDD hh:mm 070419 20:42 | for test, stop YYYYMMDD hh:mm | (m³/s)   | (m³/s)   |      |      |       |       |       |       |      |                                     |
|---------------------|--------|---------------------------------------------|-------------------------------|----------|----------|------|------|-------|-------|-------|-------|------|-------------------------------------|
|                     | 975.00 | 070419 20:42                                | 070440 04 04                  |          | (111 /3) | (s)  | (s)  | (kPa) | (kPa) | (kPa) | (kPa) | (°C) | Analysed test phases<br>marked bold |
| 955.00 97           |        |                                             | 070419 21:31                  | #NV      | #NV      | #NV  | #NV  | 7171  | #NV   | #NV   | #NV   | 17.9 | -                                   |
|                     | 885.00 | 070419 22:03                                | 070419 22:53                  | #NV      | #NV      | #NV  | #NV  | 7278  | #NV   | #NV   | #NV   | 18.1 | _                                   |
| 380.00 38           |        | 070421 12:18                                | 070421 14:33                  | 1.10E-07 | 1.29E-07 | 1200 | 1200 | 2953  | 2955  | 3178  | 2955  | 11.1 | CHi / CHir                          |
| 385.00 39           | 390.00 | 070421 15:06                                | 070421 16:31                  | 2.00E-05 | 2.07E-05 | 1200 | 1200 | 2991  | 2992  | 3192  | 2993  | 11.2 | CHi / CHir                          |
| 390.00              | 395.00 | 070421 16:56                                | 070421 18:20                  | 1.38E-05 | 1.43E-05 | 1200 | 1200 | 3028  | 3030  | 3246  | 3030  | 11.3 | CHi / CHir                          |
| 395.00 40           | 100.00 | 070421 18:45                                | 070421 20:28                  | #NV      | #NV      | 10   | 3600 | 3065  | 3091  | 3287  | 3106  | 11.3 | Pi                                  |
| 400.00 40           | 105.00 | 070421 21:08                                | 070421 22:31                  | 9.17E-06 | 9.50E-06 | 1200 | 1200 | 3102  | 3104  | 3314  | 3105  | 11.4 | CHi / CHir                          |
| 405.00 4            | 110.00 | 070421 22:58                                | 070421 23:47                  | #NV      | #NV      | #NV  | #NV  | 3140  | #NV   | #NV   | #NV   | 11.4 | _                                   |
| 410.00 4            | 115.00 | 070422 00:11                                | 070422 01:33                  | 6.17E-06 | 6.23E-06 | 1200 | 1200 | 3177  | 3180  | 3379  | 3180  | 11.5 | CHi / CHir                          |
| 415.00 42           | 120.00 | 070422 06:38                                | 070422 07:26                  | #NV      | #NV      | #NV  | #NV  | 3215  | #NV   | #NV   | #NV   | 11.5 | _                                   |
| 440.00 44           | 145.00 | 070422 08:18                                | 070422 10:14                  | 5.83E-08 | 6.77E-08 | 1200 | 1200 | 3401  | 3448  | 3670  | 3452  | 11.8 | CHi / CHir                          |
| 445.00 45           | 150.00 | 070422 10:48                                | 070422 11:37                  | #NV      | #NV      | #NV  | #NV  | 3439  | #NV   | #NV   | #NV   | 11.9 | _                                   |
| 450.00 45           | 155.00 | 070422 13:05                                | 070422 14:33                  | 2.83E-07 | 3.13E-07 | 1200 | 1200 | 3476  | 3477  | 3677  | 3494  | 12.0 | CHi / CHir                          |
| 455.00 46           | 160.00 | 070422 15:03                                | 070422 16:45                  | 1.33E-07 | 1.53E-07 | 1200 | 1200 | 3511  | 3518  | 3718  | 3525  | 12.0 | CHi / CHir                          |
| 460.00 46           | 165.00 | 070422 17:10                                | 070422 18:37                  | 5.00E-08 | 5.50E-08 | 1200 | 1200 | 3549  | 3557  | 3759  | 3559  | 12.1 | CHi / CHir                          |
| 465.00 47           | 170.00 | 070422 19:02                                | 070422 20:50                  | 4.17E-08 | 4.50E-08 | 1200 | 1200 | 3585  | 3594  | 3821  | 3594  | 12.1 | CHi / CHir                          |
| 470.00 47           | 175.00 | 070422 21:41                                | 070422 23:12                  | 3.33E-08 | 3.67E-08 | 1200 | 1200 | 3625  | 3637  | 3849  | 3647  | 12.2 | CHi / CHir                          |
| 475.00 48           | 180.08 | 070422 23:36                                | 070423 00:24                  | #NV      | #NV      | #NV  | #NV  | 3662  | #NV   | #NV   | #NV   | 12.2 | -                                   |
| 500.00 50           | 505.00 | 070423 00:58                                | 070423 02:17                  | 3.17E-06 | 3.37E-06 | 1200 | 1200 | 3849  | 3848  | 4050  | 3848  | 12.5 | CHi / CHir                          |
| 505.00 5            | 510.00 | 070423 06:34                                | 070423 07:23                  | #NV      | #NV      | #NV  | #NV  | 3885  | #NV   | #NV   | #NV   | 12.6 | _                                   |
| 510.00 5            | 515.00 | 070423 07:57                                | 070423 08:45                  | #NV      | #NV      | #NV  | #NV  | 3920  | #NV   | #NV   | #NV   | 12.6 | _                                   |
| 515.00 52           | 520.00 | 070423 09:17                                | 070423 10:05                  | #NV      | #NV      | #NV  | #NV  | 3958  | #NV   | #NV   | #NV   | 12.7 | _                                   |
| 620.00 62           | 325.00 | 070423 13:19                                | 070423 14:08                  | #NV      | #NV      | #NV  | #NV  | 4735  | #NV   | #NV   | #NV   | 14.0 | _                                   |
| 623.00 62           | 328.00 | 070423 14:31                                | 070423 16:01                  | 5.00E-08 | 6.00E-08 | 1200 | 1200 | 4758  | 4763  | 4987  | 4763  | #NV  | CHi / CHir                          |
| 628.00 63           | 33.00  | 070423 16:25                                | 070423 17:57                  | 1.88E-05 | 2.07E-05 | 1200 | 1200 | 4794  | 4800  | 5002  | 4798  | #NV  | CHi / CHir                          |
| 630.00 63           | 35.00  | 070423 18:21                                | 070423 19:41                  | 1.92E-05 | 2.11E-05 | 1200 | 1200 | 4808  | 4812  | 5012  | 4813  | #NV  | CHi / CHir                          |
| 635.00 64           | 640.00 | 070423 20:25                                | 070423 22:02                  | 2.00E-08 | 2.17E-08 | 1200 | 1200 | 4844  | 4863  | 5073  | 4861  | #NV  | CHi / CHir                          |

| secup         seclow (m)         for test, start (m)         for test, stop           (m)         YYYYMMDD hh:mm         YYYYMMDD hh:mm         (m³/s)         (m³/s)         (s)         (kPa)         (kPa)         (kFa)         (kPa)         (kPa) | Pa) (kPa) |      |                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------------------------------------|
| 665.00 670.00 070423 23:55 070424 01:02 #NV #NV #NV #NV 5064 #NV #N 670.00 675.00 070424 01:07 070424 01:55 #NV #NV #NV #NV 5100 #NV #N 675.00 680.00 070424 06:35 070424 07:25 #NV #NV #NV #NV 5137 #NV #N 700.00 705.00 070424 08:09 070424 08:58 #NV #NV #NV #NV 5321 #NV #N 705.00 710.00 070424 09:27 070424 12:06 2.50E-07 4.75E-07 1200 2400 5360 5373 55710.00 715.00 070424 12:23 070424 13:15 #NV #NV #NV #NV #NV 5399 #NV #N 715.00 720.00 070424 13:42 070424 14:31 #NV #NV #NV #NV #NV 5435 #NV #N 720.00 725.00 070424 15:00 070424 15:49 #NV #NV #NV #NV 5508 #NV #N 730.00 735.00 070424 17:29 070424 18:18 #NV #NV #NV #NV #NV 5545 #NV #N 730.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | (°C) | Analysed test phases<br>marked bold |
| 670.00 675.00 070424 01:07 070424 01:55 #NV #NV #NV #NV 5100 #NV #N 675.00 680.00 070424 06:35 070424 07:25 #NV #NV #NV #NV 5137 #NV #N 700.00 705.00 070424 08:09 070424 08:58 #NV #NV #NV #NV 5321 #NV #N 705.00 710.00 070424 09:27 070424 12:06 2.50E-07 4.75E-07 1200 2400 5360 5373 55710.00 715.00 070424 12:23 070424 13:15 #NV #NV #NV #NV 5399 #NV #N 715.00 720.00 070424 13:42 070424 14:31 #NV #NV #NV #NV #NV 5435 #NV #N 720.00 725.00 070424 15:00 070424 15:49 #NV #NV #NV #NV #NV 5508 #NV #N 725.00 730.00 070424 16:16 070424 17:04 #NV #NV #NV #NV #NV 5545 #NV #N 730.00 735.00 070424 17:29 070424 18:18 #NV #NV #NV #NV #NV 5545 #NV #N 735.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV #NV    | #NV  | _                                   |
| 675.00 680.00 070424 06:35 070424 07:25 #NV #NV #NV #NV 5137 #NV #N 700.00 705.00 070424 08:09 070424 08:58 #NV #NV #NV #NV 5321 #NV #N 705.00 710.00 070424 09:27 070424 12:06 2.50E-07 4.75E-07 1200 2400 5360 5373 557 710.00 715.00 070424 12:23 070424 13:15 #NV #NV #NV #NV 5399 #NV #N 715.00 720.00 070424 13:42 070424 14:31 #NV #NV #NV #NV 5435 #NV #N 720.00 725.00 070424 15:00 070424 15:49 #NV #NV #NV #NV 5473 #NV #N 725.00 730.00 070424 16:16 070424 17:04 #NV #NV #NV #NV 5508 #NV #N 730.00 735.00 070424 17:29 070424 18:18 #NV #NV #NV #NV #NV 5545 #NV #N 735.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 700.00       705.00       070424 08:09       070424 08:58       #NV       #NV       #NV       #NV       5321       #NV       #N         705.00       710.00       070424 09:27       070424 12:06       2.50E-07       4.75E-07       1200       2400       5360       5373       557         710.00       715.00       070424 12:23       070424 13:15       #NV       #NV       #NV       #NV       5399       #NV       #N         715.00       720.00       070424 13:42       070424 14:31       #NV       #NV       #NV       #NV       5435       #NV       #N         720.00       725.00       070424 15:00       070424 15:49       #NV                                                                                                                                                             | IV #NV    | #NV  | _                                   |
| 705.00       710.00       070424 09:27       070424 12:06       2.50E-07       4.75E-07       1200       2400       5360       5373       557         710.00       715.00       070424 12:23       070424 13:15       #NV       #NV       #NV       #NV       5399       #NV       #NV         715.00       720.00       070424 13:42       070424 14:31       #NV       #NV       #NV       #NV       5435       #NV       #NV         720.00       725.00       070424 15:00       070424 15:49       #NV       #NV       #NV       #NV       5473       #NV       #N         725.00       730.00       070424 16:16       070424 17:04       #NV       #NV <t< td=""><td>IV #NV</td><td>#NV</td><td>_</td></t<>                                                                                                      | IV #NV    | #NV  | _                                   |
| 710.00       715.00       070424 12:23       070424 13:15       #NV       #NV       #NV       #NV       5399       #NV       #N         715.00       720.00       070424 13:42       070424 14:31       #NV       #NV       #NV       #NV       5435       #NV       #N         720.00       725.00       070424 15:00       070424 15:49       #NV       #NV       #NV       #NV       5473       #NV       #N         725.00       730.00       070424 16:16       070424 17:04       #NV       #NV       #NV       #NV       #NV       5508       #NV       #N         730.00       735.00       070424 17:29       070424 18:18       #NV                                                                                                                                                                 | IV #NV    | #NV  | _                                   |
| 715.00 720.00 070424 13:42 070424 14:31 #NV #NV #NV #NV 5435 #NV #N 720.00 725.00 070424 15:00 070424 15:49 #NV #NV #NV #NV 5473 #NV #N 725.00 730.00 070424 16:16 070424 17:04 #NV #NV #NV #NV #NV 5508 #NV #N 730.00 735.00 070424 17:29 070424 18:18 #NV #NV #NV #NV #NV 5545 #NV #N 735.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72 5465   | #NV  | CHi / CHir                          |
| 720.00       725.00       070424 15:00       070424 15:49       #NV       #NV       #NV       #NV       5473       #NV       #NV         725.00       730.00       070424 16:16       070424 17:04       #NV       #NV       #NV       #NV       5508       #NV       #NV         730.00       735.00       070424 17:29       070424 18:18       #NV       #NV       #NV       #NV       5545       #NV       #NV         735.00       740.00       070424 18:46       070424 20:38       1.65E-07       2.12E-07       1200       2400       5580       5601       580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV #NV    | #NV  | _                                   |
| 725.00       730.00       070424 16:16       070424 17:04       #NV       #NV       #NV       #NV       5508       #NV       #N         730.00       735.00       070424 17:29       070424 18:18       #NV       #NV       #NV       #NV       5545       #NV       #N         735.00       740.00       070424 18:46       070424 20:38       1.65E-07       2.12E-07       1200       2400       5580       5601       580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IV #NV    | #NV  | _                                   |
| 730.00 735.00 070424 17:29 070424 18:18 #NV #NV #NV #NV 5545 #NV #N<br>735.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV #NV    | #NV  | _                                   |
| 735.00 740.00 070424 18:46 070424 20:38 1.65E-07 2.12E-07 1200 2400 5580 5601 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV #NV    | #NV  | _                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IV #NV    | #NV  | _                                   |
| 740.00 745.00 070424 21:17 070424 23:09 #NV #NV 10 3720 5616 5618 58.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5624      | #NV  | CHi / CHir                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5633      | #NV  | Pi                                  |
| 745.00 750.00 070424 23:35 070425 00:24 #NV #NV #NV #NV 5651 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 750.00 755.00 070425 00:48 070425 01:37 #NV #NV #NV #NV 5688 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 755.00 760.00 070425 06:31 070425 07:20 #NV #NV #NV #NV 5726 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 760.00 765.00 070425 07:45 070425 08:33 #NV #NV #NV #NV 5762 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 765.00 770.00 070425 09:00 070425 10:53 #NV 4.16E-07 9 3600 5800 5825 603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 5831   | #NV  | Pi                                  |
| 770.00 775.00 070425 13:20 070425 17:15 1.15E-07 1.47E-07 1200 1200 5840 5854 604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 144 5879  | #NV  | CHi / CHir                          |
| 775.00 780.00 070425 17:38 070425 19:01 5.67E-08 6.50E-08 1200 1200 5876 5900 608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 5927   | #NV  | CHi / CHir                          |
| 780.00 785.00 070425 19:31 070425 21:08 #NV #NV #NV #NV 5913 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 785.00 790.00 070425 21:31 070425 22:19 #NV #NV #NV #NV 5945 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | _                                   |
| 790.00 795.00 070425 22:42 070426 00:12 7.33E-08 1.05E-07 1200 1200 5980 5997 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87 6058   | #NV  | CHi / CHir                          |
| 795.00 800.00 070426 00:40 070426 01:26 #NV #NV #NV #NV 6016 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | -                                   |
| 800.00 805.00 070426 06:31 070426 07:20 #NV #NV #NV #NV 6050 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | -                                   |
| 805.00 810.00 070426 12:24 070426 13:13 #NV #NV #NV #NV 6089 #NV #N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV #NV    | #NV  | -                                   |
| 810.00 815.00 070426 13:40 070426 15:11 8.33E-08 1.17E-07 1200 1200 6127 6143 634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |      |                                     |

| , | ٠, |   |
|---|----|---|
| - |    | 1 |
| Ų | ^  |   |

| Borehole | Borehole | Date and time   | Date and time  | $\mathbf{Q}_{\mathrm{p}}$ | $\mathbf{Q}_{\mathrm{m}}$ | $\mathbf{t}_{p}$ | $t_{\scriptscriptstyle F}$ | $\mathbf{p}_{0}$ | $\mathbf{p}_{i}$ | $\mathbf{p}_{p}$ | $\mathbf{p}_{\text{F}}$ | $Te_{w}$      | Test phases measured |
|----------|----------|-----------------|----------------|---------------------------|---------------------------|------------------|----------------------------|------------------|------------------|------------------|-------------------------|---------------|----------------------|
| secup    | seclow   | for test, start | for test, stop |                           |                           |                  |                            | <i>"</i> – ,     |                  | <i>"</i>         |                         | (- <b>a</b> ) | Analysed test phases |
| (m)      | (m)      | YYYYMMDD hh:mm  | YYYYMMDD hh:mm | (m³/s)                    | (m³/s)                    | (s)              | (s)                        | (kPa)            | (kPa)            | (kPa)            | (kPa)                   | (°C)          | marked bold          |
| 815.00   | 820.00   | 070426 15:35    | 070426 16:24   | #NV                       | #NV                       | #NV              | #NV                        | 6164             | #NV              | #NV              | #NV                     | #NV           | -                    |
| 840.00   | 845.00   | 070426 17:00    | 070426 18:41   | 1.67E-08                  | 1.83E-08                  | 1200             | 1200                       | 6347             | 6400             | 6564             | 6419                    | #NV           | CHi / CHir           |
| 845.00   | 850.00   | 070426 19:05    | 070426 20:28   | 1.67E-07                  | 1.83E-07                  | 1200             | 1200                       | 6385             | 6391             | 6630             | 6392                    | #NV           | CHi / CHir           |
| 850.00   | 855.00   | 070426 21:12    | 070426 22:01   | #NV                       | #NV                       | #NV              | #NV                        | 6418             | #NV              | #NV              | #NV                     | #NV           | -                    |
| 855.00   | 860.00   | 070426 22:24    | 070426 23:47   | 1.67E-07                  | 1.93E-07                  | 1200             | 1200                       | 6454             | 6462             | 6662             | 6468                    | #NV           | CHi / CHir           |
| 860.00   | 865.00   | 070427 00:09    | 070427 01:16   | #NV                       | #NV                       | #NV              | #NV                        | 6489             | #NV              | #NV              | #NV                     | #NV           | -                    |
| 865.00   | 870.00   | 070427 01:20    | 070427 03:30   | 2.17E-08                  | 2.52E-08                  | 1200             | 3600                       | 6526             | 6547             | 6728             | 6548                    | #NV           | CHi / Chir           |
| 870.00   | 875.00   | 070427 06:28    | 070427 07:17   | #NV                       | #NV                       | #NV              | #NV                        | 6557             | #NV              | #NV              | #NV                     | #NV           | -                    |
| 875.00   | 880.00   | 070427 07:43    | 070427 08:23   | #NV                       | #NV                       | #NV              | #NV                        | 6595             | #NV              | #NV              | #NV                     | #NV           | -                    |
| 970.00   | 1000.43  | 070428 10:58    | 070428 13:52   | 6.67E-07                  | 7.17E-07                  | 1200             | 2400                       | 7275             | 7301             | 7501             | 7301                    | #NV           | CHi / CHir           |

#### Nomenclature

 $Q_m$ Arithmetical mean flow during perturbation phase (m³/s).

Pressure in test section before start of flowing (kPa).

Pressure in test section before stop of flowing (kPa).  $p_p$ 

Pressure in test section at the end of the recovery (kPa).  $p_{\text{F}}$ 

Te<sub>w</sub> Temperature in test section.

Test phases

CHi: Constant Head injection phase.
CHir: Recovery phase following the constant head injection phase.

Pi: Pulse injection phase.

#NV Not analysed/no values.

Duration of perturbation phase (s).

Duration of recovery phase (s).

Pressure in borehole before packer inflation (kPa).  $p_0$ 

Table 6-2. Results from analysis of hydraulic tests in KLX15A (for nomenclature see Appendix 4 and below).

| Interval     | position      | Stationary<br>paramete | •                      | Transient<br>Flow regi | •              | Formatio                | n paramete              | ers                     |                         |                        |                           |                           |            |        |            |                        | Static co | onditions                    |
|--------------|---------------|------------------------|------------------------|------------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------|--------|------------|------------------------|-----------|------------------------------|
| up<br>m btoc | low<br>m btoc | Q/s<br>m²/s            | T <sub>M</sub><br>m²/s | Perturb.<br>phase      | Recovery phase | T <sub>f1</sub><br>m²/s | T <sub>f2</sub><br>m²/s | T <sub>s1</sub><br>m²/s | T <sub>s2</sub><br>m²/s | T <sub>τ</sub><br>m²/s | T <sub>TMIN</sub><br>m²/s | T <sub>TMAX</sub><br>m²/s | C<br>m³/Pa | ξ<br>- | dt₁<br>min | dt <sub>2</sub><br>min | p*<br>kPa | h <sub>wif</sub><br>m.a.s.l. |
| 80.00        | 180.00        | 1.2E-04                | 1.6E-04                | 2                      | WBS2           | 7.7E-05                 | #NV                     | 1.3E-04                 | #NV                     | 7.7E-05                | 3.0E-05                   | 3.0E-04                   | 1.5E-07    | 2.7    | 3.05       | 22.79                  | 1407.6    | 7.34                         |
| 180.00       | 280.00        | 6.3E-06                | 8.2E-06                | 22                     | WBS22          | 8.2E-06                 | 2.4E-05                 | 1.4E-05                 | #NV                     | 1.4E-05                | 5.0E-06                   | 3.0E-05                   | 4.8E-08    | 4.1    | 9.25       | 21.12                  | 2157.8    | 6.98                         |
| 280.00       | 380.00        | 1.4E-08                | 1.8E-08                | 22                     | WBS22          | 1.9E-08                 | #NV                     | 6.0E-08                 | #NV                     | 1.9E-08                | 5.0E-09                   | 6.0E-08                   | 2.7E-10    | 3.5    | 3.11       | 23.20                  | 2916.3    | 7.95                         |
| 380.00       | 480.00        | 1.6E-06                | 2.0E-06                | 22                     | WBS22          | 2.5E-06                 | #NV                     | 2.8E-06                 | #NV                     | 2.8E-06                | 8.0E-05                   | 5.0E-06                   | 2.5E-09    | 3.0    | 2.15       | 8.98                   | 3657.5    | 7.65                         |
| 480.00       | 580.00        | 1.1E-07                | 1.5E-07                | 22                     | WBS22          | 2.9E-07                 | #NV                     | 2.7E-07                 | #NV                     | 2.9E-07                | 3.0E-08                   | 7.0E-07                   | 1.3E-10    | 9.7    | 1.11       | 23.06                  | 4403.1    | 8.48                         |
| 580.00       | 680.00        | 6.8E-07                | 8.8E-07                | 2                      | WBS2           | 1.4E-07                 | 7.2E-07                 | 1.5E-07                 | 1.6E-06                 | 1.5E-07                | 1.0E-07                   | 3.0E-06                   | 3.0E-10    | -4.7   | 1.81       | 4.43                   | 5145.1    | 9.53                         |
| 680.00       | 780.00        | 2.5E-08                | 3.3E-08                | #NV                    | WBS22          | 1.9E-08                 | 7.0E-09                 | 2.2E-08                 | 7.2E-09                 | 2.2E-08                | 5.0E-09                   | 5.0E-08                   | 5.0E-10    | -3.1   | 1.03       | 3.41                   | #NV       | #NV                          |
| 780.00       | 880.00        | 3.3E-08                | 4.2E-08                | 2                      | WBS2           | 2.6E-08                 | #NV                     | 3.7E-08                 | #NV                     | 3.7E-08                | 1.0E-08                   | 8.0E-08                   | 2.7E-10    | 0.6    | 10.58      | 47.17                  | 6601.3    | 11.04                        |
| 80.00        | 100.00        | 2.6E-06                | 2.8E-06                | 2                      | WBS2           | 2.9E-06                 | 6.6E-06                 | 2.0E-06                 | 3.5E-06                 | 2.9E-06                | 7.0E-07                   | 8.0E-06                   | 6.4E-10    | -2.1   | 0.33       | 3.44                   | 801.0     | 7.38                         |
| 100.00       | 120.00        | 2.4E-06                | 2.5E-06                | 2                      | WBS2           | 3.5E-06                 | 6.6E-06                 | 4.1E-06                 | 1.1E-05                 | 4.1E-06                | 1.0E-06                   | 2.0E-05                   | 7.8E-10    | 3.5    | 0.31       | 0.62                   | 950.5     | 7.10                         |
| 120.00       | 140.00        | 1.3E-04                | 1.4E-04                | 2                      | WBS2           | 7.0E-05                 | #NV                     | 1.1E-04                 | 5.7E-05                 | 1.1E-04                | 3.0E-05                   | 3.0E-04                   | 2.5E-08    | -5.1   | 0.15       | 2.58                   | 1105.9    | 7.46                         |
| 140.00       | 160.00        | 2.2E-06                | 2.3E-06                | 2                      | WBS2           | 1.1E-06                 | 3.6E-06                 | 1.6E-06                 | 1.1E-05                 | 3.6E-06                | 8.0E-07                   | 3.0E-05                   | 1.9E-09    | -3.2   | 2.49       | 9.29                   | 1256.9    | 7.41                         |
| 160.00       | 180.00        | 8.7E-08                | 9.1E-08                | 2                      | WBS2           | 1.4E-07                 | #NV                     | 2.9E-07                 | #NV                     | 1.4E-07                | 7.0E-08                   | 6.0E-07                   | 3.9E-10    | 3.9    | 1.00       | 16.97                  | 1408.5    | 7.44                         |
| 180.00       | 200.00        | 7.9E-07                | 8.3E-07                | 2                      | WBS22          | 3.2E-07                 | 1.6E-06                 | 3.5E-06                 | #NV                     | 1.6E-06                | 2.0E-07                   | 5.0E-06                   | 5.1E-10    | -3.0   | 2.92       | 14.23                  | 1561.9    | 7.65                         |
| 200.00       | 220.00        | 2.5E-09                | 2.6E-09                | #NV                    | #NV            | 2.6E-09                 | #NV                     | 2.3E-09                 | #NV                     | 2.6E-09                | 8.0E-10                   | 5.0E-09                   | 5.1E-11    | 2.5    | 0.49       | 13.40                  | 1700.2    | 6.34                         |
| 220.00       | 240.00        | 4.1E-09                | 4.3E-09                | 22                     | WBS22          | 1.2E-09                 | 5.5E-09                 | 8.5E-10                 | 1.8E-09                 | 5.5E-09                | 7.0E-10                   | 7.0E-09                   | 6.9E-11    | -1.7   | #NV        | #NV                    | 1847.1    | 5.95                         |
| 240.00       | 260.00        | 1.7E-09                | 1.8E-09                | 2                      | WBS2           | 1.2E-09                 | #NV                     | 3.6E-09                 | #NV                     | 3.6E-09                | 8.0E-10                   | 5.0E-09                   | 6.2E-11    | 2.5    | #NV        | #NV                    | 2006.1    | 6.82                         |
| 260.00       | 280.00        | 5.4E-06                | 5.6E-06                | 22                     | WBS22          | 5.5E-06                 | 1.2E-05                 | 1.1E-05                 | #NV                     | 1.1E-05                | 8.0E-06                   | 3.0E-05                   | 4.6E-08    | 4.2    | #NV        | #NV                    | 2159.2    | 7.12                         |
| 280.00       | 300.00        | 1.0E-09                | 1.1E-09                | 2                      | WBS2           | 3.4E-10                 | #NV                     | 2.1E-10                 | #NV                     | 3.4E-10                | 1.0E-10                   | 3.0E-09                   | 1.3E-10    | -1.5   | 2.29       | 13.95                  | 2301.1    | 7.98                         |
| 300.00       | 320.00        | #NV                    | #NV                    | 2                      | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 320.00       | 340.00        | #NV                    | #NV                    | 2                      | WB2            | #NV                     | #NV                     | 4.4E-10                 | 1.8E-10                 | 4.4E-10                | 1.0E-10                   | 8.0E-10                   | 4.5E-11    | -0.6   | 1.48       | 8.63                   | #NV       | #NV                          |
| 340.00       | 360.00        | #NV                    | #NV                    | 22                     | WBS2           | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 360.00       | 380.00        | 1.6E-08                | 1.6E-08                | 2                      | WBS2           | 2.2E-08                 | #NV                     | 6.9E-08                 | #NV                     | 2.2E-08                | 7.0E-09                   | 8.0E-08                   | 4.5E-11    | 3.6    | 1.17       | 15.26                  | 2918.2    | 8.14                         |
| 380.00       | 400.00        | 1.1E-06                | 1.1E-06                | 2                      | WBS2           | 1.9E-06                 | #NV                     | 2.4E-06                 | #NV                     | 2.4E-06                | 8.0E-07                   | 5.0E-06                   | 2.4E-09    | 5.6    | 3.79       | 16.15                  | 3067.2    | 8.12                         |
| 400.00       | 420.00        | 7.0E-07                | 7.3E-07                | 22                     | WBS22          | 8.8E-07                 | #NV                     | 1.9E-06                 | #NV                     | 1.9E-06                | 5.0E-07                   | 4.0E-06                   | 2.4E-10    | 8.7    | 0.46       | 10.58                  | 3220.8    | 8.57                         |
| 420.00       | 440.00        | #NV                    | #NV                    | 2                      | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |

| Interval     | position      | Stationary<br>paramete | ,                      | Transient<br>Flow regi | •              | Formatio | n paramete              | ers                     |                         |                        |                        |                           |            |        |            |                        | Static co | onditions                    |
|--------------|---------------|------------------------|------------------------|------------------------|----------------|----------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|---------------------------|------------|--------|------------|------------------------|-----------|------------------------------|
| up<br>m btoc | low<br>m btoc | Q/s<br>m²/s            | T <sub>M</sub><br>m²/s | Perturb.<br>phase      | Recovery phase |          | T <sub>f2</sub><br>m²/s | T <sub>s1</sub><br>m²/s | T <sub>s2</sub><br>m²/s | T <sub>T</sub><br>m²/s | T <sub>TMIN</sub> m²/s | T <sub>TMAX</sub><br>m²/s | C<br>m³/Pa | ξ<br>- | dt₁<br>min | dt <sub>2</sub><br>min | p*<br>kPa | h <sub>wif</sub><br>m.a.s.l. |
| 440.00       | 460.00        | 2.0E-08                | 2.1E-08                | 2                      | WBS2           | 1.1E-08  | #NV                     | 1.4E-08                 | #NV                     | 1.4E-08                | 8.0E-09                | 3.0E-08                   | 9.5E-11    | -1.2   | 3.96       | 14.14                  | 3526.8    | 9.44                         |
| 460.00       | 480.00        | 4.0E-09                | 4.2E-09                | 2                      | WBS22          | 2.6E-09  | #NV                     | 6.1E-09                 | 2.0E-09                 | 6.1E-09                | 1.0E-09                | 1.0E-08                   | 5.3E-11    | 4.9    | 12.85      | 29.99                  | 3661.1    | 8.01                         |
| 480.00       | 500.00        | #NV                    | #NV                    | 2                      | WBS22          | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 500.00       | 520.00        | 1.4E-07                | 1.5E-07                | #NV                    | #NV            | 4.8E-07  | #NV                     | 3.4E-07                 | #NV                     | 4.8E-07                | 1.0E-07                | 8.0E-07                   | 3.6E-11    | 13.9   | 1.52       | 15.14                  | 3957.5    | 8.09                         |
| 520.00       | 540.00        | #NV                    | #NV                    | 2                      | WBS22          | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 540.00       | 560.00        | #NV                    | #NV                    | 2                      | WBS2           | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 560.00       | 580.00        | #NV                    | #NV                    | 2                      | WBS2           | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 580.00       | 600.00        | #NV                    | #NV                    | 22                     | WBS2           | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 600.00       | 620.00        | #NV                    | #NV                    | 22                     | WBS22          | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 620.00       | 640.00        | 8.8E-07                | 9.2E-07                | 2                      | WBS22          | 1.3E-07  | 6.5E-07                 | 2.3E-07                 | 1.5E-06                 | 2.3E-07                | 8.0E-08                | 3.0E-06                   | 9.7E-10    | -4.6   | 1.85       | 4.33                   | 4845.7    | 8.80                         |
| 640.00       | 660.00        | #NV                    | #NV                    | 2                      | WBS22          | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 660.00       | 680.00        | #NV                    | #NV                    | 2                      | WBS2           | #NV      | #NV                     | 3.9E-10                 | 2.3E-12                 | 3.9E-10                | 1.0E-12                | 8.0E-10                   | 5.1E-11    | -1.8   | #NV        | #NV                    | #NV       | #NV                          |
| 680.00       | 700.00        | #NV                    | #NV                    | 2                      | WBS2           | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 700.00       | 720.00        | 1.3E-08                | 1.4E-08                | #NV                    | WBS22          | 4.0E-09  | 1.3E-09                 | 8.1E-09                 | 3.2E-09                 | 8.1E-09                | 1.0E-09                | 3.0E-08                   | 1.4E-10    | -3.7   | 0.98       | 2.99                   | #NV       | #NV                          |
| 720.00       | 740.00        | 8.2E-09                | 8.6E-09                | 22                     | WBS22          | 3.9E-09  | 2.0E-09                 | 4.2E-09                 | 2.1E-09                 | 4.2E-09                | 1.0E-09                | 1.0E-08                   | 1.5E-10    | -2.6   | 1.18       | 4.69                   | 5586.4    | 10.46                        |
| 740.00       | 760.00        | 8.4E-10                | 8.8E-10                | #NV                    | #NV            | #NV      | #NV                     | 6.1E-10                 | #NV                     | 6.1E-10                | 2.0E-10                | 1.0E-09                   | 8.4E-11    | -1.7   | #NV        | #NV                    | 5731.5    | 10.13                        |
| 760.00       | 780.00        | 9.0E-09                | 9.4E-09                | #NV                    | #NV            | 3.7E-09  | #NV                     | 3.0E-09                 | #NV                     | 3.0E-09                | 8.0E-10                | 6.0E-09                   | 5.0E-11    | -2.6   | 1.87       | 17.43                  | 5881.5    | 10.72                        |
| 780.00       | 800.00        | 4.1E-09                | 4.2E-09                | 22                     | WBS22          | 1.0E-09  | #NV                     | 2.3E-09                 | 9.1E-10                 | 2.3E-09                | 7.0E-10                | 5.0E-09                   | 1.3E-10    | -1.9   | 2.33       | 10.66                  | #NV       | #NV                          |
| 800.00       | 820.00        | 4.9E-09                | 5.1E-09                | 2                      | WBS22          | 1.8E-09  | #NV                     | 3.8E-09                 | 1.9E-09                 | 3.8E-09                | 1.0E-09                | 8.0E-09                   | 5.7E-11    | -0.9   | 0.98       | 6.30                   | 6163.3    | 10.13                        |
| 820.00       | 840.00        | #NV                    | #NV                    | #NV                    | #NV            | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 840.00       | 860.00        | 2.6E-08                | 2.8E-08                | #NV                    | #NV            | 3.0E-08  | #NV                     | 6.1E-08                 | #NV                     | 6.1E-08                | 2.0E-08                | 1.0E-07                   | 3.9E-11    | 7.7    | 2.11       | 15.68                  | 6453.7    | 10.55                        |
| 860.00       | 880.00        | 1.5E-09                | 1.6E-09                | #NV                    | #NV            | 1.4E-09  | #NV                     | 1.3E-09                 | #NV                     | 1.4E-09                | 5.0E-10                | 6.0E-09                   | 6.1E-11    | 2.6    | 0.64       | 9.44                   | 6616.6    | 12.59                        |
| 880.00       | 900.00        | #NV                    | #NV                    | #NV                    | #NV            | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 900.00       | 920.00        | #NV                    | #NV                    | 2                      | WBS2           | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 920.00       | 940.00        | #NV                    | #NV                    | #NV                    | #NV            | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 940.00       | 960.00        | #NV                    | #NV                    | #NV                    | #NV            | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 955.00       | 975.00        | #NV                    | #NV                    | #NV                    | #NV            | #NV      | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |

| Interva      | position      | Stationary  | •                      | Transien          | •              |                         |                         |                         |                         |                        |                           |                           |            |        |            |            |           |                              |
|--------------|---------------|-------------|------------------------|-------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------|--------|------------|------------|-----------|------------------------------|
|              |               | paramete    |                        | Flow regi         |                |                         | n paramete              |                         |                         |                        |                           |                           | _          |        |            |            |           | onditions                    |
| up<br>m btoc | low<br>m btoc | Q/s<br>m²/s | T <sub>M</sub><br>m²/s | Perturb.<br>phase | Recovery phase | T <sub>f1</sub><br>m²/s | T <sub>f2</sub><br>m²/s | T <sub>s1</sub><br>m²/s | T <sub>s2</sub><br>m²/s | T <sub>⊤</sub><br>m²/s | T <sub>TMIN</sub><br>m²/s | T <sub>TMAX</sub><br>m²/s | C<br>m³/Pa | ξ<br>- | dt₁<br>min | dt₂<br>min | p*<br>kPa | h <sub>wif</sub><br>m.a.s.l. |
| 380.00       | 385.00        | 4.8E-09     | 4.0E-09                | 2                 | WBS2           | 7.1E-09                 | 2.4E-09                 | 2.3E-08                 | #NV                     | 7.1E-09                | 1.0E-09                   | 4.0E-08                   | 1.7E-11    | 3.2    | 0.2        | 2.5        | 2954.4    | 8.03                         |
| 385.00       | 390.00        | 9.8E-07     | 8.1E-07                | #NV               | #NV            | 2.6E-06                 | #NV                     | 2.4E-06                 | #NV                     | 2.6E-06                | 1.0E-06                   | 4.0E-06                   | 2.2E-09    | 9.2    | 1.17       | 13.01      | 2989.7    | 7.82                         |
| 390.00       | 395.00        | 6.3E-07     | 5.2E-07                | #NV               | #NV            | 9.1E-07                 | #NV                     | 1.3E-06                 | #NV                     | 9.1E-07                | 5.0E-07                   | 2.0E-06                   | 2.2E-09    | 2.2    | 0.59       | 16.60      | 3027.3    | 7.85                         |
| 395.00       | 400.00        | #NV         | #NV                    | 2                 | WBS2           | #NV                     | #NV                     | 3.5E-11                 | #NV                     | 3.5E-11                | 1.0E-11                   | 8.0E-11                   | 1.7E-11    | -0.5   | 9.09       | 55.39      | #NV       | #NV                          |
| 400.00       | 405.00        | 4.3E-07     | 3.5E-07                | #NV               | #NV            | 1.4E-06                 | #NV                     | 1.5E-06                 | #NV                     | 1.5E-06                | 8.0E-07                   | 3.0E-06                   | 3.0E-10    | 14.4   | 1.11       | 11.06      | 3103.1    | 7.97                         |
| 405.00       | 410.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 410.00       | 415.00        | 3.0E-07     | 2.5E-07                | #NV               | WBS2           | 9.4E-07                 | #NV                     | 1.4E-06                 | #NV                     | 9.4E-07                | 5.0E-07                   | 3.0E-06                   | 2.6E-11    | 12.5   | 1.11       | 18.49      | 3178.6    | 8.11                         |
| 415.00       | 420.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 440.00       | 445.00        | 2.6E-09     | 2.1E-09                | #NV               | WBS2           | 1.2E-09                 | #NV                     | 7.8E-10                 | #NV                     | 7.8E-10                | 5.0E-10                   | 3.0E-09                   | 2.6E-11    | -1.7   | 1.83       | 15.58      | 3405.1    | 8.39                         |
| 445.00       | 450.00        | #NV         | #NV                    | 2                 | WBS2           | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 450.00       | 455.00        | 1.4E-08     | 1.2E-08                | 22                | WBS22          | 1.2E-08                 | #NV                     | 3.0E-08                 | 1.5E-08                 | 1.2E-08                | 8.0E-09                   | 4.0E-08                   | 2.0E-11    | 0.4    | 2.41       | 18.73      | 3481.8    | 8.63                         |
| 455.00       | 460.00        | 6.5E-09     | 5.4E-09                | 2                 | WBS2           | 2.9E-09                 | 9.6E-09                 | 6.2E-10                 | 2.4E-09                 | 2.9E-09                | 7.0E-10                   | 6.0E-09                   | 1.9E-11    | -1.4   | 1.22       | 3.88       | #NV       | #NV                          |
| 460.00       | 465.00        | 2.4E-09     | 2.0E-09                | 2                 | WBS2           | 2.5E-09                 | #NV                     | 5.4E-09                 | #NV                     | 5.4E-09                | 2.0E-09                   | 8.0E-09                   | 1.4E-11    | 8.2    | 8.83       | 18.86      | 3554.5    | 8.48                         |
| 465.00       | 470.00        | 1.8E-09     | 1.5E-09                | 2                 | WBS22          | 2.3E-09                 | #NV                     | 2.9E-09                 | #NV                     | 2.9E-09                | 1.0E-09                   | 5.0E-09                   | 1.8E-11    | 5.4    | 12.32      | 35.18      | 3589.7    | 8.29                         |
| 470.00       | 475.00        | 1.5E-09     | 1.3E-09                | #NV               | #NV            | 1.7E-09                 | #NV                     | 1.2E-09                 | #NV                     | 1.2E-09                | 8.0E-10                   | 3.0E-09                   | 1.6E-11    | 0.9    | #NV        | #NV        | 3629.9    | 8.61                         |
| 475.00       | 480.00        | #NV         | #NV                    | 2                 | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 500.00       | 505.00        | 1.5E-07     | 1.3E-07                | 2                 | WBS22          | 2.3E-07                 | #NV                     | 5.5E-07                 | #NV                     | 2.3E-07                | 9.0E-08                   | 6.0E-07                   | 1.6E-11    | 2.8    | 0.89       | 16.16      | 3847.9    | 8.21                         |
| 505.00       | 510.00        | #NV         | #NV                    | 22                | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 510.00       | 515.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 515.00       | 520.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 620.00       | 625.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 623.00       | 628.00        | 2.2E-09     | 1.8E-09                | 2                 | WBS2           | 1.9E-09                 | #NV                     | 8.7E-09                 | #NV                     | 1.9E-09                | 1.0E-09                   | 1.0E-08                   | 1.9E-11    | 1.0    | 1.31       | 14.93      | 4759.4    | 8.95                         |
| 628.00       | 633.00        | 9.1E-07     | 7.5E-07                | 22                | WBS22          | 3.4E-07                 | 1.1E-06                 | 2.6E-07                 | 1.4E-06                 | 3.4E-07                | 1.0E-07                   | 2.0E-06                   | 2.2E-10    | -4.0   | 0.92       | 2.88       | 4793.4    | 8.69                         |
| 630.00       | 635.00        | 9.4E-07     | 7.8E-07                | 2                 | WBS22          | 3.3E-07                 | 1.7E-06                 | 2.3E-07                 | 1.3E-06                 | 3.3E-07                | 2.0E-07                   | 3.0E-06                   | 2.8E-10    | -4.1   | 1.30       | 2.43       | 4806.1    | 8.49                         |
| 635.00       | 640.00        | 9.3E-10     | 7.7E-10                | #NV               | #NV            | 6.3E-10                 | #NV                     | 1.7E-09                 | #NV                     | 1.7E-09                | 4.0E-10                   | 3.0E-09                   | 2.2E-11    | 8.0    | #NV        | #NV        | 4852.9    | 9.54                         |
| 660.00       | 665.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |
| 665.00       | 670.00        | #NV         | #NV                    | #NV               | #NV            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV        | #NV       | #NV                          |

| Interval     | position      | Stationary<br>paramete | •                      | Transient<br>Flow regi | t analysis<br>me | Formatio                | n paramete              | ers                     |                         |                        |                           |                           |            |        |            |                        | Static co | onditions                    |
|--------------|---------------|------------------------|------------------------|------------------------|------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------|--------|------------|------------------------|-----------|------------------------------|
| up<br>m btoc | low<br>m btoc | Q/s<br>m²/s            | T <sub>M</sub><br>m²/s | Perturb.<br>phase      | Recovery phase   | T <sub>f1</sub><br>m²/s | T <sub>f2</sub><br>m²/s | T <sub>s1</sub><br>m²/s | T <sub>s2</sub><br>m²/s | T <sub>T</sub><br>m²/s | T <sub>TMIN</sub><br>m²/s | T <sub>TMAX</sub><br>m²/s | C<br>m³/Pa | ξ<br>- | dt₁<br>min | dt <sub>2</sub><br>min | p*<br>kPa | h <sub>wif</sub><br>m.a.s.l. |
| 670.00       | 675.00        | #NV                    | #NV                    | 2                      | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 675.00       | 680.00        | #NV                    | #NV                    | 2                      | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 700.00       | 705.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 705.00       | 710.00        | 1.2E-08                | 1.0E-08                | #NV                    | WBS2             | 4.4E-09                 | 1.1E-09                 | 1.4E-08                 | 3.6E-09                 | 1.4E-08                | 4.0E-09                   | 3.0E-08                   | 1.4E-10    | -3.1   | 0.75       | 2.93                   | #NV       | #NV                          |
| 710.00       | 715.00        | #NV                    | #NV                    | 22                     | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 715.00       | 720.00        | #NV                    | #NV                    | #NV                    | #NV              | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 720.00       | 725.00        | #NV                    | #NV                    | #NV                    | #NV              | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 725.00       | 730.00        | #NV                    | #NV                    | #NV                    | #NV              | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 730.00       | 735.00        | #NV                    | #NV                    | 22                     | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 735.00       | 740.00        | 8.1E-09                | 6.7E-09                | 2                      | WBS22            | 8.9E-09                 | 3.7E-09                 | 3.6E-09                 | 1.8E-09                 | 3.6E-09                | 1.0E-09                   | 1.0E-08                   | 5.2E-12    | -2.6   | 0.69       | 2.30                   | 5585.8    | 10.01                        |
| 740.00       | 745.00        | #NV                    | #NV                    | 2                      | WBS22            | #NV                     | #NV                     | 1.8E-10                 | 8.0E-11                 | 1.8E-10                | 6.0E-11                   | 3.0E-10                   | 1.3E-11    | -0.9   | #NV        | #NV                    | #NV       | #NV                          |
| 745.00       | 750.00        | #NV                    | #NV                    | 22                     | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 750.00       | 755.00        | #NV                    | #NV                    | 22                     | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 755.00       | 760.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 760.00       | 765.00        | #NV                    | #NV                    | 22                     | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 765.00       | 770.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | 2.5E-10                 | 1.1E-10                 | 2.5E-10                | 8.0E-11                   | 5.0E-10                   | 2.1E-11    | -1.0   | #NV        | #NV                    | #NV       | #NV                          |
| 770.00       | 775.00        | 5.9E-09                | 4.9E-09                | 2                      | WBS2             | 2.6E-09                 | #NV                     | 1.2E-09                 | #NV                     | 2.6E-09                | 7.0E-10                   | 6.0E-09                   | 1.0E-11    | -1.8   | 1.48       | 15.01                  | 5843.5    | 10.52                        |
| 775.00       | 780.00        | 3.1E-09                | 2.6E-09                | 22                     | WBS22            | 3.4E-09                 | #NV                     | 6.8E-09                 | 2.4E-09                 | 6.8E-09                | 2.0E-09                   | 9.0E-09                   | 1.8E-11    | 5.4    | 3.68       | 7.19                   | 5909.7    | 13.60                        |
| 780.00       | 785.00        | #NV                    | #NV                    | 2                      | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 785.00       | 790.00        | #NV                    | #NV                    | 2                      | WBS22            | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 790.00       | 795.00        | 3.8E-09                | 3.1E-09                | 22                     | WBS22            | 2.5E-09                 | 1.0E-09                 | 2.2E-09                 | 1.2E-09                 | 2.2E-09                | 5.0E-10                   | 5.0E-09                   | 6.5E-11    | -2.1   | 1.56       | 5.45                   | 6009.0    | 12.71                        |
| 795.00       | 800.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 800.00       | 805.00        | #NV                    | #NV                    | #NV                    | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 805.00       | 810.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 810.00       | 815.00        | 4.1E-09                | 3.4E-09                | 2                      | WBS2             | 4.1E-09                 | 1.8E-09                 | 4.9E-09                 | 2.2E-09                 | 4.9E-09                | 1.0E-09                   | 8.0E-09                   | 1.4E-11    | -0.2   | 0.83       | 2.03                   | 6137.8    | 11.18                        |
| 815.00       | 820.00        | #NV                    | #NV                    | 2                      | WBS2             | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                   | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 840.00       | 845.00        | 1.0E-09                | 8.2E-10                | 22                     | WBS22            | 6.7E-10                 | #NV                     | 1.7E-09                 | #NV                     | 1.7E-09                | 4.0E-10                   | 5.0E-09                   | 2.6E-11    | 5.2    | #NV        | #NV                    | 6411.2    | 17.15                        |

| Interval     | position      | Stationary parameter | •                      | Transient Flow regi | analysis<br>me | Formation               | n paramete              | ers                     |                         |                        |                        |                           |            |        |            |                        | Static co | onditions                    |
|--------------|---------------|----------------------|------------------------|---------------------|----------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------------------|---------------------------|------------|--------|------------|------------------------|-----------|------------------------------|
| up<br>m btoc | low<br>m btoc | Q/s<br>m²/s          | T <sub>M</sub><br>m²/s | Perturb.<br>phase   | Recovery phase | T <sub>f1</sub><br>m²/s | T <sub>f2</sub><br>m²/s | T <sub>s1</sub><br>m²/s | T <sub>s2</sub><br>m²/s | T <sub>T</sub><br>m²/s | T <sub>TMIN</sub> m²/s | T <sub>TMAX</sub><br>m²/s | C<br>m³/Pa | ξ<br>- | dt₁<br>min | dt <sub>2</sub><br>min | p*<br>kPa | h <sub>wif</sub><br>m.a.s.l. |
| 845.00       | 850.00        | 6.8E-09              | 5.7E-09                | 2                   | WBS2           | 9.9E-09                 | #NV                     | 2.4E-08                 | #NV                     | 2.4E-08                | 6.0E-09                | 7.0E-08                   | 1.2E-11    | 16.0   | #NV        | #NV                    | 6391.7    | 11.52                        |
| 850.00       | 855.00        | #NV                  | #NV                    | 2                   | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 855.00       | 860.00        | 8.8E-09              | 6.8E-09                | 2                   | WBS2           | 8.2E-09                 | #NV                     | 1.4E-08                 | 5.7E-09                 | 1.4E-08                | 4.0E-09                | 3.0E-08                   | 1.3E-11    | 3.3    | 0.75       | 2.14                   | 6447.4    | 9.91                         |
| 860.00       | 865.00        | #NV                  | #NV                    | 2                   | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 865.00       | 870.00        | 1.2E-09              | 9.7E-10                | #NV                 | #NV            | 1.7E-09                 | #NV                     | 4.4E-09                 | #NV                     | 4.4E-09                | 8.0E-10                | 7.0E-09                   | 2.0E-11    | 15.7   | #NV        | #NV                    | 6546.8    | 12.76                        |
| 870.00       | 875.00        | #NV                  | #NV                    | 2                   | WBS22          | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 875.00       | 880.00        | #NV                  | #NV                    | 22                  | WBS2           | #NV                     | #NV                     | #NV                     | #NV                     | 1.0E-11                | 1.0E-13                | 1.0E-11                   | #NV        | #NV    | #NV        | #NV                    | #NV       | #NV                          |
| 970.00       | 1000.43       | 3.3E-08              | 3.6E-08                | 22                  | WBS22          | 3.6E-08                 | 1.8E-08                 | 8.3E-08                 | 2.1E-08                 | 8.3E-08                | 4.0E-08                | 3.0E-07                   | 6.9E-11    | 7.4    | 1.40       | 3.91                   | 7289.6    | 12.07                        |

#### Nomenclature

 $T_s$ 

Q/s Specific capacity.

T<sub>M</sub> Transmissivity according to /Moye 1967/.

Flow regime The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.

Transmissivity derived from the analysis of the perturbation phase (CHi). In case a homogeneous flow model was used only one T<sub>f</sub> value is reported, in case a two zone composite flow model was used both T<sub>f1</sub> (inner zone) and T<sub>f2</sub> (outer zone) are given.

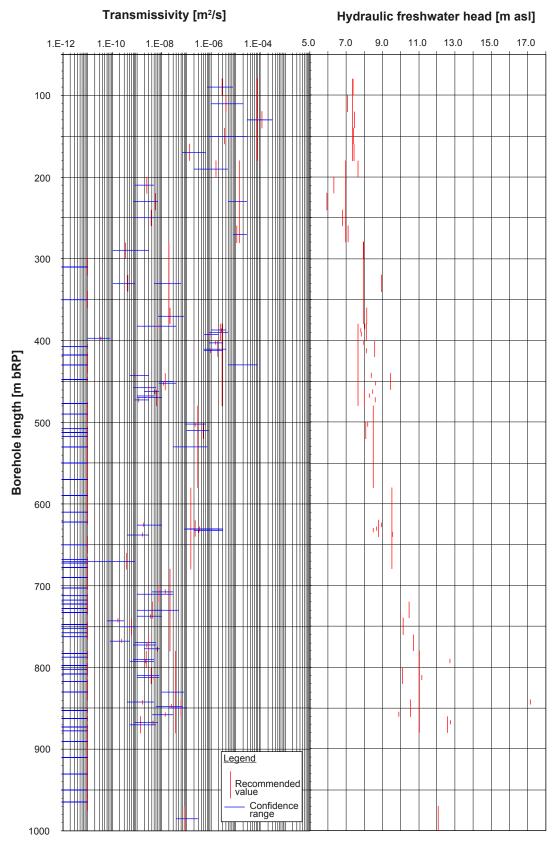
Transmissivity derived from the analysis of the recovery phase (CHir or Pi). In case a homogeneous flow model was used only one T<sub>s</sub> value is reported, in case a two zone composite flow model was used both T<sub>s1</sub> (inner zone) and T<sub>s2</sub> (outer zone) are given.

 $\begin{array}{lll} T_{\scriptscriptstyle T} & & \text{Recommended transmissivity.} \\ T_{\scriptscriptstyle TMIN} & & \text{Confidence range lower limit.} \\ T_{\scriptscriptstyle TMAX} & & \text{Confidence range upper limit.} \\ C & & \text{Wellbore storage coefficient.} \\ \xi & & \text{Skin factor (calculated based on a Storativity of 1·10-6).} \\ dt_1 & & \text{Estimated start time of evaluation.} \\ dt_2 & & \text{Estimated stop time of evaluation.} \\ \end{array}$ 

p\* The parameter p\* denoted the static formation pressure (measured at transducer depth) and was derived from the Horner plot of the CHir phase using straight line or type-curve extrapolation.

h<sub>wif</sub> Fresh-water head (based on transducer depth and p\*).

#NV Not analysed/no values.


Table 6-3. Results from the ri-index calculation of hydraulic tests in KLX15A (see Section 4.5.5 for details and nomenclature).

| Borehole<br>secup<br>(m) | Borehole<br>seclow<br>(m) | Recommended transmissivity $T_T$ (m²/s) | Time $t_2$ for radius of influence calculation (s) | ri-index<br>(–) | Radius of influence (m) |
|--------------------------|---------------------------|-----------------------------------------|----------------------------------------------------|-----------------|-------------------------|
|                          |                           |                                         |                                                    |                 |                         |
| 180.00                   | 280.00                    | 1.4E-05                                 | 1,800                                              | <b>–</b> 1      | 185.72                  |
| 280.00                   | 380.00                    | 1.9E-08                                 | 1,800                                              | 0               | 35.72                   |
| 380.00                   | 480.00                    | 2.8E-06                                 | 1,800                                              | <b>–</b> 1      | 123.64                  |
| 480.00                   | 580.00                    | 2.9E-07                                 | 1,800                                              | 0               | 70.33                   |
| 580.00                   | 680.00                    | 1.5E-07                                 | 266                                                | <b>–</b> 1      | 22.92                   |
| 680.00                   | 780.00                    | 2.2E-08                                 | 205                                                | 1               | 12.40                   |
| 780.00                   | 880.00                    | 3.7E-08                                 | 3,600                                              | 0               | 59.24                   |
| 80.00                    | 100.00                    | 2.9E-06                                 | 206                                                | <b>–</b> 1      | 42.17                   |
| 100.00                   | 120.00                    | 4.1E-06                                 | 37                                                 | <b>–</b> 1      | 19.61                   |
| 120.00                   | 140.00                    | 1.1E-04                                 | 155                                                | 1               | 91.84                   |
| 140.00                   | 160.00                    | 3.6E-06                                 | 1,200                                              | 0               | 107.79                  |
| 160.00                   | 180.00                    | 1.4E-07                                 | 1,200                                              | 0               | 47.52                   |
| 180.00                   | 200.00                    | 1.6E-06                                 | 1,200                                              | 0               | 88.01                   |
| 200.00                   | 220.00                    | 2.6E-09                                 | 1,200                                              | 0               | 17.62                   |
| 220.00                   | 240.00                    | 5.5E-09                                 | 1,200                                              | 0               | 21.30                   |
| 240.00                   | 260.00                    | 3.6E-09                                 | 3,600                                              | <b>–</b> 1      | 33.29                   |
| 260.00                   | 280.00                    | 1.1E-05                                 | 1,200                                              | 0               | 143.47                  |
| 280.00                   | 300.00                    | 3.4E-10                                 | 1,200                                              | 0               | 10.59                   |
| 300.00                   | 320.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 320.00                   | 340.00                    | 4.4E-10                                 | 518                                                | 1               | 7.42                    |
| 340.00                   | 360.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 360.00                   | 380.00                    | 2.2E-08                                 | 1,200                                              | 0               | 30.10                   |
| 380.00                   | 400.00                    | 2.4E-06                                 | 1,200                                              | 0               | 97.50                   |
| 400.00                   | 420.00                    | 1.9E-06                                 | 1,200                                              | 0               | 91.99                   |
| 420.00                   | 440.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 440.00                   | 460.00                    | 1.4E-08                                 | 1,200                                              | 0               | 26.97                   |
| 460.00                   | 480.00                    | 6.1E-09                                 | 1,799                                              | 1               | 26.78                   |
| 480.00                   | 500.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 500.00                   | 520.00                    | 4.8E-07                                 | 1,200                                              | 0               | 65.13                   |
| 520.00                   | 540.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 540.00                   | 560.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 560.00                   | 580.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 580.00                   | 600.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 600.00                   | 620.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 620.00                   | 640.00                    | 2.3E-07                                 | 260                                                | _1              | 25.22                   |
| 640.00                   | 660.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 660.00                   | 680.00                    | 3.9E-10                                 | #NV                                                | 1               | #NV                     |
| 680.00                   | 700.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 700.00                   | 720.00                    | 8.1E-09                                 | 179                                                | 1               | 9.07                    |
| 720.00                   | 740.00                    | 4.2E-09                                 | 281                                                | 1               | 9.64                    |
| 740.00                   | 760.00                    | 6.1E-10                                 | 1,200                                              | 0               | 12.27                   |
| 760.00                   | 780.00                    | 3.0E-09                                 | 1,200                                              | 0               | 18.36                   |
| 780.00                   | 800.00                    | 2.3E-09                                 | 640                                                | 1               | 10.16                   |
| . 55.50                  | 000.00                    | 2.01-03                                 | 0-10                                               | 1               | 10.10                   |

| Borehole<br>secup<br>(m) | Borehole<br>seclow<br>(m) | Recommended transmissivity $T_T$ (m²/s) | Time t <sub>2</sub> for radius of influence calculation (s) | ri-index<br>(–) | Radius of influence (m) |
|--------------------------|---------------------------|-----------------------------------------|-------------------------------------------------------------|-----------------|-------------------------|
|                          |                           |                                         |                                                             |                 |                         |
| 840.00                   | 860.00                    | 6.1E-08                                 | 1,200                                                       | 0               | 38.94                   |
| 860.00                   | 880.00                    | 1.4E-09                                 | 1,200                                                       | 0               | 15.14                   |
| 880.00                   | 900.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 900.00                   | 920.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 920.00                   | 940.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 940.00                   | 960.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 955.00                   | 975.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 380.00                   | 385.00                    | 7.1E–09                                 | 147                                                         | 1               | 7.96                    |
| 385.00                   | 390.00                    | 2.6E-06                                 | 1,200                                                       | 0               | 99.65                   |
| 390.00                   | 395.00                    | 9.1E-07                                 | 1,200                                                       | 0               | 76.45                   |
| 395.00                   | 400.00                    | 3.5E-11                                 | 3,600                                                       | 0               | 10.41                   |
| 400.00                   | 405.00                    | 1.5E-06                                 | 1,200                                                       | 0               | 87.03                   |
| 405.00                   | 410.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 410.00                   | 415.00                    | 9.4E-07                                 | 1,200                                                       | 0               | 77.05                   |
| 415.00                   | 420.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 440.00                   |                           |                                         |                                                             |                 |                         |
|                          | 445.00                    | 7.8E-10                                 | 1,200                                                       | 0               | 13.09                   |
| 445.00                   | 450.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 450.00                   | 455.00                    | 1.2E-08                                 | 1,200                                                       | 0               | 26.01                   |
| 455.00                   | 460.00                    | 2.9E-09                                 | 233                                                         | <b>-1</b>       | 8.00                    |
| 460.00                   | 465.00                    | 5.4E-09                                 | 1,200                                                       | 0               | 21.17                   |
| 465.00                   | 470.00                    | 2.9E-09                                 | 1,200                                                       | 0               | 18.21                   |
| 470.00                   | 475.00                    | 1.2E-09                                 | 1,200                                                       | 0               | 14.56                   |
| 475.00                   | 480.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 500.00                   | 505.00                    | 2.3E-07                                 | 1,200                                                       | 0               | 54.19                   |
| 505.00                   | 510.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 510.00                   | 515.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 515.00                   | 520.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 620.00                   | 625.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 323.00                   | 628.00                    | 1.9E-09                                 | 1,200                                                       | 0               | 16.38                   |
| 628.00                   | 633.00                    | 3.4E-07                                 | 173                                                         | <b>–</b> 1      | 22.68                   |
| 630.00                   | 635.00                    | 3.3E-07                                 | 146                                                         | <b>–</b> 1      | 20.69                   |
| 35.00                    | 640.00                    | 1.7E-09                                 | 1,200                                                       | <b>–</b> 1      | 15.89                   |
| 660.00                   | 665.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 665.00                   | 670.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 670.00                   | 675.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 675.00                   | 680.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 700.00                   | 705.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 705.00                   | 710.00                    | 1.4E-08                                 | 176                                                         | 1               | 10.34                   |
| 710.00                   | 715.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 715.00                   | 720.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 720.00                   | 725.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 725.00                   | 730.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 730.00                   | 735.00                    | 1.0E-11                                 | #NV                                                         | #NV             | #NV                     |
| 735.00                   | 740.00                    | 3.6E-09                                 | 138                                                         | 1               | 6.49                    |
| 740.00                   | 745.00                    | 1.8E-10                                 | #NV                                                         | 1               | #NV                     |
| 745.00                   | 750.00                    | 1.0E-10                                 | #NV                                                         | #NV             | #NV                     |

| Borehole<br>secup<br>(m) | Borehole<br>seclow<br>(m) | Recommended transmissivity $T_T$ (m²/s) | Time $t_2$ for radius of influence calculation (s) | ri-index<br>(–) | Radius of influence (m) |
|--------------------------|---------------------------|-----------------------------------------|----------------------------------------------------|-----------------|-------------------------|
|                          |                           |                                         |                                                    |                 |                         |
| 755.00                   | 760.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 760.00                   | 765.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 765.00                   | 770.00                    | 2.5E-10                                 | #NV                                                | 1               | #NV                     |
| 770.00                   | 775.00                    | 2.6E-09                                 | 1,200                                              | 0               | 17.62                   |
| 775.00                   | 780.00                    | 6.8E-09                                 | 431                                                | 1               | 13.47                   |
| 780.00                   | 785.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 785.00                   | 790.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 790.00                   | 795.00                    | 2.2E-09                                 | 327                                                | 1               | 8.84                    |
| 795.00                   | 800.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 800.00                   | 805.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 805.00                   | 810.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 810.00                   | 815.00                    | 4.9E-09                                 | 122                                                | 1               | 6.60                    |
| 815.00                   | 820.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 840.00                   | 845.00                    | 1.7E-09                                 | 1,200                                              | <b>-1</b>       | 15.82                   |
| 845.00                   | 850.00                    | 2.4E-08                                 | 1,200                                              | <b>-1</b>       | 30.80                   |
| 850.00                   | 855.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 855.00                   | 860.00                    | 1.4E-08                                 | 128                                                | 1               | 8.85                    |
| 860.00                   | 865.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 865.00                   | 870.00                    | 4.4E-09                                 | 3,600                                              | <b>–1</b>       | 34.91                   |
| 870.00                   | 875.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 875.00                   | 880.00                    | 1.0E-11                                 | #NV                                                | #NV             | #NV                     |
| 970.00                   | 1,000.43                  | 8.3E-08                                 | 235                                                | 1               | 18.55                   |

The Figures 6-1 to 6-3 present the transmissivity, conductivity and hydraulic freshwater head profiles.



**Figure 6-1.** Results summary – profiles of transmissivity and equivalent freshwater head, transmissivities derived from injection tests, freshwater head extrapolated

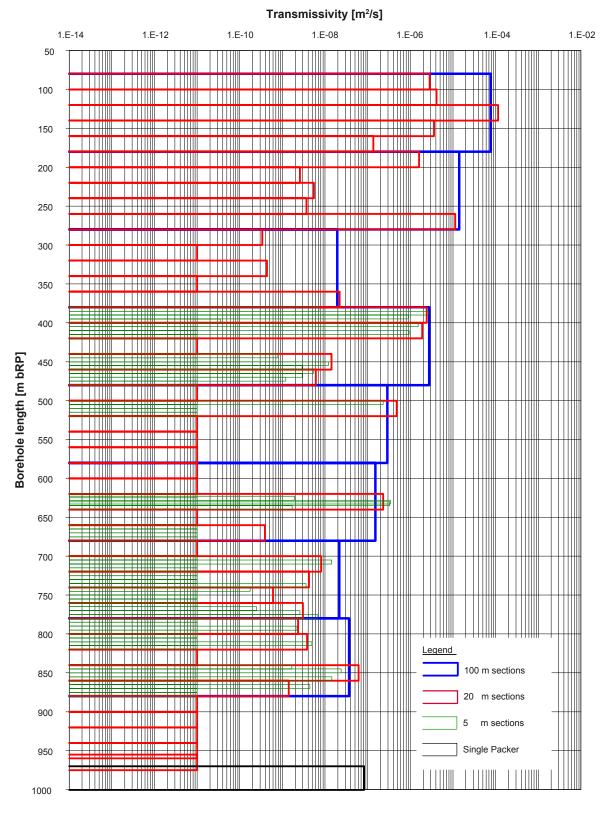



Figure 6-2. Results summary – profile of transmissivity.

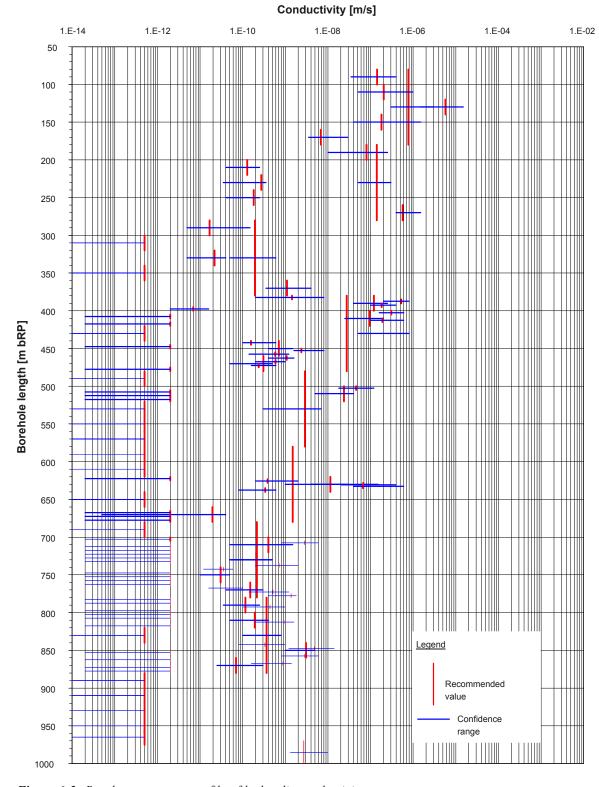



Figure 6-3. Results summary – profile of hydraulic conductivity.

### 6.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

#### 6.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities ( $T_M$ ) and specific capacities (Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that the transmissivities derived from the steady state analysis differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

# 6.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result of a unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval.

The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). The water compressibility depends on the temperature and salinity. However, for temperature and salinity values as encountered at the Oskarshamn site the water compressibility varies only slightly between  $4.5 \cdot 10^{-10}$  and  $5.0 \cdot 10^{-10}$  1/Pa.

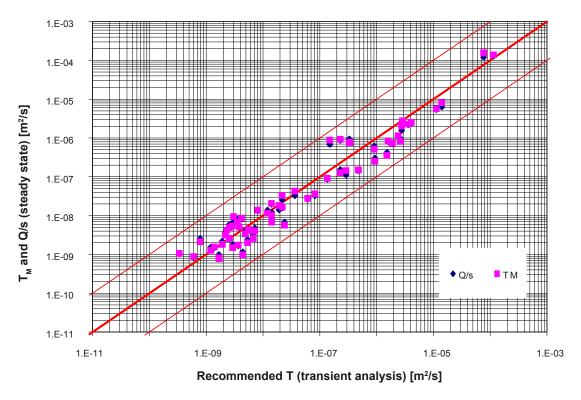



Figure 6-4. Correlation analysis of transmissivities derived by steady state and transient methods.

A water compressibility of  $5 \cdot 10^{-10}$  1/Pa and a rock compressibility of  $1 \cdot 10^{-10}$  1/Pa was assumed for the analysis. In addition, the test zone compressibility is influenced by the test tool (packer compliance). The test tool compressibility was calculated as follow:

$$c = \frac{\Delta V}{\Delta p} * \frac{1}{V} [1/Pa]$$

- $\Delta V$  Volume change of 2 Packers (The volume change was estimated at  $7 \cdot 10^{-7}$  m<sup>3</sup>/100 kPa based on the results of laboratory tests conducted by GEOSIGMA) [m<sup>3</sup>].
- $\Delta p$  Pressure change in test section (usually 2·10<sup>5</sup> Pa) [Pa].
- V Volume in test section [m<sup>3</sup>].

The following table presents the calculated compressibilities for each relevant section length. The average value for the test tool compressibility based on different section lengths is  $1 \cdot 10^{-10}$  1/Pa.

The sum of the compressibilities (water, rock, test tool) leads to a test zone compressibility with a value of  $7 \cdot 10^{-10}$  1/Pa. This value is used for the calculation of the theoretical wellbore storage coefficient.

The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope at early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

Table 6-4. Test tool compressibility values based on packer displacement.

| Length of test section [m] | Volume in test section [m³] | Compressibility<br>[1/Pa] |
|----------------------------|-----------------------------|---------------------------|
| 5                          | 0.023                       | 3·10 <sup>-10</sup>       |
| 20                         | 0.091                       | 8·10 <sup>-11</sup>       |
| 100                        | 0.454                       | 2·10 <sup>-11</sup>       |
| Average compressibility:   | :                           | 1.10-10                   |

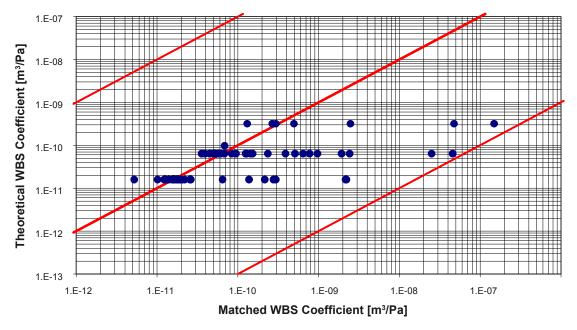



Figure 6-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients differ mainly up to two orders of magnitude from the theoretical value. This phenomenon was already observed at the previous boreholes. A two or three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. This discrepancy is not fully understood, but following hypotheses may be formulated:

- · increased compressibility of the packer system,
- as shown by previous work conducted at site, the phenomenon of increased wellbore storage coefficients can be explained by turbulent flow induced by the test in the vicinity of the borehole. Considering the fact that deviations concerning the wellbore storage rather occur in test sections with a higher transmissivity (which can lead to turbulent flow) seems to rest upon this hypothesis.

### 7 Conclusions

### 7.1 Transmissivity

Figure 6-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 4.5.9.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

If the conducted preliminary pulse injection (Pi) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. In four cases the preliminary pulse was prolonged and the recommended transmissivity range from  $3.5 \cdot 10^{-11}$  m<sup>2</sup>/s to  $4.4 \cdot 10^{-10}$  m<sup>2</sup>/s.

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range between  $3.4 \cdot 10^{-10}$  m<sup>2</sup>/s and  $1.1 \cdot 10^{-4}$  m<sup>2</sup>/s.

A few of the 20 m sections show a slightly higher transmissivity than the appropriate 100 m section. In these cased, a crossflow or hydraulic connection to adjacent zones cannot be excluded by performing the relevant 20 m section tests. At some of the relevant 20 m section tests an increase of pressure at Pb was observed during injection which is consistent with the crossflow hypothesis. The same was observed at a few of the 5 m sections comparing to the appropriate 20 m sections. These effects were always observed at zones where a fracture network observed at the relevant televiewing sections may lead not only to a relative high formation transmissivity but also to the crossflow effects.

### 7.2 Equivalent freshwater head

Figure 6-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 4.5.8.

The head profile shows the freshwater head ranges from 6.0 m to 17.1 m. The highest freshwater heads were measured between 790 m and 1,000 m, whereas the lowest freshwater heads were measured between 180 m and 260 m.

The uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities. In several cases no freshwater head was calculated due to the high uncertainty of the formation pressure.

### 7.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as  $4 \cdot 10^{-9}$  m<sup>2</sup>/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow (flow dimension 1), a slope of 0 (horizontal derivative, flow dimension 2) indicates radial flow and a slope of -0.5 indicates spherical flow (flow dimension 3). The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed.

### 8 References

**Bourdet D, Ayoub J A, Pirard Y M, 1989.** Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation. pp. 293–302.

**Chakrabarty C, Enachescu C, 1997.** Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.–Oct. 1997. pp. 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

**Horner D R, 1951.** Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

**Jacob C E, Lohman S W, 1952.** Nonsteady flow to a well of constant drawdown in an extensive aguifer. Transactions, American Geophysical Union, Volume 33, No 4, pp. 559–569.

**Moye D G, 1967.** Diamond drilling for foundation exploration. Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp. 1591–1602.

Rhen I, 2005. Reporting influence radius – proposal (2005-02-09).

Rhen I, Forsmark T, Forssman, I, Zetterlund M, 2006. Evaluation of hydrogeo-logical properties for Hydraulic Conductor Domains (HCD) and Hydraulic Rock Domains (HRD). SKB R-06-22, Svensk Kärnbränslehantering AB.

**SKB**, **2001.** Platsundersökningar. Undersökningsmetoder och generellt genomförandeprogram. SKB R-01-10, Svensk Kärnbränslehantering AB.

**SKB**, **2002.** Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering.

**SKB**, **2006.** Program för platsundersökning vid Simpevarp. SKB R-05-37, Svensk Kärnbränslehantering AB.

## **APPENDIX 1**

File Description Table

Borehole: KLX15A Page 1/2

| HYDRO     | TES   | TING                    | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A Testorder dated: 2007-04-11 |          |           |           |       |  |
|-----------|-------|-------------------------|--------|---------------------------------|------------------------------------------------------------------|----------|-----------|-----------|-------|--|
| TEST- A   | AND   | FILEP                   | PROTO  | OCOL                            |                                                                  |          |           |           |       |  |
| Teststart | I     | Interval boundaries Nar |        | Nan                             | ne of Datafiles                                                  | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                   | Lower  | (*.HT2-file)                    | (*.CSV-file)                                                     |          | disk/CD   | (date)    |       |  |
| 12.4.2007 | 07:48 | 80.00                   | 180.00 | KLX15A_0080.00_200704120748.ht2 | KLX15A_80.00-180.00_070412_1_CHir_Q_r.csv                        | CHir     | 29.4.2007 | 12.4.2007 |       |  |
| 12.4.2007 | 13:56 | 180.00                  | 280.00 | KLX15A_0180.00_200704121356.ht2 | KLX15A_180.00-280.00_070412_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 12.4.2007 |       |  |
| 12.4.2007 | 17:54 | 280.00                  | 380.00 | KLX15A_0280.00_200704121754.ht2 | KLX15A_280.00-380.00_070412_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 12.4.2007 |       |  |
| 12.4.2007 | 22:07 | 380.00                  | 480.00 | KLX15A_0380.00_200704122207.ht2 | KLX15A_380.00-480.00_070412_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 13.4.2007 |       |  |
| 13.4.2007 | 06:20 | 480.00                  | 580.00 | KLX15A_0480.00_200704130620.ht2 | KLX15A_480.00-580.00_070413_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 13.4.2007 |       |  |
| 13.4.2007 | 10:28 | 580.00                  | 680.00 | KLX15A_0580.00_200704131028.ht2 | KLX15A_580.00-680.00_070413_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 13.4.2007 |       |  |
| 13.4.2007 | 15:02 | 680.00                  | 780.00 | KLX15A_0680.00_200704131502.ht2 | KLX15A_680.00-780.00_070413_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 13.4.2007 |       |  |
| 13.4.2007 | 19:23 | 780.00                  | 880.00 | KLX15A_0780.00_200704131923.ht2 | KLX15A_780.00-880.00_070413_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 14.4.2007 |       |  |
| 14.4.2007 | 19:23 | 80.00                   | 100.00 | KLX15A_0080.00_200704141923.ht2 | KLX15A_80.00-100.00_070414_1_CHir_Q_r.csv                        | CHir     | 29.4.2007 | 14.4.2007 |       |  |
| 14.4.2007 | 22:09 | 100.00                  | 120.00 | KLX15A_0100.00_200704142209.ht2 | KLX15A_100.00-120.00_070414_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 14.4.2007 |       |  |
| 15.4.2007 | 00:08 | 120.00                  | 140.00 | KLX15A_0120.00_200704150008.ht2 | KLX15A_120.00-140.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 07:52 | 140.00                  | 160.00 | KLX15A_0140.00_200704150752.ht2 | KLX15A_140.00-160.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 10:15 | 160.00                  | 180.00 | KLX15A_0160.00_200704151015.ht2 | KLX15A_160.00-180.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 12:35 | 180.00                  | 200.00 | KLX15A_0180.00_200704151235.ht2 | KLX15A_180.00-200.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 14:59 | 200.00                  | 220.00 | KLX15A_0200.00_200704151459.ht2 | KLX15A_200.00-220.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 17:18 | 220.00                  | 240.00 | KLX15A_0220.00_200704151718.ht2 | KLX15A_220.00-240.00_070415_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 15.4.2007 |       |  |

| HYDRO     | HYDROTESTING WITH PSS |                      |        |                                 | DRILLHOLE IDENTIFICATION NO.: KLX15A       |          |           |           |       |  |
|-----------|-----------------------|----------------------|--------|---------------------------------|--------------------------------------------|----------|-----------|-----------|-------|--|
| TEST- A   | AND                   | FILEP                | PROTO  | OCOL                            | Testorder dated: 2007-04-11                |          |           |           |       |  |
| Teststart | İ                     | Interval<br>boundari | es     | Nan                             | ne of Datafiles                            | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time                  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD   | (date)    |       |  |
| 15.4.2007 | 19:47                 | 240.00               | 260.00 | KLX15A_0240.00_200704151947.ht2 | KLX15A_240.00-260.00_070415_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 15.4.2007 |       |  |
| 15.4.2007 | 22:53                 | 260.00               | 280.00 | KLX15A_0260.00_200704152253.ht2 | KLX15A_260.00-280.00_070415_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 00:56                 | 280.00               | 300.00 | KLX15A_0280.00_200704160056.ht2 | KLX15A_280.00-300.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 06:46                 | 300.00               | 320.00 | KLX15A_0300.00_200704160646.ht2 | KLX15A_300.00-320.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 08:19                 | 320.00               | 340.00 | KLX15A_0320.00_200704160819.ht2 | KLX15A_320.00-340.00_070416_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 11:08                 | 340.00               | 360.00 | KLX15A_0340.00_200704161108.ht2 | KLX15A_340.00-360.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 13:33                 | 360.00               | 380.00 | KLX15A_0360.00_200704161333.ht2 | KLX15A_360.00-380.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 15:49                 | 380.00               | 400.00 | KLX15A_0380.00_200704161549.ht2 | KLX15A_380.00-400.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 17:49                 | 400.00               | 420.00 | KLX15A_0400.00_200704161749.ht2 | KLX15A_400.00-420.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 19:54                 | 420.00               | 440.00 | KLX15A_0420.00_200704161954.ht2 | KLX15A_420.00-440.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 16.4.2007 | 22:04                 | 440.00               | 460.00 | KLX15A_0440.00_200704162204.ht2 | KLX15A_440.00-460.00_070416_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 16.4.2007 |       |  |
| 17.4.2007 | 00:11                 | 460.00               | 480.00 | KLX15A_0460.00_200704170011.ht2 | KLX15A_460.00-480.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 06:50                 | 480.00               | 500.00 | KLX15A_0480.00_200704170650.ht2 | KLX15A_480.00-500.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 08:22                 | 500.00               | 520.00 | KLX15A_0500.00_200704170822.ht2 | KLX15A_500.00-520.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 10:40                 | 520.00               | 540.00 | KLX15A_0520.00_200704171040.ht2 | KLX15A_520.00-540.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 13:13                 | 540.00               | 560.00 | KLX15A_0540.00_200704171313.ht2 | KLX15A_540.00-560.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |

| HYDRO     | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A       |          |           |           |       |  |
|-----------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|-----------|-----------|-------|--|
| TEST-     | AND   | FILEP                | ROTO   | OCOL                            | Testorder dated: 2007-04-11                |          |           |           |       |  |
| Teststart |       | Interval<br>boundari | es     | Nan                             | ne of Datafiles                            | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD   | (date)    | +     |  |
| 17.4.2007 | 14:39 | 560.00               | 580.00 | KLX15A_0560.00_200704171439.ht2 | KLX15A_560.00-580.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 16:09 | 580.00               | 600.00 | KLX15A_0580.00_200704171609.ht2 | KLX15A_580.00-600.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 17:01 | 580.00               | 600.00 | KLX15A_0580.00_200704171701.ht2 | KLX15A_580.00-600.00_070417_2_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 18:29 | 600.00               | 620.00 | KLX15A_0600.00_200704171829.ht2 | KLX15A_600.00-620.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 19:54 | 620.00               | 640.00 | KLX15A_0620.00_200704171954.ht2 | KLX15A_620.00-640.00_070417_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 17.4.2007 |       |  |
| 17.4.2007 | 22:57 | 640.00               | 660.00 | KLX15A_0640.00_200704172257.ht2 | KLX15A_640.00-660.00_070417_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 00:38 | 660.00               | 680.00 | KLX15A_0660.00_200704180038.ht2 | KLX15A_660.00-680.00_070418_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 06:55 | 680.00               | 700.00 | KLX15A_0680.00_200704180655.ht2 | KLX15A_680.00-700.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 08:32 | 700.00               | 720.00 | KLX15A_0700.00_200704180832.ht2 | KLX15A_700.00-720.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 11:25 | 720.00               | 740.00 | KLX15A_0720.00_200704181125.ht2 | KLX15A_720.00-740.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 14:06 | 740.00               | 760.00 | KLX15A_0740.00_200704181406.ht2 | KLX15A_740.00-760.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 16:45 | 760.00               | 780.00 | KLX15A_0760.00_200704181645.ht2 | KLX15A_760.00-780.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 19:14 | 780.00               | 800.00 | KLX15A_0780.00_200704181914.ht2 | KLX15A_780.00-800.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 18.4.2007 |       |  |
| 18.4.2007 | 23:26 | 800.00               | 820.00 | KLX15A_0800.00_200704182326.ht2 | KLX15A_800.00-820.00_070418_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 01:51 | 820.00               | 840.00 | KLX15A_0820.00_200704190151.ht2 | KLX15A_820.00-840.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |

Borehole: KLX15A Page 1/5

| HYDRO     | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A       |          |           |           |       |  |
|-----------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|-----------|-----------|-------|--|
| TEST-     | AND   | FILEP                | PROTO  | OCOL                            | <b>Testorder dated : 2007-04-11</b>        |          |           |           |       |  |
| Teststart | I     | Interval<br>boundari | es     | Nan                             | ne of Datafiles                            | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD   | (date)    |       |  |
| 19.4.2007 | 07:59 | 840.00               | 860.00 | KLX15A_0840.00_200704190759.ht2 | KLX15A_840.00-860.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 10:19 | 860.00               | 880.00 | KLX15A_0860.00_200704191019.ht2 | KLX15A_860.00-880.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 14:46 | 880.00               | 900.00 | KLX15A_0880.00_200704191446.ht2 | KLX15A_880.00-900.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 16:30 | 900.00               | 920.00 | KLX15A_0900.00_200704191630.ht2 | KLX15A_900.00-920.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 17:52 | 920.00               | 940.00 | KLX15A_0920.00_200704191752.ht2 | KLX15A_920.00-940.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 20:42 | 940.00               | 960.00 | KLX15A_0940.00_200704192042.ht2 | KLX15A_940.00-960.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 19.4.2007 | 22:03 | 955.00               | 975.00 | KLX15A_0955.00_200704192203.ht2 | KLX15A_955.00-975.00_070419_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 19.4.2007 |       |  |
| 21.4.2007 | 12:18 | 380.00               | 385.00 | KLX15A_0380.00_200704211218.ht2 | KLX15A_380.00-385.00_070421_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 21.4.2007 |       |  |
| 21.4.2007 | 15:06 | 385.00               | 390.00 | KLX15A_0385.00_200704211506.ht2 | KLX15A_385.00-390.00_070421_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 21.4.2007 |       |  |
| 21.4.2007 | 16:56 | 390.00               | 395.00 | KLX15A_0390.00_200704211656.ht2 | KLX15A_390.00-395.00_070421_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 21.4.2007 |       |  |
| 21.4.2007 | 18:45 | 395.00               | 400.00 | KLX15A_0395.00_200704211845.ht2 | KLX15A_395.00-400.00_070421_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 21.4.2007 |       |  |
| 21.4.2007 | 21:07 | 400.00               | 405.00 | KLX15A_0400.00_200704212107.ht2 | KLX15A_400.00-405.00_070421_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 21.4.2007 |       |  |
| 21.4.2007 | 22:58 | 405.00               | 410.00 | KLX15A_0405.00_200704212258.ht2 | KLX15A_405.00-410.00_070421_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 21.4.2007 |       |  |
| 22.4.2007 | 00:11 | 410.00               | 415.00 | KLX15A_0410.00_200704220011.ht2 | KLX15A_410.00-415.00_070422_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 06:38 | 415.00               | 420.00 | KLX15A_0415.00_200704220638.ht2 | KLX15A_415.00-420.00_070422_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 22.4.2007 |       |  |

| HYDRO     | OTES  | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A Testorder dated: 2007-04-11 |          |           |           |       |  |
|-----------|-------|----------------------|--------|---------------------------------|------------------------------------------------------------------|----------|-----------|-----------|-------|--|
| TEST-     | AND   | FILEF                | PROTO  | OCOL                            |                                                                  |          |           |           |       |  |
| Teststart | Ī     | Interval<br>boundari | ies    | Nar                             | ne of Datafiles                                                  | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                                                     |          | disk/CD   | (date)    |       |  |
| 22.4.2007 | 08:18 | 440.00               | 445.00 | KLX15A_0440.00_200704220818.ht2 | KLX15A_440.00-445.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 10:48 | 445.00               | 450.00 | KLX15A_0445.00_200704221048.ht2 | KLX15A_445.00-450.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 13:05 | 450.00               | 455.00 | KLX15A_0450.00_200704221305.ht2 | KLX15A_450.00-455.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 15:03 | 455.00               | 460.00 | KLX15A_0455.00_200704221503.ht2 | KLX15A_455.00-460.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 17:10 | 460.00               | 465.00 | KLX15A_0460.00_200704221710.ht2 | KLX15A_460.00-465.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 19:02 | 465.00               | 470.00 | KLX15A_0465.00_200704221902.ht2 | KLX15A_465.00-470.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 21:41 | 470.00               | 475.00 | KLX15A_0470.00_200704222141.ht2 | KLX15A_470.00-475.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 22.4.2007 |       |  |
| 22.4.2007 | 23:36 | 475.00               | 480.00 | KLX15A_0475.00_200704222336.ht2 | KLX15A_475.00-480.00_070422_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 00:58 | 500.00               | 505.00 | KLX15A_0500.00_200704230058.ht2 | KLX15A_500.00-505.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 06:34 | 505.00               | 510.00 | KLX15A_0505.00_200704230634.ht2 | KLX15A_505.00-510.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 07:57 | 510.00               | 515.00 | KLX15A_0510.00_200704230757.ht2 | KLX15A_510.00-515.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 09:17 | 515.00               | 520.00 | KLX15A_0515.00_200704230917.ht2 | KLX15A_515.00-520.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 13:19 | 620.00               | 625.00 | KLX15A_0620.00_200704231319.ht2 | KLX15A_620.00-625.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 14:31 | 623.00               | 628.00 | KLX15A_0623.00_200704231431.ht2 | KLX15A_623.00-628.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 16:25 | 628.00               | 633.00 | KLX15A_0628.00_200704231625.ht2 | KLX15A_628.00-633.00_070423_1_CHir_Q_r.csv                       | CHir     | 29.4.2007 | 23.4.2007 |       |  |

Borehole: KLX15A Page 1/7

| HYDRO     | TES   | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A       |          |           |           |       |  |
|-----------|-------|----------------------|--------|---------------------------------|--------------------------------------------|----------|-----------|-----------|-------|--|
| TEST- A   | AND   | FILEP                | PROTO  | OCOL                            | Testorder dated : 2007-04-11               |          |           |           |       |  |
| Teststart |       | Interval<br>boundari | es     | Nan                             | ne of Datafiles                            | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD   | (date)    |       |  |
| 23.4.2007 | 18:21 | 630.00               | 635.00 | KLX15A_0630.00_200704231821.ht2 | KLX15A_630.00-635.00_070423_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 20:25 | 635.00               | 640.00 | KLX15A_0635.00_200704232025.ht2 | KLX15A_635.00-640.00_070423_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 22:41 | 660.00               | 665.00 | KLX15A_0660.00_200704232241.ht2 | KLX15A_660.00-665.00_070423_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 23.4.2007 |       |  |
| 23.4.2007 | 23:55 | 665.00               | 670.00 | KLX15A_0665.00_200704232355.ht2 | KLX15A_665.00-670.00_070423_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 01:07 | 670.00               | 675.00 | KLX15A_0670.00_200704240107.ht2 | KLX15A_670.00-675.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 06:35 | 675.00               | 680.00 | KLX15A_0675.00_200704240635.ht2 | KLX15A_675.00-680.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 08:09 | 700.00               | 705.00 | KLX15A_0700.00_200704240809.ht2 | KLX15A_700.00-705.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 09:27 | 705.00               | 710.00 | KLX15A_0705.00_200704240927.ht2 | KLX15A_705.00-710.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 12:23 | 710.00               | 715.00 | KLX15A_0710.00_200704241223.ht2 | KLX15A_710.00-715.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 13:42 | 715.00               | 720.00 | KLX15A_0715.00_200704241342.ht2 | KLX15A_715.00-720.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 15:00 | 720.00               | 725.00 | KLX15A_0720.00_200704241500.ht2 | KLX15A_720.00-725.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 16:16 | 725.00               | 730.00 | KLX15A_0725.00_200704241616.ht2 | KLX15A_725.00-730.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 17:29 | 730.00               | 735.00 | KLX15A_0730.00_200704241729.ht2 | KLX15A_730.00-735.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 18:46 | 735.00               | 740.00 | KLX15A_0735.00_200704241846.ht2 | KLX15A_735.00-740.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 24.4.2007 |       |  |
| 24.4.2007 | 21:17 | 740.00               | 745.00 | KLX15A_0740.00_200704242117.ht2 | KLX15A_740.00-745.00_070424_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 24.4.2007 |       |  |

Borehole: KLX15A Page 1/8

| HYDRO     | TES      | TING                 | WITH   | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A       |          |           |           |       |  |
|-----------|----------|----------------------|--------|---------------------------------|--------------------------------------------|----------|-----------|-----------|-------|--|
| TEST-     | AND      | FILEP                | ROTO   | OCOL                            | Testorder dated: 2007-04-11                |          |           |           |       |  |
| Teststart | <u> </u> | Interval<br>boundari | es     | Nan                             | ne of Datafiles                            | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time     | Upper                | Lower  | (*.HT2-file)                    | (*.CSV-file)                               |          | disk/CD   | (date)    |       |  |
| 24.4.2007 | 23:35    | 745.00               | 750.00 | KLX15A_0745.00_200704242335.ht2 | KLX15A_745.00-750.00_070424_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 00:48    | 750.00               | 755.00 | KLX15A_0750.00_200704250048.ht2 | KLX15A_750.00-755.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 06:31    | 755.00               | 760.00 | KLX15A_0755.00_200704250631.ht2 | KLX15A_755.00-760.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 07:45    | 760.00               | 765.00 | KLX15A_0760.00_200704250745.ht2 | KLX15A_760.00-765.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 09:00    | 765.00               | 770.00 | KLX15A_0765.00_200704250900.ht2 | KLX15A_765.00-770.00_070425_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 13:20    | 770.00               | 775.00 | KLX15A_0770.00_200704251320.ht2 | KLX15A_770.00-775.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 17:38    | 775.00               | 780.00 | KLX15A_0775.00_200704251738.ht2 | KLX15A_775.00-780.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 19:31    | 780.00               | 785.00 | KLX15A_0780.00_200704251931.ht2 | KLX15A_780.00-785.00_070425_1_Pi_Q_r.csv   | Pi       | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 21:31    | 785.00               | 790.00 | KLX15A_0785.00_200704252131.ht2 | KLX15A_785.00-790.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 25.4.2007 | 22:42    | 790.00               | 795.00 | KLX15A_0790.00_200704252242.ht2 | KLX15A_790.00-795.00_070425_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 25.4.2007 |       |  |
| 26.4.2007 | 00:40    | 795.00               | 800.00 | KLX15A_0795.00_200704260040.ht2 | KLX15A_795.00-800.00_070426_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 06:31    | 800.00               | 805.00 | KLX15A_0800.00_200704260631.ht2 | KLX15A_800.00-805.00_070426_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 12:24    | 805.00               | 810.00 | KLX15A_0805.00_200704261224.ht2 | KLX15A_805.00-810.00_070426_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 13:40    | 810.00               | 815.00 | KLX15A_0810.00_200704261340.ht2 | KLX15A_810.00-815.00_070426_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 15:35    | 815.00               | 820.00 | KLX15A_0815.00_200704261535.ht2 | KLX15A_815.00-820.00_070426_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 26.4.2007 |       |  |

| HYDRO     | TES   | TING                 | WITH    | PSS                             | DRILLHOLE IDENTIFICATION NO.: KLX15A        |          |           |           |       |  |
|-----------|-------|----------------------|---------|---------------------------------|---------------------------------------------|----------|-----------|-----------|-------|--|
| TEST- A   | AND   | FILEP                | PROTO   | OCOL                            | Testorder dated: 2007-04-11                 |          |           |           |       |  |
| Teststart | 1     | Interval<br>boundari | es      | Nan                             | ne of Datafiles                             | Testtype | Copied to | Plotted   | Sign. |  |
| Date      | Time  | Upper                | Lower   | (*.HT2-file)                    | (*.CSV-file)                                |          | disk/CD   | (date)    |       |  |
| 26.4.2007 | 17:00 | 840.00               | 845.00  | KLX15A_0840.00_200704261700.ht2 | KLX15A_840.00-845.00_070426_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 19:05 | 845.00               | 850.00  | KLX15A_0845.00_200704261905.ht2 | KLX15A_845.00-850.00_070426_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 21:12 | 850.00               | 855.00  | KLX15A_0850.00_200704262112.ht2 | KLX15A_850.00-855.00_070426_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 26.4.2007 | 22:24 | 855.00               | 860.00  | KLX15A_0855.00_200704262224.ht2 | KLX15A_855.00-860.00_070426_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 26.4.2007 |       |  |
| 27.4.2007 | 00:09 | 860.00               | 865.00  | KLX15A_0860.00_200704270009.ht2 | KLX15A_860.00-865.00_070427_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 27.4.2007 |       |  |
| 27.4.2007 | 01:20 | 865.00               | 870.00  | KLX15A_0865.00_200704270120.ht2 | KLX15A_865.00-870.00_070427_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 27.4.2007 |       |  |
| 27.4.2007 | 06:28 | 870.00               | 875.00  | KLX15A_0870.00_200704270628.ht2 | KLX15A_870.00-875.00_070427_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 27.4.2007 |       |  |
| 27.4.2007 | 07:43 | 875.00               | 880.00  | KLX15A_0875.00_200704270743.ht2 | KLX15A_875.00-880.00_070427_1_CHir_Q_r.csv  | CHir     | 29.4.2007 | 27.4.2007 |       |  |
| 28.4.2007 | 10:58 | 970.00               | 1000.43 | KLX15A_0970.00_200704281058.ht2 | KLX15A_970.00-1000.43_070428_1_CHir_Q_r.csv | CHir     | 29.4.2007 | 28.4.2007 |       |  |

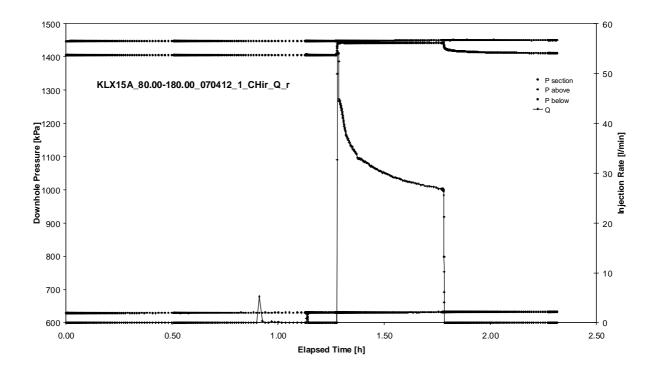
### **APPENDIX 2**

Analysis diagrams

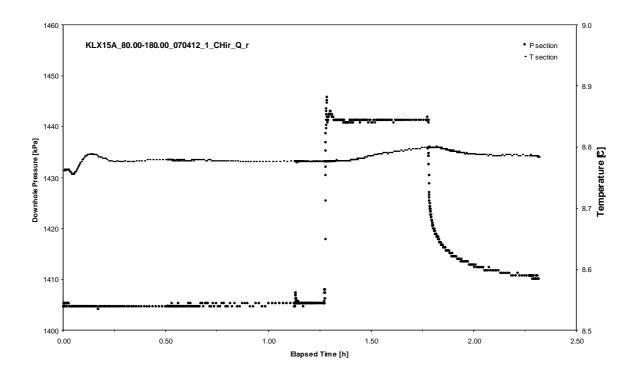
Borehole: KLX15A Page 2-1/1

Test: 80.00 – 180.00 m

## **APPENDIX 2-1**


Test 80.00 – 180.00 m

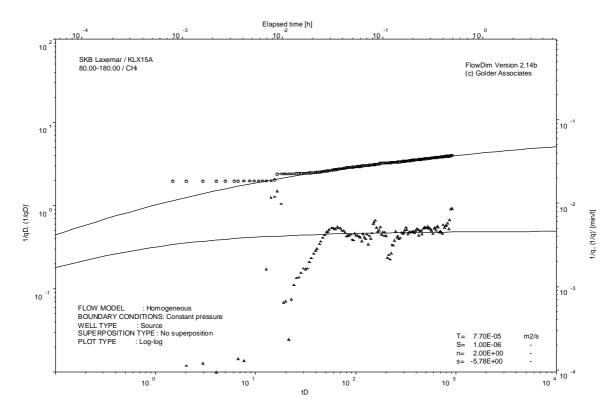
Analysis diagrams


Page 2-1/2

Borehole: KLX15A

Test: 80.00 - 180.00 m

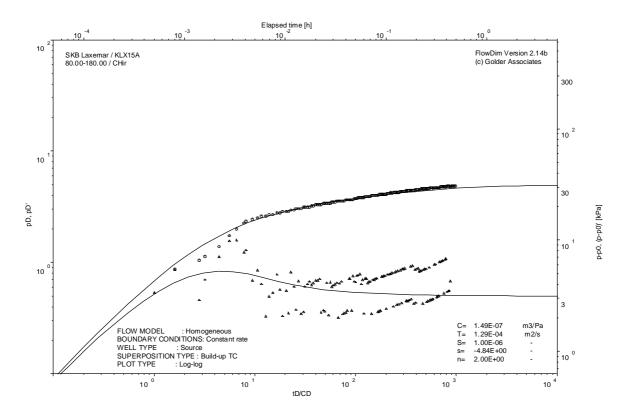



Pressure and flow rate vs. time; cartesian plot

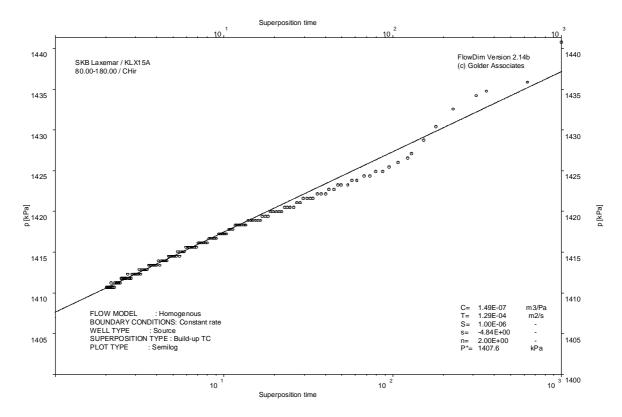


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-1/3


Test: 80.00 – 180.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-1/4

Test:  $80.00 - 180.00 \,\mathrm{m}$ 



CHIR phase; log-log match

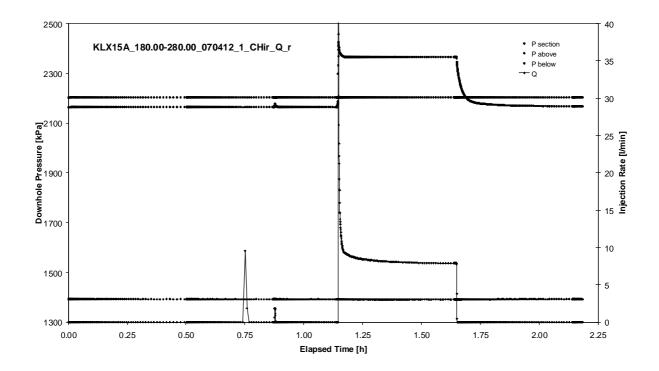


CHIR phase; HORNER match

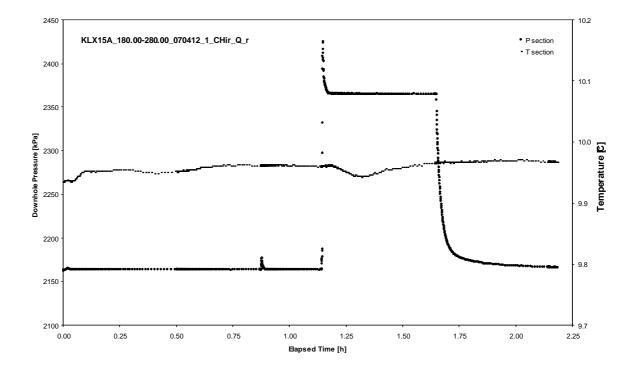
Borehole: KLX15A Page 2-2/1

Test:  $180.00 - 280.00 \,\mathrm{m}$ 

## **APPENDIX 2-2**


Test 180.00 – 280.00 m

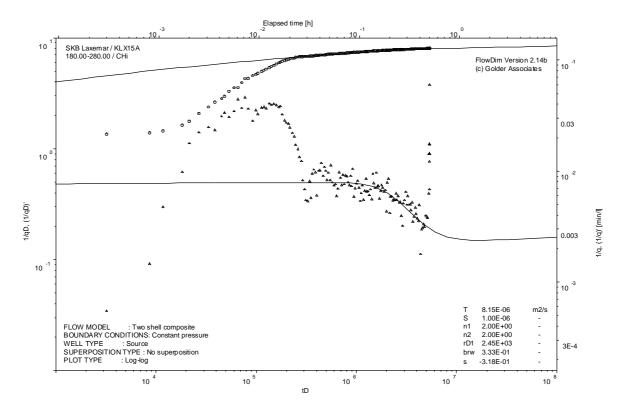
Analysis diagrams


Page 2-2/2

Borehole: KLX15A

Test: 180.00 - 280.00 m



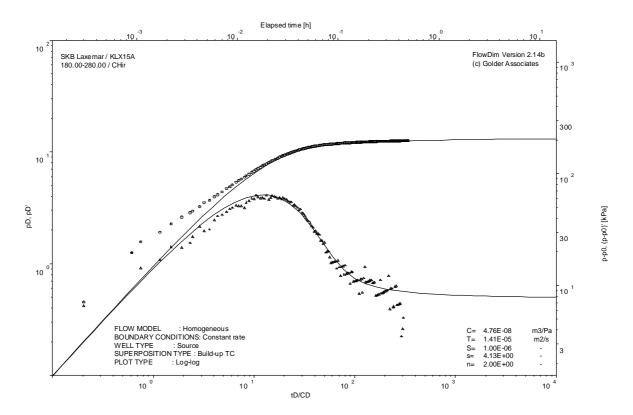

Pressure and flow rate vs. time; cartesian plot



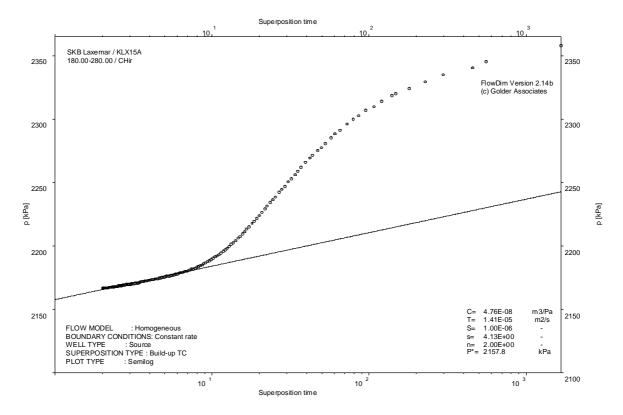
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-2/3

Test: 180.00 – 280.00 m




CHI phase; log-log match


Page 2-2/4

Borehole: KLX15A

Test:  $180.00 - 280.00 \,\mathrm{m}$ 

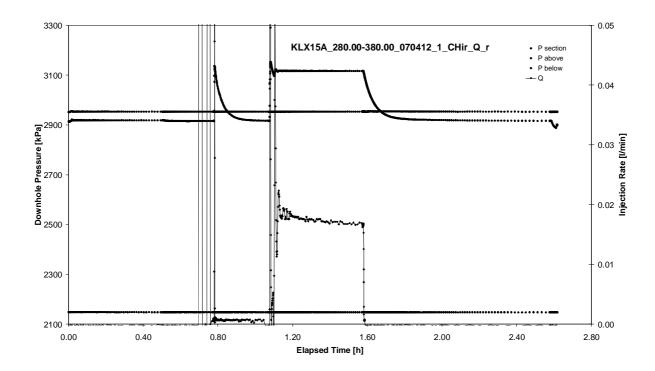


### CHIR phase; log-log match

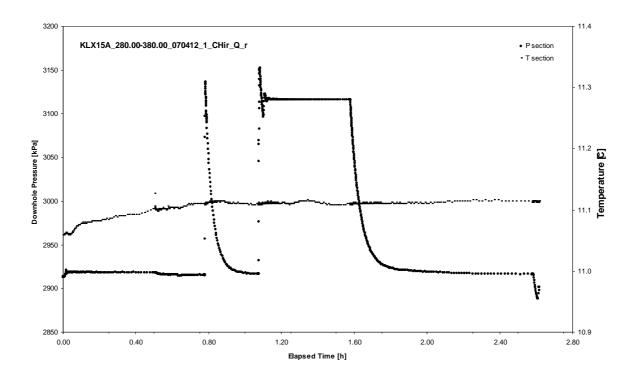


CHIR phase; HORNER match

Borehole: KLX15A Page 2-3/1


Test: 280.00 – 380.00 m

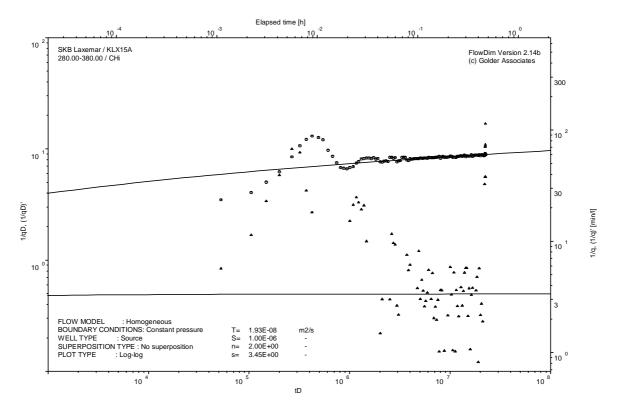
## **APPENDIX 2-3**


Test 280.00 – 380.00 m

Analysis diagrams

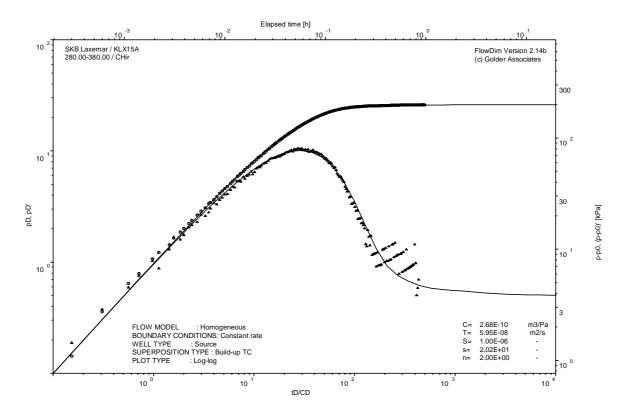
Test: 280.00 – 380.00 m



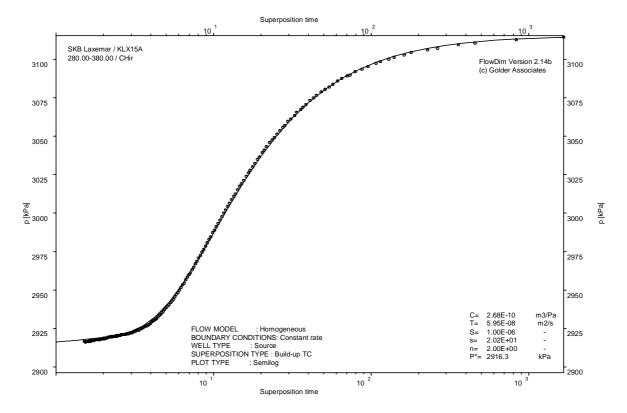

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-3/3

Test: 280.00 – 380.00 m




CHI phase; log-log match

Test: 280.00 – 380.00 m

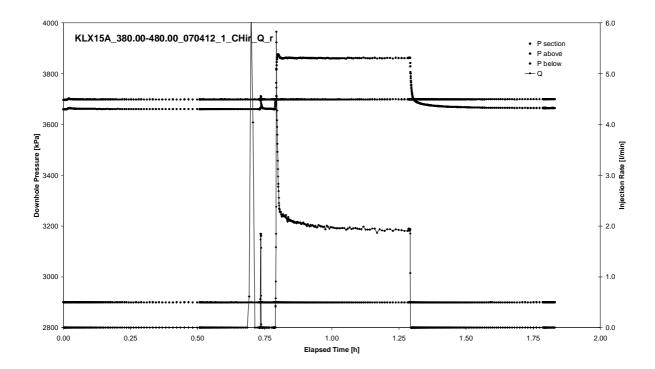


CHIR phase; log-log match

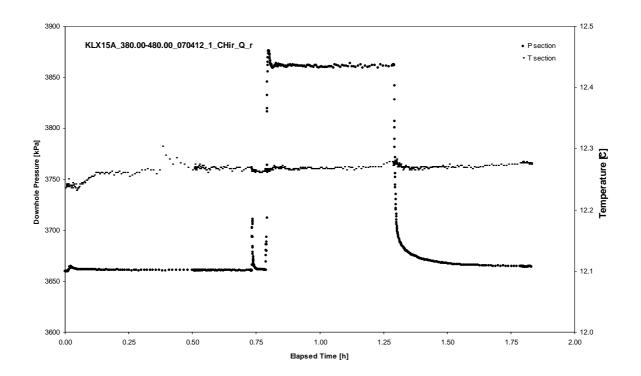


CHIR phase; HORNER match

Borehole: KLX15A Page 2-4/1


Test: 380.00 – 480.00 m

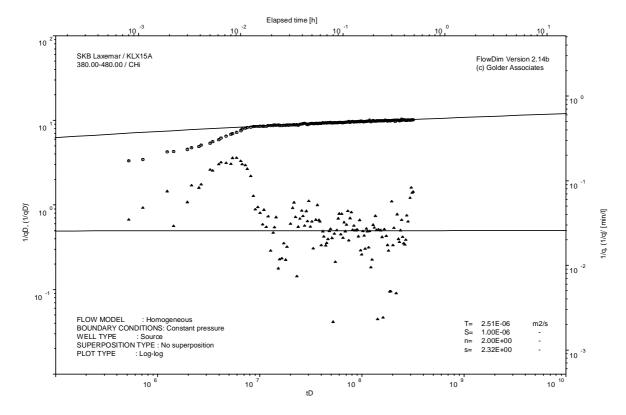
## **APPENDIX 2-4**


Test 380.00 – 480.00 m

Analysis diagrams

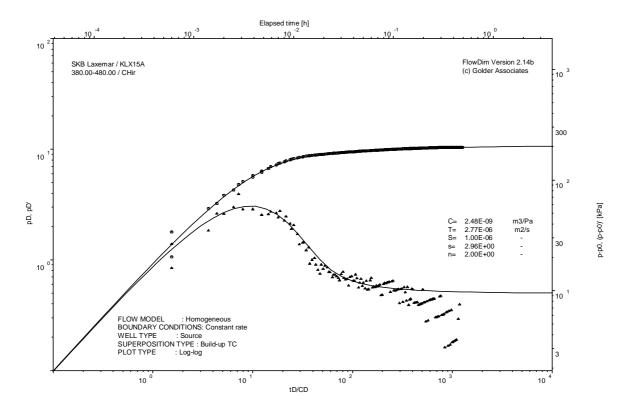
Test: 380.00 – 480.00 m



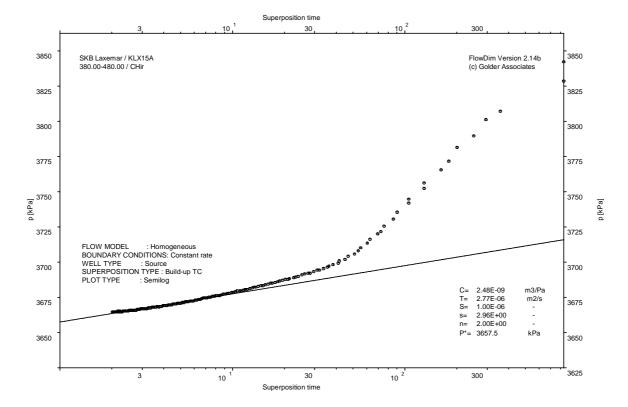

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-4/3

Test: 380.00 – 480.00 m




CHI phase; log-log match

Test: 380.00 - 480.00 m



CHIR phase; log-log match

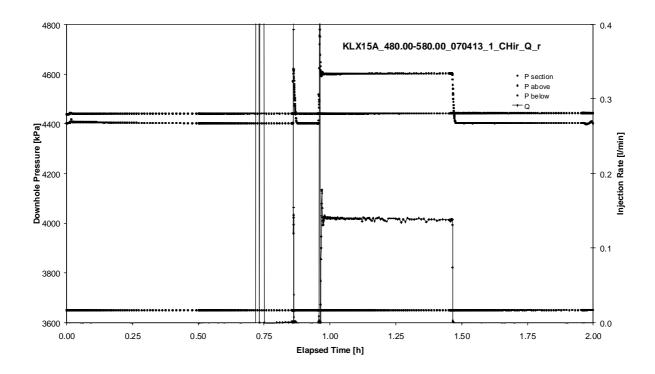


CHIR phase; HORNER match

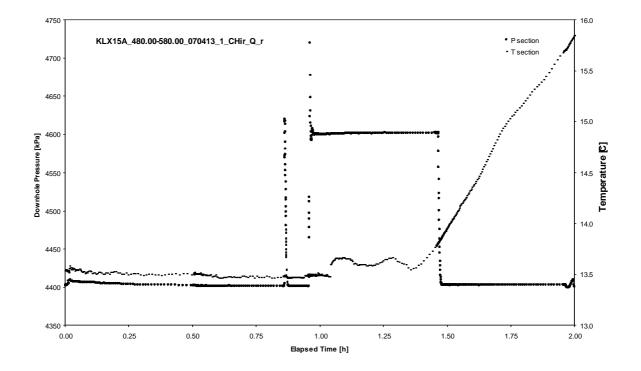
Borehole: KLX15A Page 2-5/1

Test:  $480.00 - 580.00 \,\mathrm{m}$ 

## **APPENDIX 2-5**


Test 480.00 – 580.00 m

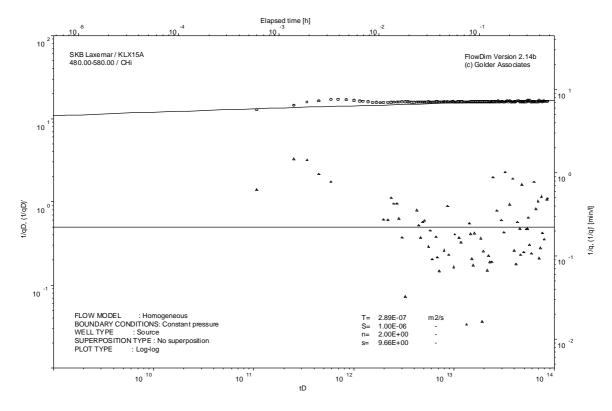
Analysis diagrams


Page 2-5/2

Borehole: KLX15A

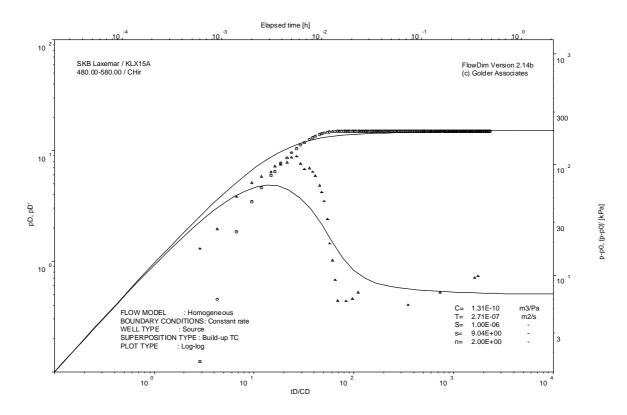
Test: 480.00 - 580.00 m



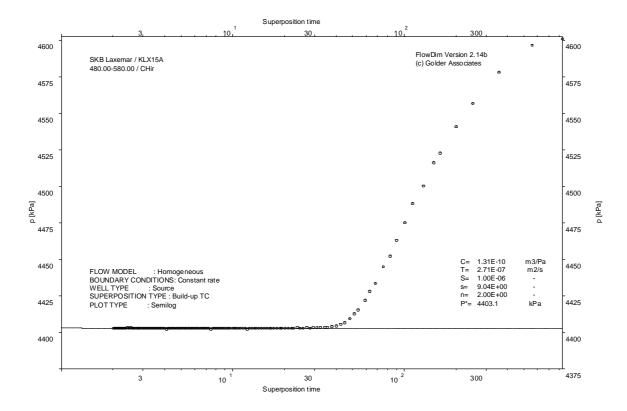

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-5/3

Test: 480.00 – 580.00 m




CHI phase; log-log match

Test: 480.00 - 580.00 m

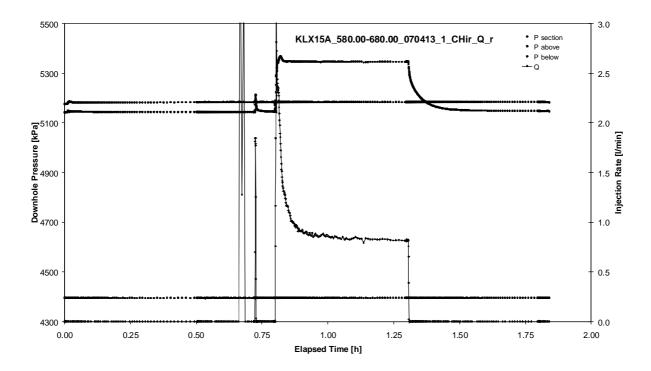


### CHIR phase; log-log match

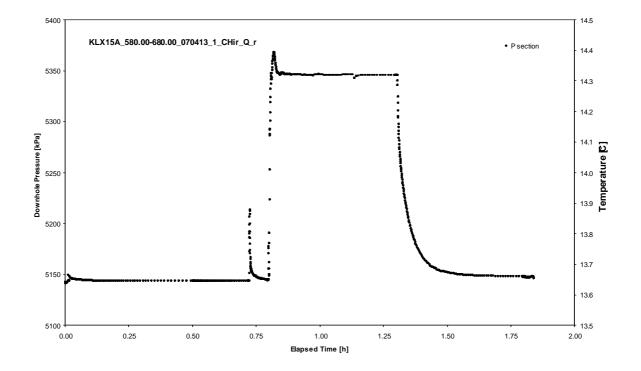


CHIR phase; HORNER match

Test: 580.00 – 680.00 m

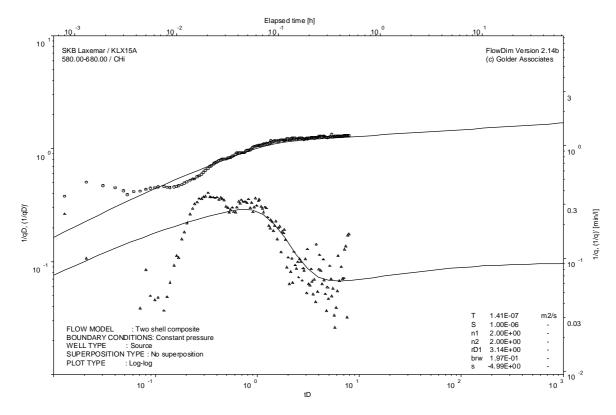

# **APPENDIX 2-6**

Test 580.00 – 680.00 m


Page 2-6/2

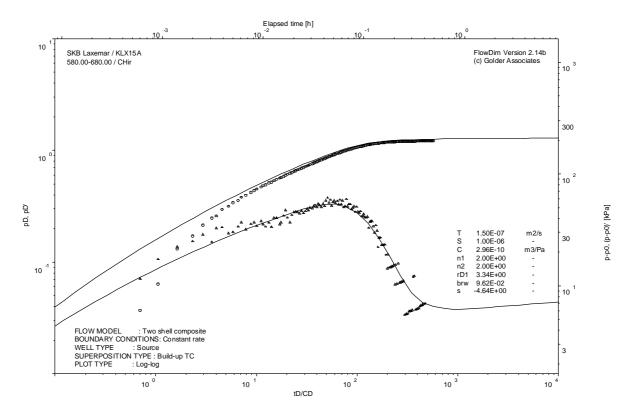
Borehole: KLX15A

Test:  $580.00 - 680.00 \,\mathrm{m}$ 

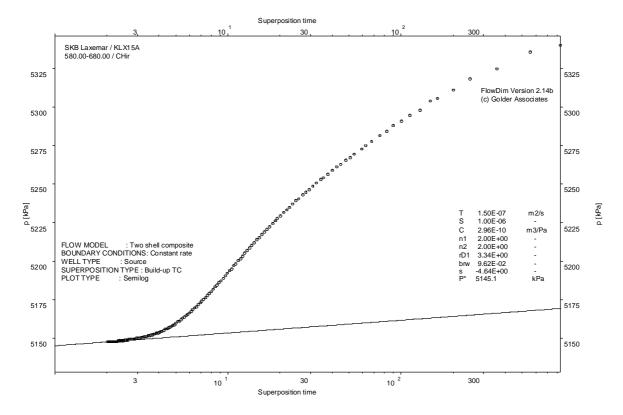



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 580.00 – 680.00 m




CHI phase; log-log match

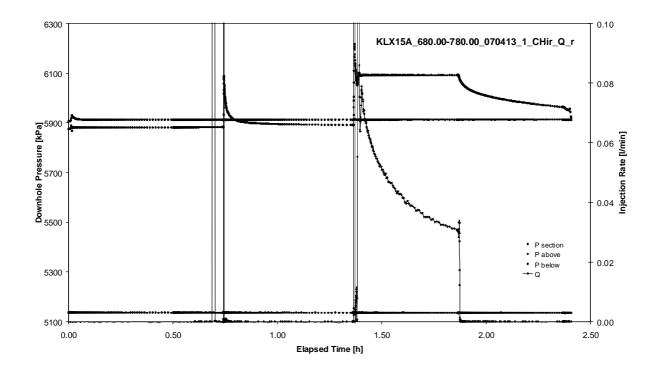
Test:  $580.00 - 680.00 \,\mathrm{m}$ 



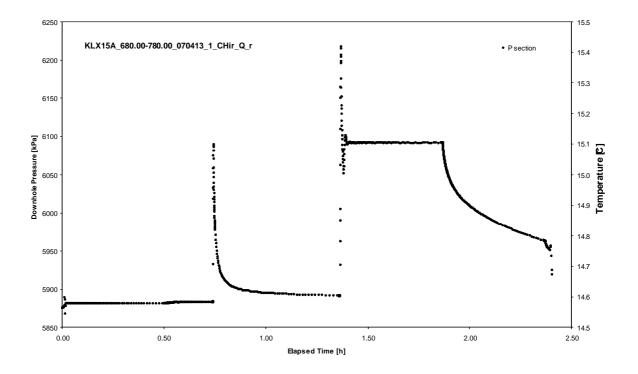
#### CHIR phase; log-log match



CHIR phase; HORNER match


Test:  $680.00 - 780.00 \,\mathrm{m}$ 

# **APPENDIX 2-7**


Test 680.00 – 780.00 m

Borehole: KLX15A

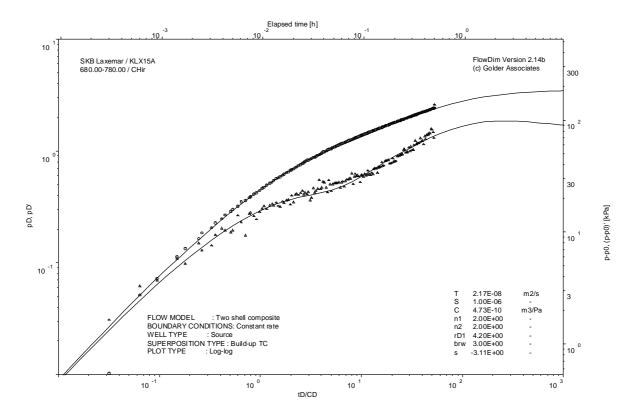
Test:  $680.00 - 780.00 \,\mathrm{m}$ 



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Test: 680.00 – 780.00 m



CHI phase; log-log match

Borehole: KLX15A

Test: 680.00 - 780.00 m

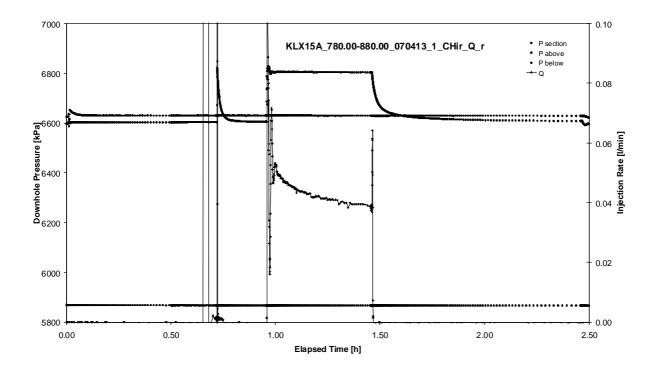


CHIR phase; log-log match

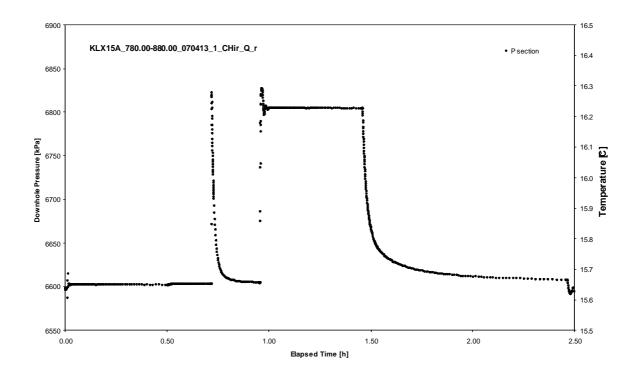
Not analysable

CHIR phase; HORNER match

Test: 780.00 – 880.00 m

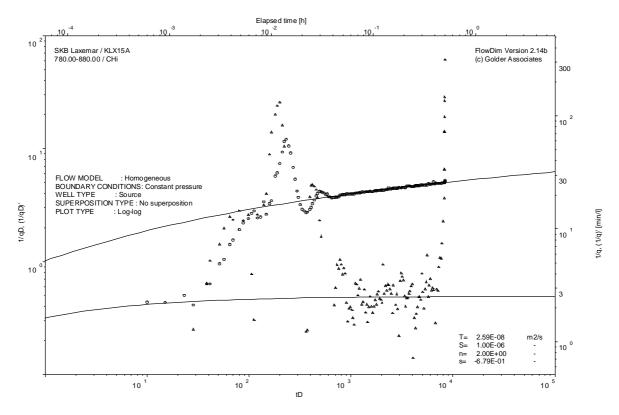

# **APPENDIX 2-8**

Test 780.00 – 880.00 m


Page 2-8/2

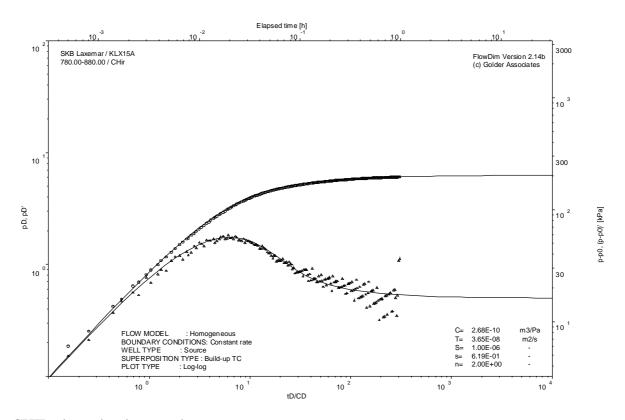
Borehole: KLX15A

Test:  $780.00 - 880.00 \,\mathrm{m}$ 

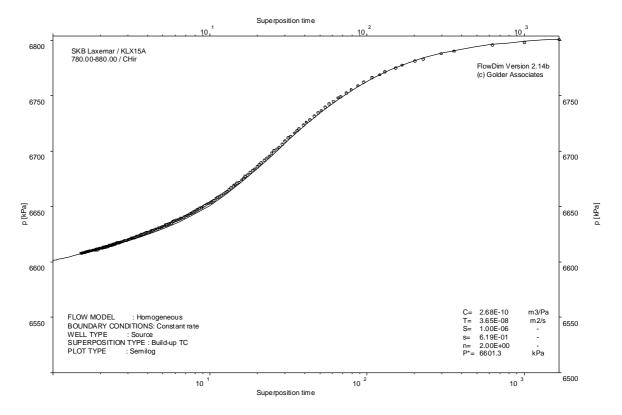



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 780.00 – 880.00 m




CHI phase; log-log match

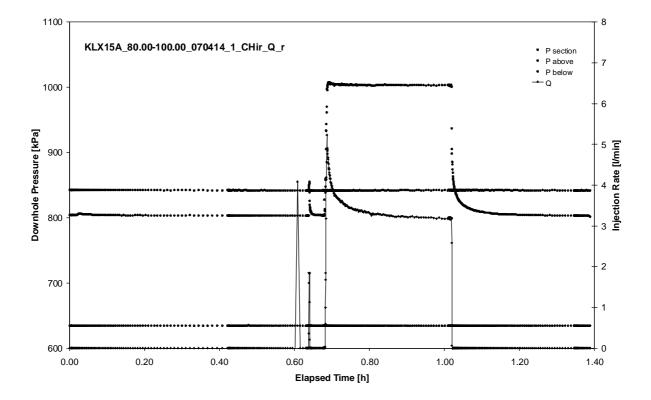
Test: 780.00 – 880.00 m



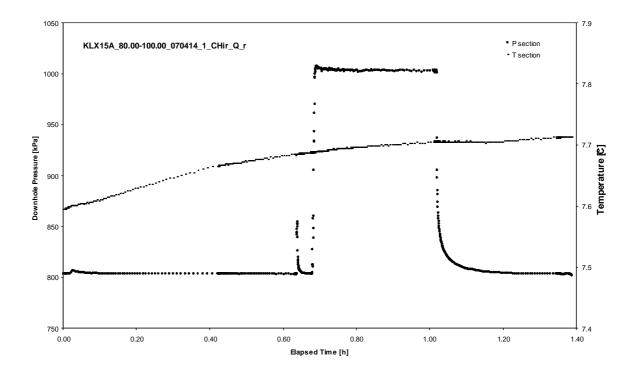
#### CHIR phase; log-log match



CHIR phase; HORNER match

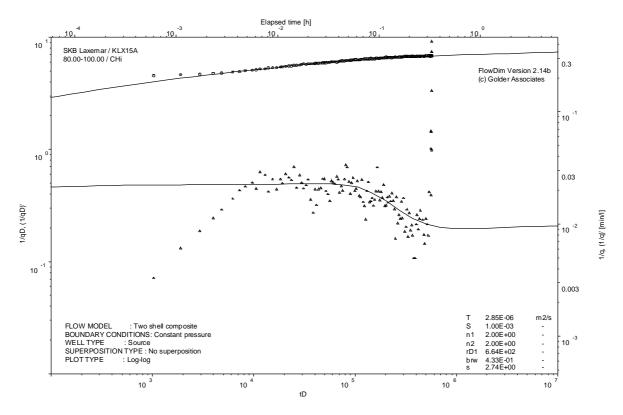

Test: 80.00 - 100.00 m

## **APPENDIX 2-9**


Test 80.00 – 100.00 m

Borehole: KLX15A

Test: 80.00 - 100.00 m

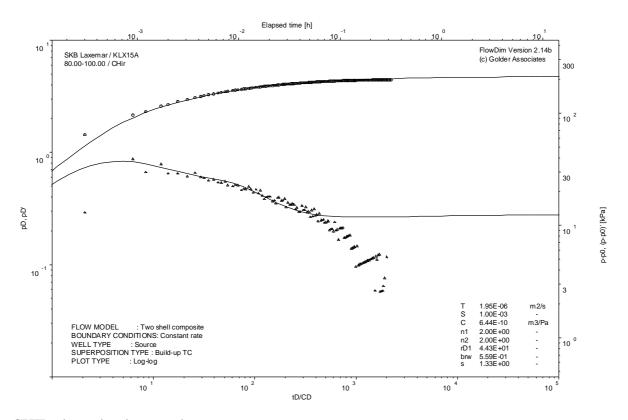



Pressure and flow rate vs. time; cartesian plot

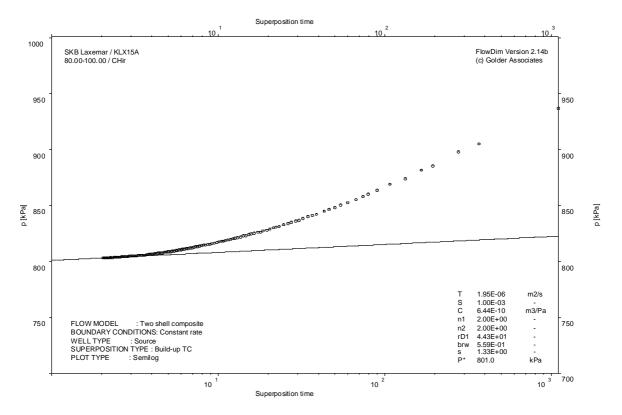


Interval pressure and temperature vs. time; cartesian plot

Test: 80.00 – 100.00 m




CHI phase; log-log match


Page 2-9/4

Borehole: KLX15A

Test: 80.00 - 100.00 m

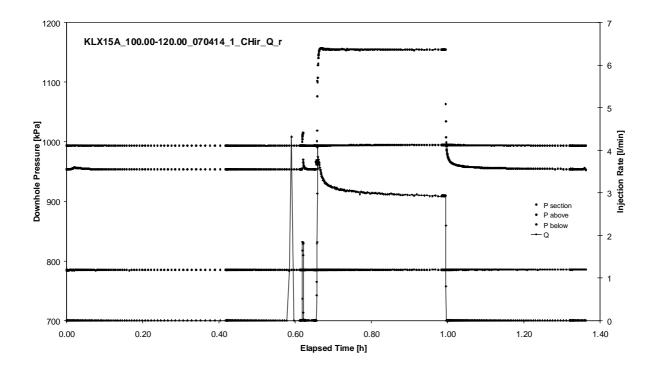


#### CHIR phase; log-log match

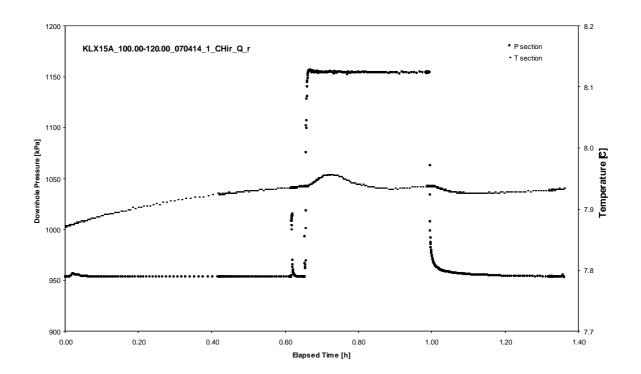


CHIR phase; HORNER match

Test: 100.00 – 120.00 m

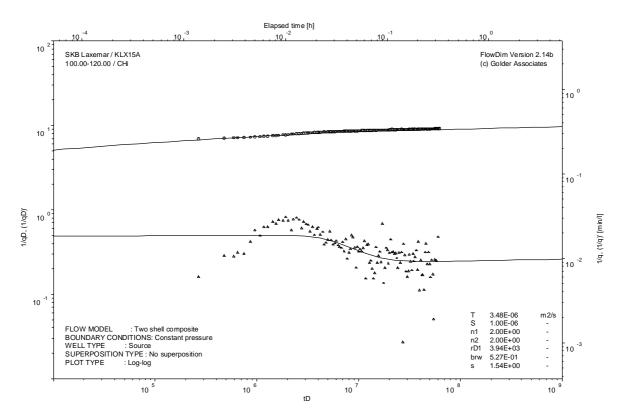

# **APPENDIX 2-10**

Test 100.00 – 120.00 m


Page 2-10/2

Borehole: KLX15A

Test: 100.00 - 120.00 m

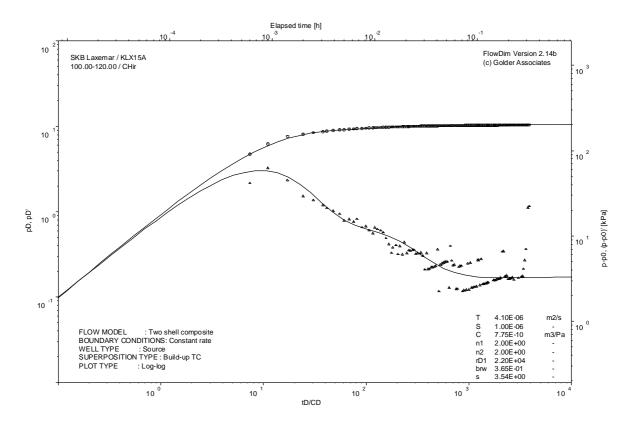



Pressure and flow rate vs. time; cartesian plot

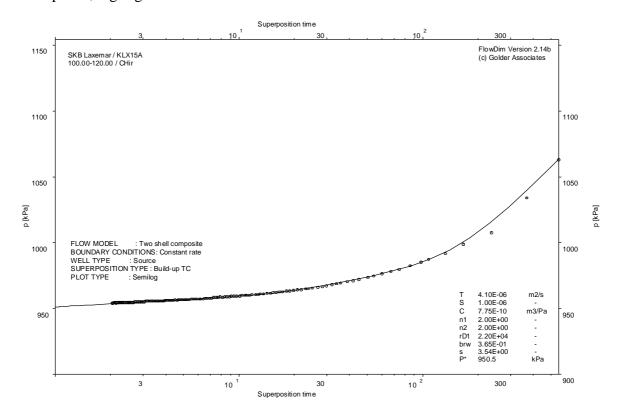


Interval pressure and temperature vs. time; cartesian plot

Test: 100.00 – 120.00 m




CHI phase; log-log match


Page 2-10/4

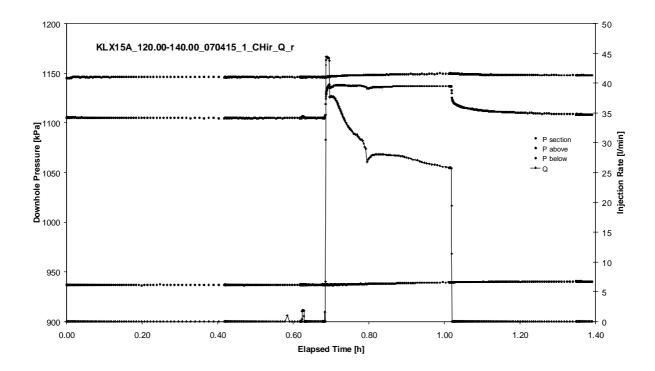
Borehole: KLX15A

Test:  $100.00 - 120.00 \,\mathrm{m}$ 

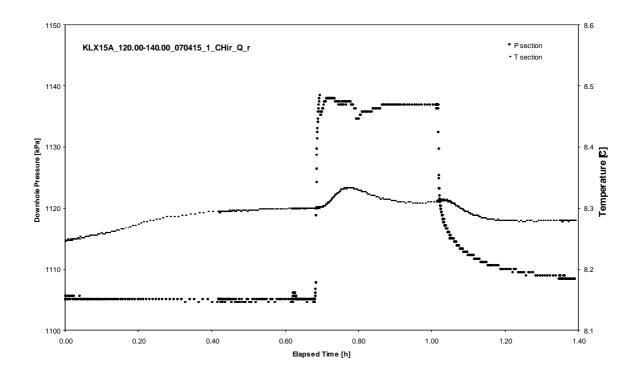


#### CHIR phase; log-log match



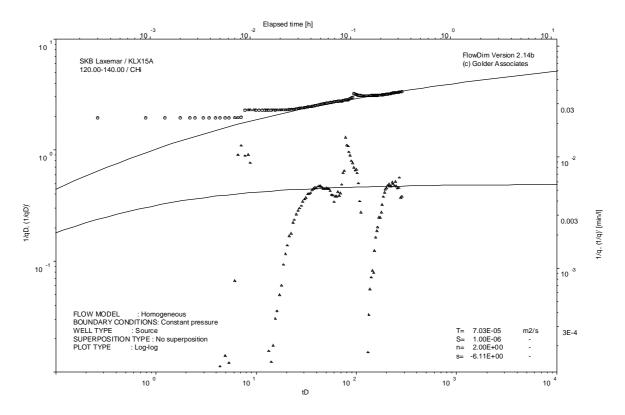

CHIR phase; HORNER match

Test: 120.00 – 140.00 m


# **APPENDIX 2-11**

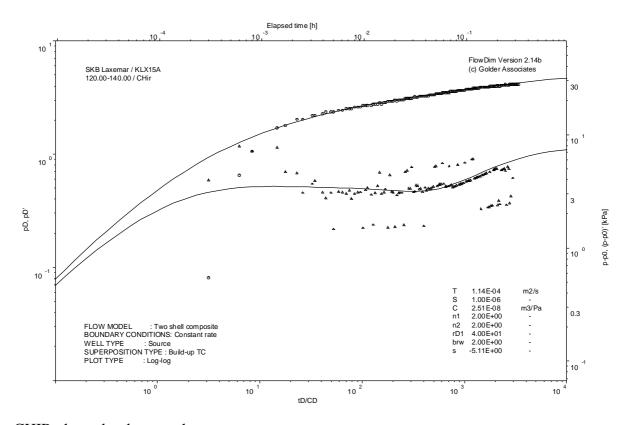
Test 120.00 – 140.00 m

Test: 120.00 – 140.00 m




Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 120.00 – 140.00 m




CHI phase; log-log match

Test: 120.00 - 140.00 m

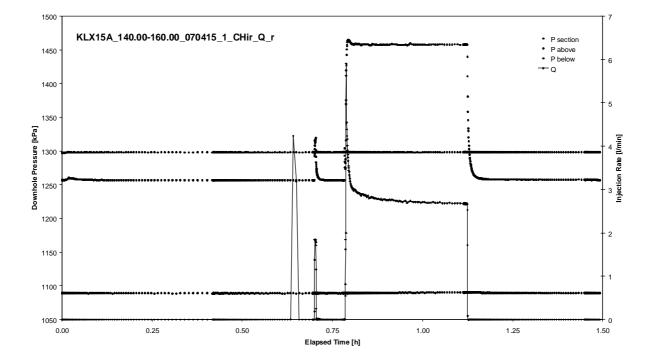


CHIR phase; log-log match

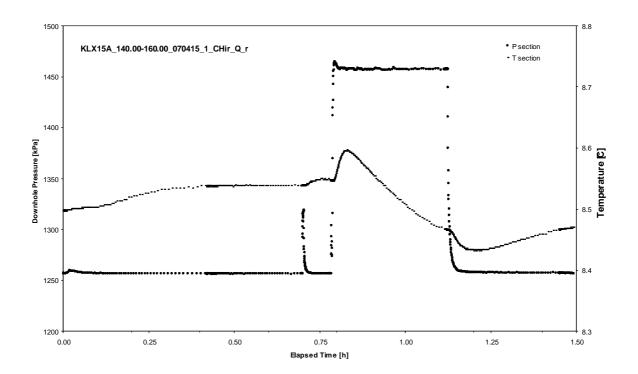


CHIR phase; HORNER match

Test: 140.00 – 160.00 m

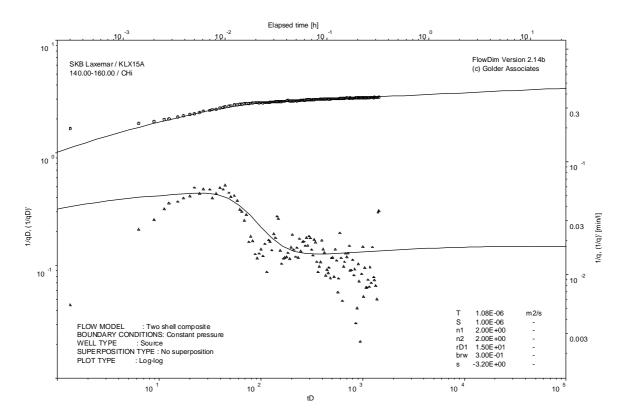

## **APPENDIX 2-12**

Test 140.00 – 160.00 m


Page 2-12/2

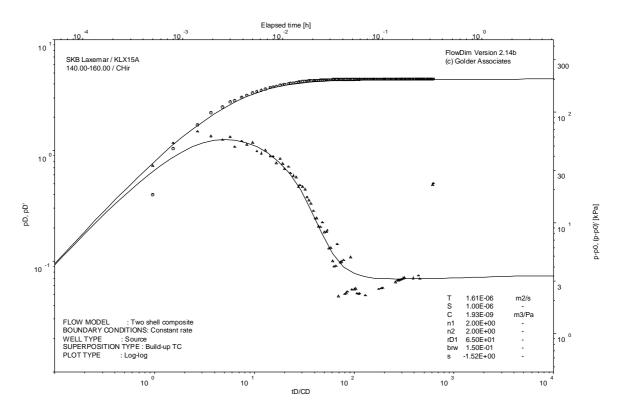
Test: 140.00 - 160.00 m

Borehole: KLX15A

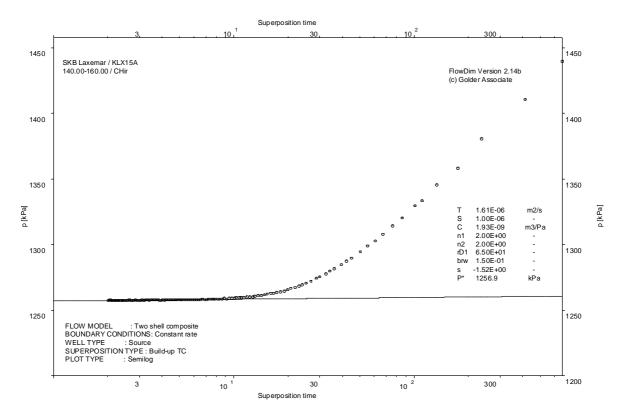



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 140.00 – 160.00 m




CHI phase; log-log match

Test:  $140.00 - 160.00 \,\mathrm{m}$ 

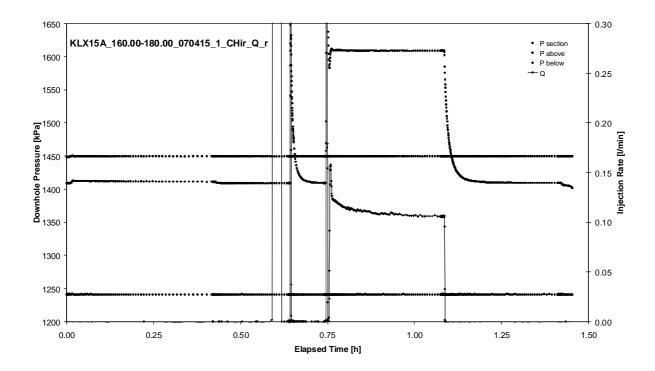


#### CHIR phase; log-log match

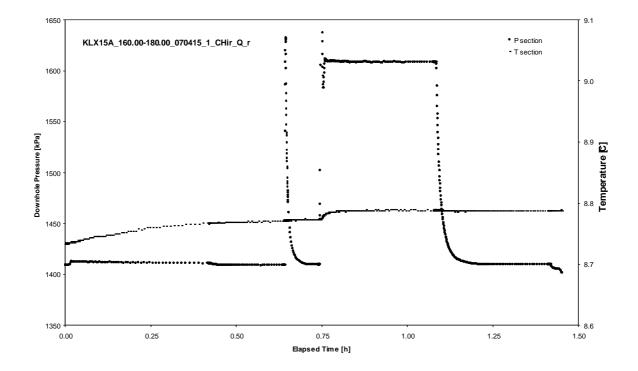


CHIR phase; HORNER match

Test: 160.00 – 180.00 m

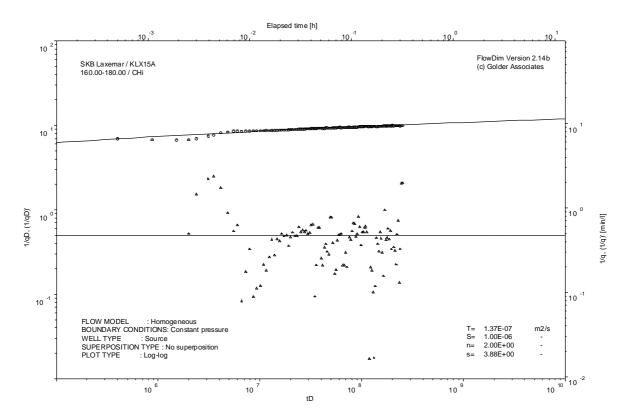

# **APPENDIX 2-13**

Test 160.00 – 180.00 m


Page 2-13/2

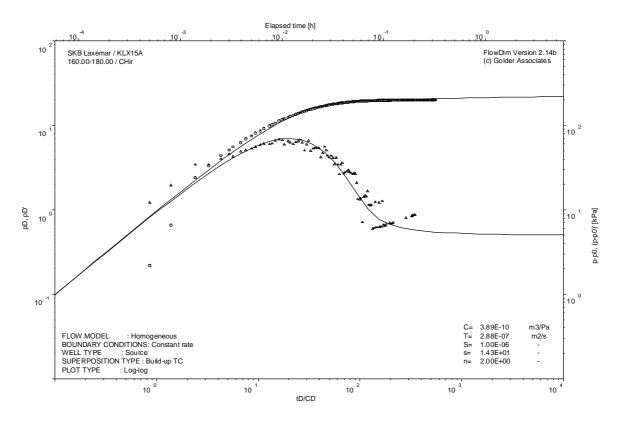
Borehole: KLX15A

Test:  $160.00 - 180.00 \,\mathrm{m}$ 

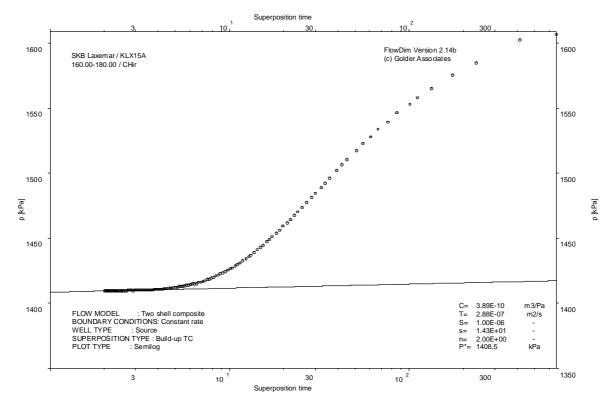



Pressure and flow rate vs. time; cartesian plot




Interval pressure and temperature vs. time; cartesian plot

Test: 160.00 – 180.00 m




CHI phase; log-log match

Test:  $160.00 - 180.00 \,\mathrm{m}$ 



#### CHIR phase; log-log match

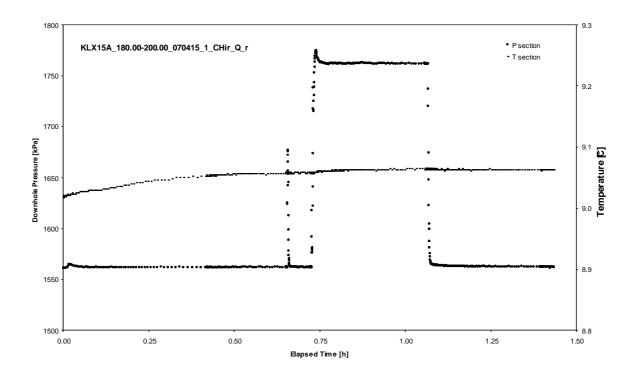


CHIR phase; HORNER match

Test: 180.00 – 200.00 m

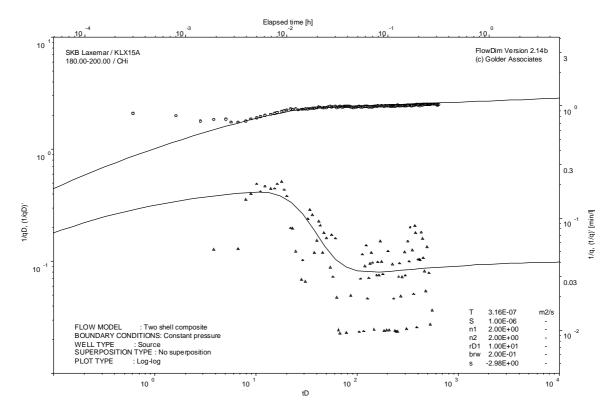
## **APPENDIX 2-14**

Test 180.00 – 200.00 m


Page 2-14/2

Borehole: KLX15A

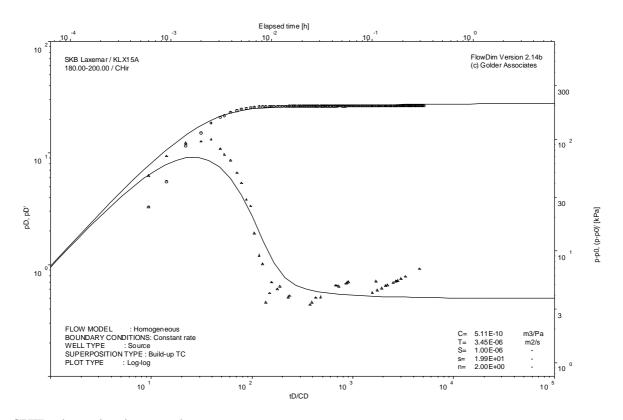
Test: 180.00 - 200.00 m



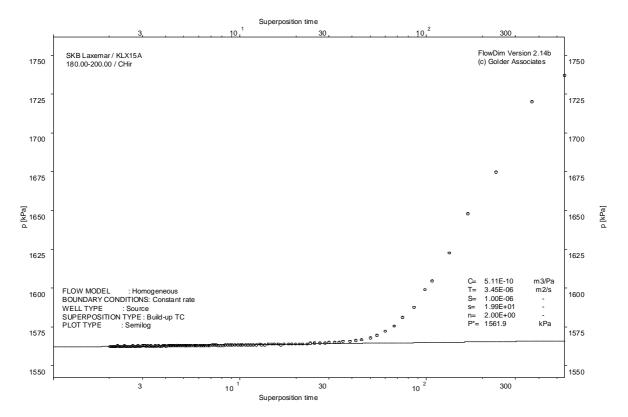

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Test: 180.00 – 200.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-14/4

Test: 180.00 - 200.00 m



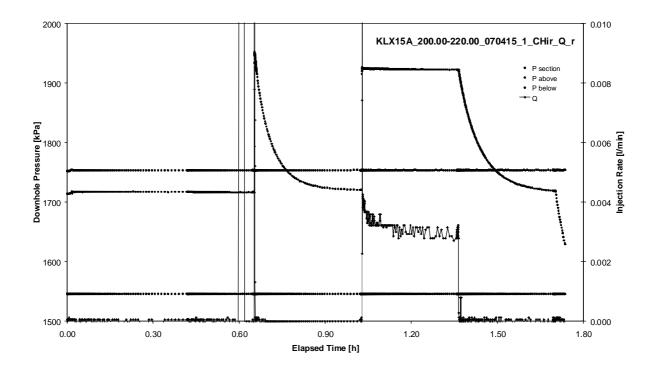
#### CHIR phase; log-log match



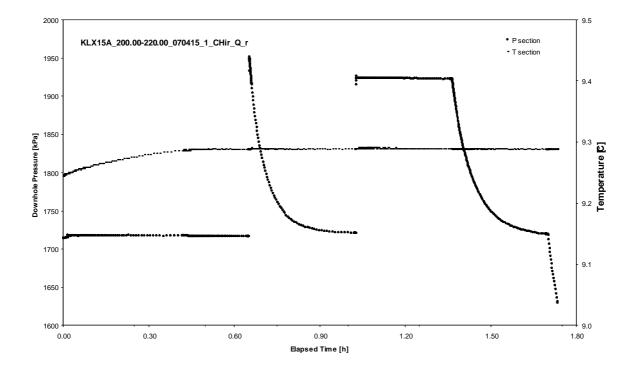
CHIR phase; HORNER match

Borehole: KLX15A Page 2-15/1

Test:  $200.00 - 220.00 \,\mathrm{m}$ 


# **APPENDIX 2-15**

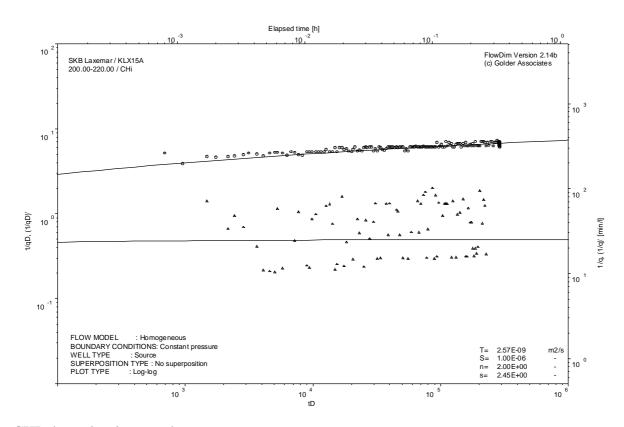
Test 200.00 – 220.00 m


Page 2-15/2

Borehole: KLX15A

Test: 200.00 - 220.00 m

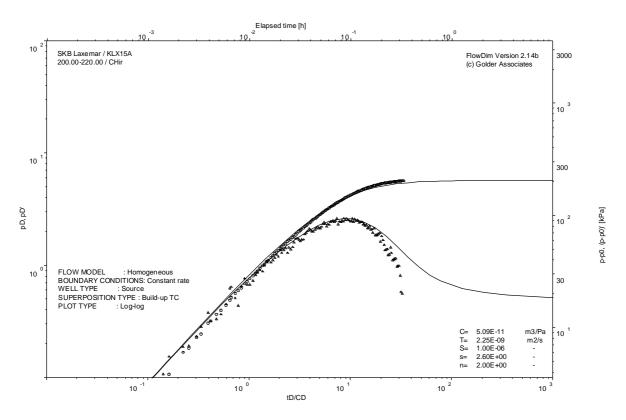



Pressure and flow rate vs. time; cartesian plot

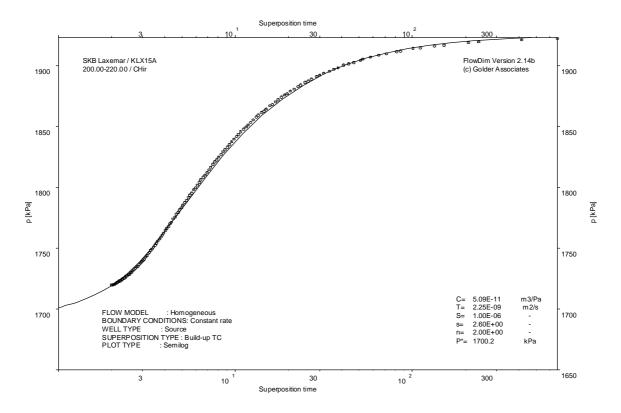


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-15/3


Test: 200.00 – 220.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-15/4

Test: 200.00 – 220.00 m



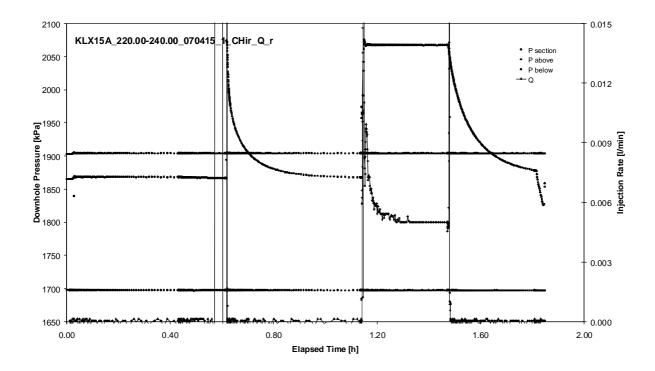
CHIR phase; log-log match



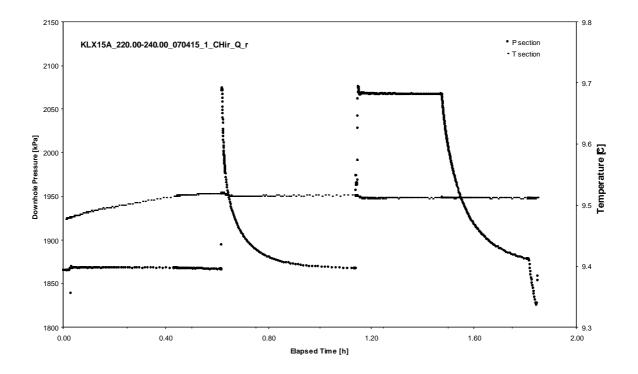
CHIR phase; HORNER match

Borehole: KLX15A Page 2-16/1

Test: 220.00 – 240.00 m


# **APPENDIX 2-16**

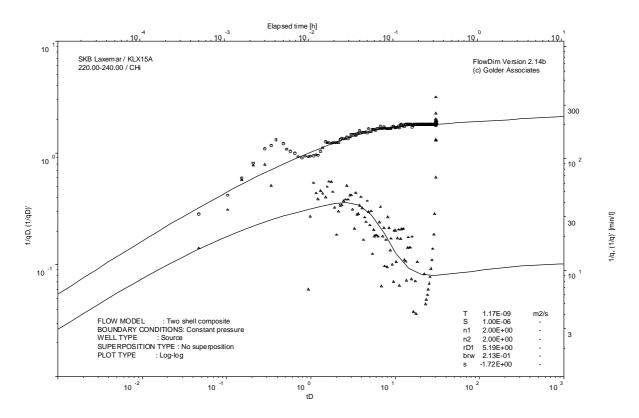
Test 220.00 – 240.00 m


Page 2-16/2

Borehole: KLX15A

Test: 220.00 - 240.00 m

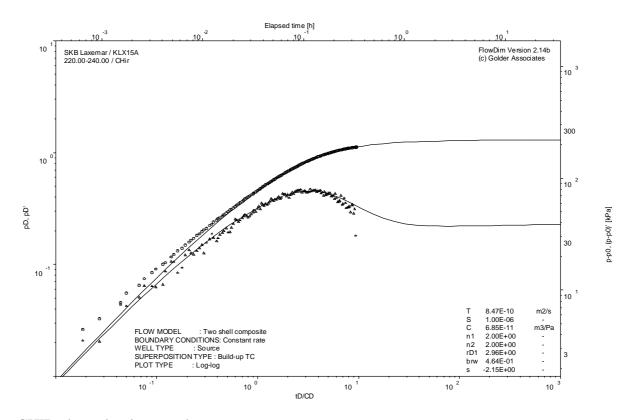



Pressure and flow rate vs. time; cartesian plot

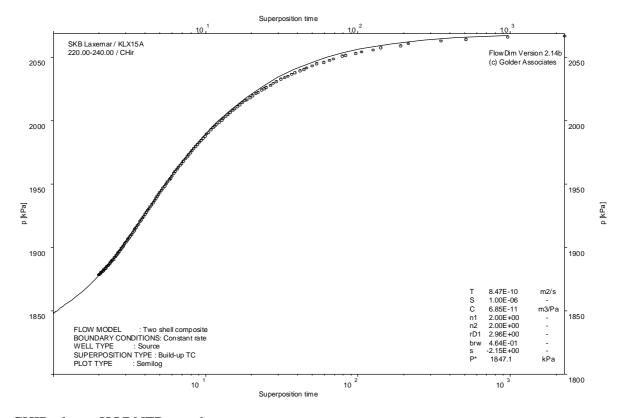


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-16/3


Test: 220.00 – 240.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-16/4

Test: 220.00 - 240.00 m



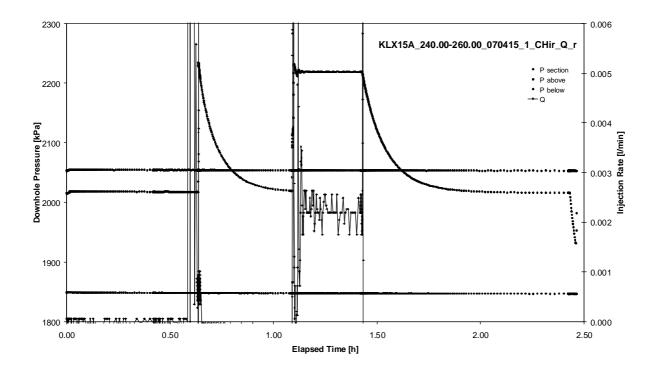
#### CHIR phase; log-log match



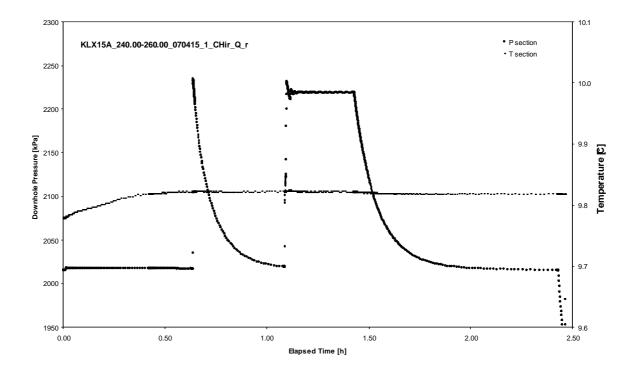
CHIR phase; HORNER match

Borehole: KLX15A Page 2-17/1

Test:  $240.00 - 260.00 \,\mathrm{m}$ 


#### **APPENDIX 2-17**

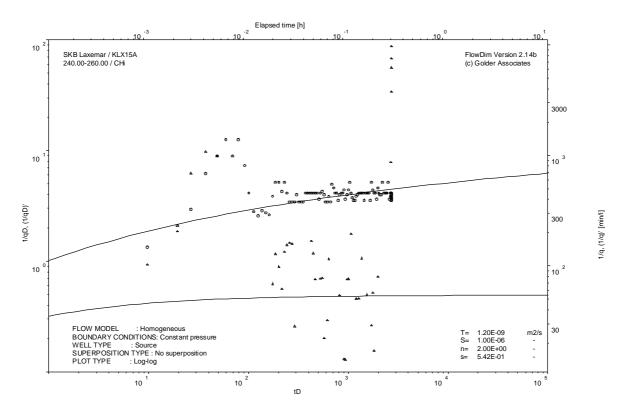
Test 240.00 – 260.00 m


Page 2-17/2

Borehole: KLX15A

Test: 240.00 - 260.00 m




Pressure and flow rate vs. time; cartesian plot

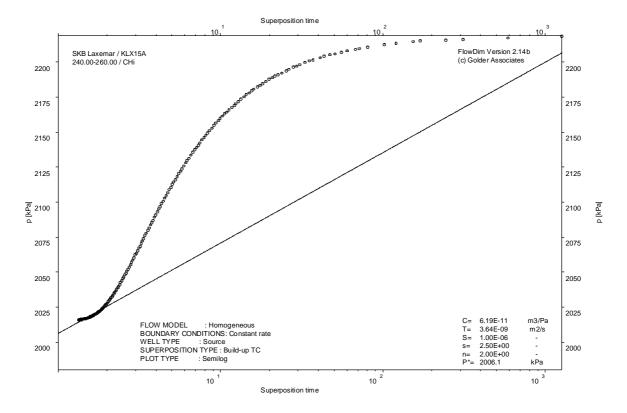


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-17/3

Test: 240.00 – 260.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-17/4

Test: 240.00 - 260.00 m



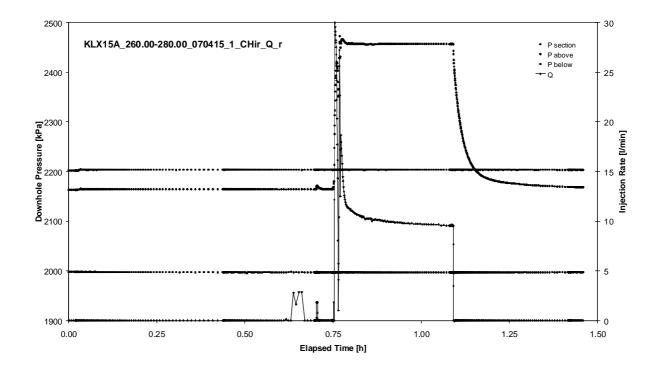
CHIR phase; log-log match



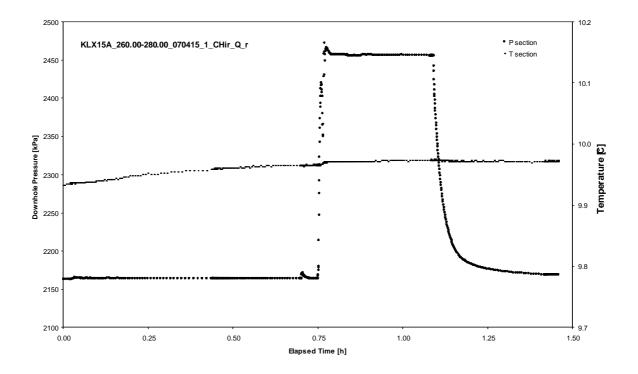
CHIR phase; HORNER match

Borehole: KLX15A Page 2-18/1

Test:  $260.00 - 280.00 \,\mathrm{m}$ 


# **APPENDIX 2-18**

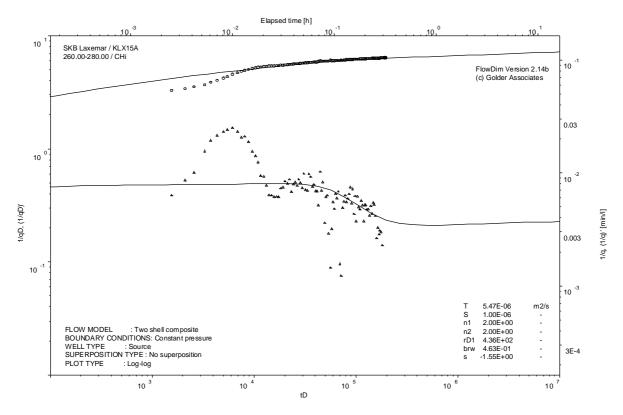
Test 260.00 – 280.00 m


Page 2-18/2

Borehole: KLX15A

Test: 260.00 - 280.00 m

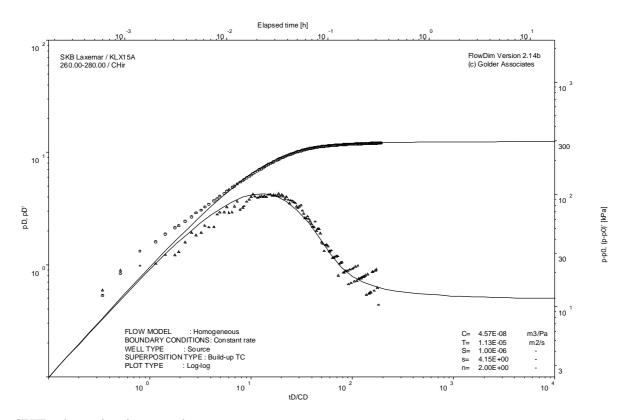



Pressure and flow rate vs. time; cartesian plot

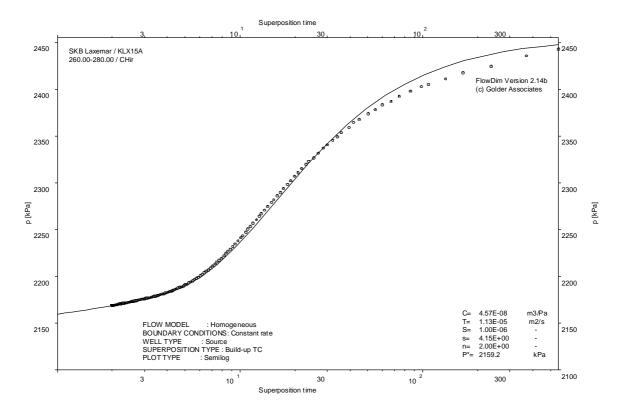


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-18/3


Test: 260.00 – 280.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-18/4

Test: 260.00 - 280.00 m



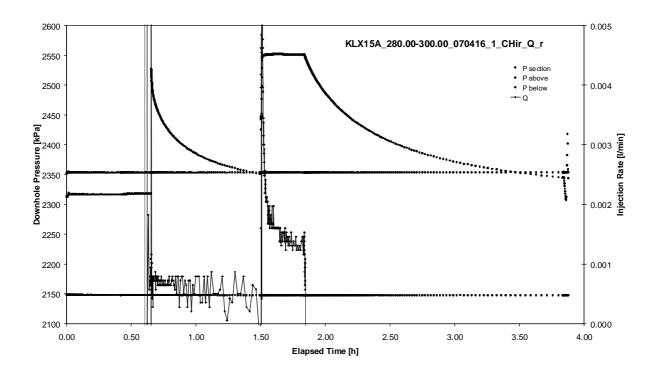
CHIR phase; log-log match



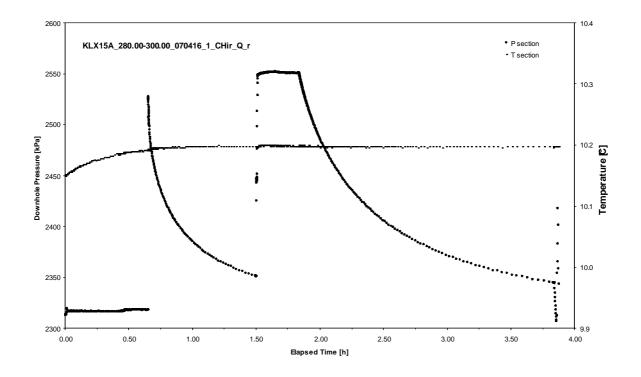
CHIR phase; HORNER match

Borehole: KLX15A Page 2-19/1

Test: 280.00 – 300.00 m


# **APPENDIX 2-19**

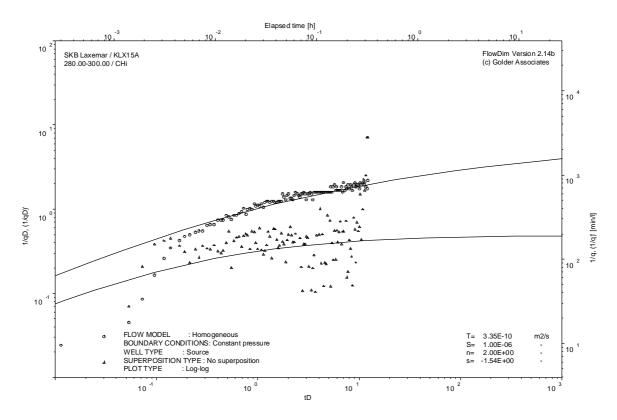
Test 280.00 – 300.00 m


Page 2-19/2

Borehole: KLX15A

Test: 280.00 - 300.00 m

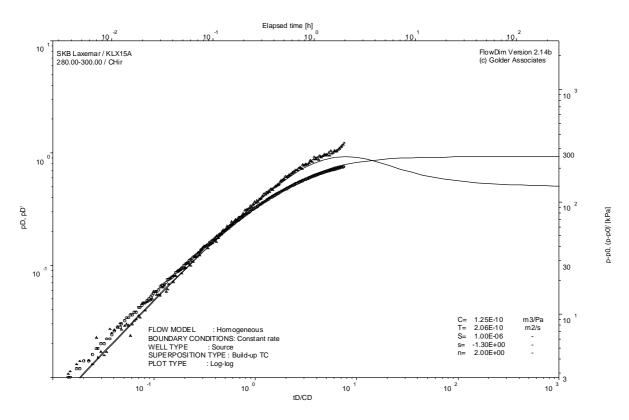



Pressure and flow rate vs. time; cartesian plot

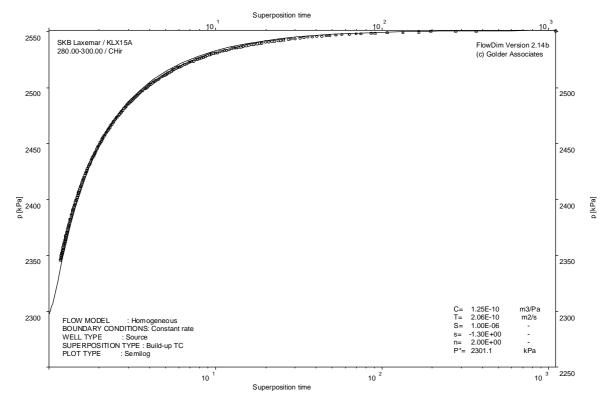


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-19/3


Test: 280.00 – 300.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-19/4

Test: 280.00 - 300.00 m

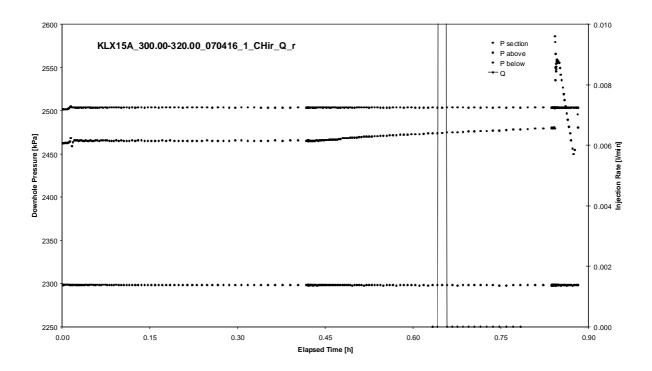


CHIR phase; log-log match

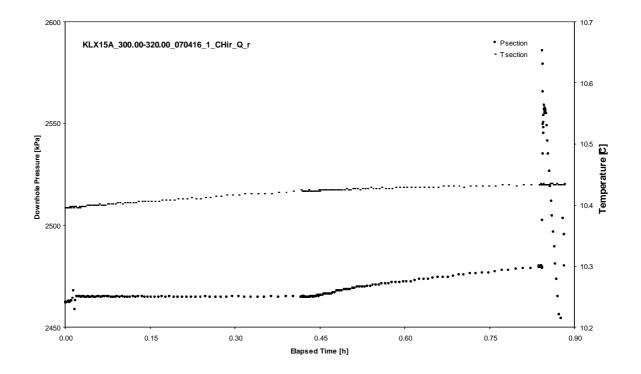


CHIR phase; HORNER match

Borehole: KLX15A Page 2-20/1


Test: 300.00 – 320.00 m

# **APPENDIX 2-20**


Test 300.00 – 320.00 m

Borehole: KLX15A Page 2-20/2

Test: 300.00 - 320.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 300.00 – 3 Page 2-20/3

300.00 – 320.00 m

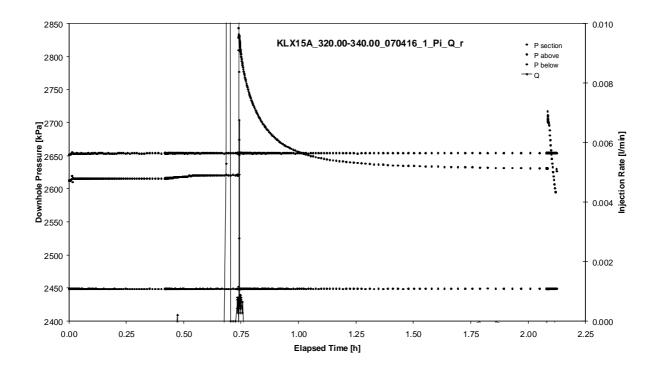
Not analysed

CHI phase; log-log match

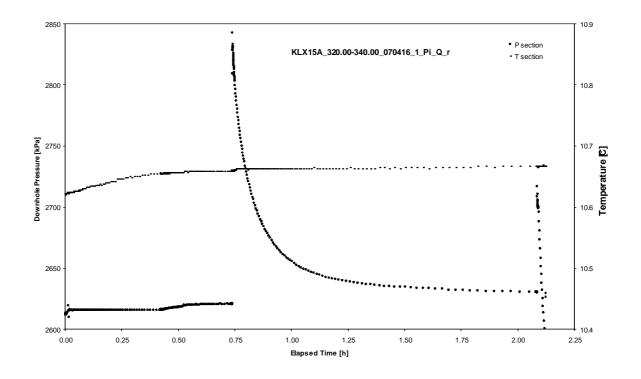
| Borehole:<br>Test: | KLX15A<br>300.00 – 320.00 m |              | Page 2-20/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-21/1


Test: 320.00 - 340.00 m

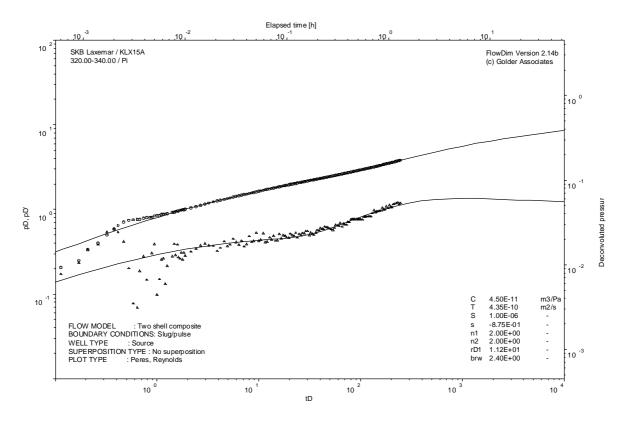
# **APPENDIX 2-21**


Test 320.00 – 340.00 m

Borehole: KLX15A Page 2-21/2

Test: 320.00 - 340.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

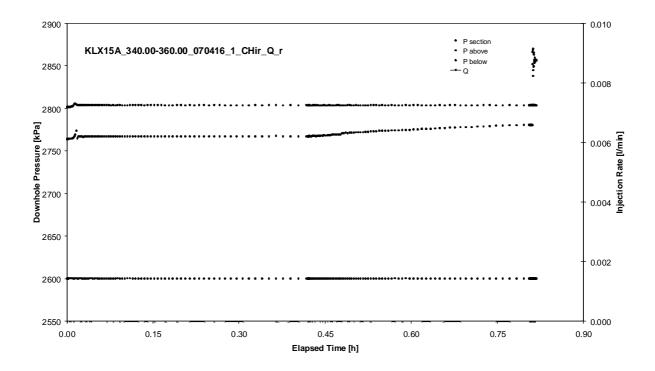
Borehole: KLX15A Page 2-21/3

Test: 320.00 – 340.00 m

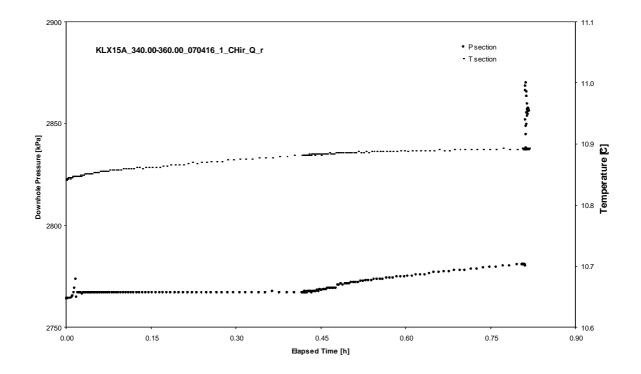


Pulse injection; deconvolution match

Borehole: KLX15A Page 2-22/1


Test: 340.00 – 360.00 m

#### **APPENDIX 2-22**


Test 340.00 – 360.00 m

Borehole: KLX15A Page 2-22/2

Test: 340.00 - 360.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-22/3

Test: 340.00 - 360.00 m

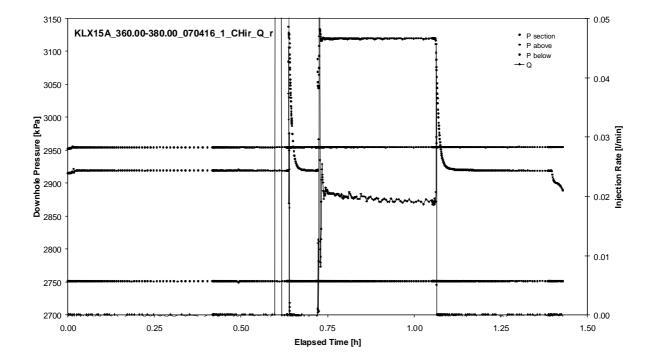
Not analysed

CHI phase; log-log match

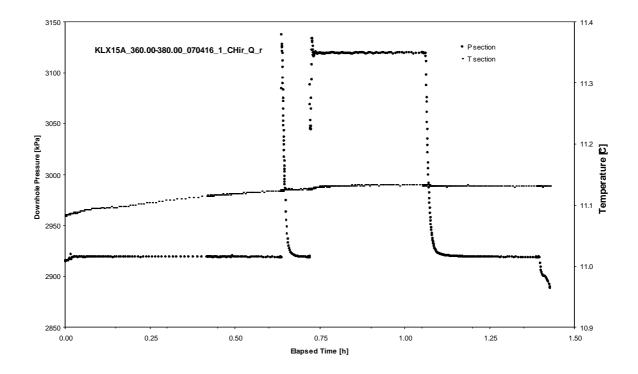
| Borehole:<br>Test: | KLX15A<br>340.00 – 360.00 m |              | Page 2-22/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-23/1


Test: 360.00 – 380.00 m

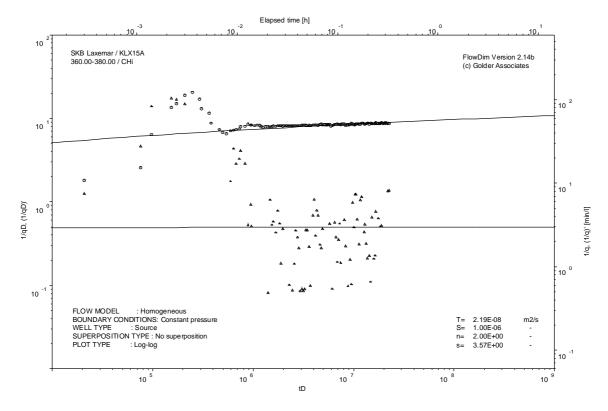
#### **APPENDIX 2-23**


Test 360.00 – 380.00 m

Page 2-23/2

Borehole: KLX15A Test: 360.00 – 380.00 m

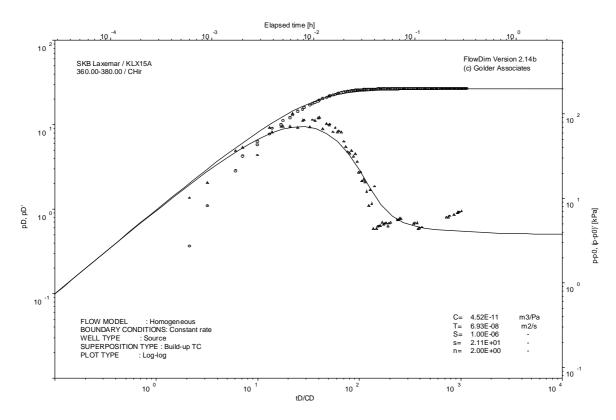



Pressure and flow rate vs. time; cartesian plot

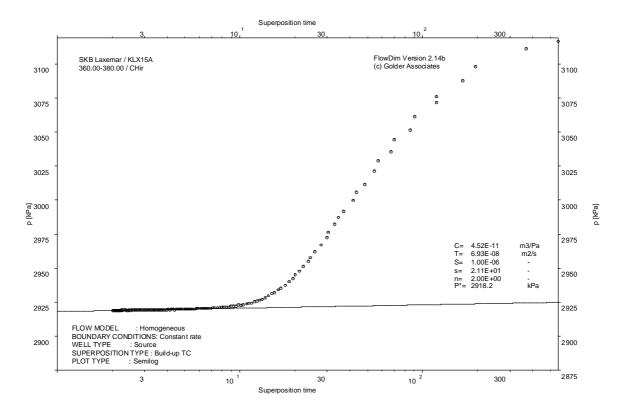


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-23/3


Test: 360.00 – 380.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-23/4

Test: 360.00 - 380.00 m



CHIR phase; log-log match



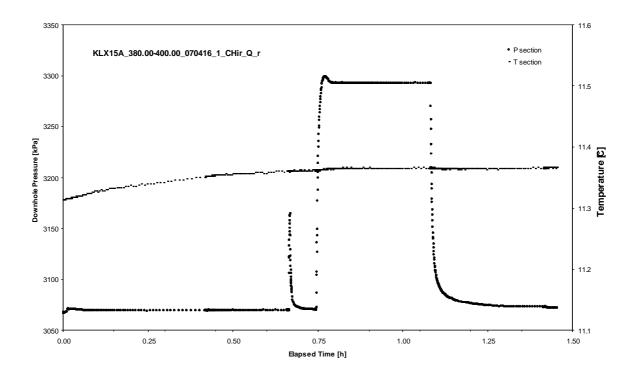
CHIR phase; HORNER match

Borehole: KLX15A Page 2-24/1

Test: 380.00 - 400.00 m


#### **APPENDIX 2-24**

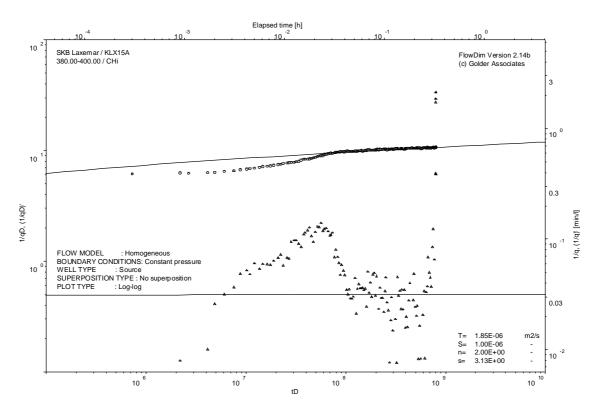
Test 380.00 – 400.00 m


Page 2-24/2

Borehole: KLX15A

Test: 380.00 - 400.00 m

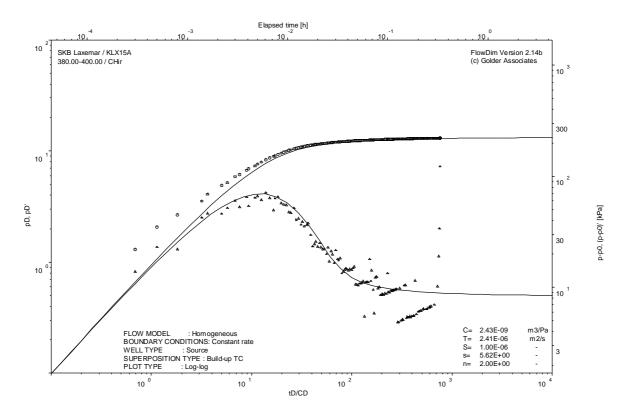



Pressure and flow rate vs. time; cartesian plot

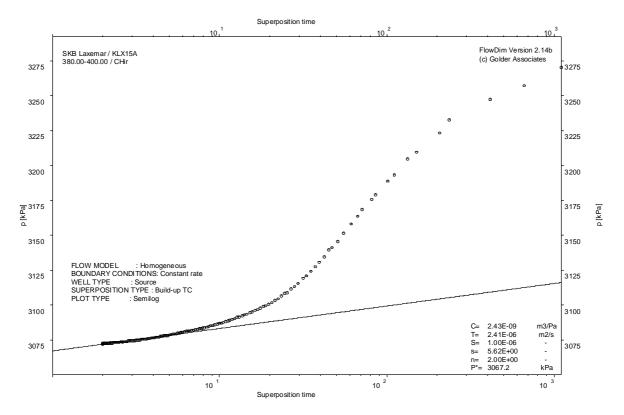


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-24/3


Test: 380.00 – 400.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-24/4

Test: 380.00 - 400.00 m



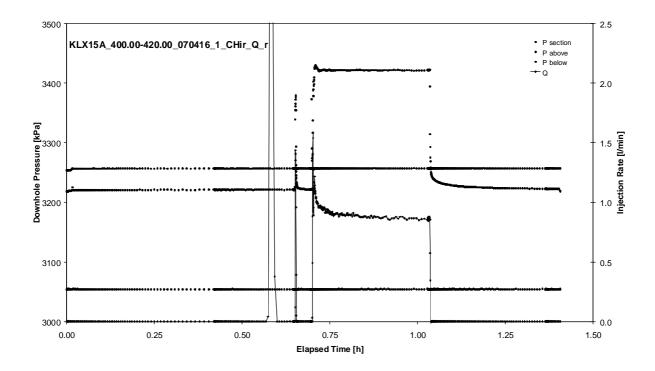
#### CHIR phase; log-log match



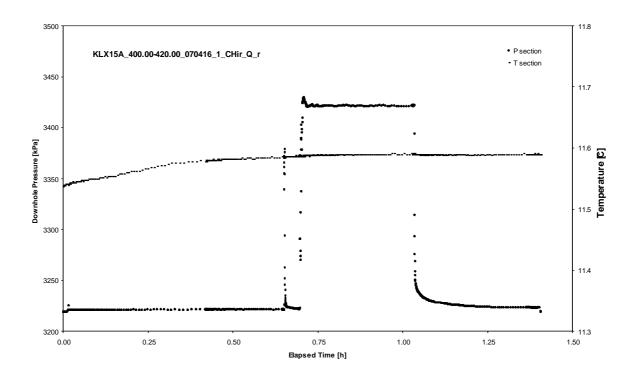
CHIR phase; HORNER match

Borehole: KLX15A Page 2-25/1

Test: 400.00 - 420.00 m


# **APPENDIX 2-25**

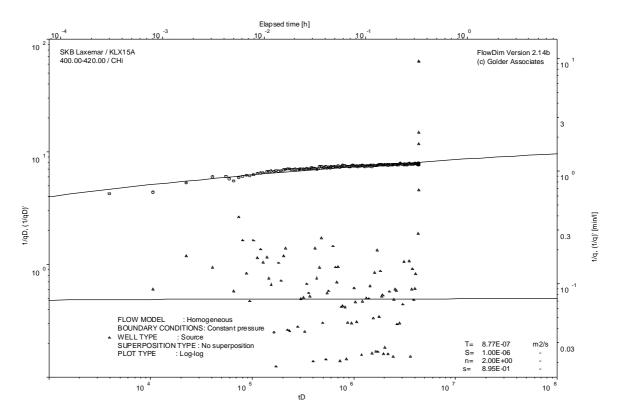
Test 400.00 – 420.00 m


Page 2-25/2

Borehole: KLX15A

Test: 400.00 - 420.00 m



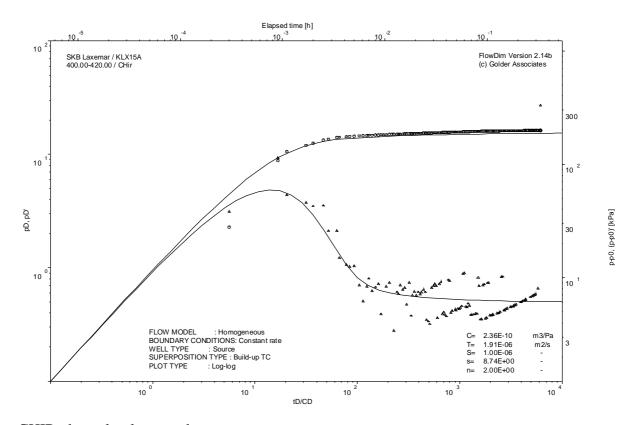

Pressure and flow rate vs. time; cartesian plot



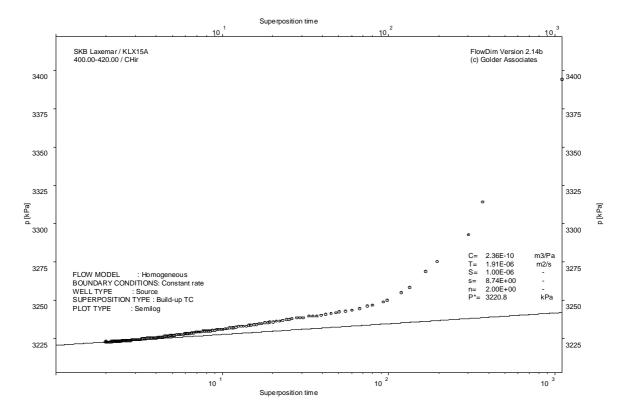
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-25/3

Test: 400.00 – 420.00 m




CHI phase; log-log match


Page 2-25/4

Borehole: KLX15A

Test: 400.00 - 420.00 m



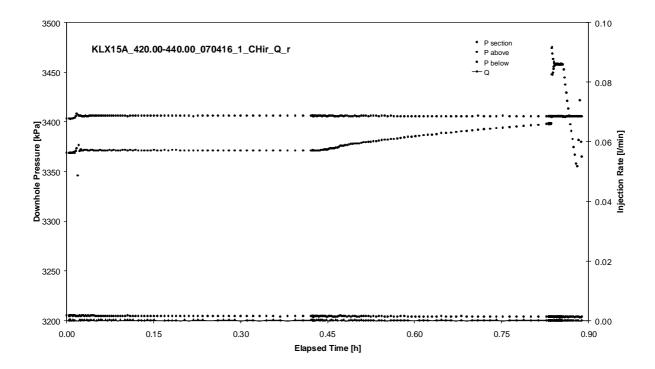
CHIR phase; log-log match



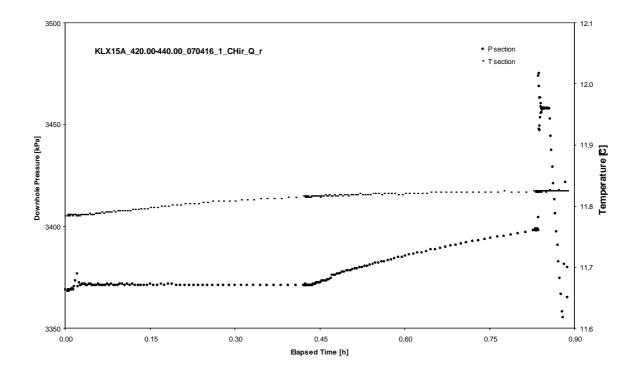
CHIR phase; HORNER match

Borehole: KLX15A Page 2-26/1

Test: 420.00 – 440.00 m


# **APPENDIX 2-26**

Test 420.00 – 440.00 m


Page 2-26/2

Borehole: KLX15A

Test: 420.00 – 440.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 420.00 – 440.00 m Page 2-26/3

Not analysed

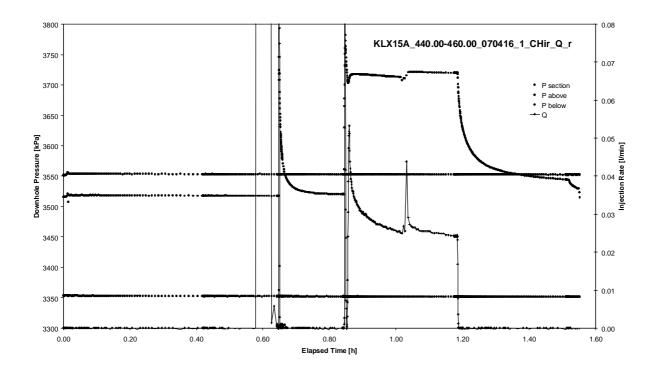
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>420.00 – 440.00 m |              | Page 2-26/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
| •                  |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

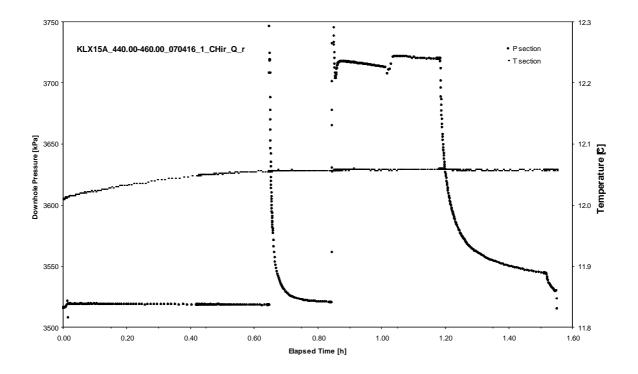
CHIR phase; HORNER match

Borehole: KLX15A Page 2-27/1

Test: 440.00 – 460.00 m


# **APPENDIX 2-27**

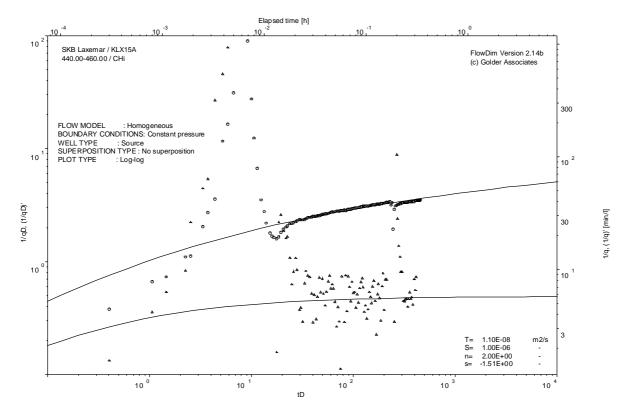
Test 440.00 – 460.00 m


Page 2-27/2

Borehole: KLX15A

Test: 440.00 - 460.00 m



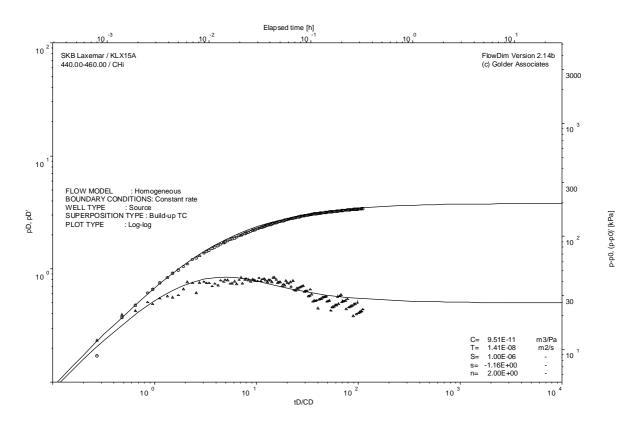

Pressure and flow rate vs. time; cartesian plot



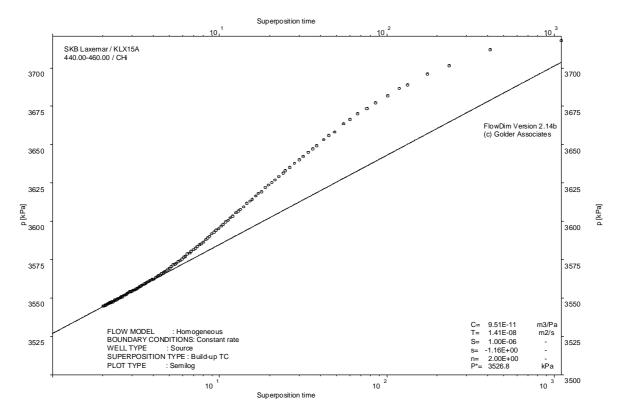
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-27/3

Test: 440.00 – 460.00 m




CHI phase; log-log match


Page 2-27/4

Borehole: KLX15A

Test: 440.00 - 460.00 m



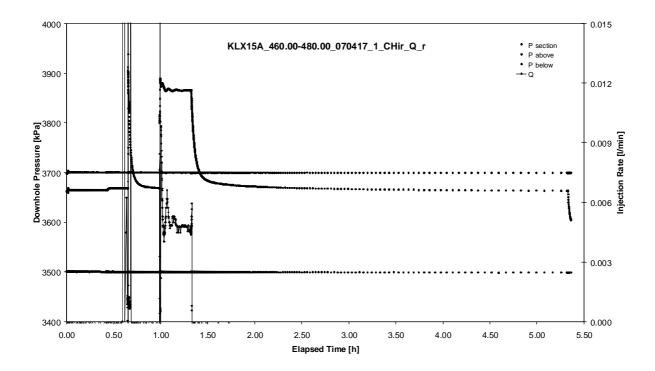
CHIR phase; log-log match



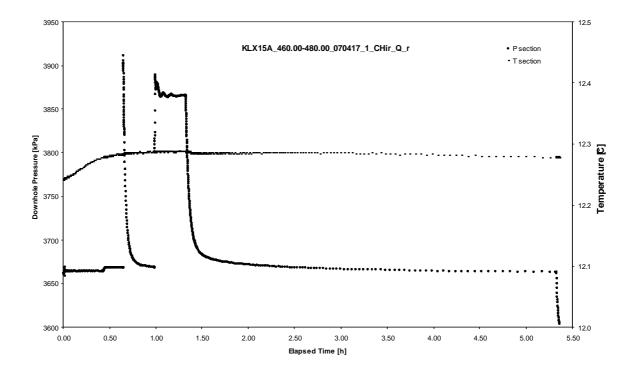
CHIR phase; HORNER match

Borehole: KLX15A Page 2-28/1

Test: 460.00 – 480.00 m


# **APPENDIX 2-28**

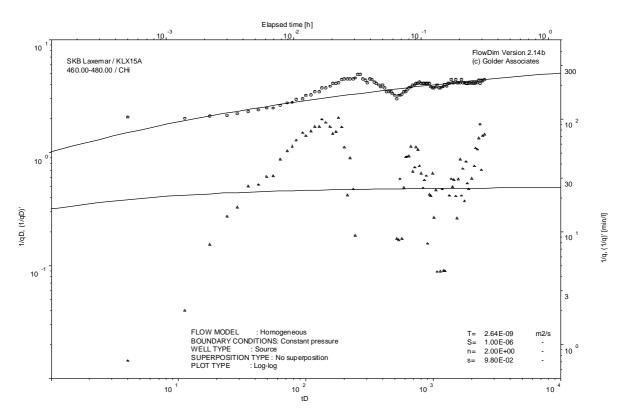
Test 460.00 – 480.00 m


Page 2-28/2

Borehole: KLX15A

Test: 460.00 - 480.00 m

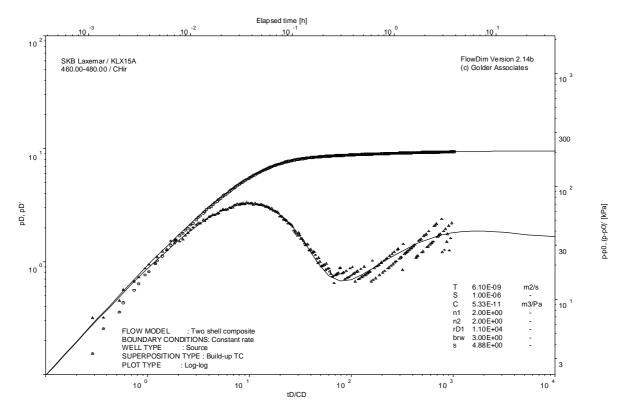



Pressure and flow rate vs. time; cartesian plot

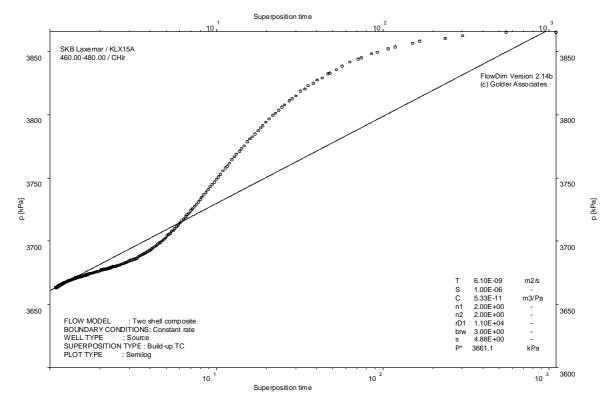


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-28/3


Test: 460.00 – 480.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-28/4

Test: 460.00 - 480.00 m

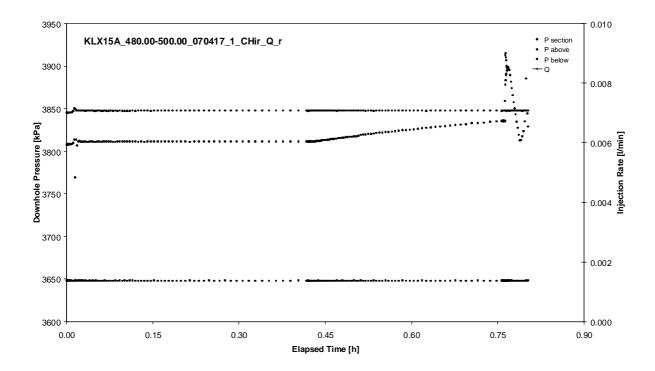


CHIR phase; log-log match

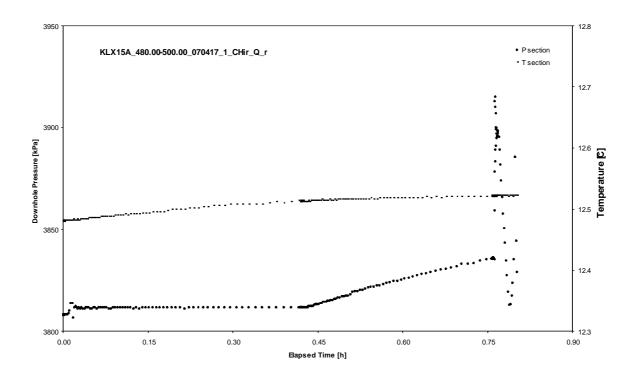


CHIR phase; HORNER match

Borehole: KLX15A Page 2-29/1


Test: 480.00 – 500.00 m

# **APPENDIX 2-29**


Test 480.00 – 500.00 m

Borehole: KLX15A

Test: 480.00 - 500.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 480.00 – 5 Page 2-29/3

480.00 – 500.00 m

Not analysed

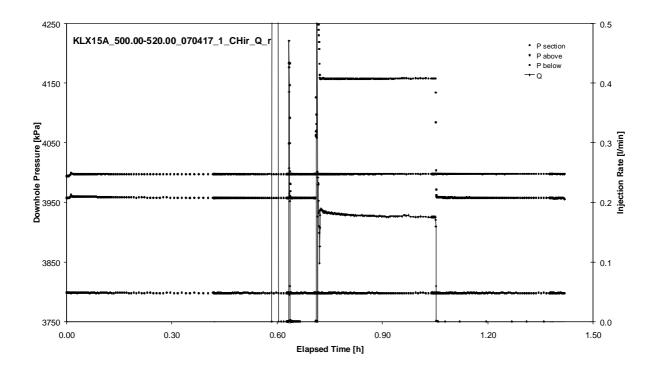
CHI phase; log-log match

| Borehole: KLX15A<br>Test: 480.00 – 500.00 m |              | Page 2-29/4 |
|---------------------------------------------|--------------|-------------|
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
| CHIR phase; log-log match                   |              |             |
| Criff phase, log-log match                  |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |

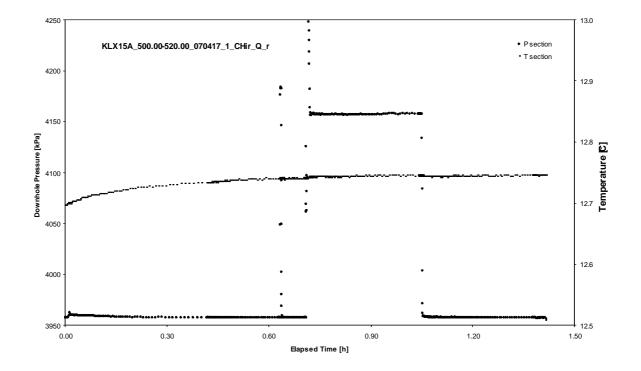
CHIR phase; HORNER match

Borehole: KLX15A Page 2-30/1

Test:  $500.00 - 520.00 \,\mathrm{m}$ 


# **APPENDIX 2-30**

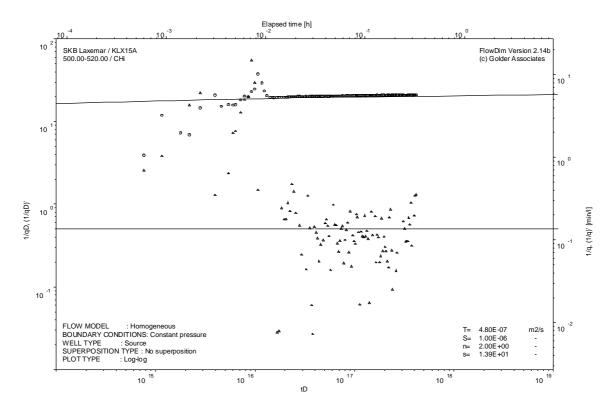
Test 500.00 – 520.00 m


Page 2-30/2

Borehole: KLX15A

Test: 500.00 - 520.00 m



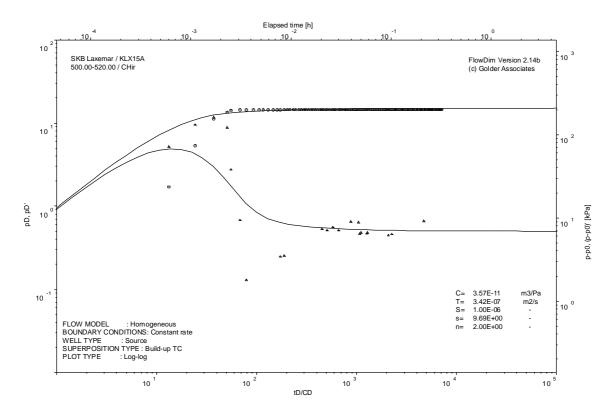

Pressure and flow rate vs. time; cartesian plot



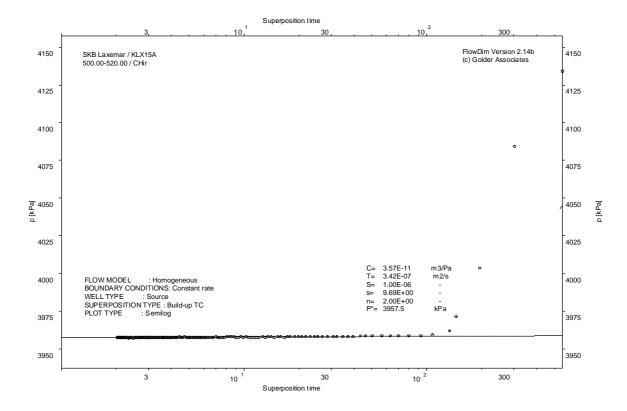
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-30/3

Test:  $500.00 - 520.00 \,\mathrm{m}$ 




CHI phase; log-log match


Page 2-30/4

Borehole: KLX15A

Test:  $500.00 - 520.00 \,\mathrm{m}$ 



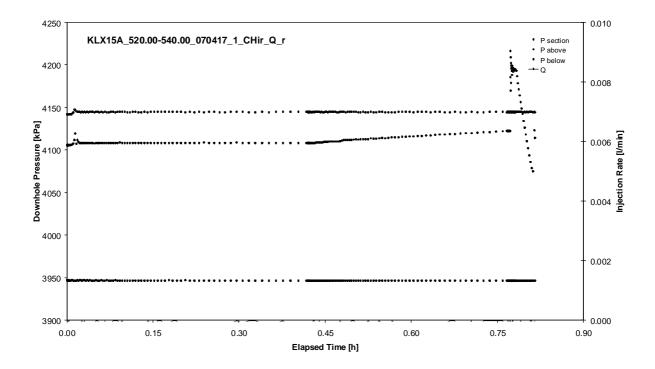
#### CHIR phase; log-log match



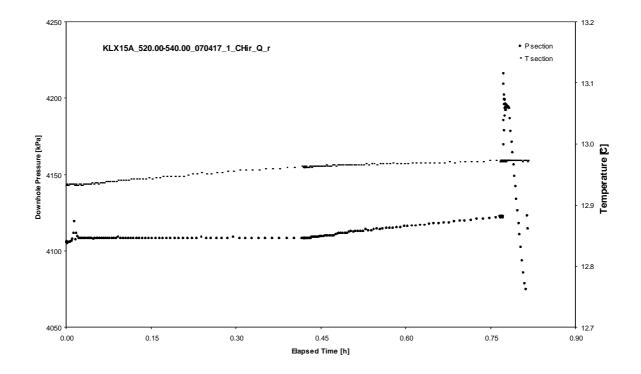
CHIR phase; HORNER match

Borehole: KLX15A Page 2-31/1

Test:  $520.00 - 540.00 \,\mathrm{m}$ 


# **APPENDIX 2-31**

Test 520.00 – 540.00 m


Page 2-31/2

Borehole: KLX15A

Test: 520.00 - 540.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 520.00 – 540.00 m Page 2-31/3

Not analysed

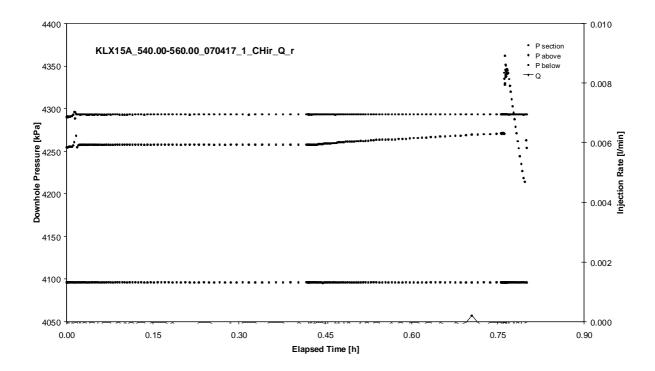
CHI phase; log-log match

| Borehole: KLX15A<br>Test: 520.00 – 540.00 m |              | Page 2-31/4 |
|---------------------------------------------|--------------|-------------|
|                                             |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
| CHIR phase; log-log match                   |              |             |
| erme phase, log log maten                   |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
|                                             |              |             |

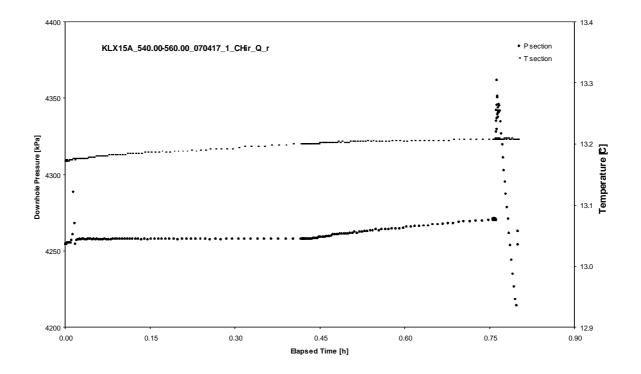
CHIR phase; HORNER match

Borehole: KLX15A Page 2-32/1

Test:  $540.00 - 560.00 \,\mathrm{m}$ 


#### **APPENDIX 2-32**

Test 540.00 – 560.00 m


Page 2-32/2

Borehole: KLX15A

Test: 540.00 - 560.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-32/3

Test: 540.00 - 560.00 m

Not analysed

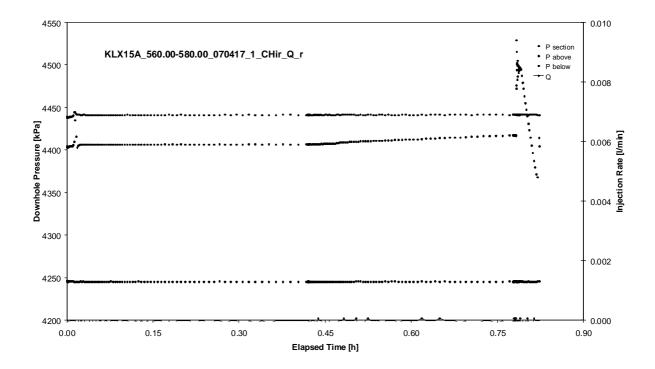
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>540.00 – 560.00 m |              | Page 2-32/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CUID nho           | se; log-log match           |              |             |
| стих риа           | se, log-log maten           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

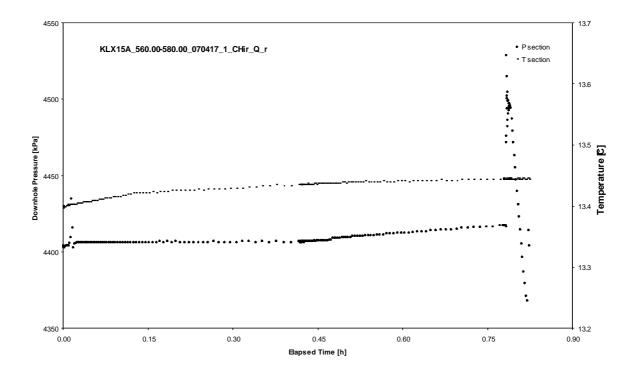
CHIR phase; HORNER match

Borehole: KLX15A Page 2-33/1

Test:  $560.00 - 580.00 \,\mathrm{m}$ 


# **APPENDIX 2-33**

Test 560.00 – 580.00 m


Page 2-33/2

Borehole: KLX15A

Test: 560.00 - 580.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-33/3

Test:  $560.00 - 580.00 \,\mathrm{m}$ 

Not analysed

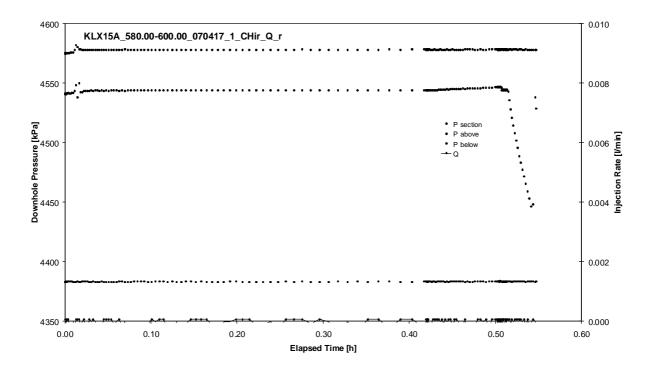
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>560.00 – 580.00 m |               | Page 2-33/4 |
|--------------------|-----------------------------|---------------|-------------|
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             | Not analysed  |             |
|                    |                             | 1vot analysed |             |
|                    |                             |               |             |
| CHIR pha           | se; log-log match           |               |             |
|                    |                             |               |             |
|                    |                             |               |             |
|                    |                             | Not analysed  |             |
|                    |                             |               |             |
|                    |                             |               |             |

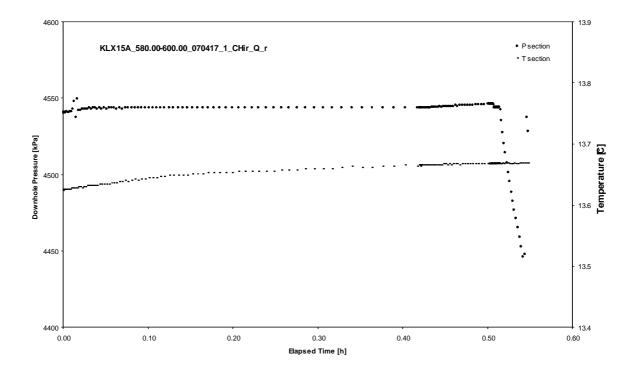
CHIR phase; HORNER match

Borehole: KLX15A Page 2-34/1

Test:  $580.00 - 600.00 \,\mathrm{m}$ 


### **APPENDIX 2-34**

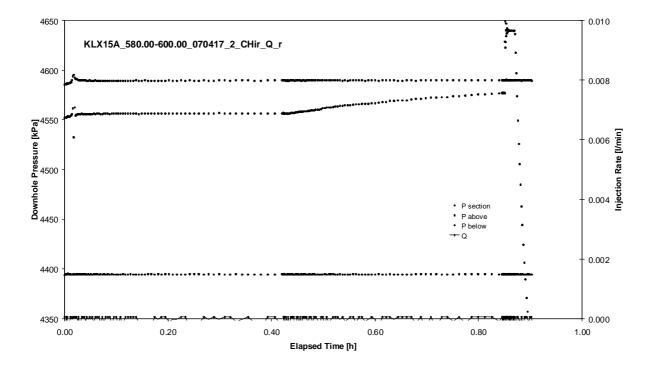
Test 580.00 – 600.00 m


Page 2-34/2

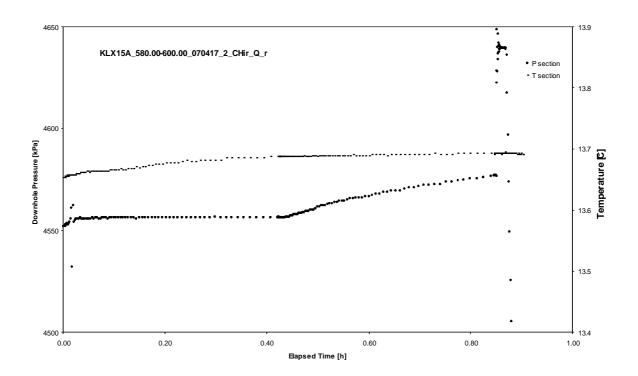
Borehole: KLX15A

Test: 580.00 - 600.00 m




Pressure and flow rate vs. time; cartesian plot (repeated)




Interval pressure and temperature vs. time; cartesian plot (repeated)

Page 2-34/3

Borehole: KLX15A Test: 580.00 – 600.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 580.00 - 6 Page 2-34/4

580.00 – 600.00 m

Not analysed

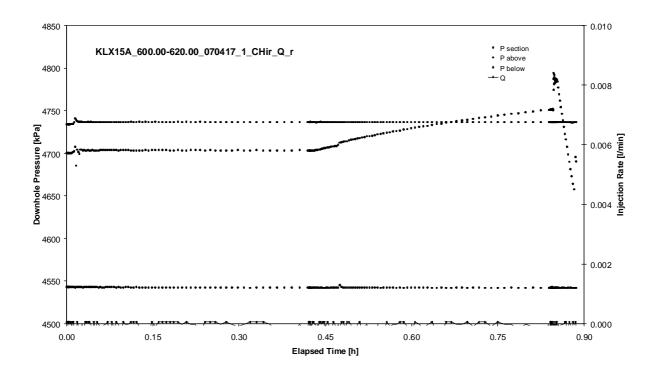
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>580.00 – 600.00 m |              | Page 2-34/5 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

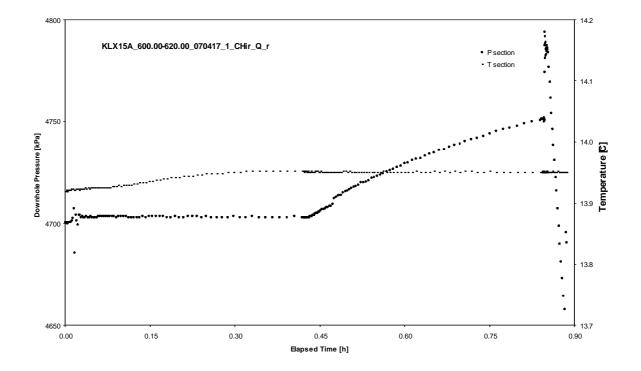
CHIR phase; HORNER match

Borehole: KLX15A Page 2-35/1

Test:  $600.00 - 620.00 \,\mathrm{m}$ 


# **APPENDIX 2-35**

Test 600.00 – 620.00 m


Page 2-35/2

Borehole: KLX15A

Test: 600.00 - 620.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 600.00 - 6 Page 2-35/3

600.00 – 620.00 m

Not analysed

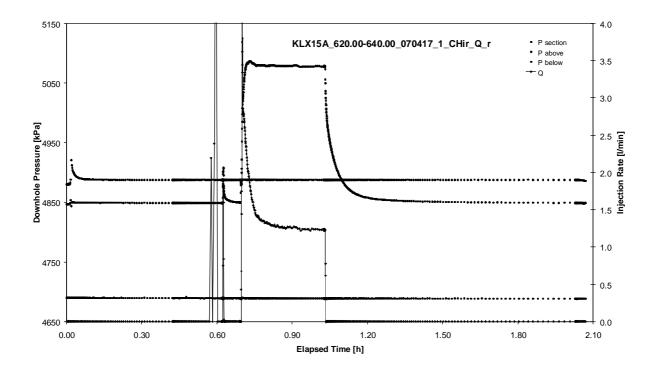
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>600.00 – 620.00 m |              | Page 2-35/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

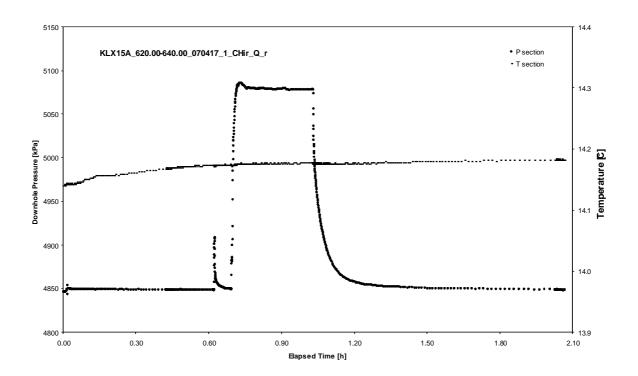
CHIR phase; HORNER match

Borehole: KLX15A Page 2-36/1

Test: 620.00 – 640.00 m


# **APPENDIX 2-36**

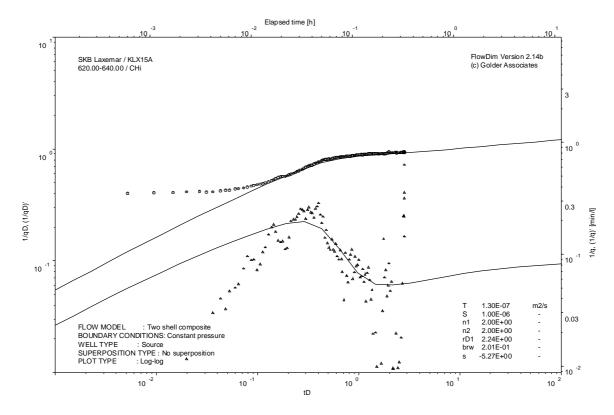
Test 620.00 - 640.00 m


Page 2-36/2

Borehole: KLX15A

Test: 620.00 - 640.00 m

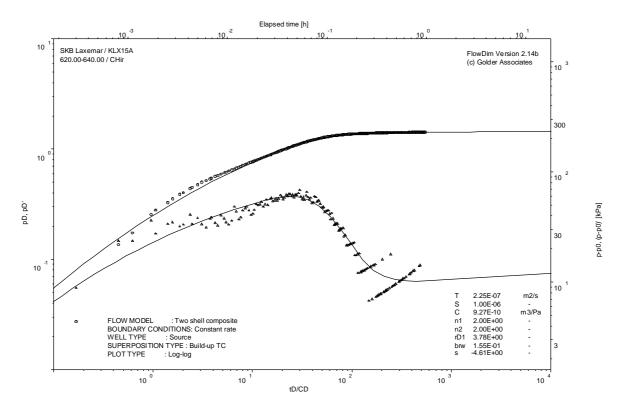



Pressure and flow rate vs. time; cartesian plot

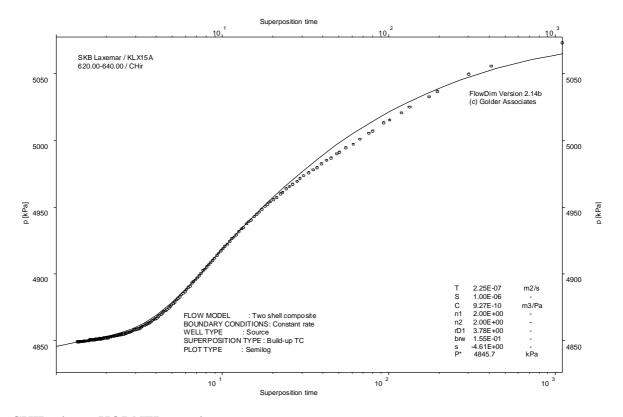


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-36/3


Test: 620.00 – 640.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-36/4

Test:  $620.00 - 640.00 \,\mathrm{m}$ 



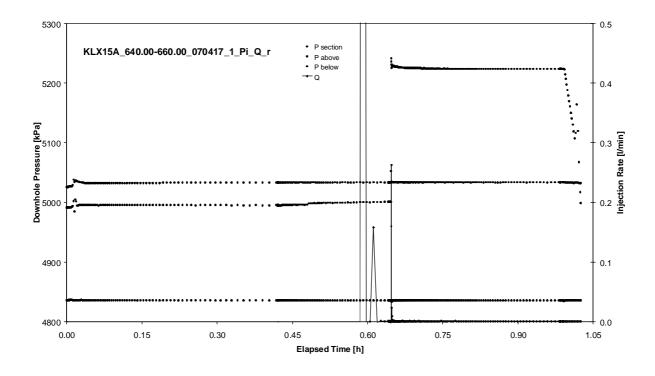
### CHIR phase; log-log match



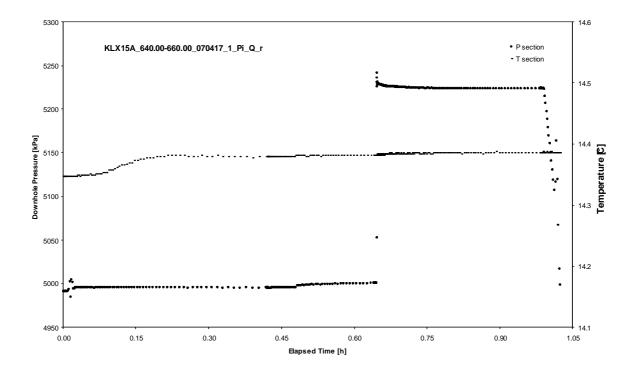
CHIR phase; HORNER match

Borehole: KLX15A Page 2-37/1

Test: 640.00 – 660.00 m


# **APPENDIX 2-37**

Test 640.00 – 660.00 m


Page 2-37/2

Borehole: KLX15A

Test: 640.00 – 660.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-37/3

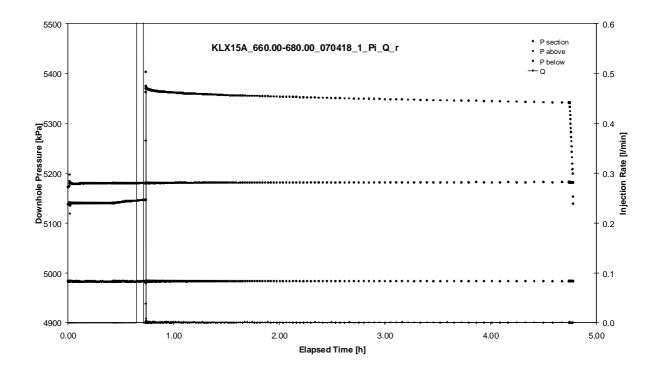
Test: 640.00 – 660.00 m

Not analysed

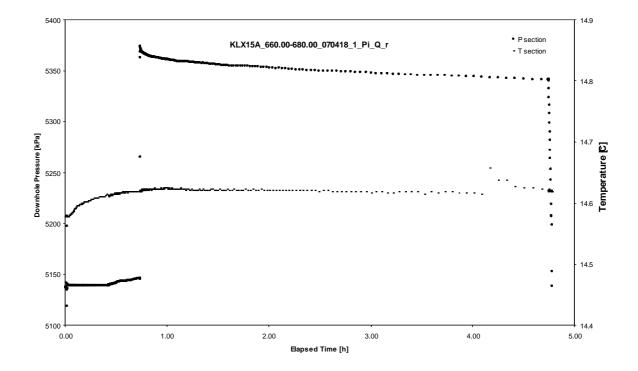
Pulse injection; deconvolution match

Borehole: KLX15A Page 2-38/1

Test: 660.00 – 680.00 m


# **APPENDIX 2-38**

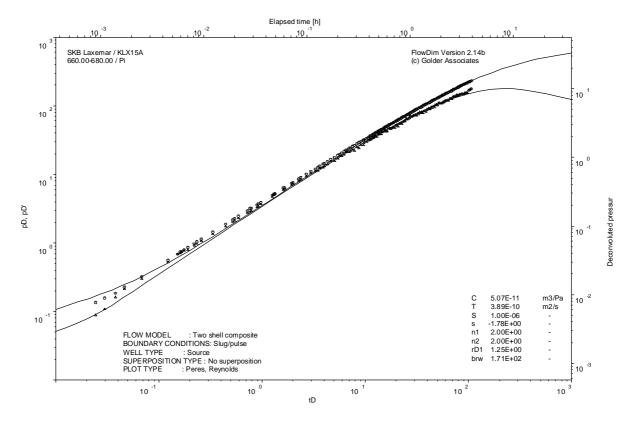
Test 660.00 - 680.00 m


Page 2-38/2

Borehole: KLX15A

Test:  $660.00 - 680.00 \,\mathrm{m}$ 




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-38/3

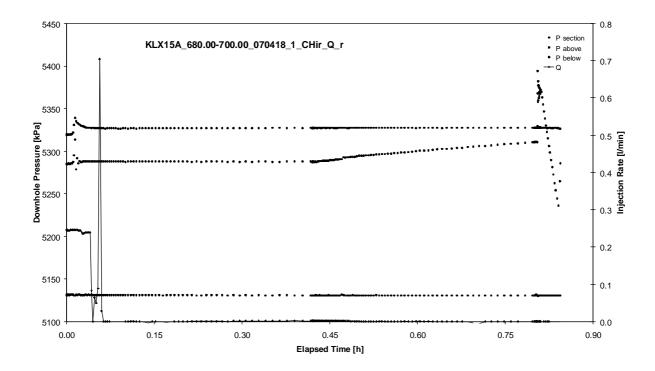
Test: 660.00 – 680.00 m



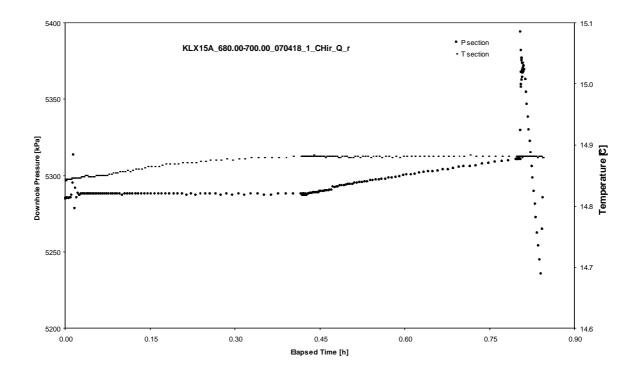
Pulse injection; deconvolution match

Borehole: KLX15A Page 2-39/1

Test:  $680.00 - 700.00 \,\mathrm{m}$ 


# **APPENDIX 2-39**

Test 680.00 – 700.00 m


Page 2-39/2

Borehole: KLX15A

Test: 680.00 - 700.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 680.00 – 7 Page 2-39/3

680.00 – 700.00 m

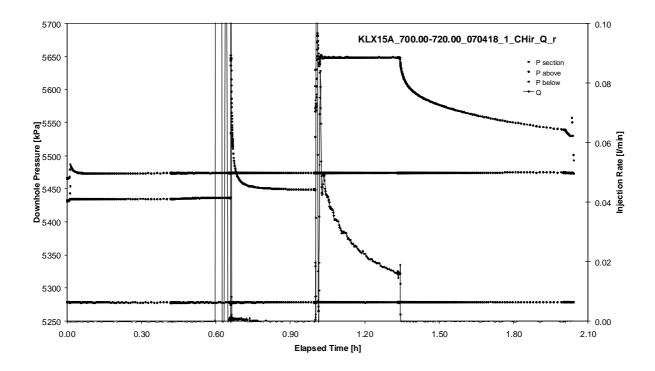
Not analysed

CHI phase; log-log match

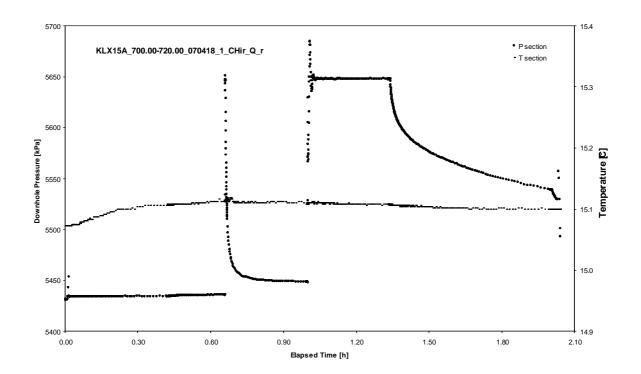
| Borehole:<br>Test: | KLX15A<br>680.00 – 700.00 m |              | Page 2-39/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-40/1


Test: 700.00 – 720.00 m

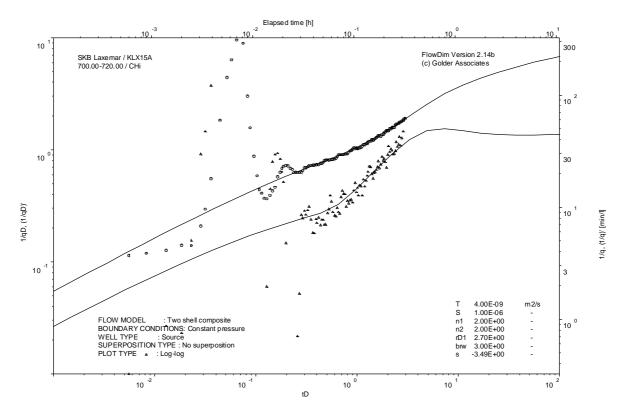
# **APPENDIX 2-40**


Test 700.00 – 720.00 m

Borehole: KLX15A

Test: 700.00 - 720.00 m



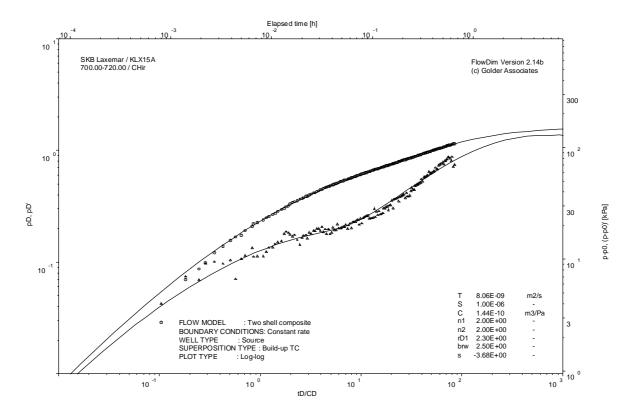

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-40/3

Test:  $700.00 - 720.00 \,\mathrm{m}$ 




CHI phase; log-log match

Page 2-40/4

Borehole: KLX15A

Test:  $700.00 - 720.00 \,\mathrm{m}$ 



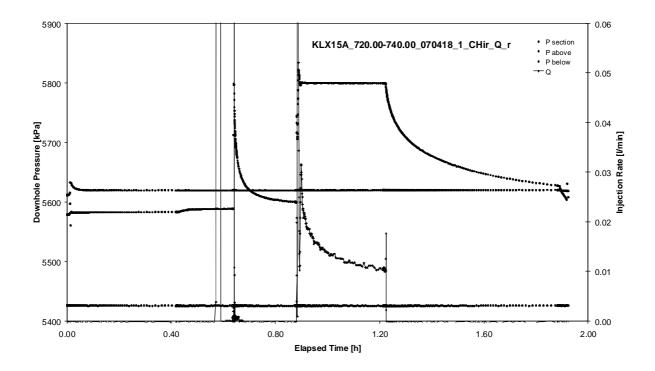
CHIR phase; log-log match

Not analysed

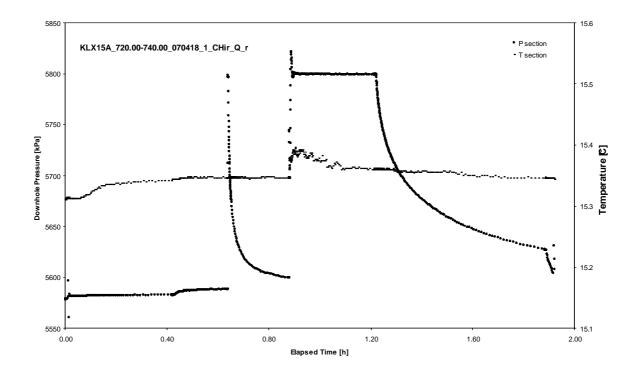
CHIR phase; HORNER match

Borehole: KLX15A Page 2-41/1

Test: 720.00 – 740.00 m


# **APPENDIX 2-41**

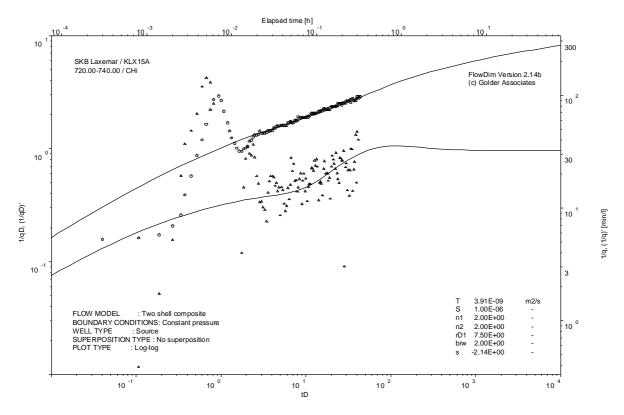
Test 720.00 – 740.00 m


Page 2-41/2

Borehole: KLX15A

Test: 720.00 - 740.00 m



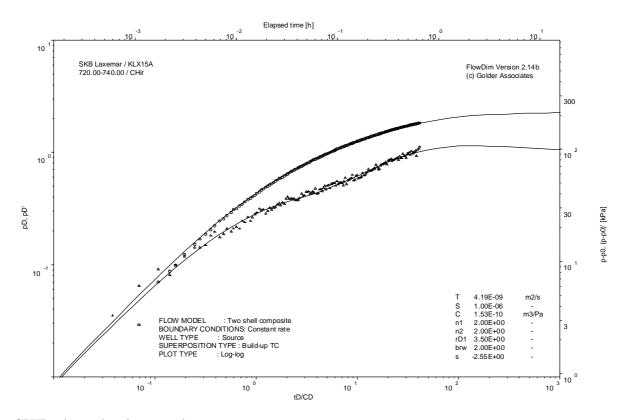

Pressure and flow rate vs. time; cartesian plot



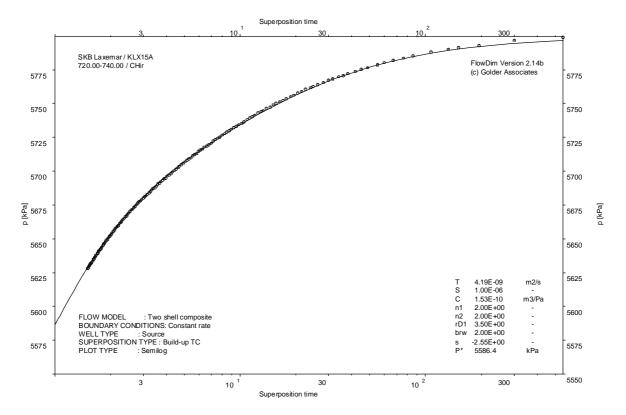
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-41/3

Test: 720.00 – 740.00 m




CHI phase; log-log match


Page 2-41/4

Borehole: KLX15A

Test: 720.00 - 740.00 m



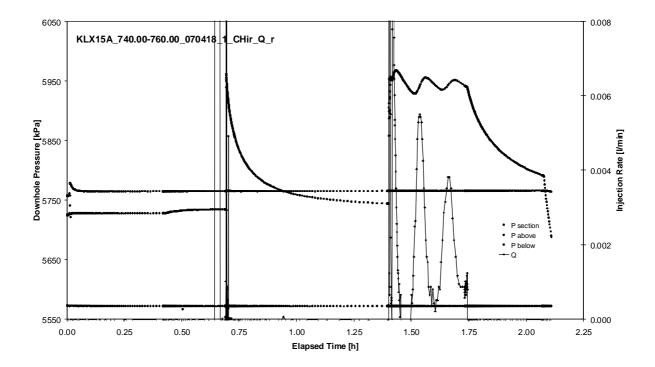
CHIR phase; log-log match



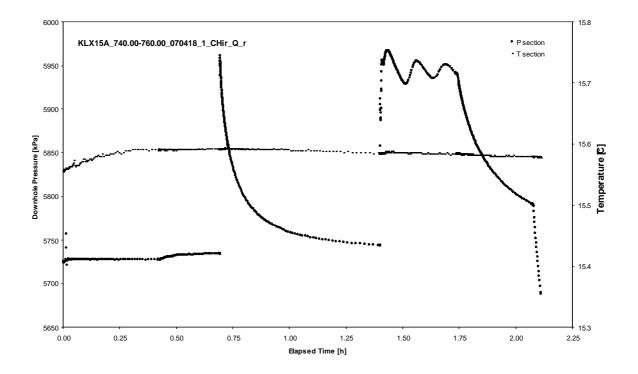
CHIR phase; HORNER match

Borehole: KLX15A Page 2-42/1

Test:  $740.00 - 760.00 \,\mathrm{m}$ 


### **APPENDIX 2-42**

Test 740.00 – 760.00 m


Page 2-42/2

Borehole: KLX15A

Test: 740.00 - 760.00 m

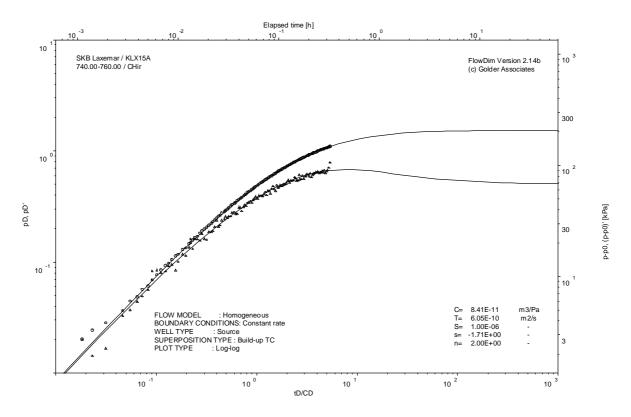


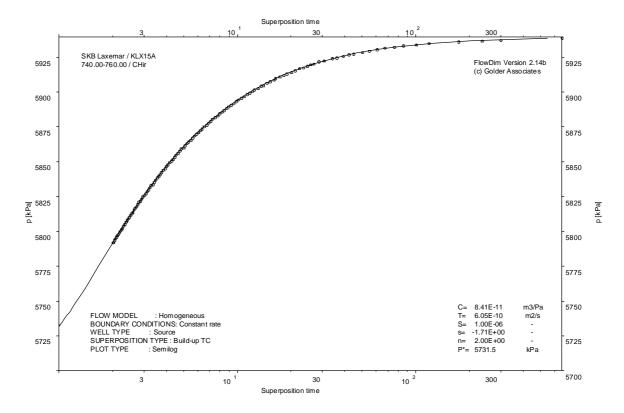
Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-42/3


Test:  $740.00 - 760.00 \,\mathrm{m}$ 

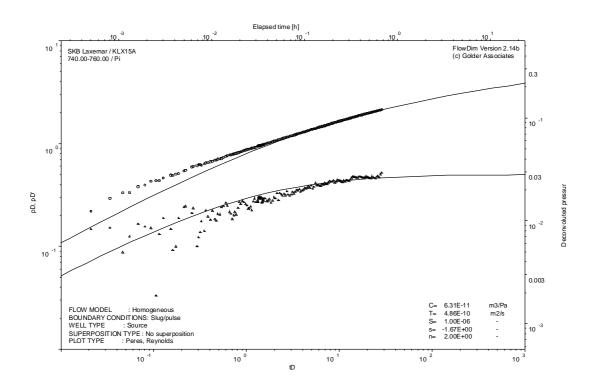

Not analysed

Page 2-42/4

Borehole: KLX15A

Test:  $740.00 - 760.00 \,\mathrm{m}$ 






CHIR phase; HORNER match

Page 2-42/5

Borehole: KLX15A

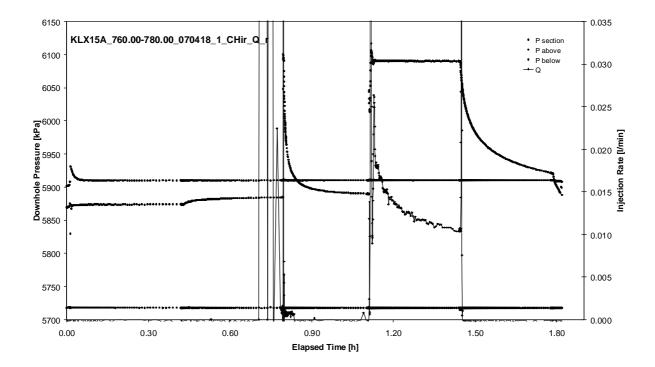
Test: 740.00 – 760.00 m



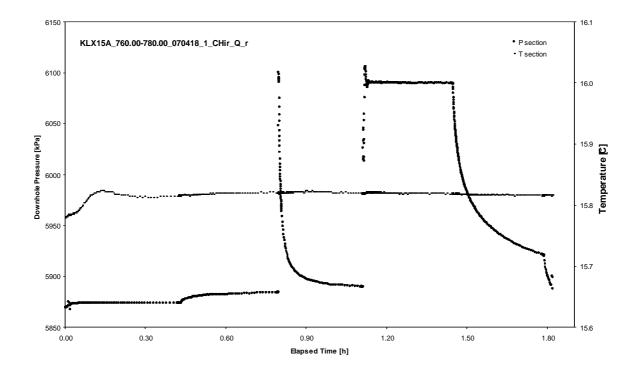
Pi phase; log-log match

Borehole: KLX15A Page 2-43/1

Test: 760.00 – 780.00 m


#### **APPENDIX 2-43**

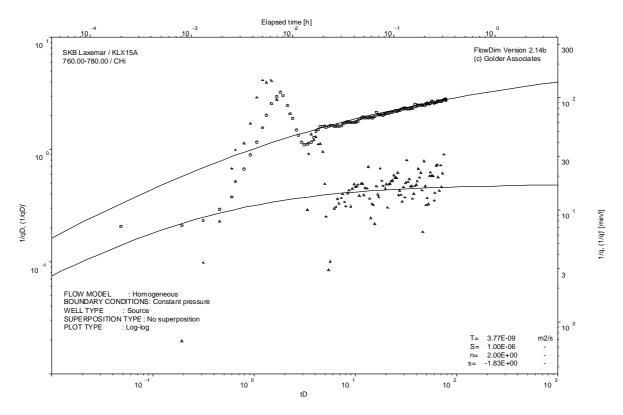
Test 760.00 – 780.00 m


Page 2-43/2

Borehole: KLX15A

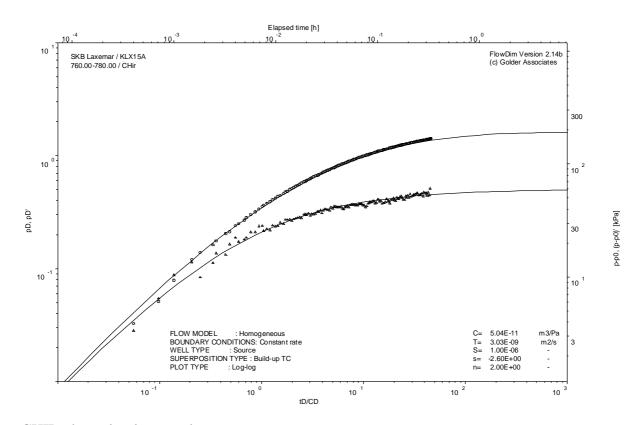
Test:  $760.00 - 780.00 \,\mathrm{m}$ 



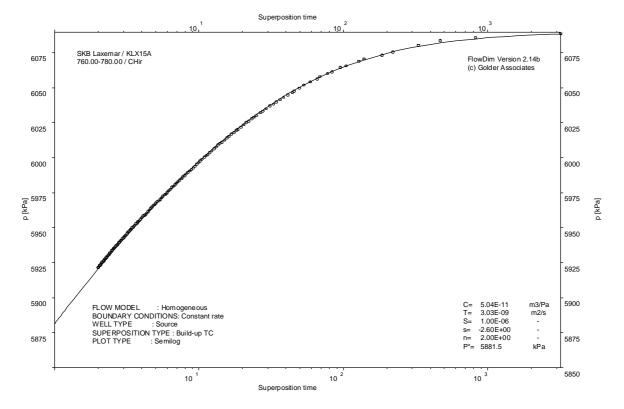

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-43/3

Test:  $760.00 - 780.00 \,\mathrm{m}$ 




Borehole: KLX15A Page 2-43/4

Test:  $760.00 - 780.00 \,\mathrm{m}$ 



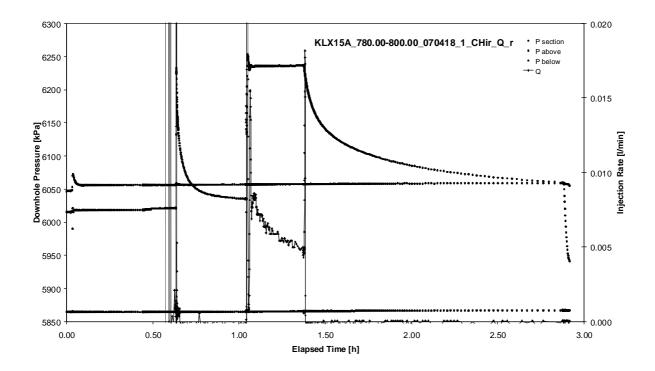
CHIR phase; log-log match



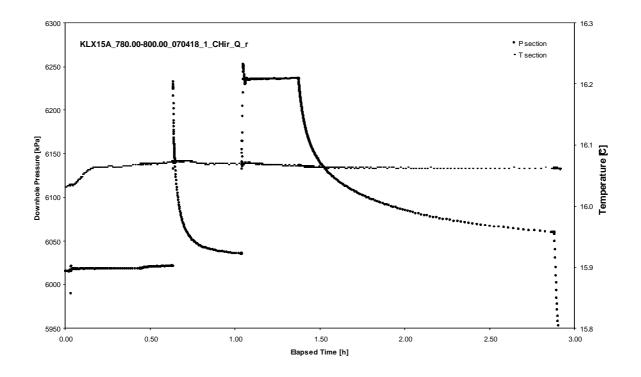
CHIR phase; HORNER match

Borehole: KLX15A Page 2-44/1

Test: 780.00 – 800.00 m


#### **APPENDIX 2-44**

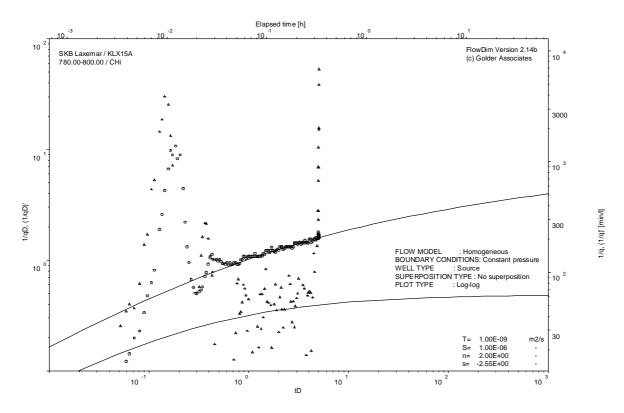
Test 780.00 – 800.00 m


Page 2-44/2

Borehole: KLX15A

Test: 780.00 - 800.00 m

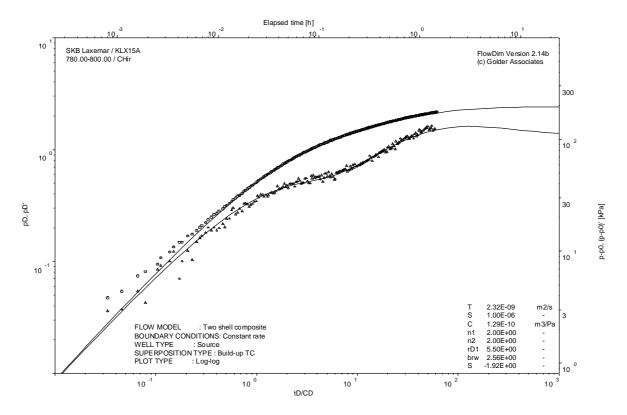



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-44/3


Test: 780.00 – 800.00 m



Page 2-44/4

Borehole: KLX15A

Test: 780.00 – 800.00 m



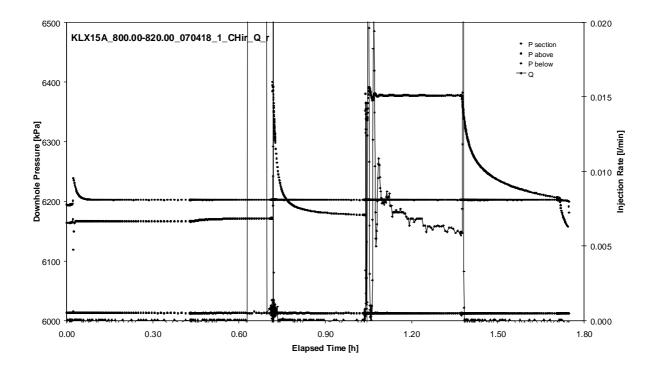
CHIR phase; log-log match

Not analysable

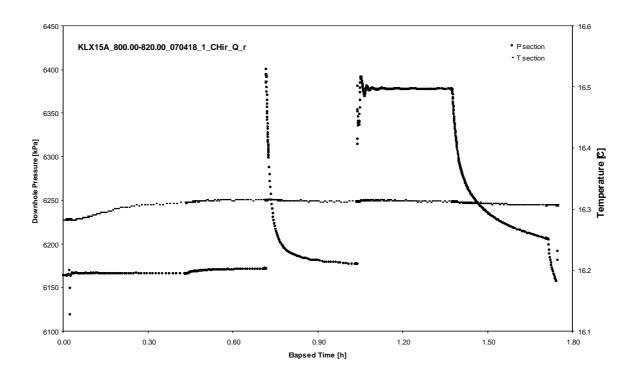
CHIR phase; HORNER match

Borehole: KLX15A Page 2-45/1

Test: 800.00 – 820.00 m


# **APPENDIX 2-45**

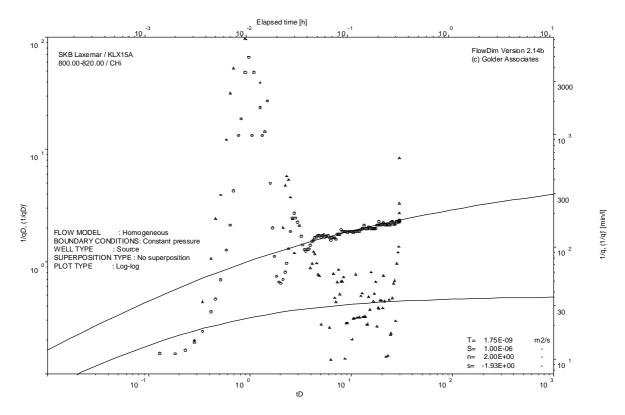
Test 800.00 – 820.00 m


Page 2-45/2

Borehole: KLX15A

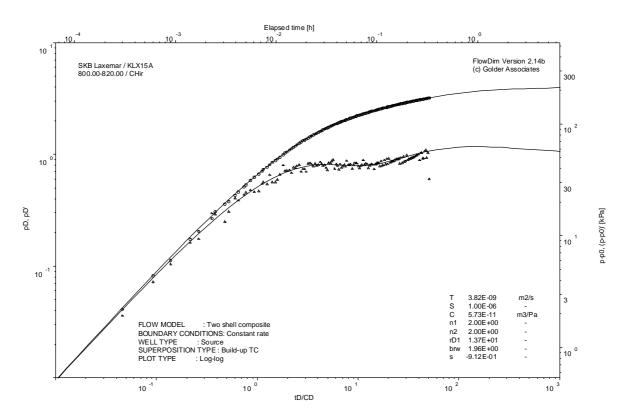
Test: 800.00 – 820.00 m

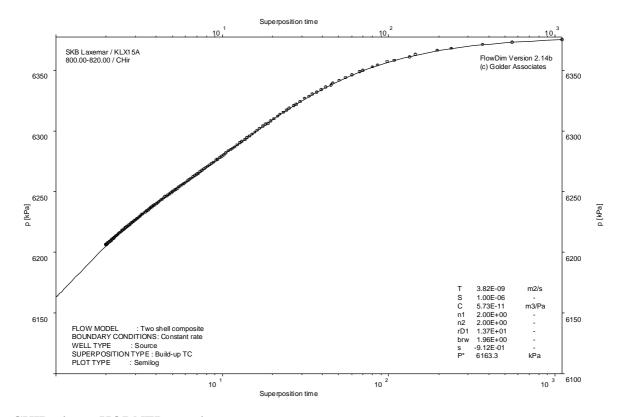



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-45/3


Test: 800.00 – 820.00 m



Borehole: KLX15A

Test:  $800.00 - 820.00 \,\mathrm{m}$ 

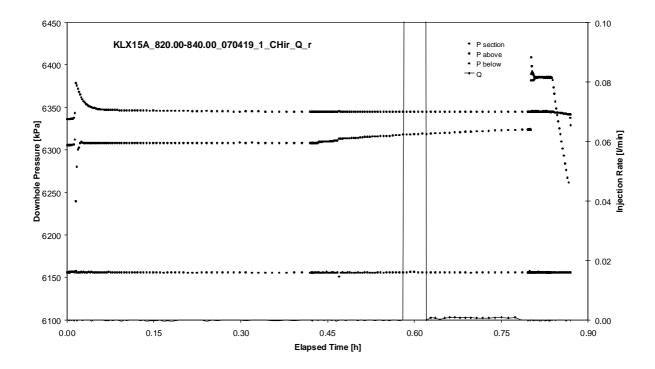




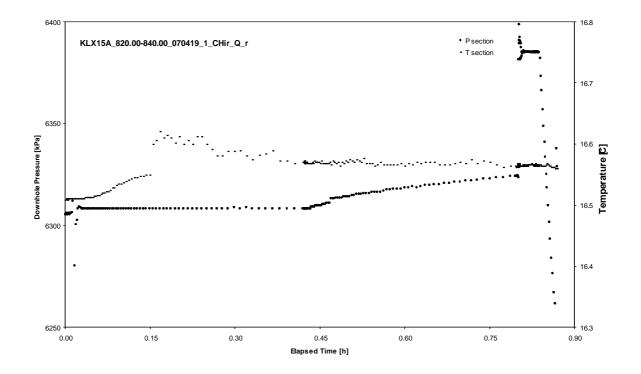
CHIR phase; HORNER match

Borehole: KLX15A Page 2-46/1

Test: 820.00 – 840.00 m


# **APPENDIX 2-46**

Test 820.00 – 840.00 m


Page 2-46/2

Borehole: KLX15A

Test: 820.00 – 840.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-46/3

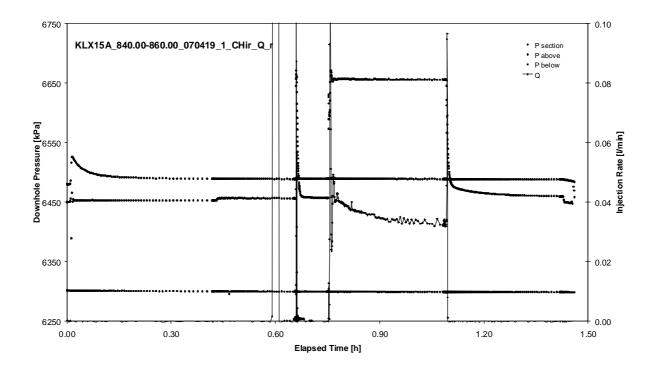
Test: 820.00 – 840.00 m

Not analysed

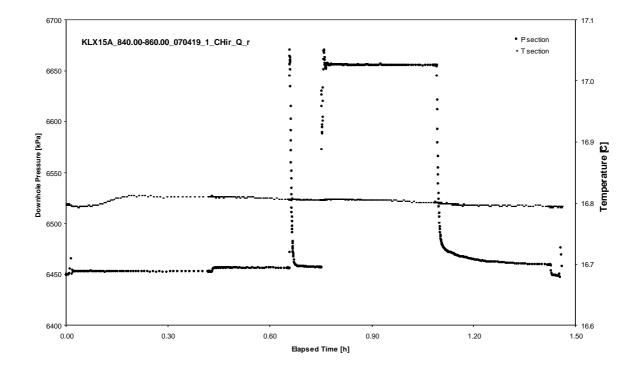
| Borehole:<br>Test: | KLX15A<br>820.00 – 840.00 m |              | Page 2-46/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-47/1


Test: 840.00 – 860.00 m

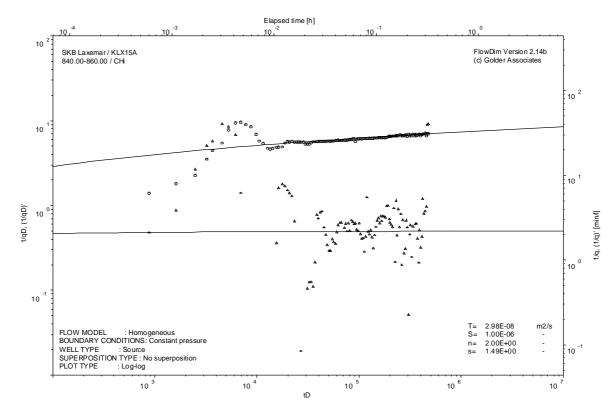
# **APPENDIX 2-47**


Test 840.00 – 860.00 m

Borehole: KLX15A

Test: 840.00 – 860.00 m



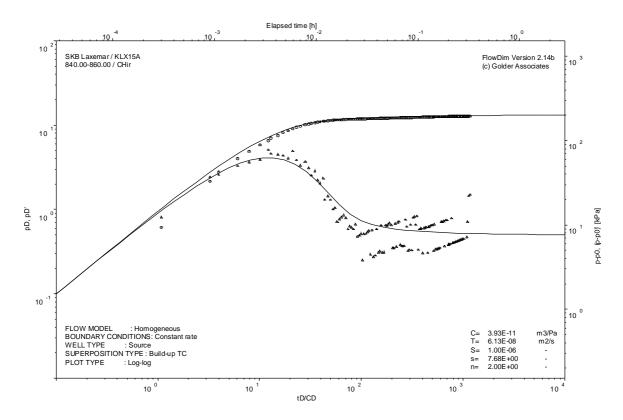

Pressure and flow rate vs. time; cartesian plot

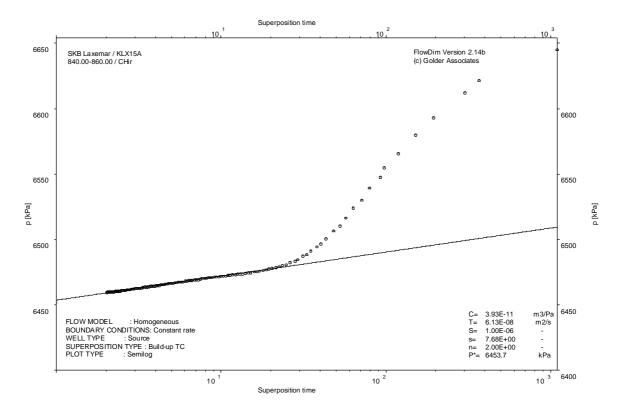


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-47/3

Test: 840.00 – 860.00 m





CHI phase; log-log match

Page 2-47/4

Borehole: KLX15A

840.00 - 860.00 mTest:

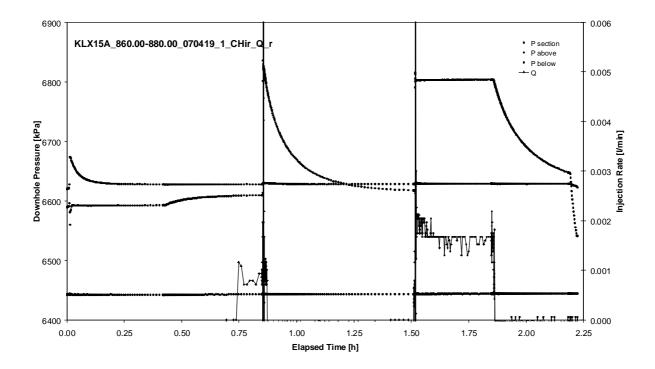




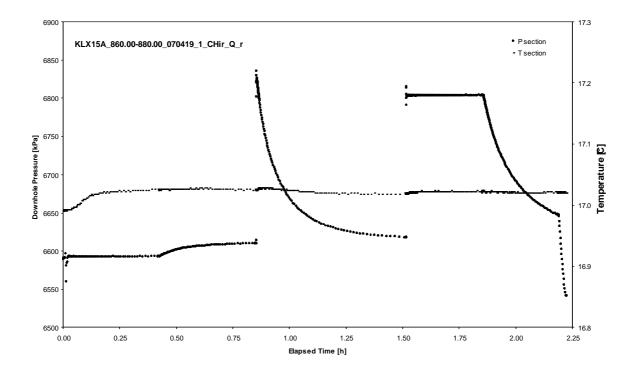
CHIR phase; HORNER match

Borehole: KLX15A Page 2-48/1

Test: 860.00 – 880.00 m


# **APPENDIX 2-48**

Test 860.00 – 880.00 m


Page 2-48/2

Borehole: KLX15A

Test: 860.00 – 880.00 m

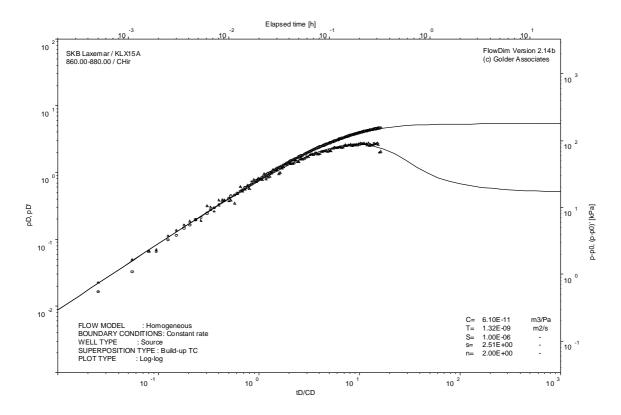


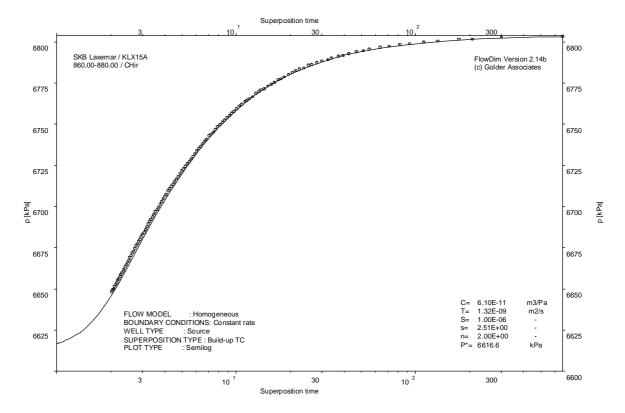
Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-48/3


Test: 860.00 – 880.00 m




Page 2-48/4

Borehole: KLX15A

Test:  $860.00 - 880.00 \,\mathrm{m}$ 

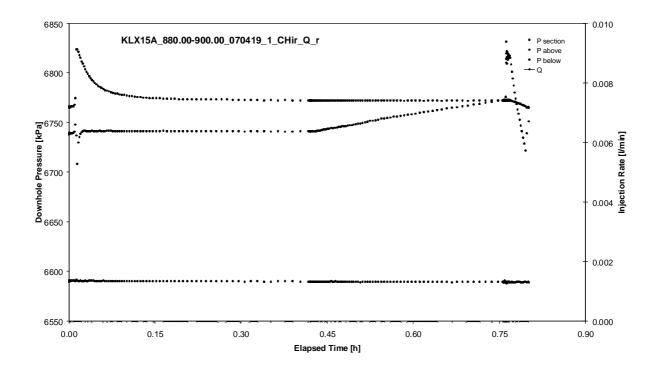




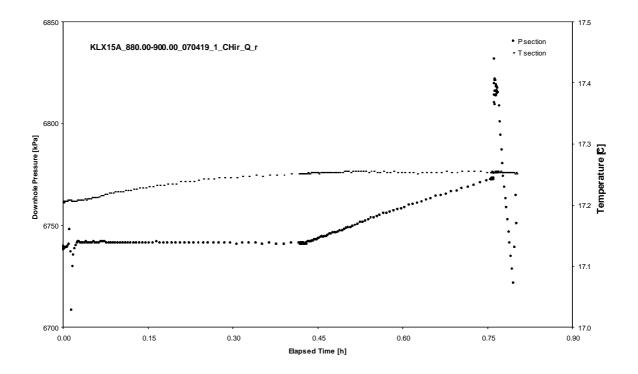
CHIR phase; HORNER match

Borehole: KLX15A Page 2-49/1

Test: 880.00 – 900.00 m


# **APPENDIX 2-49**

Test 880.00 – 900.00 m


Page 2-49/2

Borehole: KLX15A

Test: 880.00 – 900.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 880.00 – 9 Page 2-49/3

880.00 – 900.00 m

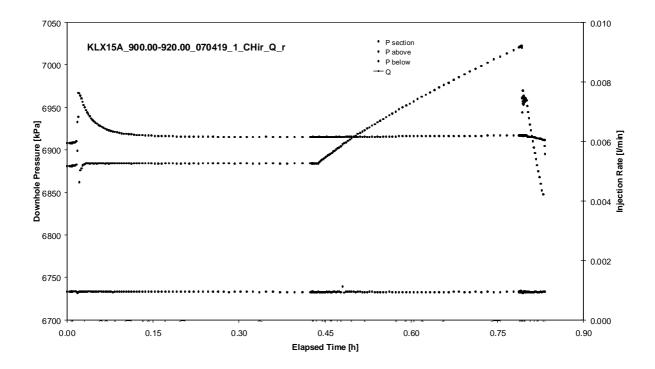
Not analysed

| Borehole:<br>Test: | KLX15A<br>880.00 – 900.00 m |              | Page 2-49/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

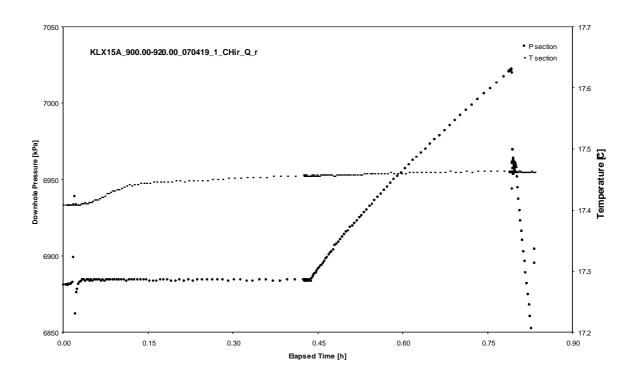
CHIR phase; HORNER match

Borehole: KLX15A Page 2-50/1

Test: 900.00 – 920.00 m


# **APPENDIX 2-50**

Test 900.00 – 920.00 m


Page 2-50/2

Borehole: KLX15A

Test: 900.00 – 920.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 900.00 – 9 Page 2-50/3

900.00 – 920.00 m

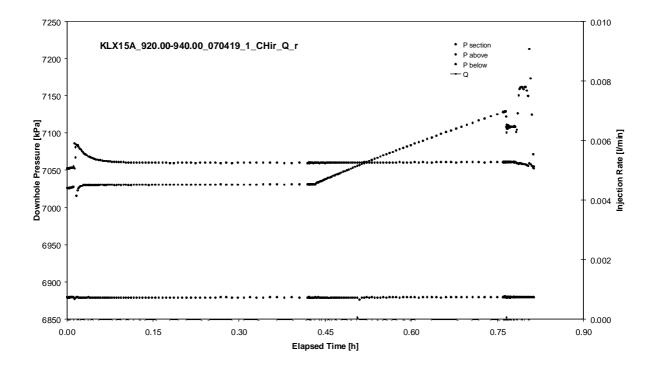
Not analysed

| Borehole:<br>Test: | KLX15A<br>900.00 – 920.00 m |              | Page 2-50/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

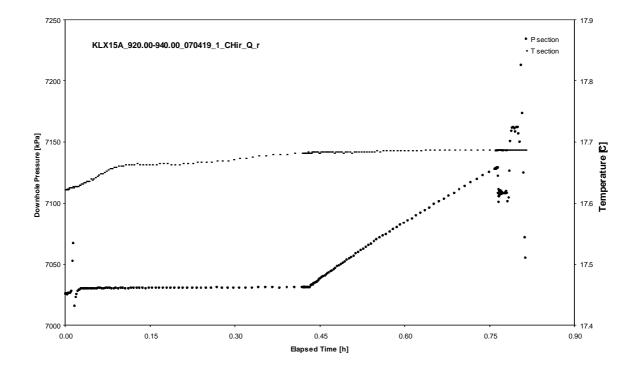
CHIR phase; HORNER match

Borehole: KLX15A Page 2-51/1

Test: 920.00 – 940.00 m


# **APPENDIX 2-51**

Test 920.00 – 940.00 m


Page 2-51/2

Borehole: KLX15A

Test: 920.00 – 940.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 920.00 – 9 Page 2-51/3

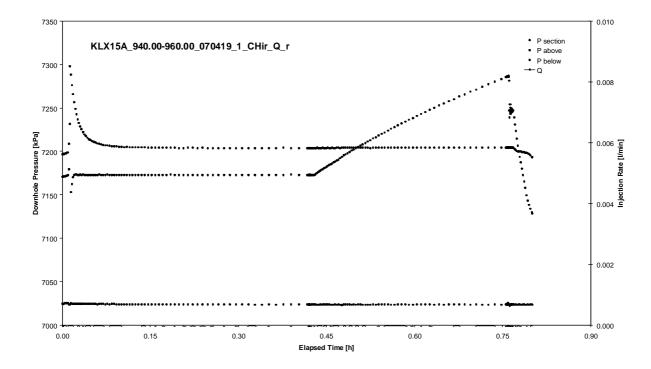
920.00 – 940.00 m

Not analysed

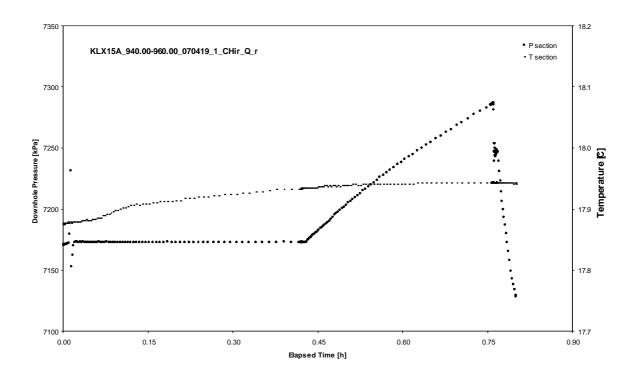
| Borehole: 1 Test: | KLX15A<br>920.00 – 940.00 m |              | Page 2-51/4 |
|-------------------|-----------------------------|--------------|-------------|
|                   |                             |              |             |
|                   |                             |              |             |
|                   |                             | Not analysed |             |
|                   |                             |              |             |
|                   |                             |              |             |
| CHIR phase        | e; log-log match            |              |             |
|                   |                             |              |             |
|                   |                             | Not analysed |             |
|                   |                             |              |             |
|                   |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-52/1


Test: 940.00 – 960.00 m

# **APPENDIX 2-52**


Test 940.00 – 960.00 m

Borehole: KLX15A Page 2-52/2

Test: 940.00 – 960.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 940.00 – 9 Page 2-52/3

940.00 – 960.00 m

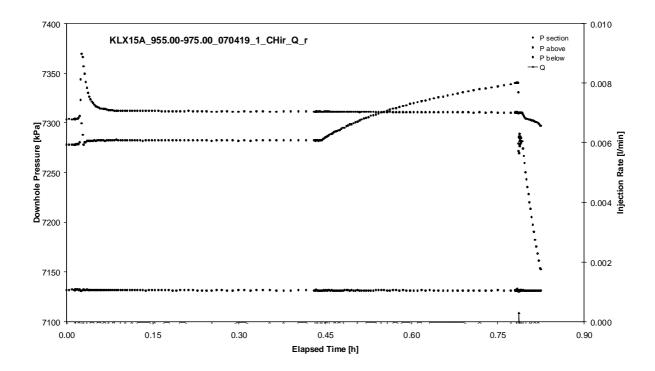
Not analysed

| Borehole:<br>Test: | KLX15A<br>940.00 – 960.00 m |              | Page 2-52/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

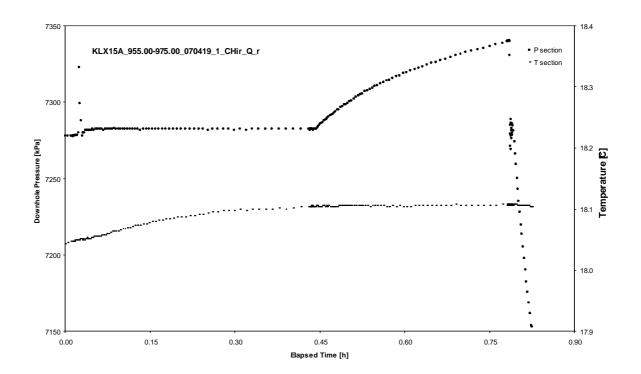
CHIR phase; HORNER match

Borehole: KLX15A Page 2-53/1

Test: 955.00 – 975.00 m


#### **APPENDIX 2-53**

Test 955.00 – 975.00 m


Page 2-53/2

Borehole: KLX15A

Test: 955.00 – 975.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 955.00 – 9 Page 2-53/3

955.00 – 975.00 m

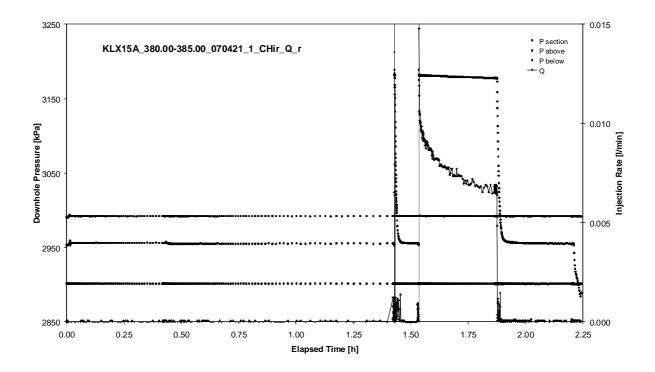
Not analysed

| Borehole: KLX15A<br>Test: 955.00 – 975.00 m |              | Page 2-53/4 |
|---------------------------------------------|--------------|-------------|
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
| CHIR phase; log-log match                   |              |             |
| Criff phase, log-log match                  |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-54/1

Test: 380.00 – 385.00 m


#### **APPENDIX 2-54**

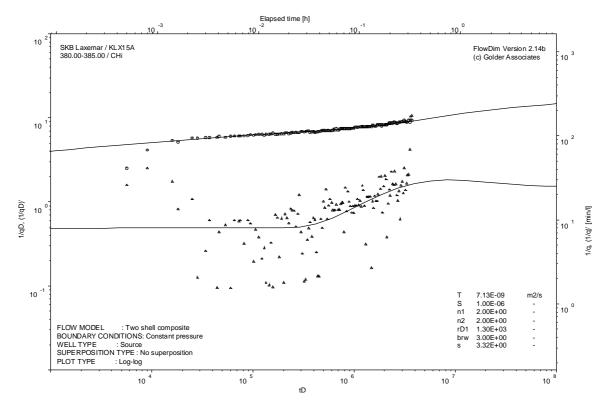
Test 380.00 – 385.00 m

Page 2-54/2

Borehole: KLX15A

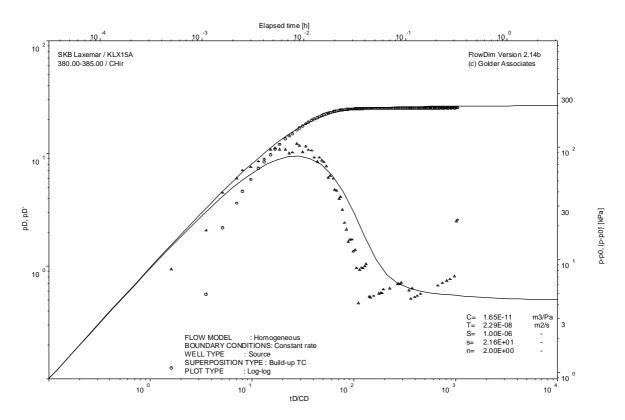
Test: 380.00 - 385.00 m



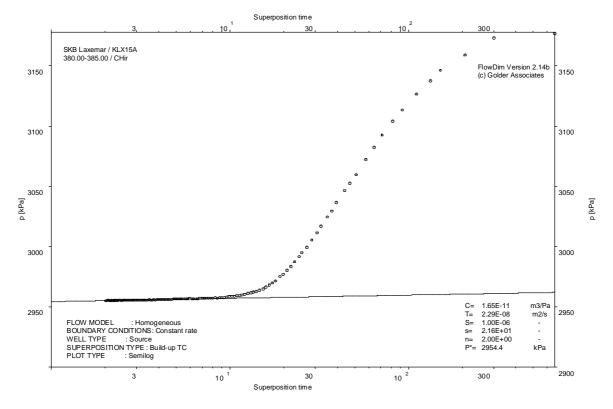

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-54/3

Test: 380.00 – 385.00 m




Borehole: KLX15A Page 2-54/4

Test:  $380.00 - 385.00 \,\mathrm{m}$ 



CHIR phase; log-log match

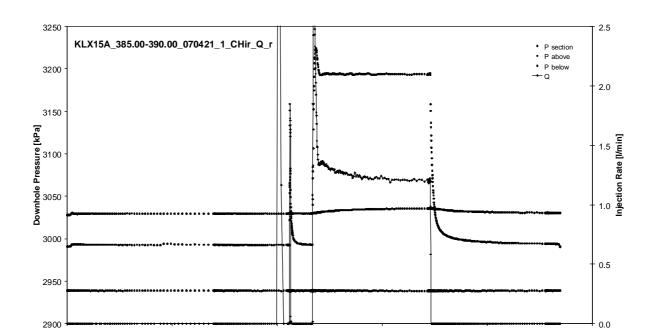


CHIR phase; HORNER match

Borehole: KLX15A Page 2-55/1

Test: 385.00 – 390.00 m

#### **APPENDIX 2-55**


Test 385.00 – 390.00 m

Page 2-55/2

Test: 385.00 – 390.00 m

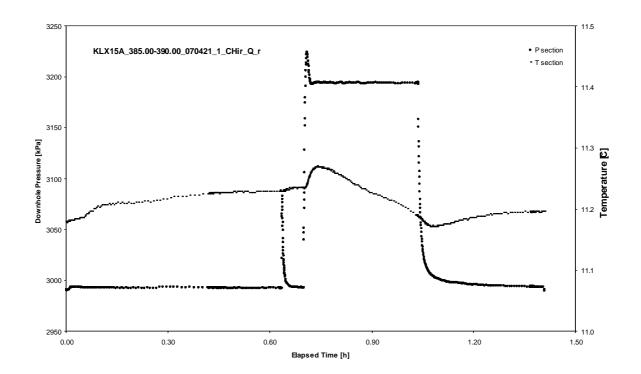
Borehole: KLX15A

0.00



Elapsed Time [h]

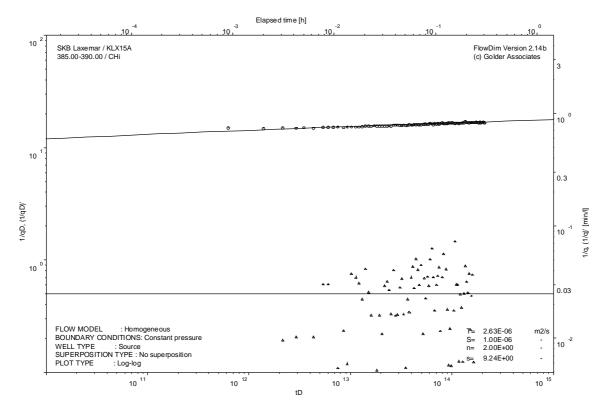
0.90


1.20

1.50

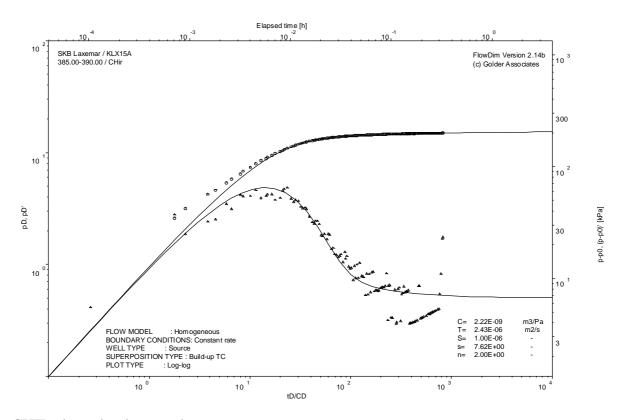
0.60

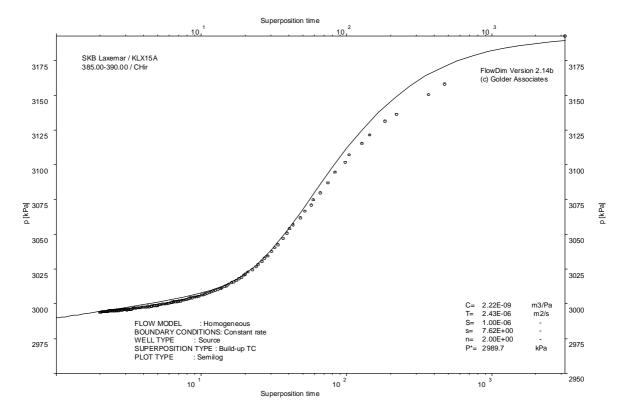
Pressure and flow rate vs. time; cartesian plot


0.30



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-55/3


Test: 385.00 – 390.00 m



Borehole: KLX15A Page 2-55/4

Test: 385.00 - 390.00 m

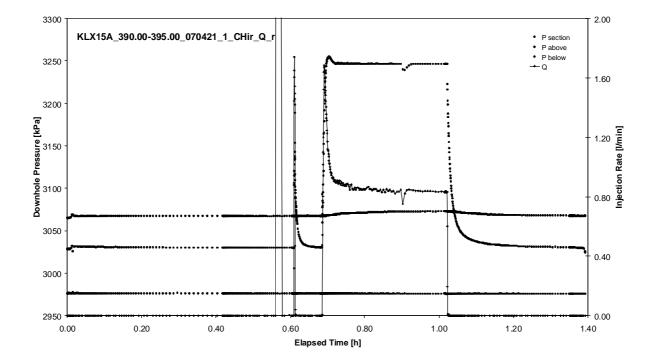




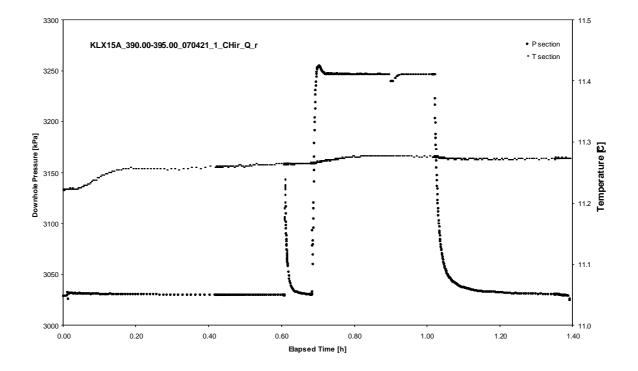
CHIR phase; HORNER match

Borehole: KLX15A Page 2-56/1

Test:  $390.00 - 395.00 \,\mathrm{m}$ 


# **APPENDIX 2-56**

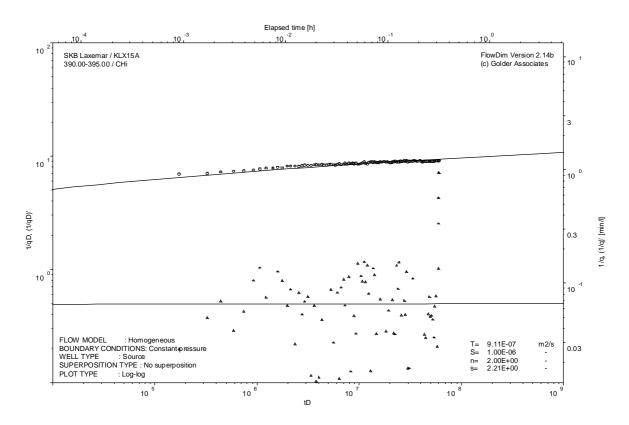
Test 390.00 – 395.00 m


Page 2-56/2

Test: 390.00 – 395.00 m

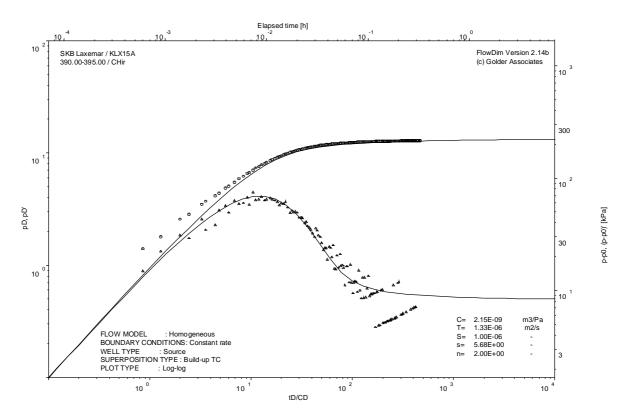
Borehole: KLX15A



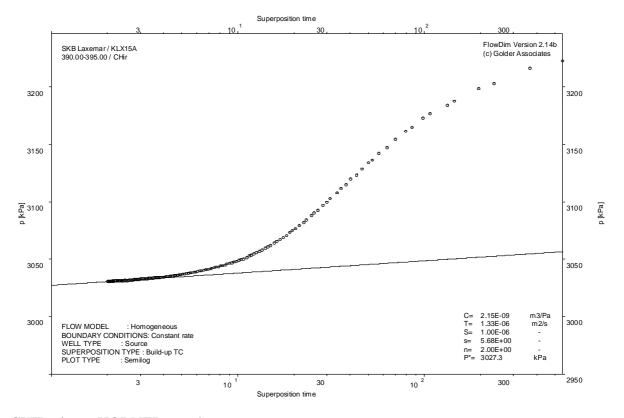

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-56/3

Test: 390.00 – 395.00 m




Borehole: KLX15A Page 2-56/4

Test:  $390.00 - 395.00 \,\mathrm{m}$ 



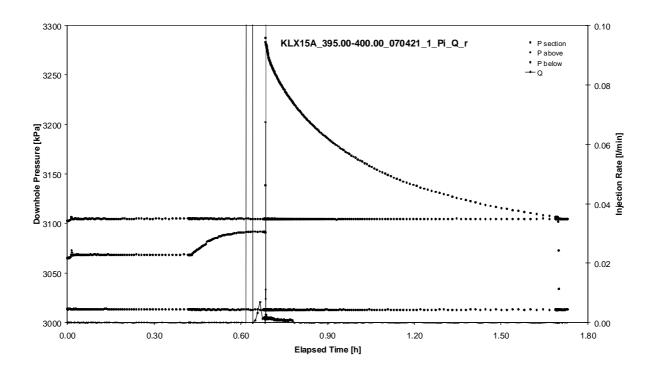
CHIR phase; log-log match



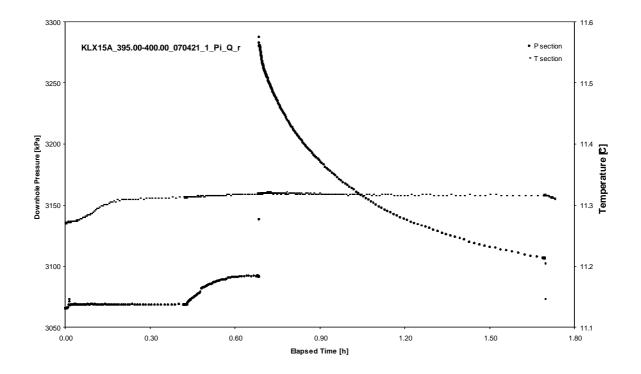
CHIR phase; HORNER match

Borehole: KLX15A Page 2-57/1

Test: 395.00 - 400.00 m


# **APPENDIX 2-57**

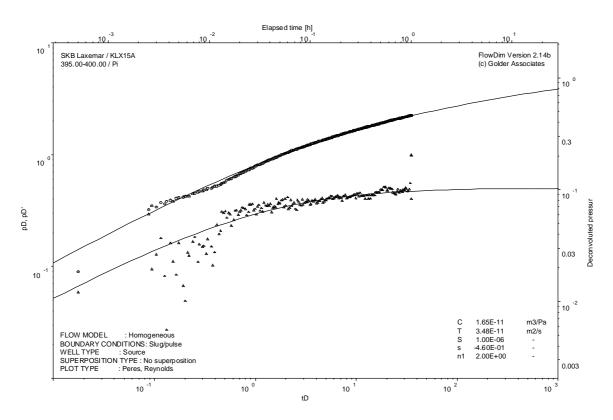
Test 395.00 – 400.00 m


Page 2-57/2

Borehole: KLX15A

Test: 395.00 - 400.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-57/3

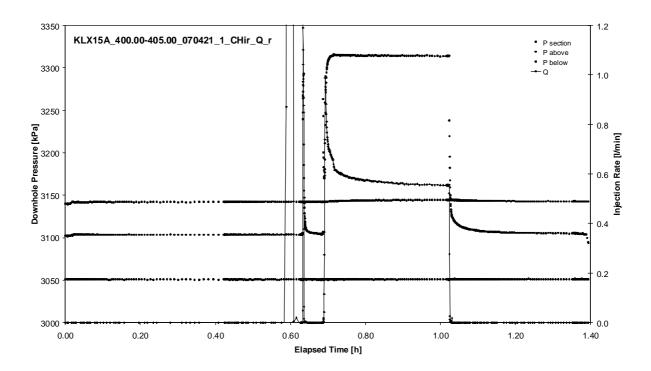
Test: 395.00 – 400.00 m



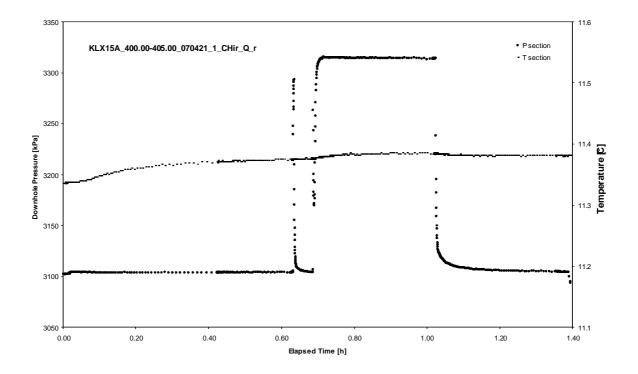
Pulse injection; deconvolution match

Borehole: KLX15A Page 2-58/1

Test: 400.00 - 405.00 m


# **APPENDIX 2-58**

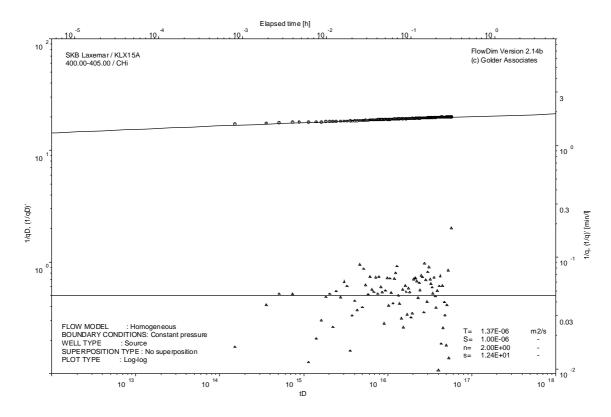
Test 400.00 – 405.00 m


Page 2-58/2

Borehole: KLX15A

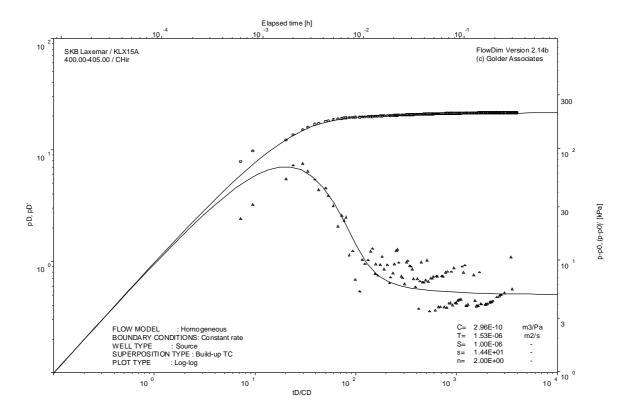
Test: 400.00 - 405.00 m

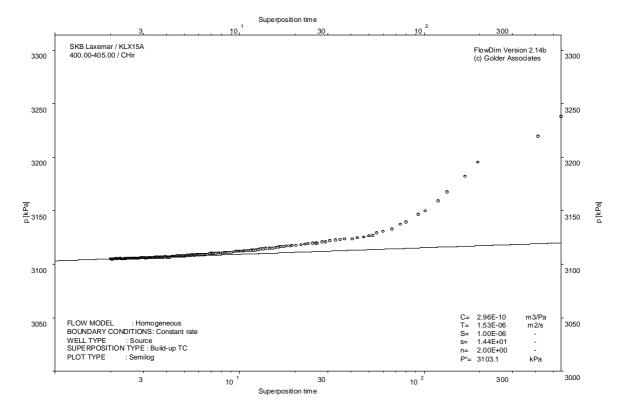



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-58/3


Test: 400.00 – 405.00 m



Borehole: KLX15A Page 2-58/4

Test:  $400.00 - 405.00 \,\mathrm{m}$ 

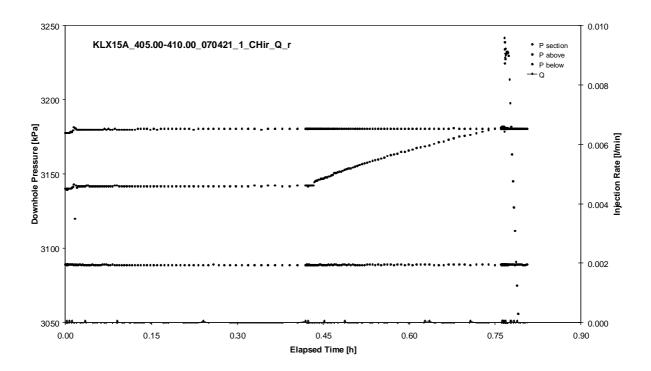




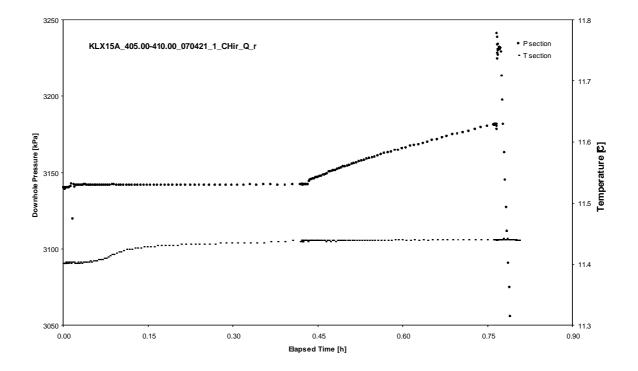
CHIR phase; HORNER match

Borehole: KLX15A Page 2-59/1

Test: 405.00 - 410.00 m


# **APPENDIX 2-59**

Test 405.00 – 410.00 m


Page 2-59/2

Borehole: KLX15A

Test: 405.00 - 410.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

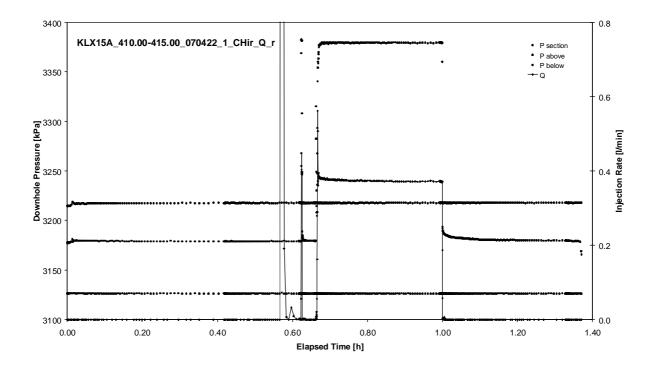
Borehole: KLX15A Test: 405.00 – 4 Page 2-59/3

405.00 – 410.00 m

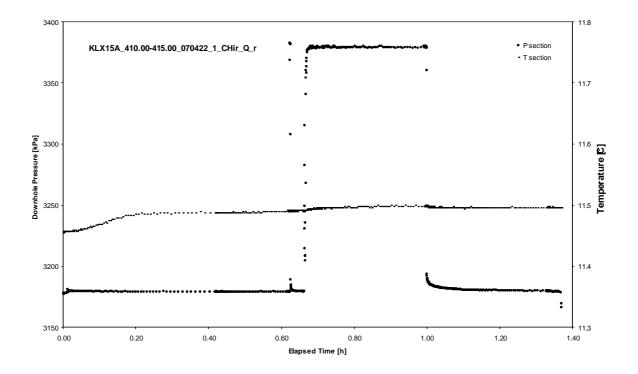
Not analysed

| Borehole:<br>Test: | KLX15A<br>405.00 – 410.00 m |              | Page 2-59/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match


Borehole: KLX15A Page 2-60/1

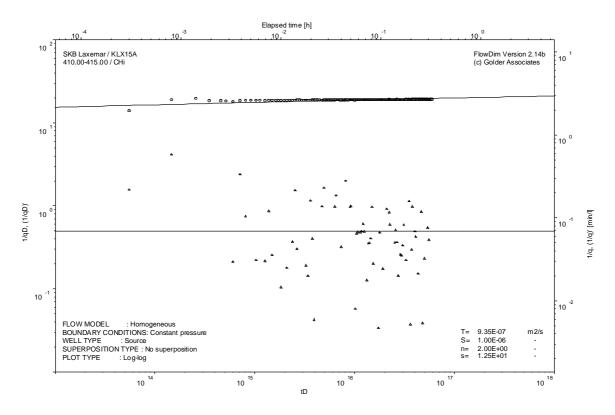
Test: 410.00 – 415.00 m


# **APPENDIX 2-60**

Test 410.00 – 415.00 m

Test: 410.00 – 415.00 m



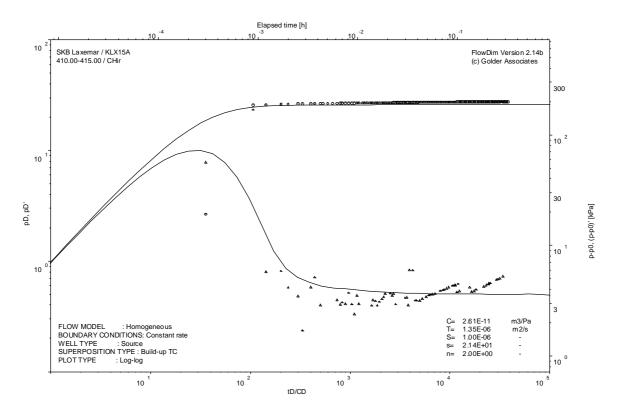

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-60/3

Test: 410.00 – 415.00 m




CHI phase; log-log match


Page 2-60/4

Borehole: KLX15A

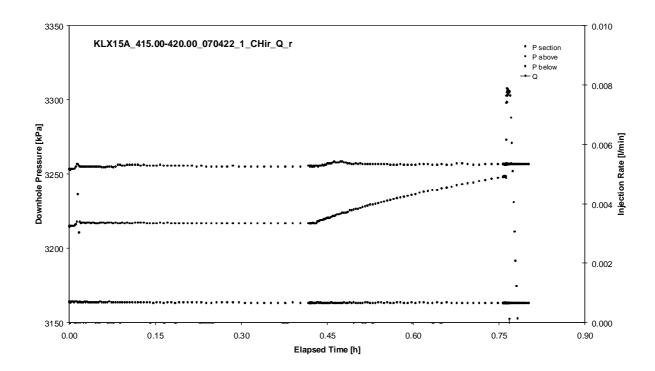
Test: 410.00 - 415.00 m



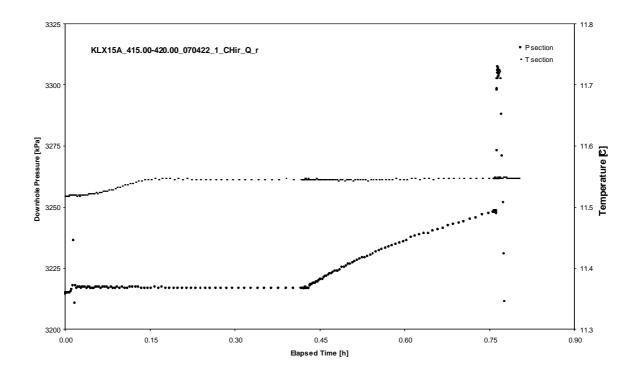
#### CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX15A Page 2-61/1

Test: 415.00 – 420.00 m


# **APPENDIX 2-61**

Test 415.00 – 420.00 m

Test: 415.00 - 420.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 415.00 – 420.00 m Page 2-61/3

Not analysed

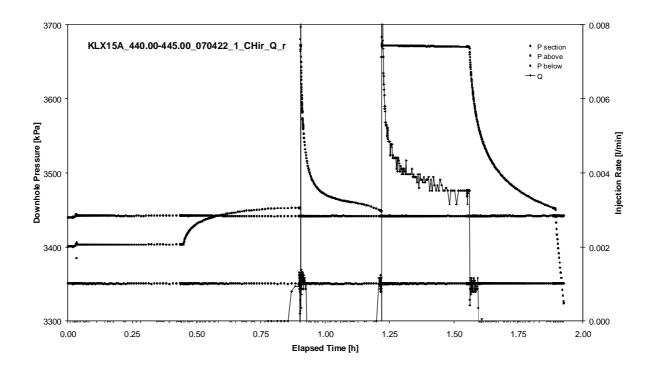
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>415.00 – 420.00 m |              | Page 2-61/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

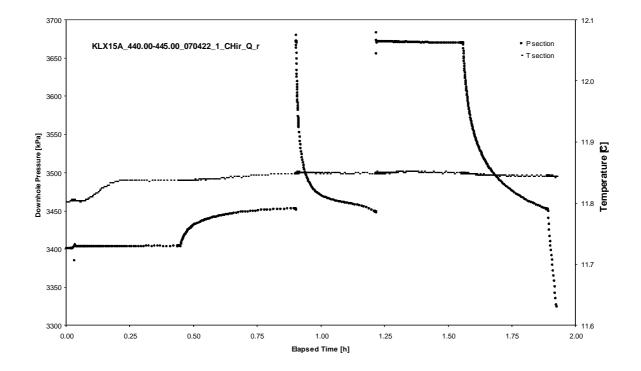
CHIR phase; HORNER match

Borehole: KLX15A Page 2-62/1

Test: 440.00 – 445.00 m


# **APPENDIX 2-62**

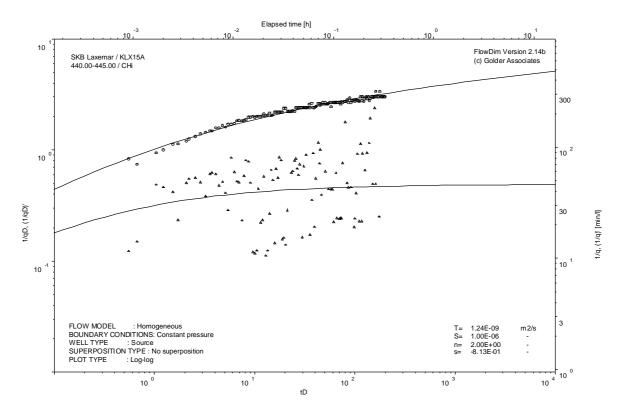
Test 440.00 – 445.00 m


Page 2-62/2

Borehole: KLX15A

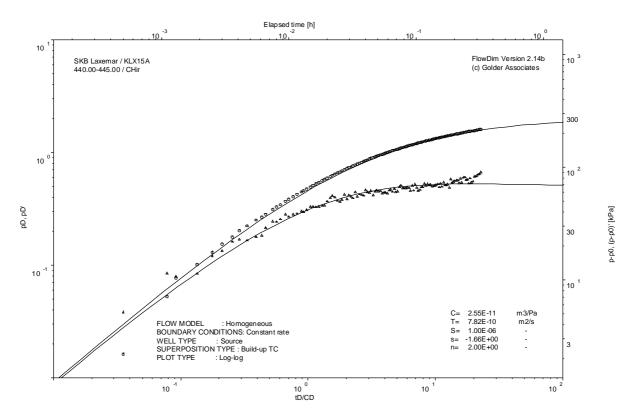
Test: 440.00 – 445.00 m



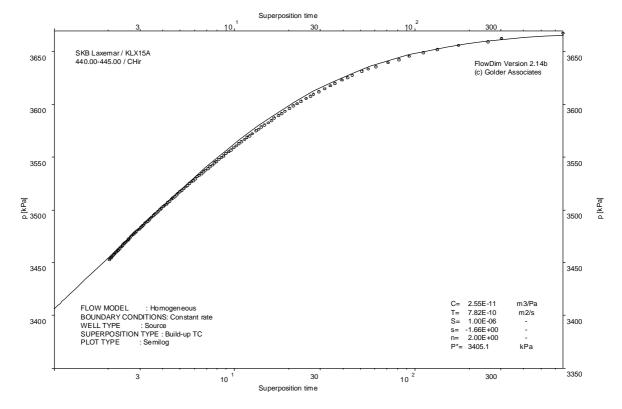

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-62/3

Test: 440.00 – 445.00 m




CHI phase; log-log match

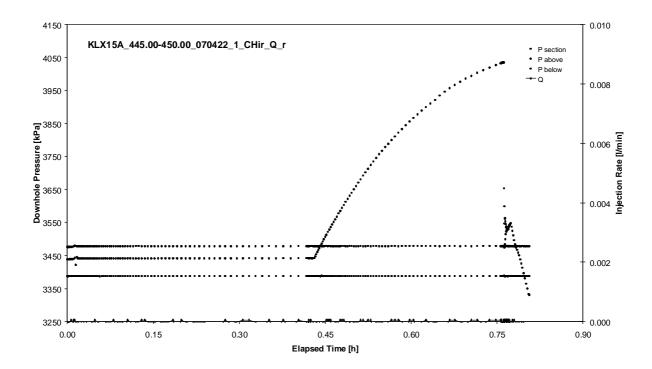
Test: 440.00 – 445.00 m



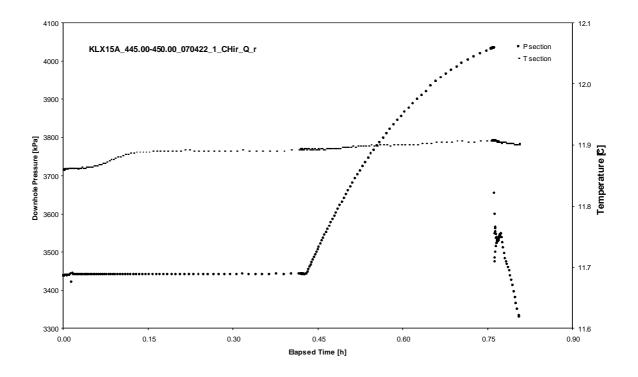
#### CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX15A Page 2-63/1

Test: 445.00 – 450.00 m


# **APPENDIX 2-63**

Test 445.00 – 450.00 m

Test: 445.00 – 450.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

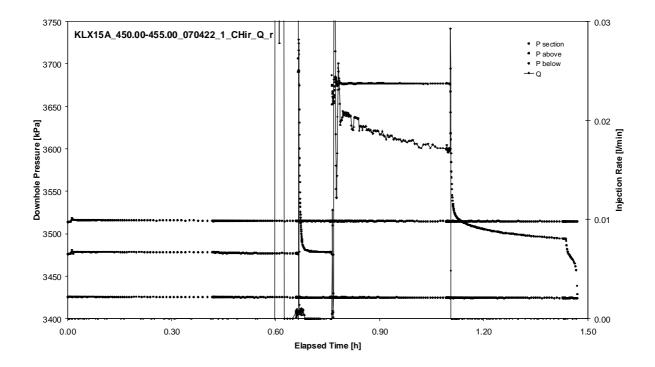
Borehole: KLX15A Test: 445.00 – 450.00 m Page 2-63/3

Not analysed

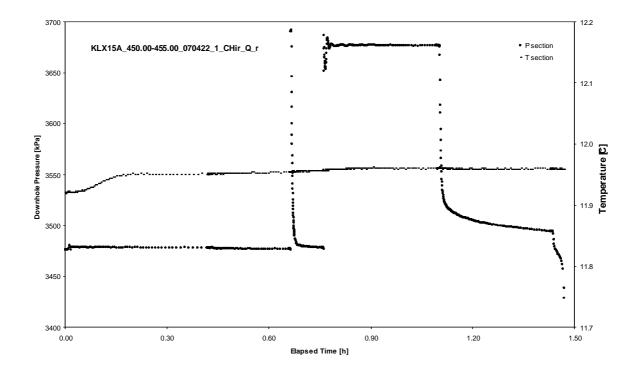
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>445.00 – 450.00 m |              | Page 2-63/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match


Borehole: KLX15A Page 2-64/1

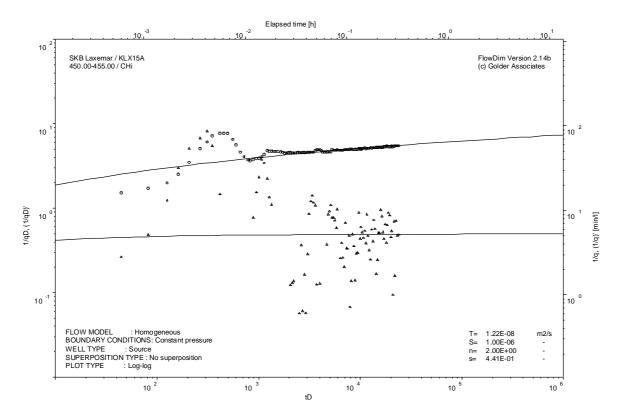
Test: 450.00 - 455.00 m


#### **APPENDIX 2-64**

Test 450.00 – 455.00 m

Test: 450.00 - 455.00 m

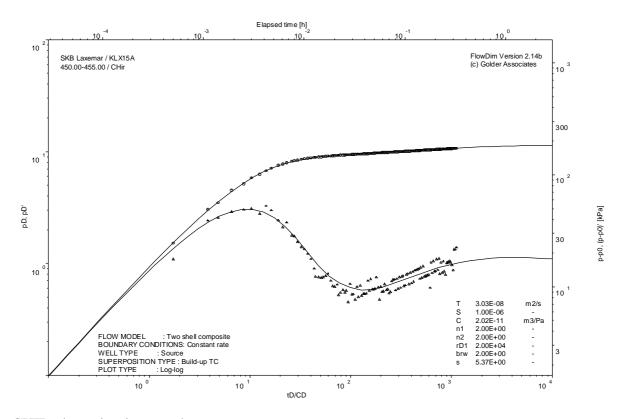



Pressure and flow rate vs. time; cartesian plot

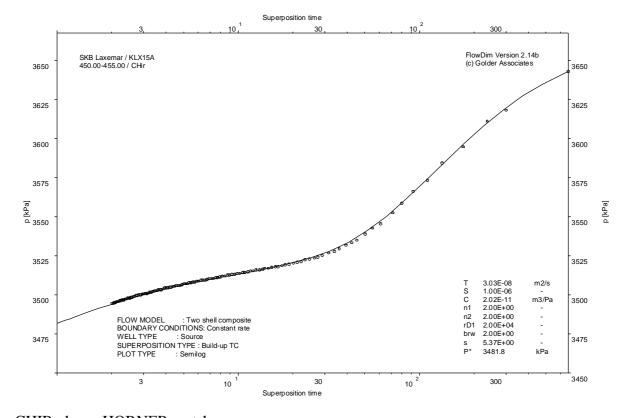


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-64/3


Test: 450.00 - 455.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-64/4

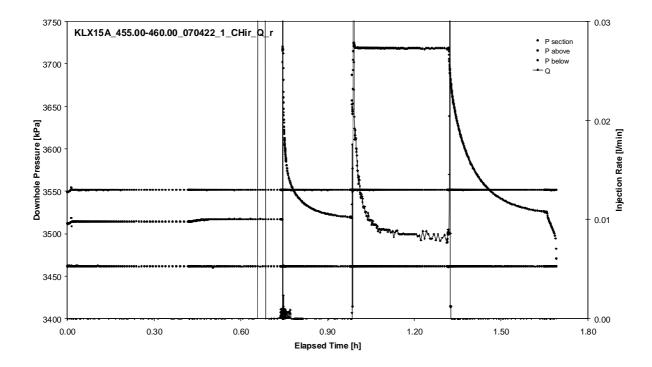
Test: 450.00 - 455.00 m



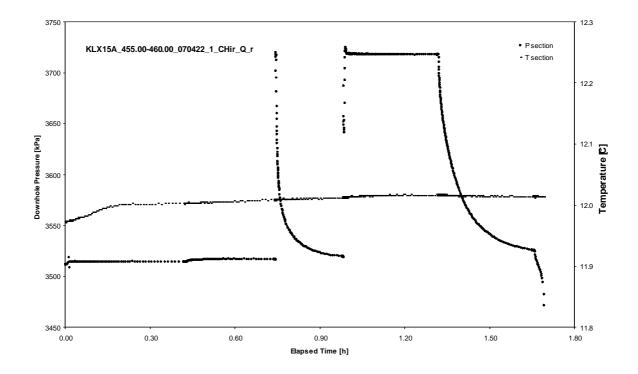
#### CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX15A Page 2-65/1

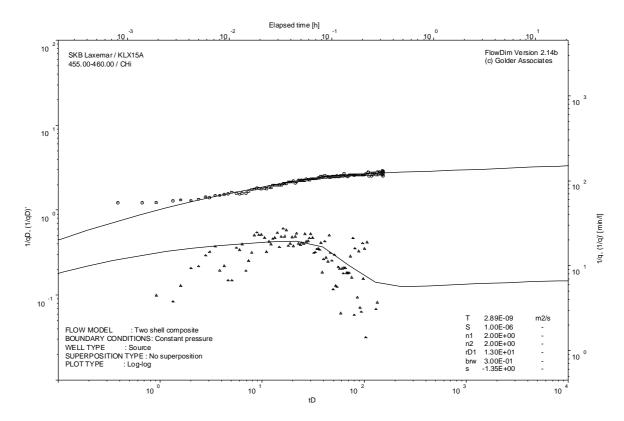
Test: 455.00 – 460.00 m


# **APPENDIX 2-65**

Test 455.00 – 460.00 m

Test: 455.00 - 460.00 m



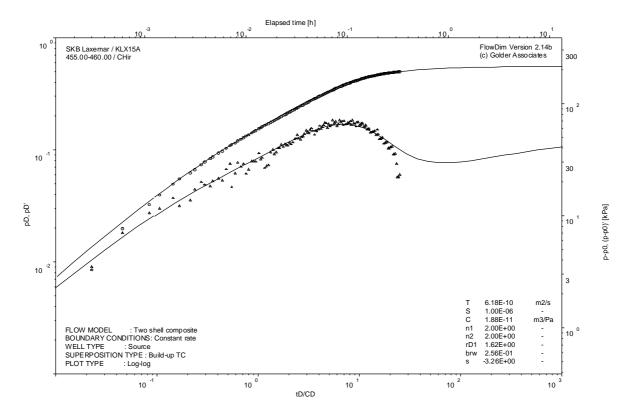

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-65/3

Test: 455.00 – 460.00 m




CHI phase; log-log match

Page 2-65/4

Borehole: KLX15A

Test: 455.00 – 460.00 m



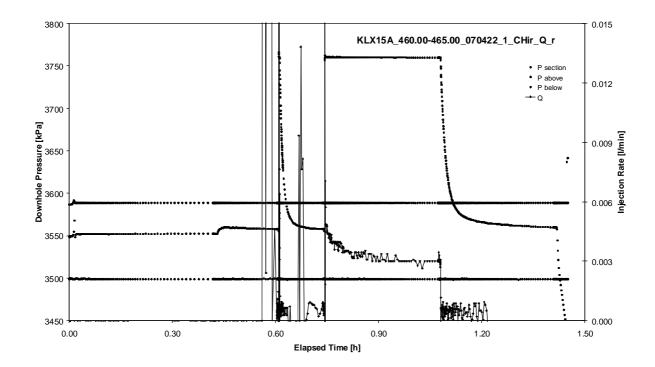
CHIR phase; log-log match

Not analysable

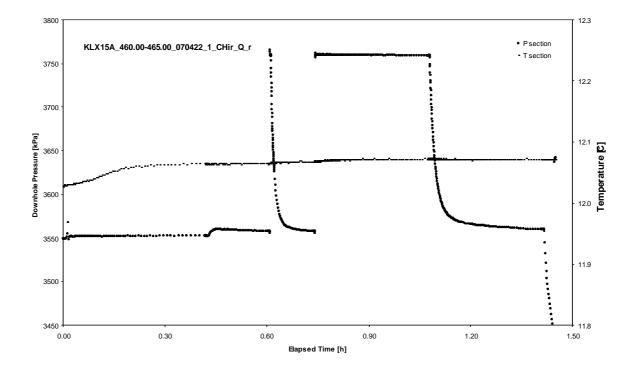
CHIR phase; HORNER match

Borehole: KLX15A Page 2-66/1

Test: 460.00 – 465.00 m


# **APPENDIX 2-66**

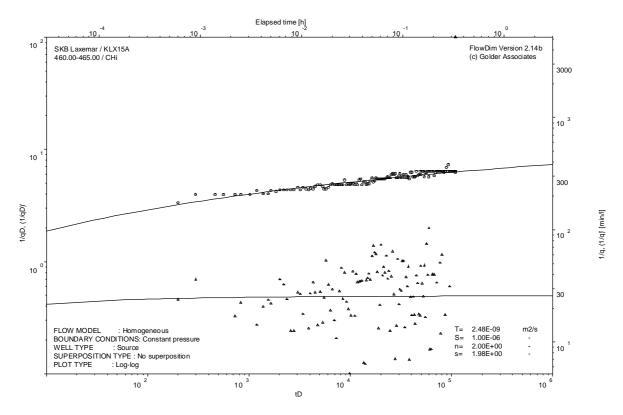
Test 460.00 – 465.00 m


Page 2-66/2

Borehole: KLX15A

Test: 460.00 – 465.00 m



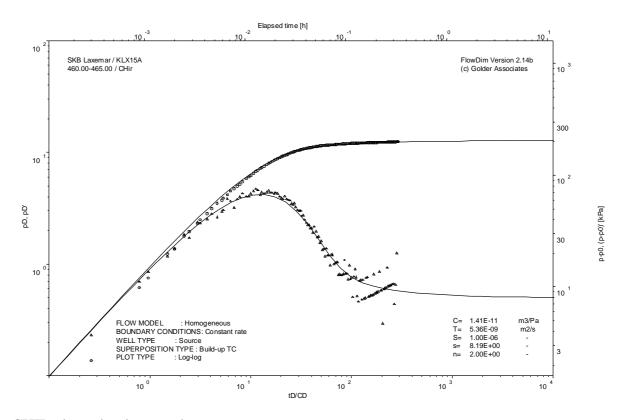

Pressure and flow rate vs. time; cartesian plot



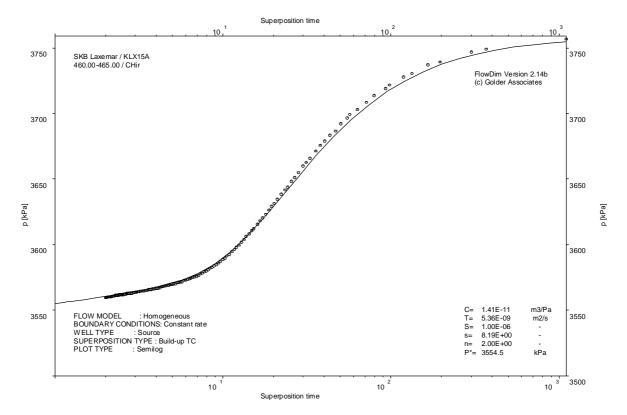
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-66/3

Test: 460.00 – 465.00 m




CHI phase; log-log match


Page 2-66/4

Borehole: KLX15A

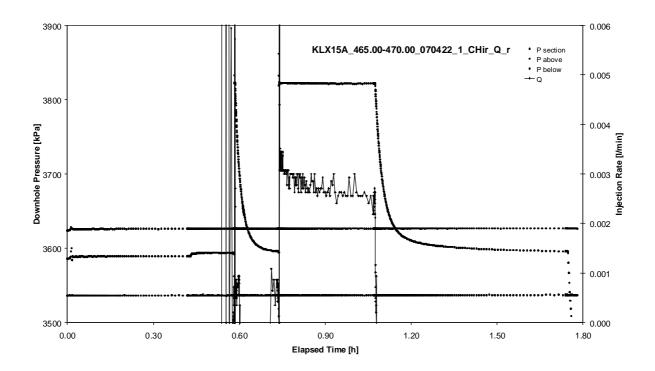
Test: 460.00 - 465.00 m



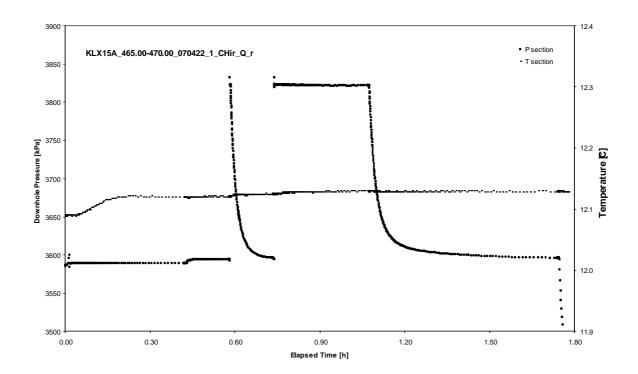
#### CHIR phase; log-log match



CHIR phase; HORNER match


Borehole: KLX15A Page 2-67/1

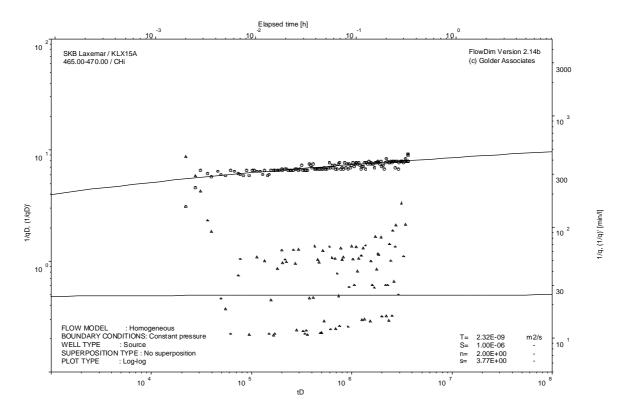
Test: 465.00 - 470.00 m


# **APPENDIX 2-67**

Test 465.00 – 470.00 m

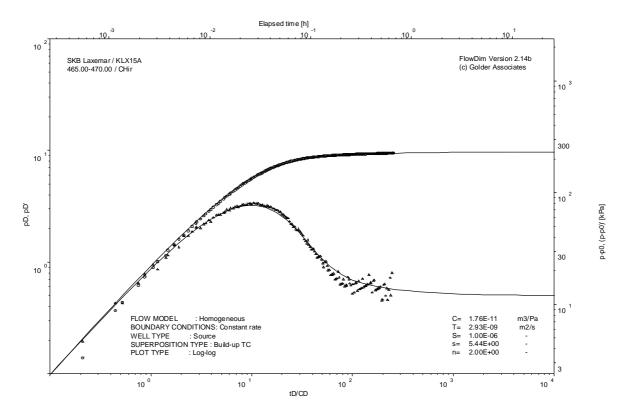
Test: 465.00 - 470.00 m



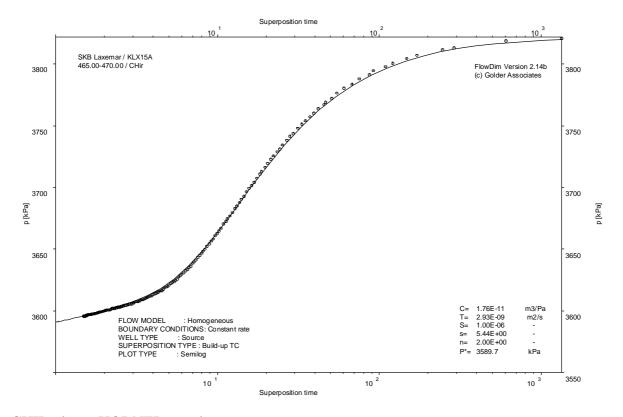

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX15A Page 2-67/3

Test: 465.00 – 470.00 m




CHI phase; log-log match

Test: 465.00 - 470.00 m



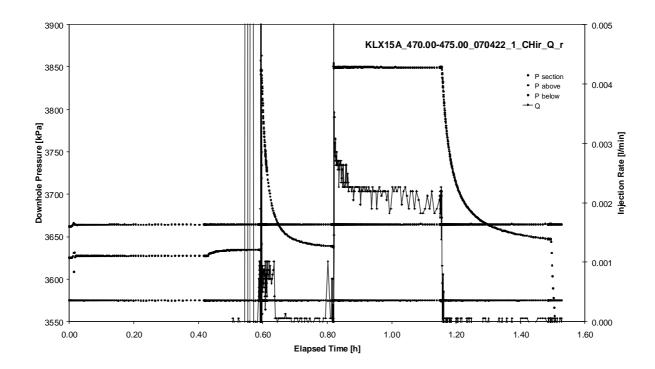
CHIR phase; log-log match



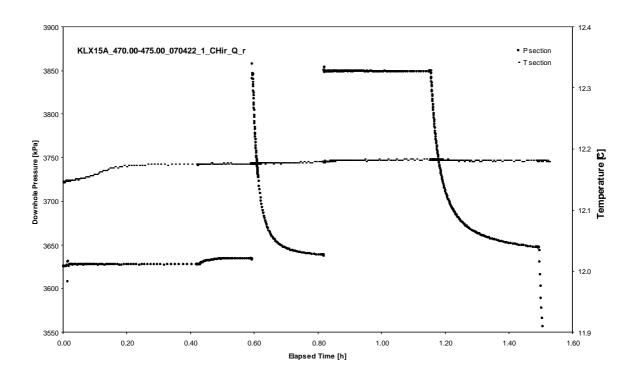
CHIR phase; HORNER match

Borehole: KLX15A Page 2-68/1

Test: 470.00 - 475.00 m


# **APPENDIX 2-68**

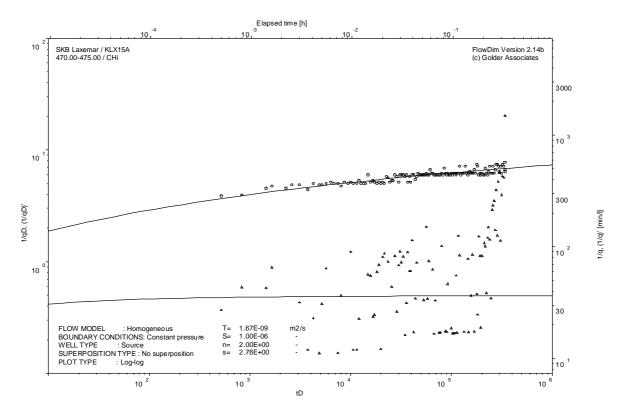
Test 470.00 – 475.00 m


Page 2-68/2

Borehole: KLX15A

Test: 470.00 - 475.00 m



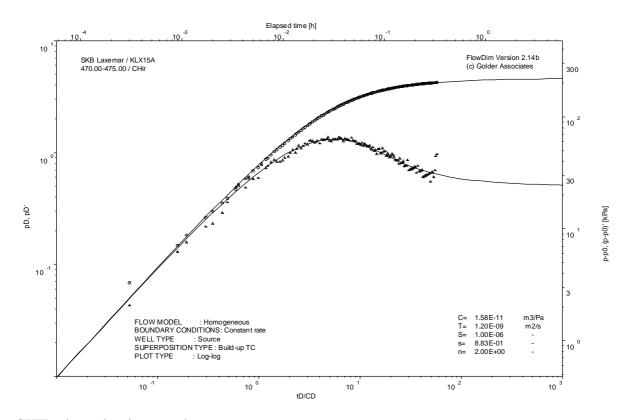

Pressure and flow rate vs. time; cartesian plot



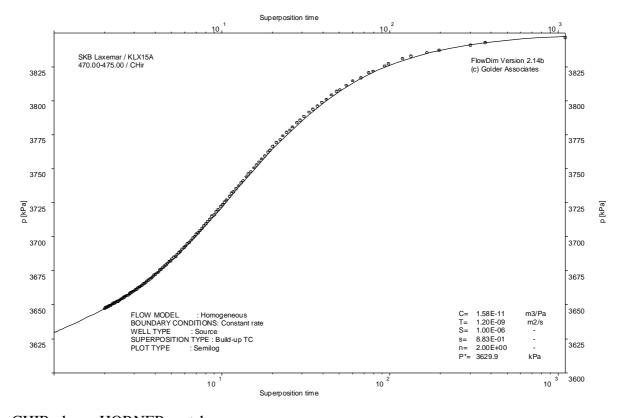
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-68/3

Test: 470.00 – 475.00 m




CHI phase; log-log match


Page 2-68/4

Borehole: KLX15A

Test: 470.00 - 475.00 m



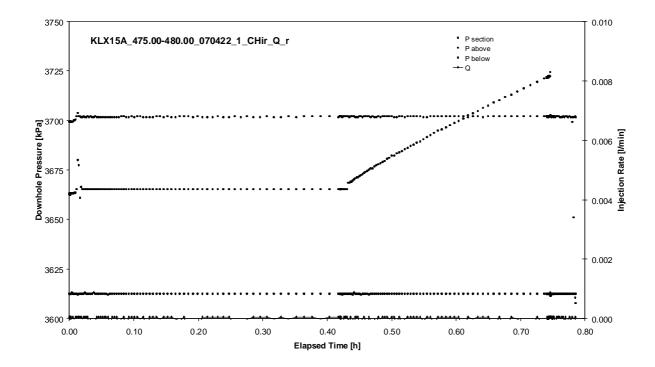
CHIR phase; log-log match



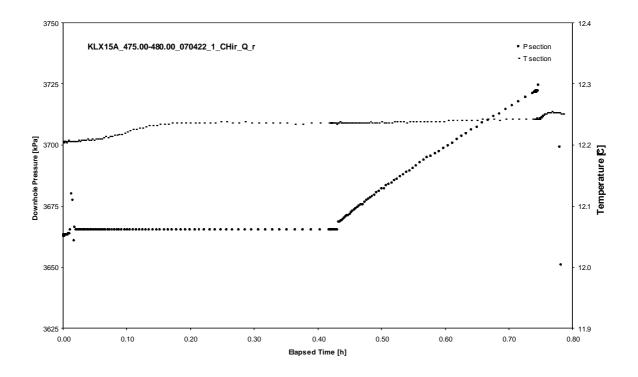
CHIR phase; HORNER match

Borehole: KLX15A Page 2-69/1

Test: 475.00 - 480.00 m


# **APPENDIX 2-69**

Test 475.00 – 480.00 m


Page 2-69/2

Borehole: KLX15A

Test: 475.00 - 480.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 475.00 – 480.00 m Page 2-69/3

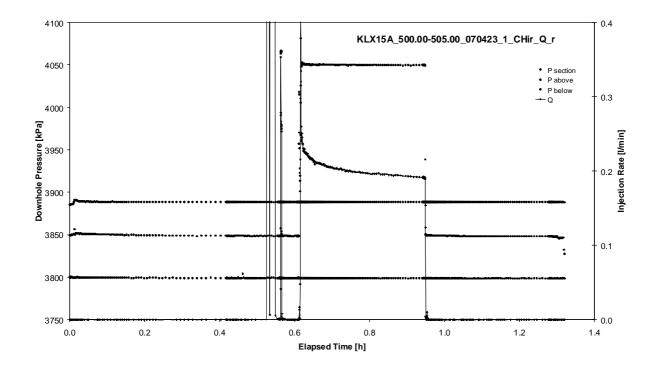
Not analysed

CHI phase; log-log match

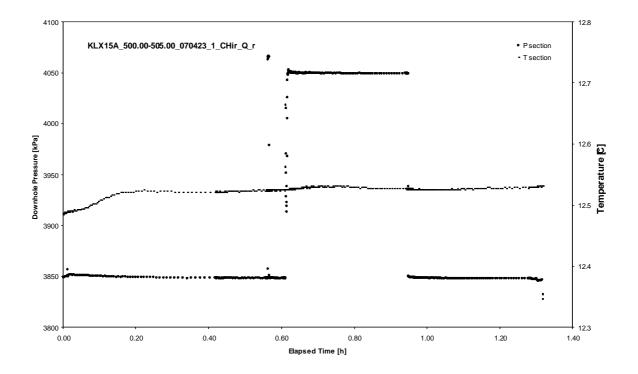
| Borehole:<br>Test: | KLX15A<br>475.00 – 480.00 m |              | Page 2-69/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-70/1


Test:  $500.00 - 505.00 \,\mathrm{m}$ 

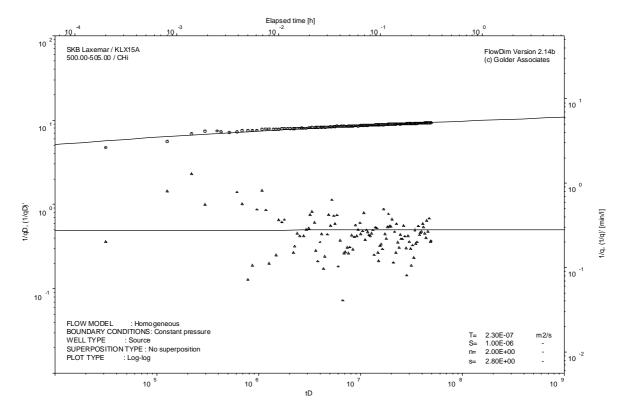
# **APPENDIX 2-70**


Test 500.00 – 505.00 m

Borehole: KLX15A

Test: 500.00 - 505.00 m

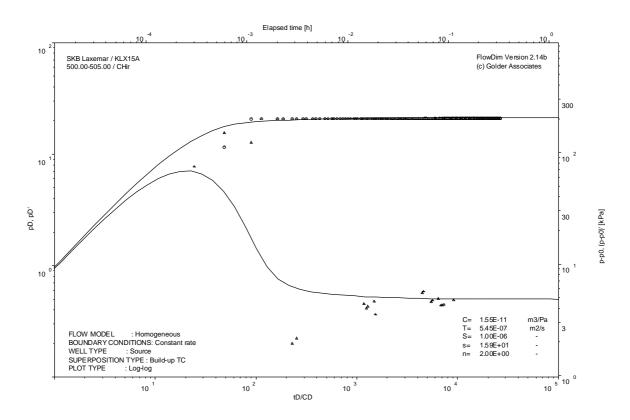



Pressure and flow rate vs. time; cartesian plot

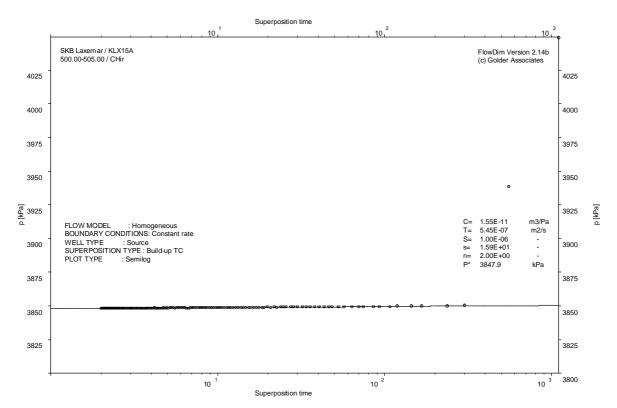


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-70/3


Test:  $500.00 - 505.00 \,\mathrm{m}$ 




CHI phase; log-log match

Borehole: KLX15A

Test:  $500.00 - 505.00 \,\mathrm{m}$ 

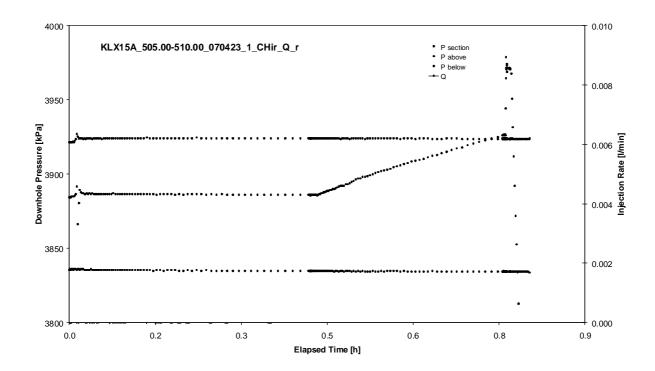


#### CHIR phase; log-log match

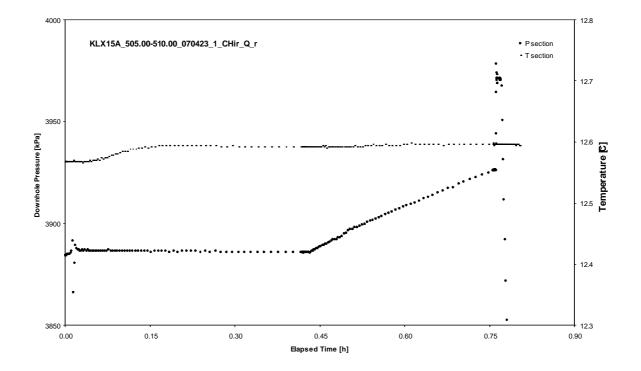


CHIR phase; HORNER match

Borehole: KLX15A Page 2-71/1


Test: 505.00 - 510.00 m

# **APPENDIX 2-71**


Test 505.00 – 510.00 m

Borehole: KLX15A

Test: 505.00 - 510.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 505.00 - 5 Page 2-71/3

505.00 – 510.00 m

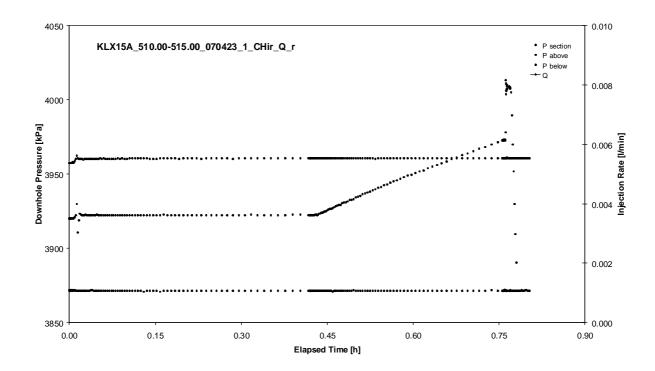
Not analysed

CHI phase; log-log match

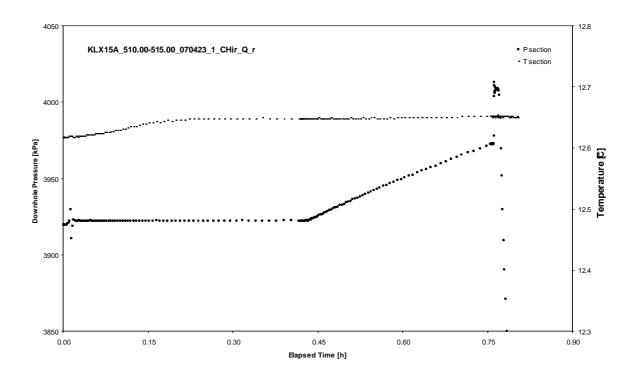
| Borehole:<br>Test: | KLX15A<br>505.00 – 510.00 m |              | Page 2-71/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-72/1


Test: 510.00 – 515.00 m

## **APPENDIX 2-72**


Test 510.00 – 515.00 m

Borehole: KLX15A

Test: 510.00 - 515.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-72/3

Test:  $510.00 - 515.00 \,\mathrm{m}$ 

Not analysed

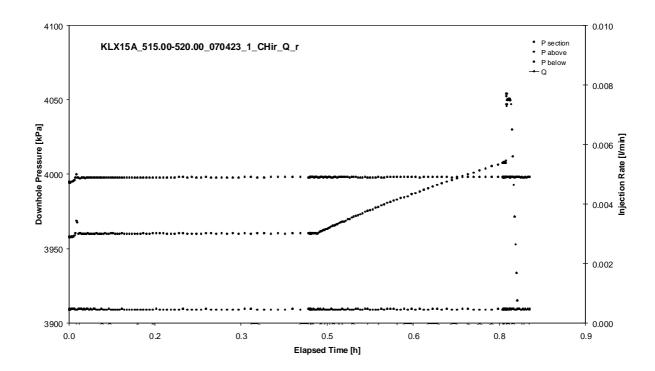
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>510.00 – 515.00 m |              | Page 2-72/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

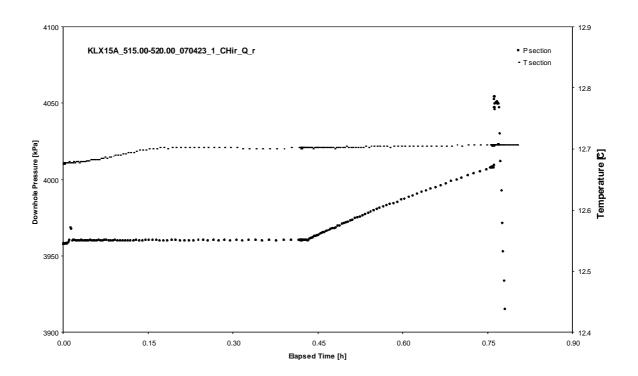
CHIR phase; HORNER match

Borehole: KLX15A Page 2-73/1

Test:  $515.00 - 520.00 \,\mathrm{m}$ 


## **APPENDIX 2-73**

Test 515.00 – 520.00 m


Page 2-73/2

Borehole: KLX15A

Test: 515.00 - 520.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-73/3

Test: 515.00 - 520.00 m

Not analysed

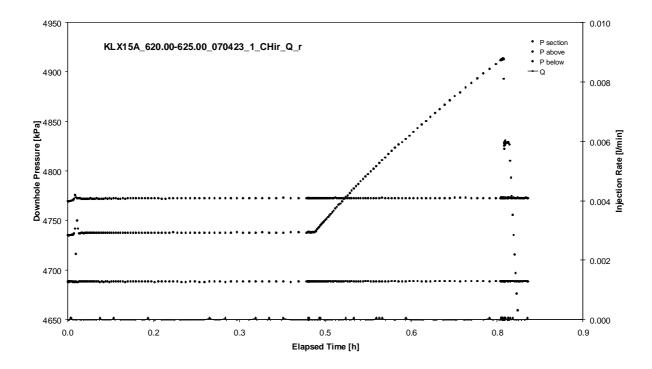
CHI phase; log-log match

| Borehole: 1<br>Test: | KLX15A<br>515.00 – 520.00 m |              | Page 2-73/4 |
|----------------------|-----------------------------|--------------|-------------|
|                      |                             |              |             |
|                      |                             |              |             |
|                      |                             | Not analysed |             |
|                      |                             |              |             |
|                      |                             |              |             |
| CHIR phase           | e; log-log match            |              |             |
|                      |                             |              |             |
|                      |                             | Not analysed |             |
|                      |                             |              |             |
|                      |                             |              |             |

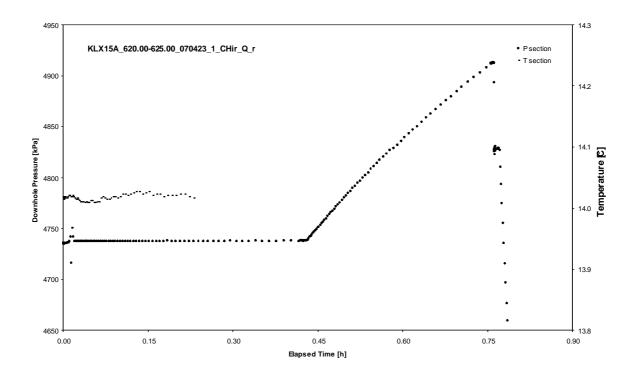
CHIR phase; HORNER match

Borehole: KLX15A Page 2-74/1

Test: 620.00 – 625.00 m


## **APPENDIX 2-74**

Test 620.00 – 625.00 m


Page 2-74/2

Borehole: KLX15A

Test: 620.00 – 625.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 620.00 - 6 Page 2-74/3

620.00 – 625.00 m

Not analysed

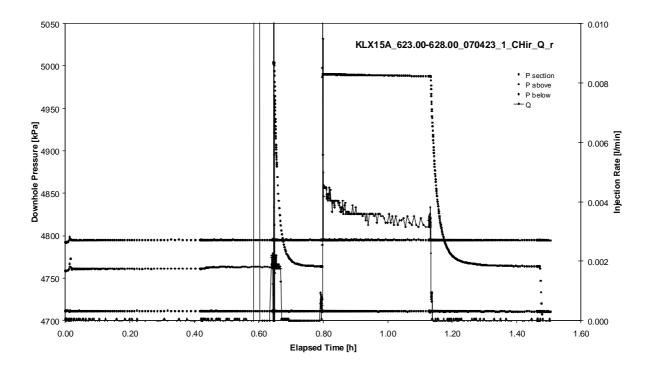
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>620.00 – 625.00 m |              | Page 2-74/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

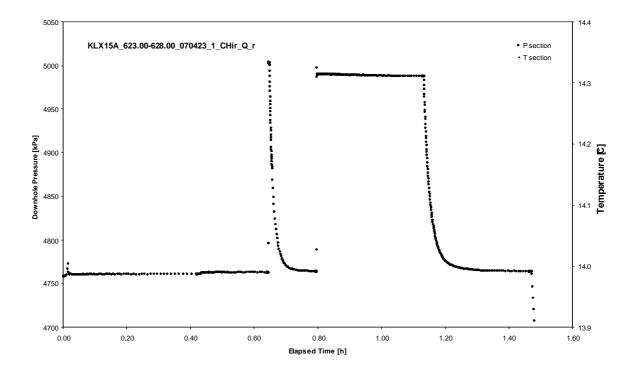
CHIR phase; HORNER match

Borehole: KLX15A Page 2-75/1

Test: 623.00 – 628.00 m


## **APPENDIX 2-75**

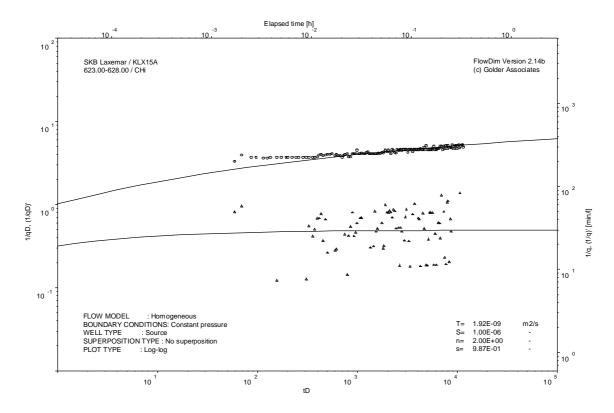
Test 623.00 – 628.00 m


Page 2-75/2

Borehole: KLX15A

Test: 623.00 – 628.00 m



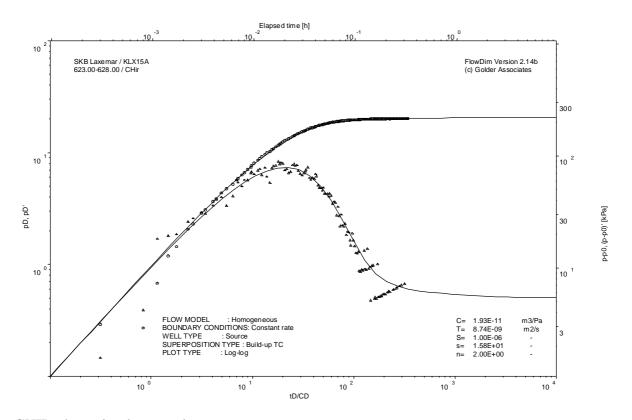

Pressure and flow rate vs. time; cartesian plot



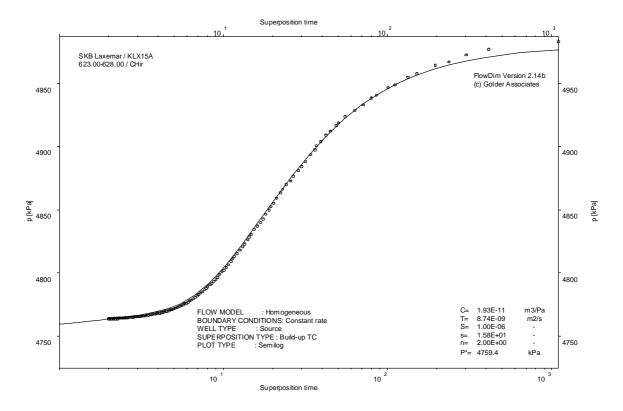
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-75/3

Test: 623.00 – 628.00 m




CHI phase; log-log match


Page 2-75/4

Borehole: KLX15A

Test: 623.00 – 628.00 m

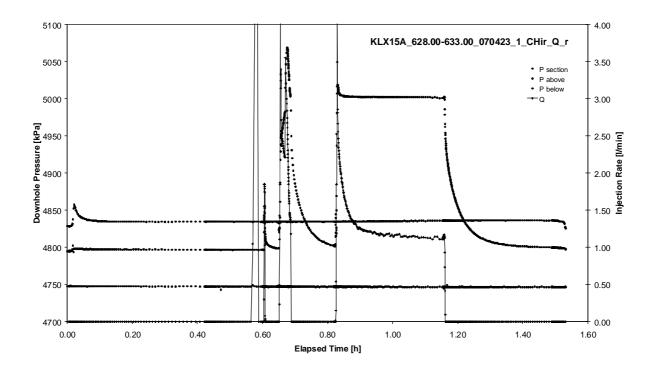


### CHIR phase; log-log match

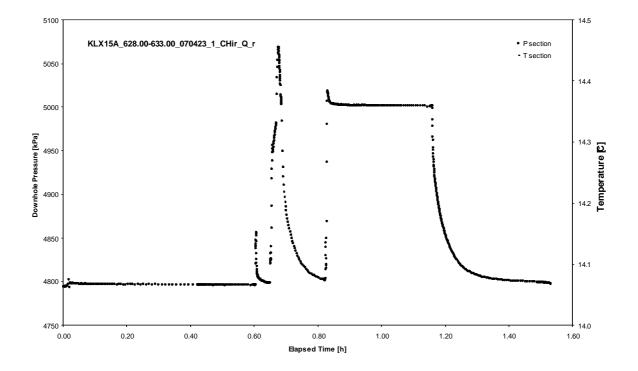


CHIR phase; HORNER match

Borehole: KLX15A Page 2-76/1


Test: 628.00 – 633.00 m

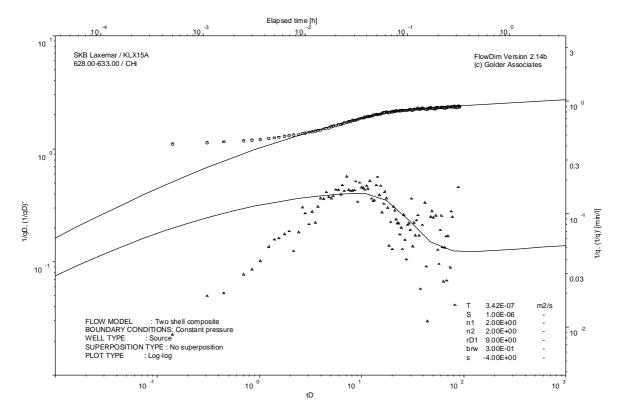
# **APPENDIX 2-76**


Test 628.00 - 633.00 m

Borehole: KLX15A

Test: 628.00 - 633.00 m



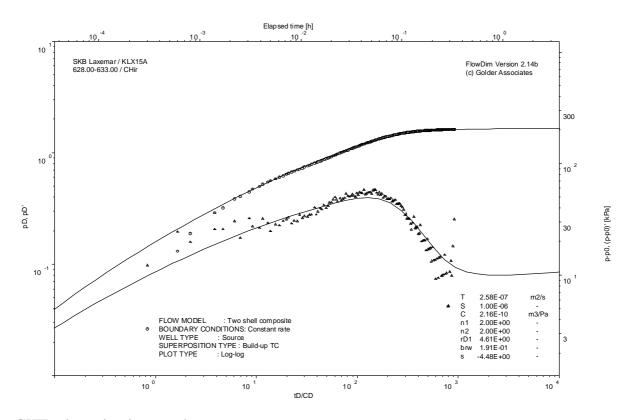

Pressure and flow rate vs. time; cartesian plot



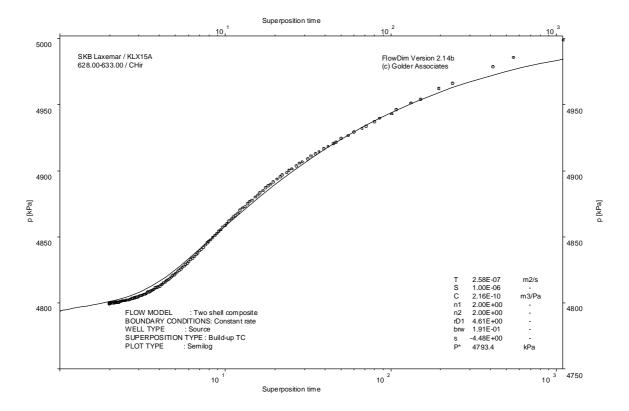
Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-76/3

Test: 628.00 – 633.00 m




CHI phase; log-log match


Page 2-76/4

Borehole: KLX15A

Test:  $628.00 - 633.00 \,\mathrm{m}$ 



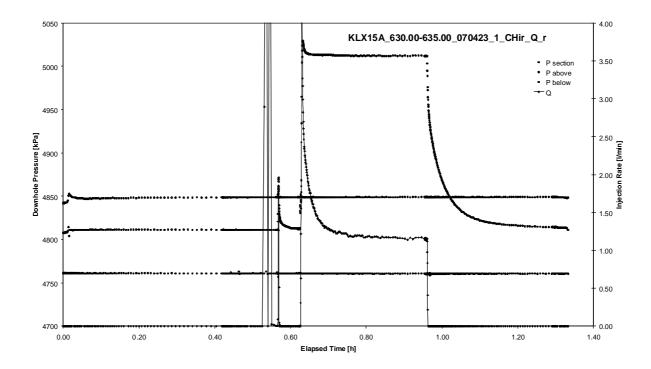
### CHIR phase; log-log match



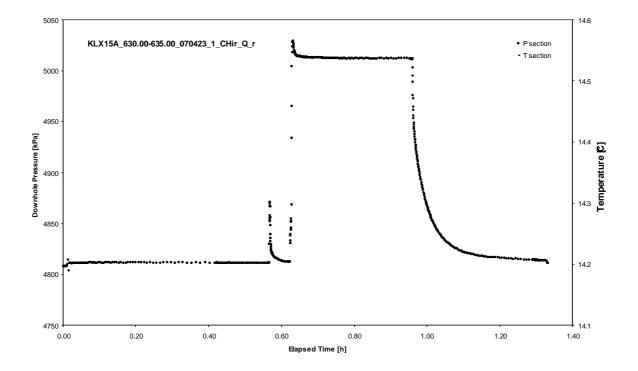
CHIR phase; HORNER match

Borehole: KLX15A Page 2-77/1

Test: 630.00 – 635.00 m


## **APPENDIX 2-77**

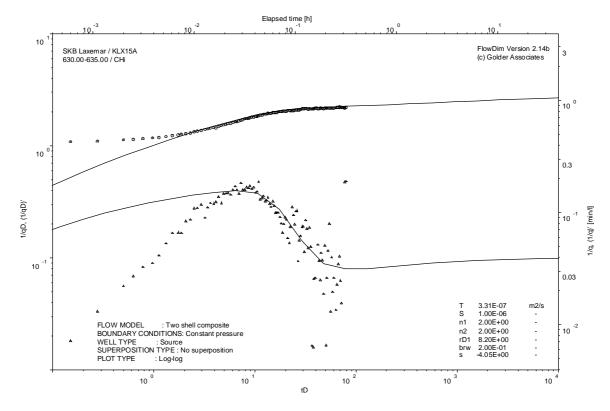
Test 630.00 – 635.00 m


Page 2-77/2

Borehole: KLX15A

Test: 630.00 – 635.00 m

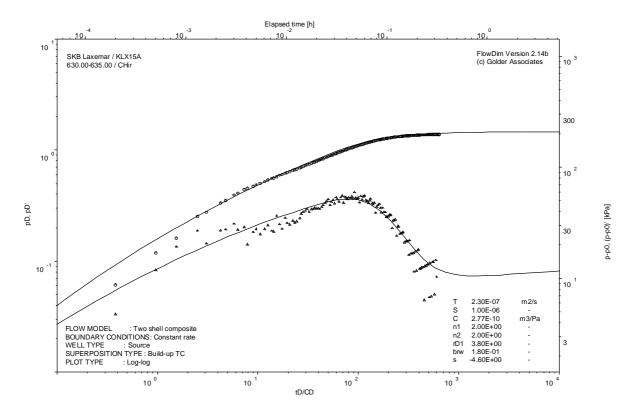



Pressure and flow rate vs. time; cartesian plot

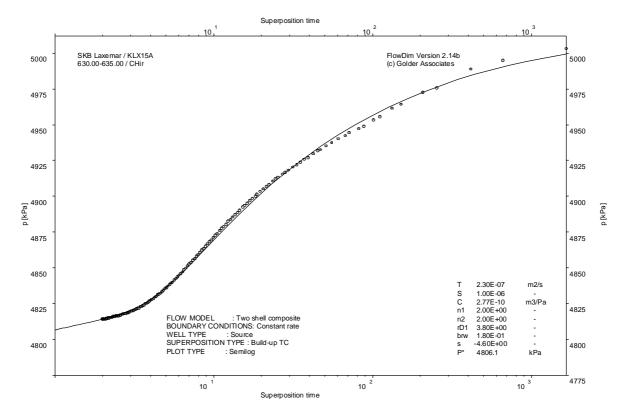


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-77/3


Test: 630.00 – 635.00 m




CHI phase; log-log match

Borehole: KLX15A

Test:  $630.00 - 635.00 \,\mathrm{m}$ 



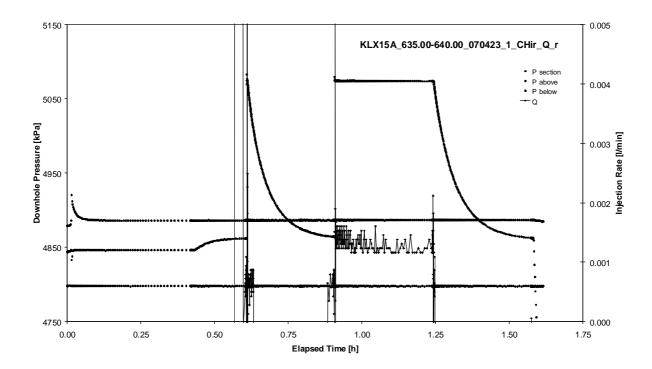
### CHIR phase; log-log match



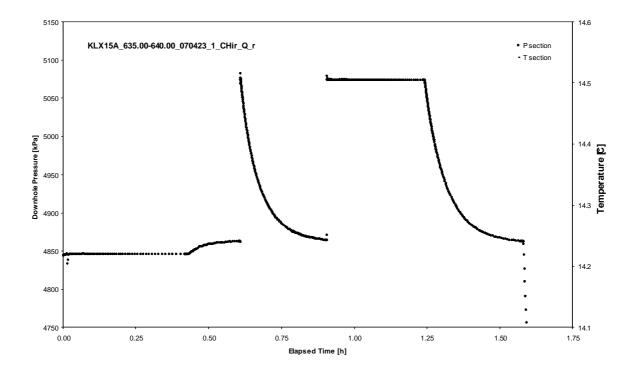
CHIR phase; HORNER match

Borehole: KLX15A Page 2-78/1

Test: 635.00 – 640.00 m


# **APPENDIX 2-78**

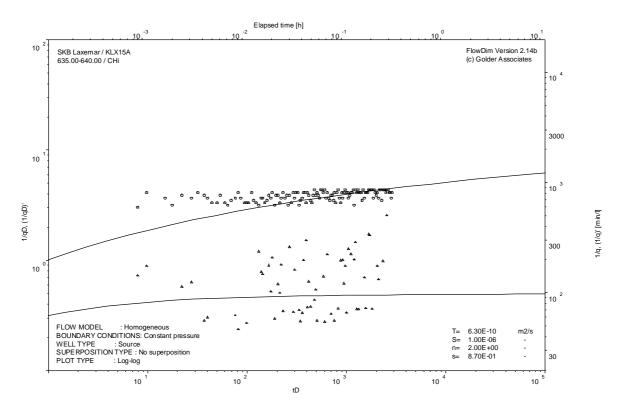
Test 635.00 – 640.00 m


Page 2-78/2

Borehole: KLX15A

Test: 635.00 – 640.00 m

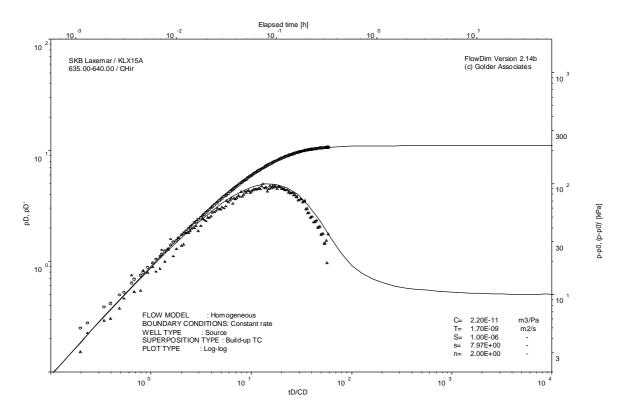


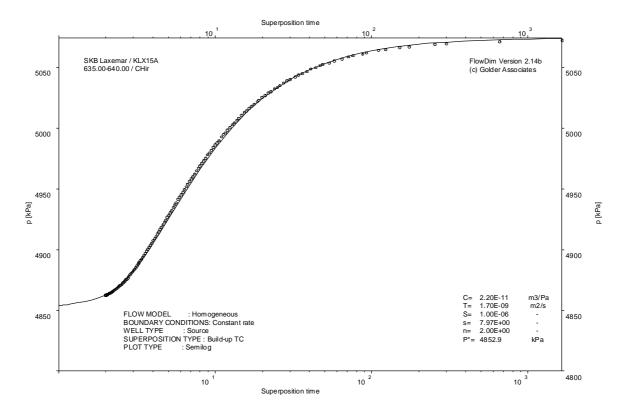

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-78/3


Test: 635.00 – 640.00 m




Page 2-78/4

Borehole: KLX15A

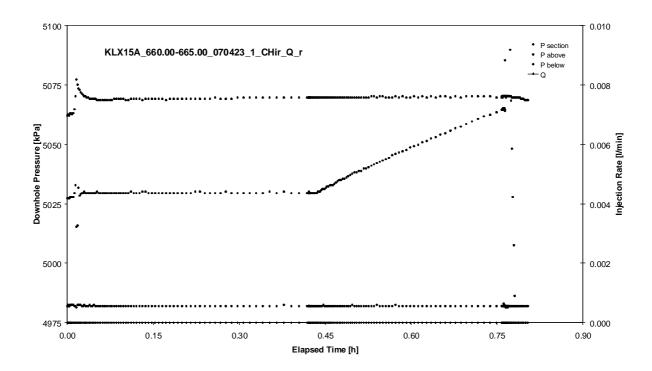
Test:  $635.00 - 640.00 \,\mathrm{m}$ 



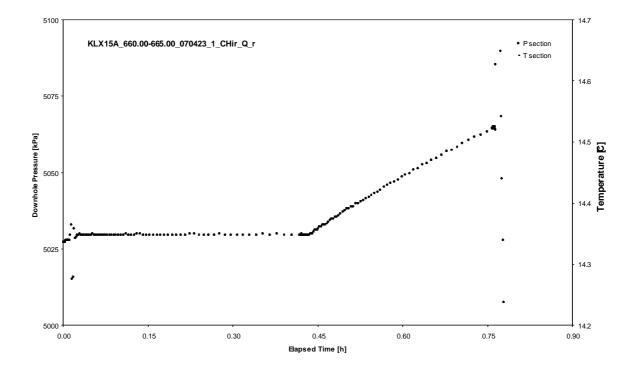


CHIR phase; HORNER match

Borehole: KLX15A Page 2-79/1


Test: 660.00 – 665.00 m

### **APPENDIX 2-79**


Test 660.00 – 665.00 m

Borehole: KLX15A

Test: 660.00 – 665.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

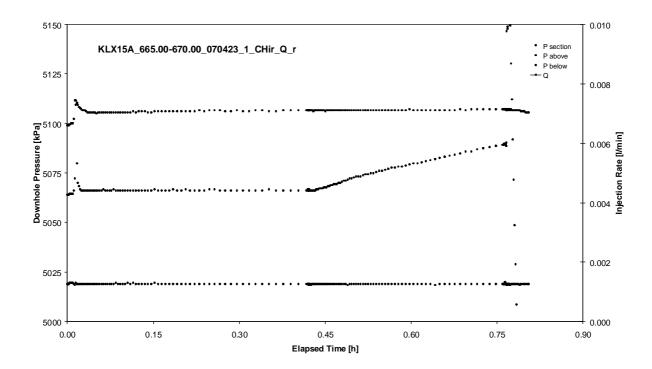
Borehole: KLX15A Test: 660.00 - 6 Page 2-79/3

660.00 – 665.00 m

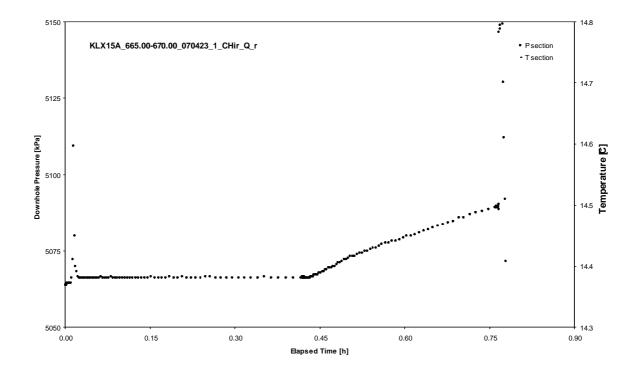
Not analysed

| Borehole:<br>Test: | KLX15A<br>660.00 – 665.00 m |              | Page 2-79/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-80/1


Test: 665.00 – 670.00 m

# **APPENDIX 2-80**


Test 665.00 – 670.00 m

Borehole: KLX15A

Test: 665.00 – 670.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 665.00 – 6 Page 2-80/3

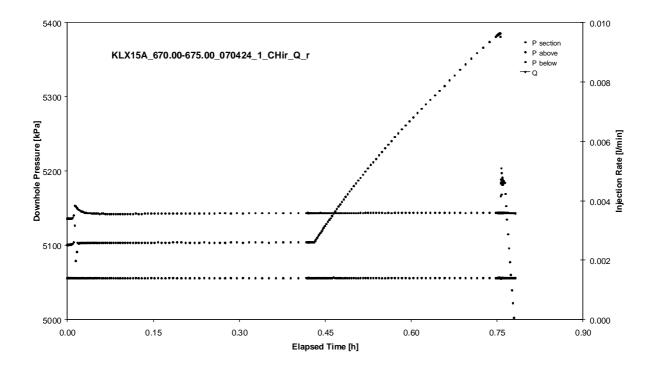
665.00 – 670.00 m

Not analysed

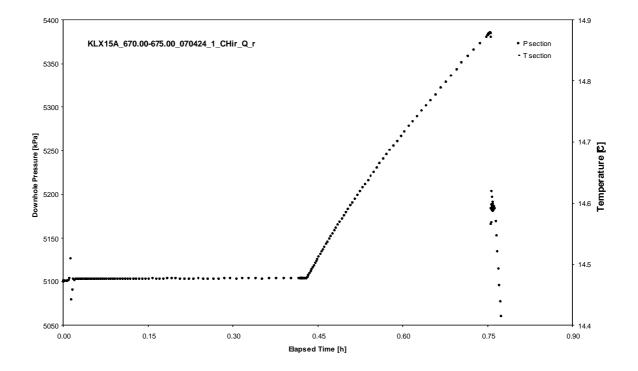
| Borehole:<br>Test: | KLX15A<br>665.00 – 670.00 m |              | Page 2-80/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-81/1

Test: 670.00 – 675.00 m


# **APPENDIX 2-81**

Test 670.00 – 675.00 m


Page 2-81/2

Borehole: KLX15A

Test: 670.00 – 675.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

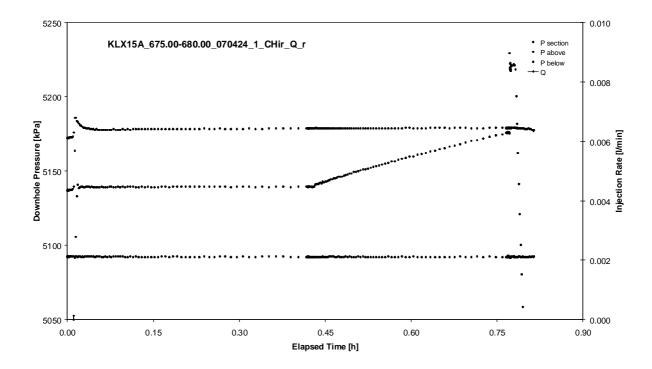
Borehole: KLX15A Test: 670.00 – 6 Page 2-81/3

670.00 – 675.00 m

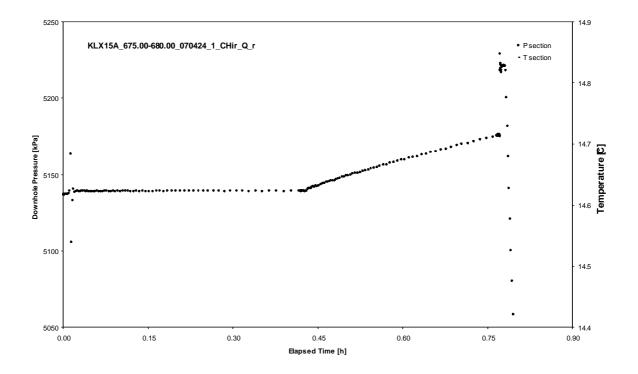
Not analysed

| Borehole:<br>Test: | KLX15A<br>670.00 – 675.00 m |              | Page 2-81/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             | Not analysed |             |
| CHIR nha           | se; log-log match           |              |             |
| Спи рпа            | se, iog-iog maten           |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-82/1


Test: 675.00 – 680.00 m

### **APPENDIX 2-82**


Test 675.00 – 680.00 m

Borehole: KLX15A

Test:  $675.00 - 680.00 \,\mathrm{m}$ 



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

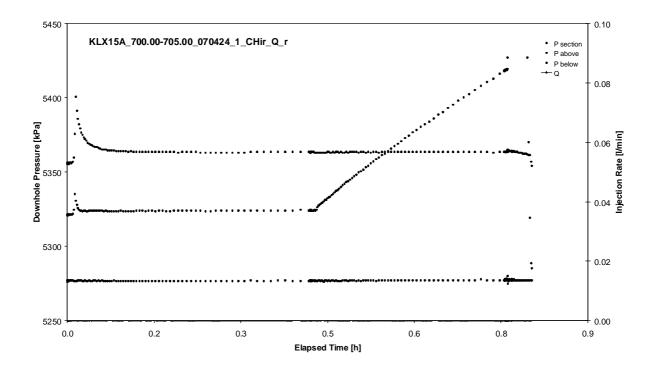
Borehole: KLX15A Page 2-82/3

Test: 675.00 – 680.00 m

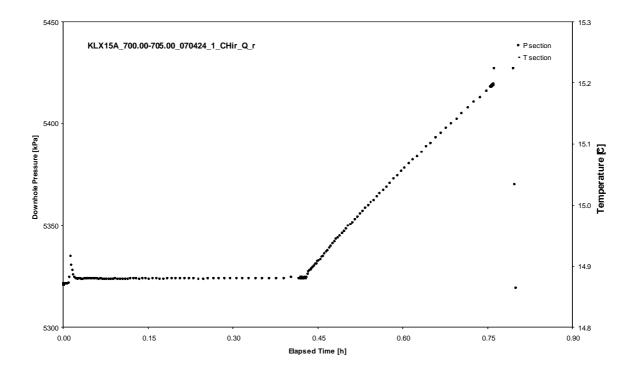
Not analysed

| Borehole: KLX15A<br>Test: 675.00 – 68 | 80.00 m |                | Page 2-82/4 |
|---------------------------------------|---------|----------------|-------------|
|                                       |         |                |             |
|                                       |         |                |             |
|                                       |         | Not analysed   |             |
|                                       |         | Trot unary see |             |
|                                       |         |                |             |
| CHIR phase; log-log r                 | match   |                |             |
|                                       |         |                |             |
|                                       |         |                |             |
|                                       |         | Not analysed   |             |
|                                       |         |                |             |
|                                       |         |                |             |

Borehole: KLX15A Page 2-83/1


Test: 700.00 – 705.00 m

# **APPENDIX 2-83**


Test 700.00 – 705.00 m

Borehole: KLX15A

Test: 700.00 - 705.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

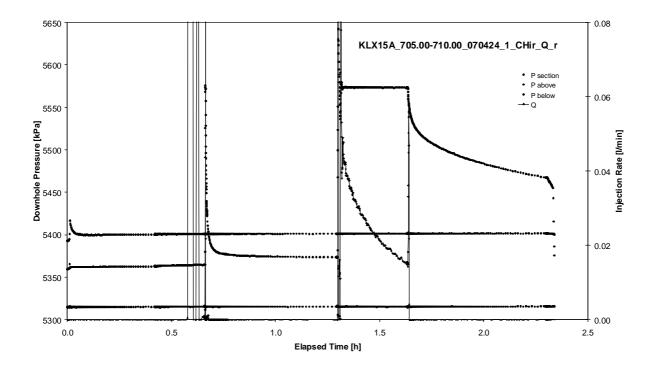
Borehole: KLX15A Test: 700.00 – 7 Page 2-83/3

700.00 – 705.00 m

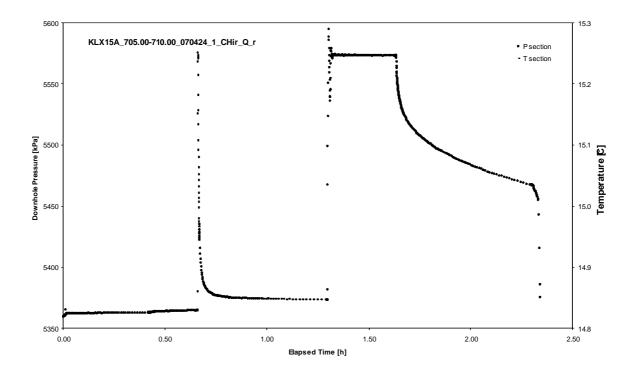
Not analysed

| Borehole:<br>Test: | KLX15A<br>700.00 – 705.00 m |              | Page 2-83/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR phas          | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-84/1


Test: 705.00 - 710.00 m

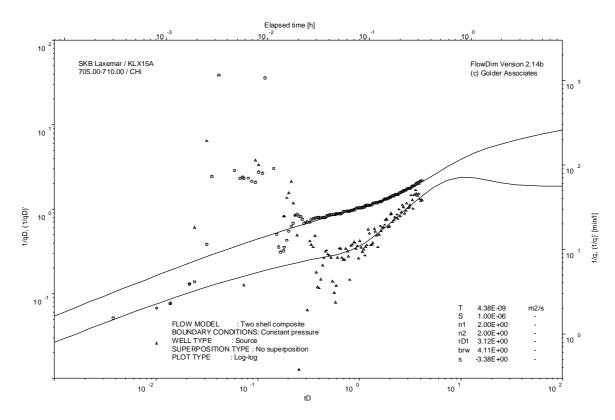
### **APPENDIX 2-84**


Test 705.00 – 710.00 m

Borehole: KLX15A

Test: 705.00 - 710.00 m



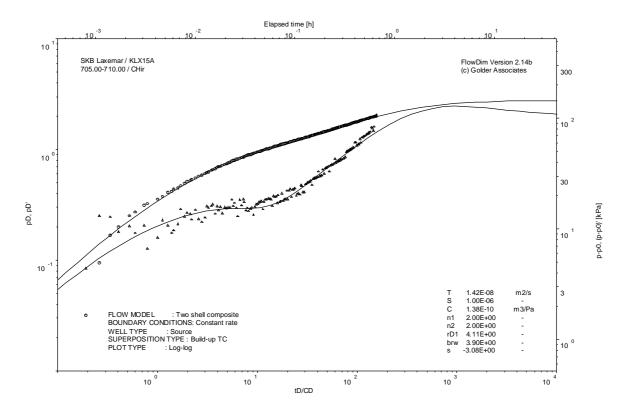

Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-84/3

Test:  $705.00 - 710.00 \,\mathrm{m}$ 




CHI phase; log-log match

Page 2-84/4

Borehole: KLX15A

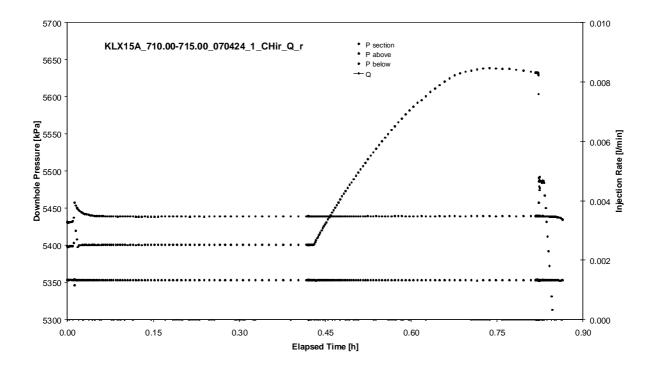
Test: 705.00 - 710.00 m



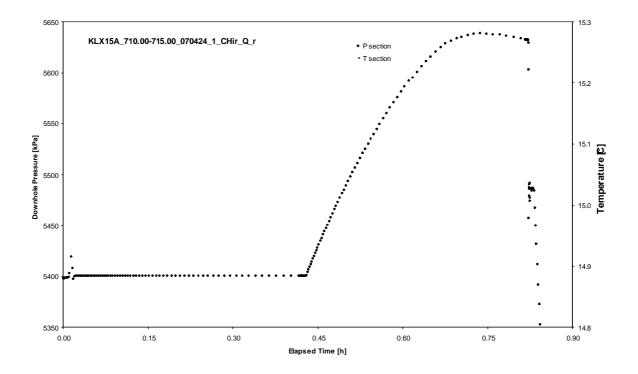
CHIR phase; log-log match

Not analysable

Borehole: KLX15A Page 2-85/1


Test: 710.00 – 715.00 m

# **APPENDIX 2-85**


Test 710.00 – 715.00 m

Borehole: KLX15A

Test: 710.00 - 715.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

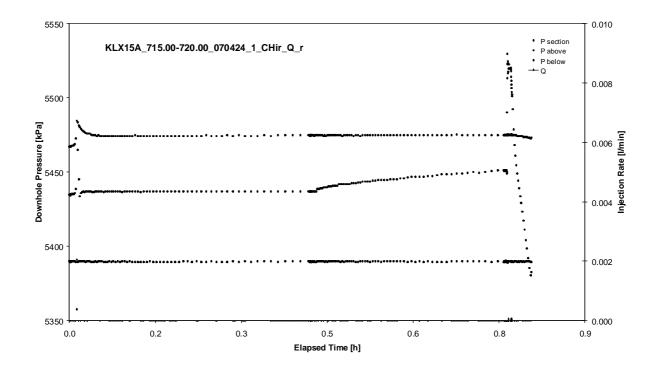
Borehole: KLX15A Test: 710.00 – 7 Page 2-85/3

710.00 – 715.00 m

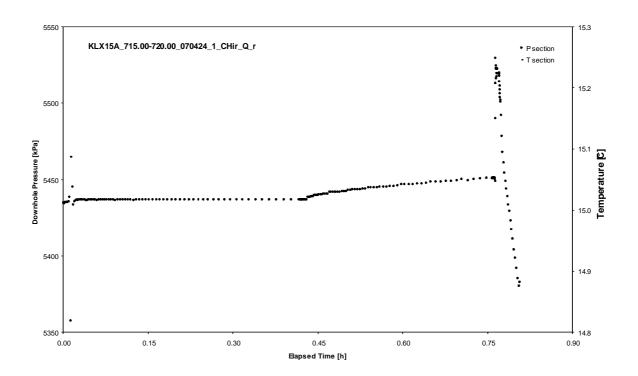
Not analysed

| Borehole:<br>Test: | KLX15A<br>710.00 – 715.00 m |              | Page 2-85/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR phas          | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-86/1


Test: 715.00 – 720.00 m

# **APPENDIX 2-86**


Test 715.00 – 720.00 m

Borehole: KLX15A

Test: 715.00 - 720.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

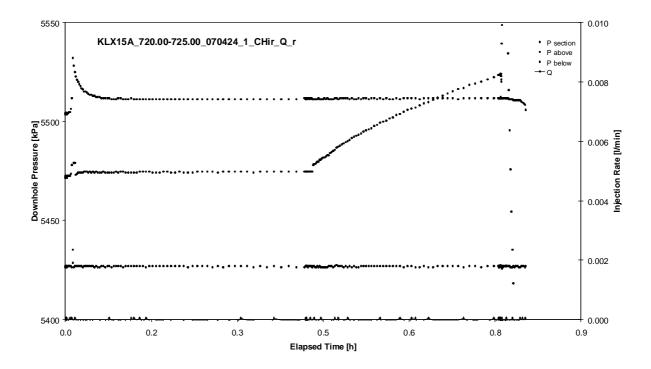
Borehole: KLX15A Test: 715.00 – 7 Page 2-86/3

715.00 – 720.00 m

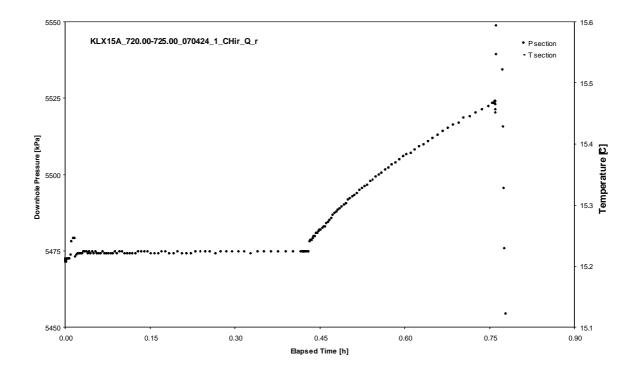
Not analysed

| Borehole:<br>Test: | KLX15A<br>715.00 – 720.00 m |              | Page 2-86/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

Borehole: KLX15A Page 2-87/1


Test: 720.00 – 725.00 m

# **APPENDIX 2-87**


Test 720.00 – 725.00 m

Borehole: KLX15A

Test: 720.00 - 725.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 720.00 – 7 Page 2-87/3

720.00 – 725.00 m

Not analysed

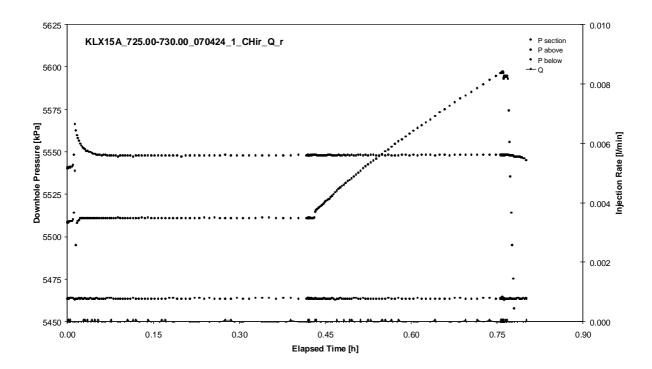
CHI phase; log-log match

| Borehole: KLX15A<br>Test: 720.00 – | 725.00 m |              | Page 2-87/4 |
|------------------------------------|----------|--------------|-------------|
|                                    |          |              |             |
|                                    |          |              |             |
|                                    |          | Not analysed |             |
|                                    |          |              |             |
| CHIR phase; log-log                | g match  |              |             |
|                                    |          |              |             |
|                                    |          |              |             |
|                                    |          | Not analysed |             |
|                                    |          |              |             |

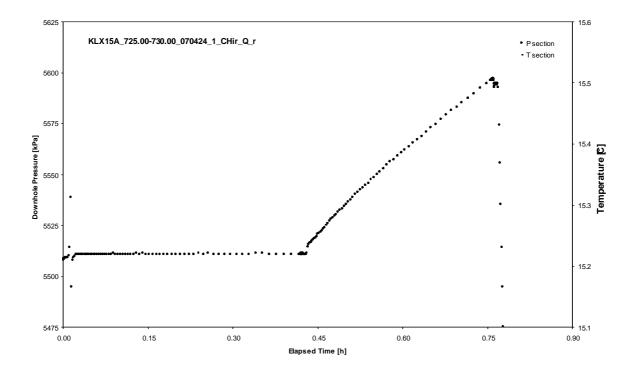
CHIR phase; HORNER match

Borehole: KLX15A Page 2-88/1

Test: 725.00 - 730.00 m


# **APPENDIX 2-88**

Test 725.00 – 730.00 m


Page 2-88/2

Borehole: KLX15A

Test: 725.00 - 730.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 725.00 – 730.00 m Page 2-88/3

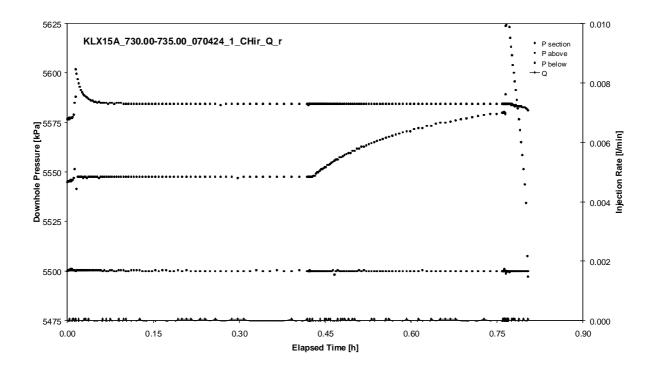
Not analysed

CHI phase; log-log match

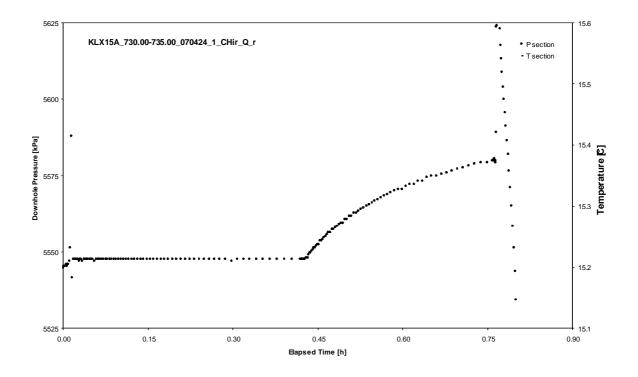
| Borehole: KLX15A<br>Test: 725.00 – 730.00 m |               | Page 2-88/4 |
|---------------------------------------------|---------------|-------------|
|                                             |               |             |
|                                             |               |             |
|                                             | Not analysed  |             |
|                                             |               |             |
|                                             |               |             |
| CHIR phase; log-log match                   |               |             |
|                                             |               |             |
|                                             | Not an alwayd |             |
|                                             | Not analysed  |             |
|                                             |               |             |
|                                             |               |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-89/1


Test: 730.00 – 735.00 m

# **APPENDIX 2-89**


Test 730.00 – 735.00 m

Borehole: KLX15A

Test: 730.00 - 735.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 730.00 – 7 Page 2-89/3

730.00 – 735.00 m

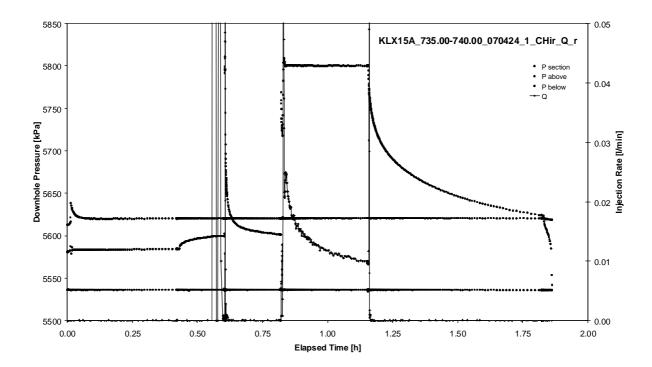
Not analysed

CHI phase; log-log match

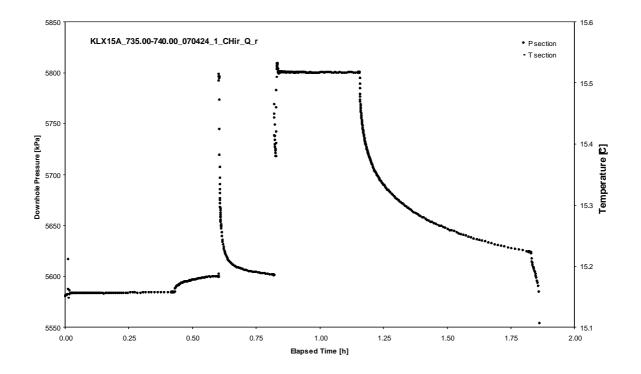
| Borehole: KLX15A<br>Test: 730.00 – 735.00 m |              | Page 2-89/4 |
|---------------------------------------------|--------------|-------------|
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
|                                             |              |             |
| CHIR phase; log-log match                   |              |             |
|                                             |              |             |
|                                             | Not analysed |             |
|                                             |              |             |
|                                             |              |             |
|                                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-90/1


Test:  $735.00 - 740.00 \,\mathrm{m}$ 

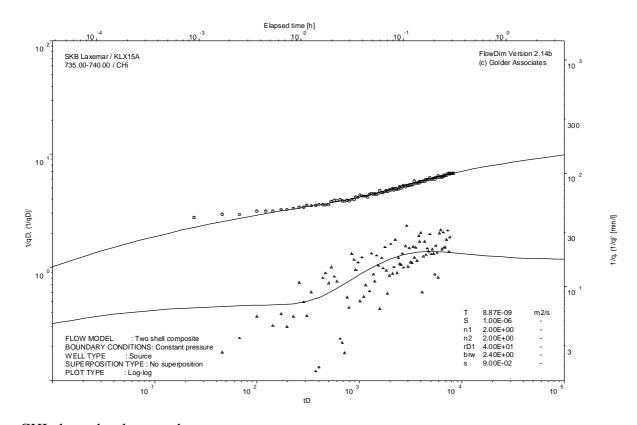
# **APPENDIX 2-90**


Test 735.00 – 740.00 m

Borehole: KLX15A

Test: 735.00 - 740.00 m

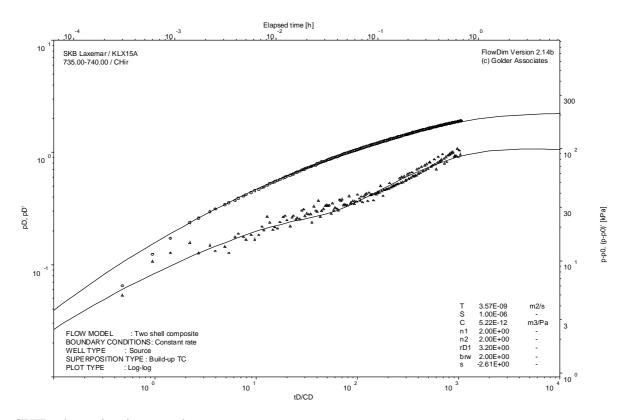



Pressure and flow rate vs. time; cartesian plot

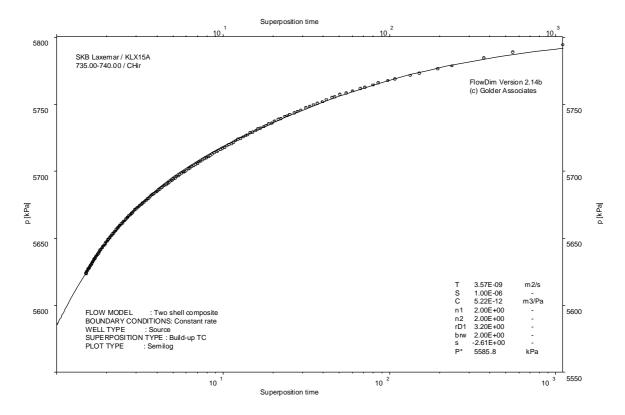


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-90/3


Test: 735.00 – 740.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-90/4

Test:  $735.00 - 740.00 \,\mathrm{m}$ 



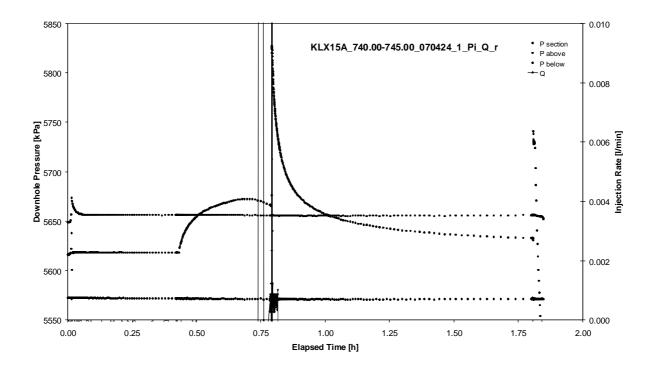
### CHIR phase; log-log match



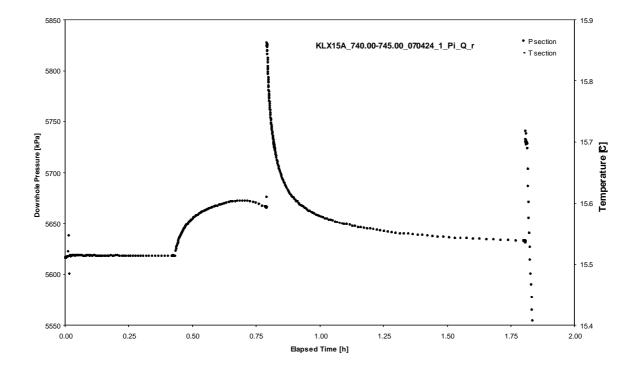
CHIR phase; HORNER match

Borehole: KLX15A Page 2-91/1

Test: 740.00 – 745.00 m


# **APPENDIX 2-91**

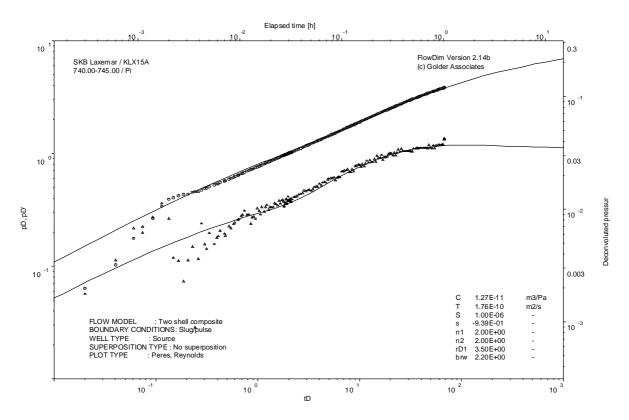
Test 740.00 – 745.00 m


Page 2-91/2

Borehole: KLX15A

Test: 740.00 - 745.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

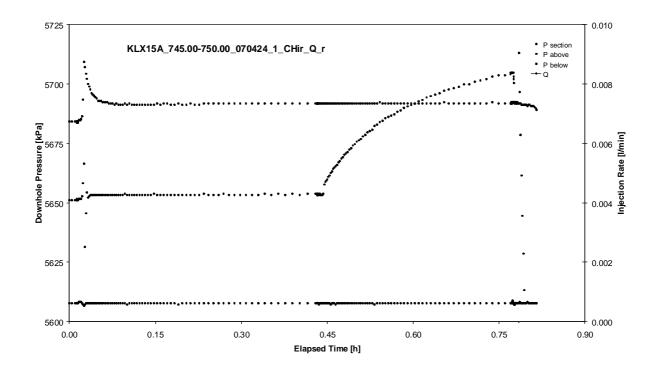
Borehole: KLX15A Page 2-91/3

Test: 740.00 – 745.00 m

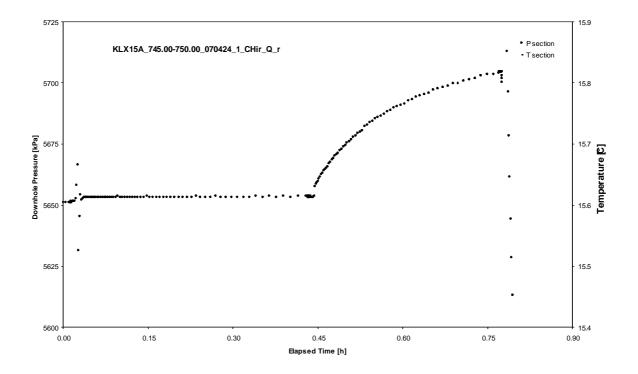


Pulse injection; deconvolution match

Borehole: KLX15A Page 2-92/1


Test: 745.00 – 750.00 m

## **APPENDIX 2-92**


Test 745.00 – 750.00 m

Borehole: KLX15A

Test: 745.00 - 750.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-92/3

Test: 745.00 - 750.00 m

Not analysed

CHI phase; log-log match

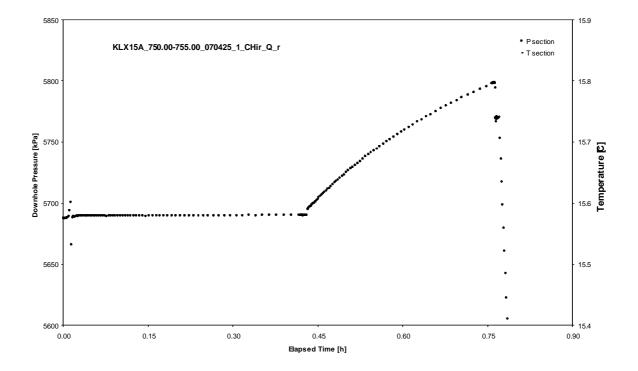
| Borehole:<br>Test: | KLX15A<br>745.00 – 750.00 m |              | Page 2-92/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-93/1

Test: 750.00 – 755.00 m

## **APPENDIX 2-93**


Test 750.00 – 755.00 m

Borehole: KLX15A

Test: 750.00 - 755.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Test: 750.00 – 7 Page 2-93/3

750.00 – 755.00 m

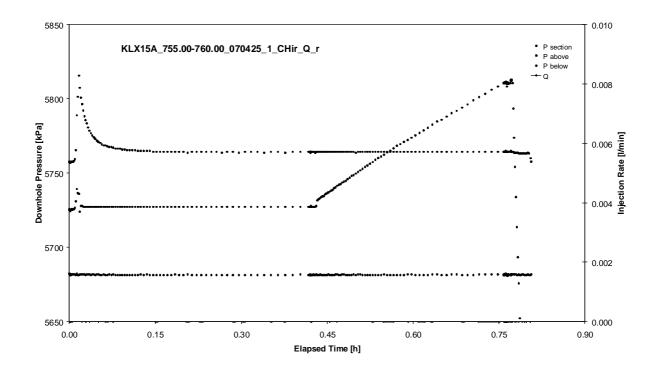
Not analysed

CHI phase; log-log match

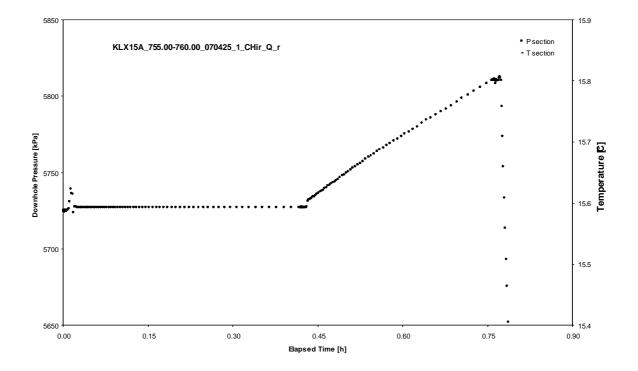
| Borehole:<br>Test: | KLX15A<br>750.00 – 755.00 m |              | Page 2-93/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analyzed |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-94/1


Test:  $755.00 - 760.00 \,\mathrm{m}$ 

## **APPENDIX 2-94**


Test 755.00 – 760.00 m

Borehole: KLX15A

Test: 755.00 - 760.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-94/3

Test: 755.00 - 760.00 m

Not analysed

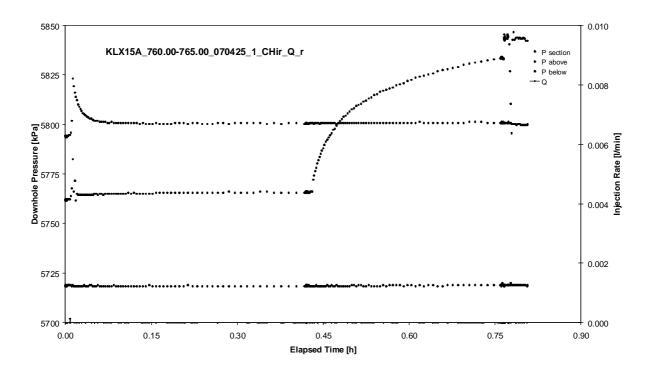
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>755.00 – 760.00 m |              | Page 2-94/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
| CHIR pha           | se; log-log match           |              |             |
| •                  |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |

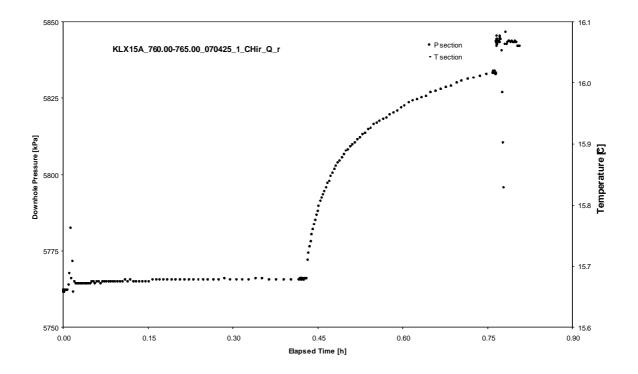
CHIR phase; HORNER match

Borehole: KLX15A Page 2-95/1

Test:  $760.00 - 765.00 \,\mathrm{m}$ 


## **APPENDIX 2-95**

Test 760.00 – 765.00 m


Page 2-95/2

Borehole: KLX15A

Test: 760.00 - 765.00 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-95/3

Test: 760.00 - 765.00 m

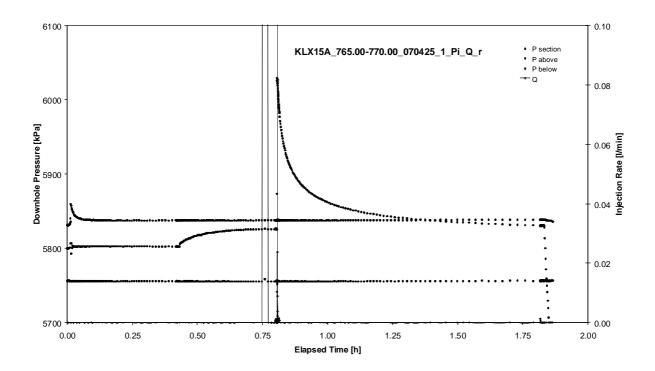
Not analysed

CHI phase; log-log match

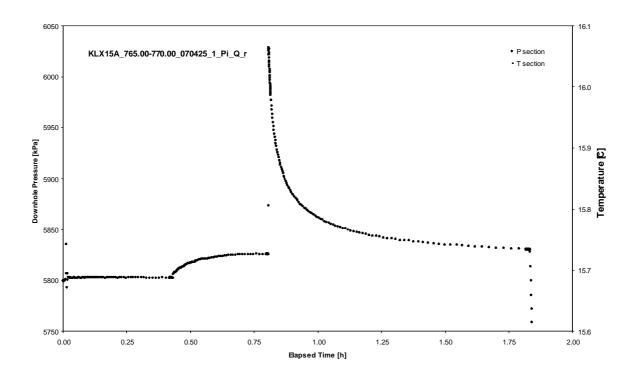
| Borehole:<br>Test: | KLX15A<br>760.00 – 765.00 m |              | Page 2-95/4 |
|--------------------|-----------------------------|--------------|-------------|
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
| CIIID mho          | aa laa laa matah            |              |             |
| стик риа           | se; log-log match           |              |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             | Not analysed |             |
|                    |                             |              |             |
|                    |                             |              |             |
|                    |                             |              |             |

CHIR phase; HORNER match

Borehole: KLX15A Page 2-96/1


Test:  $765.00 - 770.00 \,\mathrm{m}$ 

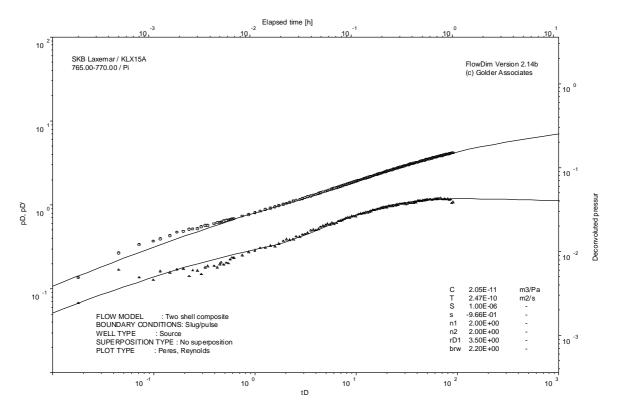
## **APPENDIX 2-96**


Test 765.00 – 770.00 m

Borehole: KLX15A

Test: 765.00 - 770.00 m




Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

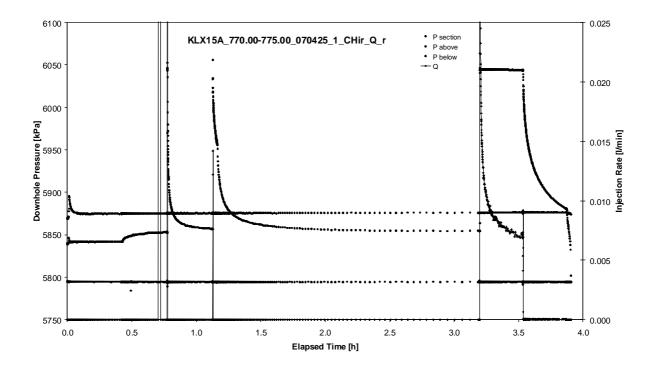
Borehole: KLX15A Page 2-96/3

Test:  $765.00 - 770.00 \,\mathrm{m}$ 

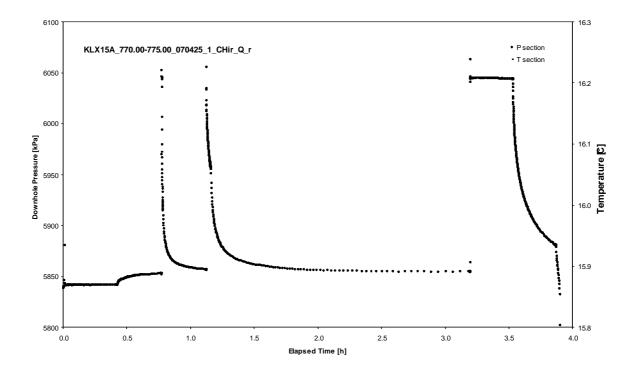


Pulse injection; deconvolution match

Borehole: KLX15A Page 2-97/1

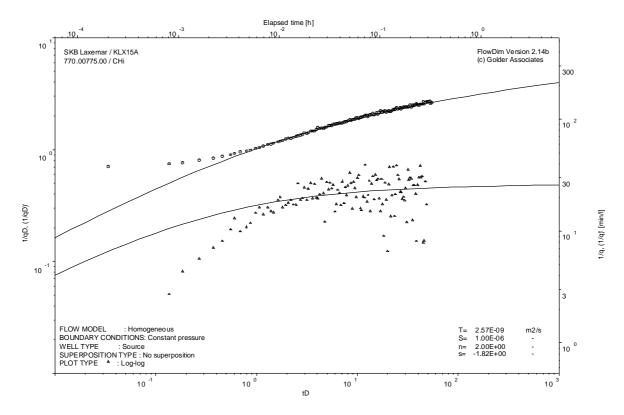

Test: 770.00 – 775.00 m

# **APPENDIX 2-97**


Test 770.00 – 775.00 m

Borehole: KLX15A

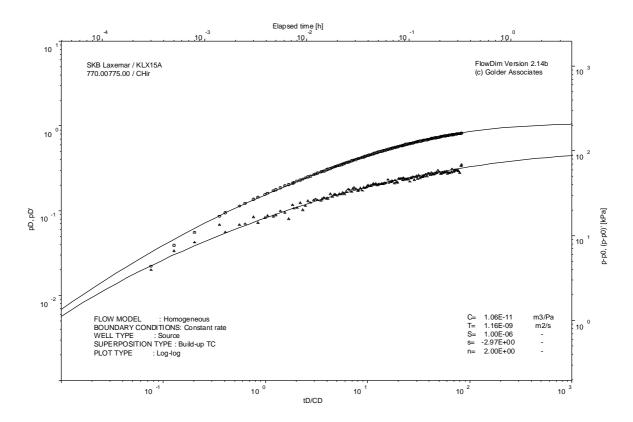
Test: 770.00 - 775.00 m




Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-97/3


Test: 770.00 – 775.00 m



CHI phase; log-log match

Borehole: KLX15A

Test: 770.00 - 775.00 m



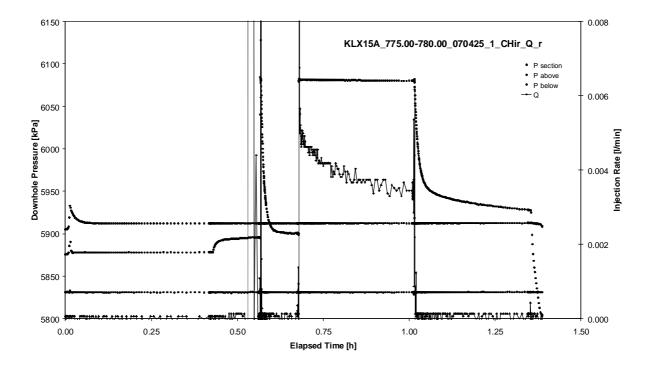
### CHIR phase; log-log match



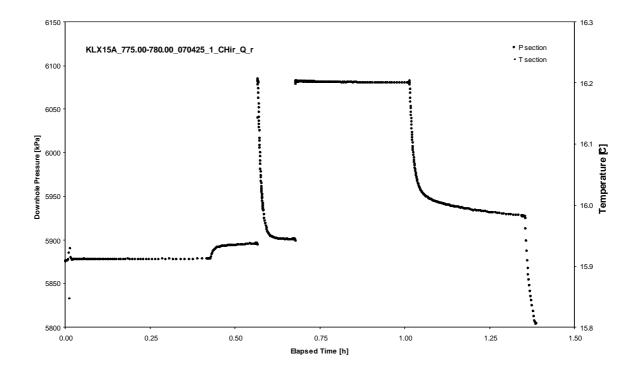
CHIR phase; HORNER match

Borehole: KLX15A Page 2-98/1

Test: 775.00 - 780.00 m

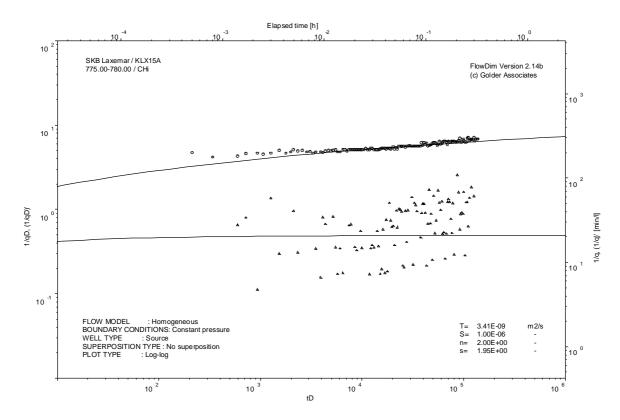

# **APPENDIX 2-98**

Test 775.00 – 780.00 m


Page 2-98/2

Borehole: KLX15A

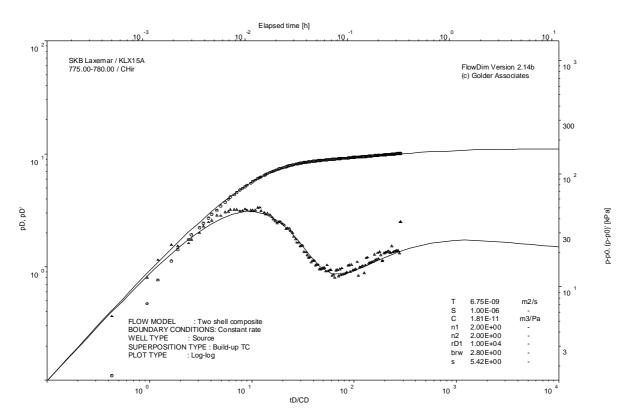
Test: 775.00 - 780.00 m



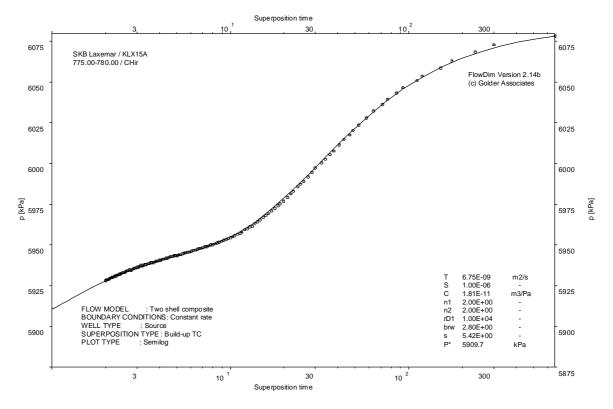

Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-98/3


Test: 775.00 – 780.00 m




CHI phase; log-log match

Borehole: KLX15A Page 2-98/4

Test: 775.00 - 780.00 m

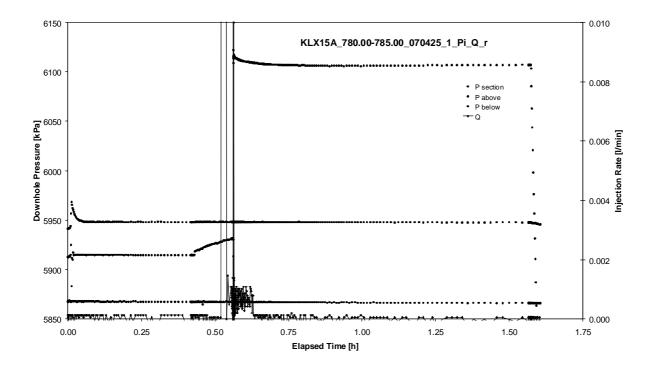


CHIR phase; log-log match

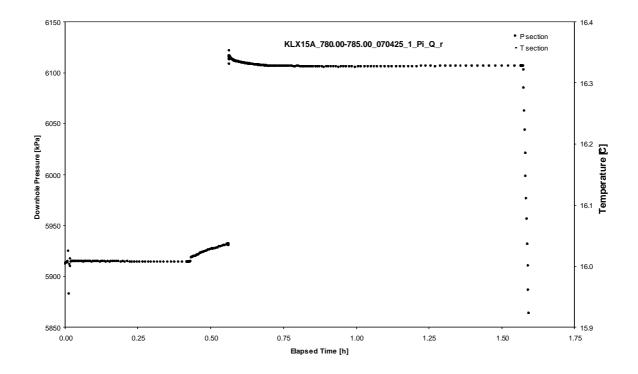


CHIR phase; HORNER match

Borehole: KLX15A Page 2-99/1


Test: 780.00 – 785.00 m

### **APPENDIX 2-99**


Test 780.00 – 785.00 m

Borehole: KLX15A

Test: 780.00 - 785.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-99/3

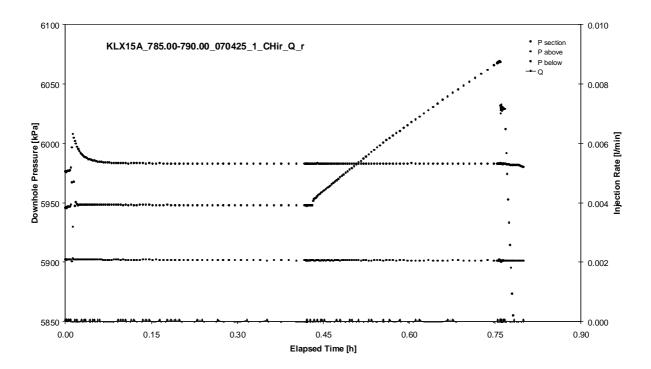
Test: 780.00 – 785.00 m

Not analysed

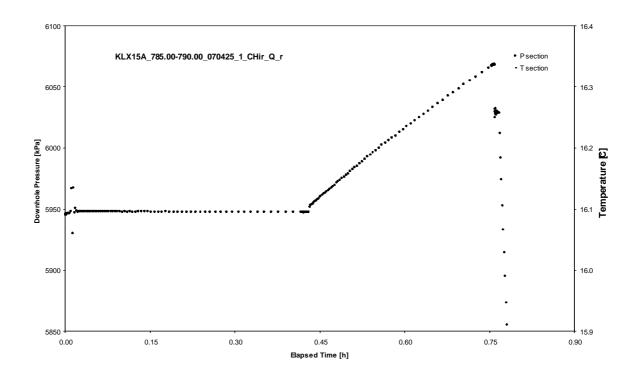
Pulse injection; deconvolution match

Borehole: KLX15A Page 2-100/1

Test: 785.00 – 790.00 m


# **APPENDIX 2-100**

Test 785.00 – 790.00 m


Page 2-100/2

Borehole: KLX15A

Test: 785.00 - 790.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-100/3

Test: 785.00 - 790.00 m

Not analysed

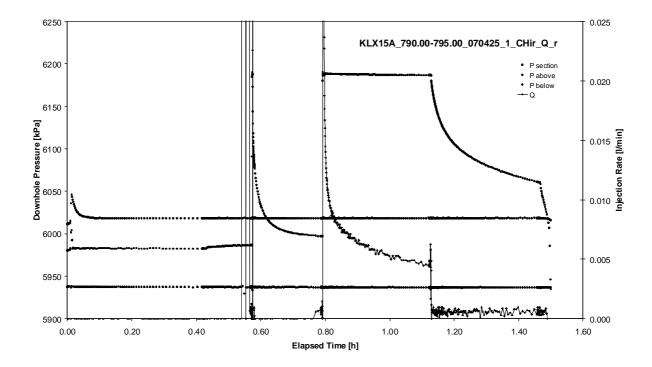
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>785.00 – 790.00 m |              | Page 2-100/4 |
|--------------------|-----------------------------|--------------|--------------|
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
| CHIR pha           | se; log-log match           |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |

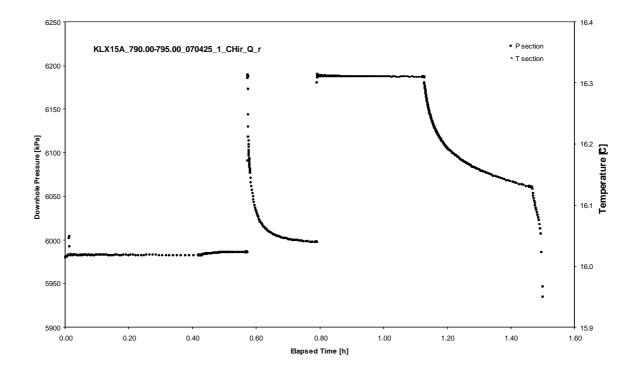
CHIR phase; HORNER match

Borehole: KLX15A Page 2-101/1

Test: 790.00 – 795.00 m


# **APPENDIX 2-101**

Test 790.00 – 795.00 m


Page 2-101/2

Borehole: KLX15A

Test: 790.00 - 795.00 m

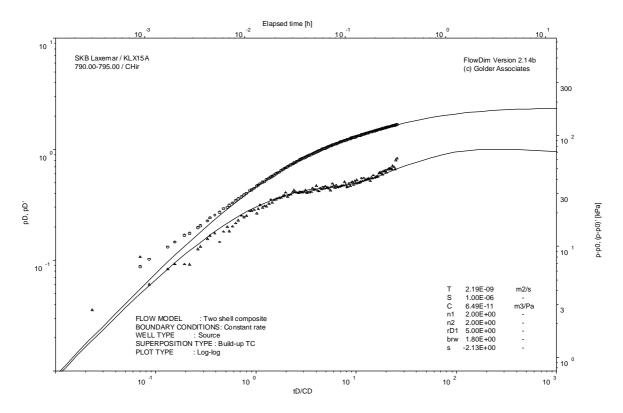


Pressure and flow rate vs. time; cartesian plot

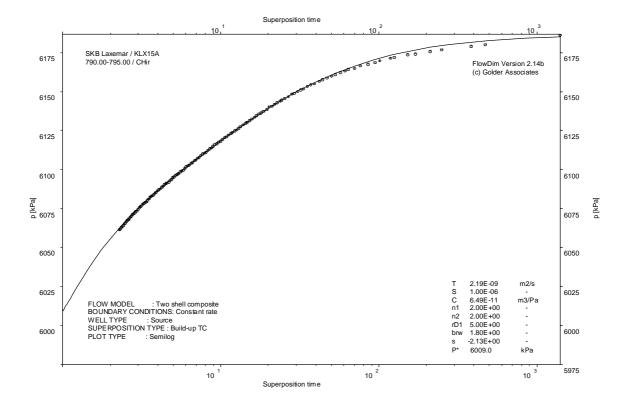


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-101/3


Test: 790.00 – 795.00 m




CHI phase; log-log match

Borehole: KLX15A

Test:  $790.00 - 795.00 \,\mathrm{m}$ 



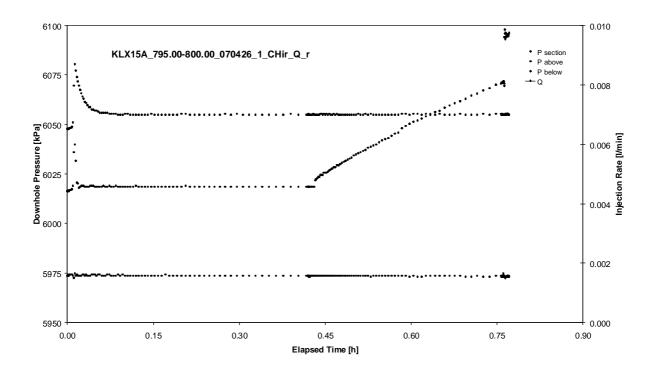
#### CHIR phase; log-log match



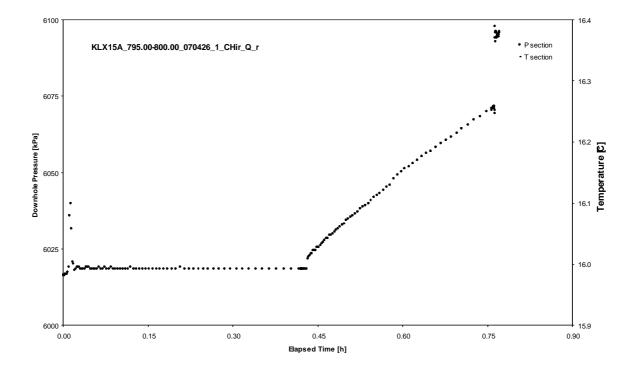
CHIR phase; HORNER match

Borehole: KLX15A Page 2-102/1

Test:  $795.00 - 800.00 \,\mathrm{m}$ 


# **APPENDIX 2-102**

Test 795.00 – 800.00 m


Page 2-102/2

Borehole: KLX15A

Test: 795.00 - 800.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-102/3

Test: 795.00 - 800.00 m

Not analysed

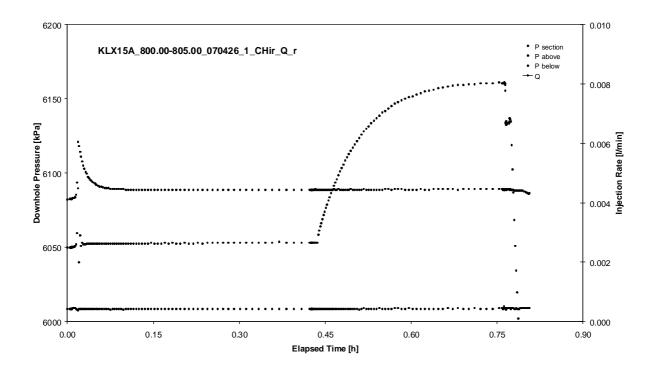
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>795.00 – 800.00 m |              | Page 2-102/4 |
|--------------------|-----------------------------|--------------|--------------|
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
| CHIR pha           | se; log-log match           |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |

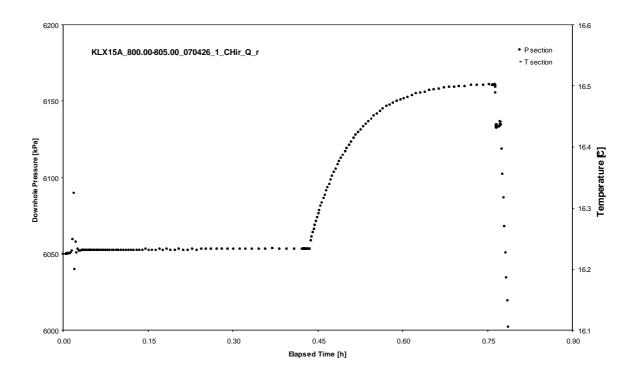
CHIR phase; HORNER match

Borehole: KLX15A Page 2-103/1

Test: 800.00 – 805.00 m


# **APPENDIX 2-103**

Test 800.00 – 805.00 m


Page 2-103/2

Borehole: KLX15A

Test: 800.00 - 805.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-103/3

Test: 800.00 - 805.00 m

Not analysed

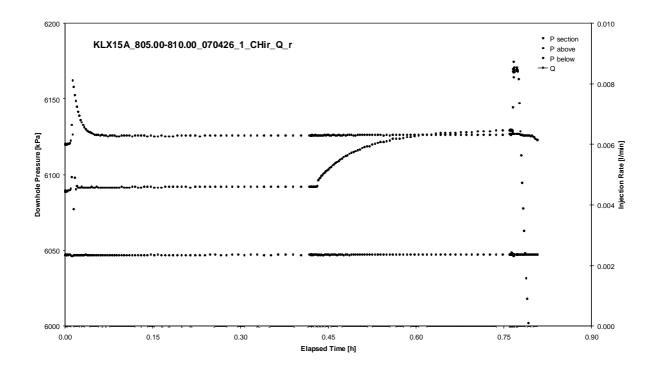
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>800.00 – 805.00 m |              | Page 2-103/4 |
|--------------------|-----------------------------|--------------|--------------|
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
| CHIR pha           | se; log-log match           |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |

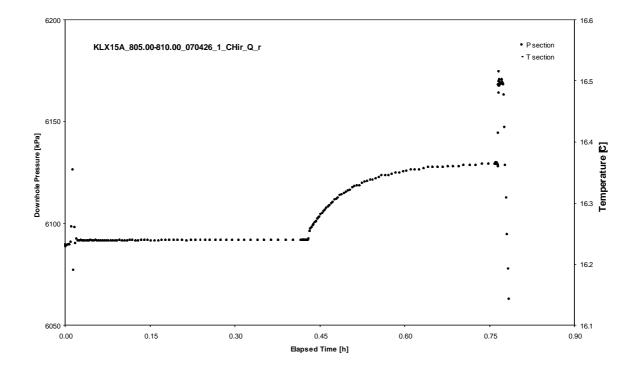
CHIR phase; HORNER match

Borehole: KLX15A Page 2-104/1

Test: 805.00 – 810.00 m


# **APPENDIX 2-104**

Test 805.00 – 810.00 m


Page 2-104/2

Borehole: KLX15A

Test: 805.00 – 810.00 m



Pressure and flow rate vs. time; cartesian plot



Borehole: KLX15A Page 2-104/3

Test: 805.00 - 810.00 m

Not analysed

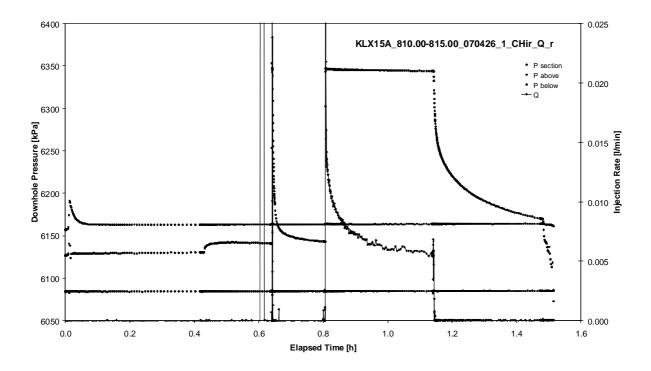
CHI phase; log-log match

| Borehole:<br>Test: | KLX15A<br>805.00 – 810.00 m |               | Page 2-104/4 |
|--------------------|-----------------------------|---------------|--------------|
|                    |                             |               |              |
|                    |                             |               |              |
|                    |                             | Not analysed  |              |
|                    |                             | Not allalysed |              |
|                    |                             |               |              |
| CHIR pha           | se; log-log match           |               |              |
|                    |                             |               |              |
|                    |                             |               |              |
|                    |                             | Not analysed  |              |
|                    |                             |               |              |
|                    |                             |               |              |

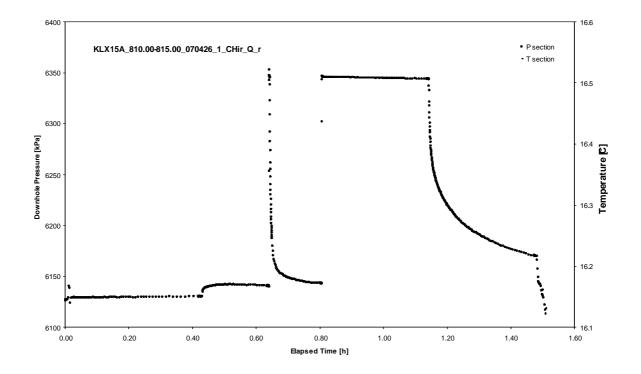
CHIR phase; HORNER match

Borehole: KLX15A Page 2-105/1

Test: 810.00 – 815.00 m


# **APPENDIX 2-105**

Test 810.00 – 815.00 m


Page 2-105/2

Borehole: KLX15A

Test: 810.00 – 815.00 m

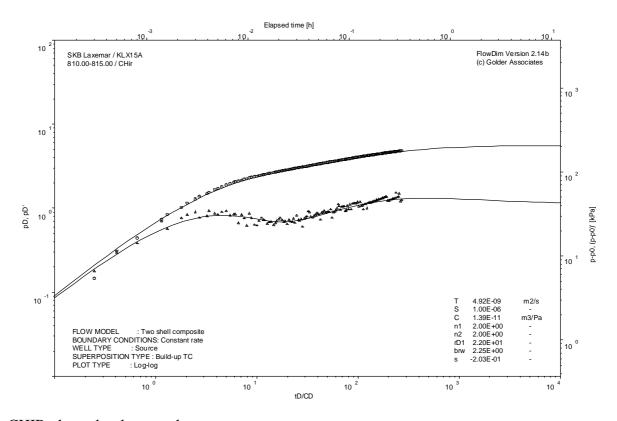



Pressure and flow rate vs. time; cartesian plot

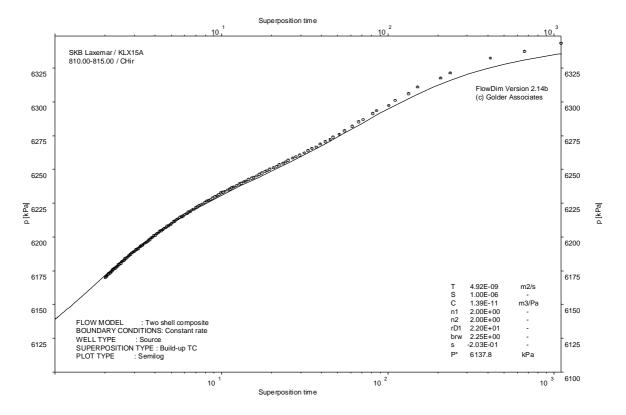


Borehole: KLX15A Page 2-105/3

Test: 810.00 – 815.00 m




CHI phase; log-log match


Page 2-105/4

Borehole: KLX15A

Test:  $810.00 - 815.00 \,\mathrm{m}$ 

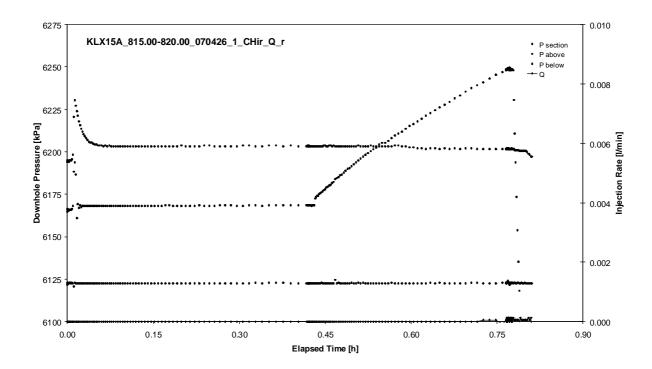


#### CHIR phase; log-log match

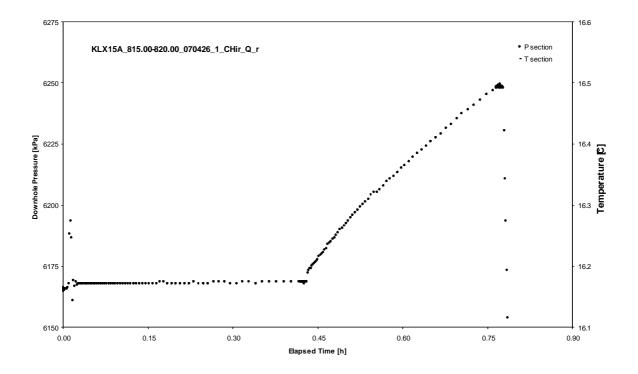


CHIR phase; HORNER match

Test: 815.00 – 820.00 m


## **APPENDIX 2-106**

Test 815.00 – 820.00 m


Page 2-106/2

Borehole: KLX15A

Test: 815.00 – 820.00 m



Pressure and flow rate vs. time; cartesian plot



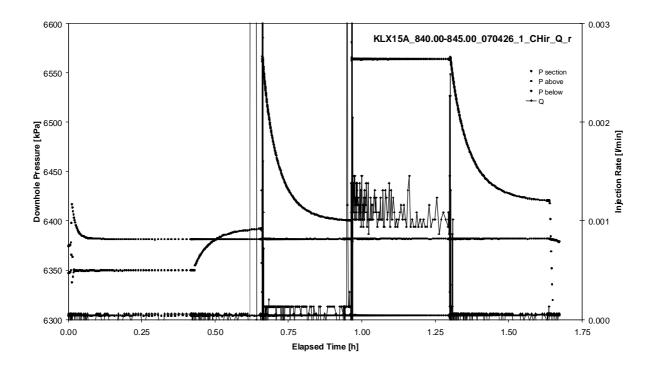
Test: 815.00 – 820.00 m

Not analysed

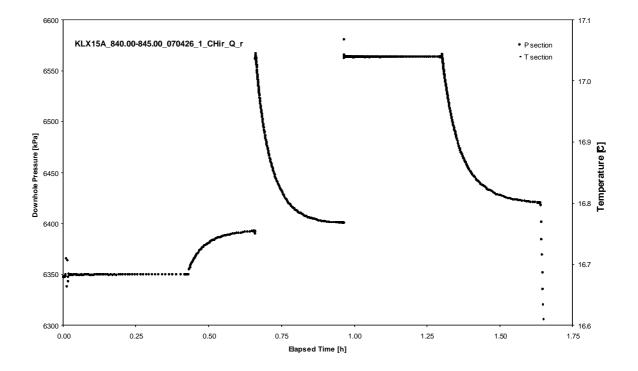
| Borehole:<br>Test: | KLX15A<br>815.00 – 820.00 m |              | Page 2-106/4 |
|--------------------|-----------------------------|--------------|--------------|
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
| CHIR pha           | se; log-log match           |              |              |
| -                  |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |

CHIR phase; HORNER match

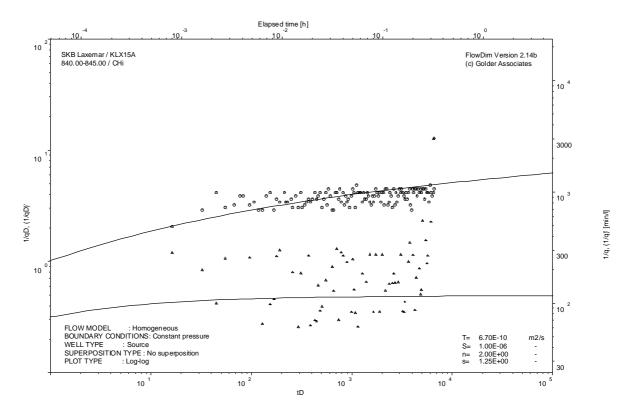
Test: 840.00 – 845.00 m


## **APPENDIX 2-107**

Test 840.00 – 845.00 m

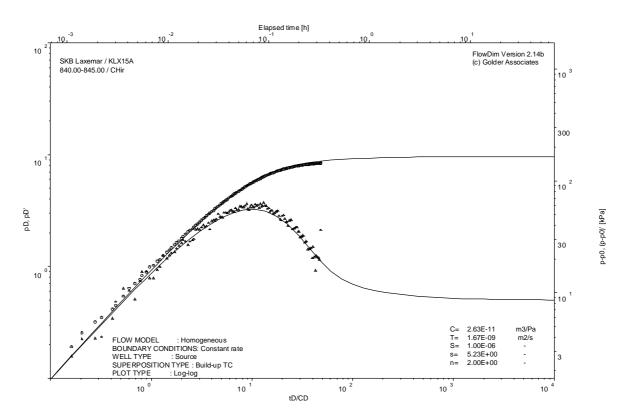

Page 2-107/2

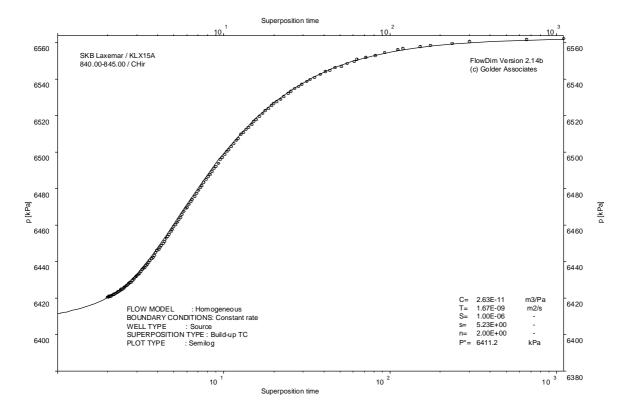
Borehole: KLX15A


Test: 840.00 – 845.00 m



Pressure and flow rate vs. time; cartesian plot





Test: 840.00 – 845.00 m

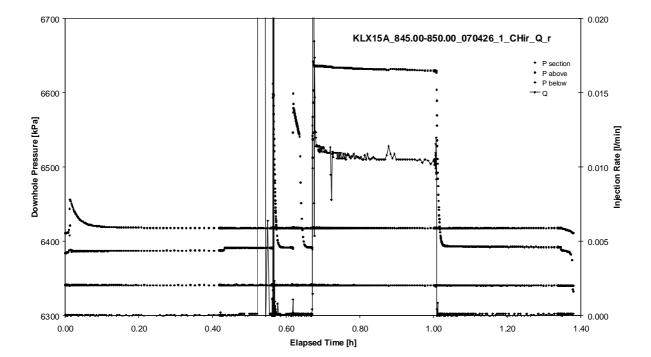


Borehole: KLX15A

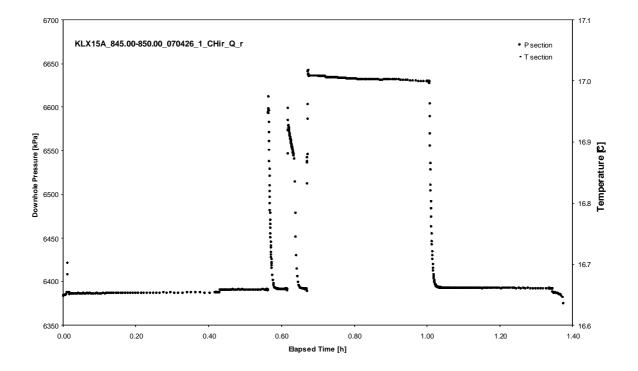
Test: 840.00 – 845.00 m






CHIR phase; HORNER match

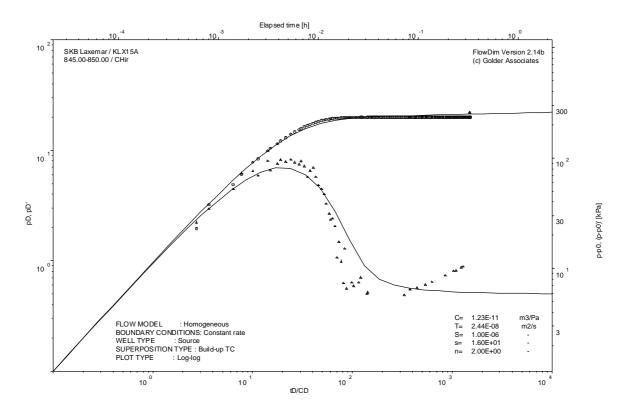
Test: 845.00 – 850.00 m

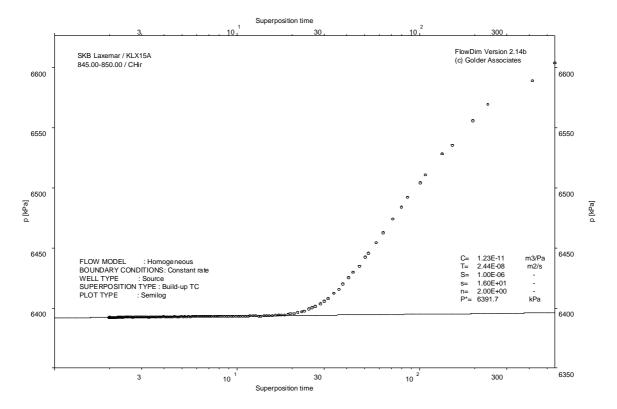

## **APPENDIX 2-108**

Test 845.00 – 850.00 m

Test: 845.00 – 850.00 m




Pressure and flow rate vs. time; cartesian plot




Test: 845.00 – 850.00 m



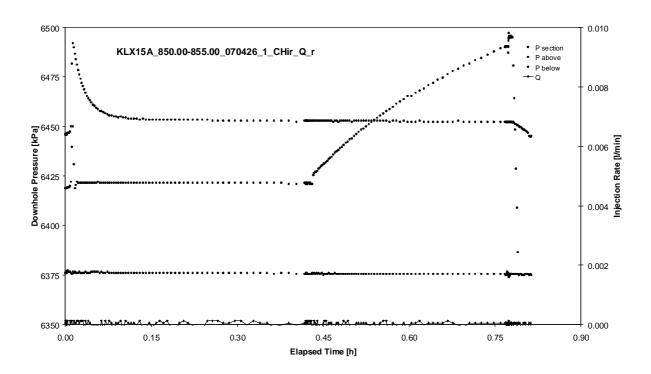
Test: 845.00 – 850.00 m



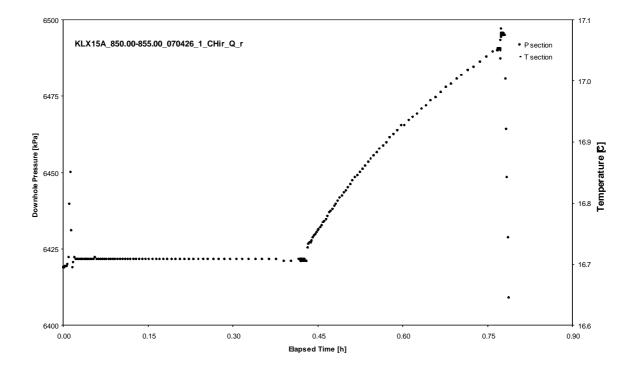


CHIR phase; HORNER match

Test: 850.00 – 855.00 m


## **APPENDIX 2-109**

Test 850.00 – 855.00 m


Page 2-109/2

Borehole: KLX15A

Test: 850.00 – 855.00 m



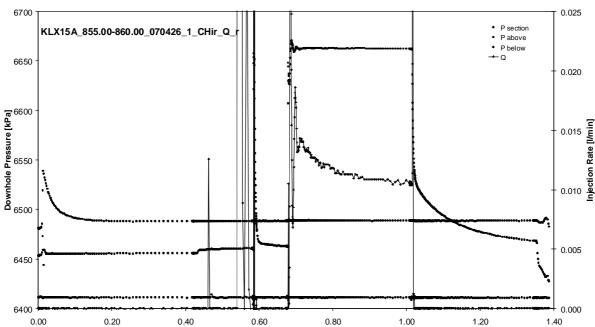
Pressure and flow rate vs. time; cartesian plot



Test: 850.00 – 855.00 m

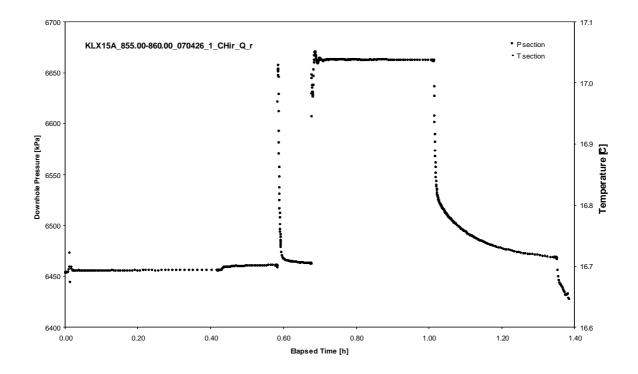
Not analysed

| Borehole:<br>Test: | KLX15A<br>850.00 – 855.00 m |              | Page 2-109/4 |
|--------------------|-----------------------------|--------------|--------------|
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
| CHIR nha           | se; log-log match           |              |              |
| erme pha           | se, log log maten           |              |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             | Not analysed |              |
|                    |                             |              |              |
|                    |                             |              |              |
|                    |                             |              |              |

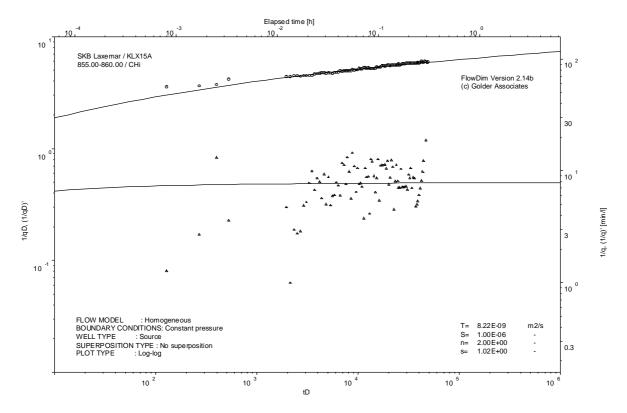

CHIR phase; HORNER match

Test: 855.00 – 860.00 m

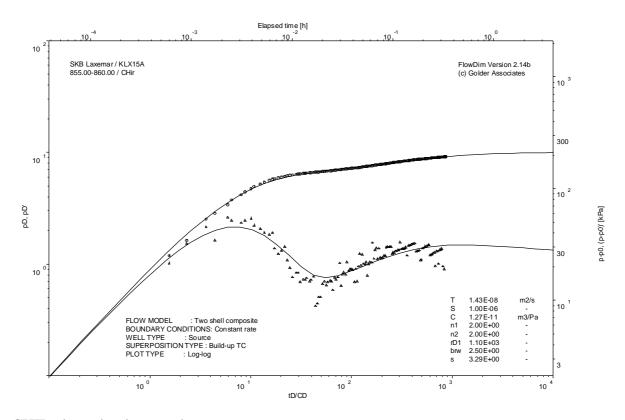
## **APPENDIX 2-110**

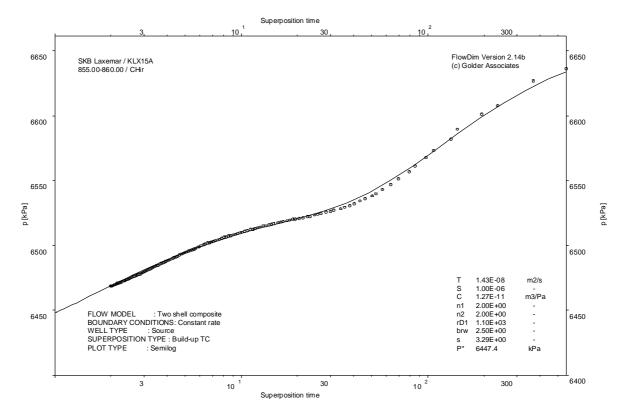

Test 855.00 – 860.00 m

Test: 855.00 – 860.00 m




Elapsed Time [h]


Pressure and flow rate vs. time; cartesian plot



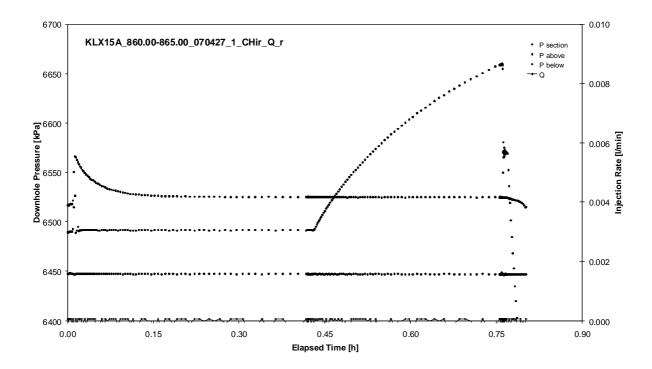

Test: 855.00 – 860.00 m



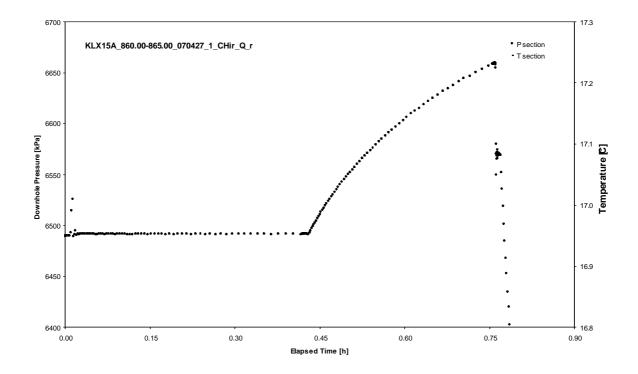
Test: 855.00 – 860.00 m






CHIR phase; HORNER match

Test: 860.00 – 865.00 m


## **APPENDIX 2-111**

Test 860.00 – 865.00 m

Test: 860.00 – 865.00 m



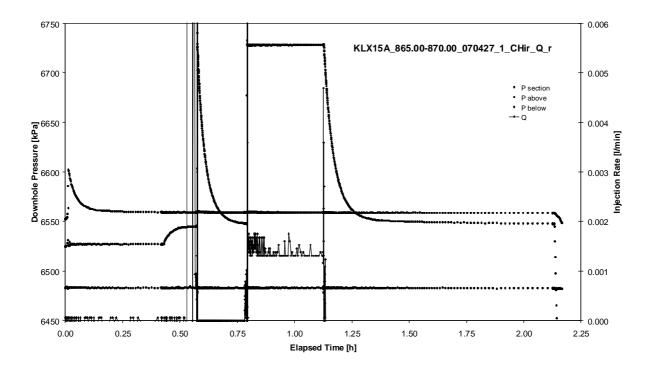
Pressure and flow rate vs. time; cartesian plot



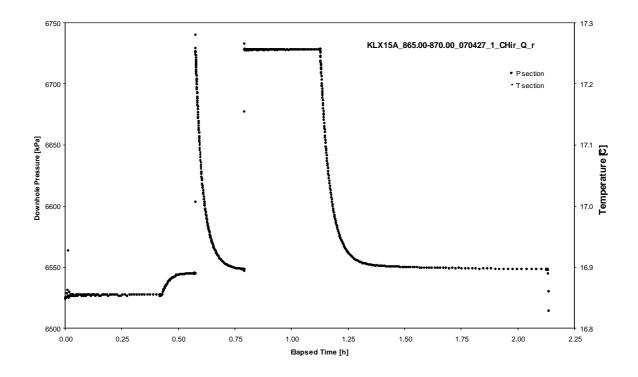
Test: 860.00 – 865.00 m

Not analysed

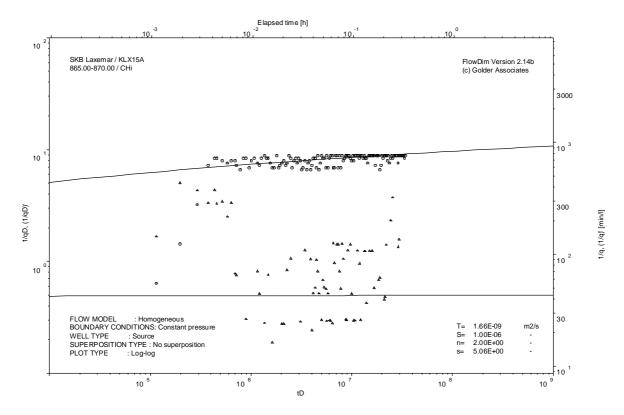
| Borehole:<br>Test: | KLX15A<br>860.00 – 865.00 m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 2-111/4 |
|--------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             | Not analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                    |                             | Not analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| CHIR pha           | se; log-log match           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             | Not analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|                    |                             | , and the second |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |


CHIR phase; HORNER match

Test: 865.00 – 870.00 m


### **APPENDIX 2-112**

Test 865.00 – 870.00 m

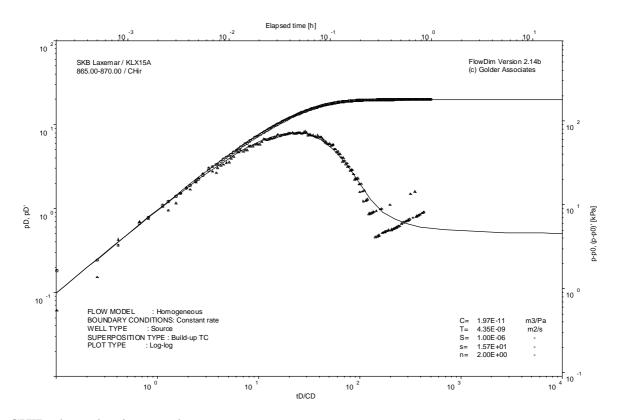

Test: 865.00 – 870.00 m

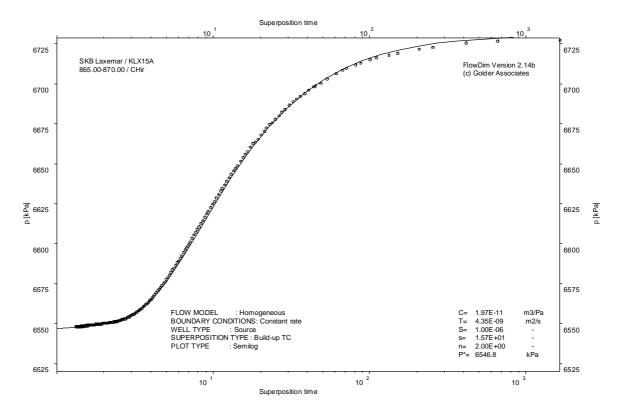


Pressure and flow rate vs. time; cartesian plot



Test: 865.00 – 870.00 m





CHI phase; log-log match

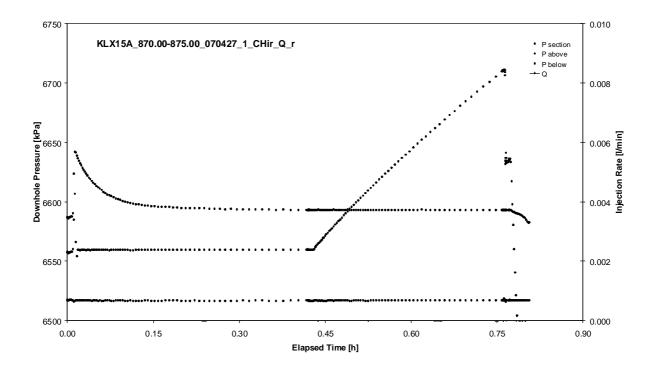
Page 2-112/4

Borehole: KLX15A

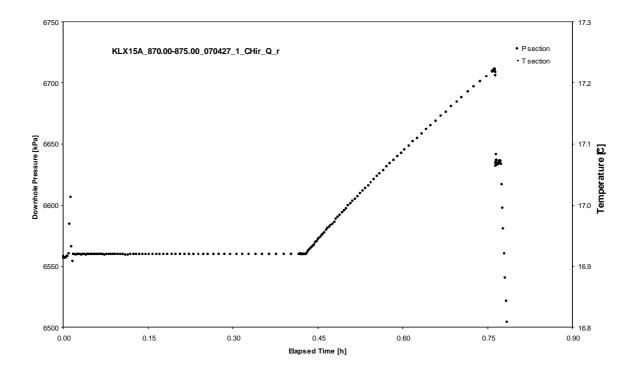
Test:  $865.00 - 870.00 \,\mathrm{m}$ 






CHIR phase; HORNER match

Test: 870.00 – 875.00 m


## **APPENDIX 2-113**

Test 870.00 – 875.00 m

Test: 870.00 – 875.00 m



Pressure and flow rate vs. time; cartesian plot



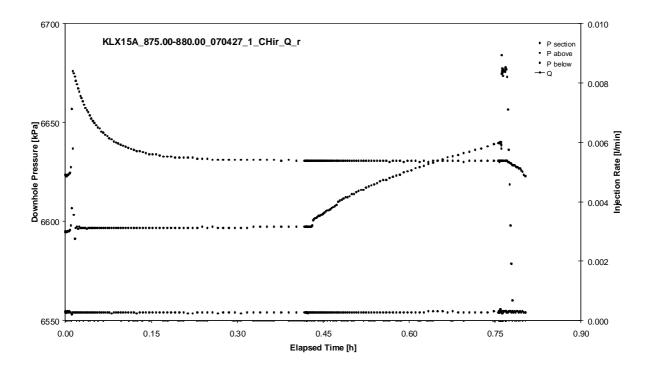
Test: 870.00 - 875.00 m

Not analysed

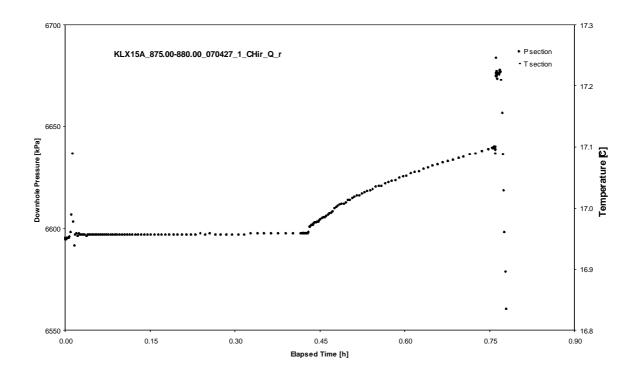
| Borehole: KLX15A<br>Test: 870.00 – 875.00 m |              | Page 2-113/4 |
|---------------------------------------------|--------------|--------------|
|                                             |              |              |
|                                             |              |              |
|                                             |              |              |
|                                             | Not analysed |              |
|                                             |              |              |
| CHIR phase; log-log match                   |              |              |
|                                             |              |              |
|                                             |              |              |
|                                             | Not analysed |              |
|                                             |              |              |
|                                             |              |              |

CHIR phase; HORNER match

Test: 875.00 – 880.00 m


# **APPENDIX 2-114**

Test 875.00 – 880.00 m


Page 2-114/2

Borehole: KLX15A

Test: 875.00 – 880.00 m



Pressure and flow rate vs. time; cartesian plot



Test: 875.00 – 880.00 m

Not analysed

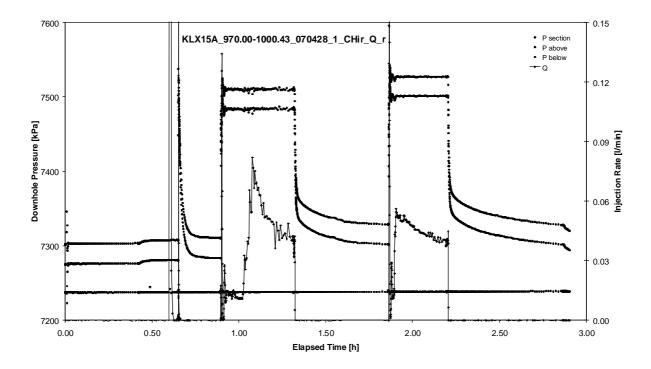
| Borehole: KLX15A<br>Test: 875.00 – 880.00 m |              | Page 2-114/4 |
|---------------------------------------------|--------------|--------------|
|                                             |              |              |
|                                             |              |              |
|                                             | Not analysed |              |
|                                             |              |              |
|                                             |              |              |
| CHIR phase; log-log match                   |              |              |
|                                             |              |              |
|                                             | Not analysed |              |
|                                             |              |              |
|                                             |              |              |

CHIR phase; HORNER match

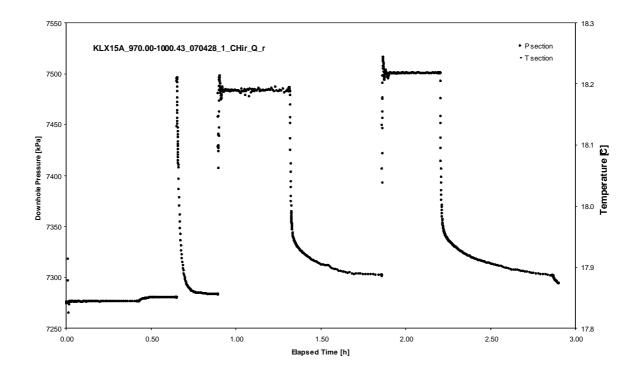
Borehole: KLX15A Page 2-115/1

Test: 970.00 – 1000.43 m

## **APPENDIX 2-115**


Test 970.00 – 1000.43 m

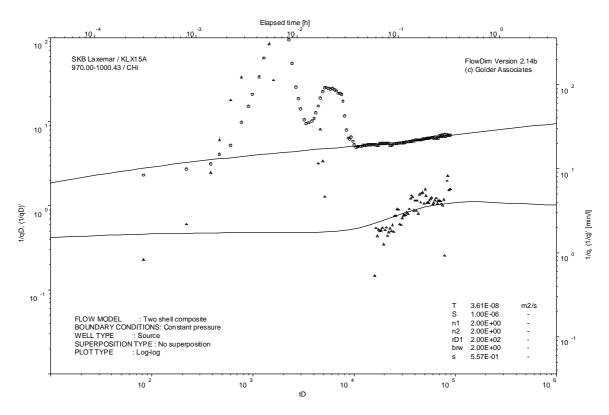
Analysis diagrams


Page 2-115/2

Borehole: KLX15A

Test: 970.00 – 1000.43 m

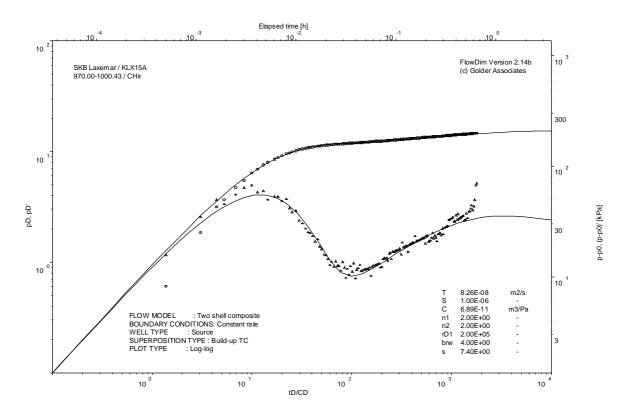



Pressure and flow rate vs. time; cartesian plot

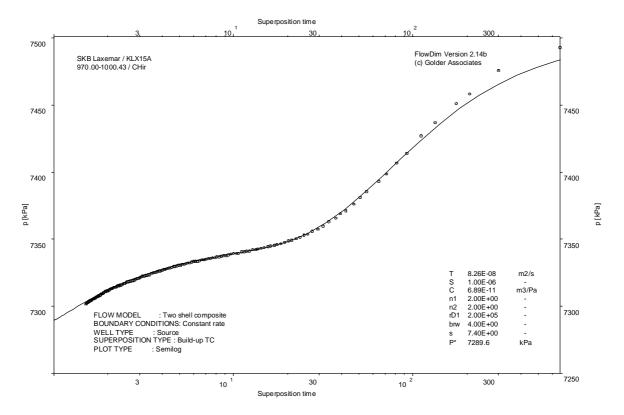


Interval pressure and temperature vs. time; cartesian plot

Borehole: KLX15A Page 2-115/3


Test: 970.00 – 1000.43 m



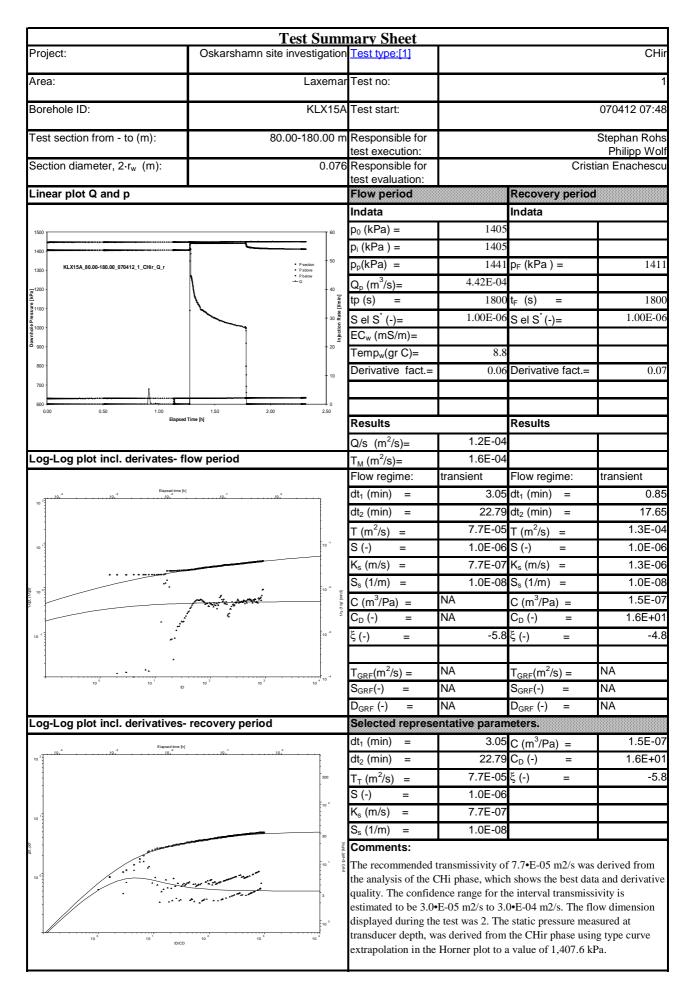

CHI phase; log-log match

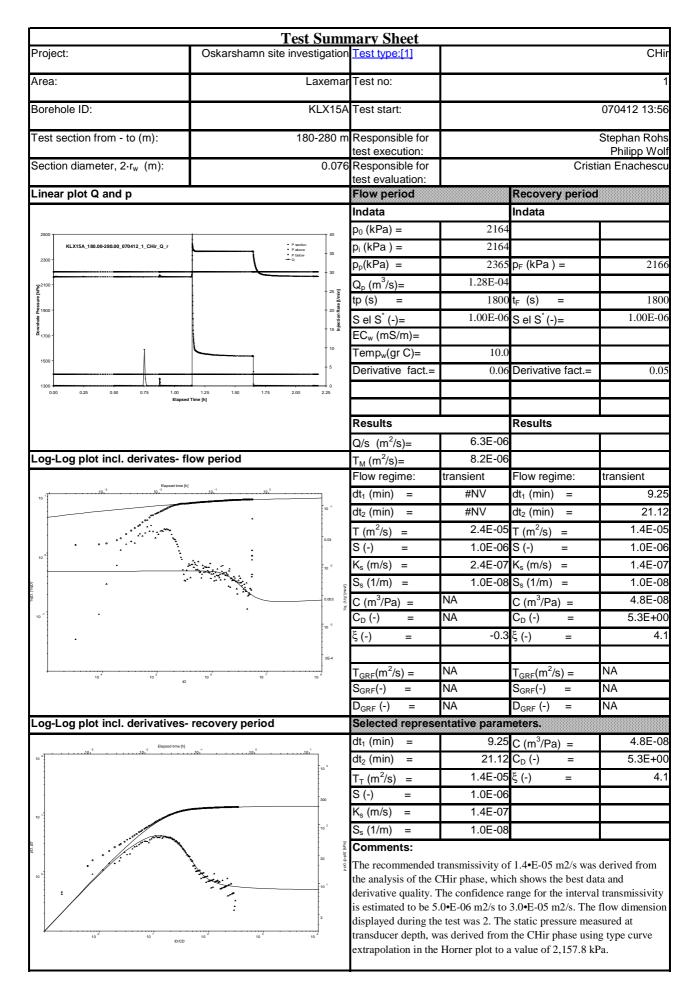
Borehole: KLX15A Page 2-115/4

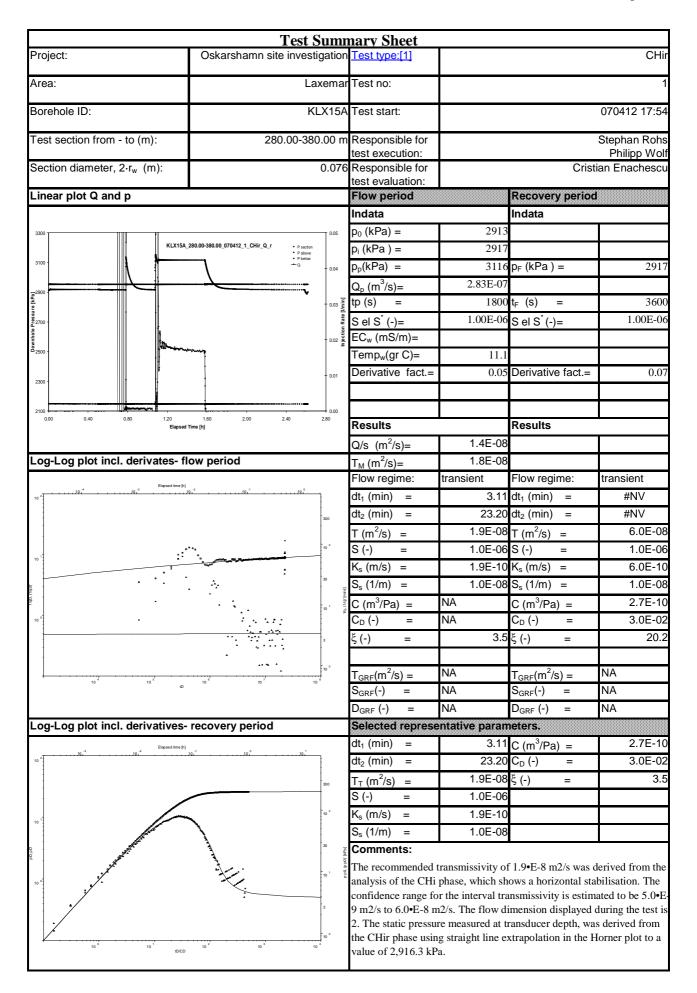
Test: 970.00 – 1000.43 m

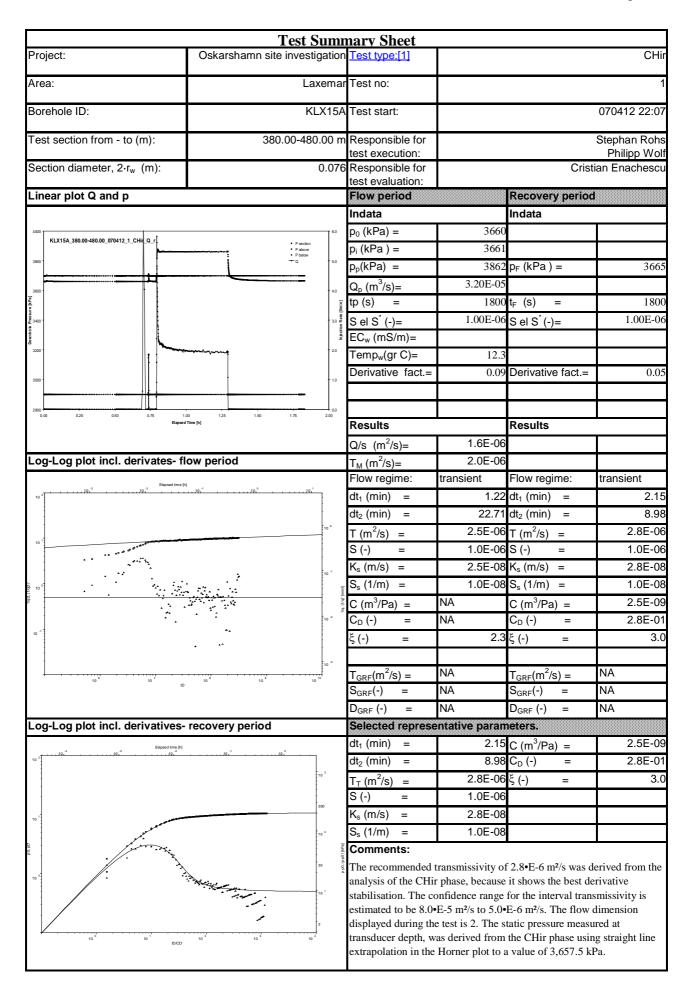


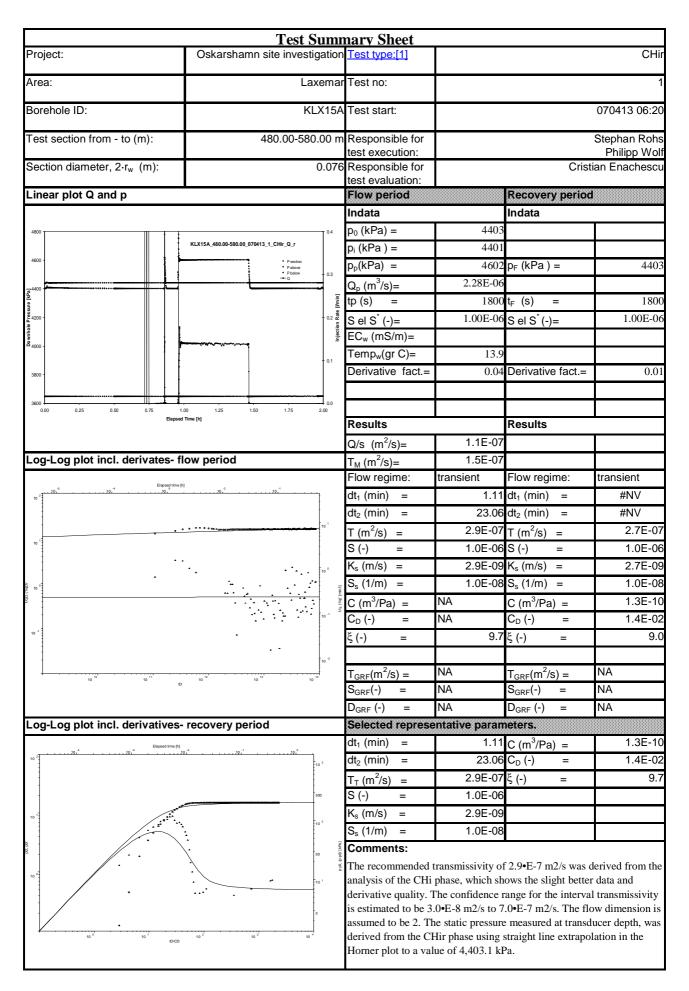
## CHIR phase; log-log match

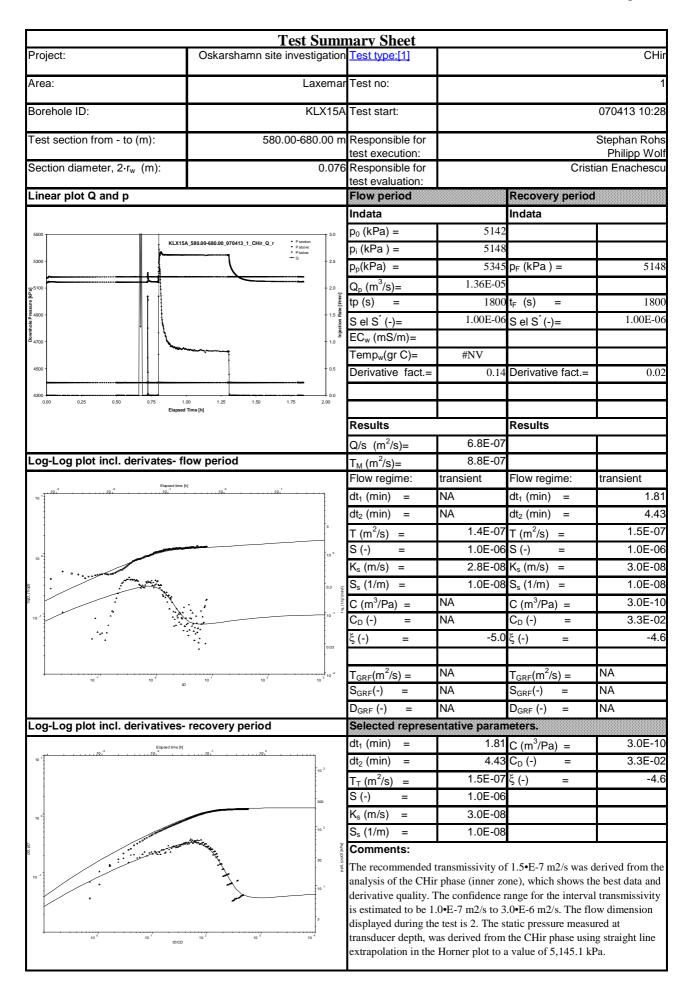


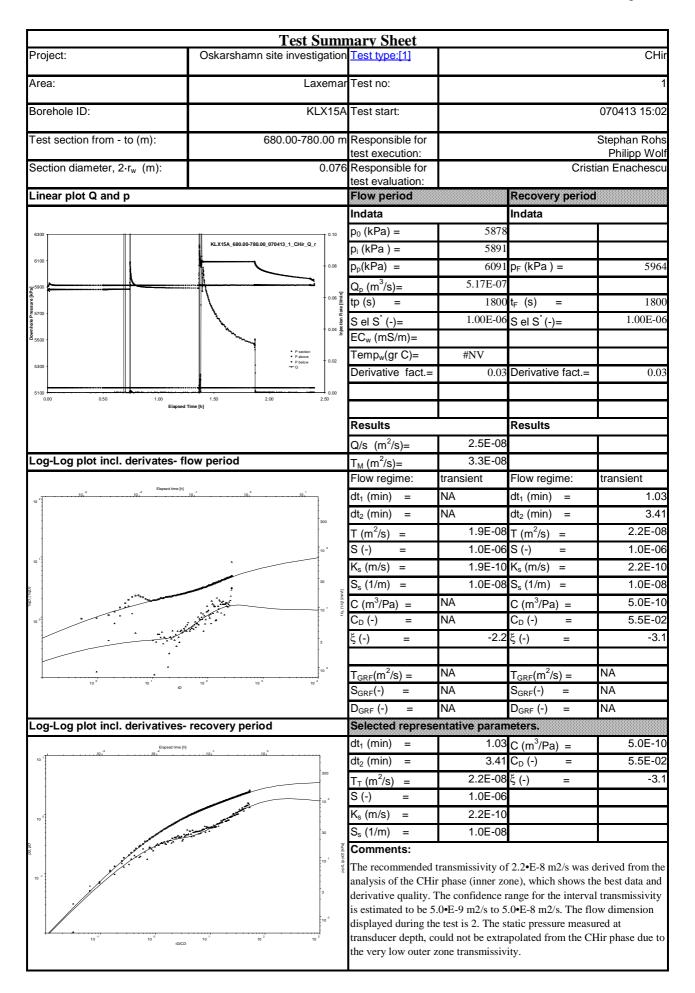


CHIR phase; HORNER match

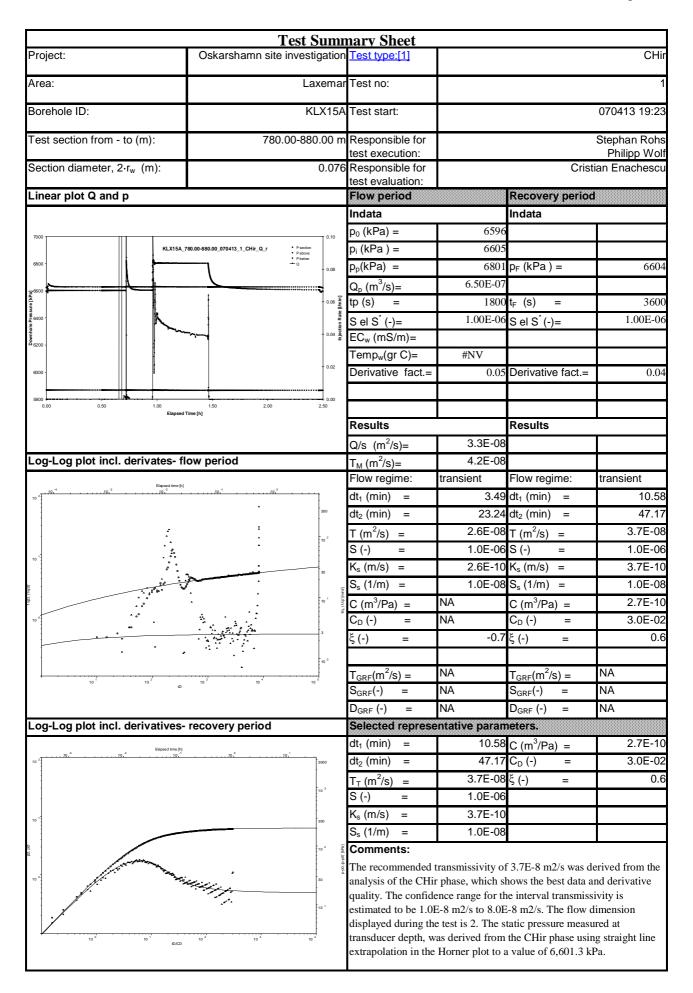

Borehole: KLX15A

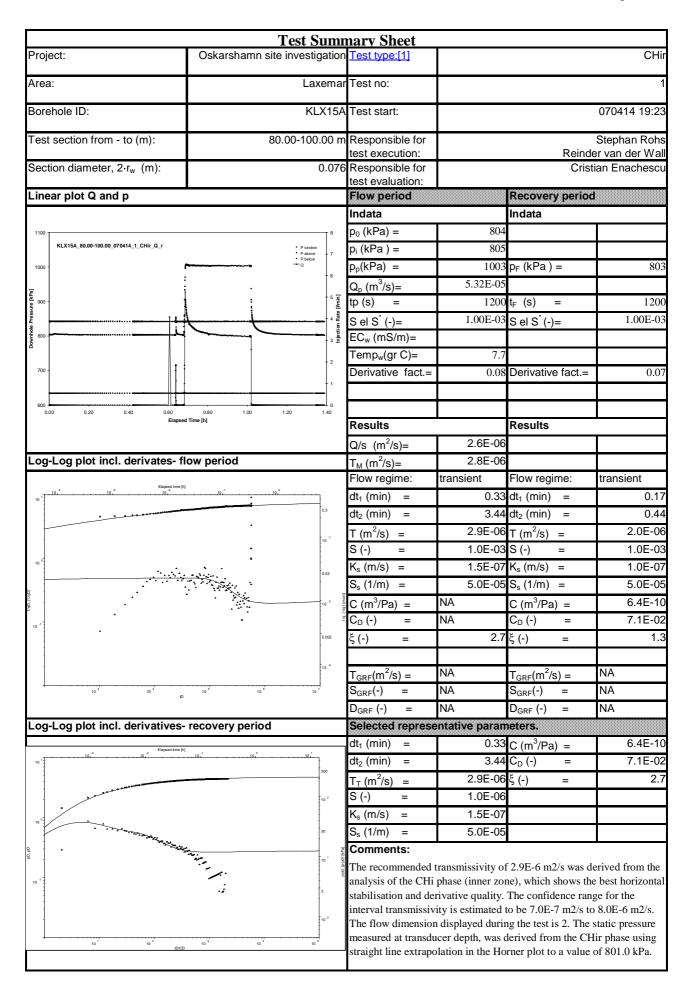

## **APPENDIX 3**

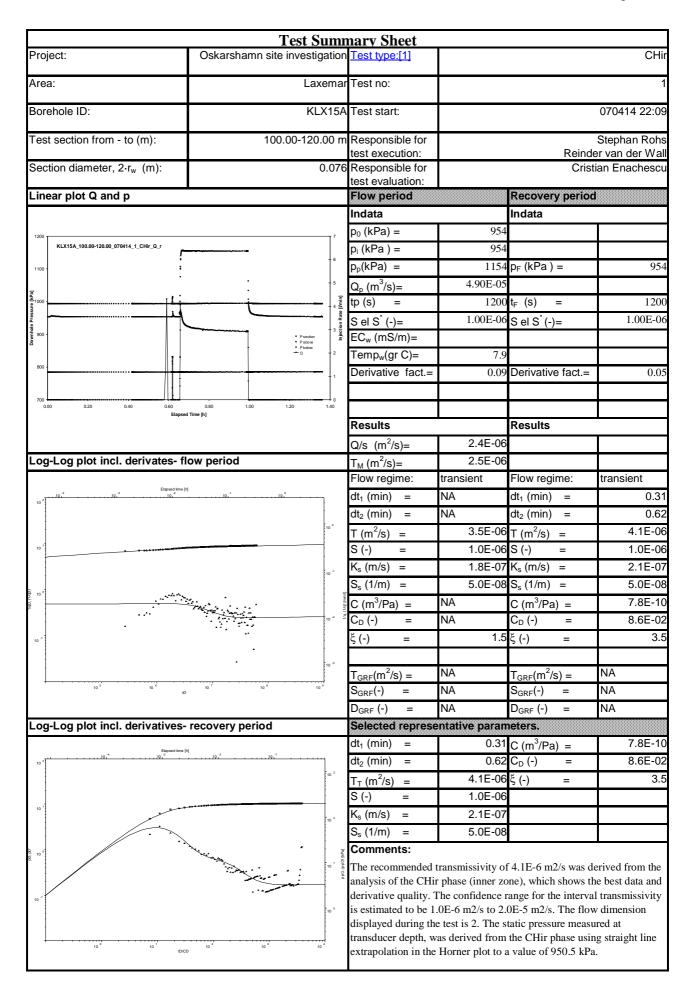

**Test Summary Sheets** 

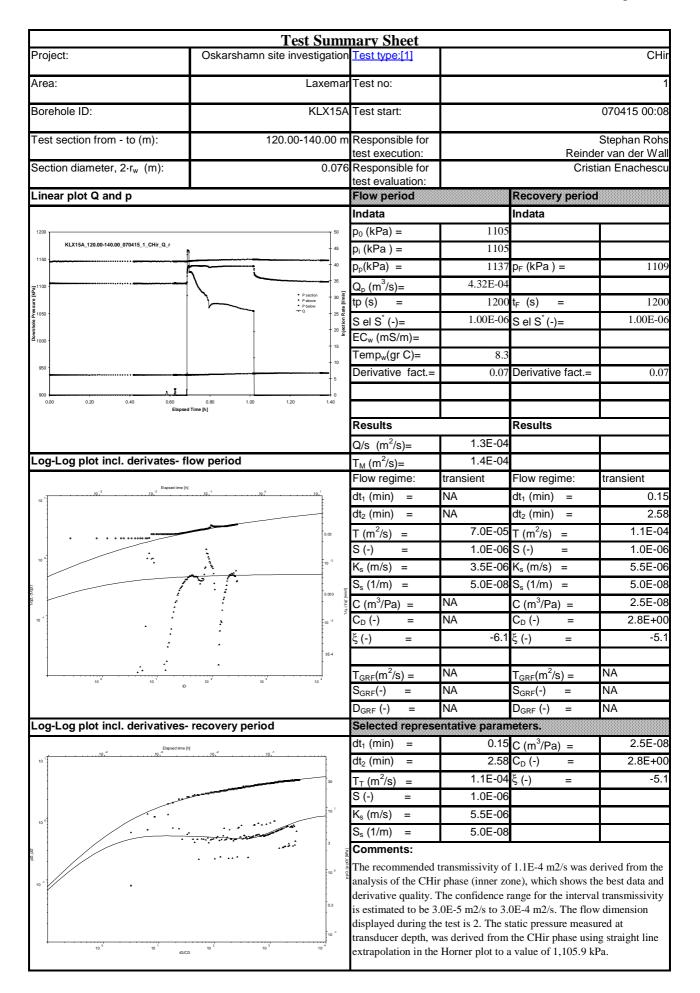


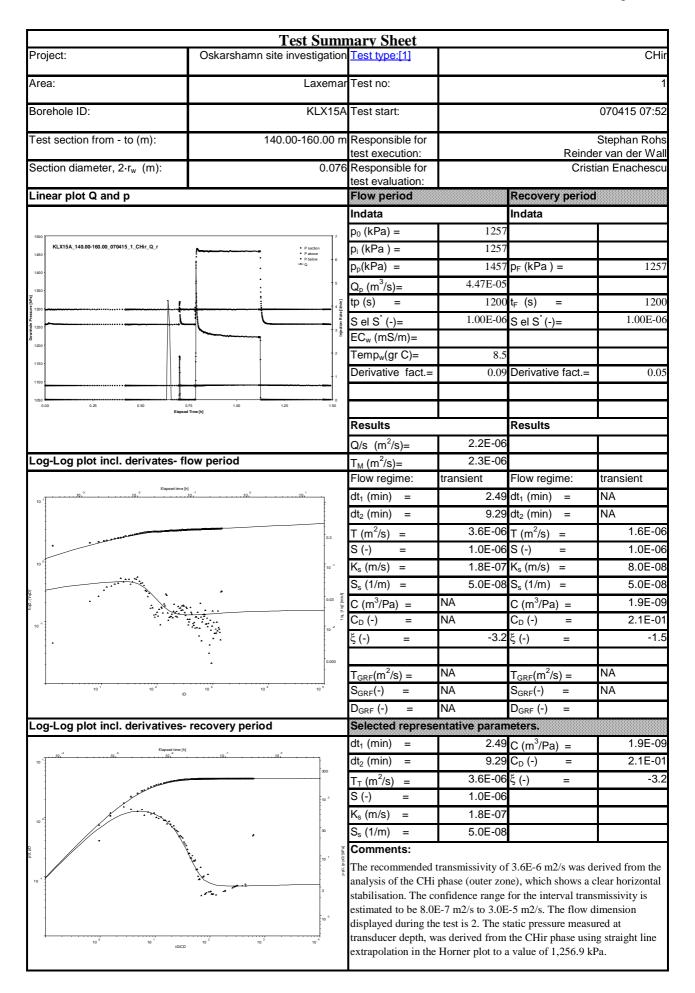



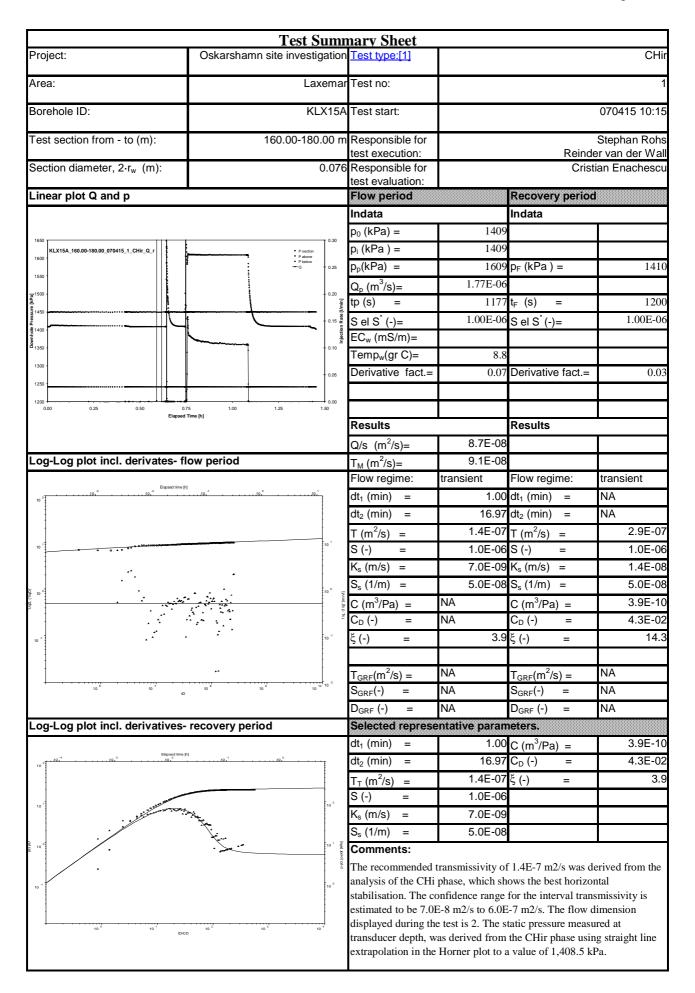



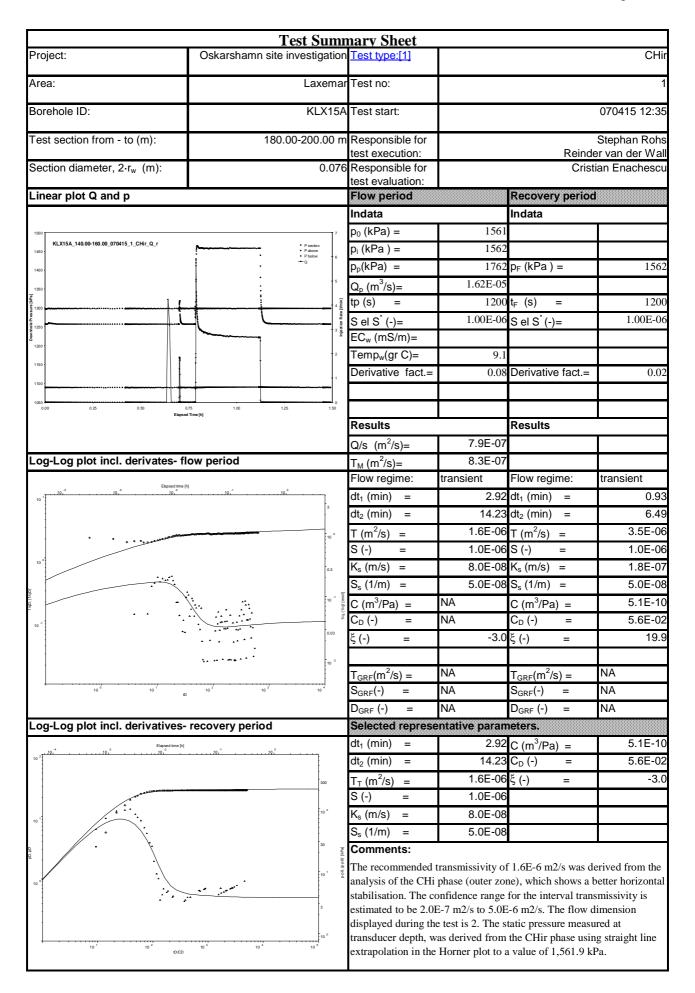



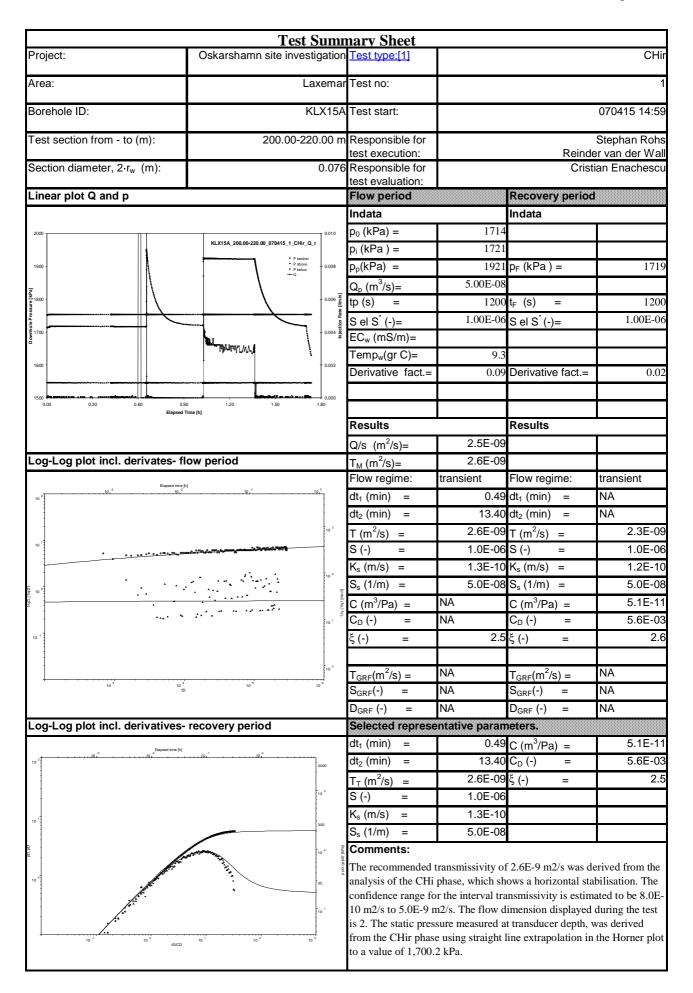



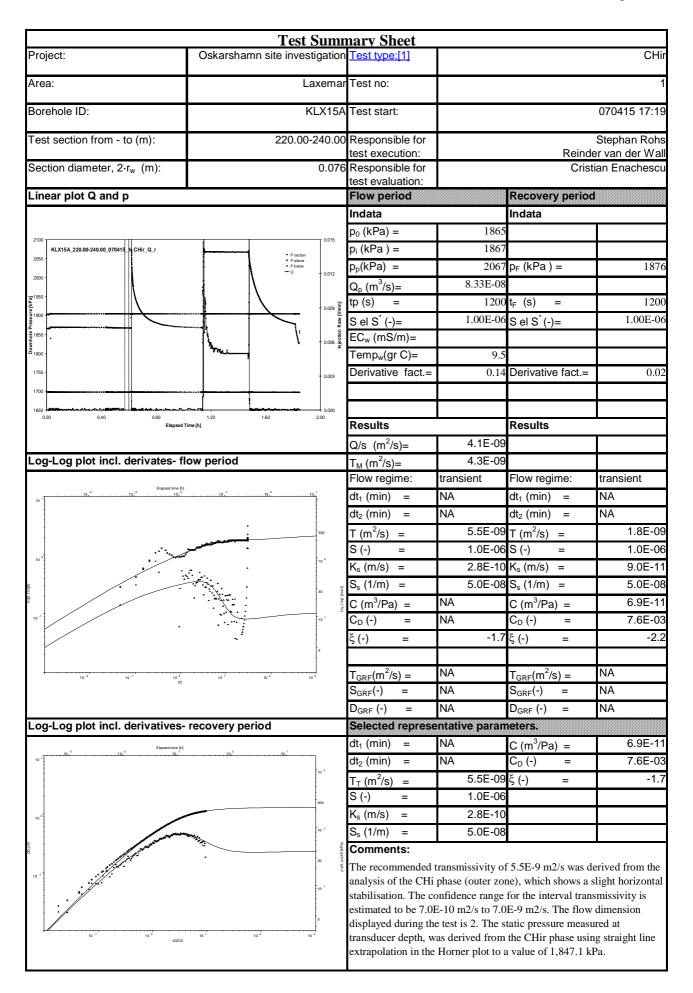



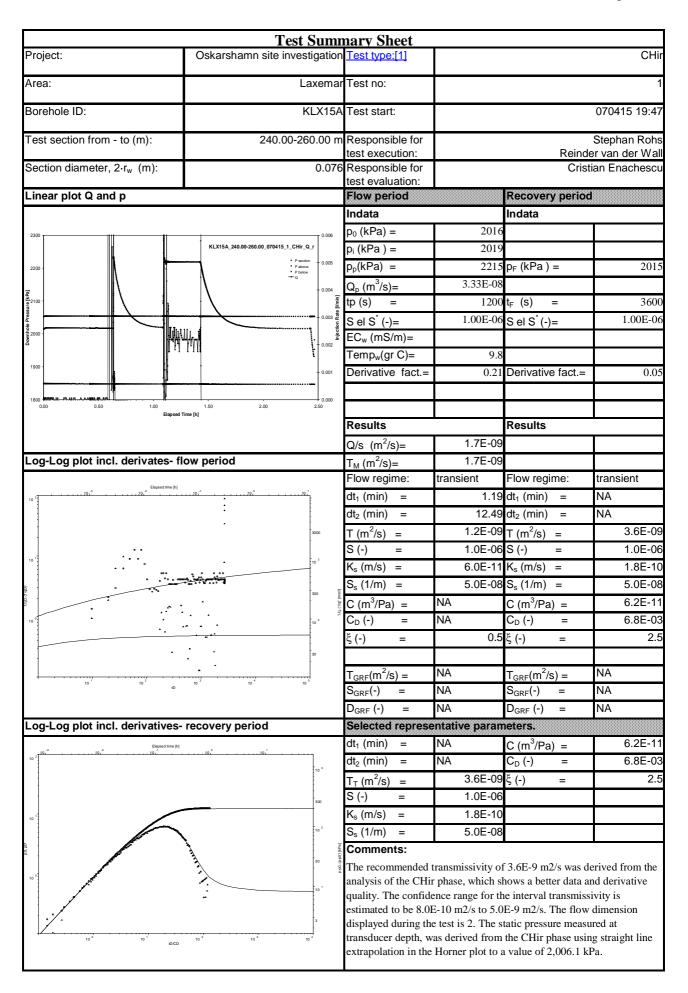



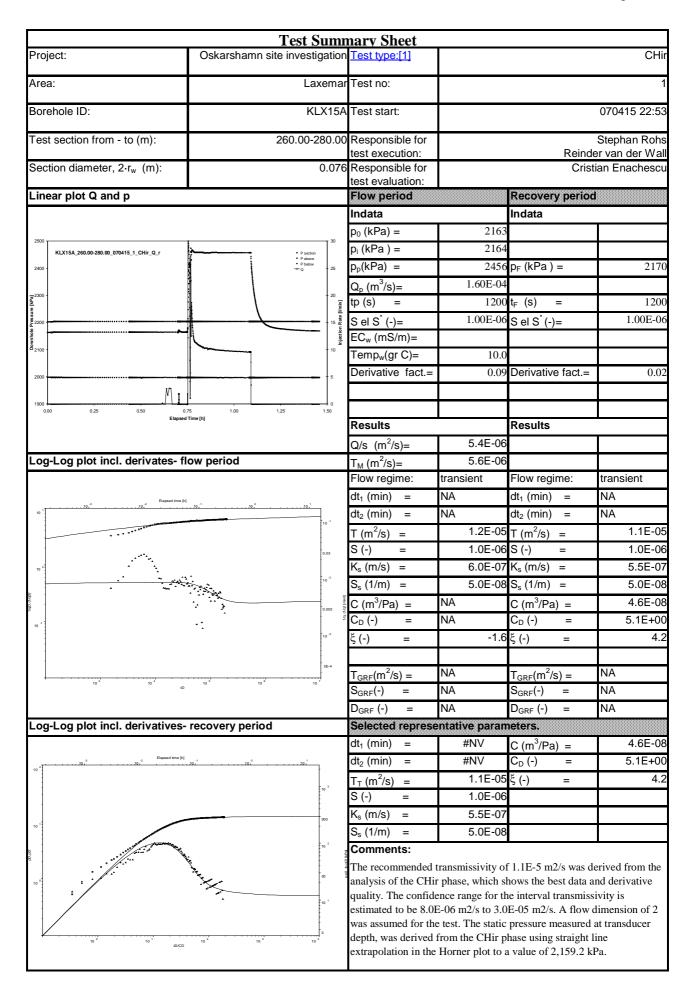



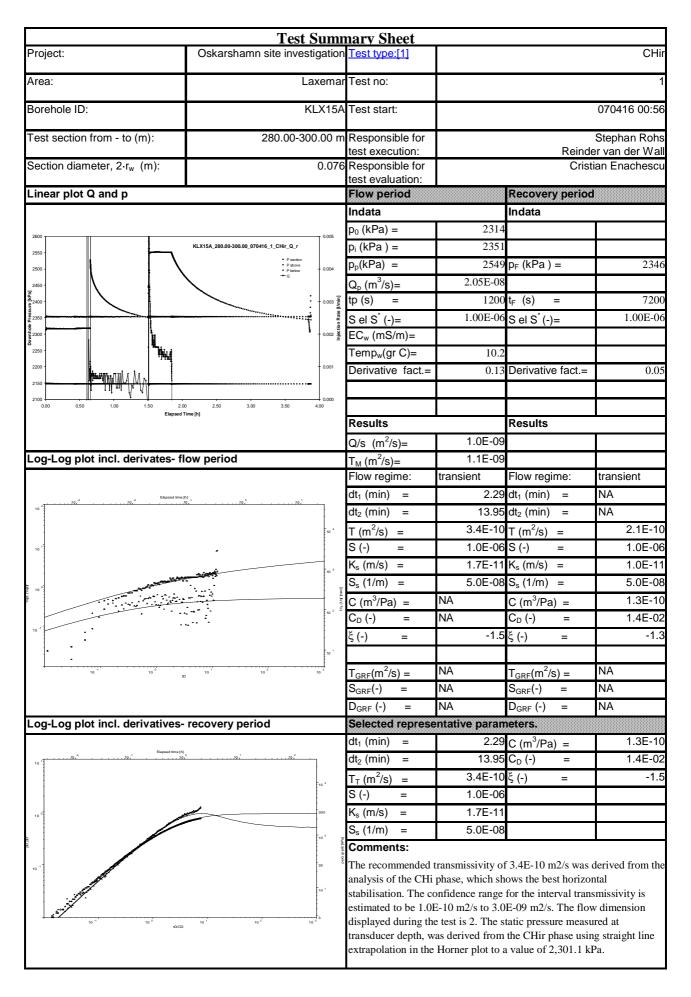



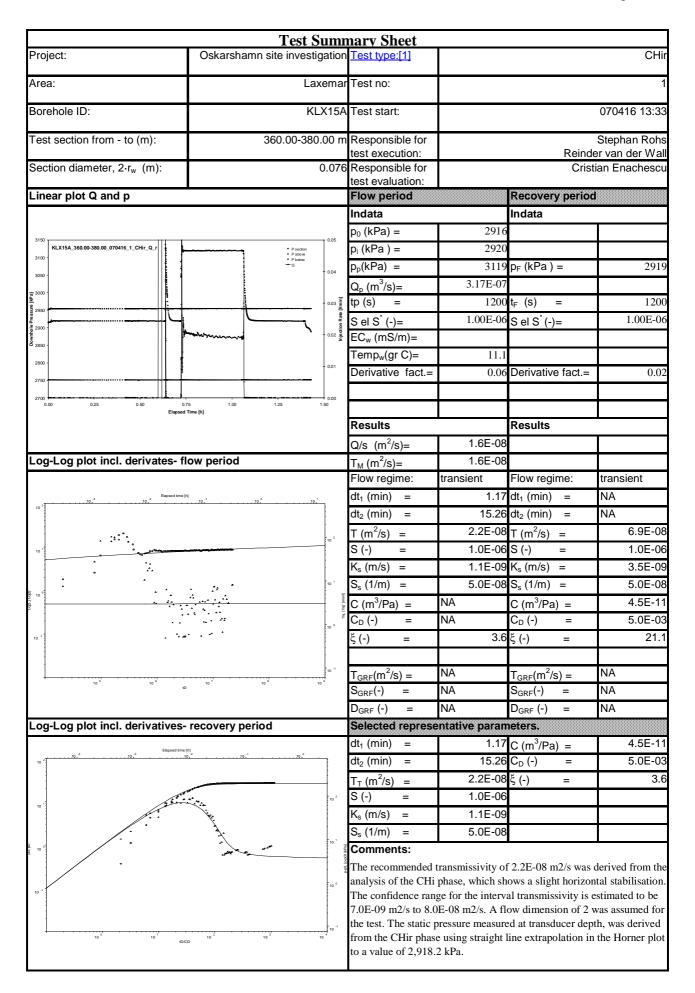



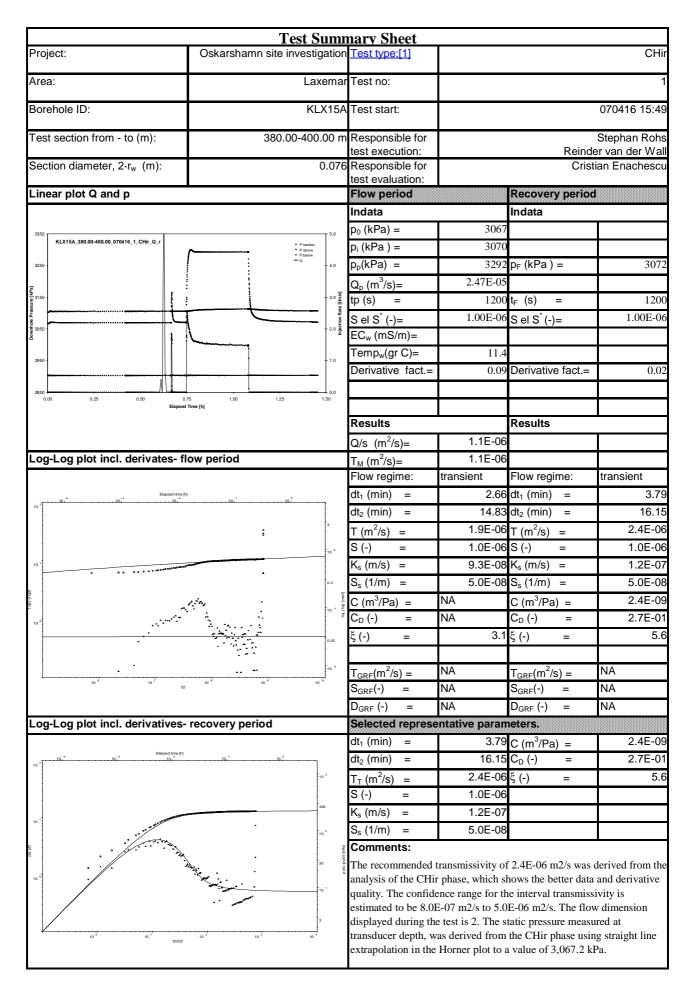









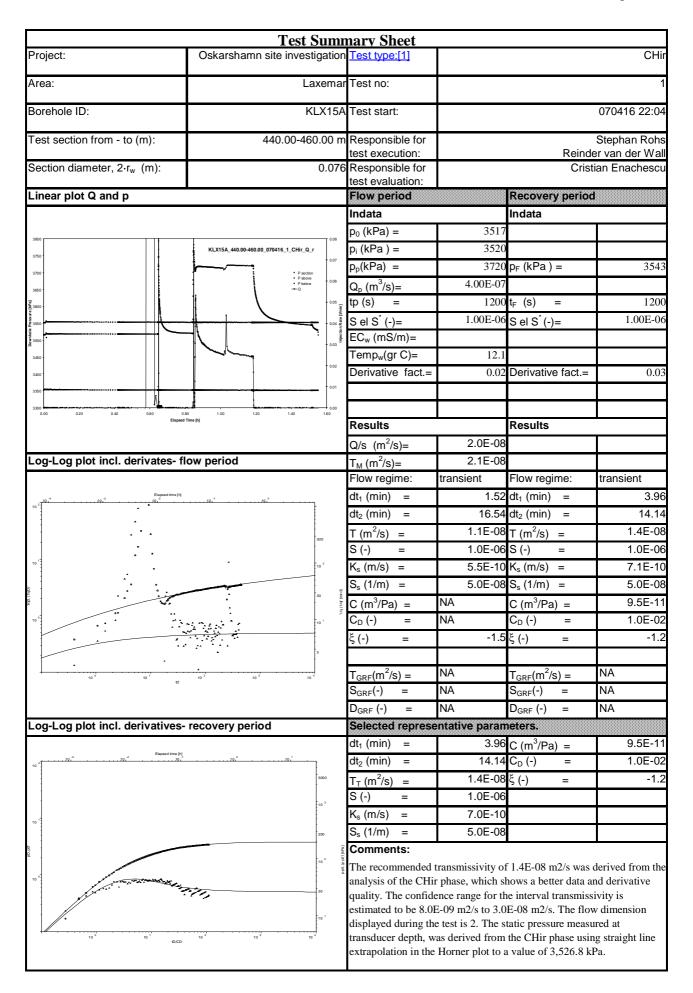



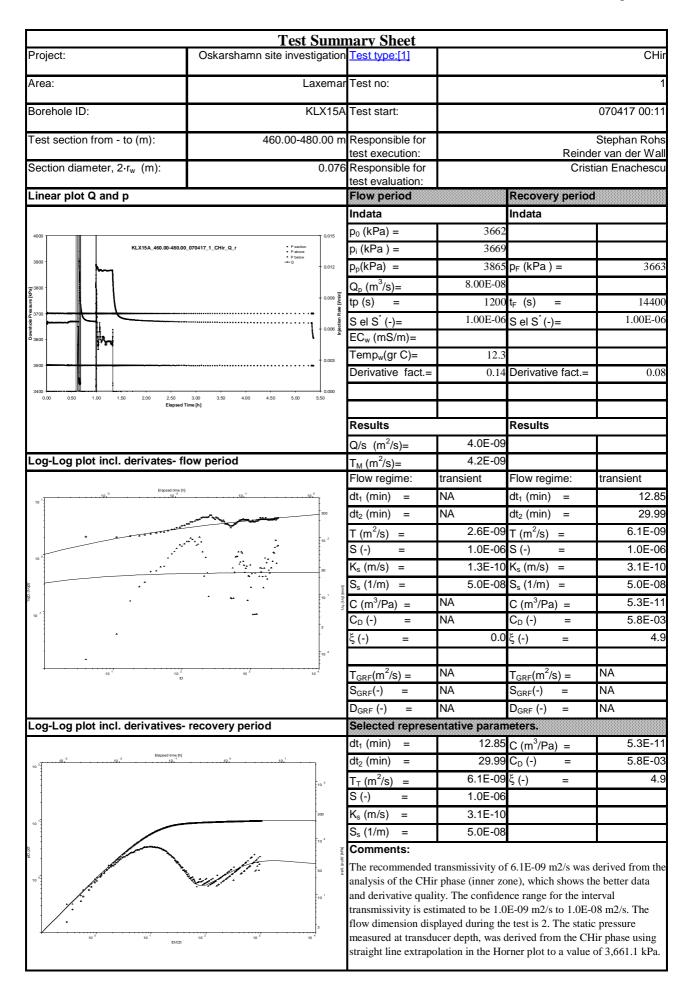





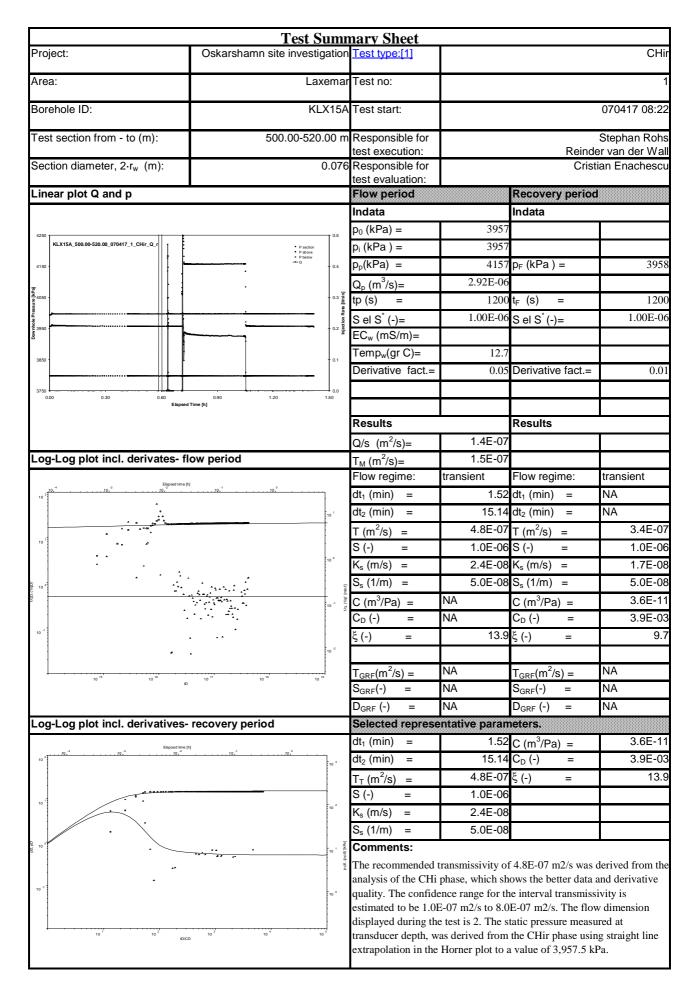
|                                         | Test Sur                        | mm             | nary Sheet                                           |                                           |                               |                  |
|-----------------------------------------|---------------------------------|----------------|------------------------------------------------------|-------------------------------------------|-------------------------------|------------------|
| Project:                                | Oskarshamn site investigation   |                | Test type:[1]                                        |                                           |                               | CHir             |
| Area:                                   | Laxer                           | mar            | Test no:                                             |                                           |                               | 1                |
| Borehole ID:                            | KLX15A                          |                | Test start:                                          | 070416 06:46                              |                               |                  |
| Test section from - to (m):             | 300.00-320.00 m                 |                |                                                      | Stephan Rohs                              |                               |                  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.0                             |                | test execution: Responsible for                      | Reinder van der Wal<br>Cristian Enachescu |                               |                  |
| occupit diamotor, 2 Tw (m).             | 0                               |                | test evaluation:                                     |                                           | Ono.                          | an Endonocca     |
| Linear plot Q and p                     |                                 |                | Flow period                                          |                                           | Recovery period               |                  |
|                                         |                                 |                | Indata                                               |                                           | Indata                        |                  |
| 2600                                    | P P portion                     | 1.010          | p <sub>0</sub> (kPa) =                               | 2462                                      |                               |                  |
| KLX15A_300.00-320.00_070416_1_CHir_Q_r  | P above<br>P Dalove<br>P Dalovi |                | p <sub>i</sub> (kPa ) =                              | NA                                        |                               |                  |
|                                         |                                 | 0.008          | p <sub>p</sub> (kPa) =                               | NA                                        | p <sub>F</sub> (kPa ) =       | NA               |
| 2500                                    |                                 |                | $Q_p (m^3/s) =$                                      | NA                                        |                               |                  |
| 2 2450 -                                | · † • ·                         | Rate [l/min]   | tp (s) =                                             | NA                                        | $t_F$ (s) =                   | NA               |
| 등<br>용<br>원<br>원                        |                                 | ly jection Bat | S el S <sup>*</sup> (-)=                             | NA                                        | S el S <sup>*</sup> (-)=      | NA               |
| »og                                     | 0.3                             |                | EC <sub>w</sub> (mS/m)=                              |                                           |                               |                  |
| 2350 -                                  |                                 | <u> </u>       | Temp <sub>w</sub> (gr C)=                            | 10.4                                      |                               |                  |
| 2300                                    |                                 | 1.002          | Derivative fact.=                                    | NA                                        | Derivative fact.=             | NA               |
| 2250                                    |                                 | 1.000          |                                                      |                                           |                               |                  |
| 0.00 0.15 0.30 0.<br>Elapsed            | 5 0.60 0.75 0.90                | -              |                                                      |                                           |                               |                  |
|                                         |                                 | ŀ              | Results                                              | 1                                         | Results                       | 1                |
|                                         |                                 | ŀ              | Q/s $(m^2/s)=$                                       | NA                                        |                               |                  |
| Log-Log plot incl. derivates- f         | low period                      |                | $T_M (m^2/s) =$                                      | NA                                        |                               |                  |
| 0 01                                    | •                               |                | Flow regime:                                         | transient                                 | Flow regime:                  | transient        |
|                                         |                                 | L              | $dt_1 \text{ (min)} =$                               | NA                                        | $dt_1 (min) =$                | NA               |
|                                         |                                 | L              | $dt_2 \text{ (min)} =$                               | NA                                        | $dt_2 \text{ (min)} =$        | NA               |
|                                         |                                 | F              | $T (m^2/s) =$                                        |                                           | $T (m^2/s) =$                 | NA               |
|                                         |                                 | -              | S (-) =                                              | NA                                        | S (-) =                       | NA               |
|                                         |                                 | -              | $K_s (m/s) =$                                        | NA                                        | $K_s (m/s) =$                 | NA               |
|                                         |                                 | L              | $S_s (1/m) =$                                        | NA                                        | $S_s(1/m) =$                  | NA               |
| Not A                                   | nalysed                         | L              | $C_s(1/111) = C_s(m^3/Pa) =$                         | NA                                        | $C (m^3/Pa) =$                | NA               |
|                                         |                                 | -              |                                                      |                                           | - ' - '                       |                  |
|                                         |                                 |                | $C_D(-) =$                                           | NA<br>NA                                  | $C_D(-) =$                    | NA<br>NA         |
|                                         |                                 | ľ              | ξ(-) =                                               | NA                                        | ξ(-) =                        | NA               |
|                                         |                                 | ŀ              | _ , 2, ,                                             | NT A                                      | _ , 2, ,                      | NI A             |
|                                         |                                 |                | $T_{GRF}(m^2/s) =$                                   | NA<br>NA                                  | $T_{GRF}(m^2/s) =$            | NA<br>NA         |
|                                         |                                 |                | $S_{GRF}(-) =$                                       | NA<br>NA                                  | $S_{GRF}(-) =$                | NA<br>NA         |
| log log platinal desireth               | receivem received               |                | D <sub>GRF</sub> (-) =                               | NA                                        | D <sub>GRF</sub> (-) =        | NA               |
| Log-Log plot incl. derivatives-         | recovery perioa                 | - 3            | Selected represe                                     |                                           |                               | INIA             |
|                                         |                                 | L              | dt <sub>1</sub> (min) =                              | NA<br>NA                                  | $C (m^3/Pa) =$                | NA               |
|                                         |                                 |                | $dt_2 (min) =$                                       | NA                                        | $C_D(-) =$                    | NA               |
|                                         |                                 |                | $T_T (m^2/s) =$                                      | 1.0E-11                                   | ξ (-) =                       | NA               |
|                                         |                                 | -              | S (-) =                                              | NA                                        |                               |                  |
|                                         |                                 |                | $K_s (m/s) =$                                        | NA                                        |                               | <u> </u>         |
|                                         |                                 |                | $S_s (1/m) =$                                        | NA                                        |                               | <u> </u>         |
|                                         |                                 |                | Comments: Based on the test re transmissivity is lov |                                           | ed packer complian<br>1 m2/s. | ce) the interval |
|                                         |                                 |                |                                                      |                                           |                               |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sumi           | nary Sheet                      |              |                                            |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|--------------|--------------------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                 |              |                                            | Pi              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | xemaı          | Test no:                        |              |                                            | 1               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Test start:                     | 070416 08:19 |                                            |                 |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 320 00-340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) ()() m       | Responsible for                 |              |                                            | Stephan Rohs    |
| rest section from to (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | test execution:                 |              | Reinde                                     | er van der Wall |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.076          | Responsible for                 |              | Crist                                      | ian Enachescu   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | test evaluation:<br>Flow period |              | Recovery period                            |                 |
| Linear plot & and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Indata                          | Indata       |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | p <sub>0</sub> (kPa) =          | 2612         | IIIdata                                    |                 |
| 2850 KLX15A 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00-340.00_070416_1_Pi_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.010          | $p_i(kPa) =$                    | 2620         |                                            | 1               |
| 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P above     P below     Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | $p_p(kPa) =$                    |              | p <sub>F</sub> (kPa ) =                    | 2631            |
| 2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.008        | •                               | NA           | ρ <sub>F</sub> (Ki α ) =                   | 2031            |
| <u>\$</u> 2700 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006          | $Q_{p} (m^{3}/s) = $ $tp (s) =$ |              | t <sub>F</sub> (s) =                       | 4860            |
| g 2650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rate [I/m      |                                 |              |                                            | 1.00E-06        |
| 2600 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 0.004 Per    | S el S* (-)=                    | 1.00E-06     | S el S <sup>*</sup> (-)=                   | 1.00E-06        |
| § 2550 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =              | EC <sub>w</sub> (mS/m)=         | 10.5         |                                            |                 |
| 2500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002          | Temp <sub>w</sub> (gr C)=       | 10.7         |                                            |                 |
| 2450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Derivative fact.=               | NA           | Derivative fact.=                          | 0.02            |
| 2400 0.00 0.25 0.50 0.75 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.25 1.50 1.75 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000          |                                 |              |                                            |                 |
| 0.00 0.29 0.30 0.75 1.00 Elapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.25           |                                 |              |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Results                         |              | Results                                    |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Q/s $(m^2/s)=$                  | NA           |                                            |                 |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | $T_M (m^2/s) =$                 | NA           |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Flow regime:                    | transient    | Flow regime:                               | transient       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_1$ (min) =                  | NA           | $dt_1$ (min) =                             | 1.48            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_2$ (min) =                  | NA           | $dt_2$ (min) =                             | 8.63            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $T (m^2/s) =$                   | NA           | $T (m^2/s) =$                              | 4.4E-10         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S (-) =                         | NA           | S (-) =                                    | 1.0E-06         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $K_s$ (m/s) =                   | NA           | $K_s$ (m/s) =                              | 2.2E-11         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $S_s (1/m) =$                   | NA           | $S_s (1/m) =$                              | 5.0E-08         |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | $C (m^3/Pa) =$                  | NA           | $C (m^3/Pa) =$                             | 4.5E-11         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $C_D(-) =$                      | NA           | $C_D$ (-) =                                | 5.0E-03         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ξ(-) =                          | NA           | ξ(-) =                                     | -0.6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 3 ( )                           |              | 3 ( )                                      | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $T_{GRF}(m^2/s) =$              | NA           | $T_{GRF}(m^2/s) =$                         | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $S_{GRF}(-) =$                  | NA           | $S_{GRF}(-) =$                             | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $D_{GRF}(\cdot) =$              | NA           | $D_{GRF}$ (-) =                            | NA              |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Selected represe                |              |                                            |                 |
| Log Log plot mon derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Todovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_1$ (min) =                  |              | C (m <sup>3</sup> /Pa) =                   | 4.5E-11         |
| Elapsed time (* 10, 2 10, 1 10, 2 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10, 1 10 | o)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _              | $dt_1 (min) =$ $dt_2 (min) =$   |              | $C_D(-) =$                                 | 5.0E-03         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 | 4.4E-10      |                                            | -0.6            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 °           | $T_T (m^2/s) =$                 |              | ` '                                        | -0.0            |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | S (-) =                         | 1.0E-06      |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $K_s (m/s) =$                   | 2.2E-11      |                                            | ļ               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state of t | 10 -1          | S <sub>s</sub> (1/m) =          | 5.0E-08      |                                            |                 |
| a 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND THE PROPERTY OF THE PARTY O | ad payrox      | Comments:                       |              | E 4 ATE 10 27                              | Juniora J. C    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 2 0         |                                 |              | f 4.4E-10 m2/s was on the confidence rate. |                 |
| 10 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |              | to be 1.0E-10 to 8.0                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | analysis was conduc             |              |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 -3          |                                 | =            |                                            |                 |
| 10 10 10 1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 <sup>2</sup> 10 <sup>3</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o <sup>4</sup> |                                 |              |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |              |                                            |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                               |              |                                            |                 |


|                                         | Test S                    | umn           | nary Sheet                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|-----------------------------------------|---------------------------|---------------|----------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Project:                                | Oskarshamn site investiç  | gation        | Test type:[1]                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHi               |  |
| Area:                                   | Lax                       | cemar         | Test no:                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| Borehole ID:                            | KLX15A                    |               | Test start:                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 070416 11:08      |  |
| Test section from - to (m):             | 340 00-360                | 00 m          | Responsible for                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stephan Roh       |  |
| rest section from to (m).               |                           |               | test execution:                              | Reinder van der Wa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| Section diameter, 2·r <sub>w</sub> (m): |                           | 0.076         | Responsible for                              |                    | Cristian Enacheso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
| Linear plot Q and p                     |                           |               | test evaluation: Flow period                 |                    | Recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 |  |
| Emical plot & and p                     |                           |               | Indata                                       |                    | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |
| 2900                                    |                           | ¬ 0.010       | p <sub>0</sub> (kPa) =                       | 2764               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| KLX15A_340.00-360.00_070416_1_CHir_Q_r  | P section P above P below |               | $p_0(RPa) =$                                 | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>          |  |
| 2850                                    | P above     P below     Q | - 0.008       | $p_i(kPa) = p_p(kPa) =$                      | NA<br>NA           | n (kBa ) –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                |  |
| 2800                                    |                           |               |                                              |                    | p <sub>F</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                |  |
| <u> </u>                                |                           | 0.006         | $Q_p (m^3/s) =$                              | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.4              |  |
| 2 2750 -                                |                           | Rate [I/m in] | tp (s) =                                     | NA                 | t <sub>F</sub> (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                |  |
| 2700 -                                  |                           | njection F    | S el S* (-)=                                 | NA                 | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                |  |
| 2650 <b>-</b>                           |                           | _             | EC <sub>w</sub> (mS/m)=                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           | - 0.002       | Temp <sub>w</sub> (gr C)=                    | 10.9               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| 2600                                    |                           |               | Derivative fact.=                            | NA                 | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                |  |
| 2550                                    |                           | 0.000         |                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| 0.00 0.15 0.30 0.45<br>Elapsed Ti       |                           | 0.90          |                                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | Results                                      |                    | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |  |
|                                         |                           |               | Q/s $(m^2/s)=$                               | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| og-Log plot incl. derivates- flo        | ow period                 |               | $T_M (m^2/s) =$                              | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | Flow regime:                                 | transient          | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | transient         |  |
|                                         |                           |               | $dt_1$ (min) =                               | NA                 | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                |  |
|                                         |                           |               | $dt_2$ (min) =                               | NA                 | $dt_2$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                |  |
|                                         |                           |               | $T (m^2/s) =$                                |                    | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                |  |
|                                         |                           |               | S (-) =                                      | NA                 | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                |  |
|                                         |                           |               | $K_s (m/s) =$                                | NA                 | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                |  |
|                                         |                           |               | $S_s (1/m) =$                                | NA                 | $S_s(1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                |  |
| Not An                                  | alysed                    |               | $C (m^3/Pa) =$                               | NA                 | $C_s(1/111) = C_s(1/111) = C_s$ | NA                |  |
|                                         |                           |               | ,                                            | NA                 | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                |  |
|                                         |                           |               | 5 ( )                                        | NA                 | $C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA          |  |
|                                         |                           |               | ξ(-) =                                       | NA                 | ξ (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                |  |
|                                         |                           |               | _ 2                                          | NY A               | _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NT A              |  |
|                                         |                           |               | $T_{GRF}(m^2/s) =$                           | NA                 | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                |  |
|                                         |                           |               | $S_{GRF}(-) =$                               | NA                 | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                |  |
|                                         |                           |               | D <sub>GRF</sub> (-) =                       | NA                 | D <sub>GRF</sub> (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                |  |
| Log-Log plot incl. derivatives-         | recovery period           |               | Selected repres                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | $dt_1$ (min) =                               | NA                 | $C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                |  |
|                                         |                           |               | $dt_2$ (min) =                               | NA                 | $C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                |  |
|                                         |                           |               | $T_T (m^2/s) =$                              | 1.0E-11            | ξ (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                |  |
|                                         |                           |               | S (-) =                                      | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | $K_s$ (m/s) =                                | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
| Not Analysed                            |                           |               | $S_s (1/m) =$                                | NA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | Comments:                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |
|                                         |                           |               | Based on the test re<br>transmissivity is lo |                    | ged packer complian<br>I m2/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ice) the interval |  |





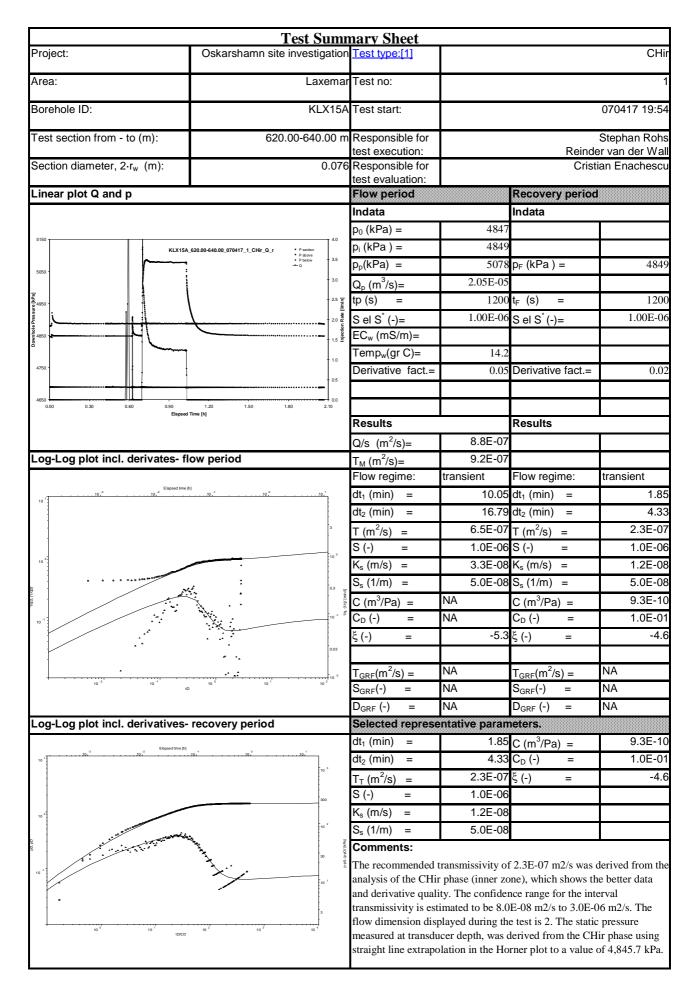

|                                         | Test Si                    | ıımr                                          | nary Sheet                       |                 |                                   |                 |  |
|-----------------------------------------|----------------------------|-----------------------------------------------|----------------------------------|-----------------|-----------------------------------|-----------------|--|
| Project:                                | Oskarshamn site investig   |                                               |                                  |                 |                                   | CHir            |  |
| Area:                                   | l ax                       | emar                                          | Test no:                         |                 |                                   | 1               |  |
| rii oa.                                 | Lax                        | oma                                           | root no.                         |                 |                                   |                 |  |
| Borehole ID:                            | KLX                        | X15A                                          | Test start:                      |                 |                                   | 070416 19:54    |  |
| Test section from - to (m):             | 420.00-440.                | 00 m                                          | Responsible for                  |                 |                                   | Stephan Rohs    |  |
|                                         |                            |                                               | test execution:                  |                 |                                   | er van der Wall |  |
| Section diameter, 2·r <sub>w</sub> (m): | (                          | 0.076                                         | Responsible for test evaluation: |                 | Crist                             | ian Enachescu   |  |
| Linear plot Q and p                     |                            |                                               | Flow period                      |                 | Recovery period                   |                 |  |
|                                         |                            |                                               | Indata                           |                 | Indata                            |                 |  |
|                                         |                            |                                               | p <sub>0</sub> (kPa) =           | 3369            |                                   |                 |  |
| KLX15A_420.00-440.00_070416_1_CHir_Q_r  | • P section                | 0.10                                          | p <sub>i</sub> (kPa ) =          | NA              |                                   |                 |  |
| 3450 -                                  | P socion P shove P below Q | 0.08                                          | $p_p(kPa) =$                     | NA              | p <sub>F</sub> (kPa ) =           | NA              |  |
| _2400                                   | <u> </u>                   |                                               | $Q_p (m^3/s) =$                  | NA              |                                   |                 |  |
| R3400<br>B4<br>E                        |                            | 0.06 [wiw]                                    | tp (s) =                         | NA              | $t_F$ (s) =                       | NA              |  |
| 8 3350 - •                              | Ÿ                          | ion Rate                                      | S el S <sup>*</sup> (-)=         | NA              | S el S <sup>*</sup> (-)=          | NA              |  |
| Q 3300 -                                |                            | 0.04                                          | EC <sub>w</sub> (mS/m)=          |                 |                                   |                 |  |
|                                         |                            |                                               | Temp <sub>w</sub> (gr C)=        | 11.8            |                                   |                 |  |
| 3250 -                                  |                            | 0.02                                          | Derivative fact.=                | NA              | Derivative fact.=                 | NA              |  |
| 3200                                    |                            | 0.00                                          |                                  |                 |                                   |                 |  |
| 0.00 0.15 0.30 0.4<br>Elapsed           |                            | 0.90                                          | _                                |                 | _                                 |                 |  |
|                                         |                            |                                               | Results                          | l               | Results                           |                 |  |
|                                         |                            |                                               | Q/s $(m^2/s)=$                   | NA              |                                   |                 |  |
| Log-Log plot incl. derivates- fl        | ow period                  |                                               | $T_M (m^2/s) =$                  | NA              | <u> </u>                          | t====!==t       |  |
|                                         |                            |                                               | Flow regime:                     | transient<br>NA | Flow regime:                      | transient<br>NA |  |
|                                         |                            |                                               | $dt_1 (min) =$                   | NA<br>NA        | $dt_1 (min) =$                    | NA<br>NA        |  |
|                                         |                            |                                               | $dt_2 (min) =$                   | NA<br>1.00E-11  | $dt_2 (min) =$                    | NA<br>NA        |  |
|                                         |                            |                                               | $T (m^2/s) =$                    | 1.00E-11        | T (m2/s) = S (-) =                | NA<br>NA        |  |
|                                         |                            |                                               | $S(-) = K_s(m/s) =$              | NA<br>NA        | $S(-) = K_s(m/s) =$               | NA<br>NA        |  |
|                                         |                            |                                               | $S_s (1/m) =$                    | NA<br>NA        | $S_s(11/s) = S_s(1/m) = S_s(1/m)$ | NA<br>NA        |  |
| Not Ar                                  | aalysed                    |                                               | $C (m^3/Pa) =$                   | NA              | $C (m^3/Pa) =$                    | NA              |  |
|                                         |                            |                                               |                                  | NA              | $C_D(-) =$                        | NA              |  |
|                                         |                            |                                               | ξ(-) =                           | NA              | ξ(-) =                            | NA              |  |
|                                         |                            |                                               | 5() -                            |                 | 5() -                             |                 |  |
|                                         |                            |                                               | $T_{GRF}(m^2/s) =$               | NA              | $T_{GRF}(m^2/s) =$                | NA              |  |
|                                         |                            |                                               | $S_{GRF}(-) =$                   | NA              | $S_{GRF}(-) =$                    | NA              |  |
|                                         |                            |                                               | D <sub>GRF</sub> (-) =           | NA              | D <sub>GRF</sub> (-) =            | NA              |  |
| Log-Log plot incl. derivatives-         | recovery period            |                                               | Selected represe                 |                 |                                   |                 |  |
|                                         | <u> </u>                   |                                               | $dt_1 \text{ (min)} =$           | NA              | C (m <sup>3</sup> /Pa) =          | NA              |  |
|                                         |                            |                                               | $dt_2$ (min) =                   | NA              | $C_D(-) =$                        | NA              |  |
|                                         |                            |                                               | $T_T (m^2/s) =$                  | 1.00E-11        | ξ (-) =                           | NA              |  |
|                                         |                            |                                               |                                  | NA              |                                   |                 |  |
|                                         |                            |                                               | $K_s$ (m/s) =                    | NA              |                                   |                 |  |
|                                         |                            |                                               |                                  | NA              |                                   |                 |  |
| Not Analysed                            |                            |                                               | Comments:                        |                 |                                   |                 |  |
|                                         |                            | Based on the test re<br>transmissivity is lov |                                  |                 | ce) the interval                  |                 |  |
|                                         |                            |                                               |                                  |                 |                                   |                 |  |





|                                         | Test Sur                    | nmary Sheet                                   |                                      |                                   |                  |  |  |
|-----------------------------------------|-----------------------------|-----------------------------------------------|--------------------------------------|-----------------------------------|------------------|--|--|
| Project:                                | Oskarshamn site investigati |                                               |                                      |                                   | CHir             |  |  |
| Area:                                   | Laxem                       | nar Test no:                                  |                                      |                                   | 1                |  |  |
|                                         |                             |                                               |                                      |                                   |                  |  |  |
| Borehole ID:                            | KLX1                        | 5A Test start:                                |                                      | 070417 06:50                      |                  |  |  |
| Test section from - to (m):             | 480.00-500.00               | m Responsible for                             |                                      |                                   | Stephan Rohs     |  |  |
|                                         |                             | test execution:                               | Reinder van der Wal                  |                                   |                  |  |  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.0                         | 76 Responsible for test evaluation:           |                                      | Crist                             | ian Enachescu    |  |  |
| Linear plot Q and p                     |                             | Flow period                                   | Recovery period                      |                                   |                  |  |  |
|                                         |                             | Indata                                        |                                      | Indata                            |                  |  |  |
| 3950                                    | 0.01                        | p <sub>0</sub> (kPa) =                        | 3808                                 |                                   |                  |  |  |
| KLX15A_480.00-500.00_070417_1_CHir_Q_r  | P section P above P below   | p <sub>i</sub> (kPa ) =                       | NA                                   |                                   |                  |  |  |
|                                         | 0.00                        | $p_p(kPa) =$                                  | NA                                   | p <sub>F</sub> (kPa ) =           | NA               |  |  |
| 3850                                    |                             | $Q_p (m^3/s) =$                               | NA                                   |                                   |                  |  |  |
| 3800                                    | - 0.00                      | tp (s) =                                      | NA                                   | $t_F$ (s) =                       | NA               |  |  |
| 8 3750 ·                                | - 0.00                      | S el S* (-)=                                  | NA                                   | S el S <sup>*</sup> (-)=          | NA               |  |  |
| 3700 -                                  |                             | EC <sub>w</sub> (mS/m)=                       |                                      |                                   |                  |  |  |
| 3650                                    | - 0.00                      | Temp <sub>w</sub> (gr C)=                     | 12.5                                 |                                   |                  |  |  |
| 3650                                    |                             | Derivative fact.=                             | NA                                   | Derivative fact.=                 | NA               |  |  |
| 3600 0.00 0.15 0.30 0.4<br>Elapsed 1    |                             | 0                                             |                                      |                                   |                  |  |  |
| Elapsed I                               | ime [n]                     |                                               |                                      |                                   |                  |  |  |
|                                         |                             | Results                                       |                                      | Results                           |                  |  |  |
|                                         |                             | Q/s $(m^2/s)=$                                | NA                                   |                                   |                  |  |  |
| Log-Log plot incl. derivates- fl        | ow period                   | $T_M (m^2/s) =$                               | NA                                   |                                   |                  |  |  |
|                                         |                             | Flow regime:                                  | transient                            | Flow regime:                      | transient        |  |  |
|                                         |                             | $dt_1$ (min) =                                | NA                                   | $dt_1 (min) =$                    | NA               |  |  |
|                                         |                             | $dt_2 (min) =$                                | NA                                   | $dt_2 (min) =$                    | NA               |  |  |
|                                         |                             | $T (m^2/s) =$                                 | 1.0E-11                              | $T (m^2/s) =$                     | NA               |  |  |
|                                         |                             | S (-) =                                       | NA                                   | S (-) =                           | NA               |  |  |
|                                         |                             | $K_s$ (m/s) =                                 | NA                                   | $K_s (m/s) =$                     | NA               |  |  |
| Not Aı                                  | nalvsed                     | $S_s (1/m) =$                                 | NA                                   | $S_s (1/m) =$                     | NA               |  |  |
|                                         | •                           | $C (m^3/Pa) =$                                | NA                                   | $C (m^3/Pa) =$                    | NA               |  |  |
|                                         |                             | $C_D(-) =$                                    | NA                                   | $C_D(-) =$                        | NA               |  |  |
|                                         |                             | ξ(-) =                                        | NA                                   | ξ (-) =                           | NA               |  |  |
|                                         |                             | <b>-</b> 2                                    | NΙΔ                                  | <b>-</b> , 2, ,                   | NΙΛ              |  |  |
|                                         |                             | $T_{GRF}(m^2/s) = S_{GRF}(-) =$               | NA<br>NA                             | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ | NA<br>NA         |  |  |
|                                         |                             | OIII ( )                                      | NA<br>NA                             | OR ( )                            | NA<br>NA         |  |  |
| Log-Log plot incl. derivatives-         | recovery period             | D <sub>GRF</sub> (-) = Selected represe       |                                      |                                   | [''^             |  |  |
| Log-Log plot illoi. delivatives-        | recovery period             | dt <sub>1</sub> (min) =                       | NA                                   | C (m <sup>3</sup> /Pa) =          | NA               |  |  |
|                                         |                             | $dt_2 \text{ (min)} =$                        | NA                                   | $C (m /Pa) = C_D (-) =$           | NA               |  |  |
|                                         |                             | $T_T (m^2/s) =$                               | 1.0E-11                              |                                   | NA               |  |  |
|                                         |                             | S (-) =                                       | NA NA                                | 3 ( ) —                           |                  |  |  |
|                                         | $K_s (m/s) =$               | NA                                            |                                      |                                   |                  |  |  |
|                                         |                             |                                               |                                      |                                   |                  |  |  |
| Not Ar                                  | nalysed                     | Comments:                                     | S <sub>s</sub> (1/m) = NA  Comments: |                                   |                  |  |  |
|                                         | •                           | Based on the test re<br>transmissivity is lov |                                      | ged packer complian<br>1 m2/s.    | ce) the interval |  |  |
|                                         |                             |                                               |                                      |                                   |                  |  |  |

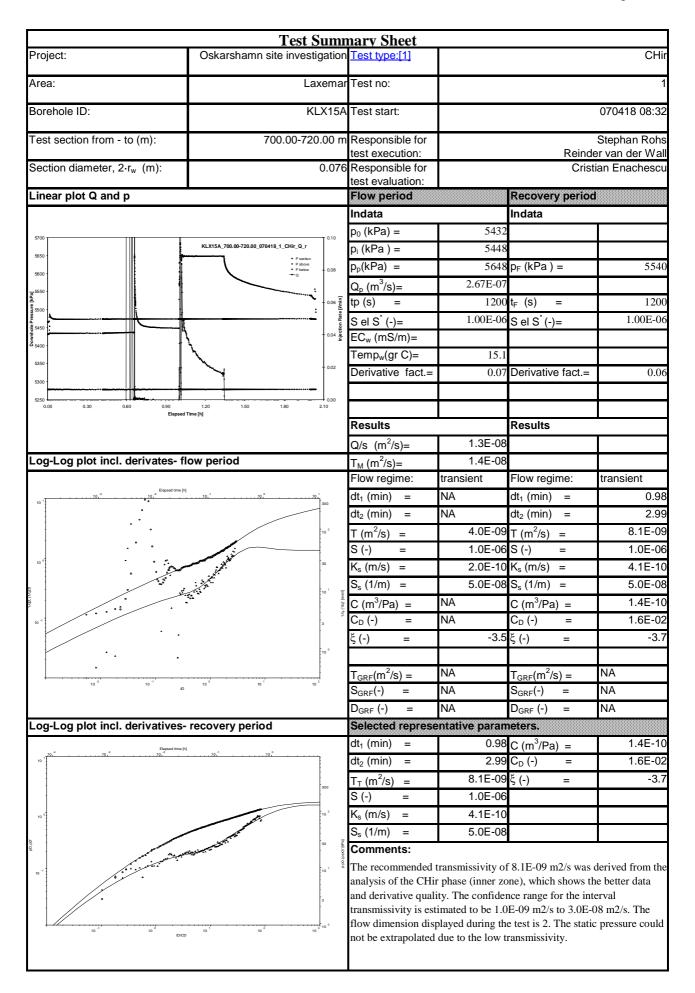



|                                         | Test Sum                                 | mary Sheet                                    |                 |                               |                  |  |
|-----------------------------------------|------------------------------------------|-----------------------------------------------|-----------------|-------------------------------|------------------|--|
| Project:                                | Oskarshamn site investigation            |                                               |                 |                               | CHir             |  |
| Area:                                   | Laxema                                   | ar Test no:                                   |                 |                               | 1                |  |
|                                         |                                          |                                               |                 |                               |                  |  |
| Borehole ID:                            | KLX15                                    | A Test start:                                 |                 |                               | 070417 10:40     |  |
| Test section from - to (m):             | t section from - to (m): 520.00-540.00 m |                                               | Stephan Rohs    |                               |                  |  |
| Continuation star 2 r (m)               | 0.03                                     | test execution:                               |                 |                               | er van der Wall  |  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.07                                     | 6 Responsible for test evaluation:            |                 | Crist                         | ian Enachescu    |  |
| Linear plot Q and p                     |                                          | Flow period                                   | Recovery period |                               |                  |  |
|                                         |                                          | Indata                                        |                 | Indata                        |                  |  |
| 4250                                    | 0.010                                    | $p_0 (kPa) =$                                 | 4106            |                               |                  |  |
| KLX15A_520.00-540.00_070417_1_CHir_Q_r  | P section P above P below                | p <sub>i</sub> (kPa ) =                       | NA              |                               |                  |  |
| 1, 1,200                                | 0.008                                    | $p_p(kPa) =$                                  | NA              | p <sub>F</sub> (kPa ) =       | NA               |  |
| 4150 -                                  |                                          | $Q_p (m^3/s) =$                               | NA              |                               |                  |  |
| 9 4100                                  | - 0.006                                  | 2                                             | NA              | t <sub>F</sub> (s) =          | NA               |  |
| 9 4050 -                                | 0.004                                    | S el S* (-)=                                  | NA              | S el S <sup>*</sup> (-)=      | NA               |  |
| 4000 -                                  | 0.004                                    | $EC_w (mS/m) =$ $Temp_w(gr C) =$              | 12.0            |                               |                  |  |
|                                         | 0.002                                    | Derivative fact.=                             | 13.0            | Derivative fact.=             | NA               |  |
| 3950                                    |                                          | Delivative Tact.=                             | I N/A           | Denvative lact.=              | INA              |  |
| 0.00 0.15 0.30 0.45                     |                                          |                                               |                 |                               |                  |  |
| Elapsed T                               | ime [h]                                  | Results                                       |                 | Results                       |                  |  |
|                                         |                                          | $Q/s (m^2/s) =$                               | NA              | Rodano                        |                  |  |
| Log-Log plot incl. derivates- flo       | ow period                                | $T_{\rm M} (m^2/s) =$                         | NA              |                               |                  |  |
|                                         | ·                                        | Flow regime:                                  | transient       | Flow regime:                  | transient        |  |
|                                         |                                          | $dt_1$ (min) =                                | NA              | $dt_1$ (min) =                | NA               |  |
|                                         |                                          | $dt_2$ (min) =                                | NA              | $dt_2$ (min) =                | NA               |  |
|                                         |                                          | $T (m^2/s) =$                                 | 1.0E-11         | $T (m^2/s) =$                 | NA               |  |
|                                         |                                          | S (-) =                                       | 1.0E-06         |                               | NA               |  |
|                                         |                                          | $K_s$ (m/s) =                                 | NA              | $K_s (m/s) =$                 | NA               |  |
| Not An                                  | nolvead                                  | $S_s (1/m) =$                                 | NA              | $S_s (1/m) =$                 | NA               |  |
| Not An                                  | laryscu                                  | $C (m^3/Pa) =$                                | NA              | $C (m^3/Pa) =$                | NA               |  |
|                                         |                                          | $C_D(-) =$                                    | NA              | $C_D(-) =$                    | NA               |  |
|                                         |                                          | $\xi$ (-) =                                   | NA              | ξ (-) =                       | NA               |  |
|                                         |                                          | 6                                             |                 |                               |                  |  |
|                                         |                                          | $T_{GRF}(m^2/s) =$                            | NA              | $T_{GRF}(m^2/s) =$            | NA               |  |
|                                         |                                          | $S_{GRF}(-) =$                                | NA              | $S_{GRF}(-) =$                | NA               |  |
| Log-Log plot incl. derivatives-         | rocovory poriod                          | D <sub>GRF</sub> (-) = Selected represe       | NA              | D <sub>GRF</sub> (-) =        | NA               |  |
| Log-Log plot incl. derivatives-         | recovery period                          | dt <sub>1</sub> (min) =                       | NA              |                               | NA               |  |
|                                         |                                          | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA              | $C (m^3/Pa) = C_D (-) =$      | NA               |  |
|                                         |                                          | $T_T (m^2/s) =$                               | 1.0E-11         |                               | NA               |  |
|                                         |                                          | S(-) =                                        | NA              | ) ( ) =                       |                  |  |
|                                         |                                          |                                               |                 |                               |                  |  |
|                                         |                                          | $K_s (m/s) = S_s (1/m) =$                     | NA<br>NA        |                               |                  |  |
| Not Analysed                            |                                          | Comments:                                     |                 |                               |                  |  |
|                                         |                                          | Based on the test re<br>transmissivity is lov |                 | ed packer complian<br>l m2/s. | ce) the interval |  |
|                                         |                                          |                                               |                 |                               |                  |  |

|                                         | Test Su                           | ımn              | nary Sheet                                    |                     |                          |                  |
|-----------------------------------------|-----------------------------------|------------------|-----------------------------------------------|---------------------|--------------------------|------------------|
| Project:                                | Oskarshamn site investiga         |                  |                                               |                     |                          | CHir             |
| Area:                                   | Laxe                              | mar              | Test no:                                      |                     |                          | 1                |
|                                         |                                   |                  |                                               |                     |                          |                  |
| Borehole ID:                            | KLX                               | (15A             | Test start:                                   |                     |                          | 070417 13:13     |
| Test section from - to (m):             | 540.00-560.0                      | 00 m             | Responsible for                               |                     |                          | Stephan Rohs     |
| 0                                       | 0                                 | 070              | test execution:                               |                     |                          | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.                                | .076             | Responsible for test evaluation:              |                     | Crist                    | ian Enachescu    |
| Linear plot Q and p                     |                                   |                  | Flow period                                   |                     | Recovery period          |                  |
|                                         |                                   |                  | Indata                                        |                     | Indata                   |                  |
| 4400                                    | T.                                | 0.010            | $p_0$ (kPa) =                                 | 4255                |                          |                  |
| KLX15A_540.00-560.00_070417_1_CHir_Q_r  | P section     P above     P below |                  | p <sub>i</sub> (kPa ) =                       | NA                  |                          |                  |
|                                         | ₱ <b></b> ○ I                     | 0.008            | $p_p(kPa) =$                                  | NA                  | p <sub>F</sub> (kPa ) =  | NA               |
| 4300 ·                                  | <u> </u>                          | -                | $Q_p (m^3/s) =$                               | NA                  |                          |                  |
| 1 4250                                  | +(                                | ate [/min]       | tp (s) =                                      | NA                  | t <sub>F</sub> (s) =     | NA               |
| 4200 -                                  | •                                 | 2 0.004<br>0.004 | S el S* (-)=                                  | NA                  | S el S <sup>*</sup> (-)= | NA               |
| 4150 -                                  |                                   | €.               | EC <sub>w</sub> (mS/m)=                       | 13.2                |                          | ļ                |
|                                         | - 6                               | 0.002            | Temp <sub>w</sub> (gr C)= Derivative fact.=   |                     | Dorivativa fact –        | NA               |
| 4100                                    |                                   |                  | Delivative lact.=                             | INA                 | Derivative fact.=        | INA              |
| 4050 0.00 0.15 0.30 0.45                | 5 0.60 0.75 0.90                  | 0.000            | <b></b>                                       |                     |                          |                  |
| Elapsed Ti                              | ime [h]                           |                  | Results                                       |                     | Results                  |                  |
|                                         |                                   |                  | Q/s $(m^2/s)=$                                | NA                  | rtocuito                 |                  |
| Log-Log plot incl. derivates- flo       | ow period                         |                  | $T_{\rm M} (m^2/s) =$                         | NA                  |                          |                  |
|                                         | ·                                 |                  | Flow regime:                                  | transient           | Flow regime:             | transient        |
|                                         |                                   |                  | $dt_1$ (min) =                                | NA                  | $dt_1 (min) =$           | NA               |
|                                         |                                   |                  | $dt_2$ (min) =                                | NA                  | $dt_2$ (min) =           | NA               |
|                                         |                                   |                  | $T (m^2/s) =$                                 | 1.0E-11             | $T (m^2/s) =$            | NA               |
|                                         |                                   |                  | S (-) =                                       | NA                  | S (-) =                  | NA               |
|                                         |                                   |                  | $K_s$ (m/s) =                                 | NA                  | $K_s (m/s) =$            | NA               |
| Not An                                  | polycod                           |                  | $S_s (1/m) =$                                 | NA                  | $S_s (1/m) =$            | NA               |
| Not All                                 | laryscu                           |                  | $C (m^3/Pa) =$                                | NA                  | $C (m^3/Pa) =$           | NA               |
|                                         |                                   |                  |                                               | NA                  | $C_D(-) =$               | NA               |
|                                         |                                   |                  | ξ(-) =                                        | NA                  | ξ (-) =                  | NA               |
|                                         |                                   |                  | 2                                             | NIA                 | 2                        | NIA.             |
|                                         |                                   |                  | $T_{GRF}(m^2/s) =$                            | NA                  | $T_{GRF}(m^2/s) =$       | NA               |
|                                         |                                   |                  | $S_{GRF}(-) =$                                | NA                  | $S_{GRF}(-) =$           | NA               |
| Log-Log plot incl. derivatives-         | rocovery period                   |                  | D <sub>GRF</sub> (-) = Selected represe       | NA                  | D <sub>GRF</sub> (-) =   | NA               |
| Log-Log plot ilici. delivatives-        | recovery periou                   |                  | dt <sub>1</sub> (min) =                       | ntative paran<br>NA |                          | NA               |
|                                         |                                   |                  | $dt_1 (min) = $ $dt_2 (min) = $               | NA                  | $C (m^3/Pa) = C_D (-) =$ | NA               |
|                                         |                                   |                  | $T_T (m^2/s) =$                               | 1.0E-11             |                          | NA               |
|                                         |                                   |                  | S (-) =                                       | NA                  | · · / -                  |                  |
|                                         |                                   |                  | $K_s (m/s) =$                                 | NA                  |                          |                  |
|                                         |                                   |                  | $S_s (1/m) =$                                 | NA                  |                          |                  |
| Not An                                  | nalysed                           |                  | Comments:                                     |                     |                          |                  |
|                                         | •                                 |                  | Based on the test re<br>transmissivity is lov |                     |                          | ce) the interval |
|                                         |                                   |                  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1      |                     |                          |                  |
|                                         |                                   |                  |                                               |                     |                          |                  |
|                                         |                                   |                  |                                               |                     |                          |                  |
|                                         |                                   |                  |                                               |                     |                          |                  |
|                                         |                                   |                  |                                               |                     |                          |                  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Sum                      | mary Sheet                                    |           |                                 |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-----------|---------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investigation |                                               |           |                                 | CHir             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxema                        | r Test no:                                    |           |                                 | 1                |
| Alca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxema                        | T CSt 110.                                    |           |                                 | ·                |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX15A                        | Test start:                                   |           |                                 | 070417 14:39     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 560 00-580 00 m               | n Responsible for                             |           |                                 | Stephan Rohs     |
| rest section from - to (m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300.00-300.00 11              | test execution:                               |           | Reinde                          | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.076                         | Responsible for                               |           | Crist                           | ian Enachescu    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | test evaluation:<br>Flow period               |           | Recovery period                 |                  |
| Emcar plot & and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | Indata                                        |           | Indata                          |                  |
| 4550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.010                         | $p_0 (kPa) =$                                 | 4404      | IIIuuu                          |                  |
| KLX15A_560.00-580.00_070417_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P section     P above         | p <sub>i</sub> (kPa ) =                       | NA        |                                 |                  |
| 4500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - P below - 0.008             | $p_p(kPa) =$                                  | NA        | p <sub>F</sub> (kPa ) =         | NA               |
| 4450 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | $O_{m}(m^{3}/c)$                              | NA        | , , ,                           |                  |
| 9 4400 4400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 4 400 | 0.006                         | tp(s) =                                       | NA        | t <sub>F</sub> (s) =            | NA               |
| 8 4350 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | S el S <sup>*</sup> (-)=                      | NA        | S el S* (-)=                    | NA               |
| Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | † 0.004 <u>&amp;</u>          | EC <sub>w</sub> (mS/m)=                       |           | ` '                             |                  |
| 4300 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 0.002                       | Temp <sub>w</sub> (gr C)=                     | 13.4      |                                 |                  |
| 4250 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | Derivative fact.=                             | NA        | Derivative fact.=               | NA               |
| 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                         |                                               |           |                                 |                  |
| Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                                               |           |                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Results                                       |           | Results                         |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Q/s $(m^2/s)=$                                | NA        |                                 |                  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period                     | $T_{\rm M} (m^2/s) =$                         | NA        |                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Flow regime:                                  | transient | Flow regime:                    | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $dt_1$ (min) =                                | NA        | $dt_1 (min) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $dt_2 (min) =$                                | NA        | $dt_2 (min) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $T (m^2/s) =$                                 | 1.0E-11   | $T (m^2/s) =$                   | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | S (-) =                                       | NA        | S (-) =                         | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $K_s (m/s) =$                                 | NA        | $K_s (m/s) =$                   | NA               |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysed                       | $S_s (1/m) =$                                 | NA        | $S_s(1/m) =$                    | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                             | $C (m^3/Pa) =$                                | NA        | $C (m^3/Pa) =$                  | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $C_D(-) =$                                    | NA        | $C_D(-) =$                      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | ξ(-) =                                        | NA        | ξ (-) =                         | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | T (2)                                         | NA        | T (" 21)                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $T_{GRF}(m^2/s) = S_{GRF}(-) =$               | NA<br>NA  | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA<br>NA         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $D_{GRF}(-) =$ $D_{GRF}(-) =$                 | NA<br>NA  | $D_{GRF}(-) =$ $D_{GRF}(-) =$   | NA               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | recovery period               | Selected represe                              |           |                                 | LY               |
| . 3 = -3 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | $dt_1 \text{ (min)} =$                        | NA        | C (m <sup>3</sup> /Pa) =        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $dt_2 \text{ (min)} =$                        | NA        | $C_D(-) =$                      | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $T_T (m^2/s) =$                               | 1.0E-11   |                                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | S (-) =                                       | NA        | . ,                             | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $K_s (m/s) =$                                 | NA        |                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | $S_s (1/m) =$                                 | NA        |                                 |                  |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysed                       | Comments:                                     |           |                                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Based on the test re<br>transmissivity is lov |           | ed packer complian<br>  m2/s.   | ce) the interval |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                               |           |                                 |                  |

|                                         | Test                                      | Sumn                                   | nary Sheet                                    |            |                                     |                  |
|-----------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------------------------|------------|-------------------------------------|------------------|
| Project:                                | Oskarshamn site inves                     |                                        |                                               |            |                                     | CHir             |
| Area:                                   | L                                         | axemar                                 | Test no:                                      |            |                                     | 2                |
|                                         |                                           |                                        |                                               |            |                                     | _                |
| Borehole ID:                            | ŀ                                         | KLX15A                                 | Test start:                                   |            |                                     | 070417 17:01     |
| Test section from - to (m):             | 580.00-60                                 | 00.00 m                                | Responsible for                               |            |                                     | Stephan Rohs     |
|                                         |                                           |                                        | test execution:                               |            |                                     | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m): |                                           | 0.076                                  | Responsible for test evaluation:              |            | Crist                               | ian Enachescu    |
| Linear plot Q and p                     |                                           |                                        | Flow period                                   |            | Recovery period                     |                  |
|                                         |                                           |                                        | Indata                                        |            | Indata                              |                  |
| 4650                                    |                                           | T 0.010                                | p <sub>0</sub> (kPa) =                        | 4553       |                                     |                  |
| KLX15A_580.00-600.00_070417_2_CHir_Q_r  | ħ.                                        |                                        | p <sub>i</sub> (kPa ) =                       | NA         |                                     |                  |
| 4600                                    |                                           | - 0.008                                | $p_p(kPa) =$                                  | NA         | p <sub>F</sub> (kPa ) =             | NA               |
| E 4550                                  |                                           | Ē                                      | $Q_p (m^3/s) =$                               | NA         |                                     |                  |
| •                                       | •                                         | - 0.006 #<br>[]                        | tp (s) =                                      | NA         | $t_F$ (s) =                         | NA               |
| Pass sur 450 -                          | P section                                 | 1<br>000.0<br>10 Poction Rate [I/m in] | S el S <sup>*</sup> (-)=                      | NA         | S el S <sup>*</sup> (-)=            | NA               |
| 4450 -                                  | <ul><li>P above</li><li>P below</li></ul> | u.uu4 peiu                             | EC <sub>w</sub> (mS/m)=                       |            |                                     |                  |
|                                         | <b>→</b> Q •                              | - 0.002                                | Temp <sub>w</sub> (gr C)=                     | 13.7       |                                     |                  |
| 4400                                    | •                                         |                                        | Derivative fact.=                             | NA         | Derivative fact.=                   | NA               |
| 4350 100 0.20 0.40                      | 0.60 0.80                                 | 0.000                                  |                                               |            |                                     |                  |
| Elapsed Ti                              |                                           | 1.00                                   |                                               |            |                                     |                  |
|                                         |                                           |                                        | Results                                       | 1          | Results                             |                  |
|                                         |                                           |                                        | Q/s $(m^2/s)=$                                | NA         |                                     |                  |
| Log-Log plot incl. derivates- fl        | ow period                                 |                                        | $T_{\rm M} ({\rm m}^2/{\rm s}) =$             | NA         |                                     |                  |
|                                         |                                           |                                        | Flow regime:                                  | transient  | Flow regime:                        | transient        |
|                                         |                                           |                                        | dt <sub>1</sub> (min) =                       | NA         | $dt_1 (min) =$                      | NA               |
|                                         |                                           |                                        | $dt_2 (min) =$                                | NA 4.05.44 | $dt_2 (min) =$                      | NA               |
|                                         |                                           |                                        | $T (m^2/s) =$                                 | 1.0E-11    | $T (m^2/s) =$                       | NA               |
|                                         |                                           |                                        | S (-) =                                       | NA<br>NA   | S (-) =                             | NA               |
|                                         |                                           |                                        | $K_s (m/s) = S_s (1/m) =$                     | NA<br>NA   | $K_s (m/s) =$                       | NA<br>NA         |
| Not Ar                                  | nalysed                                   |                                        |                                               | NA<br>NA   | $S_s(1/m) =$                        | NA               |
|                                         |                                           |                                        | $C (m^3/Pa) = C_D (-) =$                      | NA         | $C (m^3/Pa) = C_D (-) =$            | NA               |
|                                         |                                           |                                        | $\xi(-) =$                                    | NA         | $\xi (-) = $                        | NA               |
|                                         |                                           |                                        | S(-) =                                        | IVA        | S (-) =                             | 14/3             |
|                                         |                                           |                                        | $T_{GRF}(m^2/s) =$                            | NA         | $T_{GRF}(m^2/s) =$                  | NA               |
|                                         |                                           |                                        | $S_{GRF}(-) =$                                | NA         | $S_{GRF}(III / S) =$ $S_{GRF}(-) =$ | NA               |
|                                         |                                           |                                        | $D_{GRF}$ (-) =                               | NA         | $D_{GRF}(-) =$                      | NA               |
| Log-Log plot incl. derivatives-         | recovery period                           |                                        | Selected represe                              |            |                                     |                  |
| <u> </u>                                |                                           |                                        | $dt_1$ (min) =                                | NA         | C (m <sup>3</sup> /Pa) =            | NA               |
|                                         |                                           |                                        | $dt_2 \text{ (min)} =$                        | NA         | $C_D(-) =$                          | NA               |
|                                         |                                           |                                        | $T_T (m^2/s) =$                               | 1.0E-11    |                                     | NA               |
|                                         |                                           |                                        | S (-) =                                       | NA         |                                     |                  |
|                                         |                                           |                                        | $K_s$ (m/s) =                                 | NA         |                                     |                  |
|                                         |                                           |                                        | $S_s (1/m) =$                                 | NA         |                                     |                  |
| Not Ar                                  | nalysed                                   |                                        | Comments:                                     |            |                                     |                  |
|                                         |                                           |                                        | Based on the test re<br>transmissivity is lov |            |                                     | ce) the interval |
|                                         |                                           |                                        |                                               |            |                                     |                  |

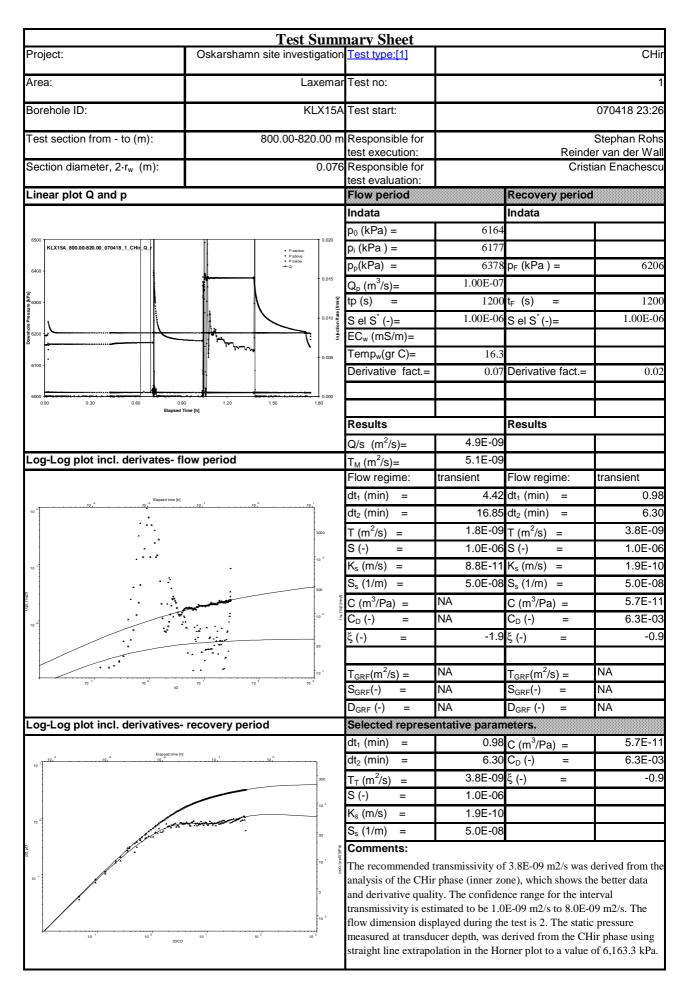

|                                         | Test Sumi                     | nary Sheet                                       |                  |                                   |                  |
|-----------------------------------------|-------------------------------|--------------------------------------------------|------------------|-----------------------------------|------------------|
| Project:                                | Oskarshamn site investigation |                                                  |                  |                                   | CHir             |
| Area:                                   | Laxema                        | Test no:                                         |                  |                                   | 1                |
|                                         |                               |                                                  |                  |                                   | ·                |
| Borehole ID:                            | KLX15A                        | Test start:                                      |                  |                                   | 070417 18:29     |
| Test section from - to (m):             | 600.00-620.00 m               | Responsible for                                  |                  |                                   | Stephan Rohs     |
|                                         |                               | test execution:                                  |                  |                                   | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                         | Responsible for test evaluation:                 |                  | Crist                             | ian Enachescu    |
| Linear plot Q and p                     |                               | Flow period                                      |                  | Recovery period                   |                  |
| ·                                       |                               | Indata                                           |                  | Indata                            |                  |
|                                         |                               | p <sub>0</sub> (kPa) =                           | 4700             |                                   |                  |
| KLX15A_600.00-620.00_070417_1_CHir_Q_r  | 0.010 • Psection              | p <sub>i</sub> (kPa ) =                          | NA               |                                   |                  |
| 4800 -                                  | Pabove Pbelow - Q             | $p_p(kPa) =$                                     | NA               | p <sub>F</sub> (kPa ) =           | NA               |
| 4750                                    | <u> </u>                      | $Q_p (m^3/s) =$                                  | NA               |                                   |                  |
| B 4700 사                                | 0.006                         | tp (s) =                                         | NA               | $t_F$ (s) =                       | NA               |
| **************************************  | tion Rate                     | S el S <sup>*</sup> (-)=                         | NA               | S el S <sup>*</sup> (-)=          | NA               |
| Adom .                                  | - 0.004 <u>5</u>              | EC <sub>w</sub> (mS/m)=                          |                  |                                   |                  |
| 4600 -                                  | <del>-</del> 0.002            | Temp <sub>w</sub> (gr C)=                        | 13.9             |                                   |                  |
| 4550                                    |                               | Derivative fact.=                                | NA               | Derivative fact.=                 | NA               |
| 4500 0.00 0.15 0.30 0.4                 | 5 0.60 0.75 0.90              |                                                  |                  |                                   |                  |
| 0.00 0.15 0.30 0.4<br>Elapsed 1         |                               | _                                                |                  | _                                 |                  |
|                                         |                               | Results                                          | T                | Results                           |                  |
|                                         |                               | Q/s $(m^2/s)=$                                   | NA               |                                   |                  |
| Log-Log plot incl. derivates- fl        | ow period                     | $T_{\rm M} ({\rm m}^2/{\rm s}) =$                | NA · ·           |                                   |                  |
|                                         |                               | Flow regime:                                     | transient        | Flow regime:                      | transient        |
|                                         |                               | $dt_1 (min) =$                                   | NA<br>NA         | $dt_1 (min) =$                    | NA<br>NA         |
|                                         |                               | $dt_2 (min) =$                                   | 1.0E-11          | $dt_2 (min) =$                    | NA<br>NA         |
|                                         |                               | T (m2/s) = S (-) =                               | 1.0E-11          | T (m2/s) = S (-) =                | NA               |
|                                         |                               | $K_s (m/s) =$                                    | NA               | $K_s (m/s) =$                     | NA               |
|                                         |                               | $S_s (11/s) = S_s (1/m) = S_s (1/m) = S_s (1/m)$ | NA               | $S_s(11/s) = S_s(1/m) = S_s(1/m)$ | NA               |
| Not Ar                                  | nalysed                       | $C_s(7/11) = C_s(7/11)$                          | NA               | $C_s(7/11) = C(m^3/Pa) =$         | NA               |
|                                         |                               | $C_D(-) =$                                       | NA               | $C_D(-) =$                        | NA               |
|                                         |                               | ξ(-) =                                           | NA               | ξ(-) =                            | NA               |
|                                         |                               | 5()                                              |                  | 5()                               |                  |
|                                         |                               | $T_{GRF}(m^2/s) =$                               | NA               | $T_{GRF}(m^2/s) =$                | NA               |
|                                         |                               | $S_{GRF}(-) =$                                   | NA               | $S_{GRF}(-) =$                    | NA               |
|                                         |                               | D <sub>GRF</sub> (-) =                           | NA               | D <sub>GRF</sub> (-) =            | NA               |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe                                 | Intative paran   |                                   |                  |
|                                         |                               | $dt_1$ (min) =                                   | NA               | C (m <sup>3</sup> /Pa) =          | NA               |
|                                         |                               | $dt_2$ (min) =                                   | NA               | $C_D(-) =$                        | NA               |
|                                         |                               | $T_T (m^2/s) =$                                  | 1.0E-11          | ξ (-) =                           | NA               |
|                                         |                               | S (-) =                                          | NA               |                                   |                  |
|                                         |                               | $K_s$ (m/s) =                                    | NA               |                                   |                  |
|                                         |                               | $S_s$ (1/m) =                                    | NA               |                                   |                  |
| Not Ar                                  | nalysed                       | Comments:                                        |                  |                                   |                  |
|                                         |                               | Based on the test re                             |                  |                                   | ce) the interval |
|                                         |                               | transmissivity is lov                            | vei uian 1.UE-11 | 1 1112/8.                         |                  |
|                                         |                               |                                                  |                  |                                   |                  |
|                                         |                               |                                                  |                  |                                   |                  |
|                                         |                               |                                                  |                  |                                   |                  |
|                                         |                               |                                                  |                  |                                   |                  |
|                                         |                               |                                                  |                  | •                                 |                  |



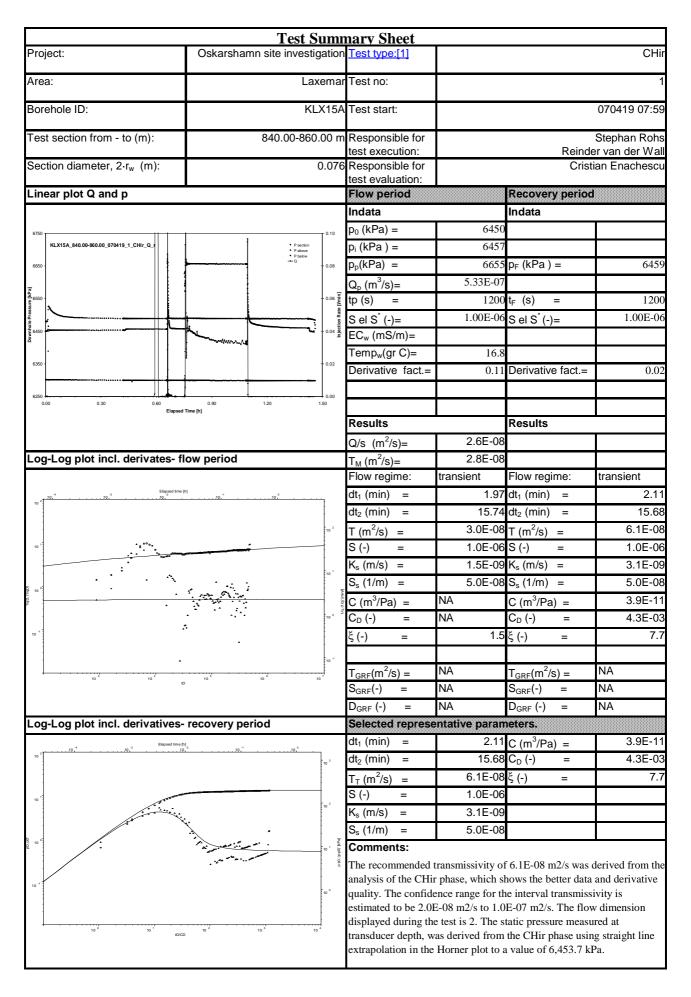
|                                         | Test Sumr                     | nary Sheet                                    |                      |                               |                  |
|-----------------------------------------|-------------------------------|-----------------------------------------------|----------------------|-------------------------------|------------------|
| Project:                                | Oskarshamn site investigation |                                               |                      |                               | Pi               |
| Area:                                   | Laxemar                       | Test no:                                      |                      |                               | 1                |
|                                         |                               |                                               |                      |                               | ·                |
| Borehole ID:                            | KLX15A                        | Test start:                                   |                      |                               | 070417 22:57     |
| Test section from - to (m):             | 640.00-660.00 m               | Responsible for                               |                      |                               | Stephan Rohs     |
|                                         |                               | test execution:                               | Reinder van der      |                               | er van der Wall  |
| Section diameter, 2⋅r <sub>w</sub> (m): | 0.076                         | Responsible for test evaluation:              |                      | Crist                         | ian Enachescu    |
| Linear plot Q and p                     |                               | Flow period                                   |                      | Recovery period               |                  |
|                                         |                               | Indata                                        |                      | Indata                        |                  |
| 5300 1                                  | 7.05                          | p <sub>0</sub> (kPa) =                        | 4992                 |                               |                  |
| KLX15A_640.00-660.00_070417_1_Pi_Q_r    |                               | p <sub>i</sub> (kPa ) =                       | NA                   |                               |                  |
| 5200 -                                  |                               | $p_p(kPa) =$                                  | NA                   | p <sub>F</sub> (kPa ) =       | NA               |
| -<br>-                                  | - 0.4                         | $Q_p (m^3/s) =$                               | NA                   |                               |                  |
| [eg                                     | 0.3 [2]                       | tp (s) =                                      | NA                   | $t_F$ (s) =                   | NA               |
|                                         | ction Rat                     | S el S <sup>*</sup> (-)=                      | NA                   | S el S <sup>*</sup> (-)=      | NA               |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | · + 0.2 💆                     | EC <sub>w</sub> (mS/m)=                       |                      |                               |                  |
| 4900 -                                  | - 0.1                         | Temp <sub>w</sub> (gr C)=                     | 14.4                 |                               |                  |
|                                         |                               | Derivative fact.=                             | NA                   | Derivative fact.=             | NA               |
| 4800 0.00 0.15 0.30 0.45                | 0.60 0.75 0.90 1.05           |                                               |                      |                               |                  |
| Elapsed                                 | Time [h]                      | Results                                       |                      | Daguita                       |                  |
|                                         |                               |                                               | NA                   | Results                       |                  |
| Log-Log plot incl. derivates- flo       | ow period                     | Q/s $(m^2/s)=$<br>T <sub>M</sub> $(m^2/s)=$   | NA<br>NA             |                               |                  |
| Log-Log plot incl. derivates- in        | ow period                     | I <sub>M</sub> (m /s)=<br>Flow regime:        | transient            | Flow regime:                  | transient        |
|                                         |                               | dt <sub>1</sub> (min) =                       | NA                   | $dt_1 \text{ (min)} =$        | NA               |
|                                         |                               | $dt_2 \text{ (min)} =$                        | NA                   | $dt_2 \text{ (min)} =$        | NA               |
|                                         |                               | $T (m^2/s) =$                                 | 1.0E-11              | $T (m^2/s) =$                 | NA               |
|                                         |                               | S (-) =                                       | NA                   | S (-) =                       | NA               |
|                                         |                               | $K_s$ (m/s) =                                 | NA                   | $K_s$ (m/s) =                 | NA               |
| N                                       |                               | $S_s (1/m) =$                                 | NA                   | $S_s (1/m) =$                 | NA               |
| Not An                                  | nalysed                       | $C (m^3/Pa) =$                                | NA                   | $C (m^3/Pa) =$                | NA               |
|                                         |                               | $C_D$ (-) =                                   | NA                   | $C_D(-) =$                    | NA               |
|                                         |                               | ξ(-) =                                        | NA                   | ξ (-) =                       | NA               |
|                                         |                               |                                               |                      |                               |                  |
|                                         |                               | $T_{GRF}(m^2/s) =$                            | NA                   | $T_{GRF}(m^2/s) =$            | NA               |
|                                         |                               | $S_{GRF}(-) =$                                | NA                   | $S_{GRF}(-) =$                | NA               |
| Landan alatinah dada disa               |                               | D <sub>GRF</sub> (-) =                        | NA                   | D <sub>GRF</sub> (-) =        | NA               |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe<br>dt <sub>1</sub> (min) =   | entative paran<br>NA |                               | Ινια             |
|                                         |                               | $dt_1 (min) = $ $dt_2 (min) = $               | NA<br>NA             | $C (m^3/Pa) = C_D (-) =$      | NA<br>NA         |
|                                         |                               | $T_T (m^2/s) =$                               | 1.0E-11              |                               | NA               |
|                                         |                               | S(-) =                                        | NA                   | ァ ( <sup>-</sup> ) =          |                  |
|                                         |                               | $K_s (m/s) =$                                 | NA                   |                               |                  |
|                                         |                               | $S_s (1/m) =$                                 | NA                   |                               |                  |
| Not An                                  | nalvsed                       | Comments:                                     | <u> </u>             |                               |                  |
|                                         |                               | Based on the test re<br>transmissivity is lov |                      | ed packer complian<br>1 m2/s. | ce) the interval |
|                                         |                               |                                               |                      |                               |                  |

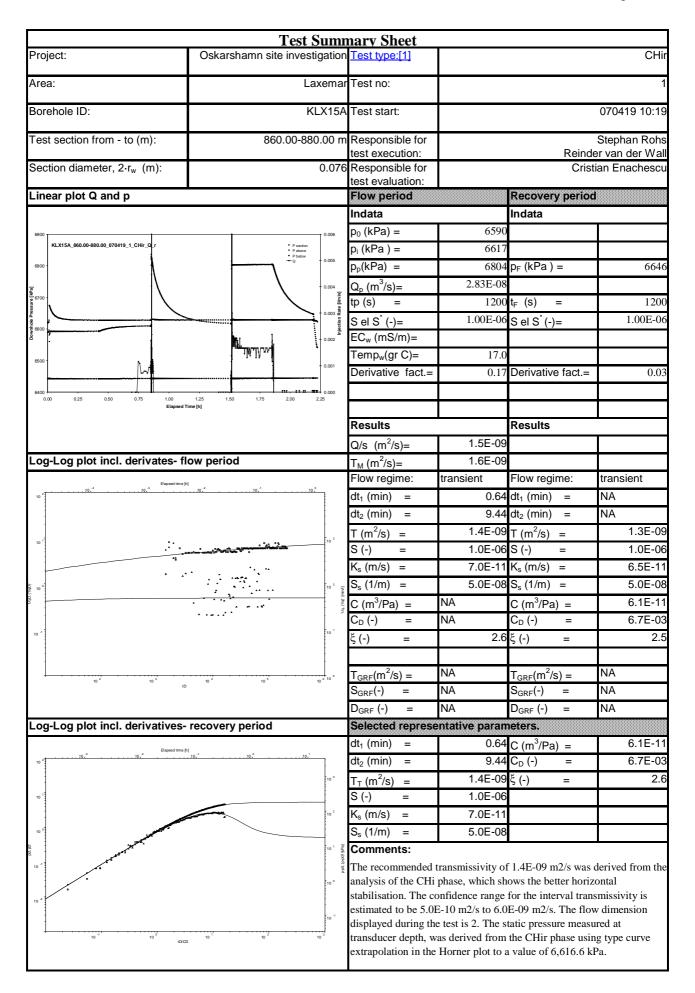
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Sı                                 | ımr                 | nary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oskarshamn site investig                | ation               | Test type:[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F                                                                       |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laxe                                    | emar                | Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KI V                                    | /15A                | Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | 070418 00:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |  |
| Borenole ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KL/                                     | KISA                | rest start.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 070416 00.30                                                            |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660.00-680.0                            | 00 m                | Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | Daind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stephan Roh                                                             |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                       | .076                | test execution:<br>Responsible for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er van der Wa<br>ian Enachesci                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                       |                     | test evaluation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                   | Ono.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ian Endonoco                                                            |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                     | Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | Recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |  |
| 5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | <b>→</b> 0.6        | p <sub>0</sub> (kPa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5138                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| KLX15A_660.00-680.00_07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                     | p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5146                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| 5400 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • P below<br>→ Q                        | 0.5                 | $p_p(kPa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5373                                                                                                                                              | p <sub>F</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 534                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $Q_p (m^3/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| 5300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | - 0.4<br>[ujwy]]    | tp(s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                | t <sub>F</sub> (s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1440                                                                    |  |
| 5200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 0.3 E.0             | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                   | S el S <sup>*</sup> (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00E-0                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :                                       | njection Rate       | EC <sub>w</sub> (mS/m)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | 3 61 3 (-)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                         |  |
| 5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 0.2                 | Temp <sub>w</sub> (gr C)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.6                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                     |  |
| 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | - 0.1               | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                | Derivative fact.=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ••••••••••••••••••••••••••••••••••••••• |                     | Benvative labit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1121                                                                                                                                              | Denvative ract.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| 4900 1.00 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.00 4.00                               | 0.0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| Elapsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time [h]                                |                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                                                                                                                                | Nesuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |  |
| and an plat inal derivates fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | au pariad                               |                     | Q/s (m <sup>2</sup> /s)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| .og-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ow period                               |                     | $T_M (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | transient                                                                                                                                         | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | transient                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $dt_1 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                | $dt_1 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.9E-1                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0E-0                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $K_s$ (m/s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                | $K_s$ (m/s) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0E-1                                                                  |  |
| Nor A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nalysed                                 |                     | $S_s (1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                | $S_s (1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0E-0                                                                  |  |
| NOI A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | naryseu                                 |                     | $C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                | $C (m^3/Pa) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1E-1                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                | $C_D(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6E-0                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | ξ(-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                | ξ(-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                                                                                | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                                                                                                                                | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     | D <sub>GRF</sub> (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                | D <sub>GRF</sub> (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |  |
| og-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | recovery period                         |                     | Selected repres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entative paran                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T = 1= 1                                                                |  |
| .og-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entative paran<br>NA                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1E-1                                                                  |  |
| og-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | recovery period                         |                     | dt <sub>1</sub> (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | C (m <sup>3</sup> /Pa) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         |                     | $dt_1 (min) = $ $dt_2 (min) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA<br>NA                                                                                                                                          | $C (m^3/Pa) = C_D (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.6E-0                                                                  |  |
| Elapsed time (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         | 10 1                | $dt_1 (min) = dt_2 (min) = T_T (m^2/s) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA<br>3.9E-10                                                                                                                               | $C (m^3/Pa) = C_D (-) = $<br>$\xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6E-0                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         | 10 1                | $dt_1 \text{ (min)} = \\ dt_2 \text{ (min)} = \\ T_T \text{ (m}^2/\text{s)} = \\ S \text{ (-)} = \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA<br>NA<br>3.9E-10<br>1.0E-06                                                                                                                    | $C (m^3/Pa) = C_D (-) = $<br>$\xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6E-0                                                                  |  |
| Elapsed time (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         | 10 <sup>1</sup>     | $dt_1 \text{ (min)} = \\ dt_2 \text{ (min)} = \\ T_T \text{ (m}^2/\text{s)} = \\ S \text{ (-)} = \\ K_s \text{ (m/s)} = \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>NA<br>3.9E-10<br>1.0E-06<br>2.0E-11                                                                                                         | $C (m^3/Pa) = C_D (-) = $<br>$\xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6E-0                                                                  |  |
| Elapsed time (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | recovery period                         | 1 ° ° 7690          | $\begin{array}{lll} dt_1 \; (min) & = & \\ dt_2 \; (min) & = & \\ T_T \; (m^2/s) & = & \\ S \; (-) & = & \\ K_s \; (m/s) & = & \\ S_s \; (1/m) & = & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA<br>NA<br>3.9E-10<br>1.0E-06                                                                                                                    | $C (m^3/Pa) = C_D (-) = $<br>$\xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.6E-0                                                                  |  |
| 10 <sup>2</sup> Elapsed time plant 10 10 <sup>2</sup> 10 | 190                                     | nessad begreat      | $dt_1 \text{ (min)} = \\ dt_2 \text{ (min)} = \\ T_T \text{ (m}^2/\text{s)} = \\ S \text{ (-)} = \\ K_s \text{ (m/s)} = \\ S_s \text{ (1/m)} = \\ \textbf{Comments:}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA<br>NA<br>3.9E-10<br>1.0E-06<br>2.0E-11<br>5.0E-08                                                                                              | $C (m^3/Pa) = C_D (-) = \xi (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.6E-0<br>-1.                                                           |  |
| Elipsed time (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 190                                     | Docorrelated pressu | $\begin{array}{lll} dt_1 \; (\text{min}) & = \\ dt_2 \; (\text{min}) & = \\ T_T \; (\text{m}^2/\text{s}) & = \\ S \; (\text{-}) & = \\ K_s \; (\text{m/s}) & = \\ S_s \; (\text{1/m}) & = \\ \textbf{Comments:} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                | $C (m^3/Pa) = C_D (-) = \xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.6E-0                                                                  |  |
| 10 <sup>2</sup> Elapsed time plant 10 10 <sup>2</sup> 10 | 99.                                     | Decreated pressu    | $\begin{array}{ll} dt_1 \ (min) & = \\ dt_2 \ (min) & = \\ T_T \ (m^2/s) & = \\ S \ (-) & = \\ K_s \ (m/s) & = \\ S_s \ (1/m) & = \\ \hline \textbf{Comments:} \\ \hline The recommended analysis of the Pi p \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA 3.9E-10 1.0E-06 2.0E-11 5.0E-08 transmissivity of hase (inner zone                                                                             | $C (m^{3}/Pa) =$ $C_{D} (-) =$ $\xi (-) =$ $\xi (3.9E-10 \text{ m2/s was}). The confidence ra$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6E-0                                                                  |  |
| 10 <sup>2</sup> Elapsed time plant 10 10 <sup>2</sup> 10 | 99.                                     | Decorvol            | $\begin{array}{ll} dt_1 \ (\text{min}) &= \\ dt_2 \ (\text{min}) &= \\ T_T \ (\text{m}^2/\text{s}) &= \\ S \ (\text{-}) &= \\ K_s \ (\text{m/s}) &= \\ S_s \ (\text{1/m}) &= \\ \hline \textbf{Comments:} \\ \hline \text{The recommended analysis of the Pi p interval transmission} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA 3.9E-10 1.0E-06 2.0E-11 5.0E-08 transmissivity of hase (inner zone vity is estimated to                                                        | $C (m^3/Pa) = C_D (-) = \xi (-) = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.6E-0 -1.  derived from the trunge for the E-10 m2/s. This             |  |
| 10 <sup>2</sup> Elapsed time plant 10 10 <sup>2</sup> 10 | 100                                     | Decorvol            | $dt_1$ (min) = $dt_2$ (min) = $T_T$ (m²/s) = $S$ (-) = $K_s$ (m/s) = $S_s$ (1/m) = $Comments$ :  The recommended analysis of the Pi p interval transmissive range encompasses results of the approximately $S_s$ (min) = $S_s$ (mi | NA 3.9E-10 1.0E-06 2.0E-11 5.0E-08 transmissivity of hase (inner zone vity is estimated to the outer zone to priate 5 m tests.                    | $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$ | derived from thange for the E-10 m2/s. This based on the onducted using |  |
| 10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                     | pouucoeg            | $dt_1$ (min) = $dt_2$ (min) = $T_T$ (m²/s) = $S$ (-) = $K_s$ (m/s) = $S_s$ (1/m) = $Comments$ :  The recommended analysis of the Pi p interval transmissive range encompasses results of the approximately $S_s$ (min) = $S_s$ (mi | NA 3.9E-10 1.0E-06 2.0E-11 5.0E-08 transmissivity of hase (inner zone vity is estimated to the outer zone to priate 5 m tests. 2. The static pres | $C (m^3/Pa) =$ $C_D (-) =$ $\xi (-) =$ $\xi (-) =$ $\xi (3.9E-10 \text{ m2/s was})$ The confidence rate be 1.0E-12 to 8.0 ransmissivity and is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ange for the<br>E-10 m2/s. Thi<br>based on the<br>onducted using        |  |

|                                           | Test Su                  | ımr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nary Sheet                                    |           |                                     |                  |
|-------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|-------------------------------------|------------------|
| Project:                                  | Oskarshamn site investig |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |           |                                     | CHir             |
| Area:                                     | Laxe                     | emar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test no:                                      |           |                                     | 1                |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |           |                                     | ·                |
| Borehole ID:                              | KL>                      | X15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test start:                                   |           |                                     | 070418 06:55     |
| Test section from - to (m):               | 680.00-70                | 00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsible for                               |           |                                     | Stephan Rohs     |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | test execution:                               |           |                                     | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m):   | C                        | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Responsible for test evaluation:              |           | Crist                               | ian Enachescu    |
| Linear plot Q and p                       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow period                                   |           | Recovery period                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indata                                        |           | Indata                              |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p <sub>0</sub> (kPa) =                        | 5285      |                                     |                  |
| 5450 KLX15A_680.00-700.00_070418_1_CHir_C | • P section              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>i</sub> (kPa ) =                       | NA        |                                     |                  |
| 5400 -                                    | P below                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $p_p(kPa) =$                                  | NA        | p <sub>F</sub> (kPa ) =             | NA               |
| 5350 -                                    | <b>)</b>                 | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Q_p (m^3/s) =$                               | NA        |                                     |                  |
| 2 5300 T                                  |                          | 0.5 Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tp (s) =                                      | NA        | $t_F$ (s) =                         | NA               |
| P 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   |                          | 0.5 - 0.4 - 0.0 - 0.4 - 0.4 - 0.0 - 0.4 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - | S el S <sup>*</sup> (-)=                      | NA        | S el S <sup>*</sup> (-)=            | NA               |
| <b>10</b> 5250 -                          | :                        | - 0.3 Injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EC <sub>w</sub> (mS/m)=                       |           |                                     |                  |
| 5200 -                                    |                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Temp <sub>w</sub> (gr C)=                     | 14.9      |                                     |                  |
| 5150                                      |                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Derivative fact.=                             | NA        | Derivative fact.=                   | NA               |
| 5100                                      |                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |           |                                     |                  |
| 0.00 0.15 0.30 0.4<br>Elapsed             |                          | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |           |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results                                       | 1         | Results                             | <u> </u>         |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q/s $(m^2/s)=$                                | NA        |                                     |                  |
| Log-Log plot incl. derivates- fl          | ow period                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{\rm M} ({\rm m}^2/{\rm s}) =$             | NA        |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flow regime:                                  | transient | Flow regime:                        | transient        |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dt <sub>1</sub> (min) =                       | NA        | $dt_1 (min) =$                      | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_2 (min) =$                                | NA        | $dt_2 (min) =$                      | NA<br>NA         |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T (m^2/s) =$                                 | 1.0E-11   | $T (m^2/s) =$                       |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (-) =                                       | NA<br>NA  | S (-) =                             | NA<br>NA         |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K_s (m/s) = S_s (1/m) =$                     | NA<br>NA  | $K_s (m/s) =$ $S_s (1/m) =$         | NA<br>NA         |
| Not Ar                                    | nalysed                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               | NA<br>NA  |                                     | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C (m^3/Pa) = C_D (-) =$                      | NA        | $C (m^3/Pa) = C_D (-) =$            | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\xi(-) =$                                    | NA        | $\xi (-) = $                        | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (-) –                                       |           | S (-) –                             | 100              |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_{GRF}(m^2/s) =$                            | NA        | $T_{GRF}(m^2/s) =$                  | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_{GRF}(III / S) =$ $S_{GRF}(-) =$           | NA        | $S_{GRF}(III / S) =$ $S_{GRF}(-) =$ | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $D_{GRF}(\cdot) =$                            | NA        | $D_{GRF}(-) =$                      | NA               |
| Log-Log plot incl. derivatives-           | recovery period          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selected represe                              |           |                                     |                  |
| <u> </u>                                  | - •                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_1$ (min) =                                | NA        | C (m <sup>3</sup> /Pa) =            | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_2 \text{ (min)} =$                        | NA        | $C_D(-) =$                          | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $T_T (m^2/s) =$                               | 1.0E-11   |                                     | NA               |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S (-) =                                       | NA        |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K_s$ (m/s) =                                 | NA        |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $S_s (1/m) =$                                 | NA        |                                     |                  |
| Not Ar                                    | nalysed                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments:                                     |           |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Based on the test re<br>transmissivity is lov |           |                                     | ce) the interval |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |           |                                     |                  |
|                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |           |                                     |                  |




|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                          | umr                  | nary Sheet                      |                   |                                          |                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|---------------------------------|-------------------|------------------------------------------|--------------------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                        | gation               | Test type:[1]                   |                   |                                          | CHi                            |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | cemar                | Test no:                        |                   |                                          |                                |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                              | X15A                 | Test start:                     |                   |                                          | 070418 11:25                   |  |
| Toot coation from to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 720 00 740                                      | 00 m                 | Dognanaible for                 |                   |                                          |                                |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 720.00-740                                      | .00 m                | Responsible for test execution: |                   | Reinde                                   | Stephan Rohs<br>er van der Wal |  |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                               | 0.076                | Responsible for                 |                   | Cristian Enache                          |                                |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                      | test evaluation: Flow period    |                   | Recovery period                          |                                |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                      | Indata                          |                   | Indata                                   |                                |  |
| 5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | <b>→</b> 0.06        | p <sub>0</sub> (kPa) =          | 5579              |                                          |                                |  |
| KLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5A_720.00-740.00_070418_1_CHir_Q_r              |                      | p <sub>i</sub> (kPa ) =         | 5600              |                                          |                                |  |
| 5800 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • P below<br>• Q                                | - 0.05               | $p_p(kPa) =$                    | 5799              | p <sub>F</sub> (kPa ) =                  | 562                            |  |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                      | $Q_p (m^3/s) =$                 | 1.67E-07          |                                          |                                |  |
| ल<br>७ 5700 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | + 0.04<br>E          | tp (s) =                        | 1200              | $t_F$ (s) =                              | 1200                           |  |
| Fession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | + 0.03 + Rate [Vmin] | S el S <sup>*</sup> (-)=        |                   | S el S <sup>*</sup> (-)=                 | 1.00E-0                        |  |
| 90 of 15600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +                                               | Injection            | EC <sub>w</sub> (mS/m)=         |                   | ( )                                      |                                |  |
| å [·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                               | - 0.02               | Temp <sub>w</sub> (gr C)=       | 15.4              |                                          |                                |  |
| 5500 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hamach                                          | 0.01                 | Derivative fact.=               | 0.07              | Derivative fact.=                        | 0.0                            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |                                 |                   |                                          |                                |  |
| 0.00 0.40 0.80 Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | → 0.00<br>2.00       |                                 |                   |                                          |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | Results                         |                   | Results                                  |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | Q/s $(m^2/s)=$                  | 8.2E-09           |                                          |                                |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow period                                       |                      | $T_M (m^2/s) =$                 | 8.6E-09           |                                          |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | Flow regime:                    | transient         | Flow regime:                             | transient                      |  |
| 10 4 19 3 Eapsed time [n]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | '                                               | 300                  | $dt_1$ (min) =                  | NA                | $dt_1 (min) =$                           | 1.13                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | $dt_2$ (min) =                  | NA                | $dt_2$ (min) =                           | 4.69                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **************************************          | 10 <sup>2</sup>      | $T (m^2/s) =$                   | 3.9E-09           | $T (m^2/s) =$                            | 4.2E-0                         |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                               |                      | S (-) =                         | 1.0E-06           | ` '                                      | 1.0E-0                         |  |
| 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 30                   | $K_s$ (m/s) =                   | 2.0E-10           | $K_s$ (m/s) =                            | 2.1E-1                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | $S_s(1/m) =$                    |                   | $S_s(1/m) =$                             | 5.0E-0                         |  |
| ini).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 10 [yuju] (b)        | $C (m^3/Pa) =$                  | NA                | $C (m^3/Pa) =$                           | 1.5E-1                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | $C_D(-) =$                      | NA                | $C_D(-) =$                               | 1.7E-0                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | ξ(-) =                          |                   | ξ(-) =                                   | -2.0                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 °                 | 5() -                           | 2.1               | 5() -                                    |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | $T_{GRF}(m^2/s) =$              | NA                | $T_{GRF}(m^2/s) =$                       | NA                             |  |
| 10 -1 10 0 10 1<br>tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> |                      | $S_{GRF}(-) =$                  | NA                | $S_{GRF}(-) =$                           | NA                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | D <sub>GRF</sub> (-) =          | NA                | $D_{GRF}$ (-) =                          | NA                             |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                 |                      | Selected represe                | entative paran    |                                          |                                |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                      | $dt_1$ (min) =                  |                   | $C (m^3/Pa) =$                           | 1.5E-1                         |  |
| Elapsed time [h]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .10,1                                           | 1                    | $dt_2 \text{ (min)} =$          |                   | $C_D(-) =$                               | 1.7E-0                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | $T_T (m^2/s) =$                 | 4.2E-09           |                                          | -2.0                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 300                  | S(-) =                          | 1.0E-06           |                                          | 2.                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | T40 2                | $K_s (m/s) =$                   | 2.1E-10           |                                          |                                |  |
| 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | maintenant province.                            | 10 -                 | $S_s (11/s) =$ $S_s (1/m) =$    | 5.0E-08           |                                          | <del> </del>                   |  |
| and the same of th |                                                 | 30 (                 | Comments:                       | 3.0L-00           |                                          |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      |                                 |                   | S 4 2F 00 2/                             | 1 1 6                          |  |
| 10 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 10 1 8               |                                 |                   | f 4.2E-09 m2/s was one), which shows the |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | -                    |                                 |                   | nce range for the int                    |                                |  |
| <i>/</i> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | 3                    |                                 |                   | E-09 m2/s to 1.0E-0                      |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | flow dimension dis              | played during th  | e test is 2. The station                 | pressure                       |  |
| 10 <sup>-1</sup> 10 <sup>0</sup> tDCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | 10 °                 | measured at transdu             | ucer depth, was   | derived from the CH                      | fir phase using                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                      | straight line extrance          | olation in the Ho | rner plot to a value                     | of 5 590 2 kPa                 |  |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                          | umn         | nary Sheet                         |                   |                                          |                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|------------------------------------|-------------------|------------------------------------------|---------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investi                         |             |                                    |                   |                                          | CHi                             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                             | xemar       | Test no:                           |                   |                                          | 1                               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KL                                              | X15A        | Test start:                        |                   |                                          | 070418 14:06                    |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 740.00-760                                      | .00 m       | Responsible for                    |                   |                                          | Stephan Rohs                    |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | 0.076       | test execution:<br>Responsible for |                   |                                          | er van der Wal<br>ian Enachescu |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 0.010       | test evaluation:                   |                   |                                          | ian Enacinoco                   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |             | Flow period                        |                   | Recovery period                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | Indata                             |                   | Indata                                   |                                 |
| 6050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.008       | $p_0$ (kPa) =                      | 5727              |                                          |                                 |
| KLX15A_740.00-760.00_070418_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i                                               |             | p <sub>i</sub> (kPa ) =            | 5744              |                                          |                                 |
| 5950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sim$                                          |             | $p_p(kPa) =$                       | 5938              | p <sub>F</sub> (kPa ) =                  | 579                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1                                             | - 0.006     | $Q_p (m^3/s) =$                    | 1.67E-08          |                                          |                                 |
| Fed. 5850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | [/min]      | tp (s) =                           |                   | $t_F$ (s) =                              | 120                             |
| Press                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | on Rate     | S el S* (-)=                       | 1.00E-06          | S el S <sup>*</sup> (-)=                 | 1.00E-0                         |
| 5750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | Injecti     | EC <sub>w</sub> (mS/m)=            |                   |                                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P section P above P below                       | - 0.002     | Temp <sub>w</sub> (gr C)=          | 15.6              |                                          |                                 |
| 5650 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1 1                                         |             | Derivative fact.=                  | NA                | Derivative fact.=                        | 0.0                             |
| 5550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.000       |                                    |                   |                                          |                                 |
| 0.00 0.25 0.50 0.75 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25 1.50 1.75 2.00<br>Time [h]                 | 2.25        |                                    |                   |                                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | Results                            |                   | Results                                  |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | Q/s $(m^2/s)=$                     | 8.4E-10           |                                          |                                 |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                       |             | $T_M (m^2/s) =$                    | 8.8E-10           |                                          |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | Flow regime:                       | transient         | Flow regime:                             | transient                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $dt_1$ (min) =                     | NA                | $dt_1$ (min) =                           | NA                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $dt_2$ (min) =                     | NA                | $dt_2$ (min) =                           | NA                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $T (m^2/s) =$                      | NA                | $T (m^2/s) =$                            | 6.1E-10                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | S (-) =                            | NA                | S (-) =                                  | 1.0E-0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $K_s$ (m/s) =                      | NA                | $K_s (m/s) =$                            | 3.1E-1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $S_s (1/m) =$                      | NA                | $S_s (1/m) =$                            | 5.0E-0                          |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nalysed                                         |             | $C (m^3/Pa) =$                     | NA                | $C (m^3/Pa) =$                           | 8.4E-1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $C_D(-) =$                         | NA                | $C_D(-) =$                               | 9.3E-0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | ξ(-) =                             | NA                | ξ(-) =                                   | -1.                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | 3 ( )                              |                   | 3 ( )                                    |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $T_{GRF}(m^2/s) =$                 | NA                | $T_{GRF}(m^2/s) =$                       | NA                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $S_{GRF}(-) =$                     | NA                | $S_{GRF}(-) =$                           | NA                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | $D_{GRF}$ (-) =                    | NA                | $D_{GRF}$ (-) =                          | NA                              |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                 |             | Selected represe                   |                   | 1 1                                      | 1                               |
| 5 - 5 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |             | $dt_1$ (min) =                     | NA                | C (m <sup>3</sup> /Pa) =                 | 8.4E-1                          |
| Elapsed time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,0                                            |             | $dt_1$ (min) =                     | NA                | $C_D(-) =$                               | 9.3E-0                          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | 10 3        | $T_T (m^2/s) =$                    | 6.1E-10           |                                          | -1.7                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             | S (-) =                            | 1.0E-06           |                                          | · · ·                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 300         | $K_s (m/s) =$                      | 3.1E-11           |                                          | <u> </u>                        |
| 10°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ئۇ                                              | 10 2        | $S_s (1/m) =$                      | 5.0E-08           |                                          |                                 |
| San American Control of the Control  |                                                 | kPa]        | Comments:                          | 0.02 00           |                                          | <u> </u>                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 90. (pp.07) |                                    | transmissivity of | 6.1E-10 m2/s was                         | derived from the                |
| 10 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 10 1        |                                    |                   | nows the best data a                     |                                 |
| The state of the s |                                                 |             |                                    |                   | e interval transmiss                     |                                 |
| ·/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | 3           |                                    |                   | E-09 m2/s. The flow                      |                                 |
| 10-1 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> |             |                                    |                   | tatic pressure measu                     |                                 |
| tD/CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |             |                                    |                   | the CHir phase using value of 5,731.5 kl |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |             |                                    |                   |                                          |                                 |


|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nary Sheet                                  |                    |                          |                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------|--------------------------|--------------------------------|
| Project:                                  | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test type:[1]                               |                    |                          | CHi                            |
| Area:                                     | Laxemai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test no:                                    |                    |                          | ,                              |
| Borehole ID:                              | KLX15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start:                                 |                    |                          | 070418 16:4                    |
| Test section from - to (m):               | 760.00-780.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |                          | Stephan Roh                    |
| Section diameter, 2·r <sub>w</sub> (m):   | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | test execution:<br>Responsible for          |                    |                          | er van der Wa<br>ian Enachesci |
| Section diameter, 2-1 <sub>w</sub> (iii). | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | test evaluation:                            |                    | Clist                    | ian Enachesco                  |
| Linear plot Q and p                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                                 |                    | Recovery period          |                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                                      |                    | Indata                   |                                |
| 6160                                      | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p <sub>0</sub> (kPa) =                      | 5870               |                          |                                |
| KLX15A_760.00-780.00_070418_1_CHir_Q_r    | • P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p <sub>i</sub> (kPa ) =                     | 5889               |                          |                                |
| 6100 -                                    | • P above<br>• P below<br>• Q - 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $p_p(kPa) =$                                | 6089               | p <sub>F</sub> (kPa ) =  | 592                            |
| 6050 -                                    | - 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $Q_p (m^3/s) =$                             | 1.83E-07           |                          |                                |
| 3 6000 -                                  | + 0.020 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tp(s) =                                     | 1200               | t <sub>F</sub> (s) =     | 120                            |
| g 5950 -                                  | - Bare [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S el S <sup>*</sup> (-)=                    | l .                | S el S <sup>*</sup> (-)= | 1.00E-0                        |
| 5900                                      | 0.015 200 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC <sub>w</sub> (mS/m)=                     |                    | 0 0 0 ( )=               |                                |
| \$ 5850 -                                 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Temp <sub>w</sub> (gr C)=                   | 15.8               |                          |                                |
| 5800 -                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derivative fact.=                           |                    | Derivative fact.=        | 0.0                            |
| 5750                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Denvauve last.=                             | 0.07               | Denvative last.          | 0.0                            |
| 0.00 0.30 0.60 0.90<br>Elapsed T          | 1.20 1.50 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Results                                     |                    | Results                  |                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 9.0E-09            | Nesuits                  | I                              |
| eal or plot inal derivator fl             | ave paried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q/s $(m^2/s)=$                              | 9.0E-09<br>9.4E-09 |                          |                                |
| Log-Log plot incl. derivates- fl          | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_M (m^2/s) =$                             |                    | Flow ragima:             | transiant                      |
| Elapsed time [h]                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                                | transient          | Flow regime:             | transient                      |
| 10 1 10.                                  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dt <sub>1</sub> (min) =                     |                    | $dt_1 (min) =$           | 1.8                            |
| A.A.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dt <sub>2</sub> (min) =                     |                    | $dt_2 (min) =$           | 17.4                           |
|                                           | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T (m^2/s) =$                               |                    | $T (m^2/s) =$            | 3.0E-0                         |
| 10 °                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S (-) =                                     | 1.0E-06            | ` '                      | 1.0E-0                         |
|                                           | A CONTRACTOR OF THE CONTRACTOR | $K_s$ (m/s) =                               |                    | $K_s (m/s) =$            | 1.5E-1                         |
|                                           | 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_s (1/m) =$                               |                    | $S_s(1/m) =$             | 5.0E-0                         |
|                                           | - 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C (m^3/Pa) =$                              | NA                 | $C (m^3/Pa) =$           | 5.0E-1                         |
| 10                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $C_D$ (-) =                                 | NA                 | $C_D$ (-) =              | 5.6E-0                         |
|                                           | 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ξ(-) =                                      | -1.8               | ξ (-) =                  | -2.                            |
| 10 <sup>-4</sup> 10 <sup>0</sup> tD       | 10 1 10 2 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $T_{GRF}(m^2/s) =$                          | NA                 | $T_{GRF}(m^2/s) =$       | NA                             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{GRF}(-) =$                              | NA                 | $S_{GRF}(-) =$           | NA                             |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>GRF</sub> (-) =                      | NA                 | D <sub>GRF</sub> (-) =   | NA                             |
| Log-Log plot incl. derivatives-           | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                            | entative paran     | neters.                  |                                |
| Elapsed time [h]                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $dt_1$ (min) =                              | 1.87               | $C (m^3/Pa) =$           | 5.0E-1                         |
| 10 1 10, 10, 10, 10, 10, 10, 10, 10, 10,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 \text{ (min)} =$                      | 17.43              | $C_D$ (-) =              | 5.6E-0                         |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                             | 3.0E-09            |                          | -2.                            |
|                                           | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S (-) =                                     | 1.0E-06            |                          |                                |
| 10 0                                      | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_s (m/s) =$                               | 1.5E-10            |                          |                                |
|                                           | - Commence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S <sub>s</sub> (1/m) =                      | 5.0E-08            |                          |                                |
| p. p  | -<br>30 100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments:                                   | I                  |                          |                                |
| 10 4                                      | 9,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             | transmissivity of  | f 3.0E-09 m2/s was       | derived from th                |
|                                           | 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | analysis of the CHi                         | r phase, which sl  | nows the better data     | and derivative                 |
| /:                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |                    | e interval transmiss     |                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    | E-09 m2/s. The flow      |                                |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                    |                          |                                |
| 10 ·1 10 ° tDCD                           | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | displayed during the<br>transducer depth, w |                    |                          |                                |

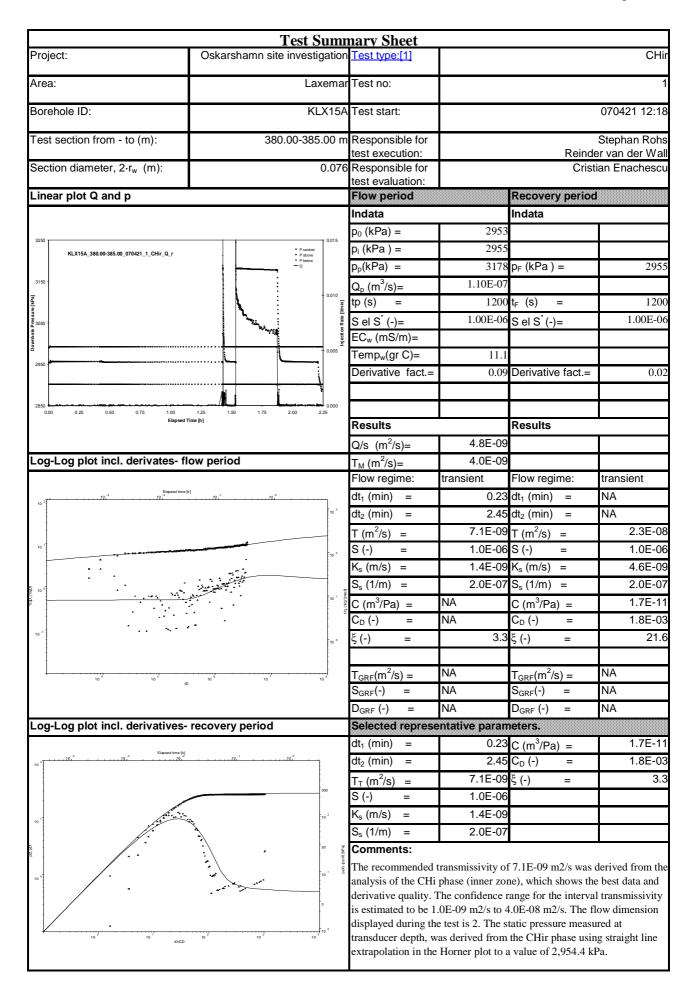
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sumn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nary Sheet                      |                 |                                            |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|--------------------------------------------|----------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test type:[1]                   |                 |                                            | CHi                              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxemar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test no:                        |                 |                                            | 1                                |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KI Y15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test start:                     |                 |                                            | 070418 19:14                     |
| Borenole ID.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLXTJA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rest start.                     |                 |                                            | 070410 19.14                     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 780.00-800.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible for test execution: |                 | Stephan R<br>Reinder van der V             |                                  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible for                 | Cristian Enache |                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation:                |                 |                                            | ******************************** |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                     |                 | Recovery period                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata $p_0 (kPa) =$            | 6015            | Indata                                     |                                  |
| 6300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 6034            |                                            |                                  |
| 6250 - KLX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (15A_780.00-800.00_070418_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>i</sub> (kPa ) =         |                 |                                            | 606                              |
| 6200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_p(kPa) =$                    |                 | p <sub>F</sub> (kPa ) =                    | 606                              |
| <sub>a</sub> 6150 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_p (m^3/s) =$                 | 8.33E-08        |                                            |                                  |
| SH 9186100 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P [Wmin]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tp (s) =                        |                 | $t_F$ (s) =                                | 5400                             |
| 8 6050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8000.0 Base 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S el S <sup>*</sup> (-)=        | 1.00E-06        | S el S <sup>*</sup> (-)=                   | 1.00E-0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n jec go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC <sub>w</sub> (mS/m)=         |                 |                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temp <sub>w</sub> (gr C)=       | 16.1            |                                            |                                  |
| 5950 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Derivative fact.=               | 0.05            | Derivative fact.=                          | 0.04                             |
| 5900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 |                                            |                                  |
| 0.00 0.50 1.00 1.50<br>Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 |                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                         |                 | Results                                    |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                  | 4.0E-09         |                                            |                                  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_M (m^2/s) =$                 | 4.2E-09         |                                            |                                  |
| Figure 6 to 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                    | transient       | Flow regime:                               | transient                        |
| 101 <sup>3</sup> 101 <sup>2</sup> 101 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                  | 3.52            | $dt_1$ (min) =                             | 2.33                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $dt_2$ (min) =                  | 14.02           | $dt_2$ (min) =                             | 10.66                            |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T (m^2/s) =$                   | 1.0E-09         | $T (m^2/s) =$                              | 2.3E-09                          |
| · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S (-) =                         | 1.0E-06         | /                                          | 1.0E-06                          |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_s (m/s) =$                   |                 | $K_s$ (m/s) =                              | 1.2E-10                          |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s (1/m) =$                   |                 | $S_s(1/m) =$                               | 5.0E-08                          |
| Text                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300 100 July (Fairst)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C (m^3/Pa) =$                  | NA              | $C (m^3/Pa) =$                             | 1.3E-10                          |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C_D(-) =$                      | NA              | $C_D(-) =$                                 | 1.4E-02                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ξ(-) =                          |                 | ξ(-) =                                     | -1.9                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S (-) =                         | 2.0             | S (-) =                                    | 1.0                              |
| · . · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$              | NA              | $T_{GRF}(m^2/s) =$                         | NA                               |
| 10 <sup>-1</sup> 10 <sup>0</sup> tD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10 1 10 2 10 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $S_{GRF}(III / S) =$            | NA              | $S_{GRF}(III / S) =$                       | NA                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D_{GRF}(\cdot) =$              | NA              | $D_{GRF}(\cdot) =$                         | NA                               |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected represe                |                 |                                            |                                  |
| 99 F.o. mon donitani400-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                  |                 | C (m <sup>3</sup> /Pa) =                   | 1.3E-10                          |
| Elapsed time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $dt_1 (min) =$ $dt_2 (min) =$   |                 | $C (m /Pa) = C_D (-) =$                    | 1.4E-02                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 2.3E-09         | 1.1                                        | -1.9                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $T_T (m^2/s) = S (-) =$         | 1.0E-06         | . ,                                        | -1.8                             |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TO 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ( )                           |                 |                                            |                                  |
| 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THE PARTY AND TH | $K_s (m/s) =$                   | 1.2E-10         |                                            |                                  |
| A STATE OF THE STA | 30 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S_s (1/m) =$                   | 5.0E-08         |                                            |                                  |
| 37/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments:                       |                 | 50 OF 60 - 51                              | 1 1 10 -                         |
| 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 1 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                 | f 2.3E-09 m2/s was<br>one), which shows th |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and derivative quali            |                 |                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 | E-10 m2/s to 5.0E-0                        |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 ° 10 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | flow dimension disp             |                 |                                            |                                  |
| 10 <sup>-1</sup> 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 10 10 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | not be extrapolated             |                 |                                            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                 | •                                          |                                  |

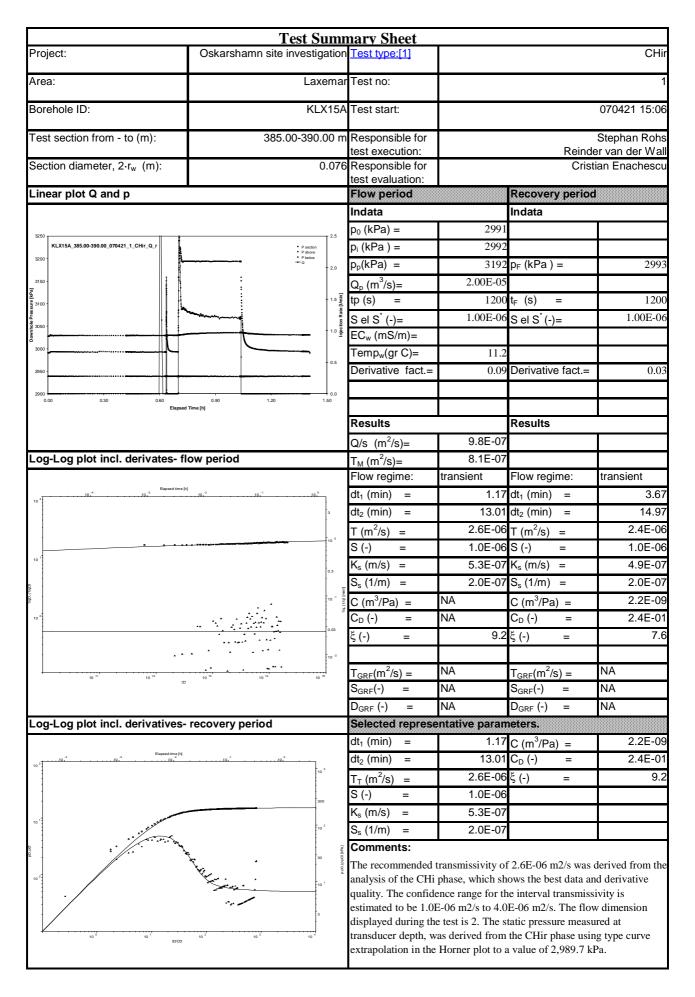


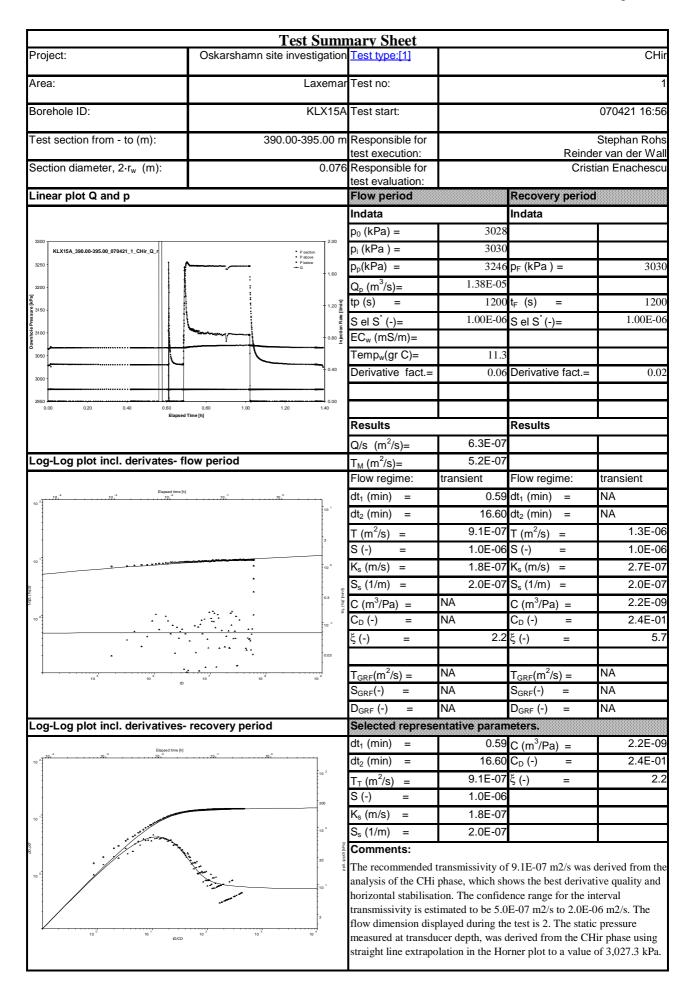
|                                         | Test S                    | umr               | nary Sheet                                    |           |                                 |                  |
|-----------------------------------------|---------------------------|-------------------|-----------------------------------------------|-----------|---------------------------------|------------------|
| Project:                                | Oskarshamn site investig  |                   |                                               |           |                                 | CHir             |
| Area:                                   | Lax                       | emar              | Test no:                                      |           |                                 | 1                |
|                                         |                           |                   |                                               |           |                                 | ·                |
| Borehole ID:                            | KL                        | X15A              | Test start:                                   |           |                                 | 070419 01:51     |
| Test section from - to (m):             | 820.00-840.               | .00 m             | Responsible for                               |           |                                 | Stephan Rohs     |
| 0 ( )                                   |                           | 0.070             | test execution:                               |           |                                 | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m): | (                         | 0.076             | Responsible for test evaluation:              |           | Crist                           | ian Enachescu    |
| Linear plot Q and p                     |                           |                   | Flow period                                   |           | Recovery period                 |                  |
|                                         |                           |                   | Indata                                        |           | Indata                          |                  |
| 6450                                    |                           | T <sup>0.10</sup> | $p_0$ (kPa) =                                 | 6306      |                                 |                  |
| KLX15A_820.00-840.00_070419_1_CHir_Q_r  | P section P above P bolow |                   | p <sub>i</sub> (kPa ) =                       | NA        |                                 |                  |
| \                                       |                           | - 0.08            | $p_p(kPa) =$                                  | NA        | p <sub>F</sub> (kPa ) =         | NA               |
| 6350                                    |                           | -                 | $Q_p (m^3/s) =$                               | NA        |                                 |                  |
| 3000                                    |                           | - Rate [Vmin]     | tp (s) =                                      | NA        | t <sub>F</sub> (s) =            | NA               |
| malo ac 60 € 50 ·                       |                           | njection R        | S el S* (-)=                                  | NA        | S el S <sup>*</sup> (-)=        | NA               |
| 6200 -                                  |                           | _                 | $EC_w (mS/m) =$                               | 16.6      |                                 | ļ                |
| 6150                                    |                           | 0.02              | Temp <sub>w</sub> (gr C)= Derivative fact.=   | 16.6      | Derivative fact.=               | NA               |
|                                         |                           |                   | Denvative lact.=                              | WA        | Derivative lact.=               | I N/\            |
| 0.00 0.15 0.30 0.45 Elapsed T           |                           | 0.00              |                                               |           |                                 |                  |
| Liapseu i                               | ane [n]                   |                   | Results                                       |           | Results                         |                  |
|                                         |                           |                   | $Q/s (m^2/s) =$                               | NA        |                                 |                  |
| Log-Log plot incl. derivates- flo       | ow period                 |                   | $T_{\rm M} (m^2/s) =$                         | NA        |                                 |                  |
|                                         | -                         |                   | Flow regime:                                  | transient | Flow regime:                    | transient        |
|                                         |                           |                   | $dt_1$ (min) =                                | NA        | $dt_1$ (min) =                  | NA               |
|                                         |                           |                   | $dt_2$ (min) =                                | NA        | $dt_2$ (min) =                  | NA               |
|                                         |                           |                   | $T (m^2/s) =$                                 | 1.0E-11   | $T (m^2/s) =$                   | NA               |
|                                         |                           |                   | S (-) =                                       | NA        | S (-) =                         | NA               |
|                                         |                           |                   | $K_s$ (m/s) =                                 | NA        | $K_s$ (m/s) =                   | NA               |
| Not An                                  | nalvsed                   |                   | $S_s (1/m) =$                                 | NA        | $S_s (1/m) =$                   | NA               |
| 110012                                  |                           |                   | $C (m^3/Pa) =$                                | NA        | $C (m^3/Pa) =$                  | NA               |
|                                         |                           |                   | C <sub>D</sub> (-) =                          | NA        | $C_D(-) =$                      | NA               |
|                                         |                           |                   | ξ(-) =                                        | NA        | ξ (-) =                         | NA               |
|                                         |                           |                   | - , 2, <sub>2</sub>                           | NΙΛ       | <b>-</b> (2)                    | NA               |
|                                         |                           |                   | $T_{GRF}(m^2/s) = S_{GRF}(-) =$               | NA<br>NA  | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA               |
|                                         |                           |                   | $D_{GRF}(-)$ =                                | NA        | $D_{GRF}(-) =$                  | NA               |
| Log-Log plot incl. derivatives-         | recovery period           |                   | Selected represe                              |           |                                 | 114/1            |
| J                                       | <b>, F</b>                |                   | $dt_1$ (min) =                                | NA        | C (m <sup>3</sup> /Pa) =        | NA               |
|                                         |                           |                   | $dt_2 \text{ (min)} =$                        | NA        | $C_D(-) =$                      | NA               |
|                                         |                           |                   | $T_T (m^2/s) =$                               | 1.0E-11   |                                 | NA               |
|                                         |                           |                   | S (-) =                                       | NA        |                                 |                  |
|                                         |                           |                   | $K_s$ (m/s) =                                 | NA        |                                 |                  |
|                                         |                           |                   | $S_s (1/m) =$                                 | NA        |                                 |                  |
| Not An                                  | nalysed                   |                   | Comments:                                     |           |                                 |                  |
|                                         |                           |                   | Based on the test re<br>transmissivity is lov |           |                                 | ce) the interval |
|                                         |                           |                   |                                               |           |                                 |                  |



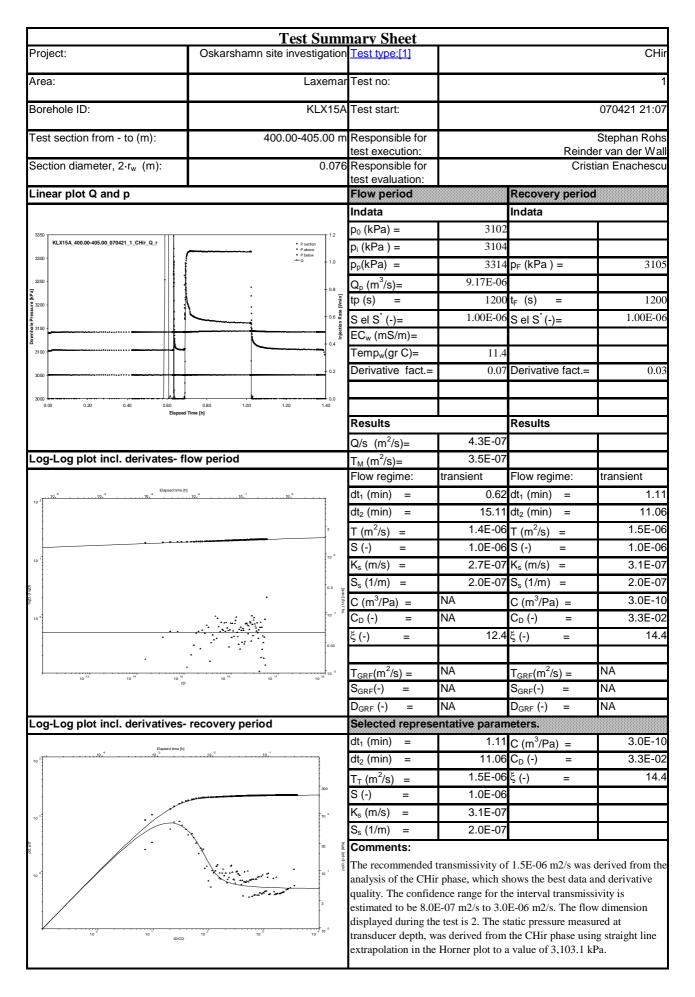



|                                         | Test Su                   | mn                                       | nary Sheet                                    |           |                                 |                                 |
|-----------------------------------------|---------------------------|------------------------------------------|-----------------------------------------------|-----------|---------------------------------|---------------------------------|
| Project:                                | Oskarshamn site investiga | ation                                    | Test type:[1]                                 |           |                                 | CHir                            |
| Area:                                   | Laxe                      | mar                                      | Test no:                                      |           |                                 | 1                               |
| Borehole ID:                            | KLX                       | 15A                                      | Test start:                                   |           |                                 | 070419 14:46                    |
| Test section from - to (m):             | 880.00-900.0              | 0 m                                      | Responsible for                               |           |                                 | Stephan Rohs<br>er van der Wall |
| Section diameter, 2·r <sub>w</sub> (m): | 0.                        | 076                                      | test execution:<br>Responsible for            |           |                                 | ian Enachescu                   |
| Cooker diamotor, 2 Tw (m).              | 0.                        | .0.0                                     | test evaluation:                              |           | 0.100                           | iair Enaonocca                  |
| Linear plot Q and p                     |                           |                                          | Flow period                                   |           | Recovery period                 |                                 |
|                                         |                           |                                          | Indata                                        |           | Indata                          |                                 |
| 6850                                    |                           | 0.010                                    | $p_0$ (kPa) =                                 | 6739      |                                 |                                 |
| KLX15A_880.00-900.00_070419_1_CHir_Q_r  | P section P above P below |                                          | $p_i (kPa) =$                                 | NA        |                                 |                                 |
| 6800 -                                  |                           | 0.008                                    | $p_p(kPa) =$                                  | NA        | p <sub>F</sub> (kPa ) =         | NA                              |
| ₹ 6750 -                                |                           |                                          | $Q_p (m^3/s) =$                               | NA        |                                 |                                 |
| Pal serve (Mg                           | ÷ † 0.                    | 1000.000.00.00.00.00.00.00.00.00.00.00.0 | tp (s) =                                      | NA        | $t_F$ (s) =                     | NA                              |
| 8 6700 - 0                              |                           | njection Rate                            | S el S <sup>*</sup> (-)=                      | NA        | S el S <sup>*</sup> (-)=        | NA                              |
| € 6650 -                                | † a                       | 0.004 .                                  | EC <sub>w</sub> (mS/m)=                       |           |                                 |                                 |
|                                         |                           | 0.002                                    | Temp <sub>w</sub> (gr C)=                     | 17.2      |                                 |                                 |
| 6600 -                                  |                           | 1.002                                    | Derivative fact.=                             | NA        | Derivative fact.=               | NA                              |
| 6550                                    |                           | 0.000                                    |                                               |           |                                 |                                 |
| 0.00 0.15 0.30 0.40 Elapsed T           |                           |                                          |                                               |           |                                 |                                 |
|                                         |                           |                                          | Results                                       |           | Results                         |                                 |
|                                         |                           |                                          | Q/s $(m^2/s)=$                                | NA        |                                 |                                 |
| Log-Log plot incl. derivates- fl        | ow period                 |                                          | $T_{\rm M} (m^2/s) =$                         | NA        |                                 |                                 |
|                                         | •                         |                                          | Flow regime:                                  | transient | Flow regime:                    | transient                       |
|                                         |                           |                                          | $dt_1 \text{ (min)} =$                        | NA        | $dt_1 (min) =$                  | NA                              |
|                                         |                           |                                          | $dt_2$ (min) =                                | NA        | $dt_2 \text{ (min)} =$          | NA                              |
|                                         |                           |                                          | $T (m^2/s) =$                                 |           | $T (m^2/s) =$                   | NA                              |
|                                         |                           |                                          | S (-) =                                       | NA        | S (-) =                         | NA                              |
|                                         |                           |                                          | $K_s (m/s) =$                                 | NA        | $K_s (m/s) =$                   | NA                              |
|                                         |                           |                                          | $S_s (1/m) =$                                 | NA        | $S_s(1/m) =$                    | NA                              |
| Not Ar                                  | nalysed                   |                                          | $C (m^3/Pa) =$                                | NA        | $C (m^3/Pa) =$                  | NA                              |
|                                         |                           |                                          | $C_D(-) =$                                    | NA        | $C_D(-) =$                      | NA                              |
|                                         |                           |                                          | ξ(-) =                                        | NA        | ξ(-) =                          | NA                              |
|                                         |                           |                                          | 5() -                                         | 1171      | 5() -                           | 1121                            |
|                                         |                           |                                          | $T_{GRF}(m^2/s) =$                            | NA        | T (m <sup>2</sup> /o)           | NA                              |
|                                         |                           |                                          | $S_{GRF}(m / s) =$ $S_{GRF}(-) =$             | NA        | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA                              |
|                                         |                           |                                          | $D_{GRF}(-) =$                                | NA        | $D_{GRF}(-) =$                  | NA                              |
| Log-Log plot incl. derivatives-         | recovery period           |                                          | Selected represe                              |           |                                 | 1.11.                           |
| Log Log plot illol. delivatives-        | Todavery period           |                                          | dt <sub>1</sub> (min) =                       | NA        | C (m <sup>3</sup> /Pa) =        | NA                              |
|                                         |                           |                                          | $dt_1 (min) =$ $dt_2 (min) =$                 | NA<br>NA  | $C_D(-) =$                      | NA                              |
|                                         |                           |                                          |                                               | 1.0E-11   |                                 | NA                              |
|                                         |                           |                                          | $T_T (m^2/s) = $ $S (-) = $                   | NA        | ζ(-) =                          | INA                             |
|                                         |                           |                                          |                                               | NA<br>NA  |                                 |                                 |
|                                         |                           |                                          | $K_s (m/s) = S_s (1/m) =$                     | NA<br>NA  |                                 |                                 |
| Not Analysed                            |                           | Comments:                                | 11/1                                          |           |                                 |                                 |
| NOT AT                                  | iaiyseu                   |                                          | Based on the test re<br>transmissivity is lov |           |                                 | ce) the interval                |
|                                         |                           |                                          |                                               |           |                                 |                                 |

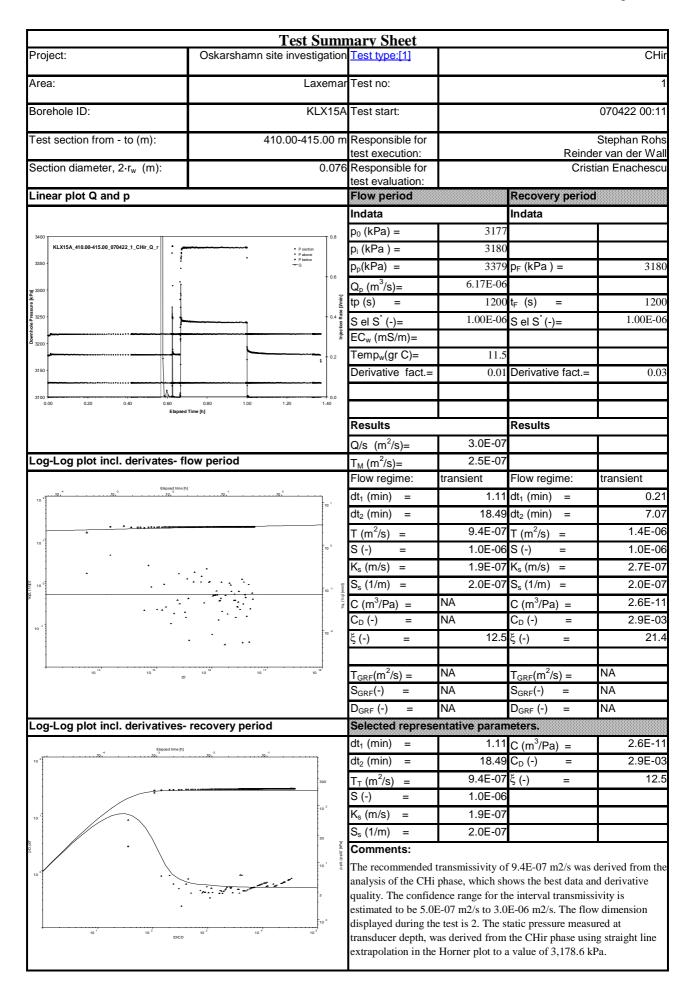

|                                         | Test S                  | Sumn                | nary Sheet                                    |               |                               |                  |
|-----------------------------------------|-------------------------|---------------------|-----------------------------------------------|---------------|-------------------------------|------------------|
| Project:                                | Oskarshamn site investi |                     |                                               |               |                               | CHir             |
| Area:                                   | La                      | vomar               | Test no:                                      |               |                               | 1                |
| Alea.                                   | La                      | xemai               | rest no.                                      |               |                               |                  |
| Borehole ID:                            | KLX15A                  |                     | Test start:                                   |               |                               | 070419 16:30     |
| Test section from - to (m):             | 900.00.0                | 220.00              | Responsible for                               |               |                               | Stephan Rohs     |
| rest section from - to (iii).           | 900.00-8                | 920.00              | test execution:                               |               | Reinde                        | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m): |                         | 0.076               | Responsible for                               |               |                               | ian Enachescu    |
| Linear plot Q and p                     |                         |                     | test evaluation:<br>Flow period               |               | Recovery period               |                  |
| Linear plot & and p                     |                         |                     | Indata                                        |               | Indata                        |                  |
| 7050 T                                  |                         | 0.010               | p <sub>0</sub> (kPa) =                        | 6881          |                               |                  |
| KLX15A_900.00-920.00_070419_1_CHir_Q_r  | P section P above       | 0.010               | p <sub>i</sub> (kPa ) =                       | NA            |                               |                  |
| 7000 -                                  | P below<br>— Q          | 0.008               | $p_p(kPa) =$                                  | NA            | p <sub>F</sub> (kPa ) =       | NA               |
| 6950 -                                  |                         |                     | $Q_p (m^3/s) =$                               | NA            |                               |                  |
| 6900                                    | <del>-</del>            | -<br>- 8ate [l/min] | tp (s) =                                      | NA            | t <sub>F</sub> (s) =          | NA               |
| 9 0 6 6850 -                            | •                       | 5                   | S el S <sup>*</sup> (-)=                      | NA            | S el S <sup>*</sup> (-)=      | NA               |
| Down                                    | ·                       | + 0.004 E           | EC <sub>w</sub> (mS/m)=                       |               |                               |                  |
| 6800 -                                  |                         | 0.002               | Temp <sub>w</sub> (gr C)=                     | 17.5          |                               |                  |
| 6750 -                                  |                         |                     | Derivative fact.=                             | NA            | Derivative fact.=             | NA               |
| 0.00 0.15 0.30 0.45                     | 0.60 0.75               | 0.000               |                                               |               |                               |                  |
| Elapsed Ti                              |                         | 0.90                |                                               |               |                               |                  |
|                                         |                         |                     | Results                                       | N.1.0         | Results                       | 1                |
| Log-Log plot incl. derivates- flo       | ave paried              |                     | Q/s $(m^2/s)=$                                | NA<br>NA      |                               | 1                |
| Log-Log plot incl. derivates- in        | ow period               |                     | $T_M (m^2/s) =$ Flow regime:                  | transient     | Flow regime:                  | transient        |
|                                         |                         |                     | dt <sub>1</sub> (min) =                       | NA            | dt <sub>1</sub> (min) =       | NA               |
|                                         |                         |                     | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA            | $dt_1 (min) =$ $dt_2 (min) =$ | NA               |
|                                         |                         |                     | $T (m^2/s) =$                                 | 1.0E-11       | $T (m^2/s) =$                 | NA               |
|                                         |                         |                     | S (-) =                                       | NA            | S (-) =                       | NA               |
|                                         |                         |                     | $K_s$ (m/s) =                                 | NA            | $K_s$ (m/s) =                 | NA               |
|                                         |                         |                     | $S_s (1/m) =$                                 | NA            | $S_s (1/m) =$                 | NA               |
| Not An                                  | alysed                  |                     | $C (m^3/Pa) =$                                | NA            | $C (m^3/Pa) =$                | NA               |
|                                         |                         |                     |                                               | NA            | C <sub>D</sub> (-) =          | NA               |
|                                         |                         |                     | ξ(-) =                                        | NA            | ξ (-) =                       | NA               |
|                                         |                         |                     |                                               |               |                               |                  |
|                                         |                         |                     | $T_{GRF}(m^2/s) =$                            | NA            | $T_{GRF}(m^2/s) =$            | NA               |
|                                         |                         |                     | $S_{GRF}(-) =$                                | NA            | $S_{GRF}(-) =$                | NA               |
|                                         |                         |                     | D <sub>GRF</sub> (-) =                        | NA            | D <sub>GRF</sub> (-) =        | NA               |
| Log-Log plot incl. derivatives-         | recovery period         |                     | Selected represe                              |               |                               | Into             |
|                                         |                         |                     | $dt_1 (min) =$                                | NA<br>NA      | $C (m^3/Pa) =$                | NA<br>NA         |
|                                         |                         |                     | $dt_2 (min) =$                                | NA<br>1 0E 11 | $C_D(-) =$                    | NA<br>NA         |
|                                         |                         |                     | $T_T (m^2/s) = S (-) =$                       | 1.0E-11<br>NA | ζ(-) =                        | NA               |
|                                         |                         |                     | $S (-) = K_s (m/s) =$                         | NA<br>NA      |                               | -                |
|                                         |                         |                     | $S_s (11/s) = S_s (1/m) = S_s (1/m)$          | NA<br>NA      |                               |                  |
| Not Analysed                            |                         |                     | Comments:                                     |               |                               | <u> </u>         |
| . 100.7.                                | yocu                    |                     | Based on the test re<br>transmissivity is lov |               |                               | ce) the interval |
|                                         |                         |                     |                                               |               |                               |                  |


|                                         | Test                  | Sumn      | nary Sheet                                    |               |                                         |                  |
|-----------------------------------------|-----------------------|-----------|-----------------------------------------------|---------------|-----------------------------------------|------------------|
| Project:                                | Oskarshamn site inves |           |                                               |               |                                         | CHir             |
| Area:                                   | La                    | axemar    | Test no:                                      |               |                                         | 1                |
|                                         |                       |           |                                               |               |                                         |                  |
| Borehole ID:                            | K                     | LX15A     | Test start:                                   |               |                                         | 070419 17:52     |
| Test section from - to (m):             | 920.00-94             | 0.00 m    | Responsible for                               |               |                                         | Stephan Rohs     |
| 0                                       |                       | 0.070     | test execution:                               |               |                                         | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m): |                       | 0.076     | Responsible for test evaluation:              |               | Crist                                   | ian Enachescu    |
| Linear plot Q and p                     |                       |           | Flow period                                   |               | Recovery period                         |                  |
|                                         |                       |           | Indata                                        |               | Indata                                  |                  |
| 7250                                    |                       | 0.010     | $p_0$ (kPa) =                                 | 7026          |                                         |                  |
| KLX15A_920.00-940.00_070419_1_CHir_Q_r  | P section P above     |           | p <sub>i</sub> (kPa ) =                       | NA            |                                         |                  |
|                                         | P below<br>— Q        | - 0.008   | $p_p(kPa) =$                                  | NA            | p <sub>F</sub> (kPa ) =                 | NA               |
| 7150 -                                  |                       |           | $Q_p (m^3/s) =$                               | NA            |                                         | 1110             |
| 2 sur e (KPa)                           |                       | ≥         | tp(s) =                                       | NA<br>NA      | $t_F(s) =$                              | NA               |
| \$ 7050<br>2 7050                       |                       | ction Rat | $S el S^* (-)=$ $EC_w (mS/m)=$                | NA            | S el S <sup>*</sup> (-)=                | NA               |
| 7000 -                                  |                       | 0.004 =   | Temp <sub>w</sub> (gr C)=                     | 17.7          |                                         |                  |
| 6950 -                                  |                       | 0.002     | Derivative fact.=                             |               | Derivative fact.=                       | NA               |
| 6900 -                                  |                       |           |                                               | <u> </u>      | _ = = = = = = = = = = = = = = = = = = = | - '              |
| 0.00 0.15 0.30 0.41                     | 0.60 0.75             | 0.000     |                                               |               |                                         |                  |
| Elapsed T                               |                       |           | Results                                       |               | Results                                 | <u>.</u>         |
|                                         |                       |           | Q/s $(m^2/s)=$                                | NA            |                                         |                  |
| Log-Log plot incl. derivates- fl        | ow period             |           | $T_{\rm M} (m^2/s) =$                         | NA            |                                         |                  |
|                                         |                       |           | Flow regime:                                  | transient     | Flow regime:                            | transient        |
|                                         |                       |           | $dt_1$ (min) =                                | NA            | $dt_1$ (min) =                          | NA               |
|                                         |                       |           | $dt_2 (min) =$                                | NA            | $dt_2 (min) =$                          | NA               |
|                                         |                       |           | $T (m^2/s) =$                                 | 1.0E-11       | $T (m^2/s) =$                           | NA               |
|                                         |                       |           | S (-) =                                       | NA            | S (-) =                                 | NA               |
|                                         |                       |           | $K_s (m/s) =$                                 | NA<br>NA      | $K_s (m/s) =$                           | NA               |
| Not Ar                                  | alysed                |           | $S_s(1/m) =$                                  | NA<br>NA      | $S_s(1/m) =$                            | NA<br>NA         |
|                                         |                       |           | $C (m^3/Pa) = C_D (-) =$                      | NA            | $C (m^3/Pa) = C_D (-) =$                | NA               |
|                                         |                       |           | $\xi(-) = $                                   | NA            | $\xi (-) = $                            | NA               |
|                                         |                       |           | 5() -                                         | - 112         | 5() -                                   |                  |
|                                         |                       |           | $T_{GRF}(m^2/s) =$                            | NA            | $T_{GRF}(m^2/s) =$                      | NA               |
|                                         |                       |           | $S_{GRF}(-) =$                                | NA            | $S_{GRF}(-) =$                          | NA               |
|                                         |                       |           | D <sub>GRF</sub> (-) =                        | NA            | D <sub>GRF</sub> (-) =                  | NA               |
| Log-Log plot incl. derivatives-         | recovery period       |           | Selected represe                              | ntative paran | neters.                                 | •                |
|                                         |                       |           | $dt_1$ (min) =                                | NA            | $C (m^3/Pa) =$                          | NA               |
|                                         |                       |           | $dt_2 (min) =$                                | NA            | $C_D(-) =$                              | NA               |
|                                         |                       |           | $T_{T} (m^{2}/s) = S (-) =$                   | 1.0E-11       | ξ (-) =                                 | NA               |
|                                         |                       |           |                                               | NA            |                                         |                  |
|                                         |                       |           | $K_s (m/s) =$                                 | NA<br>NA      |                                         | <u> </u>         |
| %T - 4                                  |                       |           | S <sub>s</sub> (1/m) = Comments:              | IN/A          |                                         | <u> </u>         |
| Not Ar                                  | aryseu                |           | Based on the test re<br>transmissivity is lov |               |                                         | ce) the interval |
|                                         |                       |           |                                               |               |                                         |                  |

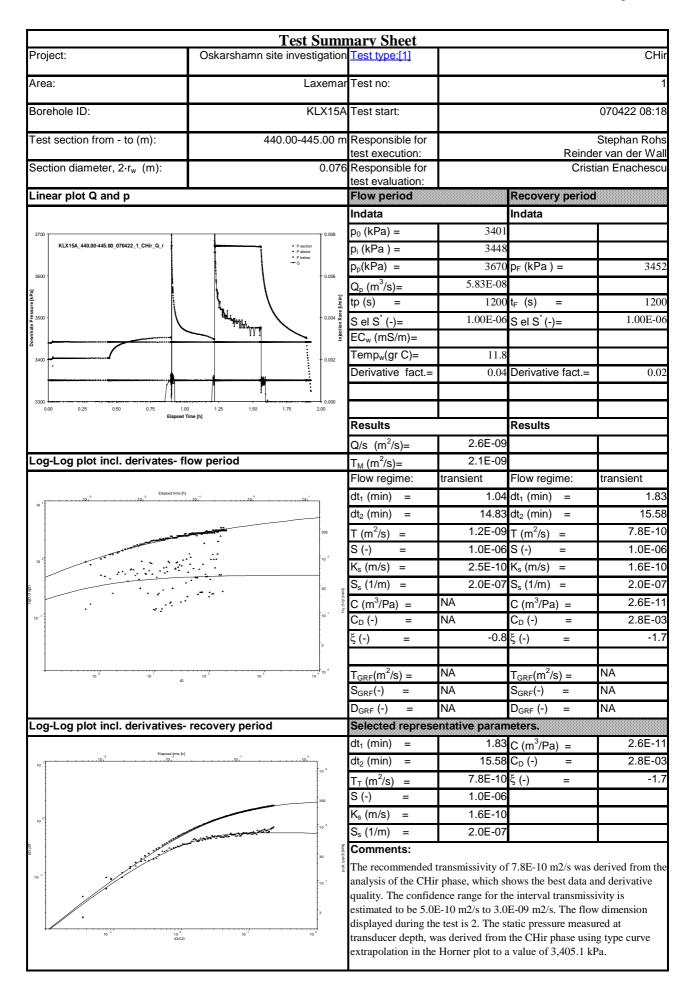
|                                         | Test Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ımr            | nary Sheet                                    |                    |                          |                                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|--------------------|--------------------------|---------------------------------|
| Project:                                | Oskarshamn site investig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                               |                    |                          | CHir                            |
| A                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | T4                                            |                    |                          | 4                               |
| Area:                                   | Lax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emar           | Test no:                                      |                    |                          |                                 |
| Borehole ID:                            | KLX15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Test start:                                   |                    |                          | 070419 20:42                    |
| T1                                      | 0.40,00,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00             | Danas Salatas                                 |                    |                          | Otanhan Daha                    |
| Test section from - to (m):             | 940.00-960.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00 m           | Responsible for test execution:               |                    | Reinde                   | Stephan Rohs<br>er van der Wall |
| Section diameter, 2-r <sub>w</sub> (m): | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.076          | Responsible for                               |                    |                          | ian Enachescu                   |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | test evaluation:                              |                    |                          |                                 |
| Linear plot Q and p                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Flow period                                   |                    | Recovery period          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Indata                                        | 7171               | Indata                   | 1                               |
| 7350                                    | P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.010          | $p_0 (kPa) =$                                 | 7171               |                          | ļ                               |
| KLX15A_940.00-960.00_070419_1_CHir_Q_r  | Pabove Pbelow Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | p <sub>i</sub> (kPa) =                        | NA                 | n (kDe.)                 | NIA                             |
| 7250                                    | interestation of the state of t | 0.008          | $p_p(kPa) =$                                  | NA<br>NA           | p <sub>F</sub> (kPa ) =  | NA                              |
| To a second                             | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +0.006 ₹       | $Q_{p} (m^{3}/s) = $ $tp (s) =$               | NA<br>NA           | t (c) –                  | NA                              |
| 7200                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Rate [l/min] |                                               | NA<br>NA           | $t_F(s) =$               | NA<br>NA                        |
| 1 150 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.004          | S el S $^*$ (-)=<br>EC $_w$ (mS/m)=           | INA                | S el S <sup>*</sup> (-)= | INA                             |
| 7100                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | Temp <sub>w</sub> (gr C)=                     | 17.9               |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002          | Derivative fact.=                             |                    | Derivative fact.=        | NA                              |
| 7050                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | DOTIVATIVE TACK.=                             | 11/1               | Donvative lact.=         | 11/A                            |
| 7000 0.00 0.15 0.30 0.4<br>Elapsed 7    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000          |                                               |                    |                          |                                 |
| Esaps ed 1                              | ime (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Results                                       |                    | Results                  |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Q/s $(m^2/s)=$                                | NA                 | recuito                  |                                 |
| Log-Log plot incl. derivates- fl        | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | $T_{\rm M} (m^2/s) =$                         | NA                 |                          |                                 |
| gg p.o                                  | poou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | Flow regime:                                  | transient          | Flow regime:             | transient                       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_1 (min) =$                                | NA                 | $dt_1 (min) =$           | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_2 \text{ (min)} =$                        | NA                 | $dt_2 \text{ (min)} =$   | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $T (m^2/s) =$                                 | 1.0E-11            | $T (m^2/s) =$            | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S (-) =                                       | NA                 | S (-) =                  | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $K_s$ (m/s) =                                 | NA                 | $K_s (m/s) =$            | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $S_s (1/m) =$                                 | NA                 | $S_s (1/m) =$            | NA                              |
| Not Ar                                  | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | $C (m^3/Pa) =$                                | NA                 | $C (m^3/Pa) =$           | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | C <sub>D</sub> (-) =                          | NA                 | C <sub>D</sub> (-) =     | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ξ(-) =                                        | NA                 | ξ(-) =                   | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                               |                    |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $T_{GRF}(m^2/s) =$                            | NA                 | $T_{GRF}(m^2/s) =$       | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $S_{GRF}(-) =$                                | NA                 | $S_{GRF}(-) =$           | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $D_{GRF}$ (-) =                               | NA                 | $D_{GRF}$ (-) =          | NA                              |
| Log-Log plot incl. derivatives-         | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Selected represe                              |                    | neters.                  |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_1$ (min) =                                | NA                 | $C (m^3/Pa) =$           | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $dt_2 (min) =$                                | NA                 | $C_D(-) =$               | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $T_T (m^2/s) =$                               | 1.0E-11            | ξ (-) =                  | NA                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S (-) =                                       | NA                 |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | $K_s$ (m/s) =                                 | NA                 |                          | <u> </u>                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | S <sub>s</sub> (1/m) =                        | NA                 |                          |                                 |
| Not Ar                                  | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | Comments:                                     |                    | . 1 1                    |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Based on the test re<br>transmissivity is lov |                    |                          | ce) the interval                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | canoninosivity is lov                         | , or until 1.VE-11 | . 1114/0.                |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                               |                    |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                               |                    |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                               |                    |                          |                                 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                               |                    |                          |                                 |


|                                         | Test Sumr                     | nary Sheet                                    |               |                          |                                                  |  |
|-----------------------------------------|-------------------------------|-----------------------------------------------|---------------|--------------------------|--------------------------------------------------|--|
| Project:                                | Oskarshamn site investigation |                                               |               |                          | CHir                                             |  |
| Area:                                   | Laxemar                       | Test no:                                      |               |                          | 1                                                |  |
| D 1 1 1D                                |                               |                                               |               |                          | 070440 00 00                                     |  |
| Borehole ID:                            | KLX15A                        | Test start:                                   |               |                          | 070419 22:03                                     |  |
| Test section from - to (m):             | 955.00-975.00 m               |                                               |               | Stephan Ro               |                                                  |  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                         | test execution:<br>Responsible for            |               |                          | er van der Wall<br>ian Enachescu                 |  |
| , ,                                     | 0.070                         | test evaluation:                              |               |                          |                                                  |  |
| Linear plot Q and p                     |                               | Flow period                                   |               | Recovery period          |                                                  |  |
|                                         |                               | Indata                                        |               | Indata                   |                                                  |  |
| 7400                                    | 0.010 • P section             | p <sub>0</sub> (kPa) =                        | 7278          |                          |                                                  |  |
| KLX15A_955.00-975.00_070419_1_CHir_Q_r  | Pabove Pabove Pabove  Pabove  | p <sub>i</sub> (kPa ) =                       | NA            |                          |                                                  |  |
| 7350                                    | - 0.008                       | $p_p(kPa) =$                                  | NA            | p <sub>F</sub> (kPa ) =  | NA                                               |  |
| [e7300]                                 |                               | $Q_p (m^3/s) =$                               | NA            |                          |                                                  |  |
| N N N N N N N N N N N N N N N N N N N   | Rate [/min]                   | tp (s) =                                      | NA            | t <sub>F</sub> (s) =     | NA                                               |  |
| 8 7250 -                                |                               | S el S* (-)=                                  | NA            | S el S <sup>*</sup> (-)= | NA                                               |  |
| 7200 -                                  | 0.004                         | EC <sub>w</sub> (mS/m)=                       | 10.1          |                          |                                                  |  |
|                                         | 0.002                         | Temp <sub>w</sub> (gr C)=                     | 18.1          | Dorivetive foot          | NA                                               |  |
| 7150                                    |                               | Derivative fact.=                             | INA           | Derivative fact.=        | INA                                              |  |
| 7100                                    | 0.000                         |                                               |               |                          |                                                  |  |
| 0.00 0.15 0.30 0.48<br>Elapsed T        |                               | Results                                       |               | Results                  |                                                  |  |
|                                         |                               | Q/s $(m^2/s)=$                                | NA            | resuits                  |                                                  |  |
| Log-Log plot incl. derivates- fl        | ow period                     | $T_{\rm M} (m^2/s) =$                         | NA            |                          |                                                  |  |
| gg p                                    | ролош                         | Flow regime:                                  | transient     | Flow regime:             | transient                                        |  |
|                                         |                               | $dt_1 (min) =$                                | NA            | $dt_1 (min) =$           | NA                                               |  |
|                                         |                               | $dt_2 \text{ (min)} =$                        | NA            | $dt_2 \text{ (min)} =$   | NA                                               |  |
|                                         |                               | $T (m^2/s) =$                                 | 1.0E-11       | $T (m^2/s) =$            | NA                                               |  |
|                                         |                               | S (-) =                                       | NA            | S (-) =                  | NA                                               |  |
|                                         |                               | $K_s$ (m/s) =                                 | NA            | $K_s$ (m/s) =            | NA                                               |  |
| <b>N</b> 7 . A                          |                               | $S_s (1/m) =$                                 | NA            | $S_s (1/m) =$            | NA                                               |  |
| Not Ai                                  | natysed                       | $C (m^3/Pa) =$                                | NA            | $C (m^3/Pa) =$           | NA                                               |  |
|                                         |                               | C <sub>D</sub> (-) =                          | NA            | $C_D(-) =$               | NA                                               |  |
|                                         |                               | ξ(-) =                                        | NA            | ξ (-) =                  | NA                                               |  |
|                                         |                               |                                               |               |                          |                                                  |  |
|                                         |                               | $T_{GRF}(m^2/s) =$                            | NA            | $T_{GRF}(m^2/s) =$       | NA                                               |  |
|                                         |                               | $S_{GRF}(-) =$                                | NA            | $S_{GRF}(-) =$           | NA                                               |  |
|                                         |                               | D <sub>GRF</sub> (-) =                        | NA            | D <sub>GRF</sub> (-) =   | NA                                               |  |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe                              |               |                          | I                                                |  |
|                                         |                               | $dt_1 (min) =$                                | NA            | $C (m^3/Pa) =$           | NA                                               |  |
|                                         |                               | $dt_2 (min) =$                                | NA<br>4 OF 44 | $C_D(-) =$               | NA                                               |  |
|                                         |                               | $T_T (m^2/s) =$                               | 1.0E-11<br>NA | ζ(-) =                   | NA                                               |  |
|                                         |                               | $S (-) = K_s (m/s) =$                         | NA<br>NA      |                          | <del>                                     </del> |  |
|                                         |                               | $K_s (m/s) = S_s (1/m) =$                     | NA<br>NA      |                          |                                                  |  |
| B.T. A. A.                              | nalysed                       | Comments:                                     | 14/7          |                          | <u> </u>                                         |  |
| NVA                                     | anyseu                        | Based on the test re<br>transmissivity is lov |               |                          | ce) the interval                                 |  |
|                                         |                               |                                               |               |                          |                                                  |  |

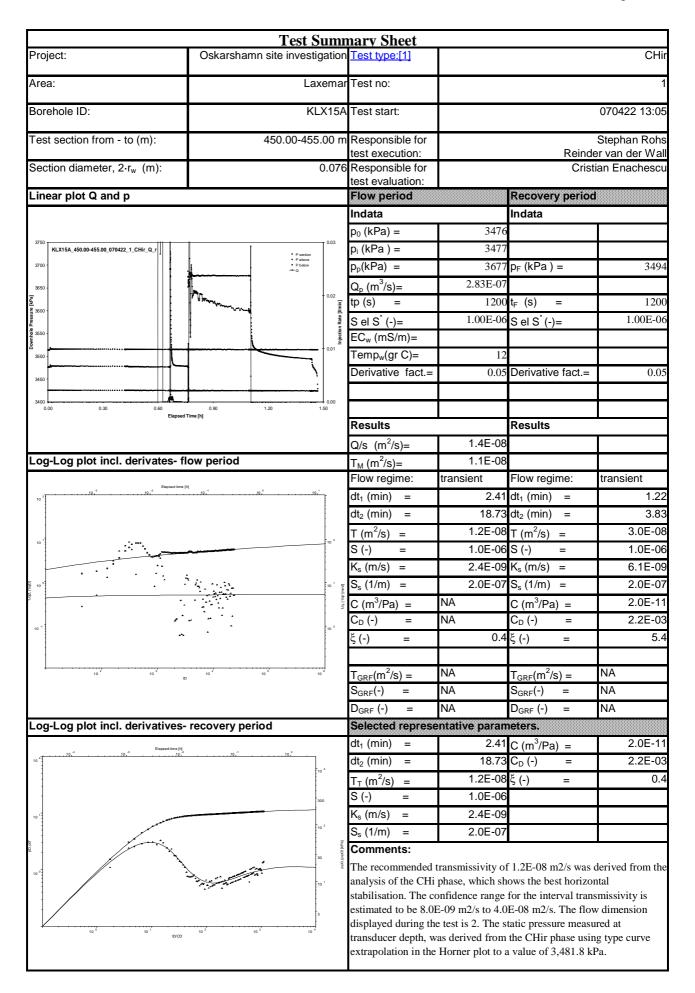


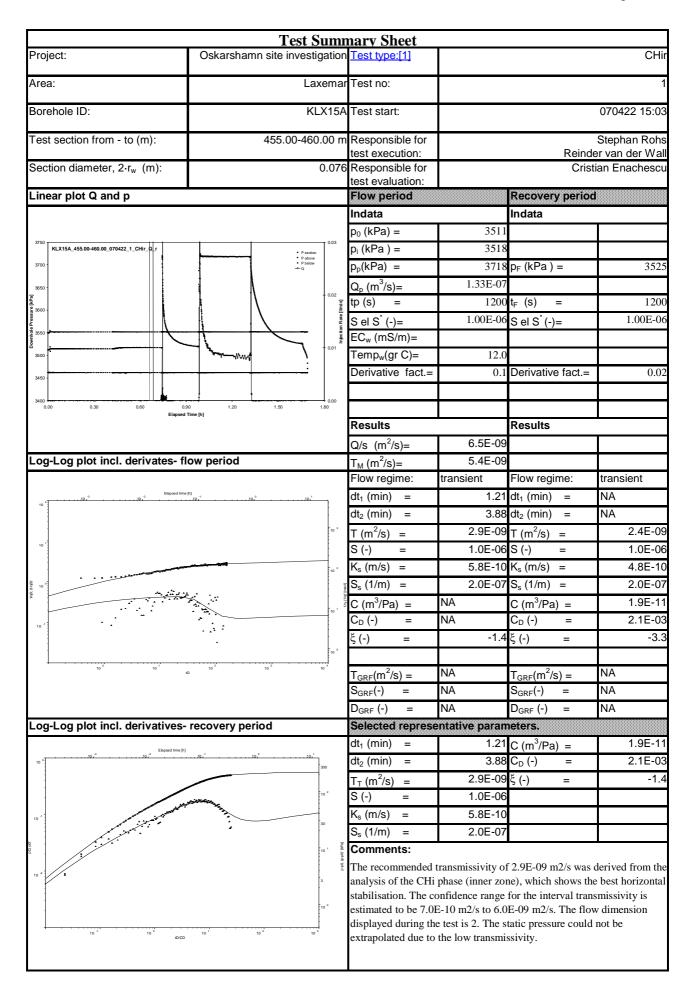






|                                                            | Test Sı                                 | ımn               | nary Sheet                            |           |                          |               |
|------------------------------------------------------------|-----------------------------------------|-------------------|---------------------------------------|-----------|--------------------------|---------------|
| Project:                                                   | Oskarshamn site investig                | ation             | Test type:[1]                         |           |                          | P             |
| Area:                                                      | Laxe                                    | emar              | Test no:                              |           |                          |               |
| Borehole ID:                                               | KL>                                     | <15A              | Test start:                           |           |                          | 070421 18:4   |
| Test section from - to (m):                                | 205.00.400.0                            | 00 m              | Responsible for                       |           |                          | Stephan Roh   |
| rest section from - to (m).                                | 393.00-400.                             | 00 111            | test execution:                       |           | Reinde                   | er van der Wa |
| Section diameter, 2·r <sub>w</sub> (m):                    | C                                       | 0.076             | Responsible for                       |           |                          | ian Enachesc  |
| Lincon plat O and p                                        |                                         |                   | test evaluation:                      |           |                          |               |
| Linear plot Q and p                                        |                                         |                   | Flow period                           |           | Recovery period          |               |
|                                                            |                                         |                   | Indata                                | 2065      | Indata                   | T             |
| 3300                                                       | 15.00-400.00_070421_1_Pi_Q_r            | 0.10              | p <sub>0</sub> (kPa) =                | 3065      |                          |               |
|                                                            | 5.00-400.00_070421_1_Pi_Q_r             |                   | p <sub>i</sub> (kPa ) =               | 3091      | <i>a</i> = .             |               |
| 3250                                                       |                                         | 0.08              | $p_p(kPa) =$                          |           | p <sub>F</sub> (kPa ) =  | 310           |
| 2200                                                       |                                         | 1                 | $Q_p (m^3/s) =$                       | NA        |                          |               |
| 1                                                          |                                         |                   | tp (s) =                              | 10.2      | $t_F$ (s) =              | 360           |
| 3150 -                                                     | *************************************** | 90<br>njection Ra | S el S <sup>*</sup> (-)=              | NA        | S el S <sup>*</sup> (-)= | 1.00E-0       |
| 3100                                                       |                                         | 0.04              | $EC_w (mS/m) =$                       |           |                          |               |
|                                                            |                                         | 0.02              | Temp <sub>w</sub> (gr C)=             | 11.3      |                          |               |
| 3050                                                       |                                         | 0.02              | Derivative fact.=                     | NA        | Derivative fact.=        | 0.0           |
| 3000                                                       | 0 1.20 1.50 1.4                         | - 0.00            |                                       |           |                          |               |
| 0.00 0.30 0.60 0.9<br>Elapsed T                            |                                         | 80                | Danilla.                              |           | Decelle                  | <u> </u>      |
|                                                            |                                         |                   | Results                               | NT A      | Results                  | 1             |
|                                                            |                                         |                   | Q/s $(m^2/s)=$                        | NA        |                          |               |
| og-Log plot incl. derivates- fl                            | ow period                               |                   | $T_{\rm M} ({\rm m}^2/{\rm s}) =$     | NA        |                          |               |
|                                                            |                                         |                   | Flow regime:                          | transient | Flow regime:             | transient     |
|                                                            |                                         |                   | $dt_1$ (min) =                        | NA        | $dt_1 (min) =$           | 3.0           |
|                                                            |                                         |                   | $dt_2$ (min) =                        | NA        | $dt_2 (min) =$           | 55.3          |
|                                                            |                                         |                   | $T (m^2/s) =$                         | NA        | $T (m^2/s) =$            | 3.5E-1        |
|                                                            |                                         |                   | S (-) =                               | NA        | S (-) =                  | 1.0E-0        |
|                                                            |                                         |                   | $K_s$ (m/s) =                         | NA        | $K_s$ (m/s) =            | 7.0E-1        |
| Not on                                                     | لمسام                                   |                   | $S_s (1/m) =$                         | NA        | $S_s (1/m) =$            | 2.0E-0        |
| Not an                                                     | aaysed                                  |                   | $C (m^3/Pa) =$                        | NA        | $C (m^3/Pa) =$           | 1.7E-1        |
|                                                            |                                         |                   | C <sub>D</sub> (-) =                  | NA        | C <sub>D</sub> (-) =     | 1.8E-0        |
|                                                            |                                         |                   | ξ(-) =                                | NA        | ξ (-) =                  | -0.           |
|                                                            |                                         |                   | - , ,                                 |           | - , ,                    |               |
|                                                            |                                         |                   | $T_{GRF}(m^2/s) =$                    | NA        | $T_{GRF}(m^2/s) =$       | NA            |
|                                                            |                                         |                   | $S_{GRF}(-) =$                        | NA        | $S_{GRF}(-) =$           | NA            |
|                                                            |                                         |                   | D <sub>GRF</sub> (-) =                | NA        | D <sub>GRF</sub> (-) =   | NA            |
| og-Log plot incl. derivatives-                             | recovery period                         |                   | Selected represe                      |           |                          |               |
| J - J                                                      | . 7 1                                   |                   | $dt_1$ (min) =                        |           | C (m <sup>3</sup> /Pa) = | 1.7E-1        |
| Elapsed time (n                                            | 0]                                      | 7                 | $dt_1 (min) =$ $dt_2 (min) =$         |           | $C_D(-) =$               | 1.7E 1        |
|                                                            |                                         | - 10 °            | 2                                     | 3.5E-11   |                          | -0.           |
|                                                            |                                         |                   | $T_T (m^2/s) =$ $S (-) =$             | 1.0E-06   | ζ(-) =                   | -0.           |
|                                                            |                                         | 0.3               | $K_s (m/s) =$                         | 7.0E-00   |                          | <u> </u>      |
| 10 °                                                       | -                                       |                   |                                       |           |                          |               |
| 200 market 1 2 miles 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Aller .                                 | d pessur          | S <sub>s</sub> (1/m) =                | 2.0E-07   |                          | <u> </u>      |
|                                                            |                                         | 0.03 eg           | Comments:                             |           | 2.5E 11 2'               | 1             |
| 10-1                                                       |                                         | ٠ م               | The recommended analysis of the Pi pl |           | 3.5E-11 m2/s was         |               |
| •                                                          |                                         | 10 -2             | transmissivity is est                 |           |                          |               |
| •                                                          |                                         |                   | was conducted usin                    |           |                          |               |
| 10-1 10 0                                                  | 10 10 10 10                             | 0.003             | not be extrapolated                   |           |                          | ould          |
| tD                                                         |                                         |                   | ·                                     | •         | •                        |               |
|                                                            |                                         |                   |                                       |           |                          |               |

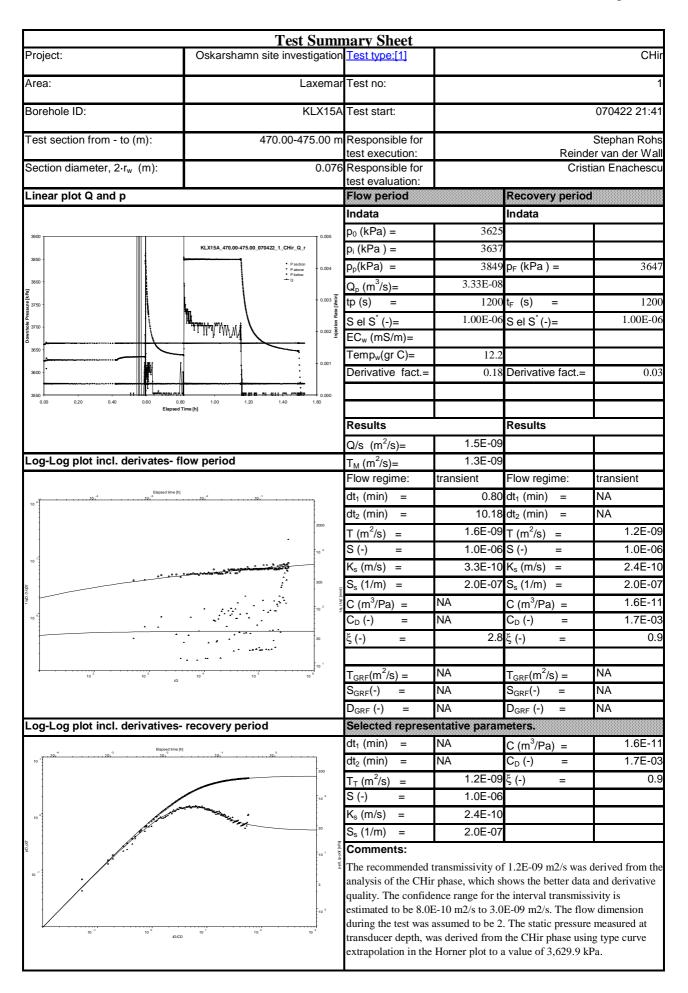



|                                         | Test Sur                   | mm           | nary Sheet                                          |           |                                 |                                                  |
|-----------------------------------------|----------------------------|--------------|-----------------------------------------------------|-----------|---------------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigat |              |                                                     |           |                                 | CHir                                             |
| Area:                                   | Laxer                      | mar          | Test no:                                            |           |                                 |                                                  |
| 71100.                                  | Laxor                      | mai          | 1001110.                                            |           |                                 | •                                                |
| Borehole ID:                            | KLX15A                     |              | Test start:                                         |           |                                 | 070421 22:58                                     |
| Test section from - to (m):             | 405.00-410.00              | 0 m          | Responsible for                                     |           |                                 | Stephan Rohs                                     |
|                                         |                            |              | test execution:                                     |           | Reinde                          | er van der Wall                                  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.0                        |              | Responsible for test evaluation:                    |           | Crist                           | ian Enachescu                                    |
| Linear plot Q and p                     |                            | _            | Flow period                                         |           | Recovery period                 |                                                  |
|                                         |                            | _            | Indata                                              |           | Indata                          |                                                  |
| 3250 T                                  | T 0.0                      | 010          | p <sub>0</sub> (kPa) =                              | 3140      |                                 |                                                  |
| KLX15A_405.00-410.00_070421_1_CHir_Q_r  | P section P above P below  |              | p <sub>i</sub> (kPa ) =                             | NA        |                                 |                                                  |
|                                         | Peelow<br>Q 0.0            | 008          | p <sub>p</sub> (kPa) =                              | NA        | p <sub>F</sub> (kPa ) =         | NA                                               |
| 3200                                    |                            |              | $Q_p (m^3/s) =$                                     | NA        |                                 |                                                  |
| Sure [kPa]                              | 0.0                        | Rate [I/min] | tp (s) =                                            | NA        | $t_F$ (s) =                     | NA                                               |
| 2 3150 -                                |                            | ë            | S el S <sup>*</sup> (-)=                            | NA        | S el S <sup>*</sup> (-)=        | NA                                               |
| Pownth .                                | . 0.0                      | L            | EC <sub>w</sub> (mS/m)=                             |           |                                 |                                                  |
| 3100 -                                  | •                          | L            | Temp <sub>w</sub> (gr C)=                           | 11.4      |                                 |                                                  |
|                                         | 0.0                        | 002          | Derivative fact.=                                   | NA        | Derivative fact.=               | NA                                               |
| 3050                                    | 0.0                        | 000          |                                                     |           |                                 |                                                  |
| 0.00 0.15 0.30 0.45<br>Elapsed T        | 0.60 0.75 0.90             |              |                                                     |           |                                 |                                                  |
|                                         |                            | L            | Results                                             | NT A      | Results                         |                                                  |
| Log-Log plot incl. derivates- fl        | ow period                  |              | $Q/s (m^2/s) =$                                     | NA<br>NA  |                                 |                                                  |
| Log-Log plot ilici. derivates- il       | ow period                  |              | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient | Flow regime:                    | transient                                        |
|                                         |                            | L            | $dt_1 \text{ (min)} =$                              | NA        | dt <sub>1</sub> (min) =         | NA                                               |
|                                         |                            | L            | $dt_1 \text{ (min)} = $ $dt_2 \text{ (min)} = $     | NA        | $dt_1 (min) = $ $dt_2 (min) = $ | NA<br>NA                                         |
|                                         |                            | ļ.           | $\frac{di_2(min)}{T(m^2/s)} =$                      |           | $T (m^2/s) =$                   | NA                                               |
|                                         |                            |              | S (-) =                                             | NA        | S (-) =                         | NA                                               |
|                                         |                            |              | $K_s (m/s) =$                                       | NA        | $K_s (m/s) =$                   | NA                                               |
|                                         |                            | L            | $S_s (1/m) =$                                       | NA        | $S_s(1/m) =$                    | NA                                               |
| Not Ar                                  | alysed                     |              | $C (m^3/Pa) =$                                      | NA        | $C (m^3/Pa) =$                  | NA                                               |
|                                         |                            |              |                                                     | NA        | $C_D$ (-) =                     | NA                                               |
|                                         |                            |              | ξ(-) =                                              | NA        | ξ (-) =                         | NA                                               |
|                                         |                            |              |                                                     |           |                                 |                                                  |
|                                         |                            |              | $T_{GRF}(m^2/s) =$                                  | NA        | $T_{GRF}(m^2/s) =$              | NA                                               |
|                                         |                            |              | $S_{GRF}(-) =$                                      | NA        | $S_{GRF}(-) =$                  | NA                                               |
|                                         |                            |              | $D_{GRF}$ (-) =                                     | NA        | $D_{GRF}$ (-) =                 | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period            |              | Selected represe                                    |           |                                 |                                                  |
|                                         |                            | L            | $dt_1$ (min) =                                      | NA        | $C (m^3/Pa) =$                  | NA                                               |
|                                         |                            | L            | $dt_2 (min) =$                                      | NA        | $C_D(-) =$                      | NA                                               |
|                                         |                            |              | $T_T (m^2/s) =$                                     | 1.0E-11   | ξ (-) =                         | NA                                               |
|                                         |                            |              | . ,                                                 | NA        |                                 |                                                  |
|                                         |                            |              | $K_s (m/s) =$                                       | NA<br>NA  |                                 | <del>                                     </del> |
|                                         | Not Analysed               |              | S <sub>s</sub> (1/m) =                              | NA        |                                 |                                                  |
| NOI AI                                  | iarysed                    |              |                                                     |           | ed packer compliand m2/s.       | ce) the interval                                 |
|                                         |                            |              |                                                     |           |                                 |                                                  |

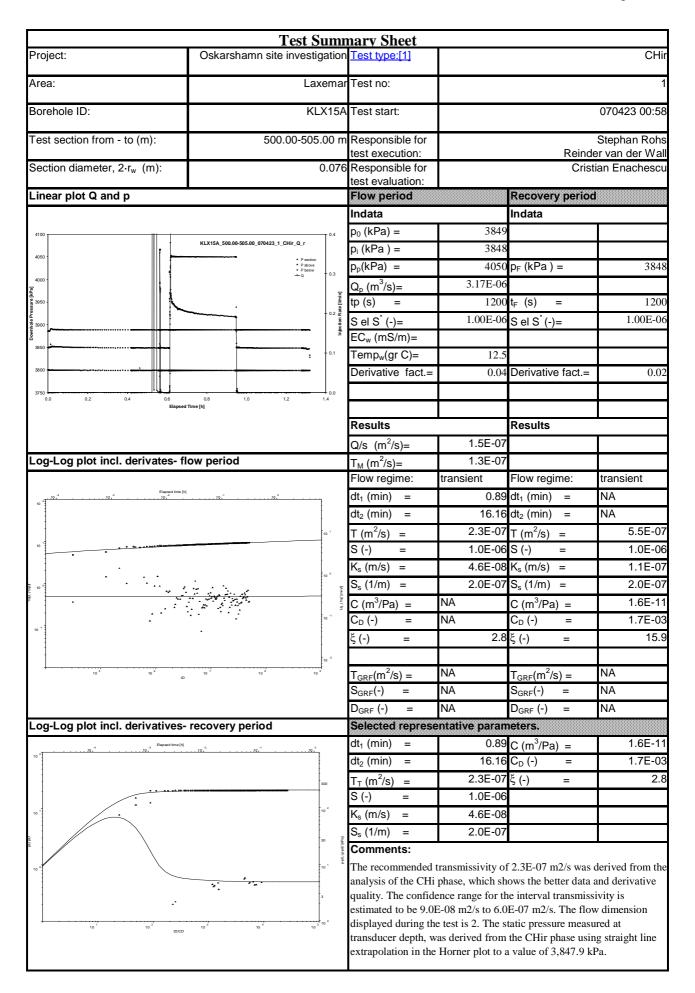



|                                             | Test S                  | umr             | nary Sheet                                    |               |                                 |                  |
|---------------------------------------------|-------------------------|-----------------|-----------------------------------------------|---------------|---------------------------------|------------------|
| Project:                                    | Oskarshamn site investi |                 |                                               |               |                                 | CHir             |
| Area:                                       | Lax                     | xemar           | Test no:                                      | ,             |                                 |                  |
| Borehole ID:                                | KL                      | X15A            | Test start:                                   |               |                                 | 070422 06:38     |
| Test section from - to (m):                 | 415.00-420              | .00 m           | Responsible for                               |               |                                 | Stephan Rohs     |
|                                             |                         |                 | test execution:                               |               | Reinde                          | er van der Wal   |
| Section diameter, 2-r <sub>w</sub> (m):     |                         | 0.076           | Responsible for test evaluation:              |               | Crist                           | ian Enachescu    |
| Linear plot Q and p                         |                         |                 | Flow period                                   |               | Recovery period                 |                  |
|                                             |                         |                 | Indata                                        |               | Indata                          |                  |
|                                             |                         |                 | p <sub>0</sub> (kPa) =                        | 3215          |                                 |                  |
| 3350 KLX15A_415.00-420.00_070422_1_CHir_Q_r | P section               | 0.010           | p <sub>i</sub> (kPa ) =                       | NA            |                                 |                  |
|                                             | Pabove Pelow Q          | 0.008           | $p_p(kPa) =$                                  | NA            | p <sub>F</sub> (kPa ) =         | NA               |
| 3300 -                                      | <b>à</b>                | 0.008           | $Q_p (m^3/s) =$                               | NA            | . , ,                           |                  |
| в (кРа)                                     | ·<br>·                  | 0.006           | tp(s) =                                       | NA            | t <sub>F</sub> (s) =            | NA               |
| Rd 250 250                                  |                         | Rate [1/4       | S el S <sup>*</sup> (-)=                      | NA            | S el S <sup>*</sup> (-)=        | NA               |
| o Owwibel                                   |                         | 0.004 u         | EC <sub>w</sub> (mS/m)=                       |               | ( /                             | <u> </u>         |
| 3200                                        |                         |                 | Temp <sub>w</sub> (gr C)=                     | 11.5          |                                 |                  |
|                                             | •                       | 0.002           |                                               | NA            | Derivative fact.=               | NA               |
|                                             |                         |                 |                                               |               |                                 |                  |
| 0.00 0.15 0.30 0.4<br>Elapsed 1             |                         | → 0.000<br>0.90 |                                               |               |                                 |                  |
| Liapsed                                     | ine (ii)                |                 | Results                                       |               | Results                         | <u> </u>         |
|                                             |                         |                 | Q/s $(m^2/s)=$                                | NA            |                                 |                  |
| Log-Log plot incl. derivates- fl            | ow period               |                 | $T_{\rm M} (m^2/s) =$                         | NA            |                                 |                  |
|                                             |                         |                 | Flow regime:                                  | transient     | Flow regime:                    | transient        |
|                                             |                         |                 | $dt_1$ (min) =                                | NA            | $dt_1$ (min) =                  | NA               |
|                                             |                         |                 | $dt_2$ (min) =                                | NA            | $dt_2$ (min) =                  | NA               |
|                                             |                         |                 | $T (m^2/s) =$                                 | 1.0E-11       | $T (m^2/s) =$                   | NA               |
|                                             |                         |                 | S (-) =                                       | NA            | S (-) =                         | NA               |
|                                             |                         |                 | $K_s$ (m/s) =                                 | NA            | $K_s$ (m/s) =                   | NA               |
| No.4 A.                                     | ld                      |                 | $S_s (1/m) =$                                 | NA            | $S_s (1/m) =$                   | NA               |
| Not Ai                                      | iaiysed                 |                 | $C (m^3/Pa) =$                                | NA            | $C (m^3/Pa) =$                  | NA               |
|                                             |                         |                 | C <sub>D</sub> (-) =                          | NA            | $C_D(-) =$                      | NA               |
|                                             |                         |                 | ξ(-) =                                        | NA            | ξ (-) =                         | NA               |
|                                             |                         |                 | $T_{GRF}(m^2/s) =$                            | NA            | $T_{GRF}(m^2/s) =$              | NA               |
|                                             |                         |                 | $S_{GRF}(-) =$                                | NA            | $S_{GRF}(-) =$                  | NA               |
|                                             |                         |                 | D <sub>GRF</sub> (-) =                        | NA            | D <sub>GRF</sub> (-) =          | NA               |
| Log-Log plot incl. derivatives-             | recovery period         |                 | Selected represe                              | ntative paran |                                 | •                |
|                                             |                         |                 | $dt_1$ (min) =                                | NA            | $C (m^3/Pa) =$                  | NA               |
|                                             |                         |                 | dt <sub>2</sub> (min) =                       | NA            | $C_D(-) =$                      | NA               |
|                                             |                         |                 | $T_T (m^2/s) =$                               | 1.0E-11       | ξ (-) =                         | NA               |
|                                             |                         |                 | S (-) =                                       | NA            |                                 |                  |
|                                             |                         |                 |                                               | NA            |                                 |                  |
|                                             | Not Analysed            |                 | $S_s (1/m) =$                                 | NA            |                                 |                  |
| Not Aı                                      |                         |                 | Comments:                                     |               |                                 |                  |
|                                             |                         |                 | Based on the test re<br>transmissivity is lov |               | ged packer compliand<br>I m2/s. | ce) the interval |




|                                            | Test Sur                                                                                                       | mary Sheet                       |                                                  |                          |                  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------|--------------------------|------------------|
| Project:                                   | Oskarshamn site investigation                                                                                  |                                  |                                                  |                          | CHir             |
| Area:                                      | Laxem                                                                                                          | ar Test no:                      |                                                  |                          | 1                |
| Alea.                                      | Laxem                                                                                                          | di restrio.                      |                                                  |                          |                  |
| Borehole ID:                               | KLX15                                                                                                          | A Test start:                    |                                                  |                          | 070422 10:48     |
| Test section from - to (m):                | 445 00-450 00                                                                                                  | m Responsible for                |                                                  |                          | Stephan Rohs     |
| rest section from - to (m).                | 443.00-430.00                                                                                                  | test execution:                  |                                                  | Reinde                   | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m):    | 0.07                                                                                                           | 6 Responsible for                |                                                  | Crist                    | ian Enachescu    |
| Linear plot Q and p                        |                                                                                                                | test evaluation: Flow period     |                                                  | Recovery period          |                  |
| Linear plot & and p                        |                                                                                                                | Indata                           |                                                  | Indata                   |                  |
|                                            |                                                                                                                | p <sub>0</sub> (kPa) =           | 3439                                             |                          |                  |
| KLX15A_445.00-450.00_070422_1_CHir_Q_r     | 0.010<br>• P section                                                                                           | $p_i(RPa) =$                     | NA                                               |                          |                  |
| 4050 -                                     | P above<br>P below<br>Q 0.008                                                                                  | $p_p(kPa) =$                     | NA                                               | p <sub>F</sub> (kPa ) =  | NA               |
| 3950                                       | , server ser | $Q_{p} (m^{3}/s) =$              | NA                                               | ρ <sub>Γ</sub> (κι α ) – | 1121             |
| 850 -<br>851 -<br>91 3750 -                | 0.006                                                                                                          | tp (s) =                         | NA                                               | t <sub>F</sub> (s) =     | NA               |
| 3/50 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - |                                                                                                                | S el S* (-)=                     | NA                                               | S el S <sup>*</sup> (-)= | NA               |
| 3 350 ·                                    | 0.004                                                                                                          | EC <sub>w</sub> (mS/m)=          | <del> </del>                                     | <u> </u>                 | <u> </u>         |
| 3550                                       | <u> </u>                                                                                                       | Temp <sub>w</sub> (gr C)=        | 11.9                                             |                          |                  |
| 3450                                       | 0.002                                                                                                          | Derivative fact.=                |                                                  | Derivative fact.=        | NA               |
| 3350 350 350 350 350 350 350 350 350 350   | 0.000                                                                                                          |                                  | <del>                                     </del> |                          |                  |
| 0.00 0.15 0.30 0.45<br>Elapsed Ti          | 0.60 0.75 0.90                                                                                                 |                                  |                                                  |                          |                  |
|                                            |                                                                                                                | Results                          |                                                  | Results                  |                  |
|                                            |                                                                                                                | Q/s $(m^2/s)=$                   | NA                                               |                          |                  |
| Log-Log plot incl. derivates- flo          | ow period                                                                                                      | $T_{\rm M}$ (m <sup>2</sup> /s)= | NA                                               |                          |                  |
|                                            |                                                                                                                | Flow regime:                     | transient                                        | Flow regime:             | transient        |
|                                            |                                                                                                                | $dt_1$ (min) =                   | NA                                               | $dt_1$ (min) =           | NA               |
|                                            |                                                                                                                | $dt_2$ (min) =                   | NA                                               | $dt_2$ (min) =           | NA               |
|                                            |                                                                                                                | $T (m^2/s) =$                    | 1.0E-11                                          | $T (m^2/s) =$            | NA               |
|                                            |                                                                                                                | S (-) =                          | NA                                               | S (-) =                  | NA               |
|                                            |                                                                                                                | $K_s$ (m/s) =                    | NA                                               | $K_s (m/s) =$            | NA               |
| Not An                                     | - Arrand                                                                                                       | $S_s (1/m) =$                    | NA                                               | $S_s (1/m) =$            | NA               |
| Not All                                    | aryseu                                                                                                         | $C (m^3/Pa) =$                   | NA                                               | $C (m^3/Pa) =$           | NA               |
|                                            |                                                                                                                | $C_D(-) =$                       | NA                                               | $C_D$ (-) =              | NA               |
|                                            |                                                                                                                | $\xi$ (-) =                      | NA                                               | ξ (-) =                  | NA               |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |
|                                            |                                                                                                                | $T_{GRF}(m^2/s) =$               | NA                                               | $T_{GRF}(m^2/s) =$       | NA               |
|                                            |                                                                                                                | $S_{GRF}(-) =$                   | NA                                               | $S_{GRF}(-) =$           | NA               |
|                                            |                                                                                                                | D <sub>GRF</sub> (-) =           | NA                                               | D <sub>GRF</sub> (-) =   | NA               |
| Log-Log plot incl. derivatives-            | recovery period                                                                                                | Selected represe                 |                                                  |                          | la La            |
|                                            |                                                                                                                | $dt_1 (min) =$                   | NA                                               | $C (m^3/Pa) =$           | NA               |
|                                            |                                                                                                                | $dt_2 (min) =$                   | NA<br>4 0E 44                                    | $C_D(-) =$               | NA               |
|                                            |                                                                                                                | $T_T (m^2/s) =$                  | 1.0E-11                                          | ξ (-) =                  | NA               |
|                                            |                                                                                                                | S (-) =                          | NA                                               |                          |                  |
|                                            |                                                                                                                | $K_s (m/s) =$                    | NA                                               |                          |                  |
|                                            |                                                                                                                | S <sub>s</sub> (1/m) = Comments: | NA                                               |                          |                  |
| Not An                                     | Not Analysed                                                                                                   |                                  | senonca (prolono                                 | ed packer complian       | ca) the interval |
|                                            |                                                                                                                | transmissivity is lov            |                                                  |                          | ce) uic micival  |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |
|                                            |                                                                                                                |                                  |                                                  |                          |                  |



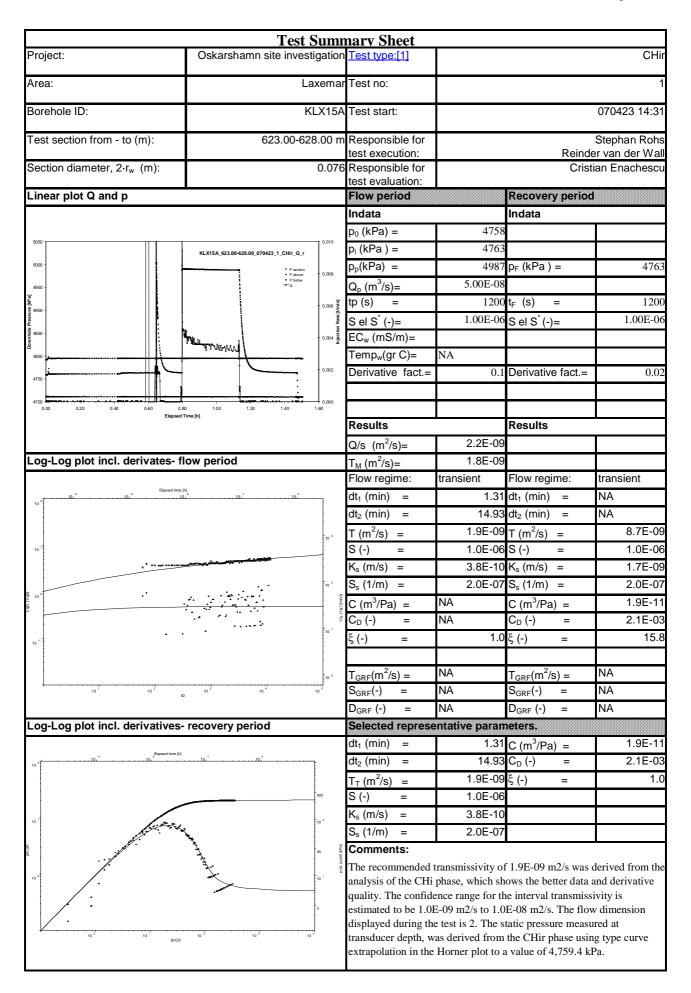




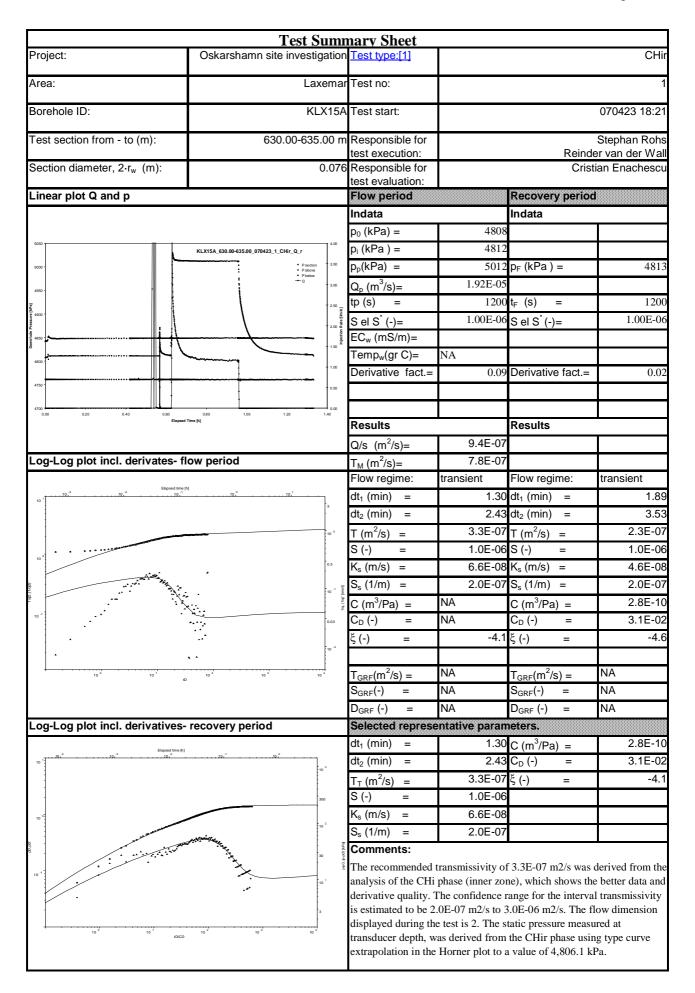

|                                                          | Test Sumn                                         | nary Sheet                           |                    |                                               |               |
|----------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------|-----------------------------------------------|---------------|
| Project:                                                 | Oskarshamn site investigation                     | Test type:[1]                        |                    |                                               | CHi           |
| Area:                                                    | Laxemar                                           | Test no:                             |                    |                                               | ,             |
| Borehole ID:                                             | KLX15A                                            | Test start:                          |                    |                                               | 070422 19:02  |
| Test section from - to (m):                              | 465.00-470.00 m                                   |                                      |                    |                                               | Stephan Rohs  |
|                                                          |                                                   | test execution:                      |                    |                                               | er van der Wa |
| Section diameter, 2·r <sub>w</sub> (m):                  | 0.076                                             | Responsible for test evaluation:     |                    | Crist                                         | ian Enachesc  |
| Linear plot Q and p                                      |                                                   | Flow period                          |                    | Recovery period                               |               |
|                                                          |                                                   | Indata                               |                    | Indata                                        |               |
|                                                          |                                                   | p <sub>0</sub> (kPa) =               | 3585               |                                               |               |
| 3900                                                     | 0.006                                             | p <sub>i</sub> (kPa ) =              | 3594               |                                               |               |
| KLX15                                                    | A_465.00-470.00_070422_1_CHir_Q_r                 | $p_p(kPa) =$                         |                    | p <sub>F</sub> (kPa ) =                       | 359           |
| 3800 -                                                   |                                                   |                                      | 4.17E-08           | ρ <sub>F</sub> (Ki α ) =                      | 337           |
| <u>च</u>                                                 | 0.004                                             | $Q_{p} (m^{3}/s) = $ $tp (s) =$      |                    | t <sub>F</sub> (s) =                          | 240           |
|                                                          | - 0.003 0 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |                                      |                    |                                               | 1.00E-0       |
| 2 3700 ·                                                 |                                                   | S el S* (-)=                         | 1.00E-00           | S el S <sup>*</sup> (-)=                      | 1.00E-0       |
|                                                          | 0.002                                             | EC <sub>w</sub> (mS/m)=              | 12.1               |                                               |               |
| 3600                                                     |                                                   | Temp <sub>w</sub> (gr C)=            | 12.1               | D : :: ( .                                    | 0.0           |
|                                                          | 0.001                                             | Derivative fact.=                    | 0.14               | Derivative fact.=                             | 0.0           |
| 3500 0.00 0.30 0.60 0.90                                 | 1.20 1.50 1.80                                    |                                      |                    |                                               |               |
| Elapsed Time                                             | [h]                                               | Results                              | <u>I</u>           | Results                                       | L             |
|                                                          |                                                   | Q/s $(m^2/s)=$                       | 1.8E-09            |                                               |               |
| Log-Log plot incl. derivates- flo                        | w period                                          | $T_{\rm M} (m^2/s) =$                | 1.5E-09            |                                               | Ì             |
|                                                          |                                                   | Flow regime:                         | transient          | Flow regime:                                  | transient     |
| Elapsed time [h]                                         |                                                   | $dt_1 \text{ (min)} =$               | 0.83               | $dt_1 (min) =$                                | 12.3          |
| 10 2 European arms (ng                                   | 10,-1                                             | $dt_2$ (min) =                       |                    | $dt_2 \text{ (min)} =$                        | 35.1          |
|                                                          | 3000                                              | $T (m^2/s) =$                        |                    | $T (m^2/s) =$                                 | 2.9E-0        |
|                                                          | 10 3                                              | S (-) =                              | 1.0E-06            |                                               | 1.0E-0        |
| 10 1                                                     | •                                                 | $K_s (m/s) =$                        |                    | $K_s (m/s) =$                                 | 5.9E-1        |
| , o o o o o o o o o o o o o o o o o o o                  | 300                                               | $S_s (1/m) =$                        |                    | $S_s(1/m) =$                                  | 2.0E-0        |
| • .                                                      | . None                                            | C (m <sup>3</sup> /Pa) =             | NA                 | C (m <sup>3</sup> /Pa) =                      | 1.8E-1        |
|                                                          | 10 ° 0.000                                        | $C_D(-) =$                           | NA                 | $C_D(-) =$                                    | 1.9E-0        |
| 10                                                       | 30                                                |                                      |                    |                                               | 1.9L-0<br>5.  |
| **                                                       |                                                   | ξ(-) =                               | 3.0                | ξ(-) =                                        | 3.            |
|                                                          | 10 1                                              | $T_{GRF}(m^2/s) =$                   | NA                 | $T_{GRF}(m^2/s) =$                            | NA            |
| 10 <sup>4</sup> 10 <sup>5</sup>                          | 10 f 10 7 10 a                                    | $S_{GRF}(\cdot) =$                   | NA                 | $S_{GRF}(-) =$                                | NA            |
|                                                          |                                                   | D <sub>GRF</sub> (-) =               | NA                 | D <sub>GRF</sub> (-) =                        | NA            |
| Log-Log plot incl. derivatives- re                       | ecovery period                                    | Selected represe                     |                    |                                               |               |
|                                                          | · · · · <b>/                             </b>     | $dt_1$ (min) =                       |                    | $C (m^3/Pa) =$                                | 1.8E-1        |
| Elapsed time (h) 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, |                                                   | $dt_2 (min) =$                       |                    | $C_D(-) =$                                    | 1.9E-0        |
| 10                                                       | •                                                 | 2                                    | 2.9E-09            |                                               | 5             |
|                                                          | 10 3                                              | $T_T (m^2/s) =$ $S (-) =$            | 1.0E-06            |                                               | 0.            |
|                                                          | 300                                               | $K_s (m/s) =$                        | 5.9E-10            |                                               |               |
| 10 '                                                     | 300                                               |                                      | 2.0E-07            |                                               |               |
|                                                          | 10 <sup>2</sup>                                   | S <sub>s</sub> (1/m) = Comments:     | 2.0E-07            |                                               |               |
| September 1                                              | Pd (Co4-4)                                        |                                      |                    | 52.0E.00. 2/                                  | 1 : 16        |
| 10 °                                                     | 30 8                                              | The recommended analysis of the CHir |                    | f 2.9E-09 m2/s was                            |               |
|                                                          | 10 1                                              |                                      |                    | nows the better data<br>ne interval transmiss |               |
|                                                          | 10                                                | estimated to be 1.01                 |                    |                                               |               |
| /·                                                       | 3                                                 | displayed during the                 | e test is 2. The s | tatic pressure measu                          | ired at       |
| 10 ° 10 ° 10/CD                                          | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup>   | transducer depth, w                  | as derived from    | the CHir phase usin                           | ig type curve |
|                                                          |                                                   |                                      | II 1               | a value of 3,589.7 kl                         | n.            |

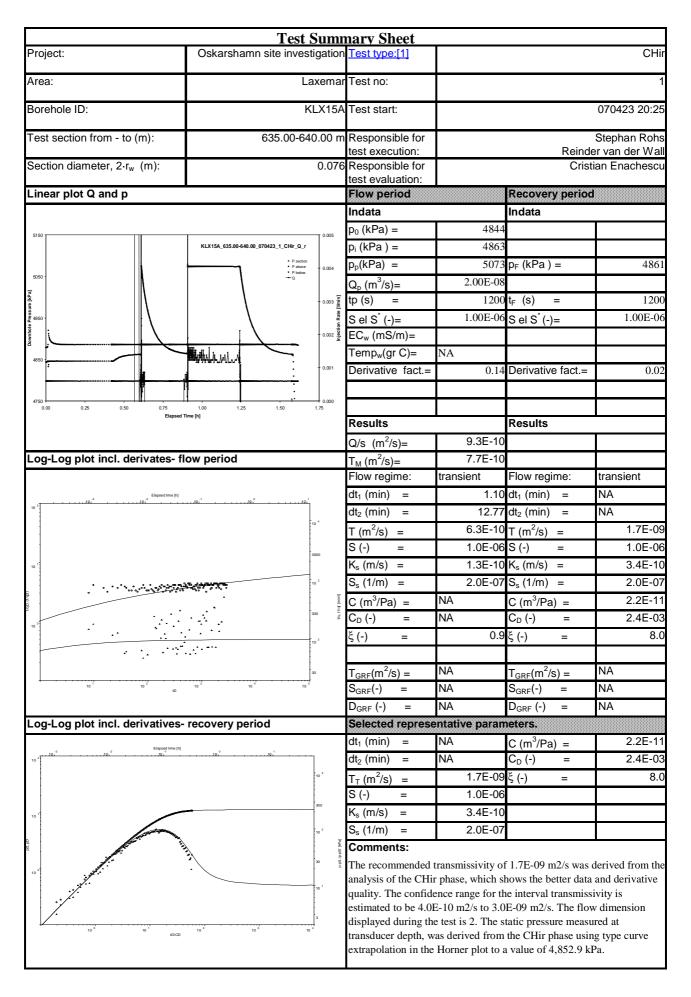


|                                             | Test Sum                                             | nary Sheet                                    |           |                                  |                                                  |
|---------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------|----------------------------------|--------------------------------------------------|
| Project:                                    | Oskarshamn site investigation                        |                                               |           |                                  | CHir                                             |
| Area:                                       | Lavamai                                              | Test no:                                      |           |                                  | 1                                                |
| Alea.                                       | Laxemai                                              | restrio.                                      |           |                                  | Į                                                |
| Borehole ID:                                | KLX15A                                               | Test start:                                   |           |                                  | 070422 23:36                                     |
| Test section from - to (m):                 | 475.00-480.00 m                                      | Posponsible for                               |           |                                  | Stephan Rohs                                     |
| rest section from - to (iii).               | 475.00-460.00 11                                     | test execution:                               |           | Reinde                           | er van der Wall                                  |
| Section diameter, 2·r <sub>w</sub> (m):     | 0.076                                                | Responsible for                               |           |                                  | ian Enachescu                                    |
| Linear plat O and p                         |                                                      | test evaluation:                              |           | L. Andrehendelenbelenbelen helte |                                                  |
| Linear plot Q and p                         |                                                      | Flow period                                   |           | Recovery period                  |                                                  |
|                                             |                                                      | Indata                                        | 3662      | Indata                           | 1                                                |
| 3750 KLX15A_475.00-480.00_070422_1_CHir_Q_r | • P section 0.010                                    | $p_0 (kPa) = p_i (kPa) =$                     | NA        |                                  |                                                  |
| 3725 -                                      | • P above<br>• P below<br>— Q                        | $p_i(kPa) = p_p(kPa) =$                       | NA<br>NA  | p <sub>F</sub> (kPa ) =          | NA                                               |
|                                             | 0.008                                                |                                               | NA<br>NA  | ρ <sub>F</sub> (KFα ) =          | IVA                                              |
| <u>23700</u>                                |                                                      | $Q_{p} (m^{3}/s) = $ $tp (s) =$               | NA<br>NA  | t <sub>F</sub> (s) =             | NA                                               |
| d H                                         | Rate F/T                                             |                                               | NA<br>NA  |                                  | NA<br>NA                                         |
|                                             | 0.004 Million 110 100 100 100 100 100 100 100 100 10 | S el S $^*$ (-)=<br>EC $_w$ (mS/m)=           | 11/1      | S el S <sup>*</sup> (-)=         | NA.                                              |
| å 3650 -                                    | •                                                    | Temp <sub>w</sub> (gr C)=                     | 12.2      |                                  | <del>                                     </del> |
| 3625 -                                      | 0.002                                                | Derivative fact.=                             | NA        | Derivative fact.=                | NA                                               |
|                                             |                                                      | _ 5                                           | , ,       | 2 3 4 70 1401.                   | , .                                              |
| 3600 0.00 0.10 0.20 0.30 0.40               |                                                      |                                               |           |                                  |                                                  |
| Elapsed T                                   | ime [h]                                              | Results                                       |           | Results                          |                                                  |
|                                             |                                                      | Q/s $(m^2/s)=$                                | NA        | recuite                          |                                                  |
| Log-Log plot incl. derivates- fl            | ow period                                            | $T_{\rm M} (m^2/s) =$                         | NA        |                                  |                                                  |
| <b>33</b> p                                 | p                                                    | Flow regime:                                  | transient | Flow regime:                     | transient                                        |
|                                             |                                                      | $dt_1 \text{ (min)} =$                        | NA        | $dt_1 (min) =$                   | NA                                               |
|                                             |                                                      | $dt_2 \text{ (min)} =$                        | NA        | $dt_2 \text{ (min)} =$           | NA                                               |
|                                             |                                                      | $T (m^2/s) =$                                 |           | $T (m^2/s) =$                    | NA                                               |
|                                             |                                                      | S (-) =                                       | NA        | S (-) =                          | NA                                               |
|                                             |                                                      | $K_s (m/s) =$                                 | NA        | $K_s$ (m/s) =                    | NA                                               |
|                                             |                                                      | $S_s (1/m) =$                                 | NA        | $S_s(1/m) =$                     | NA                                               |
| Not Ar                                      | nalysed                                              | $C (m^3/Pa) =$                                | NA        | $C (m^3/Pa) =$                   | NA                                               |
|                                             |                                                      | $C_D(-) =$                                    | NA        | $C_D(-) =$                       | NA                                               |
|                                             |                                                      | ξ(-) =                                        | NA        | ξ(-) =                           | NA                                               |
|                                             |                                                      | 3 ( )                                         |           | 3 ( )                            |                                                  |
|                                             |                                                      | $T_{GRF}(m^2/s) =$                            | NA        | $T_{GRF}(m^2/s) =$               | NA                                               |
|                                             |                                                      | $S_{GRF}(-) =$                                | NA        | $S_{GRF}(-) =$                   | NA                                               |
|                                             |                                                      | D <sub>GRF</sub> (-) =                        | NA        | D <sub>GRF</sub> (-) =           | NA                                               |
| Log-Log plot incl. derivatives-             | recovery period                                      | Selected represe                              |           |                                  |                                                  |
|                                             |                                                      | dt <sub>1</sub> (min) =                       | NA        | C (m <sup>3</sup> /Pa) =         | NA                                               |
|                                             |                                                      | $dt_2$ (min) =                                | NA        | $C_D(-) =$                       | NA                                               |
|                                             |                                                      | $T_T (m^2/s) =$                               | 1.0E-11   | ξ (-) =                          | NA                                               |
|                                             |                                                      | S (-) =                                       | NA        |                                  |                                                  |
|                                             |                                                      | $K_s$ (m/s) =                                 | NA        |                                  |                                                  |
|                                             |                                                      | $S_s (1/m) =$                                 | NA        |                                  |                                                  |
| Not Ar                                      | nalysed                                              | Comments:                                     |           |                                  |                                                  |
|                                             |                                                      | Based on the test re<br>transmissivity is lov |           |                                  | ce) the interval                                 |
|                                             |                                                      |                                               |           |                                  |                                                  |




|                                         | Test Sumr                     | nary Sheet                                    |               |                          |                                                  |
|-----------------------------------------|-------------------------------|-----------------------------------------------|---------------|--------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigation | Test type:[1]                                 |               |                          | CHir                                             |
| Area:                                   | Laxemar                       | Test no:                                      |               |                          | 1                                                |
|                                         |                               |                                               |               |                          |                                                  |
| Borehole ID:                            | KLX15A                        | Test start:                                   |               |                          | 070423 06:34                                     |
| Test section from - to (m):             | 505.00-510.00 m               | Responsible for                               |               |                          | Stephan Rohs                                     |
| 0 ( )                                   | 0.070                         | test execution:                               |               |                          | er van der Wall                                  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.076                         | Responsible for test evaluation:              |               | Crist                    | ian Enachescu                                    |
| Linear plot Q and p                     |                               | Flow period                                   |               | Recovery period          |                                                  |
|                                         |                               | Indata                                        |               | Indata                   |                                                  |
| 4000                                    | 0.010                         | p <sub>0</sub> (kPa) =                        | 3885          |                          |                                                  |
| KLX15A_505.00-510.00_070423_1_CHir_Q_r  | Patrove Palow  Plefow         | p <sub>i</sub> (kPa ) =                       | NA            |                          |                                                  |
| 3950 -                                  | P below - 0.008               | $p_p(kPa) =$                                  | NA            | p <sub>F</sub> (kPa ) =  | NA                                               |
|                                         | · .                           | $Q_p (m^3/s) =$                               | NA            |                          |                                                  |
| 8000 ·                                  |                               | tp (s) =                                      | NA            | $t_F$ (s) =              | NA                                               |
| 8 P 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | ·   8 m                       | S el S* (-)=                                  | NA            | S el S <sup>*</sup> (-)= | NA                                               |
| Downh                                   | · 0.004 <u>s</u>              | EC <sub>w</sub> (mS/m)=                       |               |                          |                                                  |
| 3850 -                                  | •                             | Temp <sub>w</sub> (gr C)=                     | 12.6          |                          |                                                  |
|                                         | 0.002                         | Derivative fact.=                             | NA            | Derivative fact.=        | NA                                               |
| 3800                                    | • 0.000                       |                                               |               |                          |                                                  |
| 0.0 0.2 0.3 0.4 Elapsed                 | 5 0.6 0.8 0.9                 |                                               |               |                          |                                                  |
|                                         |                               | Results                                       |               | Results                  |                                                  |
|                                         |                               | Q/s $(m^2/s)=$                                | NA            |                          |                                                  |
| Log-Log plot incl. derivates- fl        | ow period                     | $T_M (m^2/s) =$                               | NA            |                          |                                                  |
|                                         |                               | Flow regime:                                  | transient     | Flow regime:             | transient                                        |
|                                         |                               | $dt_1$ (min) =                                | NA            | $dt_1 (min) =$           | NA                                               |
|                                         |                               | $dt_2$ (min) =                                | NA            | $dt_2 (min) =$           | NA                                               |
|                                         |                               | $T (m^2/s) =$                                 |               | $T (m^2/s) =$            | NA                                               |
|                                         |                               | S (-) =                                       | NA            | S (-) =                  | NA                                               |
|                                         |                               | $K_s$ (m/s) =                                 | NA            | $K_s$ (m/s) =            | NA                                               |
| Not A                                   | nalysed                       | $S_s (1/m) =$                                 | NA            | $S_s (1/m) =$            | NA                                               |
|                                         | ,                             | $C (m^3/Pa) =$                                | NA            | $C (m^3/Pa) =$           | NA                                               |
|                                         |                               | $C_D(-) =$                                    | NA            | C <sub>D</sub> (-) =     | NA                                               |
|                                         |                               | ξ(-) =                                        | NA            | ξ (-) =                  | NA                                               |
|                                         |                               |                                               |               | 2                        | 127.                                             |
|                                         |                               | $T_{GRF}(m^2/s) =$                            | NA            | $T_{GRF}(m^2/s) =$       | NA                                               |
|                                         |                               | $S_{GRF}(-) =$                                | NA            | $S_{GRF}(-) =$           | NA                                               |
|                                         |                               | D <sub>GRF</sub> (-) =                        | NA            | $D_{GRF}$ (-) =          | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe                              |               |                          | INIA                                             |
|                                         |                               | $dt_1 (min) =$                                | NA            | $C (m^3/Pa) =$           | NA                                               |
|                                         |                               | $dt_2 (min) =$                                | NA<br>4 OF 44 | $C_D(-) =$               | NA                                               |
|                                         |                               | $T_T (m^2/s) =$                               | 1.0E-11       | ξ (-) =                  | NA                                               |
|                                         |                               | S (-) =                                       | NA<br>NA      |                          | <del>                                     </del> |
|                                         |                               | $K_s (m/s) =$                                 | NA<br>NA      |                          | <del>                                     </del> |
|                                         |                               | S <sub>s</sub> (1/m) = Comments:              | INA           |                          | <u> </u>                                         |
| Not Al                                  | nalysed                       | Based on the test re<br>transmissivity is lov |               |                          | ce) the interval                                 |
|                                         |                               |                                               |               |                          |                                                  |


|                                            | Test S                    | umr                | nary Sheet                                          |               |                                |                                 |
|--------------------------------------------|---------------------------|--------------------|-----------------------------------------------------|---------------|--------------------------------|---------------------------------|
| Project:                                   | Oskarshamn site investig  |                    |                                                     |               |                                | CHir                            |
| Area:                                      | Lax                       | cemar              | Test no:                                            |               |                                | 1                               |
| Borehole ID:                               | KI                        | <b>Υ1</b> ΕΛ       | Test start:                                         |               |                                | 070423 07:57                    |
| Borenole ID.                               | KL                        |                    | rest start.                                         |               |                                | 070423 07.37                    |
| Test section from - to (m):                | 510.00-515                | .00 m              | Responsible for                                     |               |                                | Stephan Rohs                    |
| Section diameter, 2·r <sub>w</sub> (m):    |                           | 0.076              | test execution:<br>Responsible for                  |               |                                | er van der Wal<br>ian Enachescu |
|                                            |                           |                    | test evaluation:                                    |               |                                |                                 |
| Linear plot Q and p                        |                           |                    | Flow period                                         |               | Recovery period                |                                 |
|                                            |                           |                    | Indata                                              | 2020          | Indata                         |                                 |
| 4050                                       |                           | T <sup>0.010</sup> | $p_0 (kPa) =$                                       | 3920          |                                |                                 |
| KLX15A_510.00-515.00_070423_1_CHir_Q_r     | P section P above P below |                    | $p_i (kPa) =$                                       | NA            | n (kDe.)                       | NT A                            |
| 4000 -                                     | <b>h</b> +0               | - 0.008            | $p_p(kPa) =$                                        | NA            | p <sub>F</sub> (kPa ) =        | NA                              |
| <b>≅</b>                                   |                           | _                  | $Q_p (m^3/s) =$                                     | NA<br>NA      | t (a)                          | NI A                            |
| 2 de   |                           | rate [//min]       | tp(s) =                                             | NA<br>NA      | $t_F(s) =$                     | NA<br>NA                        |
| 9950 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                           | 0.004 eu           | S el S <sup>*</sup> (-)=<br>EC <sub>w</sub> (mS/m)= | 1117          | S el S <sup>*</sup> (-)=       | W                               |
| la .                                       |                           |                    | Temp <sub>w</sub> (gr C)=                           | 12.6          |                                |                                 |
| 3900 -                                     |                           | 0.002              | Derivative fact.=                                   |               | Derivative fact.=              | NA                              |
|                                            |                           |                    | DOTIVATIVE TACK.=                                   | 14/1          | Donvative lact.=               | 14/7                            |
| 3850 0.00 0.15 0.30 0.45                   |                           | 0.000              |                                                     |               |                                |                                 |
| Elapsed Ti                                 | me [h]                    |                    | Results                                             |               | Results                        |                                 |
|                                            |                           |                    | $Q/s (m^2/s)=$                                      | NA            |                                |                                 |
| Log-Log plot incl. derivates- flo          | ow period                 |                    | $T_{\rm M} (m^2/s) =$                               | NA            |                                |                                 |
|                                            |                           |                    | Flow regime:                                        | transient     | Flow regime:                   | transient                       |
|                                            |                           |                    | $dt_1 (min) =$                                      | NA            | $dt_1 (min) =$                 | NA                              |
|                                            |                           |                    | $dt_2 \text{ (min)} =$                              | NA            | $dt_2 \text{ (min)} =$         | NA                              |
|                                            |                           |                    | $T (m^2/s) =$                                       | 1.0E-11       |                                | NA                              |
|                                            |                           |                    | S (-) =                                             | NA            | S (-) =                        | NA                              |
|                                            |                           |                    | $K_s$ (m/s) =                                       | NA            | $K_s$ (m/s) =                  | NA                              |
| N                                          |                           |                    | $S_s (1/m) =$                                       | NA            | $S_s (1/m) =$                  | NA                              |
| Not An                                     | alysed                    |                    | $C (m^3/Pa) =$                                      | NA            | $C (m^3/Pa) =$                 | NA                              |
|                                            |                           |                    | C <sub>D</sub> (-) =                                | NA            | $C_D(-) =$                     | NA                              |
|                                            |                           |                    | ξ(-) =                                              | NA            | ξ (-) =                        | NA                              |
|                                            |                           |                    |                                                     |               |                                |                                 |
|                                            |                           |                    | $T_{GRF}(m^2/s) =$                                  | NA            | $T_{GRF}(m^2/s) =$             | NA                              |
|                                            |                           |                    | $S_{GRF}(-) =$                                      | NA            | $S_{GRF}(-) =$                 | NA                              |
|                                            |                           |                    | D <sub>GRF</sub> (-) =                              | NA            | D <sub>GRF</sub> (-) =         | NA                              |
| Log-Log plot incl. derivatives-            | recovery period           |                    | Selected represe                                    |               |                                |                                 |
|                                            |                           |                    | $dt_1 (min) =$                                      | NA            | $C (m^3/Pa) =$                 | NA                              |
|                                            |                           |                    | $dt_2 (min) =$                                      | NA<br>4.0F.44 | $C_D(-) =$                     | NA                              |
|                                            |                           |                    | $T_T (m^2/s) =$                                     | 1.0E-11       | ξ (-) =                        | NA                              |
|                                            |                           |                    | S (-) =                                             | NA<br>NA      |                                |                                 |
|                                            |                           |                    | $K_s (m/s) =$                                       | NA<br>NA      |                                |                                 |
|                                            |                           |                    | S <sub>s</sub> (1/m) = Comments:                    | NA            |                                |                                 |
| Not An                                     | arysed                    |                    |                                                     |               | ed packer compliand<br>1 m2/s. | ce) the interval                |
|                                            |                           |                    |                                                     |               |                                |                                 |


|                                           | Test S                   | umr                             | nary Sheet                                    |            |                          |                                                  |
|-------------------------------------------|--------------------------|---------------------------------|-----------------------------------------------|------------|--------------------------|--------------------------------------------------|
| Project:                                  | Oskarshamn site investig | gation                          | Test type:[1]                                 |            |                          | CHir                                             |
| Area:                                     | Lax                      | emar                            | Test no:                                      |            |                          | 1                                                |
|                                           |                          |                                 |                                               |            |                          | •                                                |
| Borehole ID:                              | KL                       | X15A                            | Test start:                                   |            |                          | 070423 09:17                                     |
| Test section from - to (m):               | 515.00-520.              | .00 m                           | Responsible for                               |            |                          | Stephan Rohs                                     |
| 0                                         |                          | 0.070                           | test execution:                               |            |                          | er van der Wall                                  |
| Section diameter, 2·r <sub>w</sub> (m):   | (                        | 0.076                           | Responsible for test evaluation:              |            | Crist                    | ian Enachescu                                    |
| Linear plot Q and p                       |                          |                                 | Flow period                                   |            | Recovery period          |                                                  |
|                                           |                          |                                 | Indata                                        |            | Indata                   |                                                  |
| 4100 T                                    | ,                        | T 0.010                         | $p_0$ (kPa) =                                 | 3958       |                          |                                                  |
| KLX15A_515.00-520.00_070423_1_CHir_Q_r    | Paction Pabove Phelow O  |                                 | p <sub>i</sub> (kPa ) =                       | NA         |                          |                                                  |
| 4050 -                                    | +°                       | 0.008                           | $p_p(kPa) =$                                  | NA         | p <sub>F</sub> (kPa ) =  | NA                                               |
|                                           |                          | _                               | $Q_p (m^3/s) =$                               | NA         |                          |                                                  |
| ssure [kPa                                |                          | 0.006 July                      | tp (s) =                                      | NA         | t <sub>F</sub> (s) =     | NA                                               |
| 89 4000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                          | 0.00.0<br>Pipection Rate [Vmin] | S el S* (-)=                                  | NA         | S el S <sup>*</sup> (-)= | NA                                               |
| ·                                         | •                        | 0.004 <u>=</u>                  | EC <sub>w</sub> (mS/m)=                       |            |                          |                                                  |
| 3950 -                                    | •                        | 0.002                           | Temp <sub>w</sub> (gr C)=                     | 12.7       |                          | 27.4                                             |
|                                           |                          |                                 | Derivative fact.=                             | NA         | Derivative fact.=        | NA                                               |
| 0.0 0.2 0.3 0.5                           |                          | 0.000                           |                                               |            |                          |                                                  |
| Elapsed 1                                 | ime [h]                  |                                 | Results                                       |            | Results                  |                                                  |
|                                           |                          |                                 | Q/s $(m^2/s)=$                                | NA         | Nesuits                  | 1                                                |
| Log-Log plot incl. derivates- fl          | ow period                |                                 | $T_{M} (m^{2}/s) =$                           | NA         |                          |                                                  |
| Tog Tog plot mon dont disc in             | on poned                 |                                 | Flow regime:                                  | transient  | Flow regime:             | transient                                        |
|                                           |                          |                                 | $dt_1 \text{ (min)} =$                        | NA         | $dt_1 \text{ (min)} =$   | NA                                               |
|                                           |                          |                                 | $dt_2 \text{ (min)} =$                        | NA         | $dt_2 \text{ (min)} =$   | NA                                               |
|                                           |                          |                                 | $T (m^2/s) =$                                 |            | $T (m^2/s) =$            | NA                                               |
|                                           |                          |                                 | S (-) =                                       | NA         | S (-) =                  | NA                                               |
|                                           |                          |                                 | $K_s$ (m/s) =                                 | NA         | $K_s$ (m/s) =            | NA                                               |
| NT 4 A                                    |                          |                                 | $S_s (1/m) =$                                 | NA         | $S_s (1/m) =$            | NA                                               |
| Not Al                                    | nalysed                  |                                 | $C (m^3/Pa) =$                                | NA         | $C (m^3/Pa) =$           | NA                                               |
|                                           |                          |                                 | C <sub>D</sub> (-) =                          | NA         | $C_D(-) =$               | NA                                               |
|                                           |                          |                                 | ξ (-) =                                       | NA         | ξ (-) =                  | NA                                               |
|                                           |                          |                                 |                                               |            |                          |                                                  |
|                                           |                          |                                 | $T_{GRF}(m^2/s) =$                            | NA         | $T_{GRF}(m^2/s) =$       | NA                                               |
|                                           |                          |                                 | $S_{GRF}(-) =$                                | NA         | $S_{GRF}(-) =$           | NA                                               |
|                                           |                          |                                 | D <sub>GRF</sub> (-) =                        | NA         | D <sub>GRF</sub> (-) =   | NA                                               |
| Log-Log plot incl. derivatives-           | recovery period          |                                 | Selected represe                              |            |                          | INIA                                             |
|                                           |                          |                                 | $dt_1 (min) =$                                | NA         | $C (m^3/Pa) =$           | NA                                               |
|                                           |                          |                                 | $dt_2 (min) =$                                | NA 1.0F.11 | $C_D(-) =$               | NA                                               |
|                                           |                          |                                 | $T_T (m^2/s) =$                               | 1.0E-11    | ζ(-) =                   | NA                                               |
|                                           |                          |                                 | $S (-) = K_s (m/s) =$                         | NA<br>NA   |                          |                                                  |
|                                           |                          |                                 | $S_s (11/s) = S_s (1/m) = S_s (1/m)$          | NA<br>NA   |                          | <del>                                     </del> |
| NT/A A -                                  | nalysed                  |                                 | Comments:                                     | - 12 4     |                          | <u> </u>                                         |
|                                           |                          |                                 | Based on the test re<br>transmissivity is lov |            |                          | ce) the interval                                 |
|                                           |                          |                                 |                                               |            |                          |                                                  |

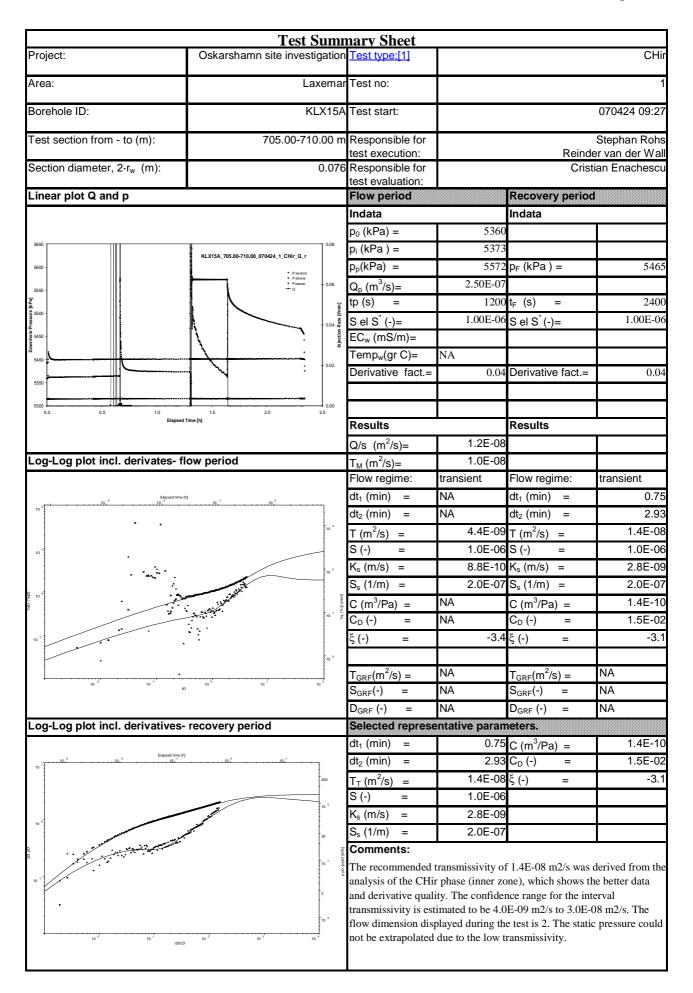
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Si                                                                                                        | ımn                       | nary Sheet                                    |                  |                                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------|------------------|-----------------------------------|------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investig                                                                                       |                           |                                               |                  |                                   | CHir             |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lax                                                                                                            | emar                      | Test no:                                      |                  |                                   | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                               |                  |                                   |                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX                                                                                                            | X15A                      | Test start:                                   |                  |                                   | 070423 13:19     |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 620.00-625.                                                                                                    | 00 m                      | Responsible for                               |                  |                                   | Stephan Rohs     |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | 0.70                      | test execution:                               |                  |                                   | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                                                                                                              | ).076                     | Responsible for<br>test evaluation:           |                  | Crist                             | ian Enachescu    |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                           | Flow period                                   |                  | Recovery period                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | Indata                                        |                  | Indata                            |                  |
| 4950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 0.010                     | $p_0$ (kPa) =                                 | 4735             |                                   |                  |
| KLX15A_620.00-625.00_070423_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section P above P below                                                                                      |                           | p <sub>i</sub> (kPa ) =                       | NA               |                                   |                  |
| 4900 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                | 0.008                     | $p_p(kPa) =$                                  | NA               | p <sub>F</sub> (kPa ) =           | NA               |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , market and the second se | 1                         | $Q_p (m^3/s) =$                               | NA               |                                   |                  |
| 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00 | •                                                                                                              | .0<br>900<br>8ate [I/min] | tp (s) =                                      | NA               | t <sub>F</sub> (s) =              | NA               |
| 80 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                       | Nection R                 | S el S* (-)=                                  | NA               | S el S <sup>*</sup> (-)=          | NA               |
| å 4750 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · :                                                                                                            | i.e                       | $EC_w (mS/m) =$                               | 140              |                                   |                  |
| 4700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                              | 0.002                     | Temp <sub>w</sub> (gr C)= Derivative fact.=   | 14.0             | Derivative fact.=                 | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | Delivative Tact.=                             | INA              | Denvative lact.=                  | INA              |
| 0.0 0.2 0.3 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6 0.8 0.9                                                                                                    | 0.000                     |                                               |                  |                                   |                  |
| Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me [h]                                                                                                         |                           | Results                                       |                  | Results                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | Q/s $(m^2/s)=$                                | NA               |                                   |                  |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                                                                                      |                           | $T_M (m^2/s) =$                               | NA               |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                              |                           | Flow regime:                                  | transient        | Flow regime:                      | transient        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $dt_1$ (min) =                                | NA               | $dt_1$ (min) =                    | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $dt_2$ (min) =                                | NA               | $dt_2$ (min) =                    | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $T (m^2/s) =$                                 | 1.0E-11          | $T (m^2/s) =$                     | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | S (-) =                                       | NA               | S (-) =                           | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $K_s$ (m/s) =                                 | NA               | $K_s (m/s) =$                     | NA               |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alvsed                                                                                                         |                           | $S_s (1/m) =$                                 | NA               | $S_s (1/m) =$                     | NA               |
| 1100 /11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uryseu                                                                                                         |                           | $C (m^3/Pa) =$                                | NA               | $C (m^3/Pa) =$                    | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $C_D(-) =$                                    | NA               | $C_D$ (-) =                       | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | ξ(-) =                                        | NA               | ξ (-) =                           | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | . 3                                           | NIA              | . 2                               | NIA.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$             | NA<br>NA         | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ | NA<br>NA         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | OIT ( )                                       | NA<br>NA         | - · ·                             | NA<br>NA         |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                                                                |                           | D <sub>GRF</sub> (-) = Selected represe       |                  |                                   |                  |
| 33 bior mon domaines-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | polica                                                                                                         |                           | dt <sub>1</sub> (min) =                       | NA               | C (m <sup>3</sup> /Pa) =          | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA               | $C_D(-) =$                        | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $T_T (m^2/s) =$                               | 1.0E-11          |                                   | NA               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | S (-) =                                       | NA               | - ( /                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | $K_s$ (m/s) =                                 | NA               |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | S <sub>s</sub> (1/m) =                        | NA               |                                   |                  |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alysed                                                                                                         |                           | Comments:                                     | •                | _                                 | -                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | Based on the test re                          |                  |                                   | ce) the interval |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | transmissivity is lov                         | ver than 1.0E-11 | m2/s.                             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                               |                  |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                               |                  |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                               |                  |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           |                                               |                  |                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                           | •                                             |                  |                                   |                  |



|                                                             | Test Sur                                        | nmary Sheet                         | 1                  |                          |                 |
|-------------------------------------------------------------|-------------------------------------------------|-------------------------------------|--------------------|--------------------------|-----------------|
| Project:                                                    | Oskarshamn site investigati                     | on Test type:[1]                    |                    |                          | CHi             |
| Area:                                                       | Laxem                                           | ar Test no:                         |                    |                          |                 |
| Borehole ID:                                                | KLX1                                            | 5A Test start:                      |                    |                          | 070423 16:2     |
| Test section from - to (m):                                 | 628.00-633.00                                   | m Responsible for                   |                    |                          | Stephan Roh     |
| Ocation diameter On (m)                                     | 0.0                                             | test execution:                     | <u> </u>           |                          | er van der Wa   |
| Section diameter, 2⋅r <sub>w</sub> (m):                     | 0.0                                             | 76 Responsible for test evaluation: |                    | Crist                    | ian Enachesc    |
| Linear plot Q and p                                         |                                                 | Flow period                         |                    | Recovery period          |                 |
| · · · · · · · · · · · · · · · · · · ·                       |                                                 | Indata                              |                    | Indata                   |                 |
|                                                             |                                                 | p <sub>0</sub> (kPa) =              | 4794               |                          |                 |
| 5100                                                        | KLX15A_628.00-633.00_070423_1_CHir_Q_r          | p <sub>i</sub> (kPa ) =             | 4800               |                          |                 |
| 5050                                                        | • P section                                     | $p_p(kPa) =$                        |                    | p <sub>F</sub> (kPa ) =  | 479             |
| 5000                                                        | Pabove     P below     Q     3.00               |                                     | 1.88E-05           | ρ <sub>F</sub> (Ki α ) = | 479             |
| ਭ<br><u>ਦੇ</u> 4950 -                                       | 2.50                                            | $Q_p (m^3/s) =$                     |                    | t (a)                    | 120             |
| 91388 4900 -                                                | 2.50                                            | tp (s) =                            |                    | $t_F$ (s) =              |                 |
|                                                             | 1.50                                            | § 3 613 (-)=                        | 1.00E-06           | S el S <sup>*</sup> (-)= | 1.00E-0         |
| 4850                                                        | 1.50                                            | \ /                                 |                    |                          |                 |
| 4800                                                        | 1.00                                            | . (0 /                              | NA                 |                          |                 |
| 4750                                                        | 0.50                                            | Derivative fact.=                   | 0.05               | Derivative fact.=        | 0.0             |
| 0.00 0.20 0.40 0.60 0.80 Elapsed Tim                        | 1.00 1.20 1.40 1.60<br>e [h]                    |                                     |                    |                          |                 |
|                                                             |                                                 | Results                             | 1                  | Results                  |                 |
|                                                             |                                                 | $Q/s (m^2/s)=$                      | 9.1E-07            |                          |                 |
| og-Log plot incl. derivates- flo                            | w period                                        | $T_{\rm M} (m^2/s) =$               | 7.5E-07            |                          |                 |
|                                                             |                                                 | Flow regime:                        | transient          | Flow regime:             | transient       |
| Elapsed time (h) 10, 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                                 | $dt_1$ (min) =                      | 0.92               | $dt_1$ (min) =           | 1.8             |
| 10 1                                                        | 3                                               | $dt_2$ (min) =                      | 2.88               | $dt_2$ (min) =           | 3.7             |
|                                                             |                                                 | $T (m^2/s) =$                       | 3.4E-07            | $T (m^2/s) =$            | 2.6E-0          |
|                                                             | 10                                              | S (-) =                             | 1.0E-06            | ,                        | 1.0E-0          |
| 10 %                                                        | 0.3                                             | $K_s$ (m/s) =                       |                    | $K_s$ (m/s) =            | 5.2E-0          |
|                                                             | <u></u>                                         | $S_s (1/m) =$                       |                    | $S_s(1/m) =$             | 2.0E-0          |
|                                                             | 10                                              |                                     | NA                 | $C (m^3/Pa) =$           | 2.2E-1          |
|                                                             |                                                 | $C_{D}(-) =$                        | NA                 | $C_D(-) =$               | 2.4E-0          |
|                                                             | 0.03                                            |                                     |                    |                          | -4.             |
|                                                             | 10                                              | ξ (-) =                             | -4.0               | ξ (-) =                  | -4.             |
| 10 10                                                       | 10 1 10 2 10 3                                  | $T_{GRF}(m^2/s) =$                  | NA                 | $T_{GRF}(m^2/s) =$       | NA              |
| tD                                                          |                                                 | $S_{GRF}(-) =$                      | NA                 | $S_{GRF}(-) =$           | NA              |
|                                                             |                                                 | $D_{GRF}$ (-) =                     | NA                 | $D_{GRF}$ (-) =          | NA              |
| Log-Log plot incl. derivatives- r                           | ecovery period                                  | Selected repres                     | entative paran     | neters.                  |                 |
|                                                             |                                                 | $dt_1$ (min) =                      | 0.92               | C (m <sup>3</sup> /Pa) = | 2.2E-1          |
| Elapsed time [h]                                            |                                                 | $dt_2$ (min) =                      |                    | $C_D$ (-) =              | 2.4E-0          |
|                                                             |                                                 | $T_T (m^2/s) =$                     | 3.4E-07            | ξ(-) =                   | -4.             |
|                                                             | 300                                             | S (-) =                             | 1.0E-06            |                          |                 |
|                                                             |                                                 | $K_s$ (m/s) =                       | 6.8E-08            |                          |                 |
| 10°                                                         | 10 2                                            | $S_s (1/m) =$                       | 2.0E-07            |                          |                 |
| · · · · · · · · · · · · · · · · · · ·                       |                                                 | Comments:                           |                    |                          |                 |
|                                                             | 30                                              | 8                                   | transmissivity of  | f 3.4E-07 m2/s was       | derived from th |
| 10-1                                                        | 10 1                                            |                                     |                    | ne), which shows the     |                 |
|                                                             |                                                 |                                     |                    | range for the interva    |                 |
| •                                                           | 3                                               | is estimated to be 1                | 1.0E-07 m2/s to 2  | 2.0E-06 m2/s. The fl     | low dimension   |
| 10 ° 10 ¹                                                   | 10 <sup>2</sup> 10 <sup>3</sup> 10 <sup>4</sup> |                                     |                    | tatic pressure measu     |                 |
| 10 - 10 · tD/CD                                             | 10 10 10                                        |                                     |                    | the CHir phase usir      |                 |
|                                                             |                                                 | extrapolation in the                | e Horner plot to a | a value of 4,793.4 k     | ra.             |






|                                         | Test Sum                               | mary Sheet                          |           |                                |                  |
|-----------------------------------------|----------------------------------------|-------------------------------------|-----------|--------------------------------|------------------|
| Project:                                | Oskarshamn site investigation          |                                     |           |                                | CHir             |
| Area:                                   | Laxema                                 | r Test no:                          |           |                                | 1                |
|                                         |                                        |                                     |           |                                |                  |
| Borehole ID:                            | KLX15/                                 | A Test start:                       |           |                                | 070423 22:41     |
| Test section from - to (m):             | 660.00-665.00 n                        | n Responsible for                   |           |                                | Stephan Rohs     |
| 0                                       | 0.07                                   | test execution:                     |           |                                | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.070                                  | Responsible for test evaluation:    |           | Crist                          | ian Enachescu    |
| Linear plot Q and p                     |                                        | Flow period                         |           | Recovery period                | 1                |
|                                         |                                        | Indata                              |           | Indata                         |                  |
| 5100                                    | • P section                            | $p_0 (kPa) =$                       | 5027      |                                |                  |
| KLX15A_660.00-665.00_070423_1_CHir_Q_r  | P above P below                        | p <sub>i</sub> (kPa ) =             | NA        |                                |                  |
| 5075                                    | 0.008                                  | $p_p(kPa) =$                        | NA        | p <sub>F</sub> (kPa ) =        | NA               |
| 표<br>8000 -                             | E                                      | $Q_p (m^3/s) =$                     | NA        |                                |                  |
| essure.                                 | ************************************** | tp (s) =                            | NA        | $t_F$ (s) =                    | NA               |
| 9                                       | - 0.000                                | S el S $^*$ (-)=<br>EC $_w$ (mS/m)= | NA        | S el S <sup>*</sup> (-)=       | NA               |
| á ,                                     | =                                      | $Temp_w(gr C)=$                     | NA        |                                |                  |
| 5000 -                                  | 0.002                                  | . (0 /                              | NA<br>NA  | Derivative fact.=              | NA               |
| ~~~                                     |                                        | 2044.0 1400                         | - 14 -    | _ 54                           | - '' -           |
| 4975 0.00 0.15 0.30 0.45                |                                        |                                     |           |                                |                  |
| Elapsed Ti                              | ime [h]                                | Results                             |           | Results                        |                  |
|                                         |                                        | Q/s $(m^2/s)=$                      | NA        |                                |                  |
| Log-Log plot incl. derivates- flo       | ow period                              | $T_{\rm M} (m^2/s) =$               | NA        |                                |                  |
|                                         |                                        | Flow regime:                        | transient | Flow regime:                   | transient        |
|                                         |                                        | $dt_1$ (min) =                      | NA        | $dt_1$ (min) =                 | NA               |
|                                         |                                        | $dt_2 (min) =$                      | NA        | $dt_2 (min) =$                 | NA               |
|                                         |                                        | $T (m^2/s) =$                       | 1.0E-11   | $T (m^2/s) =$                  | NA               |
|                                         |                                        | S (-) =                             | NA        | S (-) =                        | NA               |
|                                         |                                        | $K_s (m/s) =$                       | NA        | $K_s (m/s) =$                  | NA               |
| Not An                                  | alysed                                 | $S_s (1/m) =$                       | NA<br>NA  | $S_s(1/m) =$                   | NA<br>NA         |
|                                         |                                        | $C (m^3/Pa) = C_D (-) =$            | NA        | $C (m^3/Pa) = C_D (-) =$       | NA               |
|                                         |                                        | ξ(-) =                              | NA        | ξ(-) =                         | NA               |
|                                         |                                        | 5() -                               | 1,11      | 5() –                          | 1,12             |
|                                         |                                        | $T_{GRF}(m^2/s) =$                  | NA        | $T_{GRF}(m^2/s) =$             | NA               |
|                                         |                                        | $S_{GRF}(-) =$                      | NA        | $S_{GRF}(-) =$                 | NA               |
|                                         |                                        | D <sub>GRF</sub> (-) =              | NA        | D <sub>GRF</sub> (-) =         | NA               |
| Log-Log plot incl. derivatives-         | recovery period                        | Selected represe                    |           | neters.                        | <u>-</u>         |
|                                         |                                        | $dt_1$ (min) =                      | NA        | $C (m^3/Pa) =$                 | NA               |
|                                         |                                        | $dt_2 (min) =$                      | NA        | $C_D(-) =$                     | NA               |
|                                         |                                        | $T_T (m^2/s) =$                     | 1.0E-11   | ξ (-) =                        | NA               |
|                                         |                                        | S (-) =                             | NA        |                                |                  |
|                                         |                                        | $K_s (m/s) =$                       | NA<br>NA  |                                |                  |
| %T - 4                                  |                                        | S <sub>s</sub> (1/m) = Comments:    | IVA       | <u> </u>                       |                  |
| Not An                                  | aryseu                                 |                                     |           | ged packer complian<br>I m2/s. | ce) the interval |
|                                         |                                        |                                     |           |                                |                  |

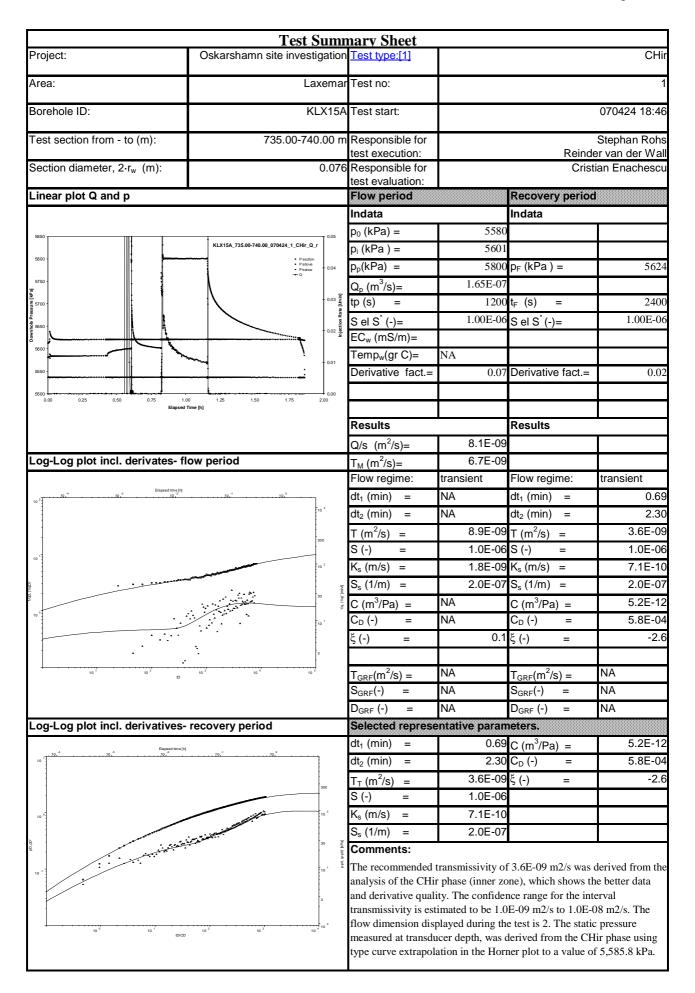
|                                         | Test S                            | lumr        | nary Sheet                                           |               |                                |                                  |
|-----------------------------------------|-----------------------------------|-------------|------------------------------------------------------|---------------|--------------------------------|----------------------------------|
| Project:                                | Oskarshamn site investi           |             |                                                      |               |                                | CHir                             |
| Area:                                   | Lax                               | kemar       | Test no:                                             |               |                                | 1                                |
| D 1 1 1D                                |                                   |             |                                                      |               |                                | 070400 00 55                     |
| Borehole ID:                            | KL                                | .X15A       | Test start:                                          |               |                                | 070423 23:55                     |
| Test section from - to (m):             | 665.00-670                        | .00 m       | Responsible for                                      |               |                                | Stephan Rohs                     |
| Section diameter, 2⋅r <sub>w</sub> (m): |                                   | 0 076       | test execution:<br>Responsible for                   |               |                                | er van der Wall<br>ian Enachescu |
|                                         |                                   | 0.070       | test evaluation:                                     |               |                                |                                  |
| Linear plot Q and p                     |                                   |             | Flow period                                          |               | Recovery period                |                                  |
|                                         |                                   |             | Indata                                               | •             | Indata                         | •                                |
| 5150                                    | r                                 | T 0.010     | p <sub>0</sub> (kPa) =                               | 5064          |                                |                                  |
| KLX15A_665.00-670.00_070423_1_CHir_Q_r  | P section     P above     P below |             | p <sub>i</sub> (kPa ) =                              | NA            | (1.5.)                         | 27.4                             |
| 5125                                    | + Q                               | 0.008       | $p_p(kPa) =$                                         | NA            | p <sub>F</sub> (kPa ) =        | NA                               |
| F 5100                                  |                                   | _           | $Q_p (m^3/s) =$                                      | NA            | t /->                          | NT A                             |
| inst .                                  |                                   | te [1/min]  | tp (s) =                                             | NA            | $t_F$ (s) =                    | NA<br>NA                         |
| 5075                                    |                                   | njection Ra | S el S* (-)=                                         | NA            | S el S <sup>*</sup> (-)=       | NA                               |
| G 5050 -                                |                                   | 0.004 .5    | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | NA            |                                |                                  |
|                                         |                                   | 0.002       |                                                      | NA<br>NA      | Derivative fact.=              | NA                               |
| 5025                                    |                                   |             | Delivative lact.=                                    | 1 W/\         | Delivative lact.=              | INC                              |
| 0.00 0.15 0.30 0.48                     |                                   | 0.000       |                                                      |               |                                |                                  |
| Elapsed T                               | ime [h]                           |             | Results                                              |               | Results                        |                                  |
|                                         |                                   |             | $Q/s (m^2/s) =$                                      | NA            |                                |                                  |
| Log-Log plot incl. derivates- fl        | ow period                         |             | $T_{\rm M} (m^2/s) =$                                | NA            |                                |                                  |
|                                         | •                                 |             | Flow regime:                                         | transient     | Flow regime:                   | transient                        |
|                                         |                                   |             | $dt_1 \text{ (min)} =$                               | NA            | $dt_1 (min) =$                 | NA                               |
|                                         |                                   |             | $dt_2 \text{ (min)} =$                               | NA            | $dt_2 \text{ (min)} =$         | NA                               |
|                                         |                                   |             | $T (m^2/s) =$                                        | 1.0E-11       | $T (m^2/s) =$                  | NA                               |
|                                         |                                   |             | S (-) =                                              | NA            | S (-) =                        | NA                               |
|                                         |                                   |             | $K_s$ (m/s) =                                        | NA            | $K_s$ (m/s) =                  | NA                               |
| NT-4 A-                                 |                                   |             | $S_s (1/m) =$                                        | NA            | $S_s(1/m) =$                   | NA                               |
| Not Ar                                  | iaiyseu                           |             | $C (m^3/Pa) =$                                       | NA            | $C (m^3/Pa) =$                 | NA                               |
|                                         |                                   |             | $C_D$ (-) =                                          | NA            | $C_D$ (-) =                    | NA                               |
|                                         |                                   |             | ξ (-) =                                              | NA            | ξ (-) =                        | NA                               |
|                                         |                                   |             |                                                      |               |                                |                                  |
|                                         |                                   |             | $T_{GRF}(m^2/s) =$                                   | NA            | $T_{GRF}(m^2/s) =$             | NA                               |
|                                         |                                   |             | S <sub>GRF</sub> (-) =                               | NA            | S <sub>GRF</sub> (-) =         | NA                               |
|                                         |                                   |             | D <sub>GRF</sub> (-) =                               | NA            | D <sub>GRF</sub> (-) =         | NA                               |
| Log-Log plot incl. derivatives-         | recovery period                   |             | Selected represe                                     |               |                                | Tala                             |
|                                         |                                   |             | $dt_1 (min) =$                                       | NA            | $C (m^3/Pa) =$                 | NA                               |
|                                         |                                   |             | $dt_2 (min) =$                                       | NA<br>1 0E 11 | $C_D(-) =$                     | NA                               |
|                                         |                                   |             | $T_T (m^2/s) =$                                      | 1.0E-11<br>NA | ξ (-) =                        | NA                               |
|                                         |                                   |             | $S(-) = K_s(m/s) =$                                  | NA<br>NA      |                                |                                  |
|                                         |                                   |             | $S_s (11/S) = S_s (1/m) = S_s (1/m)$                 | NA            |                                |                                  |
| Not Ar                                  | nalysad                           |             | Comments:                                            |               | <u> </u>                       | <u> </u>                         |
| 10071                                   | mi, sec                           |             | Based on the test re<br>transmissivity is lov        |               | ged packer complian<br>I m2/s. | ce) the interval                 |
|                                         |                                   |             |                                                      |               |                                |                                  |

|                                         | Test Sum                                  | mary Sheet                                           |           |                                |                                                  |
|-----------------------------------------|-------------------------------------------|------------------------------------------------------|-----------|--------------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigation             |                                                      |           |                                | CHir                                             |
| Area:                                   | Laxema                                    | r Test no:                                           |           |                                | 1                                                |
| 2 1 1 12                                |                                           |                                                      |           |                                | 0701010101                                       |
| Borehole ID:                            | KLX15A                                    | Test start:                                          |           |                                | 070424 01:07                                     |
| Test section from - to (m):             | 670.00-675.00 n                           | Responsible for                                      |           |                                | Stephan Rohs                                     |
| Continuation of a (m)                   | 0.07/                                     | test execution:                                      |           |                                | er van der Wall                                  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.076                                     | Responsible for test evaluation:                     |           | Crist                          | ian Enachescu                                    |
| Linear plot Q and p                     |                                           | Flow period                                          |           | Recovery period                |                                                  |
|                                         |                                           | Indata                                               |           | Indata                         |                                                  |
| 5400                                    | 0.010                                     | p <sub>0</sub> (kPa) =                               | 5100      |                                |                                                  |
| KLX15A_670.00-675.00_070424_1_CHir_Q_r  | P section P above P below                 | p <sub>i</sub> (kPa ) =                              | NA        |                                |                                                  |
| 5300 -                                  | - Q 0.008                                 | $p_p(kPa) =$                                         | NA        | p <sub>F</sub> (kPa ) =        | NA                                               |
| <br>                                    |                                           | $Q_p (m^3/s) =$                                      | NA        | . , ,                          |                                                  |
| ssure [k]                               | 0.006                                     | tp (s) =                                             | NA        | $t_F$ (s) =                    | NA                                               |
| 호<br>5200 -                             | 0.000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | S el S* (-)=                                         | NA        | S el S <sup>*</sup> (-)=       | NA                                               |
|                                         | <u> </u>                                  | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | NA        |                                | <del>                                     </del> |
| 5100                                    | 0.002                                     |                                                      | NA<br>NA  | Derivative fact.=              | NA                                               |
|                                         | •                                         | Delivative lact.=                                    | 11/1      | Donvative lact.=               | 11/1                                             |
| 5000 0.00 0.15 0.30 0.4                 | 0.000                                     |                                                      |           |                                |                                                  |
| Elapsed T                               |                                           | Results                                              |           | Results                        | 1                                                |
|                                         |                                           | Q/s $(m^2/s)=$                                       | NA        |                                |                                                  |
| Log-Log plot incl. derivates- fl        | ow period                                 | $T_{\rm M} (m^2/s) =$                                | NA        |                                |                                                  |
|                                         |                                           | Flow regime:                                         | transient | Flow regime:                   | transient                                        |
|                                         |                                           | $dt_1$ (min) =                                       | NA        | $dt_1$ (min) =                 | NA                                               |
|                                         |                                           | $dt_2$ (min) =                                       | NA        | $dt_2$ (min) =                 | NA                                               |
|                                         |                                           | $T (m^2/s) =$                                        | 1.0E-11   | $T (m^2/s) =$                  | NA                                               |
|                                         |                                           | S (-) =                                              | NA        | S (-) =                        | NA                                               |
|                                         |                                           | $K_s (m/s) =$                                        | NA        | $K_s$ (m/s) =                  | NA                                               |
| Not Aı                                  | nalysed                                   | $S_s (1/m) =$                                        | NA        | $S_s (1/m) =$                  | NA                                               |
|                                         | •                                         | $C (m^3/Pa) =$                                       | NA        | $C (m^3/Pa) =$                 | NA                                               |
|                                         |                                           | $C_D(-) =$                                           | NA        | $C_D(-) =$                     | NA                                               |
|                                         |                                           | ξ (-) =                                              | NA        | ξ(-) =                         | NA                                               |
|                                         |                                           | $T_{GRF}(m^2/s) =$                                   | NA        | $T_{GRF}(m^2/s) =$             | NA                                               |
|                                         |                                           | $S_{GRF}(m / s) = S_{GRF}(-) =$                      | NA<br>NA  | $S_{GRF}(m/s) = S_{GRF}(-) =$  | NA<br>NA                                         |
|                                         |                                           | $D_{GRF}(\cdot) =$                                   | NA        | $D_{GRF}(\cdot) =$             | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period                           | Selected represe                                     |           |                                |                                                  |
| <u> </u>                                |                                           | $dt_1$ (min) =                                       | NA        | C (m <sup>3</sup> /Pa) =       | NA                                               |
|                                         |                                           | dt <sub>2</sub> (min) =                              | NA        | $C_D(-) =$                     | NA                                               |
|                                         |                                           | $T_T (m^2/s) =$                                      | 1.0E-11   |                                | NA                                               |
|                                         |                                           | S (-) =                                              | NA        |                                |                                                  |
|                                         |                                           | $K_s (m/s) =$                                        | NA        |                                |                                                  |
| 1                                       |                                           | $S_s (1/m) =$                                        | NA        |                                |                                                  |
| Not Ar                                  | nalysed                                   | Comments:                                            |           |                                |                                                  |
|                                         |                                           | Based on the test re<br>transmissivity is lov        |           | ged packer complian<br>l m2/s. | ce) the interval                                 |
|                                         |                                           |                                                      |           |                                |                                                  |

|                                         | Test Sur                    | nmary Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                |                  |
|-----------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|------------------|
| Project:                                | Oskarshamn site investigati |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                | CHir             |
| Area:                                   | Laxen                       | nar Test no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |                                | 1                |
|                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                |                  |
| Borehole ID:                            | KLX1                        | 5A Test start:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                | 070424 06:35     |
| Test section from - to (m):             | 675.00-680.00               | m Responsible fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                | Stephan Rohs     |
| 0 4 4 4 0 ()                            | 0.0                         | test execution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                | er van der Wall  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.0                         | 76 Responsible for<br>test evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | Crist                          | ian Enachescu    |
| Linear plot Q and p                     |                             | Flow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | Recovery period                | 1                |
|                                         |                             | Indata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | Indata                         |                  |
| 5250                                    | 0.010                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5137                                      |                                |                  |
| KLX15A_675.00-680.00_070424_1_CHir_Q_r  | P section P above P below   | p <sub>i</sub> (kPa ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                        |                                |                  |
| 5200 -                                  | 0.000                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                        | p <sub>F</sub> (kPa ) =        | NA               |
| <u> </u>                                |                             | $Q_p (m^3/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                        |                                |                  |
| P 6-88 (150 -                           | - 0.001                     | tp(s) = transfer (s) = tp(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                        | $t_F$ (s) =                    | NA               |
| a                                       |                             | S el S* (-)=<br>EC <sub>w</sub> (mS/m)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                        | S el S* (-)=                   | NA               |
| Po Po                                   | •                           | $EC_w (mS/m) = Temp_w (gr C) $ | NA                                        |                                |                  |
| 5100 -                                  | 0.002                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Derivative fact.=              | NA               |
|                                         |                             | 25.174.176 1461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | _ 5 3 5 1401                   | - `` -           |
| 0.00 0.15 0.30 0.45<br>Elapsed Ti       |                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |                                |                  |
| старяест п                              | ine [n]                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | Results                        |                  |
|                                         |                             | Q/s $(m^2/s)=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        |                                |                  |
| Log-Log plot incl. derivates- flo       | ow period                   | $T_{\rm M}$ (m <sup>2</sup> /s)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                        |                                |                  |
|                                         |                             | Flow regime:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | transient                                 | Flow regime:                   | transient        |
|                                         |                             | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        | $dt_1 (min) =$                 | NA               |
|                                         |                             | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        | $dt_2 (min) =$                 | NA               |
|                                         |                             | $T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0E-11                                   | . (,0)                         | NA               |
|                                         |                             | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                        | S (-) =                        | NA               |
|                                         |                             | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                        | $K_s (m/s) =$                  | NA               |
| Not An                                  | alysed                      | $S_s (1/m) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>NA                                  | $S_s(1/m) =$                   | NA<br>NA         |
|                                         |                             | $C (m^3/Pa) = C_D (-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                        | $C (m^3/Pa) = C_D (-) =$       | NA               |
|                                         |                             | ξ(-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                        | ξ(-) =                         | NA               |
|                                         |                             | 5() -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | 5() -                          | 1,12             |
|                                         |                             | $T_{GRF}(m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                        | $T_{GRF}(m^2/s) =$             | NA               |
|                                         |                             | $S_{GRF}(-) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        | $S_{GRF}(-) =$                 | NA               |
|                                         |                             | $D_{GRF}$ (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA                                        | D <sub>GRF</sub> (-) =         | NA               |
| Log-Log plot incl. derivatives-         | recovery period             | Selected repre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | esentative parar                          | neters.                        |                  |
|                                         |                             | $dt_1$ (min) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        | $C (m^3/Pa) =$                 | NA               |
|                                         |                             | $dt_2 (min) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA                                        | $C_D(-) =$                     | NA               |
|                                         |                             | $T_T (m^2/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0E-11                                   | ξ (-) =                        | NA               |
|                                         |                             | S (-) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                        |                                |                  |
|                                         |                             | $K_s (m/s) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>NA                                  |                                |                  |
| Not An                                  |                             | S <sub>s</sub> (1/m) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/1                                      | <u> </u>                       |                  |
| NOU AII                                 | iaiyseu                     | Based on the tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | et response (prolong<br>lower than 1.0E-1 | ged packer complian<br>1 m2/s. | ce) the interval |
|                                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                |                  |

|                                           | Test Si                                     | umr                   | nary Sheet                       |                  |                             |                  |
|-------------------------------------------|---------------------------------------------|-----------------------|----------------------------------|------------------|-----------------------------|------------------|
| Project:                                  | Oskarshamn site investig                    |                       |                                  |                  |                             | CHir             |
| Area:                                     | l ax                                        | emar                  | Test no:                         |                  |                             | 1                |
|                                           |                                             |                       |                                  |                  |                             |                  |
| Borehole ID:                              | KLX                                         | X15A                  | Test start:                      |                  |                             | 070424 08:09     |
| Test section from - to (m):               | 700.00-705.                                 | 00 m                  | Responsible for                  |                  |                             | Stephan Rohs     |
|                                           |                                             |                       | test execution:                  |                  |                             | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m):   | (                                           | 0.076                 | Responsible for test evaluation: |                  | Crist                       | ian Enachescu    |
| Linear plot Q and p                       |                                             |                       | Flow period                      |                  | Recovery period             |                  |
|                                           |                                             |                       | Indata                           |                  | Indata                      |                  |
|                                           |                                             |                       | p <sub>0</sub> (kPa) =           | 5321             |                             |                  |
| KLX15A_700.00-705.00_070424_1_CHir_Q_r    | Psection     Pabove                         | 0.10                  | p <sub>i</sub> (kPa ) =          | NA               |                             |                  |
|                                           | P below — Q                                 | 0.08                  | $p_p(kPa) =$                     | NA               | p <sub>F</sub> (kPa ) =     | NA               |
| 5400                                      | arran e e e e e e e e e e e e e e e e e e e |                       | $Q_p (m^3/s) =$                  | NA               |                             |                  |
| i ure let al                              |                                             | [Min]                 | tp (s) =                         | NA               | $t_F$ (s) =                 | NA               |
| P. S. | /                                           | hjection Rate [l/min] | S el S <sup>*</sup> (-)=         | NA               | S el S <sup>*</sup> (-)=    | NA               |
| Downing Committee                         | •                                           | 10.04 in              | EC <sub>w</sub> (mS/m)=          |                  |                             |                  |
| 5300 -                                    |                                             |                       | Temp <sub>w</sub> (gr C)=        | NA               |                             |                  |
|                                           | ······································      | 0.02                  | Derivative fact.=                | NA               | Derivative fact.=           | NA               |
| 5250                                      |                                             | 0.00                  |                                  |                  |                             |                  |
| 0.0 0.2 0.3 0.3 Elapsed                   |                                             | 0.9                   |                                  |                  |                             |                  |
|                                           |                                             |                       | Results                          | l                | Results                     |                  |
|                                           |                                             |                       | Q/s $(m^2/s)=$                   | NA               |                             |                  |
| Log-Log plot incl. derivates- fl          | ow period                                   |                       | $T_M (m^2/s) =$                  | NA               | Class va sissa s            | tropolopt        |
|                                           |                                             |                       | Flow regime:                     | transient<br>NA  | Flow regime:                | transient<br>NA  |
|                                           |                                             |                       | $dt_1 (min) =$                   | NA<br>NA         | $dt_1 (min) =$              | NA<br>NA         |
|                                           |                                             |                       | $dt_2 \text{ (min)} =$           | NA<br>1.0E-11    | $dt_2 (min) =$              | NA<br>NA         |
|                                           |                                             |                       | $T (m^2/s) =$                    | NA               | T (m2/s) = S (-) =          | NA               |
|                                           |                                             |                       | $S(-) = K_s(m/s) =$              | NA<br>NA         |                             | NA<br>NA         |
|                                           |                                             |                       | $K_s (m/s) = S_s (1/m) =$        | NA<br>NA         | $K_s (m/s) =$ $S_s (1/m) =$ | NA<br>NA         |
| Not Ar                                    | nalysed                                     |                       | $C (m^3/Pa) =$                   | NA               | C (m <sup>3</sup> /Pa) =    | NA               |
|                                           |                                             |                       | $C_D(-) =$                       | NA               | $C(\Pi/Pa) = C_D(-) =$      | NA               |
|                                           |                                             |                       | ξ(-) =                           | NA               | ξ(-) =                      | NA               |
|                                           |                                             |                       | 5() -                            |                  | 5() -                       |                  |
|                                           |                                             |                       | $T_{GRF}(m^2/s) =$               | NA               | $T_{GRF}(m^2/s) =$          | NA               |
|                                           |                                             |                       | $S_{GRF}(-) =$                   | NA               | $S_{GRF}(-) =$              | NA               |
|                                           |                                             |                       | D <sub>GRF</sub> (-) =           | NA               | $D_{GRF}$ (-) =             | NA               |
| Log-Log plot incl. derivatives-           | recovery period                             |                       | Selected represe                 |                  |                             |                  |
|                                           |                                             |                       | dt <sub>1</sub> (min) =          | NA               | C (m <sup>3</sup> /Pa) =    | NA               |
|                                           |                                             |                       | $dt_2$ (min) =                   | NA               | $C_D(-) =$                  | NA               |
|                                           |                                             |                       | $T_T (m^2/s) =$                  | 1.0E-11          | ξ (-) =                     | NA               |
|                                           |                                             |                       | S (-) =                          | NA               |                             |                  |
|                                           |                                             |                       | $K_s$ (m/s) =                    | NA               |                             |                  |
|                                           |                                             |                       | $S_s (1/m) =$                    | NA               |                             |                  |
| Not A                                     | nalysed                                     |                       | Comments:                        |                  |                             |                  |
|                                           |                                             |                       |                                  |                  | ed packer complian          | ce) the interval |
|                                           |                                             |                       | transmissivity is lov            | vei uian 1.UE-11 | 1 1112/8.                   |                  |
|                                           |                                             |                       |                                  |                  |                             |                  |
|                                           |                                             |                       |                                  |                  |                             |                  |
|                                           |                                             |                       |                                  |                  |                             |                  |
|                                           |                                             |                       |                                  |                  |                             |                  |
|                                           |                                             |                       |                                  |                  |                             |                  |




|                                          | Test Sumr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nary Sheet                                    |                     |                                |                  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|--------------------------------|------------------|
| Project:                                 | Oskarshamn site investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                               |                     |                                | CHir             |
| Area:                                    | Laxema                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test no:                                      |                     |                                | 1                |
| rii oa.                                  | Laxoniai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | root no.                                      |                     |                                |                  |
| Borehole ID:                             | KLX15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test start:                                   |                     |                                | 070424 12:23     |
| Test section from - to (m):              | 710.00-715.00 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Responsible for                               |                     |                                | Stephan Rohs     |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test execution:                               |                     |                                | er van der Wall  |
| Section diameter, 2-r <sub>w</sub> (m):  | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible for                               |                     | Crist                          | ian Enachescu    |
| Linear plot Q and p                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation:<br>Flow period               |                     | Recovery period                |                  |
| Emical plot & and p                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                                        |                     | Indata                         |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $p_0$ (kPa) =                                 | 5399                |                                | <u> </u>         |
| KLX15A_710.00-715.00_070424_1_CHir_Q_r   | 0.010<br>• P section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | p <sub>i</sub> (kPa ) =                       | NA                  |                                |                  |
| 5650 -                                   | P above P below O 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $p_p(kPa) =$                                  | NA                  | p <sub>F</sub> (kPa ) =        | NA               |
| 5600 -                                   | , in the same of t | $Q_p (m^3/s) =$                               | NA                  | , ,                            |                  |
| 전<br><u>8</u> 5550 ·                     | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tp(s) =                                       | NA                  | $t_F$ (s) =                    | NA               |
| 9-7-9-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 0.004 (min) 1  | S el S <sup>*</sup> (-)=                      | NA                  | S el S <sup>*</sup> (-)=       | NA               |
| 5450                                     | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EC <sub>w</sub> (mS/m)=                       |                     | ( ) '                          |                  |
| 5400                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp <sub>w</sub> (gr C)=                     | NA                  |                                |                  |
| 5350                                     | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | NA                  | Derivative fact.=              | NA               |
| 5300                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                     |                                |                  |
| 0.00 0.15 0.30 0.45<br>Elapsed T         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                     |                                |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                       | •                   | Results                        | •                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                                | NA                  |                                |                  |
| Log-Log plot incl. derivates- fl         | ow period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_{\rm M} (m^2/s) =$                         | NA                  |                                |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow regime:                                  | transient           | Flow regime:                   | transient        |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1$ (min) =                                | NA                  | $dt_1$ (min) =                 | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2$ (min) =                                | NA                  | $dt_2$ (min) =                 | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) =$                                 | 1.0E-11             | $T (m^2/s) =$                  | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                       | NA                  | S (-) =                        | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s$ (m/s) =                                 | NA                  | $K_s (m/s) =$                  | NA               |
| Not Ar                                   | nalvsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_s (1/m) =$                                 | NA                  | $S_s (1/m) =$                  | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C (m^3/Pa) =$                                | NA                  | $C (m^3/Pa) =$                 | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>D</sub> (-) =                          | NA                  | $C_D(-) =$                     | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ (-) =                                       | NA                  | ξ (-) =                        | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ 2                                           | NT A                | _ 2                            | NT A             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$                            | NA                  | $T_{GRF}(m^2/s) =$             | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{GRF}(-) =$                                | NA                  | $S_{GRF}(-) =$                 | NA<br>NA         |
| Log-Log plot incl. derivatives-          | rocovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D <sub>GRF</sub> (-) = Selected represe       | NA                  | D <sub>GRF</sub> (-) =         | NA               |
| Log-Log plot lilci. derivatives-         | recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dt <sub>1</sub> (min) =                       | ntative paran<br>NA |                                | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1 (min) = $ $dt_2 (min) = $               | NA<br>NA            | $C (m^3/Pa) = C_D (-) =$       | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_T (m^2/s) =$                               | 1.0E-11             |                                | NA               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S(-) =                                        | NA                  | > (⁻) =                        | 11/1             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s (m/s) =$                                 | NA<br>NA            |                                |                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_s (1/m) =$                                 | NA                  |                                |                  |
| Not Ar                                   | nalvsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comments:                                     | I                   | 1                              | 1                |
| 10012                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Based on the test re<br>transmissivity is lov |                     | ged packer complian<br>1 m2/s. | ce) the interval |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                     |                                |                  |

| Project:  Area:  Borehole ID:  Test section from - to (m):  Section diameter, 2·r <sub>w</sub> (m): | Oskarshamn site investig<br>Lax<br>KL<br>715.00-720 | gation<br>kemar<br>.X15A | Test type:[1] Test no:                               |           |                                 | CHir<br>1        |  |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|------------------------------------------------------|-----------|---------------------------------|------------------|--|
| Borehole ID:  Test section from - to (m):                                                           | KL<br>715.00-720                                    | .X15A                    |                                                      |           |                                 | 1                |  |
| Borehole ID:  Test section from - to (m):                                                           | KL<br>715.00-720                                    | .X15A                    |                                                      |           |                                 |                  |  |
| Test section from - to (m):                                                                         | 715.00-720                                          |                          | Test start:                                          |           | 070404 40.4                     |                  |  |
|                                                                                                     |                                                     | 00 m                     |                                                      |           | 070424 13:4                     |                  |  |
| Section diameter, 2-r <sub>w</sub> (m):                                                             |                                                     | te                       |                                                      |           | Stephan Roh                     |                  |  |
| Section diameter, 2-r <sub>w</sub> (m):                                                             | 0.076                                               |                          | test execution:                                      |           |                                 | er van der Wall  |  |
|                                                                                                     |                                                     | 0.076                    | Responsible for test evaluation:                     |           | Crist                           | ian Enachescu    |  |
| Linear plot Q and p                                                                                 |                                                     |                          | Flow period                                          |           | Recovery period                 |                  |  |
|                                                                                                     |                                                     |                          | Indata                                               |           | Indata                          |                  |  |
| 5550 T                                                                                              |                                                     | T 0.010                  | $p_0$ (kPa) =                                        | 5435      |                                 |                  |  |
| KLX15A_715.00-720.00_070424_1_CHir_Q_r                                                              | P section P above P below                           |                          | p <sub>i</sub> (kPa ) =                              | NA        |                                 |                  |  |
|                                                                                                     | ÷ q                                                 | 0.008                    | $p_p(kPa) = Q_p(m^3/s)=$                             | NA<br>NA  | p <sub>F</sub> (kPa ) =         | NA               |  |
| _  ,                                                                                                |                                                     |                          |                                                      |           |                                 |                  |  |
|                                                                                                     |                                                     | 0.006 [w]                | tp (s) =                                             | NA        | $t_F$ (s) =                     | NA               |  |
| 9 Pd                                                             |                                                     | Injection Rate           | S el S* (-)=                                         | NA        | S el S <sup>*</sup> (-)=        | NA               |  |
| D Own                                                                                               | :                                                   | 0.004 =                  | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | NA        |                                 | <u> </u>         |  |
| 5400                                                                                                | · · · · · · · · · · · · · · · · · · ·               | 0.002                    |                                                      | NA<br>NA  | Derivative fact.=               | NA               |  |
|                                                                                                     | ı                                                   |                          | Denvative lact.=                                     | IVA       | Denvative fact.=                | IVA              |  |
| 0.0 0.2 0.3 0.5                                                                                     |                                                     | 0.000                    |                                                      |           |                                 |                  |  |
| Elapsed Tin                                                                                         | Elapsed Time [h]                                    |                          |                                                      |           | Results                         |                  |  |
|                                                                                                     |                                                     |                          | Q/s $(m^2/s)=$                                       | NA        |                                 |                  |  |
| Log-Log plot incl. derivates- flo                                                                   | w period                                            |                          | $T_{\rm M} (m^2/s) =$                                | NA        |                                 |                  |  |
|                                                                                                     |                                                     |                          | Flow regime:                                         | transient | Flow regime:                    | transient        |  |
|                                                                                                     |                                                     |                          | $dt_1$ (min) =                                       | NA        | $dt_1$ (min) =                  | NA               |  |
|                                                                                                     |                                                     |                          | $dt_2$ (min) =                                       | NA        | $dt_2 (min) =$                  | NA               |  |
|                                                                                                     |                                                     |                          | $T (m^2/s) =$                                        | 1.0E-11   | $T (m^2/s) =$                   | NA               |  |
|                                                                                                     |                                                     |                          | S (-) =                                              | NA        | S (-) =                         | NA               |  |
|                                                                                                     |                                                     |                          | $K_s$ (m/s) =                                        | NA        | $K_s (m/s) =$                   | NA               |  |
| Not Ana                                                                                             | alysed                                              |                          | $S_s (1/m) =$                                        | NA        | $S_s(1/m) =$                    | NA               |  |
|                                                                                                     |                                                     |                          | $C (m^3/Pa) =$                                       | NA<br>NA  | $C (m^3/Pa) =$                  | NA<br>NA         |  |
|                                                                                                     |                                                     |                          |                                                      | NA<br>NA  | $C_D(-) =$                      | NA<br>NA         |  |
|                                                                                                     |                                                     |                          | ξ(-) =                                               | INA       | ξ (-) =                         | IVA              |  |
|                                                                                                     |                                                     |                          | $T_{GRF}(m^2/s) =$                                   | NA        | $T_{GRF}(m^2/s) =$              | NA               |  |
|                                                                                                     |                                                     |                          | $S_{GRF}(HI/S) =$ $S_{GRF}(-) =$                     | NA        | $S_{GRF}(m/s) =$ $S_{GRF}(-) =$ | NA               |  |
|                                                                                                     |                                                     |                          | $D_{GRF}(\cdot) =$                                   | NA        | $D_{GRF}(-) =$                  | NA               |  |
| Log-Log plot incl. derivatives- r                                                                   | recovery period                                     |                          | Selected represe                                     |           |                                 | <b>I</b>         |  |
|                                                                                                     | <u> </u>                                            |                          | $dt_1$ (min) =                                       | NA        | C (m <sup>3</sup> /Pa) =        | NA               |  |
|                                                                                                     |                                                     |                          | $dt_2$ (min) =                                       | NA        | $C_D(-) =$                      | NA               |  |
|                                                                                                     |                                                     |                          | $T_T (m^2/s) =$                                      | 1.0E-11   | ξ (-) =                         | NA               |  |
|                                                                                                     |                                                     |                          | S (-) =                                              | NA        |                                 |                  |  |
|                                                                                                     |                                                     |                          |                                                      | NA        |                                 |                  |  |
| Not Analysed                                                                                        |                                                     | $S_s (1/m) =$            | NA                                                   |           |                                 |                  |  |
|                                                                                                     |                                                     | Comments:                |                                                      |           |                                 |                  |  |
|                                                                                                     |                                                     |                          | Based on the test re<br>transmissivity is lov        |           |                                 | ce) the interval |  |

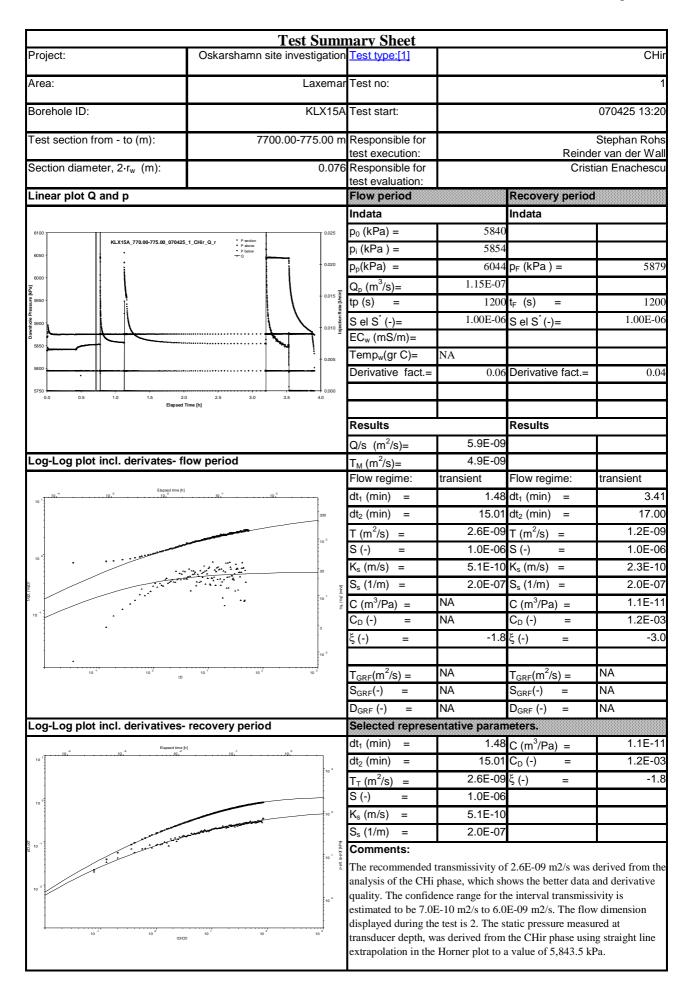
|                                                | Test S                                              | umr           | nary Sheet                                                 |                |                                |                  |  |
|------------------------------------------------|-----------------------------------------------------|---------------|------------------------------------------------------------|----------------|--------------------------------|------------------|--|
| Project:                                       | Oskarshamn site investi                             |               |                                                            |                |                                | CHir             |  |
| Area:                                          | Lax                                                 | kemar         | Test no:                                                   |                |                                | 1                |  |
| Borehole ID:                                   | KL                                                  | .X15A         | Test start:                                                |                | 070424 15:0                    |                  |  |
| Test section from - to (m):                    |                                                     |               | Responsible for                                            |                | Stephan Roh                    |                  |  |
| rest section from - to (iii).                  | 720.00-723                                          | .00 111       | test execution:                                            |                | Reinde                         | er van der Wal   |  |
| Section diameter, 2·r <sub>w</sub> (m):        |                                                     | 0.076         | Responsible for                                            |                |                                | ian Enachescu    |  |
| Linear plot Q and p                            |                                                     |               | test evaluation:<br>Flow period                            |                | Recovery period                | 188888888888888  |  |
| Linear plot & and p                            |                                                     |               | Indata                                                     |                | Indata                         |                  |  |
|                                                |                                                     |               | p <sub>0</sub> (kPa) =                                     | 5473           |                                | 1                |  |
| 5550<br>KLX15A 720.00-725.00 070424 1 CHir Q r | KLX15A, 720,00-725.00, 070424_1_CHir_Q_r . Paccison |               | $p_0 (KPa) = p_i (kPa) =$                                  | NA             |                                |                  |  |
|                                                | Pabove Pbelow                                       |               | $p_p(kPa) =$                                               | NA             | p <sub>F</sub> (kPa ) =        | NA               |  |
|                                                |                                                     | 0.008         |                                                            | NA<br>NA       | ρ <sub>F</sub> (κρα ) =        | NA               |  |
| = 5500 ·                                       |                                                     | 0.006 FE      | $Q_p (m^3/s) =$                                            |                | t (a)                          | NT A             |  |
| J                                              |                                                     | Rate [I/m     | tp(s) =                                                    | NA<br>NA       | $t_F(s) =$                     | NA<br>NA         |  |
| Tec. 5500   1   1   1   1   1   1   1   1   1  |                                                     | 0.004 L       | S el S* (-)=                                               | NA             | S el S <sup>*</sup> (-)=       | NA               |  |
| å <sub>5450</sub> -                            | •                                                   | _ =           | EC <sub>w</sub> (mS/m)=                                    | NY A           |                                |                  |  |
|                                                | -<br>-                                              | 0.002         | Temp <sub>w</sub> (gr C)=                                  | NA             |                                | 27.4             |  |
|                                                | •                                                   |               | Derivative fact.=                                          | NA             | Derivative fact.=              | NA               |  |
| 0.0 0.2 0.3 0.5                                | 0.6 0.8 (                                           | 0.000         |                                                            |                |                                | ļ                |  |
| Elapsed Ti                                     |                                                     |               | _                                                          |                |                                |                  |  |
|                                                |                                                     |               | Results                                                    | •              | Results                        |                  |  |
|                                                |                                                     |               | Q/s $(m^2/s)=$                                             | NA             |                                |                  |  |
| Log-Log plot incl. derivates- flo              | ow period                                           |               | $T_M (m^2/s) =$                                            | NA             |                                |                  |  |
|                                                |                                                     |               | Flow regime:                                               | transient      | Flow regime:                   | transient        |  |
|                                                |                                                     |               | $dt_1 (min) =$                                             | NA             | $dt_1 (min) =$                 | NA               |  |
|                                                |                                                     |               | $dt_2$ (min) =                                             | NA             | $dt_2 (min) =$                 | NA               |  |
|                                                |                                                     |               | $T (m^2/s) =$                                              | 1.0E-11        | $T (m^2/s) =$                  | NA               |  |
|                                                |                                                     |               | S (-) =                                                    | NA             | S (-) =                        | NA               |  |
|                                                |                                                     |               | $K_s$ (m/s) =                                              | NA             | $K_s$ (m/s) =                  | NA               |  |
| Not An                                         | nolvand                                             |               | $S_s (1/m) =$                                              | NA             | $S_s (1/m) =$                  | NA               |  |
| Not All                                        | iaiyseu                                             |               | $C (m^3/Pa) =$                                             | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                                                     |               | $C_D(-) =$                                                 | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                                                     |               | ξ (-) =                                                    | NA             | ξ (-) =                        | NA               |  |
|                                                |                                                     |               |                                                            |                |                                |                  |  |
|                                                |                                                     |               | $T_{GRF}(m^2/s) =$                                         | NA             | $T_{GRF}(m^2/s) =$             | NA               |  |
|                                                |                                                     |               | $S_{GRF}(-) =$                                             | NA             | $S_{GRF}(-) =$                 | NA               |  |
|                                                |                                                     |               | D <sub>GRF</sub> (-) =                                     | NA             | $D_{GRF}$ (-) =                | NA               |  |
| Log-Log plot incl. derivatives-                | recovery period                                     |               | Selected represe                                           | entative paran | neters.                        |                  |  |
|                                                |                                                     |               | $dt_1$ (min) =                                             | NA             | $C (m^3/Pa) =$                 | NA               |  |
|                                                |                                                     |               | $dt_2$ (min) =                                             | NA             | $C_D(-) =$                     | NA               |  |
|                                                |                                                     |               | $T_T (m^2/s) =$                                            | 1.0E-11        | ξ (-) =                        | NA               |  |
|                                                |                                                     |               | S (-) =                                                    | NA             |                                |                  |  |
|                                                |                                                     |               | $K_s$ (m/s) =                                              | NA             |                                |                  |  |
|                                                |                                                     | $S_s (1/m) =$ | NA                                                         |                |                                |                  |  |
| Not An                                         | alysed                                              |               | Comments:<br>Based on the test re<br>transmissivity is lov |                | ged packer complian<br>I m2/s. | ce) the interval |  |
|                                                |                                                     |               |                                                            |                |                                |                  |  |

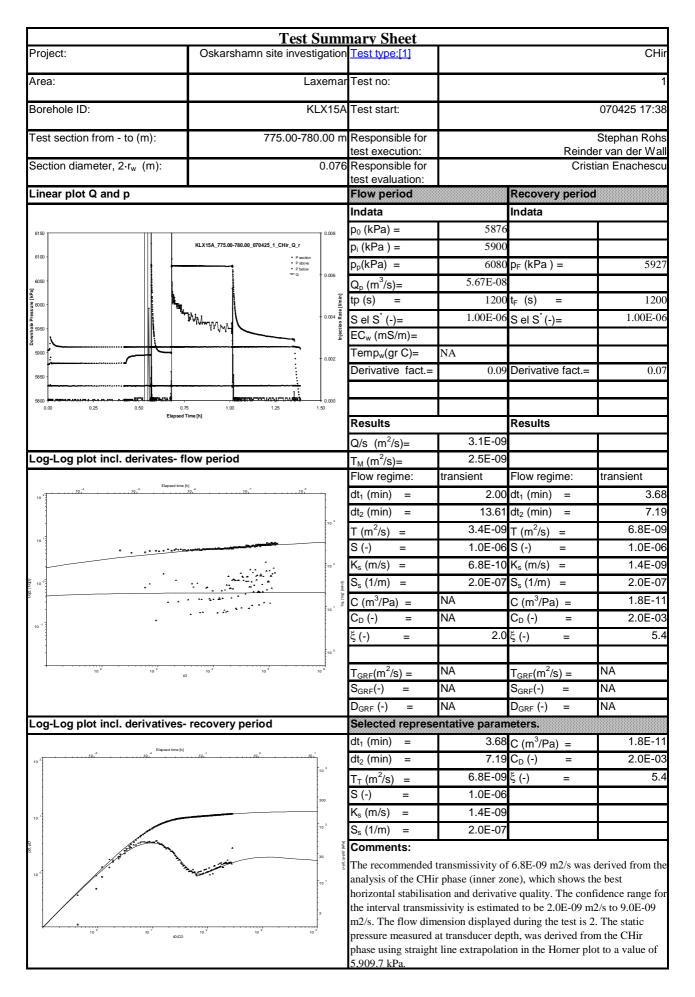
|                                                | Test Sum                      | mary Sheet                                                                               |           |                                                 |                                  |  |
|------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------|-----------|-------------------------------------------------|----------------------------------|--|
| Project:                                       | Oskarshamn site investigatio  |                                                                                          |           |                                                 | CHir                             |  |
| Area:                                          | Laxema                        | r Test no:                                                                               |           |                                                 | 1                                |  |
| Danah ala ID:                                  |                               |                                                                                          |           |                                                 | 070404 40:40                     |  |
| Borehole ID:                                   | KLX15                         | A Test start:                                                                            |           |                                                 | 070424 16:16                     |  |
| Test section from - to (m):                    | 725.00-730.00 r               | n Responsible for                                                                        |           |                                                 | Stephan Rohs                     |  |
| Section diameter, 2⋅r <sub>w</sub> (m):        | 0.07                          | test execution:<br>6 Responsible for                                                     |           |                                                 | er van der Wall<br>ian Enachescu |  |
|                                                | 0.07                          | test evaluation:                                                                         |           |                                                 |                                  |  |
| Linear plot Q and p                            |                               | Flow period                                                                              |           | Recovery period                                 |                                  |  |
|                                                |                               | Indata                                                                                   | •         | Indata                                          | •                                |  |
| 5625<br>KLX15A_725.00-730.00_070424_1_CHir_Q_r | • P section 0.010             | $p_0 (kPa) =$                                                                            | 5508      |                                                 |                                  |  |
| 5600                                           | • P above<br>• P below<br>• Q | p <sub>i</sub> (kPa ) =                                                                  | NA        | (1.5. )                                         | 27.4                             |  |
| 5575                                           | 0.008                         | $p_p(kPa) =$                                                                             | NA<br>NA  | p <sub>F</sub> (kPa ) =                         | NA                               |  |
| l kPal                                         |                               | $Q_{p} (m^{3}/s) = tp (s) =$                                                             | NA<br>NA  | t <sub>F</sub> (s) =                            | NA                               |  |
| 5550                                           | 0.006                         | $\begin{array}{ccc} \text{tp (s)} & = & \\ & \text{S el S}^* (\text{-}) = & \end{array}$ | NA<br>NA  | $t_F$ (s) =<br>S el S <sup>*</sup> (-)=         | NA<br>NA                         |  |
| o 5525 -                                       | . 0.004                       | S el S (-)=<br>EC <sub>w</sub> (mS/m)=                                                   | 11/1      | S el S (-)=                                     | 11/1                             |  |
| 5500                                           |                               | Temp <sub>w</sub> (gr C)=                                                                | NA        |                                                 |                                  |  |
| 5475 -                                         | - 0.002                       | Derivative fact.=                                                                        | NA        | Derivative fact.=                               | NA                               |  |
| 5450                                           | 0.000                         |                                                                                          |           |                                                 |                                  |  |
| 0.00 0.15 0.30 0.44<br>Elapsed 1               | 5 0.60 0.75 0.90              |                                                                                          |           |                                                 |                                  |  |
|                                                |                               | Results                                                                                  |           | Results                                         | •                                |  |
|                                                |                               | Q/s $(m^2/s)=$                                                                           | NA        |                                                 |                                  |  |
| Log-Log plot incl. derivates- fl               | ow period                     | $T_M (m^2/s) =$                                                                          | NA        |                                                 |                                  |  |
|                                                |                               | Flow regime:                                                                             | transient | Flow regime:                                    | transient                        |  |
|                                                |                               | $dt_1$ (min) =                                                                           | NA        | $dt_1 (min) =$                                  | NA                               |  |
|                                                |                               | $dt_2 (min) =$                                                                           | NA        | $dt_2 (min) =$                                  | NA                               |  |
|                                                |                               | $T (m^2/s) =$                                                                            | 1.0E-11   | $T (m^2/s) =$                                   | NA                               |  |
|                                                |                               | S (-) =                                                                                  | NA        | S (-) =                                         | NA<br>NA                         |  |
|                                                |                               | $K_s (m/s) = S_s (1/m) =$                                                                | NA<br>NA  | $K_s (m/s) = S_s (1/m) =$                       | NA<br>NA                         |  |
| Not Ar                                         | nalysed                       | $C (m^3/Pa) =$                                                                           | NA        | $C_s(1/11) = C_s(1/11) = C_s(1/11) = C_s(1/11)$ | NA                               |  |
|                                                |                               | $C(\Pi/Pa) = C_D(-) =$                                                                   | NA        | $C_D(-) =$                                      | NA                               |  |
|                                                |                               | ξ(-) =                                                                                   | NA        | ξ(-) =                                          | NA                               |  |
|                                                |                               | 5()                                                                                      |           | 5()                                             |                                  |  |
|                                                |                               | $T_{GRF}(m^2/s) =$                                                                       | NA        | $T_{GRF}(m^2/s) =$                              | NA                               |  |
|                                                |                               | $S_{GRF}(-) =$                                                                           | NA        | $S_{GRF}(-) =$                                  | NA                               |  |
|                                                |                               | D <sub>GRF</sub> (-) =                                                                   | NA        | $D_{GRF}$ (-) =                                 | NA                               |  |
| Log-Log plot incl. derivatives-                | recovery period               | Selected represe                                                                         |           | neters.                                         |                                  |  |
|                                                |                               | $dt_1$ (min) =                                                                           | NA        | $C (m^3/Pa) =$                                  | NA                               |  |
|                                                |                               | $dt_2 (min) =$                                                                           | NA        | $C_D(-) =$                                      | NA                               |  |
|                                                |                               | $T_T (m^2/s) =$                                                                          | 1.0E-11   | ξ (-) =                                         | NA                               |  |
|                                                | S (-) =                       | NA                                                                                       |           |                                                 |                                  |  |
| Not Analysed                                   |                               | $K_s (m/s) =$                                                                            | NA<br>NA  |                                                 | -                                |  |
|                                                |                               | S <sub>s</sub> (1/m) = Comments:                                                         | ואר       | <u> </u>                                        |                                  |  |
| Not Al                                         | iaiyseu                       |                                                                                          |           | ged packer complian<br>1 m2/s.                  | ce) the interval                 |  |
|                                                |                               |                                                                                          |           |                                                 |                                  |  |

|                                                | Test Sumr                        | nary Sheet                             |           |                                         |                                  |  |
|------------------------------------------------|----------------------------------|----------------------------------------|-----------|-----------------------------------------|----------------------------------|--|
| Project:                                       | Oskarshamn site investigation    |                                        |           |                                         | CHir                             |  |
| Area:                                          | Laxemar                          | Test no:                               |           |                                         | 1                                |  |
| Danah ata ID:                                  |                                  |                                        |           |                                         | 07040447.00                      |  |
| Borehole ID:                                   | KLX15A                           | Test start:                            |           |                                         | 070424 17:29                     |  |
| Test section from - to (m):                    | 730.00-735.00 m                  |                                        |           | Stephan Roh                             |                                  |  |
| Section diameter, 2⋅r <sub>w</sub> (m):        | 0.076                            | test execution:<br>Responsible for     |           |                                         | er van der Wall<br>ian Enachescu |  |
| Section diameter, 2-1 <sub>W</sub> (III).      | 0.070                            | test evaluation:                       |           |                                         |                                  |  |
| Linear plot Q and p                            |                                  | Flow period                            |           | Recovery period                         |                                  |  |
|                                                |                                  | Indata                                 | 1         | Indata                                  | •                                |  |
| 5625<br>KLX15A_730.00-735.00_070424_1_CHir_Q_r | 0.010                            | p <sub>0</sub> (kPa) =                 | 5545      |                                         |                                  |  |
| 5600 - :                                       | P section P above P below        | p <sub>i</sub> (kPa ) =                | NA        | (1.5.)                                  | X 4                              |  |
|                                                |                                  | $p_p(kPa) =$                           | NA<br>NA  | p <sub>F</sub> (kPa ) =                 | NA                               |  |
| 등 5575 -                                       | 0.006                            | $Q_{p} (m^{3}/s) = $ $tp (s) =$        | NA<br>NA  | t <sub>F</sub> (s) =                    | NA                               |  |
| \$ 5550                                        | - 0.004 (Mun) hipeton Rate (Mun) | S el S <sup>*</sup> (-)=               | NA<br>NA  | $t_F$ (s) =<br>S el S <sup>*</sup> (-)= | NA<br>NA                         |  |
| ownhole .                                      | 0.004 up                         | S el S (-)=<br>EC <sub>w</sub> (mS/m)= | . 14.3    | o ei o (-)=                             | - 14 -                           |  |
| ă <sub>5525</sub> .                            |                                  | Temp <sub>w</sub> (gr C)=              | NA        | <u> </u>                                |                                  |  |
| 5500                                           | 0.002                            |                                        | NA        | Derivative fact.=                       | NA                               |  |
| 5475                                           | 0.000                            |                                        |           |                                         |                                  |  |
| 0.00 0.15 0.30 0.4<br>Elapsed 1                | 5 0.60 0.75 0.90                 |                                        |           |                                         |                                  |  |
|                                                |                                  | Results                                | <u> </u>  | Results                                 |                                  |  |
|                                                |                                  | Q/s $(m^2/s)=$                         | NA        |                                         |                                  |  |
| Log-Log plot incl. derivates- fl               | ow period                        | $T_M (m^2/s) =$                        | NA        |                                         |                                  |  |
|                                                |                                  | Flow regime:                           | transient | Flow regime:                            | transient                        |  |
|                                                |                                  | dt <sub>1</sub> (min) =                | NA        | $dt_1 (min) =$                          | NA                               |  |
|                                                |                                  | $dt_2 (min) =$                         | NA        | $dt_2 (min) =$                          | NA                               |  |
|                                                |                                  | $T (m^2/s) =$                          | 1.00E-11  | $T (m^2/s) =$                           | NA                               |  |
|                                                |                                  | S (-) =                                | NA<br>NA  | S (-) =                                 | NA<br>NA                         |  |
|                                                |                                  | $K_s (m/s) = S_s (1/m) =$              | NA<br>NA  | $K_s (m/s) =$<br>$S_s (1/m) =$          | NA<br>NA                         |  |
| Not A                                          | nalysed                          | $C (m^3/Pa) =$                         | NA<br>NA  | C (m <sup>3</sup> /Pa) =                | NA                               |  |
|                                                |                                  | $C_D(-) =$                             | NA        | $C(\Pi/Pa) = C_D(-) =$                  | NA                               |  |
|                                                |                                  | ξ(-) =                                 | NA        | ξ(-) =                                  | NA                               |  |
|                                                |                                  | 5()                                    |           | 5()                                     |                                  |  |
|                                                |                                  | $T_{GRF}(m^2/s) =$                     | NA        | $T_{GRF}(m^2/s) =$                      | NA                               |  |
|                                                |                                  | $S_{GRF}(-) =$                         | NA        | $S_{GRF}(-) =$                          | NA                               |  |
|                                                |                                  | D <sub>GRF</sub> (-) =                 | NA        | D <sub>GRF</sub> (-) =                  | NA                               |  |
| Log-Log plot incl. derivatives-                | recovery period                  | Selected represe                       |           | neters.                                 |                                  |  |
|                                                |                                  | $dt_1$ (min) =                         | NA        | C (m <sup>3</sup> /Pa) =                | NA                               |  |
|                                                |                                  | $dt_2 (min) =$                         | NA        | $C_D(-) =$                              | NA                               |  |
|                                                |                                  | $T_T (m^2/s) =$                        | 1.0E-11   | ξ (-) =                                 | NA                               |  |
|                                                | S (-) =                          | NA<br>NA                               |           |                                         |                                  |  |
|                                                | $K_s (m/s) =$                    | NA<br>NA                               | <u> </u>  |                                         |                                  |  |
| Not Analysed                                   |                                  | S <sub>s</sub> (1/m) = Comments:       | 11/1      |                                         |                                  |  |
| Not Al                                         | iaiyseu                          |                                        |           | ed packer complian<br>1 m2/s.           | ce) the interval                 |  |
|                                                |                                  |                                        |           |                                         |                                  |  |



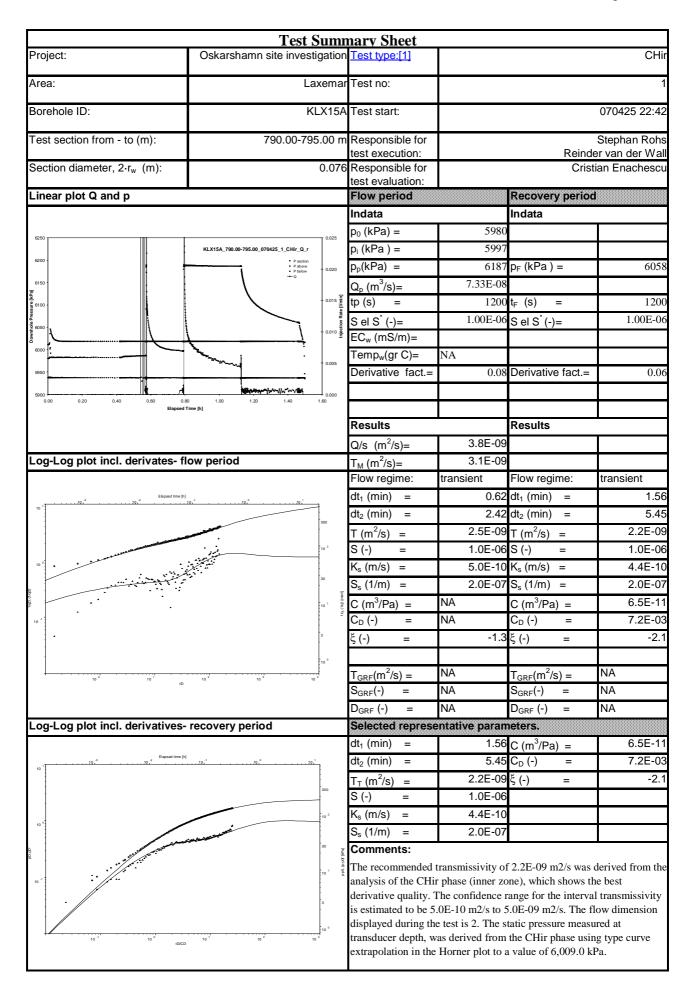
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test Sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mmary Sheet                                             |                    |                                     |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|-------------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investigat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion Test type:[1]                                       |                    |                                     | Р               |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nar Test no:                                            |                    |                                     | 1               |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5A Test start:                                          |                    | 070424 21:17                        |                 |
| Toot postion from to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 740 00 745 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) m Responsible for                                     |                    |                                     | Stephan Rohs    |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 740.00-745.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | test execution:                                         |                    | Reind                               | er van der Wal  |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76 Responsible for                                      |                    |                                     | tian Enachescu  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | test evaluation:                                        |                    |                                     |                 |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow period                                             |                    | Recovery period                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Indata                                                  |                    | Indata                              |                 |
| 5850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         | 5616               |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X15A_740.00-745.00_070424_1_Pi_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p_i (kPa) =$                                           | 5618               |                                     |                 |
| 5800 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Q 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $p_p(kPa) =$                                            | 5827               | $p_F (kPa) =$                       | 563             |
| ह्न 5750 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Q_{p} (m^{3}/s) =$                                     | NA                 |                                     | 1               |
| 표                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tp (s) =                                                | 10.2               | t <sub>F</sub> (s) =                | 372             |
| 5700 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S el S* (-)=                                            | 1.00E-06           | S el S* (-)=                        | 1.00E-0         |
| 8 5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $S \text{ el } S^* \text{ (-)=}$ $EC_w \text{ (mS/m)=}$ | 1.002 00           | 3 61 3 (-)=                         | 1.002 0         |
| 5650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | NT A               |                                     |                 |
| 5600 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                         | NA                 |                                     |                 |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Derivative fact.=                                       | = NA               | Derivative fact.=                   | 0.0             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 00 1.25 1.50 1.75 2.00 Time (h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                      |                    |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                 |                    | Results                             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q/s $(m^2/s)=$                                          | NA                 |                                     |                 |
| Log-Log plot incl. derivates- f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | low period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $T_{\rm M} (m^2/s) =$                                   | NA                 |                                     |                 |
| Log Log plot mon derivates 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flow regime:                                            | transient          | Flow regime:                        | transient       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | NA                 |                                     | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_1 (min) =$                                          |                    | $dt_1 (min) =$                      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $dt_2 (min) =$                                          | NA                 | $dt_2 (min) =$                      | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T (m^2/s) =$                                           | NA                 | $T (m^2/s) =$                       | 1.8E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                                 | NA                 | S (-) =                             | 1.0E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_s$ (m/s) =                                           | NA                 | $K_s (m/s) =$                       | 3.5E-1          |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nolvood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $S_s (1/m) =$                                           | NA                 | $S_s (1/m) =$                       | 2.0E-0          |
| 110t A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nalysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $C (m^3/Pa) =$                                          | NA                 | $C (m^3/Pa) =$                      | 1.3E-1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_D(-) =$                                              | NA                 | $C_D(-) =$                          | 1.4E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ξ(-) =                                                  | NA                 | ξ (-) =                             | -0.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 ( )                                                   |                    | 3 ( )                               | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_{GRF}(m^2/s) =$                                      | NA                 | $T_{GRF}(m^2/s) =$                  | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $S_{GRF}(III / S) =$                                    | NA                 | $S_{GRF}(III / S) =$ $S_{GRF}(-) =$ | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | NA                 |                                     | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | waaassams mania d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Orti ( )                                                |                    | D <sub>GRF</sub> (-) =              | INA             |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · recovery period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Selected repres                                         |                    |                                     | 4054            |
| Elapsed time [1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $dt_1 (min) =$                                          | NA                 | $C (m^3/Pa) =$                      | 1.3E-1          |
| 10 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $dt_2 (min) =$                                          | NA                 | $C_D(-) =$                          | 1.4E-0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $T_T (m^2/s) =$                                         | 1.8E-10            |                                     | -0.9            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                                                 | 1.0E-06            |                                     |                 |
| 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $K_s$ (m/s) =                                           | 3.5E-11            |                                     |                 |
| · S.S.S. Market | Market Control of the | $S_s (1/m) =$                                           | 2.0E-07            |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments:                                               | -                  | -                                   | -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The recommended                                         | l transmissivity o | f 1.8E-10 m2/s was                  | derived from th |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                    | ). The confidence ra                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F <sub>10</sub> -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | interval transmissi                                     | vity is estimated  | to be 6.0E-11 to 3.0                | E-10 m2/s. The  |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                    | v dimension of 2. T                 |                 |
| 10 <sup>-1</sup> 10 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pressure could not                                      | be extrapolated    | due to the very low                 | transmissivity. |
| ъ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                    |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                    |                                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                    |                                     |                 |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sumr                         | nary Sheet                                          |           |                               |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------|-------------------------------|------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation     |                                                     |           |                               | CHir             |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxemar                           | Test no:                                            |           |                               | 1                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                     |           |                               |                  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX15A                            | Test start:                                         |           | 070424 23:3                   |                  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 745.00-750.00 m                   | Responsible for                                     |           | Stephan Roh                   |                  |  |
| • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | test execution:                                     |           |                               | er van der Wall  |  |
| Section diameter, 2·r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                             | Responsible for test evaluation:                    |           | Crist                         | ian Enachescu    |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   | Flow period                                         |           | Recovery period               |                  |  |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Indata                                              |           | Indata                        |                  |  |
| 5725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T 0.010                           | p <sub>0</sub> (kPa) =                              | 5651      |                               |                  |  |
| KLX15A_745.00-750.00_070424_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P section     P showe     P below | p <sub>i</sub> (kPa ) =                             | NA        |                               |                  |  |
| 5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +Q +Q 0.008                       | $p_p(kPa) =$                                        | NA        | p <sub>F</sub> (kPa ) =       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $Q_p (m^3/s) =$                                     | NA        |                               |                  |  |
| ± 5675 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.006                             | tp (s) =                                            | NA        | $t_F$ (s) =                   | NA               |  |
| Page Programme P | rice Pion Rate                    | S el S <sup>*</sup> (-)=                            | NA        | S el S <sup>*</sup> (-)=      | NA               |  |
| E 5850 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · + 0.004 \$\frac{3}{2}\$         | EC <sub>w</sub> (mS/m)=                             |           |                               |                  |  |
| 5625 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.002                           | Temp <sub>w</sub> (gr C)=                           | NA        |                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Derivative fact.=                                   | NA        | Derivative fact.=             | NA               |  |
| 5600<br>0.00 0.15 0.30 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                             |                                                     |           |                               |                  |  |
| Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                     |           |                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Results                                             | lat a     | Results                       | 1                |  |
| Log-Log plot incl. derivates- fle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow poriod                         | Q/s $(m^2/s)=$                                      | NA<br>NA  |                               |                  |  |
| Log-Log plot incl. derivates- in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                         | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient | Flow regime:                  | transient        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | dt <sub>1</sub> (min) =                             | NA        | dt <sub>1</sub> (min) =       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$       | NA        | $dt_1 (min) =$ $dt_2 (min) =$ | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $T (m^2/s) =$                                       | 1.0E-11   | $T (m^2/s) =$                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | S (-) =                                             | NA        | S (-) =                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $K_s (m/s) =$                                       | NA        | $K_s (m/s) =$                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $S_s(1/m) =$                                        | NA        | $S_s(1/m) =$                  | NA               |  |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | alysed                            | $C (m^3/Pa) =$                                      | NA        | $C (m^3/Pa) =$                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $C_D(-) =$                                          | NA        | $C_D(-) =$                    | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | ξ(-) =                                              | NA        | ξ (-) =                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                     |           |                               |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $T_{GRF}(m^2/s) =$                                  | NA        | $T_{GRF}(m^2/s) =$            | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $S_{GRF}(-) =$                                      | NA        | $S_{GRF}(-) =$                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $D_{GRF}$ (-) =                                     | NA        | $D_{GRF}$ (-) =               | NA               |  |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                   | Selected represe                                    |           |                               | 1                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $dt_1 (min) =$                                      | NA        | $C (m^3/Pa) =$                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $dt_2 (min) =$                                      | NA        | $C_D(-) =$                    | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $T_T (m^2/s) =$                                     | 1.0E-11   | ξ (-) =                       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S (-) =                           | NA<br>NA                                            |           | ļ                             |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | $K_s (m/s) =$ $S_s (1/m) =$                         | NA<br>NA  |                               |                  |  |
| Not Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | S <sub>s</sub> (1/m) = Comments:                    | ארו       |                               |                  |  |
| Not Al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arysec                            |                                                     |           | ed packer complian<br>l m2/s. | ce) the interval |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                     |           |                               |                  |  |


|                                         | Test S                                         | Sumr                    | nary Sheet                                           |                     |                          |                                                  |  |
|-----------------------------------------|------------------------------------------------|-------------------------|------------------------------------------------------|---------------------|--------------------------|--------------------------------------------------|--|
| Project:                                | Oskarshamn site investi                        |                         |                                                      |                     |                          | CHir                                             |  |
| Area:                                   | La                                             | xemar                   | Test no:                                             |                     |                          | 1                                                |  |
|                                         |                                                |                         |                                                      |                     | 070405 00 4              |                                                  |  |
| Borehole ID:                            | KL                                             | _X15A                   | Test start:                                          |                     | 070425 00:4              |                                                  |  |
| Test section from - to (m):             | 750.00-755                                     | .00 m                   | Responsible for                                      |                     | Stephan Roh              |                                                  |  |
| 0 " " 1 0 ()                            |                                                | 0.070                   | test execution:                                      |                     |                          | er van der Wall                                  |  |
| Section diameter, 2-r <sub>w</sub> (m): |                                                | 0.076                   | Responsible for test evaluation:                     |                     | Crist                    | ian Enachescu                                    |  |
| Linear plot Q and p                     |                                                |                         | Flow period                                          |                     | Recovery period          |                                                  |  |
|                                         |                                                |                         | Indata                                               |                     | Indata                   |                                                  |  |
| 5850                                    |                                                | T 0.010                 | $p_0$ (kPa) =                                        | 5688                |                          |                                                  |  |
| KLX15A_750.00-755.00_070425_1_CHir_Q_r  | Psection Pabove Pbelow                         |                         | p <sub>i</sub> (kPa ) =                              | NA                  |                          |                                                  |  |
| 5800 -                                  |                                                | 0.008                   | $p_p(kPa) =$                                         | NA                  | p <sub>F</sub> (kPa ) =  | NA                                               |  |
| KP a]                                   | maranter er e | E                       | $Q_p (m^3/s) =$                                      | NA                  |                          |                                                  |  |
| To do 5750                              | <u></u>                                        | - 4 800.0 + Rate [Vmin] | tp (s) =                                             | NA                  | t <sub>F</sub> (s) =     | NA                                               |  |
| ₩ 90                                    | <i>'</i>                                       | - 0.004 ection -        | S el S* (-)=                                         | NA                  | S el S <sup>*</sup> (-)= | NA                                               |  |
|                                         | •                                              | _                       | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | NA                  |                          | <del>                                     </del> |  |
| 5650                                    |                                                | 0.002                   |                                                      | NA<br>NA            | Derivative fact.=        | NA                                               |  |
|                                         |                                                |                         | Sonvative fact.=                                     | 11/1                | Sonvative lact.=         | 11/1                                             |  |
| 0.00 0.15 0.30 0.45<br>Elapsed T        |                                                |                         |                                                      | <u> </u>            | <u> </u>                 |                                                  |  |
|                                         |                                                |                         | Results                                              |                     | Results                  | 1                                                |  |
|                                         |                                                |                         | Q/s $(m^2/s)=$                                       | NA                  |                          |                                                  |  |
| Log-Log plot incl. derivates- fl        | ow period                                      |                         | $T_M (m^2/s) =$                                      | NA                  |                          |                                                  |  |
|                                         |                                                |                         | Flow regime:                                         | transient           | Flow regime:             | transient                                        |  |
|                                         |                                                |                         | $dt_1$ (min) =                                       | NA                  | $dt_1$ (min) =           | NA                                               |  |
|                                         |                                                |                         | $dt_2$ (min) =                                       | NA                  | $dt_2 (min) =$           | NA                                               |  |
|                                         |                                                |                         | $T (m^2/s) =$                                        | 1.00E-11            | $T (m^2/s) =$            | NA                                               |  |
|                                         |                                                |                         | S (-) =                                              | NA                  | S (-) =                  | NA                                               |  |
|                                         |                                                |                         | $K_s$ (m/s) =                                        | NA                  | $K_s (m/s) =$            | NA                                               |  |
| Not Ar                                  | alysed                                         |                         | $S_s (1/m) =$                                        | NA                  | $S_s (1/m) =$            | NA                                               |  |
|                                         |                                                |                         | $C (m^3/Pa) =$                                       | NA<br>NA            | $C (m^3/Pa) =$           | NA<br>NA                                         |  |
|                                         |                                                |                         | $C_D(-) =$                                           | NA<br>NA            | $C_D(-) =$               | NA<br>NA                                         |  |
|                                         |                                                |                         | ξ(-) =                                               | INA                 | ξ (-) =                  | IVA                                              |  |
|                                         |                                                |                         | $T_{GRF}(m^2/s) =$                                   | NA                  | $T_{GRF}(m^2/s) =$       | NA                                               |  |
|                                         |                                                |                         | $S_{GRF}(-) =$                                       | NA                  | $S_{GRF}(-) =$           | NA                                               |  |
|                                         |                                                |                         | D <sub>GRF</sub> (-) =                               | NA                  | $D_{GRF}$ (-) =          | NA                                               |  |
| Log-Log plot incl. derivatives-         | recovery period                                |                         | Selected represe                                     |                     |                          |                                                  |  |
|                                         |                                                |                         | dt <sub>1</sub> (min) =                              | NA                  | C (m <sup>3</sup> /Pa) = | NA                                               |  |
|                                         |                                                |                         | $dt_2$ (min) =                                       | NA                  | $C_D(-) =$               | NA                                               |  |
|                                         |                                                |                         | $T_T (m^2/s) =$                                      | 1.0E-11             | ξ (-) =                  | NA                                               |  |
|                                         |                                                |                         | $S (-) = K_s (m/s) =$                                | NA                  |                          |                                                  |  |
|                                         |                                                |                         |                                                      | NA                  |                          |                                                  |  |
| Not Analysed                            |                                                | $S_s (1/m) =$           | NA                                                   |                     | <u> </u>                 |                                                  |  |
|                                         |                                                | Comments:               |                                                      | . 1 1               |                          |                                                  |  |
|                                         |                                                |                         | Based on the test re<br>transmissivity is lov        |                     |                          | ce) the interval                                 |  |
|                                         |                                                |                         | Canoniosivity is lov                                 | . e. a.a.ii 1.0L-11 |                          |                                                  |  |
|                                         |                                                |                         |                                                      |                     |                          |                                                  |  |
|                                         |                                                |                         |                                                      |                     |                          |                                                  |  |
|                                         |                                                |                         |                                                      |                     |                          |                                                  |  |
|                                         |                                                |                         |                                                      |                     |                          |                                                  |  |

|                                         | 1 est Sumi                    | nary Sheet                          |           |                                   |               |  |
|-----------------------------------------|-------------------------------|-------------------------------------|-----------|-----------------------------------|---------------|--|
| Project:                                | Oskarshamn site investigation | Test type:[1]                       |           |                                   | CHi           |  |
| Area:                                   | Laxema                        | Test no:                            |           |                                   |               |  |
| Borehole ID:                            | KLX15A                        | Test start:                         | art:      |                                   | 070425 06:31  |  |
| Test section from - to (m):             | 755.00-760.00 m               | Responsible for                     |           |                                   | Stephan Roh   |  |
| Ocation dispersion On (as)              | 0.070                         | test execution:                     | <u> </u>  |                                   | er van der Wa |  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.076                         | Responsible for test evaluation:    |           | Crisi                             | ian Enachesc  |  |
| Linear plot Q and p                     |                               | Flow period                         |           | Recovery period                   |               |  |
| · · · · · · · · · · · · · · · · · · ·   |                               | Indata                              |           | Indata                            |               |  |
|                                         |                               | p <sub>0</sub> (kPa) =              | 5726      |                                   |               |  |
| KLX15A_755.00-760.00_070425_1_CHir_Q_r  | 0.010 • Psection              | p <sub>i</sub> (kPa ) =             | NA        |                                   |               |  |
|                                         | Patove Podow                  | $p_p(kPa) =$                        | NA        | p <sub>F</sub> (kPa ) =           | NA            |  |
| 5800 -                                  | 0.008                         | $Q_{p} (m^{3}/s) =$                 | NA        | pr (iii u ) –                     | 1471          |  |
| _   1 %                                 | , anne <u>F</u>               | $\frac{Q_p (m / s) =}{tp (s)} =$    | NA        | t <sub>F</sub> (s) =              | NA            |  |
| E 5750                                  | Ras (Final)                   |                                     | NA<br>NA  |                                   | NA<br>NA      |  |
|                                         |                               | S el S* (-)=                        | INA       | S el S <sup>*</sup> (-)=          | INA           |  |
| [                                       | •                             | EC <sub>w</sub> (mS/m)=             | NY A      |                                   |               |  |
| 5700 -                                  | • 0.002                       | Temp <sub>w</sub> (gr C)=           | NA        |                                   |               |  |
| **************************************  |                               | Derivative fact.=                   | NA        | Derivative fact.=                 | NA            |  |
| 5650 0.00 0.15 0.30 0.4                 | 5 0.60 0.75 0.90              |                                     |           |                                   |               |  |
| Elapsed T                               |                               |                                     |           |                                   |               |  |
|                                         |                               | Results                             |           | Results                           |               |  |
|                                         |                               | Q/s $(m^2/s)=$                      | NA        |                                   |               |  |
| _og-Log plot incl. derivates- fl        | ow period                     | $T_M (m^2/s) =$                     | NA        |                                   |               |  |
|                                         |                               | Flow regime:                        | transient | Flow regime:                      | transient     |  |
|                                         |                               | $dt_1$ (min) =                      | NA        | $dt_1$ (min) =                    | NA            |  |
|                                         |                               | $dt_2$ (min) =                      | NA        | $dt_2$ (min) =                    | NA            |  |
|                                         |                               | $T (m^2/s) =$                       | 1.0E-11   | $T (m^2/s) =$                     | NA            |  |
|                                         |                               | S (-) =                             | NA        | S (-) =                           | NA            |  |
|                                         |                               | $K_s (m/s) =$                       | NA        | $K_s (m/s) =$                     | NA            |  |
|                                         |                               | $S_s (1/m) =$                       | NA        | $S_s (1/m) =$                     | NA            |  |
| Not Ar                                  | nalysed                       | $C (m^3/Pa) =$                      | NA        | $C (m^3/Pa) =$                    | NA            |  |
|                                         |                               | $C_D(-) =$                          | NA        | $C_D(-) =$                        | NA            |  |
|                                         |                               | ξ(-) =                              | NA        | ξ(-) =                            | NA            |  |
|                                         |                               | 3()                                 | †         | 3 ( )                             |               |  |
|                                         |                               | $T_{GRF}(m^2/s) =$                  | NA        | $T_{GRF}(m^2/s) =$                | NA            |  |
|                                         |                               | $S_{GRF}(III / S) =$ $S_{GRF}(-) =$ | NA        | $S_{GRF}(III/S) =$ $S_{GRF}(-) =$ | NA            |  |
|                                         |                               | $D_{GRF}(\cdot) =$                  | NA        | $D_{GRF}(\cdot) =$                | NA            |  |
| _og-Log plot incl. derivatives-         | recovery period               | Selected repres                     |           |                                   | <u></u>       |  |
| -09 Log plot illot. delivatives-        | Too very period               | dt <sub>1</sub> (min) =             | NA        |                                   | NA            |  |
|                                         |                               |                                     | NA<br>NA  | $C (m^3/Pa) = C_{-} (-1) = 0$     | NA            |  |
|                                         |                               |                                     |           | $C_D(-) =$                        |               |  |
|                                         |                               | $T_T (m^2/s) =$                     | 1.0E-11   | ξ (-) =                           | NA            |  |
|                                         |                               | S (-) =                             | NA        |                                   |               |  |
|                                         |                               | $K_s$ (m/s) =                       | NA        |                                   | <u> </u>      |  |
|                                         |                               | S <sub>s</sub> (1/m) =              | NA        |                                   |               |  |
| Not Ar                                  | nalysed                       | Comments:                           |           |                                   |               |  |
|                                         |                               | transmissivity is lo                |           | ged packer complian<br>I m2/s.    | ne mervar     |  |

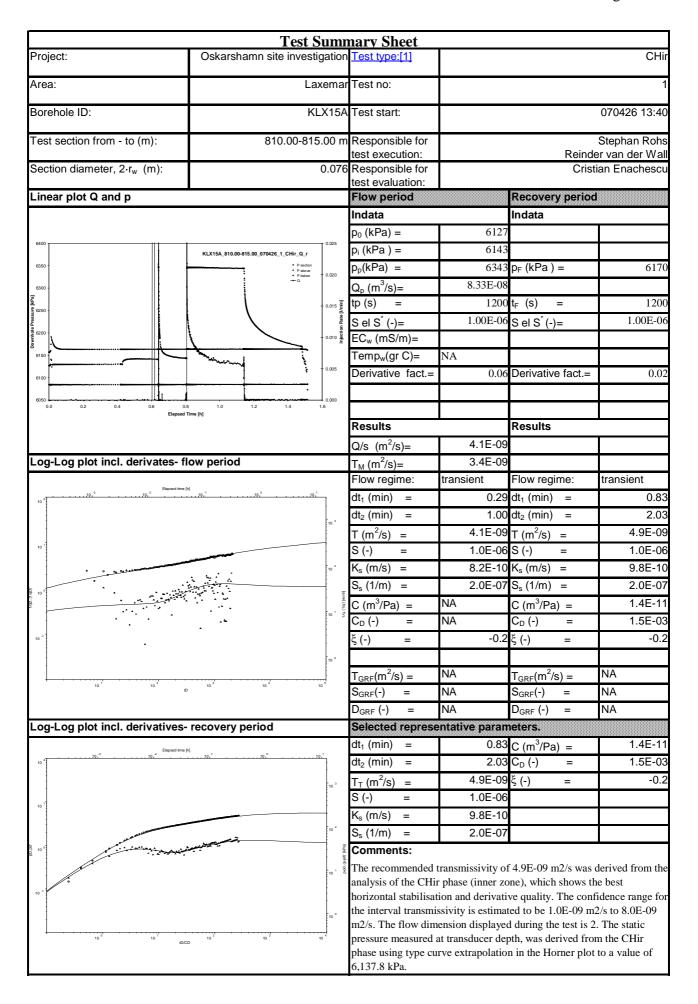
|                                         | Test Sumr                                                                                                     | nary Sheet                                           |           |                                |                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|--------------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigation                                                                                 |                                                      |           |                                | CHir                                             |
| Area:                                   | Laxemar                                                                                                       | Test no:                                             |           |                                | 1                                                |
| Borehole ID:                            | VI V1EA                                                                                                       | Test start:                                          |           |                                | 070425 07:45                                     |
| Borenole ID.                            | KLX15A                                                                                                        | rest start.                                          |           |                                | 070425 07:45                                     |
| Test section from - to (m):             | 760.00-765.00 m                                                                                               |                                                      |           | 5                              | Stephan Rohs                                     |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                                                                                                         | test execution:<br>Responsible for                   |           |                                | er van der Wall<br>ian Enachescu                 |
| occuon diameter, 2 1 <sub>W</sub> (m).  | 0.070                                                                                                         | test evaluation:                                     |           |                                |                                                  |
| Linear plot Q and p                     |                                                                                                               | Flow period                                          |           | Recovery period                |                                                  |
|                                         |                                                                                                               | Indata                                               |           | Indata                         | •                                                |
| 5850                                    | 0.010                                                                                                         | p <sub>0</sub> (kPa) =                               | 5762      |                                |                                                  |
| KLX15A_760.00-765.00_070425_1_CHir_Q_r  | P section<br>P above<br>P helms                                                                               | p <sub>i</sub> (kPa ) =                              | NA        | <i>a</i> = .                   |                                                  |
| 5825 -                                  | -0.008                                                                                                        | $p_p(kPa) =$                                         | NA        | p <sub>F</sub> (kPa ) =        | NA                                               |
| - 5800                                  |                                                                                                               | $Q_p (m^3/s) =$                                      | NA        |                                | 27.                                              |
| Gall oneso 5775                         | 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 | tp (s) =                                             | NA        | t <sub>F</sub> (s) =           | NA                                               |
| \$2.5775<br>8 2                         |                                                                                                               | S el S* (-)=                                         | NA        | S el S <sup>*</sup> (-)=       | NA                                               |
| Q 5750 .                                | 0.004                                                                                                         | EC <sub>w</sub> (mS/m)=                              | NΙΔ       |                                |                                                  |
|                                         |                                                                                                               | Temp <sub>w</sub> (gr C)=                            | NA        | Devisedine feet                | NIA                                              |
| 5725                                    | 0.002                                                                                                         | Derivative fact.=                                    | NA        | Derivative fact.=              | NA                                               |
| 5700                                    | 0.000                                                                                                         |                                                      |           |                                |                                                  |
| 0.00 0.15 0.30 0.45<br>Elapsed Ti       | 0.60 0.75 0.90                                                                                                | Results                                              |           | Results                        |                                                  |
|                                         |                                                                                                               | Q/s $(m^2/s)=$                                       | NA        | resuits                        |                                                  |
| Log-Log plot incl. derivates- flo       | ow neriod                                                                                                     | $T_{M} (m^{2}/s) =$                                  | NA        |                                |                                                  |
| 20g 20g plot mon dontation in           | on ponou                                                                                                      | Flow regime:                                         | transient | Flow regime:                   | transient                                        |
|                                         |                                                                                                               | $dt_1 \text{ (min)} =$                               | NA        | $dt_1 \text{ (min)} =$         | NA                                               |
|                                         |                                                                                                               | $dt_2 \text{ (min)} =$                               | NA        | $dt_2 \text{ (min)} =$         | NA                                               |
|                                         |                                                                                                               | $T (m^2/s) =$                                        | 1.0E-11   | $T (m^2/s) =$                  | NA                                               |
|                                         |                                                                                                               | S (-) =                                              | NA        | S (-) =                        | NA                                               |
|                                         |                                                                                                               | $K_s$ (m/s) =                                        | NA        | $K_s (m/s) =$                  | NA                                               |
|                                         |                                                                                                               | $S_s (1/m) =$                                        | NA        | $S_s (1/m) =$                  | NA                                               |
| Not An                                  | alysed                                                                                                        | $C (m^3/Pa) =$                                       | NA        | $C (m^3/Pa) =$                 | NA                                               |
|                                         |                                                                                                               | C <sub>D</sub> (-) =                                 | NA        | C <sub>D</sub> (-) =           | NA                                               |
|                                         |                                                                                                               | ξ(-) =                                               | NA        | ξ(-) =                         | NA                                               |
|                                         |                                                                                                               |                                                      |           |                                |                                                  |
|                                         |                                                                                                               | $T_{GRF}(m^2/s) =$                                   | NA        | $T_{GRF}(m^2/s) =$             | NA                                               |
|                                         |                                                                                                               | $S_{GRF}(-) =$                                       | NA        | $S_{GRF}(-) =$                 | NA                                               |
|                                         |                                                                                                               | D <sub>GRF</sub> (-) =                               | NA        | $D_{GRF}$ (-) =                | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period                                                                                               | Selected represe                                     |           |                                |                                                  |
|                                         |                                                                                                               | $dt_1$ (min) =                                       | NA        | $C (m^3/Pa) =$                 | NA                                               |
|                                         |                                                                                                               | $dt_2 (min) =$                                       | NA        | $C_D(-) =$                     | NA                                               |
|                                         |                                                                                                               | $T_{T} (m^{2}/s) = S (-) =$                          | 1.0E-11   | ξ (-) =                        | NA                                               |
|                                         |                                                                                                               |                                                      | NA        |                                | <u> </u>                                         |
|                                         |                                                                                                               | $K_s (m/s) =$                                        | NA        |                                | <del>                                     </del> |
|                                         |                                                                                                               | S <sub>s</sub> (1/m) =                               | NA        |                                | <u> </u>                                         |
| Not An                                  | alysed                                                                                                        | Comments: Based on the test re transmissivity is lov |           | ged packer complian<br>I m2/s. | ce) the interval                                 |
|                                         |                                                                                                               |                                                      |           |                                |                                                  |


|                                         | Test Sur                                        | nmary Sheet                             |                   |                                          |                   |  |
|-----------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------|------------------------------------------|-------------------|--|
| Project:                                | Oskarshamn site investigati                     | on Test type:[1]                        |                   |                                          | Р                 |  |
| Area:                                   | Laxen                                           | nar Test no:                            |                   |                                          | ,                 |  |
| Borehole ID:                            | KLX1                                            | 5A Test start:                          | 070425            |                                          |                   |  |
| Test section from - to (m):             | 765.00-770.00                                   | m Responsible for                       | +                 |                                          | Stephan Rohs      |  |
|                                         |                                                 | test execution:                         |                   |                                          | er van der Wal    |  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.0                                             | 76 Responsible for                      |                   | Crist                                    | tian Enachesc     |  |
| Linear plot Q and p                     |                                                 | test evaluation:<br>Flow period         |                   | Recovery period                          | 4                 |  |
| Ellicai piot & alia p                   |                                                 | Indata                                  |                   | Indata                                   |                   |  |
|                                         |                                                 | p <sub>0</sub> (kPa) =                  | 5800              | indata                                   | 1                 |  |
| 6100                                    |                                                 |                                         | 5825              |                                          | 1                 |  |
| KLX15A                                  | _765.00-770.00_070425_1_Pi_Q_r                  |                                         |                   | n (kDa) –                                | 502               |  |
|                                         | • P below<br>• Q • 0.0                          | $p_p(kPa) =$                            | _                 | p <sub>F</sub> (kPa ) =                  | 583               |  |
| 6000                                    |                                                 | $Q_p (m^3/s) =$                         | NA                |                                          | 2.50              |  |
|                                         | - 0.0                                           | tp (s) =                                |                   | t <sub>F</sub> (s) =                     | 360               |  |
| 5900 -                                  |                                                 | S el S* (-)=<br>EC <sub>w</sub> (mS/m)= | 1.00E-06          | S el S <sup>*</sup> (-)=                 | 1.00E-0           |  |
|                                         | - 0.0                                           | -                                       |                   |                                          |                   |  |
| 5800                                    |                                                 | $Temp_w(gr C)=$                         | NA                |                                          |                   |  |
|                                         | - 0.0                                           | Derivative fact.=                       | : NA              | Derivative fact.=                        | 0.1               |  |
| 5700                                    |                                                 |                                         |                   |                                          |                   |  |
| 0.00 0.25 0.50 0.75 1.0<br>Elapsed      | 0 1.25 1.50 1.75 2.00                           | Results                                 |                   | Results                                  |                   |  |
|                                         |                                                 |                                         | NA                | resuits                                  |                   |  |
| ea Lea plet in al derivetes fl          | aw nariad                                       | Q/s $(m^2/s)=$                          | NA                |                                          |                   |  |
| _og-Log plot incl. derivates- fl        | ow period                                       | $T_{\rm M}$ (m <sup>2</sup> /s)=        |                   | Flavora eigen                            | tuanaiant         |  |
|                                         |                                                 | Flow regime:                            | transient         | Flow regime:                             | transient         |  |
|                                         |                                                 | $dt_1 (min) =$                          | NA                | $dt_1 (min) =$                           | NA                |  |
|                                         |                                                 | $dt_2 (min) =$                          | NA                | $dt_2 (min) =$                           | NA                |  |
|                                         |                                                 | $T (m^2/s) =$                           | NA                | $T (m^2/s) =$                            | 2.5E-1            |  |
|                                         |                                                 | S (-) =                                 | NA                | S (-) =                                  | 1.0E-0            |  |
|                                         |                                                 | $K_s (m/s) =$                           | NA                | $K_s (m/s) =$                            | 4.9E-1            |  |
| Not Ar                                  | nalvead                                         | $S_s (1/m) =$                           | NA                | $S_s (1/m) =$                            | 2.0E-0            |  |
| 1101 711                                | iarysea                                         | $C (m^3/Pa) =$                          | NA                | $C (m^3/Pa) =$                           | 2.1E-1            |  |
|                                         |                                                 | $C_D(-) =$                              | NA                | $C_D(-) =$                               | 2.3E-0            |  |
|                                         |                                                 | ξ (-) =                                 | NA                | ξ (-) =                                  | -1.               |  |
|                                         |                                                 |                                         |                   |                                          |                   |  |
|                                         |                                                 | $T_{GRF}(m^2/s) =$                      | NA                | $T_{GRF}(m^2/s) =$                       | NA                |  |
|                                         |                                                 | $S_{GRF}(-) =$                          | NA                | $S_{GRF}(-) =$                           | NA                |  |
|                                         |                                                 | D <sub>GRF</sub> (-) =                  | NA                | D <sub>GRF</sub> (-) =                   | NA                |  |
| og-Log plot incl. derivatives-          | recovery period                                 | Selected repres                         | entative paran    |                                          |                   |  |
| Elapsed time (h)                        |                                                 | $dt_1$ (min) =                          | NA                | C (m <sup>3</sup> /Pa) =                 | 2.1E-1            |  |
| 10 <sup>2</sup> 10 <sup>2</sup>         | 10,"                                            | $dt_2 \text{ (min)} =$                  | NA                | $C_D(-) =$                               | 2.3E-0            |  |
|                                         |                                                 | $T_T (m^2/s) =$                         | 2.5E-10           |                                          | -1.               |  |
|                                         | 10                                              | S (-) =                                 | 1.0E-06           |                                          | †                 |  |
| 10 1                                    |                                                 | $K_s (m/s) =$                           | 4.9E-11           |                                          | 1                 |  |
|                                         | 10-1                                            | $S_s (1/m) =$                           | 2.0E-07           |                                          | 1                 |  |
| 10°                                     |                                                 | Comments:                               | 2.0L-01           |                                          | Ī                 |  |
| · · · · · · · · · · · · · · · · · · ·   |                                                 | Model .                                 | l transmississits | F2 5E 10 2/                              | dominad former (1 |  |
| · · · · · · · · · · · · · · · · · · ·   | 10 -2                                           |                                         |                   | f 2.5E-10 m2/s was  ). The confidence ra |                   |  |
| 10 1                                    |                                                 |                                         |                   | to be 8.0E-11 to 5.0                     |                   |  |
|                                         | 10 -3                                           |                                         |                   | w dimension of 2. The                    |                   |  |
| 1                                       |                                                 |                                         |                   |                                          |                   |  |
|                                         |                                                 | pressure could not                      | be extrapolated   | tue to the very low                      | transmissivity.   |  |
| 10 ° 1 10 ° 10                          | 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup> | pressure could not                      | be extrapolated   | iue to the very low                      | transmissivity.   |  |

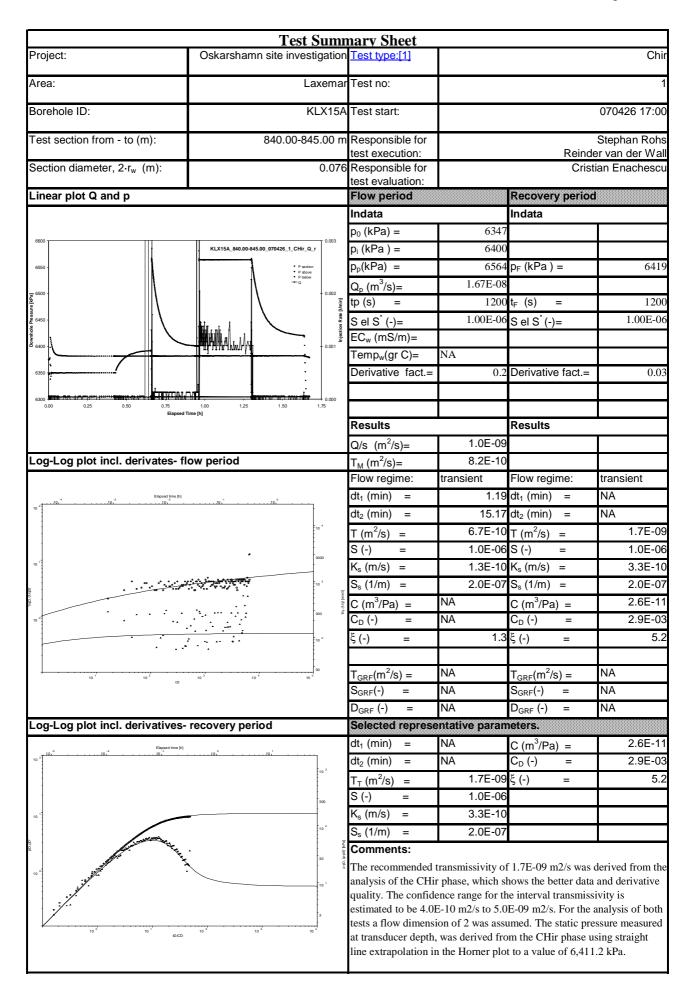


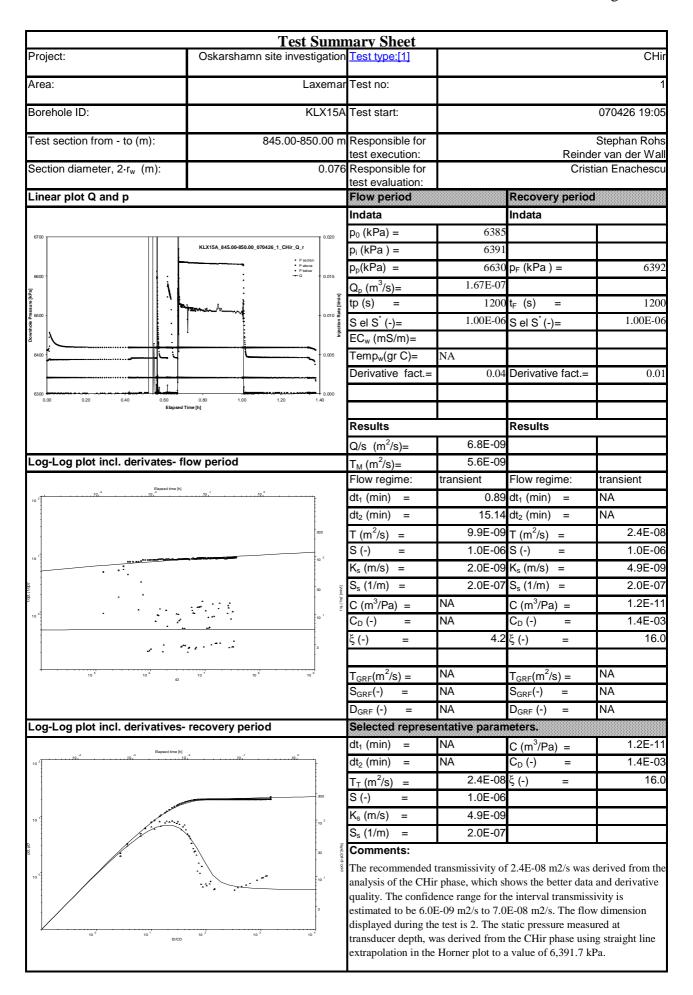


|                                         | Test Sumr                                 | nary Sheet                                    |                     |                              |                                                  |
|-----------------------------------------|-------------------------------------------|-----------------------------------------------|---------------------|------------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigation             | Test type:[1]                                 |                     |                              | Pi                                               |
| Area:                                   | Layamar                                   | Test no:                                      |                     |                              | 1                                                |
| Alea.                                   | Laxemai                                   | restrio.                                      |                     |                              | Į                                                |
| Borehole ID:                            | KLX15A                                    | Test start:                                   |                     |                              | 070425 19:31                                     |
| Test section from - to (m):             | 780.00-785.00 m                           | Responsible for                               |                     |                              | Stephan Rohs                                     |
| Tool occion nome to (m).                |                                           | test execution:                               |                     | Reinde                       | er van der Wall                                  |
| Section diameter, 2-r <sub>w</sub> (m): | 0.076                                     | Responsible for                               |                     | Crist                        | ian Enachescu                                    |
| Linear plot Q and p                     |                                           | test evaluation:<br>Flow period               |                     | Recovery period              |                                                  |
| Emodi piot & dila p                     |                                           | Indata                                        |                     | Indata                       |                                                  |
|                                         |                                           | p <sub>0</sub> (kPa) =                        | 5913                |                              |                                                  |
| 6150 KLX15                              | 0.010<br>5A_780.00-785.00_070425_1_Pi_Q_r | p <sub>i</sub> (kPa ) =                       | NA                  |                              |                                                  |
| 6100 -                                  | P section • 0.008                         | $p_p(kPa) =$                                  | NA                  | p <sub>F</sub> (kPa ) =      | NA                                               |
| <b>≅</b> 6050 1                         | Pabove Palow  Palow  O                    | $Q_p (m^3/s) =$                               | NA                  | ,                            |                                                  |
| 를 만하고 기                                 | 0.006                                     | tp(s) =                                       | NA                  | t <sub>F</sub> (s) =         | NA                                               |
| 8 6000 -                                | - 0.000                                   | S el S <sup>*</sup> (-)=                      | NA                  | S el S <sup>*</sup> (-)=     | NA                                               |
| 5950                                    | 0.004                                     | EC <sub>w</sub> (mS/m)=                       | <u> </u>            | ( /                          | 1                                                |
|                                         | •                                         | Temp <sub>w</sub> (gr C)=                     | NA                  |                              | †                                                |
| 5900                                    | • 0.002                                   | Derivative fact.=                             | NA                  | Derivative fact.=            | NA                                               |
| 5850                                    | 0.000                                     |                                               |                     |                              |                                                  |
| 0.00 0.25 0.50 0.75 Elapsed             | 1.00 1.25 1.50 1.75<br>Time [h]           |                                               |                     |                              |                                                  |
|                                         |                                           | Results                                       | •                   | Results                      | •                                                |
|                                         |                                           | Q/s $(m^2/s)=$                                | NA                  |                              |                                                  |
| Log-Log plot incl. derivates- fl        | low period                                | $T_{\rm M} (m^2/s) =$                         | NA                  |                              |                                                  |
|                                         |                                           | Flow regime:                                  | transient           | Flow regime:                 | transient                                        |
|                                         |                                           | $dt_1$ (min) =                                | NA                  | $dt_1$ (min) =               | NA                                               |
|                                         |                                           | $dt_2$ (min) =                                | NA                  | $dt_2 (min) =$               | NA                                               |
|                                         |                                           | $T (m^2/s) =$                                 | 1.0E-11             | $T (m^2/s) =$                | NA                                               |
|                                         |                                           | S (-) =                                       | NA                  | S (-) =                      | NA                                               |
|                                         |                                           | $K_s$ (m/s) =                                 | NA                  | $K_s (m/s) =$                | NA                                               |
| Not A                                   | nalysed                                   | $S_s (1/m) =$                                 | NA                  | $S_s (1/m) =$                | NA                                               |
|                                         | •                                         | $C (m^3/Pa) =$                                | NA                  | $C (m^3/Pa) =$               | NA                                               |
|                                         |                                           | $C_D(-) =$                                    | NA                  | $C_D(-) =$                   | NA                                               |
|                                         |                                           | ξ (-) =                                       | NA                  | ξ (-) =                      | NA                                               |
|                                         |                                           | _ 2                                           | NT A                | _ 2                          | NT A                                             |
|                                         |                                           | $T_{GRF}(m^2/s) =$                            | NA                  | $T_{GRF}(m^2/s) =$           | NA                                               |
|                                         |                                           | $S_{GRF}(-) =$                                | NA                  | $S_{GRF}(-) =$               | NA                                               |
| Log Log plot incl. derivetives          | rocovery period                           | D <sub>GRF</sub> (-) = Selected represe       | NA                  | D <sub>GRF</sub> (-) =       | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period                           | dt <sub>1</sub> (min) =                       | ntative paran<br>NA |                              | NA                                               |
|                                         |                                           | $dt_1 (min) = $ $dt_2 (min) = $               | NA<br>NA            | $C (m^3/Pa) = C_D (-) =$     | NA<br>NA                                         |
|                                         |                                           |                                               | 1.0E-11             |                              | NA                                               |
|                                         |                                           | $T_{T} (m^{2}/s) = S (-) =$                   | NA                  | ζ(-) =                       | 11/1                                             |
| Not Analysed                            |                                           | $K_s (m/s) =$                                 | NA<br>NA            |                              |                                                  |
|                                         |                                           | $S_s (1/m) =$                                 | NA                  | <u> </u>                     | <del>                                     </del> |
|                                         |                                           | Comments:                                     |                     | <u> </u>                     | <u> </u>                                         |
| 10012                                   | and you                                   | Based on the test re<br>transmissivity is lov |                     | ed packer complian<br>l m2/s | ce) the interval                                 |
|                                         |                                           |                                               |                     |                              |                                                  |

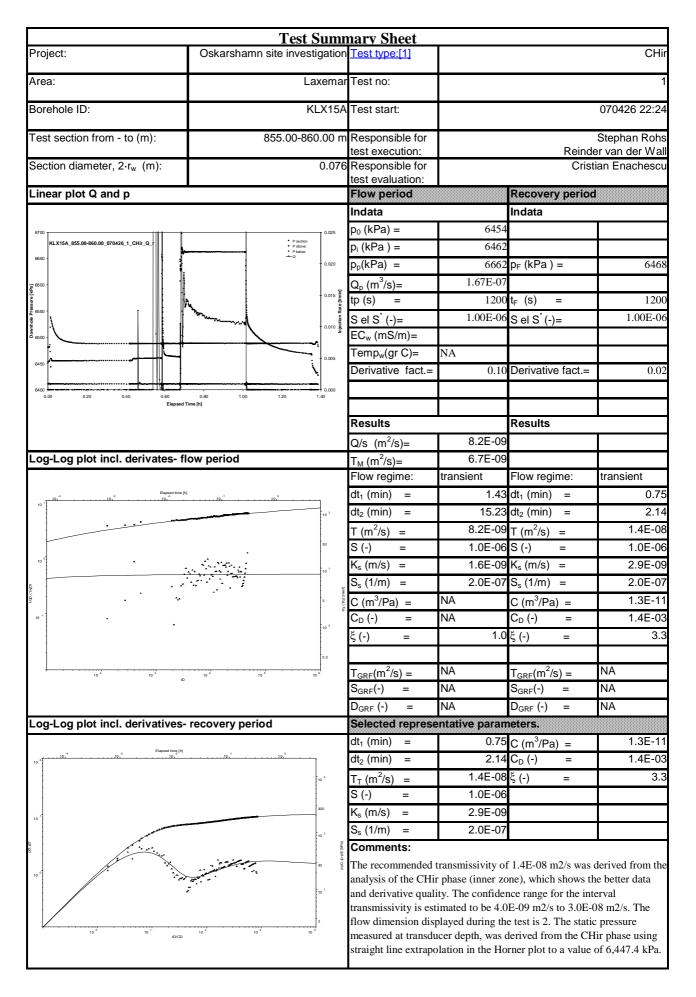

|                                                              | Test Sum                               | mary Sheet                                           |           |                                |                                  |
|--------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-----------|--------------------------------|----------------------------------|
| Project:                                                     | Oskarshamn site investigation          |                                                      |           |                                | CHir                             |
| Area:                                                        | Laxema                                 | ar Test no:                                          |           |                                | 1                                |
| D 1 1 1D                                                     |                                        |                                                      |           |                                | 070405 04 04                     |
| Borehole ID:                                                 | KLX15                                  | A Test start:                                        |           |                                | 070425 21:31                     |
| Test section from - to (m):                                  | 785.00-790.00                          | m Responsible for                                    |           |                                | Stephan Rohs                     |
| Section diameter, 2⋅r <sub>w</sub> (m):                      | 0.07                                   | test execution:<br>6 Responsible for                 |           |                                | er van der Wall<br>ian Enachescu |
| Section diameter, 2-1 <sub>w</sub> (m).                      | 0.07                                   | test evaluation:                                     |           | Clist                          | ian Enachescu                    |
| Linear plot Q and p                                          |                                        | Flow period                                          |           | Recovery period                | l                                |
|                                                              |                                        | Indata                                               |           | Indata                         |                                  |
| 6100                                                         | 0.010                                  | p <sub>0</sub> (kPa) =                               | 5945      |                                |                                  |
| KLX15A_785.00-790.00_070425_1_CHir_Q_r                       | P section P above P bolow              | p <sub>i</sub> (kPa ) =                              | NA        |                                |                                  |
| 6050 -                                                       | 0.008                                  | $p_p(kPa) =$                                         | NA        | p <sub>F</sub> (kPa ) =        | NA                               |
| [8                                                           | * ************************************ | $Q_p (m^3/s) =$                                      | NA        |                                | 27.                              |
| sure [KP a]                                                  | 0.006                                  | tp (s) =                                             | NA        | t <sub>F</sub> (s) =           | NA                               |
| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                      | . + 0.004                              | S el S* (-)=                                         | NA        | S el S <sup>*</sup> (-)=       | NA                               |
| E 9950                                                       | 0.004                                  | EC <sub>w</sub> (mS/m)=<br>Temp <sub>w</sub> (gr C)= | NA        |                                |                                  |
| 5900                                                         | 0.002                                  | Derivative fact.=                                    | NA<br>NA  | Derivative fact.=              | NA                               |
|                                                              |                                        | Denvauve lact.=                                      | 11/1      | Donvative lact.=               | 11/1                             |
| 5850 <b>1844 1871 1914 1914 1914 1914 1914 1914 1914 191</b> | 0.000                                  |                                                      |           |                                |                                  |
| Elapsed T                                                    |                                        | Results                                              |           | Results                        |                                  |
|                                                              |                                        | $Q/s (m^2/s) =$                                      | NA        |                                |                                  |
| Log-Log plot incl. derivates- fl                             | ow period                              | $T_{\rm M} (m^2/s) =$                                | NA        |                                |                                  |
|                                                              | ·                                      | Flow regime:                                         | transient | Flow regime:                   | transient                        |
|                                                              |                                        | $dt_1$ (min) =                                       | NA        | $dt_1$ (min) =                 | NA                               |
|                                                              |                                        | $dt_2$ (min) =                                       | NA        | $dt_2$ (min) =                 | NA                               |
|                                                              |                                        | $T (m^2/s) =$                                        | 1.0E-11   | $T (m^2/s) =$                  | NA                               |
|                                                              |                                        | S (-) =                                              | NA        | S (-) =                        | NA                               |
|                                                              |                                        | $K_s$ (m/s) =                                        | NA        | $K_s (m/s) =$                  | NA                               |
| Not Aı                                                       | nolycod                                | $S_s (1/m) =$                                        | NA        | $S_s(1/m) =$                   | NA                               |
| HULAI                                                        | iaiyseu                                | $C (m^3/Pa) =$                                       | NA        | $C (m^3/Pa) =$                 | NA                               |
|                                                              |                                        | $C_D(-) =$                                           | NA        | $C_D(-) =$                     | NA                               |
|                                                              |                                        | $\xi$ (-) =                                          | NA        | ξ (-) =                        |                                  |
|                                                              |                                        |                                                      |           |                                |                                  |
|                                                              |                                        | $T_{GRF}(m^2/s) =$                                   | NA        | $T_{GRF}(m^2/s) =$             | NA                               |
|                                                              |                                        | $S_{GRF}(-) =$                                       | NA        | $S_{GRF}(-) =$                 | NA                               |
| Lag Lag plating desirations                                  | rocevent nerie d                       | D <sub>GRF</sub> (-) =                               | NA        | D <sub>GRF</sub> (-) =         | NA                               |
| Log-Log plot incl. derivatives-                              | recovery period                        | Selected represe<br>dt <sub>1</sub> (min) =          | NA        |                                | NA                               |
|                                                              |                                        | $dt_1 (min) = $ $dt_2 (min) = $                      | NA<br>NA  | $C (m^3/Pa) = C_D (-) =$       | NA                               |
|                                                              |                                        | $T_T (m^2/s) =$                                      | 1.0E-11   |                                | NA                               |
|                                                              |                                        | S(-) =                                               | NA        | > (⁻) =                        | . 1/ 1                           |
|                                                              | $K_s (m/s) =$                          | NA                                                   |           |                                |                                  |
| Not Analysed                                                 |                                        | $S_s (1/m) =$                                        | NA        |                                |                                  |
|                                                              |                                        | Comments:                                            | <u> </u>  | 1                              |                                  |
|                                                              |                                        | Based on the test re<br>transmissivity is lov        |           | ged packer complian<br>1 m2/s. | ce) the interval                 |
|                                                              |                                        |                                                      |           |                                |                                  |



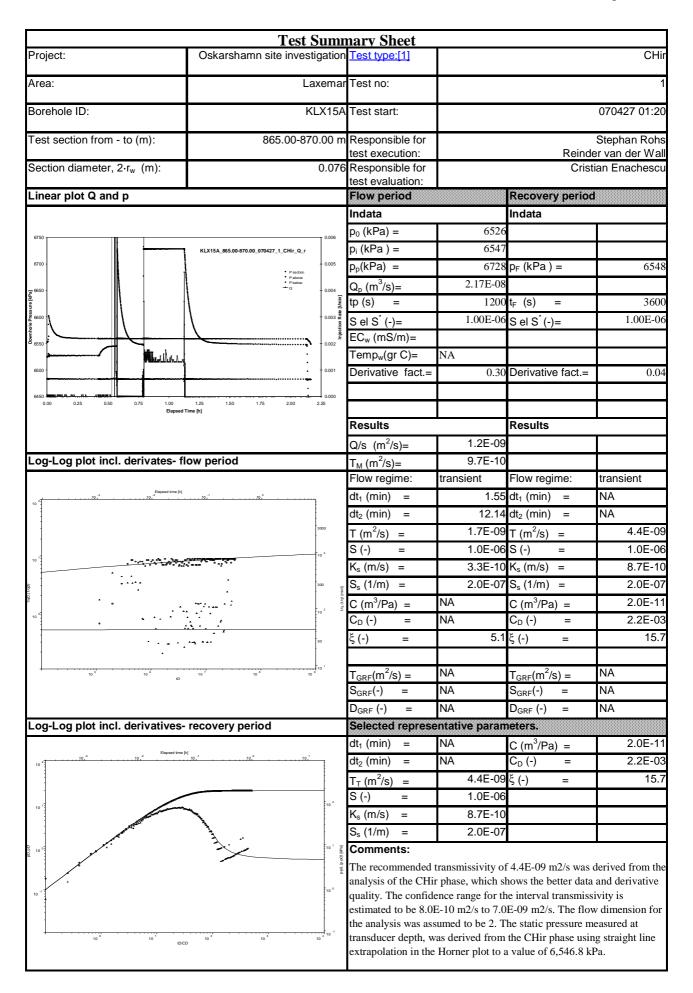

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test S                          | umr             | nary Sheet                           |                                      |                                |                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|--------------------------------------|--------------------------------------|--------------------------------|------------------|--|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investi         | gation          | Test type:[1]                        |                                      |                                | CHi              |  |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                 | Test no:                             |                                      |                                |                  |  |
| Alca.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxemar                         |                 | restrio.                             |                                      |                                |                  |  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX15A                          |                 | Test start:                          | 070426 00:40                         |                                |                  |  |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 795.00-800.00 m                 |                 | Responsible for test execution:      | Stephan Rohs<br>Reinder van der Wall |                                |                  |  |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | Responsible for | Cristian Enachescu                   |                                      |                                |                  |  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | test evaluation:<br>Flow period |                 | Recovery period                      |                                      |                                |                  |  |
| anion piet a una p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                 | Indata Indata                        |                                      |                                |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $p_0 (kPa) =$                        | 6016                                 |                                | 1                |  |
| KLX15A_795.00-800.00_070426_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • P section                     | 0.010           | $p_i(kPa) =$                         | NA                                   |                                |                  |  |
| 6075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pabove Pelow Q                  | - 0.008         | $p_p(kPa) =$                         | NA                                   | p <sub>F</sub> (kPa ) =        | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $Q_p (m^3/s) =$                      | NA                                   | ρ <sub>Γ</sub> (κι α ) –       | 1421             |  |
| © 6050 <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | market reserve                  | - 0.006 E       | $\frac{Q_p (m/s)=}{tp (s)} =$        | NA                                   | t <sub>F</sub> (s) =           | NA               |  |
| 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |                                 |                 |                                      | NA<br>NA                             |                                | NA<br>NA         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | S el S $^*$ (-)=<br>EC $_w$ (mS/m)=  | IVA                                  | S el S <sup>*</sup> (-)=       | INM              |  |
| ŏ 6000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                 | ` '                                  | NA                                   |                                |                  |  |
| 5975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | 0.002           | Temp <sub>w</sub> (gr C)=            |                                      | Danis satis sa fa at           | 37.4             |  |
| 3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                 | Derivative fact.=                    | NA                                   | Derivative fact.=              | NA               |  |
| 5950 0.00 0.15 0.30 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.60 0.75 0                     | 0.000           |                                      |                                      |                                |                  |  |
| Elapsed Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                 | _                                    |                                      | _                              |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | Results                              | •                                    | Results                        |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | Q/s $(m^2/s)=$                       | NA                                   |                                |                  |  |
| Log-Log plot incl. derivates- flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w period                        |                 | $T_M (m^2/s) =$                      | NA                                   |                                |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | Flow regime:                         | transient                            | Flow regime:                   | transient        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $dt_1$ (min) =                       | NA                                   | $dt_1$ (min) =                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $dt_2$ (min) =                       | NA                                   | $dt_2$ (min) =                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $T (m^2/s) =$                        | 1.0E-11                              | $T (m^2/s) =$                  | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | S (-) =                              | NA                                   | S (-) =                        | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $K_s$ (m/s) =                        | NA                                   | $K_s (m/s) =$                  | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $S_s (1/m) =$                        | NA                                   | $S_s(1/m) =$                   | NA               |  |
| Not Ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | alysed                          |                 | $C (m^3/Pa) =$                       | NA                                   | $C (m^3/Pa) =$                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $C_D(-) =$                           | NA                                   | $C_D(-) =$                     | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | ξ(-) =                               | NA                                   | ξ (-) =                        | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | 3 ( )                                |                                      | 3 ( )                          |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $T_{GRF}(m^2/s) =$                   | NA                                   | $T_{GRF}(m^2/s) =$             | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $S_{GRF}(-) =$                       | NA                                   | $S_{GRF}(-) =$                 | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | $D_{GRF}(-) =$  | NA                                   | $D_{GRF}(\cdot) =$                   | NA                             |                  |  |
| Log-Log plot incl. derivatives- r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecovery period                  |                 | Selected represe                     |                                      |                                |                  |  |
| -5 -5 p-5 2011 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , period                        |                 | $dt_1$ (min) =                       | NA                                   | C (m <sup>3</sup> /Pa) =       | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $dt_2 \text{ (min)} =$               | NA                                   | $C_D(-) =$                     | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $T_T (m^2/s) =$                      | 1.0E-11                              |                                | NA               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | S(-) =                               | NA                                   | ) c                            | - 14 -           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $K_s (m/s) =$                        | NA<br>NA                             |                                |                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | $S_s (11/s) = S_s (1/m) = S_s (1/m)$ | NA<br>NA                             |                                | +                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                 | Comments:                            | 11/1                                 | <u> </u>                       | <u> </u>         |  |
| Not An:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ay occ                          |                 |                                      |                                      | ged packer complian<br>I m2/s. | ce) the interval |  |


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 est 5                                                         | umr                                 | nary Sheet                                                            |                      |                                               |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|----------------------|-----------------------------------------------|--------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oskarshamn site investigation                                   |                                     | Test type:[1]                                                         |                      |                                               | CHi                                              |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laxemar                                                         |                                     | Test no:                                                              |                      |                                               |                                                  |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX15A                                                          |                                     | Test start:                                                           |                      |                                               | 070426 06:3                                      |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 800.00-805.00 m                                                 |                                     | Responsible for                                                       |                      |                                               | Stephan Roh                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | test execution:                                                       | Reinder van der Wall |                                               |                                                  |
| Section diameter, 2·r <sub>w</sub> (m): 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | 0.076                               | Responsible for                                                       | Cristian Enacheso    |                                               |                                                  |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 |                                     | test evaluation:<br>Flow period                                       |                      | Recovery period                               |                                                  |
| Lillear plot & allu p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Indata                                                          | Indata                              |                                                                       |                      |                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     |                                                                       | 6050                 | muata                                         |                                                  |
| 6200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P section                                                       | 0.010                               | $p_0 (kPa) =$                                                         |                      |                                               |                                                  |
| KLX15A_800.00-805.00_070426_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pabove Pbelow  Don't have been been been been been been been be |                                     | p <sub>i</sub> (kPa ) =                                               | NA                   | (1.5. )                                       | 27.4                                             |
| 6150 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***************************************                         | - 0.008                             | $p_p(kPa) =$                                                          | NA                   | p <sub>F</sub> (kPa ) =                       | NA                                               |
| La Caracian | •                                                               | -                                   | $Q_p (m^3/s) =$                                                       | NA                   |                                               |                                                  |
| [E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | te [//mi                            | tp (s) =                                                              | NA                   | $t_F$ (s) =                                   | NA                                               |
| g 6100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                        | - 0.000.0<br>1njection Rate [l/min] | S el S <sup>*</sup> (-)=                                              | NA                   | S el S <sup>*</sup> (-)=                      | NA                                               |
| ewoon [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 0.004 =                             | EC <sub>w</sub> (mS/m)=                                               |                      |                                               |                                                  |
| 6050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                               |                                     | Temp <sub>w</sub> (gr C)=                                             | NA                   |                                               |                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                               | - 0.002                             | Derivative fact.=                                                     | NA                   | Derivative fact.=                             | NA                                               |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                               | 0.000                               |                                                                       |                      |                                               | 1                                                |
| 0.00 0.15 0.30 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 0.60 0.75                                                    | 0.90                                |                                                                       | 1                    |                                               | 1                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |                                     | Results                                                               |                      | Results                                       |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | Q/s $(m^2/s)=$                                                        | NA                   |                                               |                                                  |
| Log-Log plot incl. derivates- f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | low period                                                      |                                     | $T_M (m^2/s) =$                                                       | NA                   |                                               |                                                  |
| 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . P                                                             |                                     | Flow regime:                                                          | transient            | Flow regime:                                  | transient                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $dt_1 \text{ (min)} =$                                                | NA                   | $dt_1 \text{ (min)} =$                        | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$                         | NA                   | $dt_1 \text{ (min)} =$ $dt_2 \text{ (min)} =$ | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | - ( )                                                                 |                      | $T (m^2/s) =$                                 | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $T (m^2/s) =$                                                         | NA                   |                                               | NA<br>NA                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | S (-) =                                                               |                      | S (-) =                                       |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $K_s$ (m/s) =                                                         | NA                   | $K_s (m/s) =$                                 | NA                                               |
| Not A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nalysed                                                         |                                     | $S_s (1/m) =$                                                         | NA                   | $S_s (1/m) =$                                 | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                               |                                     | $C (m^3/Pa) =$                                                        | NA                   | $C (m^3/Pa) =$                                | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $C_D(-) =$                                                            | NA                   | $C_D$ (-) =                                   | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | ξ(-) =                                                                | NA                   | ξ (-) =                                       | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     |                                                                       |                      |                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $T_{GRF}(m^2/s) =$                                                    | NA                   | $T_{GRF}(m^2/s) =$                            | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | S <sub>GRF</sub> (-) =                                                | NA                   | $S_{GRF}(-) =$                                | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | D <sub>GRF</sub> (-) =                                                | NA                   | D <sub>GRF</sub> (-) =                        | NA                                               |
| Log-Log plot incl. derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                                                 |                                     | Selected repres                                                       | entative paran       | neters.                                       | -                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $dt_1$ (min) =                                                  | NA                                  | $C (m^3/Pa) =$                                                        | NA                   |                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $dt_2$ (min) =                                                        | NA                   | $C_D(-) =$                                    | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $T_T (m^2/s) =$                                                       | 1.0E-11              |                                               | NA                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | S (-) =                                                               | NA                   | - ( ) –                                       | <del>†</del>                                     |
| Not Analysed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                 |                                     | $K_s (m/s) =$                                                         | NA                   |                                               | <del>                                     </del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | $S_s (11/s) =$ $S_s (1/m) =$                                          | NA                   |                                               | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | Comments:                                                             | 11/1                 |                                               | <u> </u>                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | Based on the test response (prolonged packer compliance) the interval |                      |                                               |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                 |                                     | transmissivity is lo                                                  |                      |                                               | ace, me mervar                                   |

|                                         | Test S                   | umr           | nary Sheet                                    |           |                                |                  |  |
|-----------------------------------------|--------------------------|---------------|-----------------------------------------------|-----------|--------------------------------|------------------|--|
| Project:                                | Oskarshamn site investig |               |                                               |           |                                | CHir             |  |
| Area:                                   | Lax                      | emar          | Test no:                                      |           |                                | 1                |  |
| Borehole ID:                            | KLX15A                   |               | Test start:                                   |           | 070426 12:24                   |                  |  |
| Test section from - to (m):             | 805 00-810               | 00 m          | Responsible for                               |           |                                | Stephan Rohs     |  |
| rest section from - to (m).             | 003.00-010.              | .00 111       | test execution:                               |           | Reinde                         | er van der Wall  |  |
| Section diameter, 2-r <sub>w</sub> (m): | (                        | 0.076         | Responsible for                               |           | Crist                          | ian Enachescu    |  |
| Linear plot Q and p                     |                          |               | test evaluation:<br>Flow period               |           | Recovery period                |                  |  |
| Linear plot & and p                     |                          |               | Indata                                        |           | Indata                         |                  |  |
|                                         |                          |               | p <sub>0</sub> (kPa) =                        | 6089      |                                | 1                |  |
| KLX15A_805.00-810.00_070426_1_CHir_Q_r  | P section P above        | 0.010         | p <sub>i</sub> (kPa ) =                       | NA        |                                |                  |  |
|                                         | P below<br>— Q           | 0.008         | $p_p(kPa) =$                                  | NA        | p <sub>F</sub> (kPa ) =        | NA               |  |
| 6150                                    | .•                       | 0.000         | $Q_p (m^3/s) =$                               | NA        | ,                              |                  |  |
| <u> </u>                                |                          | 0.006 끝       | tp(s) =                                       | NA        | t <sub>F</sub> (s) =           | NA               |  |
| P 8 6100 -                              | · .                      | n Rate [Vmln] | S el S* (-)=                                  | NA        | S el S <sup>*</sup> (-)=       | NA               |  |
|                                         | •                        | 0.004 를       | EC <sub>w</sub> (mS/m)=                       |           | 0 0.0 ( )=                     |                  |  |
| 9090                                    | •                        |               | Temp <sub>w</sub> (gr C)=                     | NA        |                                |                  |  |
|                                         | -                        | 0.002         | , (6 )                                        | NA        | Derivative fact.=              | NA               |  |
|                                         |                          |               |                                               |           |                                |                  |  |
| 0.00 0.15 0.30 0.45<br>Elapsed Ti       | 0.60 0.75 (              | 0.000         |                                               |           |                                |                  |  |
|                                         | (-)                      |               | Results                                       | ı         | Results                        | ı                |  |
|                                         |                          |               | Q/s $(m^2/s)=$                                | NA        |                                |                  |  |
| Log-Log plot incl. derivates- flo       | ow period                |               | $T_{\rm M} (m^2/s) =$                         | NA        |                                |                  |  |
|                                         |                          |               | Flow regime:                                  | transient | Flow regime:                   | transient        |  |
|                                         |                          |               | $dt_1$ (min) =                                | NA        | $dt_1$ (min) =                 | NA               |  |
|                                         |                          |               | $dt_2$ (min) =                                | NA        | $dt_2$ (min) =                 | NA               |  |
|                                         |                          |               | $T (m^2/s) =$                                 | 1.0E-11   | $T (m^2/s) =$                  | NA               |  |
|                                         |                          |               | S (-) =                                       | NA        | S (-) =                        | NA               |  |
|                                         |                          |               | $K_s$ (m/s) =                                 | NA        | $K_s (m/s) =$                  | NA               |  |
| N 4 4                                   | 1 1                      |               | $S_s (1/m) =$                                 | NA        | $S_s(1/m) =$                   | NA               |  |
| Not Ar                                  | aatysed                  |               | $C (m^3/Pa) =$                                | NA        | $C (m^3/Pa) =$                 | NA               |  |
|                                         |                          |               | C <sub>D</sub> (-) =                          | NA        | $C_D$ (-) =                    | NA               |  |
|                                         |                          |               | ξ(-) =                                        | NA        | ξ (-) =                        | NA               |  |
|                                         |                          |               |                                               |           |                                |                  |  |
|                                         |                          |               | $T_{GRF}(m^2/s) =$                            | NA        | $T_{GRF}(m^2/s) =$             | NA               |  |
|                                         |                          |               | S <sub>GRF</sub> (-) =                        | NA        | S <sub>GRF</sub> (-) =         | NA               |  |
|                                         |                          |               | D <sub>GRF</sub> (-) =                        | NA        | $D_{GRF}$ (-) =                | NA               |  |
| Log-Log plot incl. derivatives-         | recovery period          |               | Selected represe                              |           | neters.                        |                  |  |
|                                         |                          |               | $dt_1$ (min) =                                | NA        | $C (m^3/Pa) =$                 | NA               |  |
|                                         |                          |               | $dt_2$ (min) =                                | NA        | $C_D(-) =$                     | NA               |  |
|                                         |                          |               | $T_T (m^2/s) =$                               | 1.0E-11   | ξ (-) =                        | NA               |  |
|                                         |                          |               | S (-) =                                       | NA        |                                |                  |  |
|                                         |                          |               | $K_s$ (m/s) =                                 | NA        |                                |                  |  |
| Not Analysed                            |                          |               | $S_s (1/m) =$                                 | NA        |                                |                  |  |
|                                         |                          |               | Comments:                                     |           |                                |                  |  |
|                                         |                          |               | Based on the test re<br>transmissivity is lov |           | ged packer complian<br>l m2/s. | ce) the interval |  |
|                                         |                          |               |                                               |           |                                |                  |  |

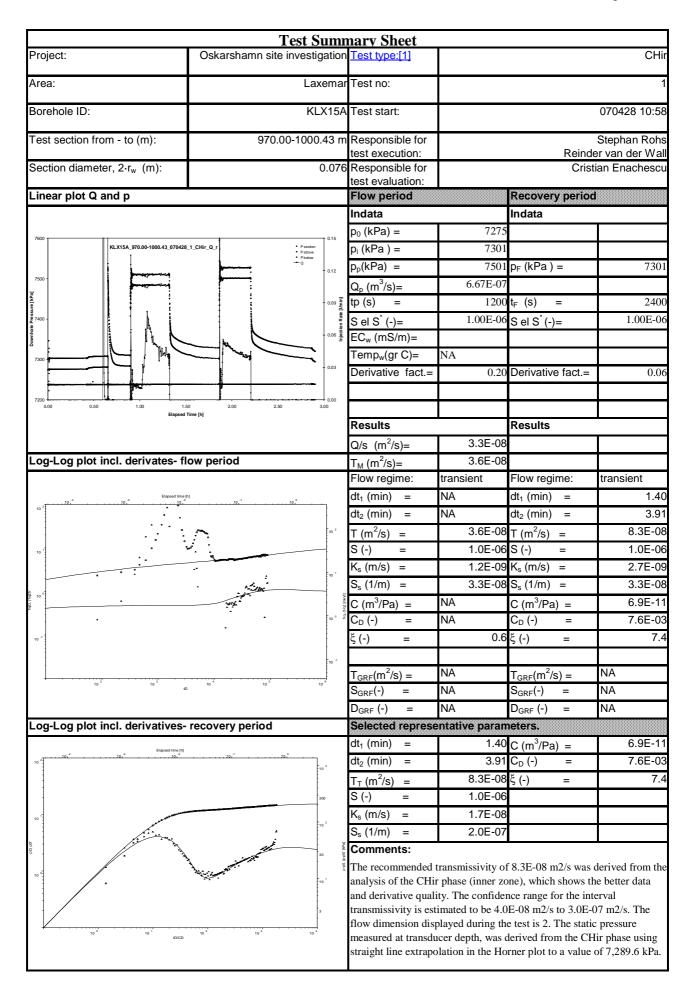



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Sumr                                     | nary Sheet                          |                              |                                 |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|------------------------------|---------------------------------|-----------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oskarshamn site investigation                 |                                     |                              |                                 | CHir            |
| Area:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laxemar                                       | Test no:                            |                              |                                 | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |                              |                                 |                 |
| Borehole ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KLX15A                                        | Test start:                         |                              |                                 | 070426 15:35    |
| Test section from - to (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 815.00-820.00 m                               | Responsible for                     |                              |                                 | Stephan Rohs    |
| 0 " " 1 0 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.070                                         | test execution:                     |                              |                                 | er van der Wall |
| Section diameter, 2-r <sub>w</sub> (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.076                                         | Responsible for test evaluation:    |                              | Crist                           | ian Enachescu   |
| Linear plot Q and p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | Flow period                         |                              | Recovery period                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Indata                              |                              | Indata                          |                 |
| 6275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               | $p_0$ (kPa) =                       | 6164                         |                                 |                 |
| KLX15A_815.00-820.00_070426_1_CHir_Q_r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pacition Pabove Plotow Plotow                 | p <sub>i</sub> (kPa ) =             | NA                           |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.008                                        | $p_p(kPa) =$                        | NA                           | p <sub>F</sub> (kPa ) =         | NA              |
| 6225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | market .                                      | $Q_p (m^3/s) =$                     | NA                           |                                 |                 |
| Market Ma | Pate (Imin)                                   | tp (s) =                            | NA<br>NA                     | $t_F$ (s) =                     | NA<br>NA        |
| 8 8 61 75 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · 10.004 Pa                                   | S el S $^*$ (-)=<br>EC $_w$ (mS/m)= | NA                           | S el S <sup>*</sup> (-)=        | NA              |
| 6150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                             | Temp <sub>w</sub> (gr C)=           | NA                           |                                 |                 |
| 0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • 0.002                                       |                                     | NA<br>NA                     | Derivative fact.=               | NA              |
| 6125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                             | Donvauve lact.=                     | 11/1                         | Donvative lact.=                | 11/1            |
| 0.00 0.15 0.30 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                                     | <u> </u>                     |                                 |                 |
| Elapsed T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ime [h]                                       | Results                             |                              | Results                         | <u> </u>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Q/s $(m^2/s)=$                      | NA                           |                                 |                 |
| Log-Log plot incl. derivates- fl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ow period                                     | $T_M (m^2/s) =$                     | NA                           |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Flow regime:                        | transient                    | Flow regime:                    | transient       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $dt_1$ (min) =                      | NA                           | $dt_1$ (min) =                  | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $dt_2$ (min) =                      | NA                           | $dt_2$ (min) =                  | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $T (m^2/s) =$                       | 1.0E-11                      | $T (m^2/s) =$                   | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | S (-) =                             | NA                           | S (-) =                         | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $K_s (m/s) =$                       | NA                           | $K_s (m/s) =$                   | NA              |
| Not Aı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nalysed                                       | $S_s (1/m) =$                       | NA                           | $S_s (1/m) =$                   | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $C (m^3/Pa) =$                      | NA<br>NA                     | $C (m^3/Pa) =$                  | NA<br>NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $C_D(-) =$                          | NA<br>NA                     | $C_D(-) =$                      | NA<br>NA        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | ξ(-) =                              | INA                          | ξ (-) =                         | IVA             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $T_{GRF}(m^2/s) =$                  | NA                           | $T_{GRF}(m^2/s) =$              | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $S_{GRF}(HI/S) =$ $S_{GRF}(-) =$    | NA                           | $S_{GRF}(m/s) =$ $S_{GRF}(-) =$ | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $D_{GRF}(-) =$                      | NA                           | $D_{GRF}(\cdot) =$              | NA              |
| Log-Log plot incl. derivatives-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | recovery period                               | Selected represe                    |                              |                                 | I               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $dt_1$ (min) =                      | NA                           | $C (m^3/Pa) =$                  | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $dt_2$ (min) =                      | NA                           | $C_D(-) =$                      | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $T_T (m^2/s) =$                     | 1.0E-11                      | ξ (-) =                         | NA              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | S (-) =                             | NA                           |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $K_s$ (m/s) =                       | NA                           |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $S_s (1/m) =$                       | NA                           |                                 |                 |
| Not Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Comments:                                     |                                     |                              |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Based on the test re<br>transmissivity is lov |                                     | ged packer complian<br>Lm2/s | ce) the interval                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | nansinissivity is lov               | vei uiaii 1.UE-11            | 1 1112/8.                       |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |                              |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |                              |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |                              |                                 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                                     |                              |                                 |                 |






|                                           | Test Sum                      | mary Sheet                                                    |               |                                |                                                  |
|-------------------------------------------|-------------------------------|---------------------------------------------------------------|---------------|--------------------------------|--------------------------------------------------|
| Project:                                  | Oskarshamn site investigation |                                                               |               |                                | CHir                                             |
| Area:                                     | Laxema                        | r Test no:                                                    |               |                                | 1                                                |
|                                           |                               |                                                               |               |                                |                                                  |
| Borehole ID:                              | KLX15A                        | Test start:                                                   |               | 070426 21:12                   |                                                  |
| Test section from - to (m):               | 850.00-855.00 m               | Responsible for                                               |               |                                | Stephan Rohs                                     |
| Continuation of a (m):                    | 0.07/                         | test execution:                                               |               |                                | er van der Wall                                  |
| Section diameter, 2-r <sub>w</sub> (m):   | 0.078                         | Responsible for test evaluation:                              |               | Crist                          | ian Enachescu                                    |
| Linear plot Q and p                       |                               | Flow period                                                   |               | Recovery period                |                                                  |
|                                           |                               | Indata                                                        |               | Indata                         |                                                  |
| ** KLX15A_850.00-855.00_070426_1_CHir_Q_r | P section 0.010               | $p_0$ (kPa) =                                                 | 6418          |                                |                                                  |
| KLX15A_850.00-855.00_0/0426_1_CHIP_Q_F    | P above P below               | p <sub>i</sub> (kPa ) =                                       | NA            |                                |                                                  |
|                                           | 0.008                         | $p_p(kPa) =$                                                  | NA            | p <sub>F</sub> (kPa ) =        | NA                                               |
| (6450 )                                   | 0.006                         | $Q_p (m^3/s) =$                                               | NA            |                                |                                                  |
| 185 04 6425                               |                               | tp (s) =                                                      | NA            | $t_F$ (s) =                    | NA                                               |
| 6400 -                                    | • 0.004<br>ਵ                  |                                                               | NA            | S el S <sup>*</sup> (-)=       | NA                                               |
|                                           |                               | EC <sub>w</sub> (mS/m)=                                       | NT A          |                                |                                                  |
| 6375                                      | 0.002                         | Temp <sub>w</sub> (gr C)=                                     | NA            | Davis ation to at              | NT A                                             |
| 6350                                      | 0.000                         | Derivative fact.=                                             | NA            | Derivative fact.=              | NA                                               |
| 0.00 0.15 0.30 0.4<br>Elapsed T           | 6 0.60 0.75 0.90<br>ime [h]   |                                                               |               |                                |                                                  |
|                                           |                               | Results                                                       |               | Results                        |                                                  |
|                                           |                               | Q/s $(m^2/s)=$                                                | NA            | resuits                        |                                                  |
| Log-Log plot incl. derivates- fl          | ow period                     | $T_{\rm M} (m^2/s) =$                                         | NA            |                                |                                                  |
| 99 piet                                   | он роном                      | Flow regime:                                                  | transient     | Flow regime:                   | transient                                        |
|                                           |                               | $dt_1 \text{ (min)} =$                                        | NA            | $dt_1 \text{ (min)} =$         | NA                                               |
|                                           |                               | $dt_2 \text{ (min)} =$                                        | NA            | $dt_2 \text{ (min)} =$         | NA                                               |
|                                           |                               | $T (m^2/s) =$                                                 | 1.0E-11       | $T (m^2/s) =$                  | NA                                               |
|                                           |                               | S (-) =                                                       | NA            | S (-) =                        | NA                                               |
|                                           |                               | $K_s (m/s) =$                                                 | NA            | $K_s$ (m/s) =                  | NA                                               |
| NT.A.A.                                   |                               | $S_s (1/m) =$                                                 | NA            | $S_s(1/m) =$                   | NA                                               |
| Not Ai                                    | aaysea                        | $C (m^3/Pa) =$                                                | NA            | $C (m^3/Pa) =$                 | NA                                               |
|                                           |                               | $C_D(-) =$                                                    | NA            | $C_D(-) =$                     | NA                                               |
|                                           |                               | ξ(-) =                                                        | NA            | ξ (-) =                        | NA                                               |
|                                           |                               |                                                               |               |                                |                                                  |
|                                           |                               | $T_{GRF}(m^2/s) =$                                            | NA            | $T_{GRF}(m^2/s) =$             | NA                                               |
|                                           |                               | S <sub>GRF</sub> (-) =                                        | NA            | $S_{GRF}(-) =$                 | NA                                               |
|                                           |                               | D <sub>GRF</sub> (-) =                                        | NA            | D <sub>GRF</sub> (-) =         | NA                                               |
| Log-Log plot incl. derivatives-           | recovery period               | Selected represe                                              |               |                                | INIA                                             |
|                                           |                               | $dt_1 (min) =$                                                | NA<br>NA      | $C (m^3/Pa) =$                 | NA<br>NA                                         |
|                                           |                               | $\frac{dt_2 \text{ (min)}}{dt_2 \text{ (min)}} = \frac{1}{2}$ |               | $C_D(-) =$                     |                                                  |
|                                           |                               | $T_{T} (m^{2}/s) =$ $S (-) =$                                 | 1.0E-11<br>NA | ζ(-) =                         | NA                                               |
|                                           |                               | $K_s (m/s) =$                                                 | NA<br>NA      |                                | <del>                                     </del> |
|                                           |                               | $\frac{R_s (11/s)}{S_s (1/m)} =$                              | NA<br>NA      | <u> </u>                       | <del>                                     </del> |
| Not Aı                                    | Comments:                     | ]                                                             | <u> </u>      | <u> </u>                       |                                                  |
|                                           |                               | Based on the test re<br>transmissivity is lov                 |               | ged packer complian<br>I m2/s. | ce) the interval                                 |
|                                           |                               |                                                               |               |                                |                                                  |




|                                         | Test Sumn                     | nary Sheet                |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|-----------------------------------------|-------------------------------|---------------------------|----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Project:                                | Oskarshamn site investigation | Test type:[1]             |                |                               | CHi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Area:                                   | Laxemar                       | Test no:                  |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Borehole ID:                            | KLX15A                        | Test start:               | 0704           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| T ( ( ( ) ( )                           | 000 00 005 00                 |                           |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Test section from - to (m):             | 860.00-865.00 m               | test execution:           |                | Reind                         | Stephan Rohs<br>er van der Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.076                         | Responsible for           |                |                               | ian Enachescı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Linear plat O and p                     |                               | test evaluation:          |                |                               | <b>Y</b> CONOCCO CONTRACTOR |  |
| Linear plot Q and p                     |                               | Flow period               |                | Recovery period               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | Indata                    | 5400           | Indata                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| KLX15A_860.00-865.00_070427_1_CHir_Q_r  | • P section 0.010             | p <sub>0</sub> (kPa) =    | 6489           |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6650                                    | Pabove P below                | p <sub>i</sub> (kPa ) =   | NA             | <i>a</i> = \                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         | 0.008                         | $p_p(kPa) =$              | NA             | p <sub>F</sub> (kPa ) =       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| <u>~</u> 6600 ·                         |                               | $Q_p (m^3/s) =$           | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 2 ns 8 6550                             | Ilpection Rate (Wmhal)        | tp (s) =                  | NA             | $t_F$ (s) =                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | S el S <sup>*</sup> (-)=  | NA             | S el S <sup>*</sup> (-)=      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 8 <sub>6500</sub>                       | · · · · · · ·                 | $EC_w (mS/m) =$           |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         | 0.002                         | Temp <sub>w</sub> (gr C)= | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6450                                    | •                             | Derivative fact.=         | NA             | Derivative fact.=             | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 0.00 0.15 0.30 0.45                     | 0.000                         |                           |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Elapsed T                               | me [h]                        |                           |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | Results                   | la v           | Results                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | Q/s $(m^2/s)=$            | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Log-Log plot incl. derivates- fl        | ow period                     | $T_M (m^2/s) =$           | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | Flow regime:              | transient      | Flow regime:                  | transient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                               | $dt_1$ (min) =            | NA             | $dt_1 (min) =$                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $dt_2$ (min) =            | NA             | $dt_2$ (min) =                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $T (m^2/s) =$             | 1.00E-11       | $T (m^2/s) =$                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | S (-) =                   | NA             | S (-) =                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $K_s$ (m/s) =             | NA             | $K_s$ (m/s) =                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Not Ar                                  | alward                        | $S_s (1/m) =$             | NA             | $S_s (1/m) =$                 | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Not Al                                  | laryseu                       | $C (m^3/Pa) =$            | NA             | $C (m^3/Pa) =$                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $C_D(-) =$                | NA             | $C_D(-) =$                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | ξ(-) =                    | NA             | ξ(-) =                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               |                           |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | $T_{GRF}(m^2/s) =$        | NA             | $T_{GRF}(m^2/s) =$            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | S <sub>GRF</sub> (-) =    | NA             | $S_{GRF}(-) =$                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | D <sub>GRF</sub> (-) =    | NA             | D <sub>GRF</sub> (-) =        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Log-Log plot incl. derivatives-         | recovery period               | Selected repres           | entative paran |                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                               | $dt_1$ (min) =            | NA             | C (m <sup>3</sup> /Pa) =      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $dt_2 \text{ (min)} =$    | NA             | $C_D(-) =$                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | $T_T (m^2/s) =$           | 1.0E-11        |                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                         |                               | S (-) =                   | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | $K_s (m/s) =$             | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                               | $S_s (1/m) =$             | NA             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Not Ar                                  | Comments:                     | · · ·                     |                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| TOTAL                                   |                               |                           |                | ed packer complian<br>1 m2/s. | ce) the interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |



|                                         | Test Sum                      | mary Sheet                                          |                                |                          |                                                  |
|-----------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------|--------------------------|--------------------------------------------------|
| Project:                                | Oskarshamn site investigation |                                                     |                                |                          | CHir                                             |
| Area:                                   | Laxema                        | ar Test no:                                         |                                |                          | 1                                                |
| rii oa.                                 | Laxonic                       |                                                     |                                |                          | •                                                |
| Borehole ID:                            | KLX15                         | A Test start:                                       |                                |                          | 070427 06:28                                     |
| Test section from - to (m):             | 870.00-875.00 r               | n Responsible for                                   |                                |                          | Stephan Rohs                                     |
|                                         |                               | test execution:                                     |                                |                          | er van der Wall                                  |
| Section diameter, 2·r <sub>w</sub> (m): | 0.07                          | 6 Responsible for test evaluation:                  |                                | Crist                    | ian Enachescu                                    |
| Linear plot Q and p                     |                               | Flow period                                         |                                | Recovery period          |                                                  |
|                                         |                               | Indata                                              |                                | Indata                   |                                                  |
| 6750                                    | T 0.010                       | p <sub>0</sub> (kPa) =                              | 6557                           |                          |                                                  |
| KLX15A_870.00-875.00_070427_1_CHir_Q_r  | P section P above P below     | p <sub>i</sub> (kPa ) =                             | NA                             |                          |                                                  |
| 6700 -                                  | • P below 0.008               | $p_p(kPa) =$                                        | NA                             | p <sub>F</sub> (kPa ) =  | NA                                               |
| a                                       |                               | $Q_p (m^3/s) =$                                     | NA                             |                          |                                                  |
| M 6650                                  | 0.006                         | tp (s) =                                            | NA                             | $t_F$ (s) =              | NA                                               |
| 90 P                                    | 0.004                         | 3 el 3 (-)=                                         | NA                             | S el S <sup>*</sup> (-)= | NA                                               |
| 6600 -                                  | 0.004 8                       | 20w (1110/111)                                      |                                |                          |                                                  |
| 6550                                    | 0.002                         | Temp <sub>w</sub> (gr C)=                           | NA                             |                          |                                                  |
|                                         |                               | Derivative fact.=                                   | NA                             | Derivative fact.=        | NA                                               |
| 0.00 0.15 0.30 0.4                      | 0.000                         |                                                     |                                |                          |                                                  |
| Elapsed T                               |                               | - "                                                 |                                | D 1                      |                                                  |
|                                         |                               | Results                                             | NA                             | Results                  | 1                                                |
| Log-Log plot incl. derivates- fl        | ow pariod                     | Q/s $(m^2/s)=$                                      | NA<br>NA                       |                          |                                                  |
| Log-Log plot ilici. delivates- il       | ow period                     | T <sub>M</sub> (m <sup>2</sup> /s)=<br>Flow regime: | transient                      | Flow regime:             | transient                                        |
|                                         |                               | $dt_1$ (min) =                                      | NA                             | $dt_1 \text{ (min)} =$   | NA                                               |
|                                         |                               | $dt_2 \text{ (min)} =$                              | NA                             | $dt_2 \text{ (min)} =$   | NA                                               |
|                                         |                               | $T (m^2/s) =$                                       | 1.0E-11                        | $T (m^2/s) =$            | NA                                               |
|                                         |                               | S (-) =                                             | NA                             | S (-) =                  | NA                                               |
|                                         |                               | $K_s$ (m/s) =                                       | NA                             | $K_s (m/s) =$            | NA                                               |
|                                         |                               | $S_s (1/m) =$                                       | NA                             | $S_s (1/m) =$            | NA                                               |
| Not Ar                                  | nalysed                       | $C (m^3/Pa) =$                                      | NA                             | $C (m^3/Pa) =$           | NA                                               |
|                                         |                               | C <sub>D</sub> (-) =                                | NA                             | C <sub>D</sub> (-) =     | NA                                               |
|                                         |                               | ξ (-) =                                             | NA                             | ξ (-) =                  | NA                                               |
|                                         |                               |                                                     |                                |                          |                                                  |
|                                         |                               | $T_{GRF}(m^2/s) =$                                  | NA                             | $T_{GRF}(m^2/s) =$       | NA                                               |
|                                         |                               | $S_{GRF}(-) =$                                      | NA                             | $S_{GRF}(-) =$           | NA                                               |
|                                         |                               | $D_{GRF}$ (-) =                                     | NA                             | $D_{GRF}$ (-) =          | NA                                               |
| Log-Log plot incl. derivatives-         | recovery period               | Selected represe                                    |                                |                          |                                                  |
|                                         |                               | $dt_1 \text{ (min)} =$                              | NA                             | $C (m^3/Pa) =$           | NA                                               |
|                                         |                               | $dt_2 (min) =$                                      | NA<br>4 OF 44                  | $C_D(-) =$               | NA                                               |
|                                         |                               | $T_T (m^2/s) =$                                     | 1.0E-11                        | ξ(-) =                   | NA                                               |
|                                         |                               | $S (-) = K_s (m/s) =$                               | NA<br>NA                       |                          | <del>                                     </del> |
|                                         |                               | $K_s (m/s) = S_s (1/m) =$                           | NA<br>NA                       |                          | <del>                                     </del> |
| B.T. A. A.                              | nalysed                       | Comments:                                           | 1 W-1                          | <u> </u>                 | <u> </u>                                         |
| Not Al                                  |                               |                                                     | ged packer complian<br>I m2/s. | ce) the interval         |                                                  |
|                                         |                               |                                                     |                                |                          |                                                  |

|                                         | Test Sumr                                       | nary Sheet                      |                     |                                   |                 |
|-----------------------------------------|-------------------------------------------------|---------------------------------|---------------------|-----------------------------------|-----------------|
| Project:                                | Oskarshamn site investigation                   |                                 |                     |                                   | CHir            |
| Area:                                   | Laxemar                                         | Test no:                        |                     |                                   | 1               |
| Alea.                                   | Laxemai                                         | 1631110.                        |                     |                                   | '               |
| Borehole ID:                            | KLX15A                                          | Test start:                     |                     |                                   | 070427 07:43    |
| Test section from - to (m):             | 875.00-880.00 m                                 | Responsible for                 |                     |                                   | Stephan Rohs    |
| rest section from - to (iii).           | 073.00-000.00 111                               | test execution:                 |                     | Reinde                            | er van der Wall |
| Section diameter, 2-r <sub>w</sub> (m): | 0.076                                           | Responsible for                 |                     | Crist                             | ian Enachescu   |
| Linear plot Q and p                     |                                                 | test evaluation:<br>Flow period |                     | Recovery period                   | 1               |
| Linear plot & and p                     |                                                 | Indata                          |                     | Indata                            |                 |
| 6700 T                                  | T 0.010                                         | p <sub>0</sub> (kPa) =          | 6595                |                                   | 1               |
| KLX15A_875.00-880.00_070427_1_CHir_Q_r  | P section     P showe                           | $p_i(kPa) =$                    | NA                  |                                   |                 |
| \                                       | P below - 0.008                                 | $p_p(kPa) =$                    | NA                  | p <sub>F</sub> (kPa ) =           | NA              |
| - 650                                   |                                                 | $Q_p (m^3/s) =$                 | NA                  | p <sub>F</sub> ( \(\omega\))      | 1112            |
| wre [KPa                                | 0.006                                           | tp (s) =                        | NA                  | t <sub>F</sub> (s) =              | NA              |
| (865)                                   | 0.006 4 0.000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | S el S <sup>*</sup> (-)=        | NA                  | S el S <sup>*</sup> (-)=          | NA              |
| 0600                                    | 0.004                                           | EC <sub>w</sub> (mS/m)=         |                     | ( )-                              |                 |
|                                         | ·                                               | Temp <sub>w</sub> (gr C)=       | NA                  |                                   |                 |
|                                         | • 0.002                                         |                                 | NA                  | Derivative fact.=                 | NA              |
| 6550                                    | 0.000                                           |                                 |                     |                                   | 1               |
| 0.00 0.15 0.30 0.45<br>Elapsed T        | 0.60 0.75 0.90                                  |                                 |                     |                                   |                 |
|                                         |                                                 | Results                         |                     | Results                           | <u> </u>        |
|                                         |                                                 | Q/s $(m^2/s)=$                  | NA                  |                                   |                 |
| Log-Log plot incl. derivates- fl        | ow period                                       | $T_{\rm M} (m^2/s) =$           | NA                  |                                   |                 |
|                                         |                                                 | Flow regime:                    | transient           | Flow regime:                      | transient       |
|                                         |                                                 | $dt_1$ (min) =                  | NA                  | $dt_1$ (min) =                    | NA              |
|                                         |                                                 | $dt_2$ (min) =                  | NA                  | $dt_2$ (min) =                    | NA              |
|                                         |                                                 | $T (m^2/s) =$                   | 1.0E-11             | $T (m^2/s) =$                     | NA              |
|                                         |                                                 | S (-) =                         | NA                  | S (-) =                           | NA              |
|                                         |                                                 | $K_s$ (m/s) =                   | NA                  | $K_s (m/s) =$                     | NA              |
| Not Aı                                  | nalvsed                                         | $S_s (1/m) =$                   | NA                  | $S_s (1/m) =$                     | NA              |
|                                         |                                                 | $C (m^3/Pa) =$                  | NA                  | $C (m^3/Pa) =$                    | NA              |
|                                         |                                                 | $C_D(-) =$                      | NA                  | $C_D(-) =$                        | NA              |
|                                         |                                                 | ξ(-) =                          | NA                  | ξ (-) =                           | NA              |
|                                         |                                                 | <b>-</b> , 2, ;                 | NI A                | <b>-</b> , 2, ,                   | NA              |
|                                         |                                                 | $T_{GRF}(m^2/s) = S_{GRF}(-) =$ | NA<br>NA            | $T_{GRF}(m^2/s) =$ $S_{GRF}(-) =$ | NA<br>NA        |
|                                         |                                                 | $D_{GRF}(-) = D_{GRF}(-) =$     | NA<br>NA            | $S_{GRF}(-) = D_{GRF}(-) =$       | NA<br>NA        |
| Log-Log plot incl. derivatives-         | recovery period                                 | Selected represe                |                     |                                   | 1.1/1           |
|                                         |                                                 | $dt_1$ (min) =                  | NA                  | C (m <sup>3</sup> /Pa) =          | NA              |
|                                         |                                                 | $dt_2 \text{ (min)} =$          | NA                  | $C_D(-) =$                        | NA              |
|                                         |                                                 | $T_T (m^2/s) =$                 | 1.0E-11             |                                   | NA              |
|                                         |                                                 | S (-) =                         | NA                  | - ( /                             |                 |
|                                         |                                                 | $K_s$ (m/s) =                   | NA                  |                                   |                 |
|                                         | $S_s (1/m) =$                                   | NA                              |                     | 1                                 |                 |
| Not Ai                                  | Comments:                                       |                                 | •                   | •                                 |                 |
| - 1.5% - 1.5%                           |                                                 |                                 | ged packer complian | ce) the interval                  |                 |
|                                         |                                                 | transmissivity is lov           | ver man 1.0E-11     | 1 1112/S.                         |                 |
|                                         |                                                 |                                 |                     |                                   |                 |
|                                         |                                                 |                                 |                     |                                   |                 |
|                                         |                                                 |                                 |                     |                                   |                 |
|                                         |                                                 |                                 |                     |                                   |                 |
|                                         |                                                 |                                 |                     |                                   |                 |



Borehole: KLX15A

#### **APPENDIX 4**

Nomenclature

| Character       | SICADA designation | Explanation                                                                                 | Dimension                             | Unit              |
|-----------------|--------------------|---------------------------------------------------------------------------------------------|---------------------------------------|-------------------|
| Variables,      |                    |                                                                                             |                                       |                   |
| A <sub>w</sub>  |                    | Horizontal area of water surface in open borehole, not                                      | [L <sup>2</sup> ]                     | m <sup>2</sup>    |
| vv              |                    | including area of signal cables, etc.                                                       | ' '                                   |                   |
| b               |                    | Aquifer thickness (Thickness of 2D formation)                                               | [L]                                   | m                 |
| В               |                    | Width of channel                                                                            | [L]                                   | m                 |
| L               |                    | Corrected borehole length                                                                   | [L]                                   | m                 |
| L <sub>0</sub>  |                    | Uncorrected borehole length                                                                 | [L]                                   | m                 |
| Lp              |                    | Point of application for a measuring section based on its                                   | [L]                                   | m                 |
|                 |                    | centre point or centre of gravity for distribution of                                       |                                       |                   |
|                 |                    | transmissivity in the measuring section.                                                    |                                       |                   |
| L <sub>w</sub>  |                    | Test section length.                                                                        | [L]                                   | m                 |
| dL              |                    | Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)               | [L]                                   | m                 |
| r               |                    | Radius                                                                                      | [L]                                   | m                 |
| r <sub>w</sub>  |                    | Borehole, well or soil pipe radius in test section.                                         | [L]                                   | m                 |
| $r_{we}$        |                    | Effective borehole, well or soil pipe radius in test section.                               | [L]                                   | m                 |
|                 |                    | (Consideration taken to skin factor)                                                        |                                       |                   |
| r <sub>s</sub>  |                    | Distance from test section to observation section, the shortest distance.                   | [L]                                   | m                 |
| r <sub>t</sub>  |                    | Distance from test section to observation section, the                                      | [L]                                   | m                 |
|                 |                    | interpreted shortest distance via conductive structures.                                    |                                       | <u> </u>          |
| $r_D$           |                    | Dimensionless radius, r <sub>D</sub> =r/r <sub>w</sub>                                      | -                                     | -                 |
| Z               |                    | Level above reference point                                                                 | [L]                                   | m                 |
| Z <sub>r</sub>  |                    | Level for reference point on borehole                                                       | [L]                                   | m                 |
| Z <sub>wu</sub> |                    | Level for test section (section that is being flowed), upper limitation                     | [L]                                   | m                 |
| Z <sub>wl</sub> |                    | Level for test section (section that is being flowed), lower limitation                     | [L]                                   | m                 |
| Z <sub>ws</sub> |                    | Level for sensor that measures response in test section (section that is flowed)            | [L]                                   | m                 |
| Z <sub>ou</sub> |                    | Level for observation section, upper limitation                                             | [L]                                   | m                 |
| Z <sub>ol</sub> |                    | Level for observation section, lower limitation                                             | [L]                                   | m                 |
| Z <sub>os</sub> |                    | Level for sensor that measures response in observation                                      | [L]                                   | m                 |
|                 |                    | section                                                                                     |                                       |                   |
| Е               |                    | Evaporation:                                                                                | $[L^3/(T L^2)]$                       | mm/y,             |
| _               |                    |                                                                                             | [-/(-/1                               | mm/d,             |
|                 |                    | hydrological budget:                                                                        | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| ET              |                    | Evapotranspiration                                                                          | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,    |
|                 |                    | hydrological budget:                                                                        | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| Р               |                    | Precipitation Precipitation                                                                 | $[L^3/(T L^2)]$                       | mm/y,             |
| -               |                    |                                                                                             |                                       | mm/d,             |
|                 |                    | hydrological budget:                                                                        | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| R               |                    | Groundwater recharge                                                                        | $[L^3/(T L^2)]$                       | mm/y,             |
|                 |                    |                                                                                             |                                       | mm/d,             |
|                 |                    | hydrological budget:                                                                        | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| D               |                    | Groundwater discharge                                                                       | [L <sup>3</sup> /(T L <sup>2</sup> )] | mm/y,<br>mm/d,    |
|                 |                    | hydrological budget:                                                                        | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| Q <sub>R</sub>  |                    | Run-off rate                                                                                | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| Q <sub>p</sub>  |                    | Pumping rate                                                                                | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| Q <sub>I</sub>  |                    | Infiltration rate                                                                           | [L <sup>3</sup> /T]                   | m³/s              |
| Q               |                    | Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$                               | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| 0               |                    | (Flow rate)                                                                                 | [L <sup>3</sup> /T]                   | m <sup>3</sup> /s |
| Q <sub>0</sub>  |                    | Flow in test section during undisturbed conditions (flow logging).                          |                                       |                   |
| $Q_p$           |                    | Flow in test section immediately before stop of flow. Stabilised pump flow in flow logging. | [L <sup>3</sup> /T]                   | m³/s              |

| Character                           | SICADA designation | Explanation                                                                                                                                                                      | Dimension                            | Unit              |
|-------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|
| Q <sub>m</sub>                      |                    | Arithmetical mean flow during perturbation phase.                                                                                                                                | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| Q <sub>1</sub>                      |                    | Flow in test section during pumping with pump flow Q <sub>p1</sub> , (flow logging).                                                                                             | [L³/T]                               | m³/s              |
| Q <sub>2</sub>                      |                    | Flow in test section during pumping with pump flow $Q_{p1}$ , (flow logging).                                                                                                    | [L <sup>3</sup> /T]                  | m³/s              |
| ΣQ                                  | SumQ               | Cumulative volumetric flow along borehole                                                                                                                                        | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_0$                        | SumQ0              | Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)                                                                                               | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_1$                        | SumQ1              | Cumulative volumetric flow along borehole, with pump flow Q <sub>p1</sub>                                                                                                        | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_2$                        | SumQ2              | Cumulative volumetric flow along borehole, with pump flow Q <sub>p2</sub>                                                                                                        | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_{C1}$                     | SumQC1             | Corrected cumulative volumetric flow along borehole, $\Sigma Q_1$ - $\Sigma Q_0$                                                                                                 | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| $\Sigma Q_{C2}$                     | SumQC2             | Corrected cumulative volumetric flow along borehole, $\Sigma Q_2$ - $\Sigma Q_0$                                                                                                 | [L <sup>3</sup> /T]                  | m <sup>3</sup> /s |
| q                                   |                    | Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).                                                                    | ([L <sup>3</sup> /T*L <sup>2</sup> ] | m/s               |
| V                                   |                    | Volume                                                                                                                                                                           | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| V <sub>w</sub>                      |                    | Water volume in test section.                                                                                                                                                    | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| V <sub>p</sub>                      |                    | Total water volume injected/pumped during perturbation phase.                                                                                                                    | [L <sup>3</sup> ]                    | m <sup>3</sup>    |
| v                                   |                    | Velocity                                                                                                                                                                         | $([L^3/T*L^2]$                       | m/s               |
| Va                                  |                    | Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$                                                 | ([L <sup>3</sup> /T*L <sup>2</sup> ] | m/s               |
|                                     |                    |                                                                                                                                                                                  |                                      |                   |
| t                                   |                    | Time                                                                                                                                                                             | [T]                                  | hour,mi<br>n,s    |
| t <sub>o</sub>                      |                    | Duration of rest phase before perturbation phase.                                                                                                                                | [T]                                  | S                 |
| t <sub>p</sub>                      |                    | Duration of perturbation phase. (from flow start as far as $p_0$ ).                                                                                                              | [T]                                  | S                 |
| t <sub>F</sub>                      |                    | Duration of recovery phase (from p <sub>p</sub> to p <sub>F</sub> ).                                                                                                             | [T]                                  | S                 |
| t <sub>1</sub> , t <sub>2</sub> etc |                    | Times for various phases during a hydro test.                                                                                                                                    | [T]                                  | hour,mi<br>n,s    |
| dt                                  |                    | Running time from start of flow phase and recovery phase respectively.                                                                                                           | [T]                                  | s                 |
| dt <sub>e</sub>                     |                    | $dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.                                                                           | [T]                                  | s                 |
| t <sub>D</sub>                      |                    | $t_D = T \cdot t / (S \cdot r_w^2)$ . Dimensionless time                                                                                                                         | -                                    | -                 |
| р                                   |                    | Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations. | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>a</sub>                      |                    | Atmospheric pressure                                                                                                                                                             | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>t</sub>                      |                    | Absolute pressure; p <sub>t</sub> =p <sub>a</sub> +p <sub>q</sub>                                                                                                                | $[M/(LT)^2]$                         | kPa               |
| p <sub>g</sub>                      |                    | Gauge pressure; Difference between absolute pressure and atmospheric pressure.                                                                                                   | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>0</sub>                      |                    | Initial pressure before test begins, prior to packer expansion.                                                                                                                  | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>i</sub>                      |                    | Pressure in measuring section before start of flow.                                                                                                                              | $[M/(LT)^2]$                         | kPa               |
| p <sub>f</sub>                      |                    | Pressure during perturbation phase.                                                                                                                                              | $[M/(LT)^2]$                         | kPa               |
| ps                                  |                    | Pressure during recovery.                                                                                                                                                        | $[M/(LT)^2]$                         | kPa               |
| pp                                  |                    | Pressure in measuring section before flow stop.                                                                                                                                  | [M/(LT) <sup>2</sup> ]               | kPa               |
| p <sub>F</sub>                      |                    | Pressure in measuring section at end of recovery.                                                                                                                                | $[M/(LT)^2]$                         | kPa               |
| p <sub>D</sub>                      |                    | $p_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$ , Dimensionless pressure                                                                                                           | -                                    | -                 |
| dp                                  |                    | Pressure difference, drawdown of pressure surface between two points of time.                                                                                                    | [M/(LT) <sup>2</sup> ]               | kPa               |

| Character        | SICADA designation | Explanation                                                                                                                                                                                              | Dimension              | Unit   |
|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|
| dp <sub>f</sub>  |                    | $dp_f = p_i - p_f \   or = p_f - p_i \   ,  drawdown/pressure  increase  of  pressure  surface  between  two  points  of  time  during  perturbation  phase.  dp_f  usually  expressed  positive.$       | [M/(LT) <sup>2</sup> ] | kPa    |
| dp <sub>s</sub>  |                    | $dp_s = p_s - p_p$ or $= p_p - p_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_s$ usually expressed positive.                                | [M/(LT) <sup>2</sup> ] | kPa    |
| dp <sub>p</sub>  |                    | $dp_p = p_i - p_p$ or $= p_p - p_i$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dp_p$ expressed positive.                     | [M/(LT) <sup>2</sup> ] | kPa    |
| dp <sub>F</sub>  |                    | $dp_F = p_p - p_F$ or $= p_F - p_p$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_F$ expressed positive.                         | [M/(LT) <sup>2</sup> ] | kPa    |
| Н                |                    | Total head; (potential relative a reference level) (indication of h for phase as for p). H=h <sub>e</sub> +h <sub>p</sub> +h <sub>v</sub>                                                                | [L]                    | m      |
| h                |                    | Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=h <sub>e</sub> +h <sub>p</sub> | [L]                    | m      |
| h <sub>e</sub>   |                    | Height of measuring point (Elevation head); Level above reference level for measuring point.                                                                                                             | [L]                    | m      |
| h <sub>p</sub>   |                    | Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point                                           | [L]                    | m      |
| h <sub>v</sub>   |                    | Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)                                                                           | [L]                    | m      |
| S                |                    | Drawdown; Drawdown from undisturbed level (same as dh <sub>p</sub> , positive)                                                                                                                           | [L]                    | m      |
| Sp               |                    | Drawdown in measuring section before flow stop.                                                                                                                                                          | [L]                    | m      |
| h <sub>0</sub>   |                    | Initial above reference level before test begins, prior to packer expansion.                                                                                                                             | [L]                    | m      |
| h <sub>i</sub>   |                    | Level above reference level in measuring section before start of flow.                                                                                                                                   | [L]                    | m      |
| h <sub>f</sub>   |                    | Level above reference level during perturbation phase.  Level above reference level during recovery phase.                                                                                               | [L]<br>[L]             | m<br>m |
| h <sub>p</sub>   |                    | Level above reference level in measuring section before flow stop.                                                                                                                                       | [L]                    | m      |
| h <sub>F</sub>   |                    | Level above reference level in measuring section at end of recovery.                                                                                                                                     | [L]                    | m      |
| dh               |                    | Level difference, drawdown of water level between two points of time.                                                                                                                                    | [L]                    | m      |
| dh <sub>f</sub>  |                    | $dh_f = h_i - h_f$ or $= h_f - h_i$ , drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $dh_f$ usually expressed positive.                            | [L]                    | m      |
| dh <sub>s</sub>  |                    | $dh_s = h_s - h_p$ or $= h_p - h_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dh_s$ usually expressed positive.                                | [L]                    | m      |
| dh <sub>p</sub>  |                    | $dh_p = h_i - h_p$ or $= h_p - h_i$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_p$ expressed positive.                            | [L]                    | m      |
| dh <sub>F</sub>  |                    | $dh_F = h_p - h_F$ or $= h_F - h_p$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_F$ expressed positive.                            | [L]                    | m      |
| Te <sub>w</sub>  |                    | Temperature in the test section (taken from temperature logging). Temperature                                                                                                                            |                        | °C     |
| Te <sub>w0</sub> |                    | Temperature in the test section during undisturbed conditions (taken from temperature logging).                                                                                                          |                        | °C     |

| Character         | SICADA designation | Explanation                                                                                                                                  | Dimension              | Unit              |
|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| Te <sub>o</sub>   | a congruence       | Temperature in the observation section (taken from temperature logging). Temperature                                                         |                        | °C                |
| EC <sub>w</sub>   |                    | Electrical conductivity of water in test section.                                                                                            |                        | mS/m              |
| EC <sub>w0</sub>  |                    | Electrical conductivity of water in test section during                                                                                      |                        | mS/m              |
| 0                 |                    | undisturbed conditions.                                                                                                                      |                        |                   |
| EC <sub>o</sub>   |                    | Electrical conductivity of water in observation section                                                                                      |                        | mS/m              |
| TDS <sub>w</sub>  |                    | Total salinity of water in the test section.                                                                                                 | [M/L <sup>3</sup> ]    | mg/L              |
| TDS <sub>w0</sub> |                    | Total salinity of water in the test section during undisturbed conditions.                                                                   | [M/L <sup>3</sup> ]    | mg/L              |
| TDS₀              |                    | Total salinity of water in the observation section.                                                                                          | [M/L <sup>3</sup> ]    | mg/L              |
| g                 |                    | Constant of gravitation (9.81 m*s <sup>-2</sup> ) (Acceleration due to gravity)                                                              | [L/T <sup>2</sup> ]    | m/s <sup>2</sup>  |
| π.                | pi                 | Constant (approx 3.1416).                                                                                                                    | [-]                    |                   |
| π<br>r            |                    | Residual. $r=p_c-p_m$ , $r=h_c-h_m$ , etc. Difference between measured data ( $p_m$ , $h_m$ , etc) and estimated data ( $p_c$ , $h_c$ , etc) |                        |                   |
| ME                |                    | Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$                                                                               |                        |                   |
| NME               |                    | Normalized ME. NME=ME/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                                |                        |                   |
| MAE               |                    | Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n}  r_i $                                                                                |                        |                   |
| NMAE              |                    | Normalized MAE. NMAE=MAE/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                             |                        |                   |
| RMS               |                    | Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)^{0.5}$                                                       |                        |                   |
| NRMS              |                    | Normalized RMR. NRMR=RMR/(x <sub>MAX</sub> -x <sub>MIN</sub> ), x: measured variable considered.                                             |                        |                   |
| SDR               |                    | Standard deviation of residual.                                                                                                              |                        |                   |
|                   |                    | $SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$                                                                          |                        |                   |
| SEMR              |                    | Standard error of mean residual.                                                                                                             |                        |                   |
|                   |                    | $SEMR = \left(\frac{1}{n(n-1)} \sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$                                                                     |                        |                   |
| Parameter:        | <u>s</u>           |                                                                                                                                              |                        |                   |
| Q/s               |                    | Specific capacity s=dpp or s=sp=h0-hp (open borehole)                                                                                        | [L <sup>2</sup> /T]    | m²/s              |
| D                 |                    | Interpreted flow dimension according to Barker, 1988.                                                                                        | [-]                    | -                 |
| dt₁               |                    | Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.          | [T]                    | S                 |
| dt <sub>2</sub>   |                    | End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.               | [T]                    | S                 |
| dt <sub>L</sub>   |                    | Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.                               | [T]                    | S                 |
| ТВ                |                    | Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one-dimensional structure              | [L <sup>3</sup> /T]    | m³/s              |
| Τ                 |                    | Transmissivity                                                                                                                               | $[L^2/T]$              | m²/s              |
| T <sub>M</sub>    |                    | Transmissivity according to Moye (1967)                                                                                                      | $[L^2/T]$              | m²/s              |
| TQ                |                    | Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.                                     | [L <sup>2</sup> /T]    | m²/s              |
| Ts                |                    | Transmissivity evaluated from slug test                                                                                                      | $\left[L^{2}/T\right]$ | m <sup>2</sup> /s |

| Character                         | SICADA designation  | Explanation                                                                                                                                                                                                                                                                                | Dimension           | Unit              |
|-----------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|
| T <sub>D</sub>                    | Jacob Grand Control | Transmissivity evaluated from PFL-Difference Flow Meter                                                                                                                                                                                                                                    | [L <sup>2</sup> /T] | m <sup>2</sup> /s |
| Tı                                |                     | Transmissivity evaluated from Impeller flow log                                                                                                                                                                                                                                            | [L <sup>2</sup> /T] | m <sup>2</sup> /s |
| T <sub>Sf</sub> , T <sub>Lf</sub> |                     | Transient evaluation based on semi-log or log-log diagram for perturbation phase in injection or pumping.                                                                                                                                                                                  | [L <sup>2</sup> /T] | m²/s              |
| $T_{Ss}, T_{Ls}$                  |                     | Transient evaluation based on semi-log or log-log diagram for recovery phase in injection or pumping.                                                                                                                                                                                      | [L <sup>2</sup> /T] | m²/s              |
| T <sub>T</sub>                    |                     | Transient evaluation (log-log or lin-log). Judged best evaluation of T <sub>Sf</sub> , T <sub>Lf</sub> , T <sub>Ss</sub> , T <sub>Ls</sub>                                                                                                                                                 | [L <sup>2</sup> /T] | m²/s              |
| T <sub>NLR</sub>                  |                     | Evaluation based on non-linear regression.                                                                                                                                                                                                                                                 | [L <sup>2</sup> /T] | m²/s              |
| T <sub>Tot</sub>                  |                     | Judged most representative transmissivity for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).                                                                                                                | [L²/T]              | m²/s              |
| K                                 |                     | Hydraulic conductivity                                                                                                                                                                                                                                                                     | [L/T]               | m/s               |
| K <sub>s</sub>                    |                     | Hydraulic conductivity based on spherical flow model                                                                                                                                                                                                                                       | [L/T]               | m/s               |
| K <sub>m</sub>                    |                     | Hydraulic conductivity matrix, intact rock                                                                                                                                                                                                                                                 | [L/T]               | m/s               |
| k                                 |                     | Intrinsic permeability                                                                                                                                                                                                                                                                     | [L <sup>2</sup> ]   | m <sup>2</sup>    |
| kb                                | †                   | Permeability-thickness product: kb=k·b                                                                                                                                                                                                                                                     | [L <sup>3</sup> ]   | m <sup>3</sup>    |
| KO                                |                     | r criticability thickness product. RD-R b                                                                                                                                                                                                                                                  | _ <u> </u>          | 111               |
| SB                                |                     | Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure                                                                                                                                                    | [L]                 | m                 |
| SB*                               |                     | Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure                                                                                                                                            | [L]                 | m                 |
| S                                 |                     | Storage coefficient, (Storativity)                                                                                                                                                                                                                                                         | [-]                 | -                 |
| S*                                |                     | Assumed storage coefficient                                                                                                                                                                                                                                                                | [-]                 | -                 |
| S <sub>y</sub>                    |                     | Theoretical specific yield of water (Specific yield; unconfined storage. Defined as total porosity (n) minus retention capacity (S <sub>r</sub> )                                                                                                                                          | [-]                 | -                 |
| S <sub>ya</sub>                   |                     | Specific yield of water (Apparent specific yield); unconfined storage, field measuring. Corresponds to volume of water achieved on draining saturated soil or rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often called $S_y$ in literature)                                | [-]                 | -                 |
| S <sub>r</sub>                    |                     | Specific retention capacity, (specific retention of water, field capacity) (Specific retention); unconfined storage.  Corresponds to water volume that the soil or rock has left after free draining of saturated soil or rock.                                                            | [-]                 | -                 |
| S <sub>f</sub>                    |                     | Fracture storage coefficient                                                                                                                                                                                                                                                               | [-]                 | -                 |
| S <sub>m</sub>                    |                     | Matrix storage coefficient                                                                                                                                                                                                                                                                 | [-]                 | -                 |
| S <sub>NLR</sub>                  |                     | Storage coefficient, evaluation based on non-linear regression                                                                                                                                                                                                                             | [-]                 | -                 |
| S <sub>Tot</sub>                  |                     | Judged most representative storage coefficient for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).                                                                                                           | [-]                 | -                 |
| 9                                 |                     | Specific storage coefficient: confined storage                                                                                                                                                                                                                                             | [ 1/L]              | 1/m               |
| S <sub>s</sub> *                  | +                   | Specific storage coefficient; confined storage.  Assumed specific storage coefficient; confined storage.                                                                                                                                                                                   | [ 1/L]              | 1/m               |
| J <sub>S</sub>                    |                     | Assumed specific storage coefficient, confined storage.                                                                                                                                                                                                                                    | [ 1/上]              | 1/111             |
| Cf                                |                     | Hydraulic resistance: The hydraulic resistance is an aquitard with a flow vertical to a two-dimensional formation. The inverse of c is also called Leakage coefficient. c <sub>i</sub> =b'/K' where b' is thickness of the aquitard and K' its hydraulic conductivity across the aquitard. | [T]                 | S                 |
| L <sub>f</sub>                    |                     | Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents characteristics of the aquifer.                                                                                                                                                                                     | [L]                 | m                 |
|                                   |                     | TUTATACIENSUOS OF THE ACTORET                                                                                                                                                                                                                                                              |                     |                   |

| Character           | SICADA designation | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dimension                            | Unit                 |
|---------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|
| **                  | Skin               | Assumed skin factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [-]                                  | -                    |
| ξ*<br>C             |                    | Wellbore storage coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [(LT <sup>2</sup> )·M <sup>2</sup> ] | m³/Pa                |
| C <sub>D</sub>      |                    | $C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$ , Dimensionless wellbore storage coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [-]                                  | -                    |
| ω                   | Stor-ratio         | $\omega$ = S <sub>f</sub> /(S <sub>f</sub> + S <sub>m</sub> ), storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [-]                                  | -                    |
| λ                   | Interflow-coeff    | $\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [-]                                  | -                    |
| $T_GRF$             |                    | Transmissivity interpreted using the GRF method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [L <sup>2</sup> /T]                  | m <sup>2</sup> /s    |
| S <sub>GRF</sub>    |                    | Storage coefficient interpreted using the GRF method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [ 1/L]                               | 1/m                  |
| D <sub>GRF</sub>    |                    | Flow dimension interpreted using the GRF method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [-]                                  | -                    |
| C <sub>w</sub>      |                    | Water compressibility; corresponding to β in hydrogeological literature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [(LT <sup>2</sup> )/M]               | 1/Pa                 |
| Cr                  |                    | Pore-volume compressibility, (rock compressibility);<br>Corresponding to α/n in hydrogeological literature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [(LT <sup>2</sup> )/M]               | 1/Pa                 |
| Ct                  |                    | $c_t = c_r + c_w$ , total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in $c_t$ if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [(LT <sup>2</sup> )/M]               | 1/Pa                 |
| nc <sub>t</sub>     |                    | Porosity-compressibility factor: nc <sub>t</sub> = n·c <sub>t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [(LT <sup>2</sup> )/M]               | 1/Pa                 |
| nc <sub>t</sub> b   |                    | Porosity-compressibility-thickness product: nc <sub>t</sub> b= n·c <sub>t</sub> .b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [(L <sup>2</sup> T <sup>2</sup> )/M] | m/Pa                 |
| n                   |                    | Total porosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | -                    |
| n <sub>e</sub>      |                    | Kinematic porosity, (Effective porosity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                    | -                    |
| е                   |                    | Transport aperture. e = n <sub>e</sub> ⋅b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [L]                                  | m                    |
|                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ra 4 / 3a                            | 1 // 3               |
| ρ                   | Density            | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [M/L <sup>3</sup> ]                  | kg/(m <sup>3</sup> ) |
| $\rho_{w}$          | Density-w          | Fluid density in measurement section during pumping/injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [M/L <sup>3</sup> ]                  | kg/(m³)              |
| $\rho_{o}$          | Density-o          | Fluid density in observation section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [M/L <sup>3</sup> ]                  | kg/(m³)              |
| $ ho_{sp}$          | Density-sp         | Fluid density in standpipes from measurement section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [M/L <sup>3</sup> ]                  | kg/(m³)              |
| μ<br>μ <sub>w</sub> | my<br>my           | Dynamic viscosity  Dynamic viscosity (Fluid density in measurement section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [M/LT]<br>[M/LT]                     | Pa s<br>Pa s         |
| FC <sub>T</sub>     |                    | during pumping/injection) Fluid coefficient for intrinsic permeability, transference of k to K; K=FC <sub>T</sub> -k; FC <sub>T</sub> =ρ <sub>w</sub> ·g/ μ <sub>w</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [1/LT]                               | 1/(ms)               |
| FCs                 |                    | Fluid coefficient for porosity-compressibility, transference of $c_t$ to $S_s$ ; $S_s$ = $FC_S$ · $n$ · $c_t$ ; $FC_S$ = $\rho_w$ · $g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [ M/T <sup>2</sup> L <sup>2</sup> ]  | Pa/m                 |
| Index on K          | , T and S          | $  \cup \cup_{i} \cup \cup_{s} , \cup_{s-1} \cup_{s-1} \cup_{i+1} \cup_{i+1} \cup_{s-1} \cup_{w-1} \cup_{s-1} $ |                                      |                      |
| S                   |                    | S: semi-log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                      |
| L                   |                    | L: log-log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                      |
| f                   |                    | Pump phase or injection phase, designation following S or L (withdrawal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                      |
| S                   |                    | Recovery phase, designation following S or L (recovery)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                      |
| NLR                 |                    | NLR: Non-linear regression. Performed on the entire test sequence, perturbation and recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                      |
| М                   |                    | Moye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                      |
| GRF                 |                    | Generalised Radial Flow according to Barker (1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                      |
| m                   |                    | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                      |
| f                   |                    | Fracture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                      |
| Т                   |                    | Judged best evaluation based on transient evaluation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                      |

| Character  | SICADA designation | Explanation                                                                                                  | Dimension | Unit |
|------------|--------------------|--------------------------------------------------------------------------------------------------------------|-----------|------|
| Tot        |                    | Judged most representative parameter for particular test section and (in certain cases) evaluation time with |           |      |
|            |                    | respect to available data (made by SKB at a later stage).                                                    |           |      |
| b          |                    | Bloch property in a numerical groundwater flow model                                                         |           |      |
| e          |                    | Effective property (constant) within a domain in a                                                           |           |      |
|            |                    | numerical groundwater flow model.                                                                            |           |      |
| Index on p | and Q              |                                                                                                              | l .       | 1    |
| 0          |                    | Initial condition, undisturbed condition in open holes                                                       |           |      |
| i          |                    | Natural, "undisturbed" condition of formation parameter                                                      |           |      |
| f          |                    | Pump phase or injection phase (withdrawal, flowing                                                           |           |      |
|            |                    | phase)                                                                                                       |           |      |
| S          |                    | Recovery, shut-in phase                                                                                      |           |      |
| p          |                    | Pressure or flow in measuring section at end of                                                              |           |      |
| •          |                    | perturbation period                                                                                          |           |      |
| F          |                    | Pressure in measuring section at end of recovery period.                                                     |           |      |
| m          |                    | Arithmetical mean value                                                                                      |           |      |
| С          |                    | Estimated value. The index is placed last if index for                                                       |           |      |
|            |                    | "where" and "what" are used. Simulated value                                                                 |           |      |
| m          |                    | Measured value. The index is placed last if index for                                                        |           |      |
|            |                    | "where" and "what" are used. Measured value                                                                  |           |      |
| Some misc  | ellaneous inde     | exes on p and h                                                                                              | ı         | ·    |
| W          |                    | Test section (final difference pressure during flow phase                                                    |           |      |
|            |                    | in test section can be expressed dpwp; First index shows                                                     |           |      |
|            |                    | "where" and second index shows "what")                                                                       |           |      |
| 0          |                    | Observation section (final difference pressure during flow                                                   |           |      |
|            |                    | phase in observation section can be expressed dpoo;                                                          |           |      |
|            |                    | First index shows "where" and second index shows                                                             |           |      |
|            |                    | "what")                                                                                                      |           |      |
| f          |                    | Fresh-water head. Water is normally pumped up from                                                           |           |      |
|            |                    | section to measuring hoses where pressure and level are                                                      |           |      |
|            |                    | observed. Density of the water is therefore approximately                                                    |           |      |
|            |                    | the same as that of the measuring section. Measured                                                          |           |      |
|            |                    | groundwater level is therefore normally represented by                                                       |           |      |
|            |                    | what is defined as point-water head. If pressure at the                                                      |           |      |
|            |                    | measuring level is recalculated to a level for a column of                                                   |           |      |
|            |                    | water with density of fresh water above the measuring                                                        |           |      |
|            |                    | point it is referred to as fresh-water head and h is                                                         |           |      |
|            |                    | indicated last by an f. Observation section (final level                                                     |           |      |
|            |                    | during flow phase in observation section can be                                                              |           |      |
|            |                    | expressed hopf; the first index shows "where" and the                                                        |           |      |
|            |                    | second index shows "what" and the last one                                                                   |           |      |
|            |                    | "recalculation")                                                                                             |           |      |

Borehole: KLX15A

## **APPENDIX 5**

SICADA data tables

Borehole: KLX15A

### **APPENDIX 5-1**

SICADA data tables (Injection tests)

SKB

File Identity

**Created By** 

**Activity Type** 

Created

KLX 15A

KLX 15A - Injection test

# **SICADA/Data Import Template**

(Simplified version v1.4

SKB & Ergodata AB 2004

| Compiled By |  |
|-------------|--|
|             |  |

Quality Check For Delivery

Delivery Approval

| Project | AP PS 400-07-007 |
|---------|------------------|
|         |                  |

**Activity Information Additional Activity Data** C10 P200 P220 R25 Field crew evaluating Idcode Start Date Stop Date Secup (m) Seclow (m) **Section No** Field crew Company manager Report data KLX 15A 2007-04-12 07:48 2007-04-28 13:52 Stephan 80.00 1000.43 Golder Associates Reinder van Reinder van Linda Höckert, Eric der Wall, der Wall, Rohs. Reinder van Lövgren, Philipp Wolf, Stephan der Wall, Stephan Rohs, Philipp Sascha Philipp Wolf Wolf Lenné, Rohs Thomas Cronquist

| Table | plu_s_hole_test_d                              |
|-------|------------------------------------------------|
|       | PLU Injection and pumping, General information |

| Column               | Datatype | Unit     | Column Description                                              |
|----------------------|----------|----------|-----------------------------------------------------------------|
| site                 | CHAR     |          | Investigation site name                                         |
| activity_type        | CHAR     |          | Activity type code                                              |
| start_date           | DATE     |          | Date (yymmdd hh:mm:ss)                                          |
| stop_date            | DATE     |          | Date (yymmdd hh:mm:ss)                                          |
| project              | CHAR     |          | project code                                                    |
| idcode               | CHAR     |          | Object or borehole identification code                          |
| secup                | FLOAT    | m        | Upper section limit (m)                                         |
| seclow               | FLOAT    | m        | Lower section limit (m)                                         |
| section_no           | INTEGER  | number   | Section number                                                  |
| test_type            | CHAR     |          | Test type code (1-7), see table description                     |
| formation_type       | CHAR     |          | 1: Rock, 2: Soil (superficial deposits)                         |
| start_flow_period    | DATE     | yyyymmdd | Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)    |
| stop_flow_period     | DATE     | yyyymmdd | Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)     |
| flow_rate_end_qp     | FLOAT    | m**3/s   | Flow rate at the end of the flowing period                      |
| value_type_qp        | CHAR     |          | 0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower> |
| mean_flow_rate_qm    | FLOAT    | m**3/s   | Arithmetic mean flow rate during flow period                    |
| q_measlI             | FLOAT    | m**3/s   | Estimated lower measurement limit of flow rate                  |
| q_measlu             | FLOAT    | m**3/s   | Estimated upper measurement limit of flow rate                  |
| tot_volume_vp        | FLOAT    | m**3     | Total volume of pumped or injected water                        |
| dur_flow_phase_tp    | FLOAT    | S        | Duration of the flowing period of the test                      |
| dur_rec_phase_tf     | FLOAT    | S        | Duration of the recovery period of the test                     |
| initial_head_hi      | FLOAT    | m        | Hydraulic head in test section at start of the flow period      |
| head_at_flow_end_hp  | FLOAT    | m        | Hydraulic head in test section at stop of the flow period.      |
| final_head_hf        | FLOAT    | m        | Hydraulic head in test section at stop of recovery period.      |
| initial_press_pi     | FLOAT    | kPa      | Groundwater pressure in test section at start of flow period    |
| press_at_flow_end_pp | FLOAT    | kPa      | Groundwater pressure in test section at stop of flow period.    |
| final_press_pf       | FLOAT    | kPa      | Ground water pressure at the end of the recovery period.        |
| fluid_temp_tew       | FLOAT    | оС       | Measured section fluid temperature, see table description       |
| fluid_elcond_ecw     | FLOAT    | mS/m     | Measured section fluid el. conductivity, see table descr.       |
| fluid_salinity_tdsw  | FLOAT    | mg/l     | Total salinity of section fluid based on EC, see table descr.   |
| fluid_salinity_tdswm | FLOAT    | mg/l     | Tot. section fluid salinity based on water sampling, see        |
| reference            | CHAR     |          | SKB report No for reports describing data and evaluation        |
| comments             | VARCHAR  |          | Short comment to data                                           |
| error_flag           | CHAR     |          | If error_flag = "*" then an error occured and an error          |
| in_use               | CHAR     |          | If in_use = "*" then the activity has been selected as          |
| sign                 | CHAR     |          | Signature for QA data accknowledge (QA - OK)                    |
| lp .                 | FLOAT    | m        | Hydraulic point of application                                  |

|         |                     |                     |        |        | section |           | formation_ |                     |                     | flow_rate_end_q | value_type_q | mean_flow_r |           |          |               |
|---------|---------------------|---------------------|--------|--------|---------|-----------|------------|---------------------|---------------------|-----------------|--------------|-------------|-----------|----------|---------------|
| idcode  | start_date          | stop_date           | secup  | seclow | no      | test_type | type       | start_flow_period   | stop_flow_period    | p               | р            | ate_qm      | q_measlI  | q_measlu | tot_volume_vp |
| KLX 15A | 2007-04-12 07:48:00 | 2007-04-12 10:08:00 | 80.00  | 180.00 |         | 3         | 1          | 2007-04-12 09:06:39 | 2007-04-12 09:36:39 | 4.42E-04        | 0            | 5.20E-04    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-12 13:56:00 | 2007-04-12 16:07:00 | 180.00 | 280.00 |         | 3         | 1          | 2007-04-12 15:05:54 | 2007-04-12 15:35:54 | 1.28E-04        | 0            | 1.42E-04    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-12 17:54:00 | 2007-04-12 20:31:00 | 280.00 | 380.00 |         | 3         | 1          | 2007-04-12 18:59:16 | 2007-04-12 19:29:16 | 2.83E-07        | 0            | 2.92E-07    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-12 22:07:00 | 2007-04-12 23:57:00 | 380.00 | 480.00 |         | 3         | 1          | 2007-04-12 22:55:27 | 2007-04-12 23:55:27 | 3.20E-05        | 0            | 3.37E-05    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-13 06:20:00 | 2007-04-13 08:19:00 | 480.00 | 580.00 |         | 3         | 1          | 2007-04-13 07:17:50 | 2007-04-13 07:47:50 | 2.28E-06        | 0            | 2.32E-06    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-13 10:28:00 | 2007-04-13 12:19:00 | 580.00 | 680.00 |         | 3         | 1          | 2007-04-13 11:17:08 | 2007-04-15 11:47:08 | 1.36E-05        | 0            | 1.57E-05    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-13 15:02:00 | 2007-04-13 17:27:00 | 680.00 | 780.00 |         | 3         | 1          | 2007-04-13 16:25:02 | 2007-04-14 16:55:02 | 5.17E-07        | 0            | 7.33E-07    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-13 19:23:00 | 2007-04-13 21:53:00 | 780.00 | 880.00 |         | 3         | 1          | 2007-04-13 20:21:50 | 2007-04-13 20:51:50 | 6.50E-07        | 0            | 7.50E-07    | 1.67E-08  | 8.33E-04 | 1.50E+00      |
| KLX 15A | 2007-04-14 19:23:00 | 2007-04-14 20:46:00 | 80.00  | 100.00 |         | 3         | 1          | 2007-04-14 20:04:48 | 2007-04-14 20:24:48 | 5.32E-05        | 0            | 5.57E-05    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-14 22:09:00 | 2007-04-14 23:32:00 | 100.00 | 120.00 |         | 3         | 1          | 2007-04-14 22:50:23 | 2007-04-14 23:10:23 | 4.90E-05        | 0            | 5.05E-05    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 00:09:00 | 2007-04-15 01:31:00 | 120.00 | 140.00 |         | 3         | 1          | 2007-04-15 00:49:27 | 2007-04-15 01:09:27 | 4.32E-04        | 0            | 4.92E-04    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 07:52:00 | 2007-04-15 09:21:00 | 140.00 | 160.00 |         | 3         | 1          | 2007-04-15 08:39:25 | 2007-04-15 08:59:25 | 4.47E-05        | 0            | 4.65E-05    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 10:15:00 | 2007-04-15 11:42:00 | 160.00 | 180.00 |         | 3         | 1          | 2007-04-15 11:00:23 | 2007-04-15 11:20:23 | 1.77E-06        | 0            | 1.85E-06    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 12:35:00 | 2007-04-15 14:01:00 | 180.00 | 200.00 |         | 3         | 1          | 2007-04-15 13:19:40 | 2007-04-15 13:39:40 | 1.62E-05        | 0            | 1.67E-05    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 14:59:00 | 2007-04-15 16:43:00 | 200.00 | 220.00 |         | 3         |            | <del></del>         | 2007-04-15 16:21:11 | 5.00E-08        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 17:16:00 | 2007-04-15 19:09:00 | 220.00 | 240.00 |         | 3         | 1          | ·                   | 2007-04-15 18:47:51 | 8.33E-08        | 0            | 9.20E-08    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 19:47:00 | 2007-04-15 22:15:00 | 240.00 | 260.00 |         | 3         | 1          | 2007-04-15 20:53:24 | 2007-04-15 21:13:24 | 3.33E-08        | 0            | 3.77E-08    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-15 22:53:00 | 2007-04-16 00:21:00 | 260.00 | 280.00 |         | 3         | 1          | 2007-04-15 23:39:11 | 2007-04-15 23:59:11 | 1.60E-04        | 0            | 1.72E-04    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-16 00:56:00 | 2007-04-16 04:49:00 | 280.00 | 300.00 |         | 3         | 1          | 2007-04-16 02:27:26 | 2007-04-16 02:47:26 | 2.05E-08        | 0            | 3.60E-08    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-16 06:46:00 | 2007-04-16 07:39:00 | 300.00 | 320.00 |         | 3         | 1          | #NV                 | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-16 11:08:00 | 2007-04-16 11:57:00 | 340.00 | 360.00 |         | 3         | 1          | #NV                 | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-16 13:33:00 | 2007-04-16 15:03:00 | 360.00 | 380.00 |         | 3         | 1          | 2007-04-16 14:16:59 | 2007-04-16 14:36:59 | 3.17E-07        | 0            | 3.32E-07    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-16 15:49:00 | 2007-04-16 17:16:00 | 380.00 | 400.00 |         | 3         | 1          | 2007-04-16 16:34:56 | 2007-04-16 16:54:56 | 2.47E-05        | 0            | 2.60E-05    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-16 17:49:00 | 2007-04-16 19:13:00 | 400.00 | 420.00 |         | 3         | 1          |                     | 2007-04-16 18:51:51 | 1.43E-05        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-16 19:51:00 | 2007-04-16 20:47:00 | 420.00 | 440.00 |         | 3         |            | <del></del>         | #NV                 | #NV             | -1           |             | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-16 22:04:00 | 2007-04-16 23:37:00 | 440.00 | 460.00 |         | 3         | 1          | 2007-04-16 22:55:49 | 2007-04-16 23:15:49 | 4.00E-07        | 0            | 4.67E-07    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-17 00:11:00 | 2007-04-17 05:32:00 | 460.00 | 480.00 |         | 3         |            |                     | 2007-04-17 01:31:30 | 8.00E-08        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-17 06:50:00 | 2007-04-17 07:38:00 | 480.00 | 500.00 |         | 3         | 1          | #NV                 | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 08:22:00 | 2007-04-17 09:52:00 | 500.00 | 520.00 |         | 3         | 1          |                     | 2007-04-17 09:25:34 | 2.92E-06        | 0            | 3.02E-06    | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-17 10:40:00 | 2007-04-17 11:29:00 | 520.00 | 540.00 |         | 3         |            |                     | #NV                 | #NV             | -1           |             | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 13:13:00 | 2007-04-17 14:02:00 | 540.00 | 560.00 |         | 3         | 1          |                     | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 14:39:00 | 2007-04-17 15:28:00 | 560.00 | 580.00 |         | 3         | 1          | #NV                 | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 17:01:00 | 2007-04-17 17:56:00 | 580.00 | 600.00 |         | 3         |            | <del> </del>        | #NV                 | #NV             | -1           | <u> </u>    | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 18:29:00 | 2007-04-17 19:23:00 | 600.00 | 620.00 |         | 3         | 1          |                     | #NV                 | #NV             | -1           | #NV         | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-17 19:54:00 | 2007-04-17 21:59:00 | 620.00 | 640.00 |         | 3         | 1          |                     | 2007-04-17 20:57:13 | 2.05E-05        | 0            | ļ           | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 06:55:00 | 2007-04-18 07:46:00 | 680.00 | 700.00 |         | 3         |            | <del></del>         | #NV                 | #NV             | -1           | <u> </u>    | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-18 08:32:00 | 2007-04-18 10:34:00 | 700.00 | 720.00 | v       | 3         |            |                     | 2007-04-18 09:52:25 | 2.67E-07        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 11:25:00 | 2007-04-18 13:21:00 | 720.00 | 740.00 |         | 3         | 1          |                     | 2007-04-18 12:39:09 | 1.67E-07        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 14:06:00 | 2007-04-18 16:13:00 | 740.00 | 760.00 |         | 3         | 1          |                     | 2007-04-18 15:51:21 | 1.67E-08        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 16:45:00 | 2007-04-18 18:35:00 | 760.00 | 780.00 |         | 3         |            | <del></del>         | 2007-04-18 18:13:22 | 1.83E-07        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 19:14:00 | 2007-04-18 22:09:00 | 780.00 | 800.00 |         | 3         |            |                     | 2007-04-18 20:37:15 | 8.33E-08        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-18 23:25:00 | 2007-04-19 01:11:00 | 800.00 | 820.00 |         | 3         |            | <del> </del>        | 2007-04-19 00:49:48 | 1.00E-07        | 0            | ļ           | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-19 01:51:00 | 2007-04-19 02:43:00 | 820.00 | 840.00 |         | 3         |            | <del></del>         | #NV                 | #NV             | -1           | <del></del> | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-19 07:59:00 | 2007-04-19 09:31:00 | 840.00 | 860.00 |         | 3         |            | ·                   | 2007-04-19 09:04:31 | 5.33E-07        | 0            | <del></del> | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-19 10:19:00 | 2007-04-19 13:12:00 | 860.00 | 880.00 |         | 3         |            | <del></del>         | 2007-04-19 12:10:52 | 2.83E-08        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-19 14:46:00 | 2007-04-19 15:34:00 | 880.00 | 900.00 |         | 3         | 1          |                     | #NV                 | #NV             | -1           |             | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-19 16:30:00 | 2007-04-19 17:21:00 | 900.00 | 920.00 |         | 3         |            | <del> </del>        | #NV                 | #NV             | -1           | ļ           | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-19 17:52:00 | 2007-04-19 18:22:00 | 920.00 | 940.00 |         | 3         |            |                     | #NV                 | #NV             | -1           | \$          | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-19 20:42:00 | 2007-04-19 21:31:00 | 940.00 | 960.00 |         | 3         |            |                     | #NV                 | #NV             | -1           | ·           | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-19 22:03:00 | 2007-04-19 22:53:00 | 955.00 | 975.00 |         | 3         |            |                     | #NV                 | #NV             | -1           |             | 1.67E-08  | 8.33E-04 | #NV           |
| KLX 15A | 2007-04-21 12:18:00 | 2007-04-21 14:33:00 | 380.00 | 385.00 |         | 3         |            |                     | 2007-04-21 14:11:18 | 1.10E-07        |              |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-21 15:06:00 | 2007-04-21 16:31:00 | 385.00 | 390.00 |         | 3         |            | <del> </del>        | 2007-04-21 14:11:10 | 2.00E-05        | 0            |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-21 15:56:00 | 2007-04-21 18:20:00 | 390.00 | 395.00 |         | 3         |            |                     | 2007-04-21 10:09:05 | 1.38E-05        | <u> </u>     |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| KLX 15A | 2007-04-21 10:30:00 |                     | 400.00 | 405.00 |         | 3         |            |                     | <u> </u>            | 9.17E-06        |              |             | 1.67E-08  | 8.33E-04 | 1.00E+00      |
| NLA IDA | 2007-04-2121.08:00  | 2007-04-21 22:31:00 | 400.00 | 405.00 |         | 3         |            | 2007-04-2121:49:44  | 2007-04-21 22:09:54 | 9.17⊑-06        | 1 0          | 9.50⊏-06    | 1.07 ⊑-08 | ი.აა⊏-04 | 1.00⊑+00      |

| KLX 15A<br>KLX 15A<br>KLX 15A | 80.00            |                  | hase_tp      |                | hi          | ln .                                             | hf           |              | press_at_flow_e<br>nd pp |      | ew           | fluid_elcond_e<br>cw | fluid_salinity_t<br>dsw | dswm     | reference  | comments     | In               |
|-------------------------------|------------------|------------------|--------------|----------------|-------------|--------------------------------------------------|--------------|--------------|--------------------------|------|--------------|----------------------|-------------------------|----------|------------|--------------|------------------|
| KLX 15A<br>KLX 15A            |                  | 180.00           | 1800         | ase_tf<br>1800 | 1           | IF.                                              | 7.34         | 1405         |                          |      | -            |                      |                         |          | 1.0.0.0.00 |              | 130.00           |
| KLX 15A                       | 180.00           | 280.00           | 1800         | ·              |             |                                                  | 6.98         | 2164         | 2365                     | ·    | <del></del>  |                      |                         |          |            |              | 230.00           |
|                               | 280.00           | 380.00           | 1800         |                |             |                                                  | 7.95         | 2917         | 3116                     |      |              |                      |                         |          |            |              | 330.00           |
| KLX 15A                       | 380.00           | 480.00           | 1800         | 1800           |             |                                                  | 7.65         | 3661         | 3862                     | 3665 | 12.3         |                      |                         |          |            |              | 430.00           |
| KLX 15A                       | 480.00           | 580.00           | 1800         | 1800           |             |                                                  | 8.48         | 4401         | 4602                     | 4403 | 13.9         |                      |                         |          |            |              | 530.00           |
| KLX 15A                       | 580.00           | 680.00           | 1800         | 1800           |             |                                                  | 9.53         | 5148         | 5345                     | 5148 | #NV          |                      |                         |          |            |              | 630.00           |
| KLX 15A                       | 680.00           | 780.00           | 1800         | 1800           |             |                                                  | #NV          | 5891         | 6091                     | 5964 | #NV          |                      |                         |          |            |              | 730.00           |
| KLX 15A                       | 780.00           | 880.00           | 1800         | 3600           |             |                                                  | 11.04        | 6605         | 6801                     | 6604 | #NV          |                      |                         |          |            |              | 830.00           |
| KLX 15A                       | 80.00            | 100.00           | 1200         | 1200           |             |                                                  | 7.38         | 805          | 1003                     | 803  | 7.7          |                      |                         |          |            |              | 90.00            |
| KLX 15A                       | 100.00           | 120.00           | 1200         | 1200           |             |                                                  | 7.10         | 954          | 1154                     |      | 7.9          |                      |                         |          |            |              | 110.00           |
| KLX 15A                       | 120.00           | 140.00           | 1200         | 1200           |             |                                                  | 7.46         | 1105         | 1137                     | 1109 | 8.3          |                      |                         |          |            |              | 130.00           |
| KLX 15A                       | 140.00           | 160.00           | 1200         |                |             |                                                  | 7.41         | 1257         | 1457                     | 1257 | 8.5          |                      |                         |          |            |              | 150.00           |
| KLX 15A                       | 160.00           | 180.00           | 1200         |                |             |                                                  | 7.44         | 1409         | 1609                     |      |              |                      |                         |          |            |              | 170.00           |
| KLX 15A                       | 180.00           | 200.00           | 1200         |                |             |                                                  | 7.65         | 1562         | 1762                     |      |              |                      |                         |          |            |              | 190.00           |
| KLX 15A                       | 200.00           | 220.00           | 1200         |                |             |                                                  | 6.34         | 1721         | 1921                     | 1719 |              |                      |                         |          |            |              | 210.00           |
| KLX 15A                       | 220.00           | 240.00           | 1200         | <u> </u>       |             |                                                  | 5.95         | 1867         | 2067                     | 1876 |              | <u> </u>             |                         |          |            |              | 230.00           |
| KLX 15A                       | 240.00           | 260.00           | 1200         |                |             |                                                  | 6.82         | 2019         | 2215                     |      |              |                      |                         |          |            |              | 250.00           |
| KLX 15A                       | 260.00           | 280.00           | 1200         | <u> </u>       |             |                                                  | 7.12         | 2164         | 2456                     | ·    | ·            | <u> </u>             |                         |          |            |              | 270.00           |
| KLX 15A                       | 280.00           | 300.00           | 1200         |                |             |                                                  | 7.98         | 2351         | 2549                     |      |              |                      |                         |          |            |              | 290.00           |
| KLX 15A                       | 300.00           | 320.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 310.00           |
| KLX 15A                       | 340.00           | 360.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 350.00           |
| KLX 15A                       | 360.00           | 380.00           | 1200         |                |             |                                                  | 8.14         | 2920         | 3119                     |      |              |                      |                         |          |            |              | 370.00           |
| KLX 15A                       | 380.00           | 400.00           | 1200         |                | <u> </u>    |                                                  | 8.12         | 3070         | 3292                     |      |              | <u> </u>             |                         |          |            |              | 390.00           |
| KLX 15A                       | 400.00           | 420.00           | 1200         |                |             |                                                  | 8.57         | 3222         | 3422                     |      |              |                      |                         |          |            |              | 410.00           |
| KLX 15A                       | 420.00           | 440.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 430.00           |
| KLX 15A                       | 440.00           | 460.00           | 1200         |                |             |                                                  | 9.44         | 3520         | 3720                     |      |              |                      |                         |          |            |              | 450.00           |
| KLX 15A                       | 460.00           | 480.00           | 1200         |                |             |                                                  | 8.01         | 3669         | 3865                     |      |              |                      |                         |          |            |              | 470.00           |
| KLX 15A                       | 480.00           | 500.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 490.00           |
| KLX 15A                       | 500.00           | 520.00           | 1200         |                |             |                                                  | 8.09         | 3957         | 4157                     | 3958 |              |                      |                         |          |            | -            | 510.00           |
| KLX 15A                       | 520.00           | 540.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         | ļ        | ļ          | ļ            | 530.00           |
| KLX 15A                       | 540.00           | 560.00           | #NV          | <u> </u>       | <u> </u>    |                                                  | #NV          | #NV          | #NV                      |      | <del> </del> | <u> </u>             |                         |          |            |              | 550.00           |
| KLX 15A                       | 560.00           | 580.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 570.00           |
| KLX 15A                       | 580.00           | 600.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         | -        | -          |              | 590.00           |
| KLX 15A                       | 600.00           | 620.00           | #NV          |                | <del></del> |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 610.00           |
| KLX 15A                       | 620.00           | 640.00           | 1200         |                |             |                                                  | 8.80         | 4849         | 5078                     |      |              |                      |                         |          |            |              | 630.00           |
| KLX 15A                       | 680.00           | 700.00           | #NV          |                | <del></del> | <del> </del>                                     | #NV          | #NV          | #NV                      |      | ļ            |                      |                         |          |            | <del> </del> | 690.00           |
| KLX 15A<br>KLX 15A            | 700.00<br>720.00 | 720.00<br>740.00 | 1200<br>1200 |                |             |                                                  | #NV<br>10.46 | 5448<br>5600 | 5648<br>5799             |      |              |                      |                         |          |            | -            | 710.00<br>730.00 |
| KLX 15A<br>KLX 15A            | 740.00           | 760.00           | 1200         | <u> </u>       |             | ļ                                                | 10.46        | 5744         | 5938                     | 5791 | 15.4         |                      | ļ                       |          | ļ          |              | 750.00           |
| KLX 15A<br>KLX 15A            | 740.00           | 780.00           | 1200         |                |             |                                                  | 10.13        | 5889         | 6089                     |      | 15.8         |                      |                         |          |            |              | 770.00           |
| KLX 15A<br>KLX 15A            | 780.00           | 800.00           | 1200         |                |             |                                                  | #NV          | 6034         | 6236                     |      | 16.1         |                      | <u> </u>                | ļ        | ļ          | -            | 790.00           |
| KLX 15A<br>KLX 15A            | 800.00           | 820.00           | 1200         |                |             |                                                  | 10.13        | 6177         | 6378                     |      |              |                      |                         | <b>†</b> |            |              | 810.00           |
| KLX 15A<br>KLX 15A            | 820.00           | 840.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 830.00           |
| KLX 15A                       | 840.00           | 860.00           | 1200         |                |             | <del>                                     </del> | 10.55        | 6457         | 6655                     |      |              |                      |                         | -        | <u> </u>   | -            | 850.00           |
| KLX 15A<br>KLX 15A            | 860.00           | 880.00           | 1200         |                |             |                                                  | 12.59        | 6617         | 6804                     |      |              |                      |                         |          |            |              | 870.00           |
| KLX 15A                       | 880.00           | 900.00           | #NV          | <i></i>        |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            | <del> </del> | 890.00           |
| KLX 15A                       | 900.00           | 920.00           | #NV          |                |             | <del> </del>                                     | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            | <del> </del> | 910.00           |
| KLX 15A                       | 920.00           | 940.00           | #NV          |                |             | <u> </u>                                         | #NV          | #NV          | #NV                      |      |              |                      | <b>†</b>                |          |            | <b> </b>     | 930.00           |
| KLX 15A                       | 940.00           | 960.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      | <b>†</b>                | <b>†</b> | <u> </u>   | <b> </b>     | 950.00           |
| KLX 15A                       | 955.00           | 975.00           | #NV          |                |             |                                                  | #NV          | #NV          | #NV                      |      |              |                      |                         |          |            |              | 965.00           |
| KLX 15A                       | 380.00           | 385.00           | 1200         |                |             | <del>                                     </del> | 8.03         | 2955         | 3178                     |      |              | <b> </b>             | <b>†</b>                | <b>†</b> | <u> </u>   | <b>†</b>     | 382.50           |
| KLX 15A                       | 385.00           | 390.00           | 1200         | <u> </u>       | <u> </u>    |                                                  | 7.82         | 2992         | 3192                     | ·    | <del> </del> |                      |                         | <b>†</b> |            | <u> </u>     | 387.50           |
| KLX 15A                       | 390.00           | 395.00           | 1200         |                |             |                                                  | 7.85         | 3030         | 3246                     |      |              |                      |                         |          |            |              | 392.50           |
| KLX 15A                       | 400.00           | 405.00           | 1200         |                |             |                                                  | 7.97         | 3104         | 3314                     |      |              |                      | <u> </u>                | <u> </u> |            | <b>†</b>     | 402.50           |

|         |                     |                     |        |         | section_ |           | formation_ |                                       |                     | flow_rate_end_q | value_type_q | mean_flow_r    |          |             |               |
|---------|---------------------|---------------------|--------|---------|----------|-----------|------------|---------------------------------------|---------------------|-----------------|--------------|----------------|----------|-------------|---------------|
| idcode  | start_date          | stop_date           | secup  | seclow  | no       | test_type | type       | start_flow_period                     | stop_flow_period    | р               | р            | ate_qm         | q_measll | q_measlu    | tot_volume_vp |
| KLX 15A | 2007-04-21 22:58:00 | 2007-04-21 23:47:00 | 405.00 | 410.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-22 00:11:00 | 2007-04-22 01:33:00 | 410.00 | 415.00  |          | 3         | 1          | 2007-04-22 00:51:49                   | 2007-04-22 01:11:59 | 6.17E-06        | 0            | 6.23E-06       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 06:38:00 | 2007-04-22 07:26:00 | 415.00 | 420.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-22 08:18:00 | 2007-04-22 10:14:00 | 440.00 | 445.00  |          | 3         | 1          | 2007-04-22 09:32:33                   | 2007-04-22 09:52:33 | 5.83E-08        | 0            | 6.77E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 10:48:00 | 2007-04-22 11:37:00 | 445.00 | 450.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-22 13:05:00 | 2007-04-22 14:33:00 | 450.00 | 455.00  |          | 3         | 1          | 2007-04-22 13:51:43                   | 2007-04-22 14:11:43 | 2.83E-07        | 0            | 3.13E-07       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 15:03:00 | 2007-04-22 16:45:00 | 455.00 | 460.00  |          | 3         | 1          | 2007-04-22 16:03:13                   | 2007-04-22 16:23:13 | 1.33E-07        | 0            | 1.53E-07       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 17:10:00 | 2007-04-22 18:37:00 | 460.00 | 465.00  |          | 3         | 1          | 2007-04-22 17:55:12                   | 2007-04-22 18:15:22 | 5.00E-08        | 0            | 5.50E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 19:02:00 | 2007-04-22 20:50:00 | 465.00 | 470.00  |          | 3         | 1          | 2007-04-22 19:48:43                   | 2007-04-22 20:08:53 | 4.17E-08        | 0            | 4.50E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 21:41:00 | 2007-04-22 23:12:00 | 470.00 | 475.00  |          | 3         | 1          | 2007-04-22 22:30:41                   | 2007-04-22 22:50:51 | 3.33E-08        | 0            | 3.67E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-22 23:36:00 | 2007-04-23 00:24:00 | 475.00 | 480.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 00:58:00 | 2007-04-23 02:17:00 | 500.00 | 505.00  |          | 3         | 1          | 2007-04-23 01:35:50                   | 2007-04-23 01:55:50 | 3.17E-06        | 0            | 3.37E-06       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-23 06:34:00 | 2007-04-23 07:23:00 | 505.00 | 510.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 07:57:00 | 2007-04-23 08:45:00 | 510.00 | 515.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 09:17:00 | 2007-04-23 10:05:00 | 515.00 | 520.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 13:19:00 | 2007-04-23 14:08:00 | 620.00 | 625.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 14:31:00 | 2007-04-23 16:01:00 | 623.00 | 628.00  |          | 3         | 1          | 2007-04-23 15:19:39                   | 2007-04-23 15:39:39 | 5.00E-08        | 0            | 6.00E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-23 16:25:00 | 2007-04-23 17:57:00 | 628.00 | 633.00  |          | 3         | 1          | 2007-04-23 17:15:18                   | 2007-04-23 17:35:28 | 1.88E-05        | 0            | 2.07E-05       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-23 18:21:00 | 2007-04-23 19:41:00 | 630.00 | 635.00  |          | 3         | 1          | 2007-04-23 18:59:26                   | 2007-04-23 19:19:36 | 1.92E-05        | 0            | 2.11E-05       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-23 20:25:00 | 2007-04-23 22:02:00 | 635.00 | 640.00  |          | 3         | 1          | 2007-04-23 21:20:29                   | 2007-04-23 21:40:39 | 2.00E-08        | 0            | 2.17E-08       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-23 22:41:00 | 2007-04-23 23:30:00 | 660.00 | 665.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-23 23:55:00 | 2007-04-24 01:02:00 | 665.00 | 670.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 01:07:00 | 2007-04-24 01:55:00 | 670.00 | 675.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 06:35:00 | 2007-04-24 07:25:00 | 675.00 | 680.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 08:09:00 | 2007-04-24 08:58:00 | 700.00 | 705.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 09:27:00 | 2007-04-24 12:06:00 | 705.00 | 710.00  |          | 3         | 1          | 2007-04-24 10:46:02                   | 2007-04-24 11:06:02 | 2.50E-07        | 0            | 4.75E-07       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-24 12:23:00 | 2007-04-24 13:15:00 | 710.00 | 715.00  |          | 3         | 1          |                                       | #NV                 | #NV             | -1           | ·              | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 13:42:00 | 2007-04-24 14:31:00 | 715.00 | 720.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 15:00:00 | 2007-04-24 15:49:00 | 720.00 | 725.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 16:16:00 | 2007-04-24 17:04:00 | 725.00 | 730.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 17:29:00 | 2007-04-24 18:18:00 | 730.00 | 735.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-24 18:46:00 | 2007-04-24 20:38:00 | 735.00 | 740.00  |          | 3         | 1          | 2007-04-24 19:36:10                   | 2007-04-24 19:56:20 | 1.65E-07        | 0            | 2.12E-07       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-24 23:35:00 | 2007-04-25 00:24:00 | 745.00 | 750.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-25 00:48:00 | 2007-04-25 01:37:00 | 750.00 | 755.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-25 06:31:00 | 2007-04-25 07:20:00 | 755.00 | 760.00  |          | 3         | 1          | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-25 07:45:00 | 2007-04-25 08:33:00 | 760.00 | 765.00  |          | 3         |            | #NV                                   | #NV                 | #NV             | -1           | #NV            | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-25 13:20:00 | 2007-04-25 17:15:00 | 770.00 | 775.00  |          | 3         |            |                                       | 2007-04-25 16:53:08 | 1.15E-07        | 0            | <u> </u>       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-25 17:38:00 | 2007-04-25 19:01:00 | 775.00 | 780.00  |          | 3         | 1          | <del></del>                           | 2007-04-25 18:39:22 | 5.67E-08        | 0            |                | 1.67E-08 |             |               |
| KLX 15A | 2007-04-25 21:31:00 | 2007-04-25 22:19:00 | 785.00 | 790.00  |          | 3         |            | ·                                     | #NV                 | #NV             | -1           | <u> </u>       | 1.67E-08 | ¢           | #NV           |
| KLX 15A | 2007-04-25 22:42:00 | 2007-04-26 00:12:00 | 790.00 | 795.00  |          | 3         |            |                                       | 2007-04-25 23:50:07 | 7.33E-08        | 0            | <u> </u>       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-26 00:40:00 | 2007-04-26 01:26:00 | 795.00 | 800.00  |          | 3         |            | ·                                     | #NV                 | #NV             | -1           | ·              | 1.67E-08 | č           | #NV           |
| KLX 15A | 2007-04-26 06:31:00 | 2007-04-26 07:20:00 | 800.00 | 805.00  |          | 3         | 1          |                                       | #NV                 | #NV             | -1           | <del></del>    | 1.67E-08 |             | #NV           |
| KLX 15A | 2007-04-26 12:24:00 | 2007-04-26 13:13:00 | 805.00 | 810.00  |          | 3         |            | ·                                     | #NV                 | #NV             | -1           | ·              | 1.67E-08 | <del></del> | #NV           |
| KLX 15A | 2007-04-26 13:40:00 | 2007-04-26 15:11:00 | 810.00 | 815.00  |          | 3         | 1          |                                       | 2007-04-26 14:49:43 | 8.33E-08        | 0            |                | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-26 15:35:00 | 2007-04-26 16:24:00 | 815.00 | 820.00  |          | 3         |            |                                       | #NV                 | #NV             | -1           |                | 1.67E-08 | <b></b>     |               |
| KLX 15A | 2007-04-26 17:00:00 | 2007-04-26 18:41:00 | 840.00 | 845.00  |          | 3         |            |                                       | 2007-04-26 18:19:03 | 1.67E-08        | 0            | . <del> </del> | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-26 19:05:00 | 2007-04-26 20:28:00 | 845.00 | 850.00  |          | 3         |            |                                       | 2007-04-26 20:06:05 | 1.67E-07        | 0            |                | 1.67E-08 | \$          |               |
| KLX 15A | 2007-04-26 21:12:00 | 2007-04-26 22:01:00 | 850.00 | 855.00  |          | 3         | 1          |                                       | #NV                 | #NV             | -1           |                | 1.67E-08 | \$          | #NV           |
| KLX 15A | 2007-04-26 22:24:00 | 2007-04-26 23:47:00 | 855.00 | 860.00  |          | 3         |            |                                       | 2007-04-26 23:25:41 | 1.67E-07        | 0            | <u> </u>       | 1.67E-08 | 8.33E-04    | 1.00E+00      |
| KLX 15A | 2007-04-27 00:09:00 | 2007-04-27 01:16:00 | 860.00 | 865.00  |          | 3         | 1          |                                       | #NV                 | #NV             | -1           |                | 1.67E-08 | 8.33E-04    | #NV           |
| KLX 15A | 2007-04-27 00:00:00 | 2007-04-27 01:10:00 | 865.00 | 870.00  |          | 3         |            |                                       | 2007-04-27 02:28:32 | 2.17E-08        | 0            |                | 1.67E-08 | {           |               |
| KLX 15A | 2007-04-27 01:20:00 | 2007-04-27 03:30:00 | 870.00 | 875.00  |          | 3         | 1          |                                       | #NV                 | 2.17E-08<br>#NV | -1           |                | 1.67E-08 |             | #NV           |
| KLX 15A | 2007-04-27 00:28:00 | 2007-04-27 07:17:00 | 875.00 | 880.00  |          | 3         |            | · · · · · · · · · · · · · · · · · · · | #NV                 | #NV             | -1           |                | 1.67E-08 | 8.33E-04    | #NV           |
|         |                     |                     |        |         |          | 3         |            |                                       |                     |                 | -1           |                |          |             |               |
| KLX 15A | 2007-04-28 10:58:00 | 2007-04-28 13:52:00 | 970.00 | 1000.43 |          | 3         | 1          | 2007-04-28 12:50:12                   | 2007-04-28 13:10:12 | 6.67E-07        | 1 0          | 7.17E-07       | 1.67E-08 | 8.33E-04    | 1.00⊑+00      |

| idcode             | secup            | seclow           | dur_flow_p<br>hase_tp | dur_rec_ph<br>ase tf | initial_head_<br>hi | ow_end_h     | final_head_<br>hf | initial_press_ | press_at_flow_e<br>nd pp | final_press_p | fluid_temp_t<br>ew                      | fluid_elcond_e<br>cw | fluid_salinity_t | fluid_salinity_t<br>dswm | reference    | comments | In               |
|--------------------|------------------|------------------|-----------------------|----------------------|---------------------|--------------|-------------------|----------------|--------------------------|---------------|-----------------------------------------|----------------------|------------------|--------------------------|--------------|----------|------------------|
| KLX 15A            | 405.00           | 410.00           | #NV                   |                      | 1                   |              | #NV               | #NV            |                          | #NV           |                                         |                      |                  |                          |              |          | 407.50           |
| KLX 15A            | 410.00           | 415.00           | <del></del>           | 1                    |                     |              | 8.11              | 3180           | 3379                     |               | 11.5                                    | <del>}</del>         |                  |                          |              |          | 412.50           |
| KLX 15A            | 415.00           | 420.00           |                       |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 417.50           |
| KLX 15A            | 440.00           | 445.00           | 1200                  | 1200                 |                     |              | 8.39              | 3448           | 3670                     |               |                                         |                      |                  |                          |              |          | 442.50           |
| KLX 15A            | 445.00           | 450.00           | #NV                   | / #NV                |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 447.50           |
| KLX 15A            | 450.00           | 455.00           | 1200                  | 1200                 |                     |              | 8.63              | 3477           | 3677                     | 3494          | 12.0                                    |                      |                  |                          |              |          | 452.50           |
| KLX 15A            | 455.00           | 460.00           | 1200                  | 1200                 |                     |              | #NV               | 3518           | 3718                     | 3525          | 12.0                                    |                      |                  |                          |              |          | 457.50           |
| KLX 15A            | 460.00           | 465.00           | 1200                  | 1200                 |                     |              | 8.48              | 3557           | 3759                     | 3559          | 12.1                                    |                      |                  |                          |              |          | 462.50           |
| KLX 15A            | 465.00           | 470.00           | 1200                  | 1200                 |                     |              | 8.29              | 3594           | 3821                     | 3594          | 12.1                                    |                      |                  |                          |              |          | 467.50           |
| KLX 15A            | 470.00           | 475.00           | 1200                  | 1200                 |                     |              | 8.61              | 3637           | 3849                     |               | 12.2                                    |                      |                  |                          |              |          | 472.50           |
| KLX 15A            | 475.00           | 480.00           | #NV                   | / #NV                |                     |              | #NV               | #NV            | #NV                      | #NV           | 12.2                                    |                      |                  |                          |              |          | 477.50           |
| KLX 15A            | 500.00           | 505.00           |                       |                      |                     |              | 8.21              | 3848           | 4050                     |               | 12.5                                    |                      |                  |                          |              |          | 502.50           |
| KLX 15A            | 505.00           | 510.00           |                       |                      |                     |              | #NV               | #NV            |                          |               |                                         |                      |                  |                          |              |          | 507.50           |
| KLX 15A            | 510.00           | 515.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 512.50           |
| KLX 15A            | 515.00           | 520.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 517.50           |
| KLX 15A            | 620.00           | 625.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 622.50           |
| KLX 15A            | 623.00           | 628.00           |                       |                      |                     |              | 8.95              | 4763           | 4987                     | 4763          | #NV                                     |                      |                  |                          |              |          | 625.50           |
| KLX 15A            | 628.00           | 633.00           |                       |                      | <del>.</del>        |              | 8.69              | 4800           | 5002                     | Ò             |                                         |                      |                  |                          |              |          | 630.50           |
| KLX 15A            | 630.00           | 635.00           | 1200                  |                      |                     |              | 8.49              | 4812           | 5012                     |               | #NV                                     | <b>'</b>             |                  |                          |              |          | 632.50           |
| KLX 15A            | 635.00           | 640.00           | 1200                  |                      |                     |              | 9.54              | 4863           | 5073                     |               | #NV                                     | 1                    |                  |                          |              |          | 637.50           |
| KLX 15A            | 660.00           | 665.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 662.50           |
| KLX 15A            | 665.00           | 670.00           |                       |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 667.50           |
| KLX 15A            | 670.00           | 675.00           |                       |                      |                     |              | #NV               | #NV            |                          |               | *************************************** | 1                    |                  |                          |              |          | 672.50           |
| KLX 15A            | 675.00           | 680.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               | #NV                                     | 1                    |                  |                          |              |          | 677.50           |
| KLX 15A            | 700.00           | 705.00           | #NV                   |                      | <u> </u>            |              | #NV               | #NV            | #NV                      | <u></u>       |                                         | 1                    |                  |                          |              |          | 702.50           |
| KLX 15A            | 705.00           | 710.00           | 1200                  |                      |                     |              | #NV               | 5373           |                          |               |                                         |                      |                  |                          |              |          | 707.50           |
| KLX 15A            | 710.00           | 715.00           |                       |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 712.50           |
| KLX 15A            | 715.00           | 720.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 717.50           |
| KLX 15A            | 720.00           | 725.00           | #NV                   |                      |                     | <u> </u>     | #NV               | #NV            | #NV                      |               | #NV                                     |                      |                  |                          |              | -        | 722.50           |
| KLX 15A            | 725.00           | 730.00           | #NV                   |                      |                     | -            | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              | -        | 727.50           |
| KLX 15A            | 730.00           | 735.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 732.50           |
| KLX 15A            | 735.00           | 740.00           | 1200                  |                      |                     |              | 10.01             | 5601           | 5800                     |               |                                         |                      |                  |                          |              | -        | 737.50<br>747.50 |
| KLX 15A            | 745.00           | 750.00           |                       |                      |                     |              | #NV               | #NV            |                          |               |                                         |                      |                  |                          |              |          | 747.50           |
| KLX 15A            | 750.00           | 755.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               | #NV                                     |                      |                  |                          |              |          | 752.50           |
| KLX 15A            | 755.00           | 760.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          | <u> </u>     | -        | 757.50           |
| KLX 15A            | 760.00<br>770.00 | 765.00           | #NV                   |                      |                     | -            | #NV               | #NV<br>5854    | #NV                      |               | #NV<br>#NV                              |                      |                  |                          |              | -        | 762.50           |
| KLX 15A            | 775.00           | 775.00           | 1200<br>1200          |                      |                     | ļ            | 10.52             | 5900           | 6044<br>6080             |               | #NV                                     |                      |                  |                          | <u> </u>     | -        | 772.50<br>777.50 |
| KLX 15A<br>KLX 15A | 775.00           | 780.00<br>790.00 | #NV                   |                      |                     |              | 13.60<br>#NV      | 5900<br>#NV    | #NV                      |               |                                         | ,                    |                  |                          | <u> </u>     | -        | 787.50           |
| KLX 15A<br>KLX 15A | 790.00           | 795.00           |                       |                      |                     |              | 12.71             | #NV<br>5997    | 6187                     | 6058          | #NV                                     |                      |                  |                          |              | -        | 792.50           |
| KLX 15A<br>KLX 15A | 795.00           | 800.00           | #NV                   |                      |                     | <u> </u>     | #NV               | #NV            | #NV                      |               |                                         | 1                    |                  |                          |              |          | 797.50           |
| KLX 15A<br>KLX 15A | 800.00           | 805.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              |          | 802.50           |
| KLX 15A<br>KLX 15A | 805.00           | 810.00           |                       |                      |                     |              | #NV               | #NV            |                          |               |                                         |                      |                  |                          |              |          | 807.50           |
| KLX 15A<br>KLX 15A | 810.00           | 815.00           | 1200                  | 1                    |                     |              | 11.18             | 6143           | 6343                     |               | #NV                                     | ,                    |                  |                          |              |          | 812.50           |
| KLX 15A            | 815.00           | 820.00           |                       |                      |                     | <del> </del> | #NV               | #NV            | #NV                      |               |                                         |                      |                  |                          |              | -        | 817.50           |
| KLX 15A            | 840.00           | 845.00           | 1200                  |                      | <u> </u>            | -            | 17.15             | 6400           | 6564                     |               |                                         |                      |                  |                          | <del> </del> | -        | 842.50           |
| KLX 15A<br>KLX 15A | 845.00           | 850.00           | 1200                  |                      |                     |              | 11.52             | 6391           | 6630                     | 6392          |                                         | ,                    |                  |                          |              | 1        | 847.50           |
| KLX 15A<br>KLX 15A | 850.00           | 855.00           | #NV                   |                      | <u> </u>            | <del> </del> | #NV               | #NV            | #NV                      |               |                                         | ,                    | <b> </b>         | <b> </b>                 | <del> </del> |          | 852.50           |
| KLX 15A<br>KLX 15A | 855.00           | 860.00           | 1200                  |                      |                     | -            | 9.91              | 6462           | 6662                     |               |                                         | ,                    |                  |                          |              |          | 857.50           |
| KLX 15A<br>KLX 15A | 860.00           | 865.00           |                       |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         | -                    |                  |                          |              | 1        | 862.50           |
| KLX 15A            | 865.00           | 870.00           | 1200                  |                      |                     | <u> </u>     | 12.76             | 6547           | 6728                     |               | #NV                                     |                      |                  |                          |              | <b>†</b> | 867.50           |
| KLX 15A<br>KLX 15A | 870.00           | 875.00           | #NV                   |                      |                     |              | #NV               | #NV            | #NV                      |               |                                         | ,                    |                  |                          |              |          | 872.50           |
| KLX 15A            | 875.00           | 880.00           |                       |                      |                     | -            | #NV               | #NV            |                          |               |                                         |                      |                  |                          |              | -        | 877.50           |
| KLX 15A<br>KLX 15A | 970.00           |                  |                       |                      |                     |              | 12.07             | 7301           | 7501                     | 7301          | #NV                                     |                      |                  |                          | -            |          | 985.22           |

Table plu\_s\_hole\_test\_ed1
PLU Single hole tests, pumping/injection. Basic evaluation

| Column               | Datatype | Unit    | Column Description                                                         |
|----------------------|----------|---------|----------------------------------------------------------------------------|
| site                 | CHAR     | Oilit   | Investigation site name                                                    |
| activity_type        | CHAR     |         | Activity type code                                                         |
| start_date           | DATE     |         | Date (yymmdd hh:mm:ss)                                                     |
| stop_date            | DATE     |         | Date (yymmdd hh:mm:ss)                                                     |
| project              | CHAR     |         | project code                                                               |
| idcode               | CHAR     |         | Object or borehole identification code                                     |
| secup                | FLOAT    | m       | Upper section limit (m)                                                    |
| seclow               | FLOAT    | m       | Lower section limit (m)                                                    |
| section no           | INTEGER  | number  | Section number                                                             |
| test_type            | CHAR     | namber  | Test type code (1-7), see table description!                               |
| formation_type       | CHAR     |         | Formation type code. 1: Rock, 2: Soil (superficial deposits)               |
| lp                   | FLOAT    | m       | Hydraulic point of application for test section, see descr.                |
| seclen_class         | FLOAT    | m       | Planned ordinary test interval during test campaign.                       |
| spec_capacity_q_s    | FLOAT    | m**2/s  | Specific capacity (Q/s) of test section, see table descript.               |
| value_type_q_s       | CHAR     | 111 230 | 0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower> |
| transmissivity_tq    | FLOAT    | m**2/s  | Tranmissivity based on Q/s, see table description                          |
| value_type_tq        | CHAR     | 111 2/3 | 0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>     |
| bc_tq                | CHAR     |         | Best choice code. 1 means TQ is best choice of T, else 0                   |
| transmissivity_moye  | FLOAT    | m**2/s  | Transmissivity,TM, based on Moye (1967)                                    |
| bc_tm                | CHAR     | 111 2/3 | Best choice code. 1 means Tmoye is best choice of T, else 0                |
| value_type_tm        | CHAR     |         | 0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>     |
| hydr cond move       | FLOAT    | m/s     | K M: Hydraulic conductivity based on Moye (1967)                           |
| formation width b    | FLOAT    | m       | b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.                |
| width_of_channel_b   | FLOAT    | m       | B:Inferred width of formation for evaluated TB                             |
| tb                   | FLOAT    | m**3/s  | TB:Flow capacity in 1D formation of T & width B, see descr.                |
| I measl tb           | FLOAT    | m**3/s  | Estimated lower meas. limit for evaluated TB, see description              |
| u_measl_tb           | FLOAT    | m**3/s  | Estimated lower meas. limit of evaluated TB,see description                |
| sb                   | FLOAT    | m       | SB:S=storativity,B=width of formation,1D model,see descript.               |
| assumed sb           | FLOAT    | m       | SB*: Assumed SB,S=storativity,B=width of formation,see                     |
| leakage_factor_lf    | FLOAT    | m       | Lf:1D model for evaluation of Leakage factor                               |
| transmissivity_tt    | FLOAT    | m**2/s  | TT:Transmissivity of formation, 2D radial flow model, see                  |
| value_type_tt        | CHAR     | 111 270 | 0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>     |
| bc_tt                | CHAR     |         | Best choice code. 1 means TT is best choice of T, else 0                   |
| I measl q s          | FLOAT    | m**2/s  | Estimated lower meas. limit for evaluated TT,see table descr               |
| u_measl_q_s          | FLOAT    | m**2/s  | Estimated upper meas. limit for evaluated TT,see description               |
| storativity_s        | FLOAT    | 111 230 | S:Storativity of formation based on 2D rad flow,see descr.                 |
| assumed s            | FLOAT    |         | Assumed Storativity,2D model evaluation,see table descr.                   |
| bc_s                 | FLOAT    |         | Best choice of S (Storativity) ,see descr.                                 |
| ri                   | FLOAT    | m       | Radius of influence                                                        |
| ri_index             | CHAR     |         | ri index=index of radius of influence :-1,0 or 1, see descr.               |
| leakage_coeff        | FLOAT    | 1/s     | K'/b':2D rad flow model evaluation of leakage coeff,see desc               |
| hydr_cond_ksf        | FLOAT    | m/s     | Ksf:3D model evaluation of hydraulic conductivity, see desc.               |
| value_type_ksf       | CHAR     |         | 0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>   |
| I_measl_ksf          | FLOAT    | m/s     | Estimated lower meas.limit for evaluated Ksf,see table desc.               |
| u measl ksf          | FLOAT    | m/s     | Estimated upper meas.limit for evaluated Ksf,see table descr               |
| spec storage ssf     | FLOAT    | 1/m     | Ssf:Specific storage,3D model evaluation,see table descr.                  |
| assumed_ssf          | FLOAT    | 1/m     | Ssf*:Assumed Spec.storage,3D model evaluation,see table des.               |
| c                    | FLOAT    | m**3/pa | C: Wellbore storage coefficient; flow or recovery period                   |
| cd                   | FLOAT    | 5/pa    | CD: Dimensionless wellbore storage coefficient                             |
| skin                 | FLOAT    |         | Skin factor;best estimate of flow/recovery period,see descr.               |
| dt1                  | FLOAT    | s       | Estimated start time of evaluation, see table description                  |
| dt2                  | FLOAT    | s       | Estimated stop time of evaluation, see table description                   |
| t1                   | FLOAT    | s       | Start time for evaluated parameter from start flow period                  |
| t2                   | FLOAT    | s       | Stop time for evaluated parameter from start of flow period                |
| dte1                 | FLOAT    | s       | Start time for evaluated parameter from start of recovery                  |
| dte2                 | FLOAT    | s       | Stop time for evaluated parameter from start of recovery                   |
| p_horner             | FLOAT    | kPa     | p*:Horner extrapolated pressure, see table description                     |
| transmissivity_t_nlr | FLOAT    | m**2/s  | T_NLR Transmissivity based on None Linear Regression                       |
| storativity_s_nlr    | FLOAT    |         | S_NLR=storativity based on None Linear Regression,see                      |
| value_type_t_nlr     | CHAR     |         | 0:true value,-1:T_NLR <lower meas.limit,1:="">upper meas.limit</lower>     |
| bc_t_nlr             | CHAR     |         | Best choice code. 1 means T_NLR is best choice of T, else 0                |
| c_nlr                | FLOAT    | m**3/pa | Wellbore storage coefficient, based on NLR, see descr.                     |
| cd_nlr               | FLOAT    | •       | Dimensionless wellbore storage constant, see table descrip.                |
| skin_nlr             | FLOAT    |         | Skin factor based on Non Linear Regression,see desc.                       |
| transmissivity_t_grf | FLOAT    | m**2/s  | T_GRF:Transmissivity based on Genelized Radial Flow,see                    |
| value_type_t_grf     | CHAR     |         | 0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>     |
| bc_t_grf             | CHAR     |         | Best choice code. 1 means T_GRF is best choice of T, else 0                |
| storativity_s_grf    | FLOAT    |         | S_GRF:Storativity based on Generalized Radial Flow, see des.               |
| flow_dim_grf         | FLOAT    |         | Inferred flow dimesion based on Generalized Rad. Flow model                |
| comment              | VARCHAR  | no_unit | Short comment to the evaluated parameters                                  |
| error_flag           | CHAR     |         | If error_flag = "*" then an error occured and an error                     |
| in_use               | CHAR     |         | If in_use = "*" then the activity has been selected as                     |
| sign                 | CHAR     |         | Signature for QA data accknowledge (QA - OK)                               |
|                      |          |         |                                                                            |

|                    |                     |                                            |        |                  |            |           | formation ty |                  |              |                   | value_type_q_ |                     | transmissivity_moy |
|--------------------|---------------------|--------------------------------------------|--------|------------------|------------|-----------|--------------|------------------|--------------|-------------------|---------------|---------------------|--------------------|
| idcode             | start date          | stop date                                  | secup  | seclow           | section no | test_type | pe           | lp               | seclen class | spec_capacity_q_s |               | value_type_tq bc_tq | e                  |
| KLX 15A            |                     | 2007-04-12 10:08:00                        |        |                  |            |           | 3 1          | •                | 100          | 1.20E-04          |               |                     | 1.57E-04           |
| KLX 15A            |                     | 2007-04-12 16:07:00                        | 180.00 |                  |            |           | 3 1          | 230.00           | 100          | 6.26E-06          |               |                     | 8.16E-06           |
| KLX 15A            |                     | 2007-04-12 20:31:00                        |        |                  |            |           | 3 1          | 330.00           | 100          | 1.40E-08          | -             |                     | 1.82E-08           |
| KLX 15A            |                     | 2007-04-12 23:57:00                        |        | 480.00           |            |           | 3 1          | 430.00           | 100          | 1.56E-06          |               |                     | 2.03E-06           |
| KLX 15A            |                     | 2007-04-13 08:19:00                        |        | 580.00           |            |           | 3 1          | 530.00           | 100          | 1.11E-07          |               |                     | 1.45E-07           |
| KLX 15A            |                     | 2007-04-13 12:19:00                        |        |                  |            |           | 3 1          | 630.00           | 100          | 6.77E-07          |               |                     | 8.82E-07           |
| KLX 15A            |                     | 2007-04-13 17:27:00                        | 680.00 | 780.00           |            | 3         | 3 1          | 730.00           | 100          | 2.53E-08          |               |                     | 3.30E-08           |
| KLX 15A            | 2007-04-13 19:23:00 | 2007-04-13 21:53:00                        | 780.00 | 880.00           |            | :         | 3 1          | 830.00           | 100          | 3.25E-08          | 0             |                     | 4.24E-08           |
| KLX 15A            | 2007-04-14 19:23:00 | 2007-04-14 20:46:00                        | 80.00  | 100.00           |            | :         | 3 1          | 90.00            | 20           | 2.63E-06          | 0             |                     | 2.76E-06           |
| KLX 15A            | 2007-04-14 22:09:00 | 2007-04-14 23:32:00                        | 100.00 | 120.00           |            | 3         | 3 1          | 110.00           | 20           | 2.40E-06          | 0             |                     | 2.51E-06           |
| KLX 15A            | 2007-04-15 00:09:00 | 2007-04-15 01:31:00                        | 120.00 | 140.00           |            | 3         | 3 1          | 130.00           | 20           | 1.32E-04          | 0             |                     | 1.38E-04           |
| KLX 15A            | 2007-04-15 07:52:00 | 2007-04-15 09:21:00                        | 140.00 | 160.00           |            | 3         | 3 1          | 150.00           | 20           | 2.19E-06          | 0             |                     | 2.29E-06           |
| KLX 15A            | 2007-04-15 10:15:00 | 2007-04-15 11:42:00                        | 160.00 | 180.00           |            | ;         | 3 1          | 170.00           | 20           | 8.67E-08          | 0             |                     | 9.06E-08           |
| KLX 15A            | 2007-04-15 12:35:00 | 2007-04-15 14:01:00                        | 180.00 |                  |            |           | 3 1          | 190.00           | 20           | 7.93E-07          |               |                     | 8.30E-07           |
| KLX 15A            |                     | 2007-04-15 16:43:00                        |        |                  |            |           | 3 1          | 210.00           | 20           | 2.45E-09          |               |                     | 2.57E-09           |
| KLX 15A            |                     | 2007-04-15 19:09:00                        |        |                  |            |           | 3 1          | 230.00           | 20           | 4.09E-09          |               |                     | 4.28E-09           |
| KLX 15A            |                     | 2007-04-15 22:15:00                        |        |                  |            |           | 3 1          | 250.00           | 20           | 1.67E-09          |               |                     | 1.75E-09           |
| KLX 15A            |                     | 2007-04-16 00:21:00                        |        |                  |            |           | 3 1          | 270.00           | 20           | 5.38E-06          | -             |                     | 5.62E-06           |
| KLX 15A            |                     | 2007-04-16 04:49:00                        |        |                  |            |           | 3 1          | 290.00           | 20           | 1.02E-09          |               |                     | 1.06E-09           |
| KLX 15A            |                     | 2007-04-16 07:39:00                        | 300.00 | 320.00           |            |           | 3 1          | 310.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            |                     | 2007-04-16 11:57:00                        |        |                  |            |           | 3 1          | 350.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            |                     | 2007-04-16 15:03:00                        |        |                  |            |           | 3 1          | 370.00           | 20           | 1.56E-08          |               |                     | 1.63E-08           |
| KLX 15A            |                     | 2007-04-16 17:16:00                        |        |                  |            |           | 3 1          | 390.00           | 20           | 1.09E-06          |               |                     | 1.14E-06           |
| KLX 15A            |                     | 2007-04-16 19:13:00                        |        |                  |            |           | 3 1          | 410.00           | 20           | 6.99E-07          |               |                     | 7.31E-07           |
| KLX 15A            |                     | 2007-04-16 20:47:00                        | 420.00 | 440.00           |            |           | 3 1          | 430.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            |                     | 2007-04-16 23:37:00                        |        |                  |            |           | 3 1          | 450.00           | 20           | 1.96E-08          |               |                     | 2.05E-08           |
| KLX 15A            |                     | 2007-04-17 05:32:00                        |        | 480.00           |            |           | 3 1          | 470.00           | 20           | 4.00E-09          |               |                     | 4.19E-09           |
| KLX 15A            |                     | 2007-04-17 07:38:00                        |        |                  |            |           | 3 1          | 490.00           | 20           | #NV               |               |                     | #NV                |
| KLX 15A            |                     | 2007-04-17 09:52:00                        | 500.00 |                  |            |           | 3 1          | 510.00           | 20           | 1.43E-07          | 0             |                     | 1.50E-07           |
| KLX 15A<br>KLX 15A |                     | 2007-04-17 11:29:00<br>2007-04-17 14:02:00 |        | 540.00<br>560.00 |            |           | 3 1<br>3 1   | 530.00<br>550.00 | 20<br>20     | #NV<br>#NV        | -1<br>-1      |                     | #NV                |
| KLX 15A            |                     | 2007-04-17 14:02:00                        |        |                  |            |           | 3 1          | 570.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A<br>KLX 15A |                     | 2007-04-17 15:26:00                        |        |                  |            |           | 3 1          | 590.00           | 20           | #NV               |               |                     | #NV                |
| KLX 15A            |                     | 2007-04-17 17:30:00                        |        |                  |            |           | 3 1          | 610.00           | 20           | #NV               |               |                     | #NV                |
| KLX 15A<br>KLX 15A |                     | 2007-04-17 19:23:00                        |        |                  |            |           | 3 1          | 630.00           | 20           | 8.78E-07          | 0             |                     | 9.19E-07           |
| KLX 15A            |                     | 2007-04-17 21:39:00                        |        |                  |            |           | 3 1          | 690.00           | 20           | #NV               | -             |                     | #NV                |
| KLX 15A            |                     | 2007-04-18 10:34:00                        |        |                  |            |           | 3 1          | 710.00           | 20           | 1.31E-08          |               |                     | 1.37E-08           |
| KLX 15A            |                     | 2007-04-18 13:21:00                        |        |                  |            |           | 3 1          | 730.00           | 20           | 8.22E-09          |               |                     | 8.59E-09           |
| KLX 15A            |                     | 2007-04-18 16:13:00                        |        |                  |            |           | 3 1          | 750.00           | 20           | 8.43E-10          | -             |                     | 8.82E-10           |
| KLX 15A            |                     | 2007-04-18 18:35:00                        |        |                  |            |           | 3 1          | 770.00           | 20           | 8.99E-09          | -             |                     | 9.41E-09           |
| KLX 15A            |                     | 2007-04-18 22:09:00                        |        |                  |            |           | 3 1          | 790.00           | 20           | 4.05E-09          |               |                     | 4.23E-09           |
| KLX 15A            |                     | 2007-04-19 01:11:00                        |        |                  |            |           | 3 1          | 810.00           | 20           | 4.88E-09          |               |                     | 5.11E-09           |
| KLX 15A            |                     | 2007-04-19 02:43:00                        | 820.00 |                  |            |           | 3 1          | 830.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            |                     | 2007-04-19 09:31:00                        |        |                  |            |           | 3 1          | 850.00           | 20           | 2.64E-08          |               |                     | 2.76E-08           |
| KLX 15A            |                     | 2007-04-19 13:12:00                        |        |                  |            |           | 3 1          | 870.00           | 20           | 1.49E-09          |               |                     | 1.55E-09           |
| KLX 15A            |                     | 2007-04-19 15:34:00                        |        |                  |            |           | 3 1          | 890.00           | 20           | #NV               |               |                     | #NV                |
| KLX 15A            |                     | 2007-04-19 17:21:00                        |        | 920.00           |            |           | 3 1          | 910.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            | 2007-04-19 17:52:00 | 2007-04-19 18:22:00                        | 920.00 | 940.00           |            |           | 3 1          | 930.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            | 2007-04-19 20:42:00 | 2007-04-19 21:31:00                        | 940.00 | 960.00           |            |           | 3 1          | 950.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            | 2007-04-19 22:03:00 | 2007-04-19 22:53:00                        | 955.00 | 975.00           |            |           | 3 1          | 965.00           | 20           | #NV               | -1            |                     | #NV                |
| KLX 15A            | 2007-04-21 12:18:00 | 2007-04-21 14:33:00                        | 380.00 | 385.00           |            | 3         | 3 1          | 382.50           | 5            | 4.82E-09          |               |                     | 3.99E-09           |
| KLX 15A            | 2007-04-21 15:06:00 | 2007-04-21 16:31:00                        | 385.00 |                  |            | 3         | 3 1          | 387.50           | 5            | 9.81E-07          |               |                     | 8.10E-07           |
| KLX 15A            | 2007-04-21 16:56:00 | 2007-04-21 18:20:00                        | 390.00 | 395.00           |            |           | 3 1          | 392.50           | 5            | 6.28E-07          | 0             |                     | 5.19E-07           |
| KLX 15A            | 2007-04-21 21:08:00 | 2007-04-21 22:31:00                        | 400.00 | 405.00           |            |           | 3 1          | 402.50           | 5            | 4.28E-07          | 0             |                     | 3.53E-07           |

|                    |                                       |        |       |               | hydr cond m | formation wid | width_of_channel_ |              |              |    | leakage fact     |                      | value_type_ |             |             |
|--------------------|---------------------------------------|--------|-------|---------------|-------------|---------------|-------------------|--------------|--------------|----|------------------|----------------------|-------------|-------------|-------------|
| idcode             | secup                                 | seclow | bc tm | value type tm |             | th b          |                   | I measl tb   | u mosel th   | ch | assumed sb or If | transmissivity_tt    | tt bc tt    | l mosel a c | u_measl_q_s |
| KLX 15A            | 80.00                                 | 180.00 |       | value_type_tm |             |               | וט                | I_IIIeasi_tb | u_iiieasi_tb | อม | assumeu_sb or_n  | 7.70E-05             |             |             | 3.00E-04    |
| KLX 15A<br>KLX 15A | 180.00                                | 280.00 | 0     | -             |             |               |                   |              |              |    |                  | 1.41E-05             |             |             | 3.00E-04    |
| KLX 15A<br>KLX 15A | 280.00                                | 380.00 | 0     |               |             |               |                   |              |              |    |                  | 1.41E-05<br>1.93E-08 |             |             | 6.00E-08    |
| KLX 15A<br>KLX 15A | 380.00                                | 480.00 | 0     |               |             |               |                   |              |              |    |                  | 2.77E-06             |             |             | 5.00E-06    |
| KLX 15A<br>KLX 15A | 480.00                                | 580.00 | 0     |               |             |               |                   |              |              |    |                  | 2.77E-06<br>2.90E-07 | 0 1         |             | 7.00E-07    |
| KLX 15A<br>KLX 15A | 580.00                                | 680.00 | 0     |               |             |               |                   |              |              |    |                  | 2.90E-07<br>1.50E-07 | 0 1         |             | 3.00E-07    |
| KLX 15A<br>KLX 15A | 680.00                                | 780.00 | 0     |               |             |               |                   |              |              |    |                  |                      |             |             | 5.00E-08    |
| KLX 15A<br>KLX 15A | 780.00                                | 880.00 | 0     |               |             |               |                   |              |              |    |                  | 2.17E-08<br>3.65E-08 |             |             | 8.00E-08    |
| KLX 15A<br>KLX 15A | 80.00                                 | 100.00 | 0     |               |             |               |                   |              |              | ļ  |                  | 2.85E-06             |             |             | 8.00E-08    |
|                    |                                       |        |       |               |             |               |                   |              |              | ļ  |                  |                      |             |             |             |
| KLX 15A            | 100.00                                | 120.00 | 0     |               |             |               |                   |              |              | ļ  |                  | 4.10E-06             |             |             | 2.00E-05    |
| KLX 15A            | 120.00                                | 140.00 | 0     |               |             |               |                   |              |              |    |                  | 1.14E-04             |             |             | 3.00E-04    |
| KLX 15A            | 140.00                                | 160.00 | 0     |               |             |               |                   |              |              | ļ  |                  | 3.60E-06             |             |             | 3.00E-05    |
| KLX 15A            | 160.00                                | 180.00 | 0     |               |             |               |                   |              |              |    |                  | 1.36E-07             | 0 1         |             | 6.00E-07    |
| KLX 15A            | 180.00                                | 200.00 | 0     |               |             |               |                   |              |              |    |                  | 1.60E-06             |             |             | 5.00E-06    |
| KLX 15A            | 200.00                                | 220.00 | 0     |               |             |               |                   |              |              |    |                  | 2.57E-09             |             |             | 5.00E-09    |
| KLX 15A            | 220.00                                | 240.00 | 0     |               |             |               |                   |              |              |    |                  | 5.49E-09             |             |             | 7.00E-09    |
| KLX 15A            | 240.00                                | 260.00 | 0     |               |             |               |                   |              | 1            | -  |                  | 3.64E-09             |             |             | 5.00E-09    |
| KLX 15A            | 260.00                                | 280.00 | 0     |               | 2.012 01    |               |                   |              |              |    |                  | 1.13E-05             |             | 0.002 00    | 3.00E-05    |
| KLX 15A            | 280.00                                | 300.00 | 0     |               |             |               |                   |              |              |    |                  | 3.35E-10             |             |             | 3.00E-09    |
| KLX 15A            | 300.00                                | 320.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 340.00                                | 360.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 360.00                                | 380.00 | 0     |               |             |               |                   |              |              |    |                  | 2.19E-08             |             |             | 8.00E-08    |
| KLX 15A            | 380.00                                | 400.00 | 0     |               |             |               |                   |              |              |    |                  | 2.41E-06             |             |             | 5.00E-06    |
| KLX 15A            | 400.00                                | 420.00 | 0     |               |             |               |                   |              |              |    |                  | 1.91E-06             |             |             | 4.00E-06    |
| KLX 15A            | 420.00                                | 440.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 440.00                                | 460.00 | 0     |               |             |               |                   |              |              |    |                  | 1.41E-08             |             |             | 3.00E-08    |
| KLX 15A            | 460.00                                | 480.00 | 0     |               |             |               |                   |              |              |    |                  | 6.10E-09             |             |             | 1.00E-08    |
| KLX 15A            | 480.00                                | 500.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 500.00                                | 520.00 | 0     |               |             |               |                   |              |              |    |                  | 4.80E-07             | 0 1         |             | 8.00E-07    |
| KLX 15A            | 520.00                                | 540.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 540.00                                | 560.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 560.00                                | 580.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 580.00                                | 600.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 600.00                                | 620.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 620.00                                | 640.00 | 0     |               |             |               |                   |              |              |    |                  | 2.30E-07             |             |             | 3.00E-06    |
| KLX 15A            | 680.00                                | 700.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 700.00                                | 720.00 | 0     |               |             |               |                   |              |              |    |                  | 8.06E-09             |             |             | 3.00E-08    |
| KLX 15A            | 720.00                                | 740.00 | 0     |               |             |               |                   |              | 1            | 1  |                  | 4.19E-09             |             |             | 1.00E-08    |
| KLX 15A            | 740.00                                | 760.00 | 0     |               |             |               |                   |              | 1            | 1  |                  | 6.05E-10             |             |             | 1.00E-09    |
| KLX 15A            | 760.00                                | 780.00 | 0     |               |             |               |                   |              | 1            | -  |                  | 3.03E-09             |             |             | 6.00E-09    |
| KLX 15A            | 780.00                                | 800.00 | 0     |               |             |               |                   |              | 1            | 1  |                  | 2.32E-09             |             |             | 5.00E-09    |
| KLX 15A            | 800.00                                | 820.00 | 0     |               |             |               |                   |              | 1            | 1  |                  | 3.82E-09             |             |             | 8.00E-09    |
| KLX 15A            | 820.00                                | 840.00 | 0     |               | ,,,,,,      |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 840.00                                | 860.00 | 0     |               |             |               |                   |              |              | 1  |                  | 6.13E-08             |             |             | 1.00E-07    |
| KLX 15A            | 860.00                                | 880.00 | 0     |               | 7.1.02 1.   |               |                   |              | 1            |    |                  | 1.40E-09             |             |             | 6.00E-09    |
| KLX 15A            | 880.00                                | 900.00 | 0     |               |             |               |                   |              | 1            |    |                  | 1.00E-11             | -1 1        |             | 1.00E-11    |
| KLX 15A            | 900.00                                | 920.00 | 0     |               |             |               |                   |              | 1            | 1  |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 920.00                                | 940.00 | 0     |               |             |               |                   |              | 1            |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 940.00                                | 960.00 | 0     |               |             |               |                   |              | 1            |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 955.00                                | 975.00 | 0     |               |             |               |                   |              |              |    |                  | 1.00E-11             |             |             | 1.00E-11    |
| KLX 15A            | 380.00                                | 385.00 | 0     |               |             |               |                   |              |              |    |                  | 7.13E-09             |             |             | 4.00E-08    |
| KLX 15A            | 385.00                                | 390.00 | 0     |               |             |               |                   |              |              |    |                  | 2.63E-06             | 0 1         | 1.002 00    | 4.00E-06    |
| KLX 15A            | 390.00                                | 395.00 | 0     |               | 1.04E-07    | 1             |                   |              |              |    |                  | 9.11E-07             | 0 1         | 5.00E-07    | 2.00E-06    |
| KLX 15A            | 400.00                                | 405.00 | 0     | 0             | 7.06E-08    | 3             |                   |              |              |    |                  | 1.53E-06             | 0 1         | 8.00E-07    | 3.00E-06    |
|                    | · · · · · · · · · · · · · · · · · · · |        |       |               |             | •             |                   |              | •            |    |                  | •                    |             |             |             |

|                    |                  |                  |                      |           |      |              |           | leakage_c |               |                | I measl ks | u measl ks |                  | assumed_ss |                      |                    |      |              |         |
|--------------------|------------------|------------------|----------------------|-----------|------|--------------|-----------|-----------|---------------|----------------|------------|------------|------------------|------------|----------------------|--------------------|------|--------------|---------|
| idcode             | secup            | seclow           | storativity_s        | assumed s | bc_s | ri l         | ri index  | oeff      | hydr_cond_ksf | value type ksf |            | f          | spec_storage_ssf | _          | С                    | cd                 | skin | dt1          | dt2     |
| KLX 15A            | 80.00            | 180.00           | 1.00E-06             |           |      | 283.90       | 0         |           |               |                |            |            | -  <u>-</u>      | 1          | 1.49E-07             | 1.6E+01            | -    |              |         |
| KLX 15A            | 180.00           | 280.00           | 1.00E-06             |           |      | 185.72       | -1        |           |               |                |            |            |                  |            | 4.76E-08             | 5.2E+00            |      | 555.0        |         |
| KLX 15A            | 280.00           | 380.00           | 1.00E-06             |           |      | 35.72        | 0         |           |               |                |            |            |                  |            | 2.68E-10             | 3.0E-02            |      |              |         |
| KLX 15A            | 380.00           | 480.00           | 1.00E-06             |           |      | 123.64       | -1        |           |               |                |            |            |                  |            | 2.48E-09             | 2.7E-01            |      |              |         |
| KLX 15A            | 480.00           | 580.00           | 1.00E-06             |           |      | 70.33        | 0         |           |               |                |            |            |                  |            | 1.31E-10             | 1.4E-02            |      |              |         |
| KLX 15A            | 580.00           | 680.00           | 1.00E-06             |           |      | 22.92        | -1        |           |               |                |            |            |                  |            | 2.96E-10             | 3.3E-02            |      |              |         |
| KLX 15A            | 680.00           | 780.00           | 1.00E-06             |           |      | 12.40        | 1         |           |               |                |            |            |                  |            | 4.96E-10             | 5.5E-02            |      | 61.8         |         |
| KLX 15A            | 780.00           | 880.00           | 1.00E-06             |           |      | 59.24        | 0         |           |               |                |            |            |                  |            | 2.68E-10             | 3.0E-02            |      |              |         |
| KLX 15A            | 80.00            | 100.00           | 1.00E-06             |           |      | 42.17        | -1        |           |               |                |            |            |                  |            | 6.44E-10             | 7.1E-02            |      | 19.8         |         |
| KLX 15A            | 100.00           | 120.00           | 1.00E-06             |           |      | 19.61        | -1        |           |               |                |            |            |                  |            | 7.75E-10             | 8.5E-02            |      |              |         |
| KLX 15A            | 120.00           | 140.00           | 1.00E-06             | 1.00E-06  | 6    | 91.84        | 1         |           |               |                |            |            |                  |            | 2.51E-08             | 2.8E+00            | -5.1 | 9.0          | 0 154.8 |
| KLX 15A            | 140.00           | 160.00           | 1.00E-06             | 1.00E-06  | 6    | 107.79       | 0         |           |               |                |            |            |                  |            | 1.93E-09             | 2.1E-01            | -3.2 | 149.4        | 4 557.4 |
| KLX 15A            | 160.00           | 180.00           | 1.00E-06             | 1.00E-06  | 6    | 47.52        | 0         |           |               |                |            |            |                  |            | 3.89E-10             | 4.3E-02            | 3.9  | 60.0         |         |
| KLX 15A            | 180.00           | 200.00           | 1.00E-06             | 1.00E-06  | 6    | 88.01        | 0         |           |               |                |            |            |                  |            | 5.11E-10             | 5.6E-02            | -3.0 | 175.2        | 2 853.8 |
| KLX 15A            | 200.00           | 220.00           | 1.00E-06             | 1.00E-06  | 6    | 17.62        | 0         |           |               |                |            |            |                  |            | 5.09E-11             | 5.6E-03            | 2.5  | 29.4         | 4 804.0 |
| KLX 15A            | 220.00           | 240.00           | 1.00E-06             | 1.00E-06  | 6    | 21.30        | 0         |           |               |                |            |            |                  |            | 6.85E-11             | 7.5E-03            | -1.7 | #NV          | / #NV   |
| KLX 15A            | 240.00           | 260.00           | 1.00E-06             | 1.00E-06  | 6    | 33.29        | -1        |           |               |                |            |            |                  |            | 6.19E-11             | 6.8E-03            | 2.5  | #NV          | / #NV   |
| KLX 15A            | 260.00           | 280.00           | 1.00E-06             | 1.00E-06  | 6    | 143.47       | 0         |           |               |                |            |            |                  |            | 4.57E-08             | 5.0E+00            | 4.2  | #NV          | / #NV   |
| KLX 15A            | 280.00           | 300.00           | 1.00E-06             | 1.00E-06  | 6    | 10.59        | 0         |           |               |                |            |            |                  |            | 1.25E-10             | 1.4E-02            | -1.5 | 137.4        | 4 837.0 |
| KLX 15A            | 300.00           | 320.00           | 1.00E-06             | 1.00E-06  | 6    | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          | / #NV   |
| KLX 15A            | 340.00           | 360.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 360.00           | 380.00           | 1.00E-06             |           |      | 30.10        | 0         |           |               |                |            |            |                  |            | 4.52E-11             | 5.0E-03            |      |              |         |
| KLX 15A            | 380.00           | 400.00           | 1.00E-06             |           |      | 97.50        | 0         |           |               |                |            |            |                  |            | 2.43E-09             | 2.7E-01            |      |              |         |
| KLX 15A            | 400.00           | 420.00           | 1.00E-06             |           |      | 91.99        | 0         |           |               |                |            |            |                  |            | 2.36E-10             | 2.6E-02            | 8.7  | 27.6         | 6 634.8 |
| KLX 15A            | 420.00           | 440.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 440.00           | 460.00           | 1.00E-06             |           |      | 26.97        | 0         |           |               |                |            |            |                  |            | 9.51E-11             | 1.0E-02            |      |              |         |
| KLX 15A            | 460.00           | 480.00           | 1.00E-06             |           |      | 26.78        | 1         |           |               |                |            |            |                  |            | 5.33E-11             | 5.9E-03            |      |              |         |
| KLX 15A            | 480.00           | 500.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 500.00           | 520.00           | 1.00E-06             |           |      | 65.13        | 0         |           |               |                |            |            |                  |            | 3.57E-11             | 3.9E-03            |      |              |         |
| KLX 15A            | 520.00           | 540.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 540.00           | 560.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 560.00           | 580.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 580.00           | 600.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 600.00           | 620.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 620.00           | 640.00           | 1.00E-06             |           |      | 25.22        | -1        |           |               |                |            |            |                  |            | 9.72E-10             | 1.1E-01            |      |              |         |
| KLX 15A            | 680.00           | 700.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 700.00           | 720.00           | 1.00E-06             |           |      | 9.07         | 1         |           |               |                |            |            |                  |            | 1.44E-10             | 1.6E-02            |      |              |         |
| KLX 15A            | 720.00           | 740.00           | 1.00E-06             |           |      | 9.64         | 1         |           |               |                |            |            |                  |            | 1.53E-10             | 1.7E-02            |      |              |         |
| KLX 15A            | 740.00           | 760.00           | 1.00E-06             |           |      | 12.27        | 0         |           |               |                |            |            |                  |            | 8.41E-11             | 9.3E-03            |      |              |         |
| KLX 15A            | 760.00           | 780.00<br>800.00 | 1.00E-06<br>1.00E-06 |           |      | 18.36        | 0         |           |               |                |            |            |                  |            | 5.04E-11             | 5.6E-03            |      |              |         |
| KLX 15A            | 780.00           |                  |                      |           |      | 10.16        | 1         |           |               |                |            |            |                  |            | 1.29E-10             | 1.4E-02            |      |              |         |
| KLX 15A            | 800.00           | 820.00           | 1.00E-06             |           |      | 10.92        | T 44.13.7 |           |               |                |            |            |                  |            | 5.73E-11             | 6.3E-03            |      |              |         |
| KLX 15A<br>KLX 15A | 820.00<br>840.00 | 840.00<br>860.00 | 1.00E-06<br>1.00E-06 |           |      | #NV<br>38.94 | #NV       |           |               |                |            |            |                  |            | #NV<br>3.93E-11      | #NV<br>4.3E-03     | #NV  | #NV<br>126.6 |         |
| KLX 15A<br>KLX 15A | 860.00           | 880.00           | 1.00E-06             |           |      | 15.14        | 0         |           |               |                |            |            |                  |            | 6.10E-11             | 4.3E-03<br>6.7E-03 |      | 38.4         |         |
| KLX 15A            | 880.00           | 900.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 900.00           | 920.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A<br>KLX 15A | 920.00           | 940.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A<br>KLX 15A | 940.00           | 960.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  |            | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A            | 955.00           | 975.00           | 1.00E-06             |           |      | #NV          | #NV       |           |               |                |            |            |                  | +          | #NV                  | #NV                | #NV  | #NV          |         |
| KLX 15A<br>KLX 15A | 380.00           | 385.00           | 1.00E-06             |           |      | 7.96         | # 1 N V   |           |               |                |            |            |                  |            | 1.65E-11             | 1.8E-03            |      | 13.8         |         |
| KLX 15A<br>KLX 15A | 385.00           | 390.00           | 1.00E-06             |           |      | 99.65        | 0         |           |               |                |            |            |                  | +          | 2.22E-09             | 2.4E-01            | 9.2  |              |         |
| KLX 15A<br>KLX 15A | 390.00           | 395.00           | 1.00E-06             |           |      | 76.45        | 0         |           |               |                |            |            |                  | +          | 2.22E-09<br>2.15E-09 | 2.4E-01            | 2.2  |              |         |
| KLX 15A<br>KLX 15A | 400.00           | 405.00           | 1.00E-06             |           |      | 87.03        | 0         |           |               |                |            |            |                  | +          | 2.15E-09<br>2.96E-10 | 3.3E-02            |      | 66.6         |         |
| NLA IDA            | 400.00           | 400.00           | 1.UUE-U0             | 1.00€-00  | '1   | 01.03        | U         |           |               |                |            |            |                  | 1          | 2.90⊑-10             | ა.ა⊏-02            | 14.4 | 00.0         | 003.0   |

|                    |                  |                  |      |        |      |            | storativity s              | value_type_t_nl |          |       |        |          |                      | value_type_t_g |          | storativity_s_g flow_dim_g |              |
|--------------------|------------------|------------------|------|--------|------|------------|----------------------------|-----------------|----------|-------|--------|----------|----------------------|----------------|----------|----------------------------|--------------|
| idcode             | secup            | seclow           | t1 t | 2 dte1 | dte2 | p horner   | transmissivity_t_nlr   nlr | r               | bc_t_nlr | c nir | cd nlr | skin nlr | transmissivity_t_grf | rf             | bc_t_grf | rf rf                      | comment      |
| KLX 15A            | 80.00            | 180.00           | -    |        |      | 1407.6     |                            | I <sup>r</sup>  |          |       |        |          |                      |                | <u></u>  |                            |              |
| KLX 15A            | 180.00           | 280.00           |      |        |      | 2157.8     |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| KLX 15A            | 280.00           | 380.00           |      |        |      | 2916.3     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 380.00           | 480.00           |      |        |      | 3657.5     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 480.00           | 580.00           |      |        |      | 4403.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 580.00           | 680.00           |      |        |      | 5145.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 680.00           | 780.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 780.00           | 880.00           |      |        |      | 6601.3     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 80.00            | 100.00           |      |        |      | 801.0      |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 100.00           | 120.00           |      |        |      | 950.5      |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 120.00           | 140.00           |      |        |      | 1105.9     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 140.00           | 160.00           |      |        |      | 1256.9     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 160.00           | 180.00           |      |        |      | 1408.5     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 180.00           | 200.00           |      |        |      | 1561.9     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 200.00           | 220.00           |      |        |      | 1700.2     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 220.00           | 240.00           |      |        |      | 1847.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 240.00           | 260.00           |      |        |      | 2006.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 260.00           | 280.00           |      |        |      | 2159.2     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 280.00           | 300.00           |      |        |      | 2301.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 300.00           | 320.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 340.00           | 360.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 360.00           | 380.00           |      |        |      | 2918.2     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 380.00           | 400.00           |      |        |      | 3067.2     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 400.00           | 420.00           |      |        |      | 3220.8     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 420.00           | 440.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 440.00           | 460.00           |      |        |      | 3526.8     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 460.00           | 480.00           |      |        |      | 3661.1     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 480.00           | 500.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 500.00           | 520.00           |      |        |      | 3957.5     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 520.00           | 540.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 540.00           | 560.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 560.00           | 580.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 580.00           | 600.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 600.00           | 620.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 620.00           | 640.00           |      |        |      | 4845.7     |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 680.00           | 700.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            |              |
| KLX 15A            | 700.00           | 720.00           |      |        | 1    | #NV        |                            |                 |          |       |        |          |                      |                |          | 1                          | <del> </del> |
| KLX 15A            | 720.00           | 740.00           |      |        | 1    | 5586.4     |                            |                 |          |       |        |          |                      |                |          | 1                          | <del> </del> |
| KLX 15A            | 740.00           | 760.00           |      |        | 1    | 5731.5     |                            |                 |          |       |        |          |                      |                |          | 1                          | <del> </del> |
| KLX 15A            | 760.00           | 780.00           |      |        | 1    | 5881.5     |                            |                 |          |       |        |          |                      |                |          | 1                          | <del> </del> |
| KLX 15A            | 780.00           | 800.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          | 1                          |              |
| KLX 15A            | 800.00           | 820.00           |      |        |      | 6163.3     |                            |                 |          |       |        |          |                      |                |          |                            | <del> </del> |
| KLX 15A            | 820.00           | 840.00           |      |        |      | #NV        |                            |                 |          |       |        |          |                      |                |          |                            | <del> </del> |
| KLX 15A            | 840.00           | 860.00           |      |        |      | 6453.7     |                            |                 |          |       |        |          |                      |                |          | 1                          |              |
| KLX 15A            | 860.00<br>880.00 | 880.00           |      |        |      | 6616.6     |                            | 1               |          |       | -      |          | -                    | 1              |          |                            | <del> </del> |
| KLX 15A            | 900.00           | 900.00<br>920.00 |      |        | 1    | #NV<br>#NV |                            |                 |          |       |        | +        |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 920.00           | 920.00           |      |        | 1    | #NV<br>#NV |                            |                 |          |       |        | +        |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 940.00           | 940.00           |      |        | 1    | #NV        |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 955.00           | 975.00           |      |        | 1    | #NV        |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 380.00           | 385.00           |      |        | 1    | 2954.4     |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 385.00           | 390.00           |      |        | 1    | 2989.7     |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| KLX 15A<br>KLX 15A | 390.00           | 395.00           |      | +      | 1    | 3027.3     |                            | <del> </del>    |          |       |        |          | -                    | <del> </del>   |          | 1                          | +            |
| KLX 15A<br>KLX 15A | 400.00           | 405.00           |      |        | 1    | 3103.1     |                            |                 |          |       |        |          |                      |                |          |                            | +            |
| VLY 10H            | 400.00           | 405.00           |      |        | 1    | 3 103.1    |                            |                 |          | l     | 1      | 1        |                      | 1              | 1        |                            |              |

|                    |                                            |                     |                  |                  |            |           | formation ty |                  |              |                   | value_type_q_ |                |                     | transmissivity_moy |
|--------------------|--------------------------------------------|---------------------|------------------|------------------|------------|-----------|--------------|------------------|--------------|-------------------|---------------|----------------|---------------------|--------------------|
| idcode             | start date                                 | stop date           | secup            | seclow           | section no | test_type | pe           | lp               | seclen class | spec_capacity_q_s |               | nsmissivity_tq | value_type_tq bc_tq | e                  |
| KLX 15A            | 2007-04-21 22:58:00                        |                     | 405.00           | 410.00           | _          |           | 3 1          | 407.50           | _            | #NV               | -1            | 7_1            | 201 2 1 2 1         | #NV                |
| KLX 15A            | 2007-04-22 00:11:00                        |                     | 410.00           | 415.00           |            |           | 3 1          | 412.50           | 5            |                   | 0             |                |                     | 2.51E-07           |
| KLX 15A            | 2007-04-22 06:38:00                        |                     | 415.00           | 420.00           |            |           | 3 1          | 417.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-22 08:18:00                        |                     | 440.00           | 445.00           |            |           | 3 1          | 442.50           | 5            | 2.58E-09          |               |                |                     | 2.13E-09           |
| KLX 15A            | 2007-04-22 10:48:00                        |                     | 445.00           | 450.00           |            | 3         | 3 1          | 447.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-22 13:05:00                        |                     | 450.00           | 455.00           |            |           | 3 1          | 452.50           | 5            | 1.39E-08          | 0             |                |                     | 1.15E-08           |
| KLX 15A            | 2007-04-22 15:03:00                        |                     | 455.00           | 460.00           |            | 3         | 3 1          | 457.50           | 5            | 6.54E-09          |               |                |                     | 5.40E-09           |
| KLX 15A            | 2007-04-22 17:10:00                        | 2007-04-22 18:37:00 | 460.00           | 465.00           |            | :         | 3 1          | 462.50           | 5            | 2.43E-09          | 0             |                |                     | 2.00E-09           |
| KLX 15A            | 2007-04-22 19:02:00                        | 2007-04-22 20:50:00 | 465.00           | 470.00           |            | :         | 3 1          | 467.50           | 5            | 1.80E-09          | 0             |                |                     | 1.49E-09           |
| KLX 15A            | 2007-04-22 21:41:00                        | 2007-04-22 23:12:00 | 470.00           | 475.00           |            | 3         | 3 1          | 472.50           | 5            | 1.54E-09          | 0             |                |                     | 1.27E-09           |
| KLX 15A            | 2007-04-22 23:36:00                        | 2007-04-23 00:24:00 | 475.00           | 480.00           |            | 3         | 3 1          | 477.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-23 00:58:00                        | 2007-04-23 02:17:00 | 500.00           | 505.00           |            |           | 3 1          | 502.50           | 5            | 1.54E-07          | 0             |                |                     | 1.27E-07           |
| KLX 15A            | 2007-04-23 06:34:00                        | 2007-04-23 07:23:00 | 505.00           | 510.00           |            | 3         | 3 1          | 507.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-23 07:57:00                        | 2007-04-23 08:45:00 | 510.00           | 515.00           |            |           | 3 1          | 512.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-23 09:17:00                        | 2007-04-23 10:05:00 | 515.00           | 520.00           |            | 3         | 3 1          | 517.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-23 13:19:00                        |                     | 620.00           | 625.00           |            |           | 3 1          | 622.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-23 14:31:00                        |                     | 623.00           | 628.00           |            |           | 3 1          | 625.50           | 5            | 2.19E-09          |               |                |                     | 1.81E-09           |
| KLX 15A            | 2007-04-23 16:25:00                        |                     | 628.00           | 633.00           |            |           | 3 1          | 630.50           | 5            | 9.11E-07          |               |                |                     | 7.52E-07           |
| KLX 15A            | 2007-04-23 18:21:00                        |                     | 630.00           | 635.00           |            |           | 3 1          | 632.50           | 5            | 9.43E-07          |               |                |                     | 7.79E-07           |
| KLX 15A            | 2007-04-23 20:25:00                        |                     | 635.00           | 640.00           |            |           | 3 1          | 637.50           | 5            | 9.34E-10          | 0             |                |                     | 7.71E-10           |
| KLX 15A            | 2007-04-23 22:41:00                        |                     | 660.00           | 665.00           |            |           | 3 1          | 662.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-23 23:55:00                        |                     | 665.00           | 670.00           |            |           | 3 1          | 667.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-24 01:07:00                        |                     | 670.00           | 675.00           |            |           | 3 1          | 672.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 06:35:00                        |                     | 675.00           | 680.00           |            |           | 3 1          | 677.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 08:09:00                        |                     | 700.00           | 705.00           |            |           | 3 1          | 702.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 09:27:00                        |                     | 705.00           | 710.00           |            |           | 3 1          | 707.50           | 5            | 1.23E-08          |               |                |                     | 1.02E-08           |
| KLX 15A            | 2007-04-24 12:23:00                        |                     | 710.00           | 715.00           |            |           | 3 1          | 712.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-24 13:42:00                        |                     | 715.00           | 720.00           |            |           | 3 1          | 717.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 15:00:00                        |                     | 720.00           | 725.00           |            |           | 3 1          | 722.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 16:16:00                        |                     | 725.00           | 730.00           |            |           | 3 1          | 727.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 17:29:00                        |                     | 730.00           | 735.00           |            |           | 3 1          | 732.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-24 18:46:00                        |                     | 735.00           | 740.00           |            |           | 3 1          | 737.50           | 5            |                   |               |                |                     | 6.71E-09           |
| KLX 15A            | 2007-04-24 23:35:00                        |                     | 745.00           | 750.00           |            |           | 3 1<br>3 1   | 747.50           | 5<br>5       | #NV               | -1            |                |                     | #NV                |
| KLX 15A<br>KLX 15A | 2007-04-25 00:48:00<br>2007-04-25 06:31:00 |                     | 750.00<br>755.00 | 755.00<br>760.00 |            |           | 3 1          | 752.50<br>757.50 | 5            | #NV<br>#NV        | -1<br>-1      |                |                     | #NV<br>#NV         |
| KLX 15A            | 2007-04-25 06.31.00                        |                     | 760.00           | 765.00           |            |           | 3 1          | 762.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-25 13:20:00                        |                     | 770.00           | 775.00           |            |           | 3 1          | 772.50           | 5            | 5.94E-09          |               |                |                     | 4.90E-09           |
| KLX 15A<br>KLX 15A | 2007-04-25 13:20:00                        |                     | 775.00           | 780.00           |            |           | 3 1          | 777.50           | 5            | 3.09E-09          |               |                |                     | 2.55E-09           |
| KLX 15A            | 2007-04-25 17:38:00                        |                     | 785.00           | 790.00           |            |           | 3 1          | 787.50           | 5            | 3.09L-09<br>#NV   | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-25 22:42:00                        |                     | 790.00           | 795.00           |            |           | 3 1          | 792.50           | 5            | 3.79E-09          |               |                |                     | 3.13E-09           |
| KLX 15A            | 2007-04-26 00:40:00                        |                     | 795.00           | 800.00           |            |           | 3 1          | 797.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-26 06:31:00                        |                     | 800.00           | 805.00           |            |           | 3 1          | 802.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-26 12:24:00                        |                     | 805.00           | 810.00           |            |           | 3 1          | 807.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-26 13:40:00                        |                     | 810.00           | 815.00           |            |           | 3 1          | 812.50           | 5            | 4.09E-09          |               |                |                     | 3.37E-09           |
| KLX 15A            | 2007-04-26 15:35:00                        |                     | 815.00           | 820.00           |            |           | 3 1          | 817.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-26 17:00:00                        |                     | 840.00           | 845.00           |            |           | 3 1          | 842.50           | 5            |                   |               |                |                     | 8.23E-10           |
| KLX 15A            | 2007-04-26 19:05:00                        |                     | 845.00           | 850.00           |            |           | 3 1          | 847.50           | 5            | 6.84E-09          |               |                |                     | 5.65E-09           |
| KLX 15A            | 2007-04-26 21:12:00                        |                     | 850.00           | 855.00           |            |           | 3 1          | 852.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-26 22:24:00                        |                     | 855.00           | 860.00           |            |           | 3 1          | 857.50           | 5            | 8.81E-09          |               |                |                     | 6.75E-09           |
| KLX 15A            | 2007-04-27 00:09:00                        |                     | 860.00           | 865.00           |            |           | 3 1          | 862.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-27 01:20:00                        |                     | 865.00           | 870.00           |            |           | 3 1          | 867.50           | 5            | 1.17E-09          |               |                |                     | 9.69E-10           |
| KLX 15A            | 2007-04-27 06:28:00                        |                     | 870.00           | 875.00           |            |           | 3 1          | 872.50           | 5            | #NV               |               |                |                     | #NV                |
| KLX 15A            | 2007-04-27 07:43:00                        |                     | 875.00           | 880.00           |            |           | 3 1          | 877.50           | 5            | #NV               | -1            |                |                     | #NV                |
| KLX 15A            | 2007-04-28 10:58:00                        |                     | 970.00           | 1000.43          |            |           | 3 1          | 985.22           | 5            | 3.27E-08          |               |                |                     | 3.64E-08           |

|                    |                  |         |         | l             | hude aand m | formation wid | width_of_channel_ |            |            |      | leakage fact     |                   | value tune  |                          |             |
|--------------------|------------------|---------|---------|---------------|-------------|---------------|-------------------|------------|------------|------|------------------|-------------------|-------------|--------------------------|-------------|
|                    |                  |         | h a 4ma |               |             |               |                   | l          |            | - 1- |                  |                   | value_type_ |                          | l           |
| idcode             |                  | seclow  | bc_tm   | value_type_tm | _           | th_b          | b tb              | I_measI_tb | u_measi_tb | SD   | assumed_sb or_lf | transmissivity_tt | tt bc_t     |                          | u_measl_q_s |
| KLX 15A            | 405.00           | 410.00  | 0       |               | #NV         |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 410.00           | 415.00  | 0       |               |             |               |                   |            |            |      |                  | 9.40E-07          |             | 1 5.00E-07               |             |
| KLX 15A            | 415.00           | 420.00  | 0       | -1            | #N∨         | '             |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               | 1.00E-11    |
| KLX 15A            | 440.00           | 445.00  | 0       |               |             |               |                   |            |            |      |                  | 7.82E-10          |             | 1 5.00E-10               |             |
| KLX 15A            | 445.00           | 450.00  | 0       | -1            | #NV         | '             |                   |            |            |      |                  | 1.00E-11          | -1          | 1 1.00E-13               | 1.00E-11    |
| KLX 15A            | 450.00           | 455.00  | 0       | 0             | 2.30E-09    | )             |                   |            |            |      |                  | 1.20E-08          | 0           | 1 8.00E-09               | 4.00E-08    |
| KLX 15A            | 455.00           | 460.00  | 0       | 0             | 1.08E-09    | )             |                   |            |            |      |                  | 2.90E-09          | 0           | 1 7.00E-10               | 6.00E-09    |
| KLX 15A            | 460.00           | 465.00  | 0       | 0             | 4.00E-10    | )             |                   |            |            |      |                  | 5.36E-09          | 0           | 1 2.00E-09               | 8.00E-09    |
| KLX 15A            | 465.00           | 470.00  | 0       | 0             | 2.98E-10    |               |                   |            |            |      |                  | 2.93E-09          | 0           | 1 1.00E-09               | 5.00E-09    |
| KLX 15A            | 470.00           | 475.00  | 0       | 0             | 2.54E-10    |               |                   |            |            |      |                  | 1.20E-09          | 0           | 1 8.00E-10               | 3.00E-09    |
| KLX 15A            | 475.00           | 480.00  | 0       | -1            | #NV         | ,             |                   |            |            |      |                  | 1.00E-11          | -1          | 1 1.00E-13               | 1.00E-11    |
| KLX 15A            | 500.00           | 505.00  | 0       |               | 2.54E-08    |               |                   |            |            |      |                  | 2.30E-07          | 0           | 1 9.00E-08               |             |
| KLX 15A            | 505.00           | 510.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 510.00           | 515.00  | 0       |               | #NV         | ,             |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 515.00           | 520.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 620.00           | 625.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 623.00           | 628.00  | 0       |               |             |               |                   |            |            | 1    |                  | 1.92E-09          |             | 1 1.00E-09               |             |
| KLX 15A            | 628.00           | 633.00  | 0       |               | 1.50E-07    |               |                   |            |            |      |                  | 3.40E-07          |             | 1 1.00E-07               | 2.00E-06    |
| KLX 15A            | 630.00           | 635.00  | 0       |               |             |               |                   |            |            |      |                  | 3.30E-07          |             | 1 2.00E-07               | 3.00E-06    |
| KLX 15A            | 635.00           | 640.00  | 0       |               |             |               |                   |            |            |      |                  | 1.70E-09          |             | 1 4.00E-10               |             |
| KLX 15A            | 660.00           | 665.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 665.00           | 670.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A<br>KLX 15A | 670.00           | 675.00  | 0       |               | #NV         |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A<br>KLX 15A | 675.00           | 680.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A<br>KLX 15A | 700.00           | 705.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
|                    |                  |         |         |               |             |               |                   |            |            |      |                  |                   |             |                          |             |
| KLX 15A            | 705.00<br>710.00 | 710.00  | 0       |               | 2.04E-09    |               |                   |            |            | ļ    |                  | 1.42E-08          |             |                          |             |
| KLX 15A            |                  | 715.00  |         |               | #NV<br>#NV  |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13<br>1 1.00E-13 |             |
| KLX 15A            | 715.00           | 720.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             |                          |             |
| KLX 15A            | 720.00           | 725.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 725.00           | 730.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 730.00           | 735.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 735.00           | 740.00  | 0       |               |             |               |                   |            |            |      |                  | 3.57E-09          |             | 1 1.00E-09               |             |
| KLX 15A            | 745.00           | 750.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 750.00           | 755.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 755.00           | 760.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 760.00           | 765.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 770.00           | 775.00  | 0       |               |             |               |                   |            |            |      |                  | 2.57E-09          |             | 1 7.00E-10               |             |
| KLX 15A            | 775.00           | 780.00  | 0       |               |             |               |                   |            |            | 1    |                  | 6.80E-09          |             | 1 2.00E-09               |             |
| KLX 15A            | 785.00           | 790.00  | 0       |               |             |               |                   |            |            | 1    |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 790.00           | 795.00  | 0       |               |             |               |                   |            |            |      |                  | 2.19E-09          |             | 1 5.00E-10               |             |
| KLX 15A            | 795.00           | 800.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 800.00           | 805.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 805.00           | 810.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 810.00           | 815.00  | 0       |               |             |               |                   |            |            |      |                  | 4.92E-09          |             | 1 1.00E-09               |             |
| KLX 15A            | 815.00           | 820.00  | 0       | -1            | #NV         |               |                   |            |            |      |                  | 1.00E-11          | -1          | 1 1.00E-13               | 1.00E-11    |
| KLX 15A            | 840.00           | 845.00  | 0       | 0             | 1.65E-10    | )             |                   |            |            |      |                  | 1.67E-09          | 0           | 1 4.00E-10               | 5.00E-09    |
| KLX 15A            | 845.00           | 850.00  | 0       | 0             | 1.13E-09    |               |                   |            |            |      |                  | 2.40E-08          | 0           | 1 6.00E-09               | 7.00E-08    |
| KLX 15A            | 850.00           | 855.00  | 0       | -1            | #NV         | ,             |                   |            |            |      |                  | 1.00E-11          | -1          | 1 1.00E-13               | 1.00E-11    |
| KLX 15A            | 855.00           | 860.00  | 0       |               |             |               |                   |            |            |      |                  | 1.43E-08          |             | 1 4.00E-09               |             |
| KLX 15A            | 860.00           | 865.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 865.00           | 870.00  | 0       |               | 1.94E-10    | )             |                   |            |            | 1    |                  | 4.40E-09          |             | 1 8.00E-10               |             |
| KLX 15A            | 870.00           | 875.00  | 0       |               |             |               |                   |            |            |      |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 875.00           | 880.00  | 0       |               |             |               |                   |            |            | 1    |                  | 1.00E-11          |             | 1 1.00E-13               |             |
| KLX 15A            | 970.00           | 1000.43 | 0       |               |             |               |                   |            |            | 1    |                  | 8.26E-08          |             | 1 4.00E-08               |             |
|                    | 0.0.00           | .000.10 |         |               |             | 1             | 1                 | 1          |            | -    | 1                | 0.232 00          |             |                          | 0.002 01    |

|                    |                  |                   |                      |                      |         |              | leakage_c | ; |                | l_measl_ks | u_measl_ks |                  | assumed_ss |                      |                    |             |              |        |
|--------------------|------------------|-------------------|----------------------|----------------------|---------|--------------|-----------|---|----------------|------------|------------|------------------|------------|----------------------|--------------------|-------------|--------------|--------|
| idcode             | secup            | seclow            | storativity_s        | assumed_s            | bc_s ri | ri_index     | oeff      |   | value_type_ksf | f          | f          | spec_storage_ssf | f          | С                    | cd                 | skin        | dt1          | dt2    |
| KLX 15A            | 405.00           | 410.00            | 1.00E-06             | 1.00E-06             |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | / #NV              | #NV         | #NV          | / #NV  |
| KLX 15A            | 410.00           | 415.00            | 1.00E-06             |                      |         | .05          | 0         |   |                |            |            |                  |            | 2.61E-11             | 2.9E-03            | 12.5        |              |        |
| KLX 15A            | 415.00           | 420.00            | 1.00E-06             |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  |                    | #NV         |              |        |
| KLX 15A            | 440.00           | 445.00            | 1.00E-06             |                      |         | .00          | 0         |   |                |            |            |                  |            | 2.55E-11             | 2.8E-03            | -1.7        |              |        |
| KLX 15A            | 445.00           | 450.00            |                      |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  |                    | #NV         | #NV          |        |
| KLX 15A            | 450.00           | 455.00            |                      |                      |         |              | -1        |   |                |            |            |                  |            | 2.02E-11             | 2.2E-03            | 0.4         |              |        |
| KLX 15A<br>KLX 15A | 455.00<br>460.00 | 460.00<br>465.00  | 1.00E-06<br>1.00E-06 | 1.00E-06<br>1.00E-06 |         |              | 0         |   |                |            |            |                  |            | 1.88E-11<br>1.41E-11 | 2.1E-03<br>1.6E-03 | -1.4<br>8.2 |              |        |
| KLX 15A            | 465.00           | 470.00            | 1.00E-06             |                      |         |              | 0         |   |                |            |            |                  |            | 1.41E-11             | 1.0E-03            | 5.4         |              |        |
| KLX 15A            | 470.00           | 475.00            |                      |                      |         |              | 0         |   |                |            |            |                  |            | 1.58E-11             | 1.7E-03            | 0.9         |              |        |
| KLX 15A            | 475.00           | 480.00            |                      |                      |         | NV #N        | v         |   |                |            |            |                  |            | #NV                  |                    | #NV         |              |        |
| KLX 15A            | 500.00           | 505.00            | 1.00E-06             | 1.00E-06             |         |              | 0         |   |                |            |            |                  |            | 1.55E-11             | 1.7E-03            | 2.8         |              |        |
| KLX 15A            | 505.00           | 510.00            |                      |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  |                    | #NV         | #NV          |        |
| KLX 15A            | 510.00           | 515.00            | 1.00E-06             | 1.00E-06             | #       | NV #N        | V         |   |                |            |            |                  |            | #NV                  | / #NV              | #NV         | #NV          | / #NV  |
| KLX 15A            | 515.00           | 520.00            | 1.00E-06             | 1.00E-06             | #       | NV #N        | V         |   |                |            |            |                  |            | #NV                  | / #NV              | #NV         | #NV          | / #NV  |
| KLX 15A            | 620.00           | 625.00            |                      |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 623.00           | 628.00            | 1.00E-06             |                      |         |              | 0         |   |                |            |            |                  |            | 1.93E-11             | 2.1E-03            | 1.0         |              |        |
| KLX 15A            | 628.00           | 633.00            |                      |                      |         |              | ·1        |   |                |            |            |                  |            | 2.16E-10             |                    | -4.0        |              |        |
| KLX 15A            | 630.00           | 635.00            | 1.00E-06             |                      |         |              | ·1        |   |                |            |            |                  |            | 2.77E-10             |                    | -4.1        | 78.00        |        |
| KLX 15A            | 635.00           | 640.00            |                      |                      |         |              | -1        |   |                |            |            |                  |            | 2.20E-11             | 2.4E-03            | 8.0         |              |        |
| KLX 15A            | 660.00           | 665.00            | 1.00E-06             |                      |         | NV #N        | -         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A<br>KLX 15A | 665.00<br>670.00 | 670.00<br>675.00  | 1.00E-06<br>1.00E-06 |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV<br>#NV           | #NV<br>#NV         | #NV<br>#NV  | #NV<br>#NV   |        |
| KLX 15A            | 675.00           | 680.00            | 1.00E-06             |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A<br>KLX 15A | 700.00           | 705.00            |                      |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 705.00           | 710.00            | 1.00E-06             |                      |         | .34          | 1         |   |                |            |            |                  |            | 1.38E-10             | 1.5E-02            | -3.1        | 45.00        |        |
| KLX 15A            | 710.00           | 715.00            | 1.00E-06             |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 715.00           | 720.00            | 1.00E-06             |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 720.00           | 725.00            | 1.00E-06             |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 725.00           | 730.00            | 1.00E-06             | 1.00E-06             | #       | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          | / #NV  |
| KLX 15A            | 730.00           | 735.00            | 1.00E-06             | 1.00E-06             | t t     | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          | #NV    |
| KLX 15A            | 735.00           | 740.00            | 1.00E-06             |                      |         | .49          | 1         |   |                |            |            |                  |            | 5.22E-12             | 5.8E-04            | -2.6        |              |        |
| KLX 15A            | 745.00           | 750.00            |                      |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 750.00           | 755.00            |                      |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 755.00           | 760.00            | 1.00E-06             |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 760.00           | 765.00            | 1.00E-06             |                      |         | NV #N        | 0         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A<br>KLX 15A | 770.00<br>775.00 | 775.00<br>780.00  | 1.00E-06<br>1.00E-06 |                      |         | .62<br>.47   | 1         | + |                |            |            |                  |            | 1.02E-11<br>1.81E-11 | 1.1E-03<br>2.0E-03 | -1.8<br>5.4 |              |        |
| KLX 15A<br>KLX 15A | 785.00           | 790.00            | 1.00E-06             |                      |         | NV #N        | V         | + |                |            | 1          |                  |            | #NV                  | #NV                | 9.4<br>#NV  | #NV          |        |
| KLX 15A            | 790.00           | 795.00            | 1.00E-06             |                      |         | .84          | 1         |   |                |            | 1          |                  |            | 6.49E-11             | 7.2E-03            | -2.1        |              |        |
| KLX 15A            | 795.00           | 800.00            |                      |                      |         | NV #N        | V         | 1 |                |            | 1          |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 800.00           | 805.00            |                      |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 805.00           | 810.00            | 1.00E-06             |                      |         | NV #N        |           |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 810.00           | 815.00            | 1.00E-06             | 1.00E-06             |         | .60          | 1         |   |                |            |            |                  |            | 1.39E-11             | 1.5E-03            | -0.2        | 49.80        |        |
| KLX 15A            | 815.00           | 820.00            | 1.00E-06             |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 840.00           | 845.00            | 1.00E-06             |                      |         |              | ·1        |   |                |            |            |                  |            | 2.63E-11             | 2.9E-03            | 5.2         |              |        |
| KLX 15A            | 845.00           | 850.00            |                      |                      |         |              | ·1        |   |                |            |            |                  |            | 1.23E-11             | 1.4E-03            | 16.0        |              |        |
| KLX 15A            | 850.00           | 855.00            | 1.00E-06             |                      |         | NV #N        | V         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 855.00           | 860.00            |                      |                      |         | .85          | 1         | 1 |                |            |            |                  |            | 1.27E-11             | 1.4E-03            | 3.3         |              |        |
| KLX 15A            | 860.00           | 865.00            |                      |                      |         | NV #N        | _         |   |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 865.00           | 870.00            | 1.00E-06             |                      |         | _            | ·1        |   |                |            | -          |                  |            | 1.97E-11             | 2.2E-03            | 15.7        | #NV          |        |
| KLX 15A            | 870.00           | 875.00            |                      |                      |         | NV #N        |           | + |                |            |            |                  |            | #NV                  | #NV                | #NV         | #NV          |        |
| KLX 15A            | 875.00<br>970.00 | 880.00<br>1000.43 | 1.00E-06<br>1.00E-06 |                      |         | NV #N<br>.55 | V 1       |   |                |            | 1          |                  |            | #NV<br>6.89E-11      | #NV                | #NV<br>7.4  | #NV<br>84.00 |        |
| KLX 15A            | 970.00           | 1000.43           | 1.00E-06             | 1.00E-06             | 16      | .00          | ц         |   | 1              |            | 1          | 1                |            | 0.09E-11             | 7.6E-03            | 7.4         | 04.00        | 234.60 |

|                    |                  | Ī                |     |         |      | l i           |                            |        |                 |           |        | 1      | 1          |                      |                |              |                            |         |
|--------------------|------------------|------------------|-----|---------|------|---------------|----------------------------|--------|-----------------|-----------|--------|--------|------------|----------------------|----------------|--------------|----------------------------|---------|
| idcode             |                  | seclow           | t1  | t2 dte1 | dte2 | n horner      | transmissivity_t_nlr   nlr | ity_s_ | value_type_t_nl | bc t nlr  | c nlr  | cd nlr | skin nlr   | transmissivity t arf | value_type_t_g |              | storativity_s_g flow_dim_g | comment |
|                    |                  |                  | L I | tz uter | utez | · -           | transmissivity_t_mii  mii  |        | ı               | DC_L_IIII | C_IIII | cu_m   | SKIII_IIII | transmissivity_t_grf | 11             | bc_t_grf     | n n                        | Comment |
| KLX 15A            | 405.00           | 410.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 410.00           | 415.00           |     |         |      | 3178.6        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 415.00           | 420.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 440.00           | 445.00           |     |         |      | 3405.1        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 445.00           | 450.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A<br>KLX 15A | 450.00<br>455.00 | 455.00<br>460.00 |     |         |      | 3481.8<br>#NV |                            |        |                 |           |        | -      |            |                      |                |              |                            |         |
| KLX 15A<br>KLX 15A | 460.00           | 465.00           |     |         |      | 3554.5        |                            |        |                 |           |        | -      |            |                      |                |              |                            |         |
| KLX 15A<br>KLX 15A | 465.00           | 470.00           |     |         |      | 3589.7        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A<br>KLX 15A | 470.00           | 475.00           |     |         |      | 3629.9        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 475.00           | 480.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 500.00           | 505.00           |     |         |      | 3847.9        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 505.00           | 510.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 510.00           | 515.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 515.00           | 520.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A<br>KLX 15A | 620.00           | 625.00           |     |         |      | #NV           |                            |        |                 |           |        |        | +          |                      | +              | <del> </del> | 1                          | +       |
| KLX 15A            | 623.00           | 628.00           |     |         |      | 4759.4        |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 628.00           | 633.00           |     |         |      | 4793.4        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 630.00           | 635.00           |     |         |      | 4806.1        |                            |        |                 |           | 1      |        |            |                      |                |              |                            |         |
| KLX 15A            | 635.00           | 640.00           |     |         |      | 4852.9        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 660.00           | 665.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 665.00           | 670.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 670.00           | 675.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 675.00           | 680.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 700.00           | 705.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 705.00           | 710.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 710.00           | 715.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 715.00           | 720.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 720.00           | 725.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 725.00           | 730.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 730.00           | 735.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 735.00           | 740.00           |     |         |      | 5585.8        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 745.00           | 750.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 750.00           | 755.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 755.00           | 760.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 760.00           | 765.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 770.00           | 775.00           |     |         |      | 5843.5        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 775.00           | 780.00           |     |         |      | 5909.7        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 785.00           | 790.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 790.00           | 795.00           |     |         |      | 6009.0        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 795.00           | 800.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 800.00           | 805.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 805.00           | 810.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 810.00           | 815.00           |     |         |      | 6137.8        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 815.00           | 820.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 840.00           | 845.00           |     |         |      | 6411.2        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 845.00           | 850.00           |     |         |      | 6391.7        |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 850.00           | 855.00           |     |         | 1    | #NV           |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 855.00           | 860.00           |     |         | 1    | 6447.4        |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 860.00           | 865.00           |     |         | 1    | #NV           |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 865.00           | 870.00           |     |         | 1    | 6546.8        |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 870.00           | 875.00           |     |         |      | #NV           |                            |        |                 |           |        |        | 1          |                      |                |              |                            |         |
| KLX 15A            | 875.00           | 880.00           |     |         |      | #NV           |                            |        |                 |           |        |        |            |                      |                |              |                            |         |
| KLX 15A            | 970.00           | 1000.43          |     |         |      | 7289.6        |                            |        |                 |           |        |        |            |                      |                | L            |                            |         |

|                                                  | Γ | Table | plu_s_hole_test_obs                              |
|--------------------------------------------------|---|-------|--------------------------------------------------|
| Data of observation sections of single hole test |   |       | Data of observation sections of single hole test |

| Column        | Datatype | Unit | Column Description                                            |
|---------------|----------|------|---------------------------------------------------------------|
| site          | CHAR     |      | Investigation site name                                       |
| activity_type | CHAR     |      | Activity type code                                            |
| idcode        | CHAR     |      | Object or borehole identification code                        |
| start_date    | DATE     |      | Date (yymmdd hh:mm:ss)                                        |
| secup         | FLOAT    | m    | Upper section limit (m)                                       |
| seclow        | FLOAT    | m    | Lower section limit (m)                                       |
| obs_secup     | FLOAT    | m    | Upper limit of observation section                            |
| obs_seclow    | FLOAT    | m    | Lower limit of observation section                            |
| pi_above      | FLOAT    | kPa  | Groundwater pressure above test section, start of flow period |
| pp_above      | FLOAT    | kPa  | Groundwater pressure above test section, at stop flow period  |
| pf_above      | FLOAT    | kPa  | Groundwater pressure above test section at stop recovery per  |
| pi_below      | FLOAT    | kPa  | Groundwater pressure below test section at start flow period  |
| pp_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop flow period   |
| pf_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop recovery per  |
| comments      | VARCHAR  |      | Comment text row (unformatted text)                           |

| KLX 15A 2007-04-12 17:54:00 2007-04-12 10:08:00 80.00 180.00 280.00 281.00 1000.43 630 631 633 1447 KLX 15A 2007-04-12 13:56:00 2007-04-12 16:07:00 180.00 280.00 380.00 1000.43 1391 1391 1392 2203 KLX 15A 2007-04-12 12:07:00 2007-04-12 20:31:00 280.00 380.00 381.00 1000.43 2148 2148 2148 2148 2953 KLX 15A 2007-04-13 20:07:00 2007-04-12 20:31:00 280.00 380.00 481.00 1000.43 2900 2899 2900 3698 KLX 15A 2007-04-13 06:20:00 2007-04-13 20:37:00 380.00 580.00 581.00 1000.43 2900 2899 2900 3698 KLX 15A 2007-04-13 10:28:00 2007-04-13 10:29:00 580.00 680.00 581.00 1000.43 3650 3650 3650 3650 4442 KLX 15A 2007-04-13 15:02:00 2007-04-13 11:27:00 580.00 680.00 681.00 1000.43 4395 4395 4395 5184 KLX 15A 2007-04-13 15:02:00 2007-04-13 17:27:00 680.00 780.00 781.00 1000.43 5136 5136 5136 5136 5136 KLX 15A 2007-04-13 19:23:00 2007-04-13 15:30:00 780.00 880.00 881.00 1000.43 5867 5866 5866 6630 KLX 15A 2007-04-14 19:23:00 2007-04-14 20:46:00 80.00 100.00 100.00 1000.43 5867 5866 5866 6630 KLX 15A 2007-04-14 19:23:00 2007-04-14 20:46:00 80.00 100.00 101.00 1000.43 5867 5866 5866 6830 KLX 15A 2007-04-14 19:23:00 2007-04-14 20:46:00 80.00 100.00 101.00 1000.43 635 634 635 634 635 842 600.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 10 | 3 2203<br>2953<br>3 3698<br>2 4442<br>4 5184<br>5 5913<br>6 630<br>2 842<br>3 995<br>5 1149<br>3 1298<br>1 450 | 7 144:<br>3 220:<br>3 295:<br>8 369:<br>2 444:<br>4 518:<br>3 591:<br>0 663:<br>2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145: | pf_below  1450 2203 2953 3699 4443 5184 5913 6630 842 993 1148     | comments |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|
| KLX 15A         2007-04-12 13:56:00         2007-04-12 16:07:00         180.00         280.00         281.00         1000.43         1391         1391         1392         2203           KLX 15A         2007-04-12 17:54:00         2007-04-12 20:31:00         280.00         380.00         381.00         1000.43         2148         2148         2148         22148         2218         2148         2148         2148         2148         22148         2218         2148         2148         2148         22148         2218         2148         2148         2148         22148         22148         2218         2148         2148         22148         22148         22148         22148         2218         2148         2148         2148         22148         22148         2218         2207-04-13         2007-04-13 06:20:00         2007-04-13 10:28:00         380.00         480.00         481.00         1000.43         2900         2899         2900         3698           KLX 15A         2007-04-13 10:28:00         2007-04-13 12:19:00         580.00         680.00         681.00         1000.43         4395         4395         4395         184         KLX 15A         2007-04-13 19:23:00         2007-04-13 17:27:00         880.00         780.00         781.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 2203<br>2953<br>3 3698<br>2 4442<br>4 5184<br>5 5913<br>6 630<br>2 842<br>3 995<br>5 1149<br>3 1298<br>1 450 | 3 220<br>3 295<br>8 369<br>2 444<br>4 518<br>3 591<br>0 663<br>2 84<br>3 99<br>6 114<br>8 129<br>0 145                       | 2203<br>2953<br>3699<br>4443<br>5184<br>5913<br>6630<br>842<br>993 |          |
| KLX 15A         2007-04-12 17:54:00         2007-04-12 20:31:00         280.00         380.00         381.00         1000.43         2148         2148         2148         2953           KLX 15A         2007-04-12 20:07:00         2007-04-12 23:57:00         380.00         480.00         481.00         1000.43         2900         2899         2900         3698           KLX 15A         2007-04-13 06:20:00         2007-04-13 08:19:00         480.00         581.00         1000.43         2900         2899         2900         3698           KLX 15A         2007-04-13 06:20:00         2007-04-13 10:21:00         580.00         680.00         681.00         1000.43         4395         4395         4395         5184           KLX 15A         2007-04-13 15:02:00         2007-04-13 17:27:00         680.00         780.00         781.00         1000.43         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 2953<br>3 3698<br>2 4442<br>4 5184<br>5 5913<br>6 6630<br>2 842<br>5 995<br>6 1149<br>3 1298<br>1 1450       | 3 295<br>8 369<br>2 444<br>4 518<br>3 591<br>0 663<br>2 84<br>3 99<br>6 114<br>8 129<br>0 145                                | 2953<br>3699<br>4443<br>5184<br>5913<br>6630<br>842<br>993<br>1148 |          |
| KLX 15A         2007-04-12 22:07:00         2007-04-12 23:57:00         380.00         480.00         481.00         100.43         2900         2899         2900         3698           KLX 15A         2007-04-13 06:20:00         2007-04-13 08:19:00         480.00         580.00         581.00         1000.43         3650         3650         3650         4442           KLX 15A         2007-04-13 10:28:00         2007-04-13 17:27:00         580.00         680.00         1000.43         4395         4395         4395         5184           KLX 15A         2007-04-13 15:02:00         2007-04-13 17:27:00         680.00         780.00         781.00         1000.43         5186         5136         5136         5913           KLX 15A         2007-04-13 19:23:00         2007-04-13 21:53:00         780.00         880.00         881.00         1000.43         5866         5866         5866         6630           KLX 15A         2007-04-14 19:23:00         2007-04-14 20:46:00         80.00         100.00         101.00         1000.43         5867         5866         5866         5866         6630           KLX 15A         2007-04-14 22:09:00         2007-04-15 01:35:00         2007-04-15 01:35:00         2007-04-15 01:35:00         1000.00         121.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 3698<br>2 4442<br>4 5184<br>6 5913<br>6 6630<br>2 842<br>2 842<br>6 1149<br>6 1298<br>1 450                  | 8 369:<br>2 444:<br>4 518:<br>3 591:<br>0 663:<br>2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145:                               | 3699<br>4443<br>5184<br>5913<br>6630<br>842<br>993<br>1148         |          |
| KLX 15A         2007-04-13 06:20:00         2007-04-13 08:19:00         480.00         580.00         581.00         1000.43         3650         3650         3650         4442           KLX 15A         2007-04-13 10:28:00         2007-04-13 12:19:00         580.00         680.00         681.00         1000.43         4395         4395         4395         5184           KLX 15A         2007-04-13 19:23:00         2007-04-13 19:23:00         2007-04-13 21:53:00         780.00         781.00         1000.43         5186         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136         5136 <t< td=""><td>4442<br/>5184<br/>5913<br/>6630<br/>2842<br/>995<br/>611149<br/>31298<br/>1450</td><td>2 444:<br/>4 518:<br/>3 591:<br/>0 663:<br/>2 84:<br/>3 99:<br/>6 114:<br/>8 129:<br/>0 145:</td><td>4443<br/>5184<br/>5913<br/>6630<br/>842<br/>993<br/>1148</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4442<br>5184<br>5913<br>6630<br>2842<br>995<br>611149<br>31298<br>1450                                         | 2 444:<br>4 518:<br>3 591:<br>0 663:<br>2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145:                                         | 4443<br>5184<br>5913<br>6630<br>842<br>993<br>1148                 |          |
| KLX 15A         2007-04-13 10:28:00         2007-04-13 12:19:00         580.00         680.00         681.00         1000.43         4395         4395         5184           KLX 15A         2007-04-13 15:02:00         2007-04-13 17:27:00         680.00         780.00         781.00         1000.43         5136         5136         5136         5913           KLX 15A         2007-04-13 19:23:00         2007-04-13 21:53:00         780.00         880.00         881.00         1000.43         5867         5866         5866         5866         663           KLX 15A         2007-04-14 19:23:00         2007-04-14 20:46:00         80.00         100.00         101.00         1000.43         585         634         635         842           KLX 15A         2007-04-14 22:09:00         2007-04-14 23:32:00         100.00         120.00         121.00         1000.43         785         786         786         993           KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         140.00         141.00         1000.43         937         939         940         1146           KLX 15A         2007-04-15 00:09:00         2007-04-15 09:21:00         140.00         161.00         1000.43         1089         1090         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5184<br>5913<br>6630<br>842<br>8 995<br>1149<br>1298<br>1450                                                   | 4 518-<br>3 591:<br>0 663:<br>2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145:                                                   | 5184<br>5913<br>6630<br>842<br>993<br>1148                         |          |
| KLX 15A         2007-04-13 15:02:00         2007-04-13 17:27:00         680.00         780.00         781.00         1000.43         5136         5136         5136         5913           KLX 15A         2007-04-13 19:23:00         2007-04-13 21:53:00         780.00         880.00         881.00         1000.43         5867         5866         5866         6630           KLX 15A         2007-04-14 19:23:00         2007-04-14 20:46:00         80.00         100.00         101.00         1000.43         635         634         635         842           KLX 15A         2007-04-12:09:00         2007-04-14 23:32:00         100.00         121.00         1000.43         785         786         786         993           KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         141.00         1000.43         937         939         940         1146           KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         161.00         1000.43         1089         1090         189         1298           KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         181.00         1000.43         1089         1090         1089         1298 <td>5 5913<br/>6630<br/>842<br/>8 995<br/>6 1149<br/>8 1298<br/>0 1450</td> <td>3 591:<br/>0 663:<br/>2 84:<br/>3 99:<br/>6 114:<br/>8 129:<br/>0 145:</td> <td>5913<br/>6630<br/>842<br/>993<br/>1148</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 5913<br>6630<br>842<br>8 995<br>6 1149<br>8 1298<br>0 1450                                                   | 3 591:<br>0 663:<br>2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145:                                                             | 5913<br>6630<br>842<br>993<br>1148                                 |          |
| KLX 15A         2007-04-13 19:23:00         2007-04-13 21:53:00         780.00         880.00         881.00         1000.43         5867         5866         5866         6630           KLX 15A         2007-04-14 19:23:00         2007-04-14 20:46:00         80.00         100.00         101.00         1000.43         635         634         635         842           KLX 15A         2007-04-14 20:09:00         2007-04-14 23:32:00         100.00         120.00         121.00         1000.43         785         786         786         993           KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         141.00         1000.43         937         939         940         114.00           KLX 15A         2007-04-15 07:52:00         2007-04-15 01:31:00         120.00         140.00         161.00         1000.43         937         939         940         114.00           KLX 15A         2007-04-15 07:52:00         2007-04-15 01:31:00         140.00         160.00         161.00         1000.43         1089         1090         1089         1298           KLX 15A         2007-04-15 10:15:00         2007-04-15 11:4:00         180.00         181.00         1000.43         1241         1241         1241         124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6630<br>2 842<br>3 995<br>5 1149<br>6 1298<br>0 1450                                                           | 0 663<br>2 84<br>3 99<br>6 114<br>8 129<br>0 145                                                                             | 6630<br>842<br>993<br>1148                                         |          |
| KLX 15A         2007-04-14 19:23:00         2007-04-14 20:46:00         80.00         100.00         101.00         100.43         635         634         635         842           KLX 15A         2007-04-14 22:09:00         2007-04-14 23:32:00         100.00         120.00         121.00         1000.43         785         786         786         993           KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         140.00         141.00         1000.43         937         939         940         1146           KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         161.00         1000.43         1089         1090         1089         1298           KLX 15A         2007-04-15 10:15:00         2007-04-15 11:42:00         160.00         180.00         181.00         1000.43         1241         1241         1241         1450           KLX 15A         2007-04-15 10:15:00         2007-04-15 14:01:00         180.00         201.00         1000.43         1393         1394         1394         1601           KLX 15A         2007-04-15 12:35:00         2007-04-15 14:01:00         180.00         201.00         1000.43         1393         1394         1691         1697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 842<br>3 995<br>6 1149<br>8 1298<br>0 1450                                                                   | 2 84:<br>3 99:<br>6 114:<br>8 129:<br>0 145                                                                                  | 842<br>993<br>1148                                                 |          |
| KLX 15A         2007-04-14 22:09:00         2007-04-14 23:32:00         100.00         120.00         121.00         100.43         785         786         786         993           KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         140.00         141.00         1000.43         937         939         940         1146           KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         161.00         1000.43         1089         1090         1089         1298           KLX 15A         2007-04-15 10:15:00         2007-04-15 11:42:00         160.00         180.00         181.00         1000.43         1241         1241         1241         1450           KLX 15A         2007-04-15 12:35:00         2007-04-15 14:01:00         180.00         201.00         1000.43         1393         1394         1394         1601           KLX 15A         2007-04-15 12:35:00         2007-04-15 16:43:00         200.00         220.00         221.00         1000.43         1393         1394         1694         1601           KLX 15A         2007-04-15 17:16:00         2007-04-15 16:43:00         200.00         221.00         1000.43         1546         1546         1546 <td< td=""><td>995<br/>1149<br/>1298<br/>1450</td><td>3 999<br/>6 1149<br/>8 129<br/>0 145</td><td>993<br/>1148</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 995<br>1149<br>1298<br>1450                                                                                    | 3 999<br>6 1149<br>8 129<br>0 145                                                                                            | 993<br>1148                                                        |          |
| KLX 15A         2007-04-15 00:09:00         2007-04-15 01:31:00         120.00         140.00         141.00         1000.43         937         939         940         1146           KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         161.00         1000.43         1089         1090         1089         1298           KLX 15A         2007-04-15 10:15:00         2007-04-15 11:42:00         160.00         180.00         181.00         1000.43         1241         1241         1241         1450           KLX 15A         2007-04-15 12:35:00         2007-04-15 14:01:00         180.00         200.00         201.00         1000.43         1393         1394         1394         1601           KLX 15A         2007-04-15 12:35:00         2007-04-15 16:43:00         200.00         220.00         221.00         1000.43         1546         1546         1546         1754           KLX 15A         2007-04-15 14:59:00         2007-04-15 19:09:00         220.00         240.00         221.00         1000.43         1697         1697         1697         1994           KLX 15A         2007-04-15 19:47:00         2007-04-15 20:15:00         240.00         260.00         261.00         1000.43         1848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1149<br>1298<br>1450<br>1602                                                                                   | 6 114<br>8 129<br>0 145                                                                                                      | 1148                                                               |          |
| KLX 15A         2007-04-15 07:52:00         2007-04-15 09:21:00         140.00         160.00         161.00         1000.43         1089         1090         1089         1298           KLX 15A         2007-04-15 10:15:00         2007-04-15 11:42:00         160.00         180.00         181.00         1000.43         1241         1241         1241         1450           KLX 15A         2007-04-15 12:35:00         2007-04-15 14:01:00         180.00         200.00         201.00         1000.43         1393         1394         1394         1601           KLX 15A         2007-04-15 14:59:00         2007-04-15 16:43:00         200.00         220.00         221.00         1000.43         1546         1546         1546         1754           KLX 15A         2007-04-15 17:16:00         2007-04-15 19:09:00         220.00         240.00         241.00         1000.43         1697         1697         1697         1997         1997         1997         1994           KLX 15A         2007-04-15 19:47:00         2007-04-16 00:21:00         260.00         261.00         1000.43         1848         1848         1846         204         1848         1848         1848         1848         1848         1848         1848         1848         1848 <td>1298<br/>1450<br/>1602</td> <td>8 129<br/>0 145</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1298<br>1450<br>1602                                                                                           | 8 129<br>0 145                                                                                                               |                                                                    |          |
| KLX 15A       2007-04-15 10:15:00       2007-04-15 11:42:00       160.00       180.00       181.00       1000.43       1241       1241       1241       1450         KLX 15A       2007-04-15 12:35:00       2007-04-15 14:01:00       180.00       200.00       201.00       1000.43       1393       1394       1394       1601         KLX 15A       2007-04-15 14:59:00       2007-04-15 16:43:00       200.00       220.00       221.00       1000.43       1546       1546       1546       1754         KLX 15A       2007-04-15 17:16:00       2007-04-15 19:09:00       220.00       240.00       241.00       1000.43       1697       1697       1697       1997       1904         KLX 15A       2007-04-15 19:47:00       2007-04-15 22:15:00       240.00       260.00       261.00       1000.43       1848       1848       1846       2054         KLX 15A       2007-04-16 00:56:00       2007-04-16 00:21:00       260.00       280.00       281.00       1000.43       1997       1997       1997       2024         KLX 15A       2007-04-16 00:56:00       2007-04-16 00:21:00       280.00       301.00       1000.43       2148       2148       2148       2354         KLX 15A       2007-04-16 06:66:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1450<br>1602                                                                                                   | 0 145                                                                                                                        | 4000                                                               |          |
| KLX 15A       2007-04-15 12:35:00       2007-04-15 14:01:00       180.00       200.00       201.00       1000.43       1393       1394       1394       1601         KLX 15A       2007-04-15 14:59:00       2007-04-15 16:43:00       200.00       220.00       221.00       1000.43       1546       1546       1546       1754         KLX 15A       2007-04-15 17:16:00       2007-04-15 19:09:00       220.00       240.00       241.00       1000.43       1697       1697       1697       1904         KLX 15A       2007-04-15 19:47:00       2007-04-15 22:15:00       240.00       260.00       261.00       1000.43       1848       1848       1846       2054         KLX 15A       2007-04-16 22:53:00       2007-04-16 00:21:00       260.00       280.00       281.00       1000.43       1997       1997       1997       1997       2204         KLX 15A       2007-04-16 00:56:00       2007-04-16 04:49:00       280.00       301.00       1000.43       2148       2148       2148       2348         KLX 15A       2007-04-16 06:46:00       2007-04-16 07:39:00       300.00       321.00       1000.43       2298       2298       2298       2298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1602                                                                                                           |                                                                                                                              | 1298                                                               |          |
| KLX 15A       2007-04-15 14:59:00       2007-04-15 16:43:00       200.00       220.00       221.00       1000.43       1546       1546       1546       1754         KLX 15A       2007-04-15 17:16:00       2007-04-15 19:09:00       220.00       240.00       241.00       1000.43       1697       1697       1697       1904         KLX 15A       2007-04-15 19:47:00       2007-04-15 22:15:00       240.00       260.00       261.00       1000.43       1848       1848       1846       2054         KLX 15A       2007-04-15 22:53:00       2007-04-16 00:21:00       260.00       280.00       281.00       1000.43       1997       1997       1997       2204         KLX 15A       2007-04-16 00:56:00       2007-04-16 04:49:00       280.00       300.00       301.00       1000.43       2148       2148       2148       2354         KLX 15A       2007-04-16 06:46:00       2007-04-16 07:39:00       300.00       320.00       321.00       1000.43       2298       2298       2298       2298       2298       2298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | 4 4 4 4 4 4 4 4                                                                                                              | 1450                                                               |          |
| KLX 15A       2007-04-15 17:16:00       2007-04-15 19:09:00       220.00       240.00       241.00       1000.43       1697       1697       1904         KLX 15A       2007-04-15 19:47:00       2007-04-15 22:15:00       240.00       260.00       261.00       1000.43       1848       1848       1846       2054         KLX 15A       2007-04-15 22:53:00       2007-04-16 00:21:00       260.00       280.00       281.00       1000.43       1997       1997       1997       2204         KLX 15A       2007-04-16 00:56:00       2007-04-16 04:49:00       280.00       300.00       301.00       1000.43       2148       2148       2148       2354         KLX 15A       2007-04-16 06:46:00       2007-04-16 07:39:00       300.00       320.00       321.00       1000.43       2298       2298       2298       2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/54                                                                                                           |                                                                                                                              | 1602                                                               |          |
| KLX 15A       2007-04-15 19:47:00       2007-04-15 22:15:00       240.00       260.00       261.00       1000.43       1848       1848       1848       2054         KLX 15A       2007-04-15 22:53:00       2007-04-16 00:21:00       260.00       280.00       281.00       1000.43       1997       1997       1997       2204         KLX 15A       2007-04-16 00:56:00       2007-04-16 04:49:00       280.00       300.00       301.00       1000.43       2148       2148       2148       2354         KLX 15A       2007-04-16 06:46:00       2007-04-16 07:39:00       300.00       320.00       321.00       1000.43       2298       2298       2298       2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1004                                                                                                           |                                                                                                                              | 1754                                                               |          |
| KLX 15A     2007-04-15 22:53:00     2007-04-16 00:21:00     260.00     280.00     281.00     1000.43     1997     1997     1997     2204       KLX 15A     2007-04-16 00:56:00     2007-04-16 04:49:00     280.00     300.00     301.00     1000.43     2148     2148     2148     2354       KLX 15A     2007-04-16 06:46:00     2007-04-16 07:39:00     300.00     320.00     321.00     1000.43     2298     2298     2298     2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                                                              | 1904<br>2053                                                       |          |
| KLX 15A     2007-04-16 00:56:00     2007-04-16 04:49:00     280.00     300.00     301.00     1000.43     2148     2148     2148     2354       KLX 15A     2007-04-16 06:46:00     2007-04-16 07:39:00     300.00     320.00     321.00     1000.43     2298     2298     2298     2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                                                              | 2053                                                               |          |
| KLX 15A 2007-04-16 06:46:00 2007-04-16 07:39:00 300.00 320.00 321.00 1000.43 2298 2298 2298 2503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 2354                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                              | 2503                                                               |          |
| IKLY 15.0   DOLY 04.16 11:00:00   DOLY 04.16 11:67:00   DAN 00   DEN 00   DEC 00   D |                                                                                                                |                                                                                                                              | 2804                                                               |          |
| KLX 15A         2007-04-16 11:08:00         2007-04-16 11:57:00         340.00         360.00         361.00         1000.43         2600         2600         2600         2804           KLX 15A         2007-04-16 13:33:00         2007-04-16 15:03:00         360.00         381.00         1000.43         2751         2751         2751         2955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                                                                                              | 2955                                                               |          |
| KLX 15A         2007-04-16 13:33:00         2007-04-16 15:03:00         360.00         380.00         381.00         1000.43         2751         2751         2751         2955           KLX 15A         2007-04-16 15:49:00         2007-04-16 17:16:00         380.00         400.00         401.00         1000.43         2903         2903         2903         3106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                                                                                                                              | 3107                                                               |          |
| KLX 15A 2007-04-16 17.49:00 2007-04-16 19:13:00 400:00 400:00 420:00 1000:43 2903 2903 3106 3054 3054 3054 3054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                              | 3257                                                               |          |
| KLX 15A 2007-04-16 19:51:00 2007-04-16 19:13:00 400:00 420:00 421:00 1000:43 3034 3034 3034 3204 3204 3204 3204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                              | 3406                                                               |          |
| KLX 15A 2007-04-16 22:04:00 2007-04-16 22:37:00 420:00 440:00 461:00 1000:43 3204 3204 3204 3204 3204 3204 3204 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                                                                                              | 3553                                                               |          |
| KLX 15A 2007-04-16 25:04:00 2007-04-16 25:37:00 440:00 400:00 401:00 1000:43 3533 3532 3532 3532 3532 3532 3532 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                |                                                                                                                              | 3699                                                               |          |
| KLX 15A 2007-04-17 06:50:00 2007-04-17 06:32:00 400:00 400:00 501:00 1000:43 3648 3648 3649 3848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 3848                                                               |          |
| KLX 15A 2007-04-17 08:22:00 2007-04-17 09:52:00 500.00 520.00 521.00 1000.43 3798 3798 3798 3997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 3998                                                               |          |
| KLX 15A 2007-04-17 10:40:00 2007-04-17 11:29:00 520:00 540:00 541:00 1000:43 3947 3947 3947 4144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4145                                                               |          |
| KLX 15A 2007-04-17 13:13:00 2007-04-17 14:02:00 540:00 560:00 561:00 1000:43 4096 4096 4096 4293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4293                                                               |          |
| KLX 15A 2007-04-17 14:39:00 2007-04-17 15:28:00 560.00 580.00 581.00 1000.43 4245 4245 4245 4441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4442                                                               |          |
| KLX 15A 2007-04-17 17:01:00 2007-04-17 17:56:00 580.00 600.00 601.00 1000.43 4395 4395 4395 4395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4590                                                               |          |
| KLX 15A 2007-04-17 18:29:00 2007-04-17 19:23:00 600.00 620.00 621.00 1000.43 4543 4543 4542 4737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4737                                                               |          |
| KLX 15A 2007-04-17 19:54:00 2007-04-17 21:59:00 620.00 640.00 641.00 1000.43 4690 4689 4688 4888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 4888                                                               |          |
| KLX 15A 2007-04-18 06:55:00 2007-04-18 07:46:00 680.00 700.00 701.00 1000.43 5131 5131 5131 5327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 5328                                                               |          |
| KLX 15A 2007-04-18 08:32:00 2007-04-18 10:34:00 700.00 720.00 721.00 1000.43 5278 5278 5278 5474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5474                                                                                                           | 4 547                                                                                                                        | 5475                                                               |          |
| KLX 15A 2007-04-18 11:25:00 2007-04-18 13:21:00 720.00 740.00 741.00 1000.43 5426 5425 5426 5619                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5620                                                                                                           | 9 562                                                                                                                        | 5620                                                               |          |
| KLX 15A 2007-04-18 14:06:00 2007-04-18 16:13:00 740.00 760.00 761.00 1000.43 5572 5572 5572 5765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 5765                                                               |          |
| KLX 15A 2007-04-18 16:45:00 2007-04-18 18:35:00 760.00 780.00 781.00 1000.43 5718 5718 5718 5910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5910                                                                                                           | 0 591                                                                                                                        | 5910                                                               |          |
| KLX 15A 2007-04-18 19:14:00 2007-04-18 22:09:00 780.00 800.00 801.00 1000.43 5867 5865 5867 6057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 6059                                                               |          |
| KLX 15A 2007-04-18 23:25:00 2007-04-19 01:11:00 800.00 820.00 821.00 1000.43 6012 6012 6012 6203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6203                                                                                                           | 3 620                                                                                                                        | 6202                                                               |          |
| KLX 15A 2007-04-19 01:51:00 2007-04-19 02:43:00 820.00 840.00 841.00 1000.43 6156 6156 6156 6345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6345                                                                                                           | 5 634                                                                                                                        | 6345                                                               |          |
| KLX 15A 2007-04-19 07:59:00 2007-04-19 09:31:00 840.00 860.00 861.00 1000.43 6300 6299 6298 6489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6488                                                                                                           | 9 648                                                                                                                        | 6488                                                               |          |
| KLX 15A 2007-04-19 10:19:00 2007-04-19 13:12:00 860.00 880.00 881.00 1000.43 6444 6444 6445 6629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6629                                                                                                           | 9 662                                                                                                                        | 6629                                                               |          |
| KLX 15A 2007-04-19 14:46:00 2007-04-19 15:34:00 880.00 900.00 901.00 1000.43 6590 6590 6590 6772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6772                                                                                                           | 2 677                                                                                                                        | 6772                                                               |          |
| KLX 15A 2007-04-19 16:30:00 2007-04-19 17:21:00 900.00 920.00 921.00 1000.43 6733 6733 6733 6915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6915                                                                                                           | 5 691                                                                                                                        | 6917                                                               |          |
| KLX 15A 2007-04-19 17:52:00 2007-04-19 18:22:00 920.00 940.00 941.00 1000.43 6879 6879 7060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7060                                                                                                           | 0 706                                                                                                                        | 7061                                                               |          |
| KLX 15A 2007-04-19 20:42:00 2007-04-19 21:31:00 940.00 960.00 961.00 1000.43 7024 7024 7024 7024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 7204                                                               |          |
| KLX 15A 2007-04-19 22:03:00 2007-04-19 22:53:00 955.00 975.00 976.00 1000.43 7132 7132 7132 7311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 7310                                                               |          |
| KLX 15A 2007-04-21 12:18:00 2007-04-21 14:33:00 380.00 385.00 386.00 1000.43 2901 2901 2901 2992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 2992                                                               |          |
| KLX 15A 2007-04-21 15:06:00 2007-04-21 16:31:00 385.00 390.00 391.00 1000.43 2939 2939 2939 3030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3035                                                                                                           | 0 303                                                                                                                        | 3030                                                               |          |
| KLX 15A 2007-04-21 16:56:00 2007-04-21 18:20:00 390.00 395.00 396.00 1000.43 2976 2976 2976 3068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                                              | 3068                                                               |          |
| KLX 15A 2007-04-21 21:08:00 2007-04-21 22:31:00 400.00 405.00 406.00 1000.43 3051 3051 3052 3142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3144                                                                                                           | 2 314                                                                                                                        | 3143                                                               |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | idcode  | start_date          | stop_date | secup  | seclow  | section_no | obs_secup | obs_seclow | pi_above | pp_above | pf_above | pi_below | pp_below | pf_below | comments |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|-----------|--------|---------|------------|-----------|------------|----------|----------|----------|----------|----------|----------|----------|
| K.X. 15A   2007-04-22 (0.8300   2007-04-22 (0.8100   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   440.00   44 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 154,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15.6.   2007 04.22 10.40.00   2007 04.22 10.30.00   450.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00  |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.Y. 15A   2007 (42.27 10.500   2007 (42.27 14.300   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   455.00   45 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15A   2007-04-22 176-300   2007-04-22 18-3700   460.00   465.00   465.00   466.00   1000-43   3492   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   3462   |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15A   2007-04-22   17:000   2007-04-22   18:370   468.00   468.00   468.00   47:00   47:00   1000.43   3499   3499   3499   3898   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589   3589 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15A   2007-04-22 1450-200   2007-04-22 2015-00   475.00   475.00   476.00   475.00   476.00   475.00   476.00   476.00   475.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   476.00   4 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15A   2007-04-22 21:10.00   2007-04-22 21:12.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00   470.00    |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| K.X. 15A   2007-04-22 238-00   2007-04-23 0024-00   475 00   480 00   480 00   565 00   500 03   3013   3613   3613   3702   3702   3702   K.X. 15A   2007-04-23 0025-00   2007-04-23 07-25:00   505 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00   510 00 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KX 15A   2007-04-23 005800   2007-04-23 023-00   500.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00   505.00 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX.15A   2007-04-23 08-34-00   2007-04-23 09-35-00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   515.00   5 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-0423 0175700   2007-0423 018000   510.00   516.00   516.00   516.00   516.00   516.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00   520.00 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-23 109-1700   2007-04-23 100-500   515.00   520.00   520.00   520.00   1000-43   3900   3900   3900   3908   3908   KIX 15A   2007-04-23 143-100   2007-04-23 160-100   623.00   628.00   629.00   1000-43   4711   4711   4711   4716   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-23 13-19-00   2007-04-23 14-08-00   625.00   625.00   626.00   1000.43   4781   4781   4773   4773   4773   4773   4775   KIX 15A   2007-04-23 16-25:00   2007-04-23 17-57:00   625.00   633.00   634.00   1000.43   4711   4711   4711   4795   4835   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836   4836    |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-23 16-25:00   2007-04-23 17-57:00   628.00   628.00   628.00   1000.43   4711   4711   4711   4796   4796   4795   4795   4796   4795   4795   4795   4796   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795   4795    |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-23 16:25:00   2007-04-23 17:57:00   628.00   633.00   634.00   100.043   4747   4746   4746   4746   4835   4336   4836   KLX 15A   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-23 20:25:00   2007-04-24 01:25:00   685.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676.00   676. |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-23 1821:00   2007-04-23 193-1100   630.00   635.00   635.00   636.00   100.043   4761   4760   4761   4849   4849   4849   4848   KIX 15A   2007-04-23 224:100   2007-04-23 223:000   660.00   665.00   666.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   660.00   |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| IXX 15A   2007-04-23 202500   2007-04-23 232000   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66500   66 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-23 224:100   2007-04-23 23:30:00   666:00   666:00   667:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   670:00   67 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-24 1017-070   2007-04-24 0115:00   665.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   675.00   67 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-24 01-07-00   2007-04-24 01-05-00   675.00   675.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   675.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   680.00   6 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-24 06:35:00   2007-04-24 07:50:00   680:00   705:00   705:00   705:00   705:00   706:00   1000:43   5277   5277   5277   5378   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5384   5 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-24 08:09:00   2007-04-24 08:58:00   700.00   705:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   706:00   7 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KIX 15A   2007-04-24 102300   2007-04-24 11206:00   715:00   710:00   715:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716:00   716 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-24 12:23:00 2007-04-24 13:15:00 710.00 715:00 720.00 72:00 72:00 100:043 5333 5335 5335 5339 5439 5439 5439 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-24 13:42:00   2007-04-24 14:30:00   720:00   725:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   726:00   7 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-24 15:00:00   2007-04-24 15:40:00   720.00   725.00   730.00   730.00   1000.43   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464   5464  |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-24 16:16:00 2007-04-24 17:04:00 725:00 730:00 735:00 736:00 1000.43 5646 5646 5646 5648 5548 5548 5548 (KLX 15A 2007-04-24 17:29:00 2007-04-24 18:18:00 730:00 735:00 740:00 741:00 1000.43 5500 5500 5500 5500 5584 5584 5584 5584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-24 17:29:00   2007-04-24 18:18:00   730.00   735.00   740.00   741.00   1000.43   5500   5500   5500   5584   5584   5584   5584   5584   5584   5584   5584   5584   5584   5584   5584   5584   5584   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884   5884  |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-24 18.46.00 2007-04-22 038.00 735.00 740.00 741.00 1000.43 5536 5536 5536 5620 5621 5620   KLX 15A 2007-04-24 23.35.00 2007-04-25 00:24.00 745.00 750.00 755.00 756.00 1000.43 5608 5608 5608 5608 5608 5608 5602 5692 5692   KLX 15A 2007-04-25 06:31.00 2007-04-25 07.20.00 755.00 755.00 765.00 1000.43 5608 5608 5608 5608 5608 5608 5608 5608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-24 23:35:00 2007-04-25 00:24:00 745:00 755:00 755:00 756:00 1000.43 5608 5608 5608 5608 5602 5692 5692 5692 5692 5692 5692 5692 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-25 01-31:00   2007-04-25 01-37:00   755.00   755.00   756.00   756.00   1000.43   5645   5645   5645   5728   5728   5729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-25 06:31:00   2007-04-25 07:20:00   755.00   760.00   765.00   766.00   1000.43   5681   5681   5682   5764   5764   5764   KLX 15A   2007-04-25 08:33:00   760.00   775.00   775.00   776.00   1000.43   5718   5718   5719   5801   5801   5801   5801   KLX 15A   2007-04-25 17:15:00   2007-04-25 17:15:00   775.00   775.00   776.00   1000.43   5794   5794   5795   5876   5877   5876   KLX 15A   2007-04-25 17:13:00   2007-04-25 19:01:00   775.00   780.00   781.00   1000.43   5831   5831   5831   5913   5913   5913   5913   KLX 15A   2007-04-25 12:13:100   2007-04-25 10:01:00   790.00   795.00   790.00   791.00   1000.43   5902   5902   5901   5983   5983   5983   5983   KLX 15A   2007-04-26 00:40:00   2007-04-26 00:12:00   790.00   795.00   796.00   1000.43   5937   5937   6018   6018   6018   KLX 15A   2007-04-26 00:40:00   2007-04-26 00:12:00   795.00   800.00   801.00   1000.43   5974   5974   6055   6055   6055   6055   KLX 15A   2007-04-26 00:40:00   2007-04-26 07:20:00   800.00   805.00   806.00   1000.43   5974   5974   5974   6055   6055   6055   6055   KLX 15A   2007-04-26 12:24:00   2007-04-26 13:13:00   805.00   805.00   806.00   1000.43   6094   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6009   6 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-25 07:45:00   2007-04-25 08:33:00   760.00   765.00   765.00   766.00   1000.43   5718   5718   5719   5801   5801   5801   KLX 15A   2007-04-25 17:32:00   2007-04-25 19:01:00   775.00   775.00   776.00   1000.43   5794   5794   5795   5876   5876   5877   5876   5876   5877   5876   5876   5876   5877   5876   5876   5876   5877   5876   5876   5877   5876   5876   5876   5877   5876   5876   5876   5877   5876   5876   5876   5877   5876   5876   5877   5876   5876   5876   5877   5876   5876   5877   5876   5876   5877   5876   5876   5877   5876   5877   5876   5877   5876   5876   5877   5876   5876   5877   5876   5876   5877   5876   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878   5878  |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-25 13:20:00 2007-04-25 19:10:00 775.00 775.00 780.00 781.00 1000.43 5794 5794 5795 5876 5877 5876   KLX 15A 2007-04-25 13:30:00 2007-04-25 19:10:00 775.00 780.00 781.00 1000.43 5831 5831 5831 5831 5831 5913 5913   KLX 15A 2007-04-25 22:42:00 2007-04-26 00:12:00 790.00 795.00 796.00 1000.43 5902 5902 5901 5983 5983 5983   KLX 15A 2007-04-25 22:42:00 2007-04-26 00:12:00 790.00 795.00 795.00 1000.43 5937 5937 5937 6018 6018 6018   KLX 15A 2007-04-26 00:31:00 2007-04-26 00:12:00 795.00 800.00 801.00 1000.43 5974 5974 5974 6055 6055 6055   KLX 15A 2007-04-26 00:31:00 2007-04-26 00:12:00 800.00 805.00 806.00 1000.43 5974 5974 6055 6055 6055   KLX 15A 2007-04-26 12:24:00 2007-04-26 13:300 805.00 805.00 806.00 1000.43 6009 6009 6009 6009 6089 6089 6089   KLX 15A 2007-04-26 13:340:00 2007-04-26 13:13:00 805.00 810.00 811.00 1000.43 6047 6047 6047 6047 6126 6126 6127   KLX 15A 2007-04-26 15:35:00 2007-04-26 15:11:00 810.00 815.00 815.00 816.00 1000.43 6085 6085 6085 6085 6163 6163 6164   KLX 15A 2007-04-26 15:35:00 2007-04-26 16:24:00 815.00 815.00 820.00 821.00 1000.43 6085 6085 6085 6085 6163 6163 6164   KLX 15A 2007-04-26 15:05:00 2007-04-26 16:24:00 815.00 815.00 820.00 821.00 1000.43 6085 6085 6085 6085 6382 6382   KLX 15A 2007-04-26 15:05:00 2007-04-26 18:41:00 840.00 845.00 820.00 821.00 1000.43 6304 6304 6304 6305 6382 6382 6382   KLX 15A 2007-04-26 19:05:00 2007-04-26 18:41:00 840.00 845.00 885.00 820.00 821.00 1000.43 6341 6339 6340 6418 6418 6418   KLX 15A 2007-04-26 19:05:00 2007-04-26 18:400 850.00 850.00 865.00 1000.43 6346 6341 6339 6340 6418 6418 6418   KLX 15A 2007-04-26 19:05:00 2007-04-26 18:400 850.00 850.00 865.00 866.00 1000.43 6346 6346 6488 6448 6448 6448   KLX 15A 2007-04-26 12:12:00 2007-04-26 18:400 860.00 865.00 866.00 1000.43 6341 6339 6340 6418 6418 6418   KLX 15A 2007-04-26 12:12:00 2007-04-26 18:400 860.00 865.00 865.00 866.00 1000.43 6488 6488 6448 6448 6448 6448 6448 64                                                                                                       |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A   2007-04-25 17:38:00   2007-04-25 19:01:00   775.00   780.00   781.00   1000.43   5831   5831   5831   5831   5913   5913   5913   5913   KLX 15A   2007-04-25 22:19:00   2007-04-26 00:12:00   790.00   795.00   796.00   1000.43   5902   5902   5901   5983   5983   5983   5983   KLX 15A   2007-04-26 00:00   2007-04-26 00:12:00   795.00   795.00   796.00   1000.43   5977   5937   5937   5937   6018   6018   6018   KLX 15A   2007-04-26 00:00   2007-04-26 00:26:00   795.00   800.00   801.00   1000.43   5974   5974   5974   6055   6055   6055   6055   KLX 15A   2007-04-26 00:31:00   2007-04-26 07:20:00   800.00   805.00   806.00   1000.43   6009   6009   6009   6009   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   6089   |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-25 21:31:00         2007-04-25 22:19:00         785.00         790.00         791.00         1000.43         5902         5901         5983         5983         5983           KLX 15A         2007-04-25 22:42:00         2007-04-26 01:2:00         790.00         795.00         796.00         1000.43         5937         5937         5937         6018         6018         6018           KLX 15A         2007-04-26 00:40:00         2007-04-26 01:26:00         795.00         800.00         801.00         1000.43         5937         5937         6018         6018         6015           KLX 15A         2007-04-26 06:31:00         2007-04-26 01:26:00         795.00         800.00         806.00         1000.43         6009         6009         6009         6089         6089           KLX 15A         2007-04-26 12:24:00         2007-04-26 13:30:00         805.00         810.00         811.00         1000.43         6047         6047         6047         6126         6126         6127         KLX 15A         2007-04-26 13:34:00         2007-04-26 15:11:00         810.00         811.00         1000.43         6047         6047         6047         6047         6047         6047         6047         6047         6047         6047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-25 22:42:00         2007-04-26 00:40:00         2007-04-26 00:40:00         795.00         795.00         800.00         801.00         1000.43         5937         5937         5937         6018         6018         6018           KLX 15A         2007-04-26 00:40:00         2007-04-26 01:26:00         795.00         800.00         801.00         1000.43         5974         5974         5974         5974         6055         6055         6055           KLX 15A         2007-04-26 06:31:00         2007-04-26 07:20:00         800.00         805.00         806.00         1000.43         6009         6009         6009         6089         6089         6089           KLX 15A         2007-04-26 12:24:00         2007-04-26 13:40:00         2007-04-26 15:11:00         810.00         811.00         1000.43         6047         6047         6126         6126         6127           KLX 15A         2007-04-26 15:35:00         2007-04-26 15:31:00         810.00         820.00         821.00         1000.43         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085         6085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 00:40:00         2007-04-26 01:26:00         795.00         800.00         801.00         1000.43         5974         5974         5974         6055         6055           KLX 15A         2007-04-26 06:31:00         2007-04-26 07:20:00         800.00         805.00         806.00         1000.43         6009         6009         6009         6089         6089           KLX 15A         2007-04-26 12:24:00         2007-04-26 13:30:00         805.00         810.00         811.00         1000.43         6009         6009         6009         6089         6089           KLX 15A         2007-04-26 13:40:00         2007-04-26 15:11:00         810.00         811.00         1000.43         6047         6047         6047         6126         6126         6127           KLX 15A         2007-04-26 13:40:00         2007-04-26 16:24:00         815.00         816.00         1000.43         6085         6085         6085         6163         6163         6164           KLX 15A         2007-04-26 15:35:00         2007-04-26 16:24:00         815.00         820.00         821.00         1000.43         6304         6304         6305         6382         6382         6382         6382         6382         6382         6382 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 06:31:00         2007-04-26 07:20:00         800.00         805.00         806.00         1000.43         6009         6009         6009         6089         6089           KLX 15A         2007-04-26 12:24:00         2007-04-26 13:13:00         805.00         810.00         811.00         1000.43         6047         6047         6047         6126         6126         6127           KLX 15A         2007-04-26 13:40:00         2007-04-26 15:11:00         810.00         815.00         816.00         1000.43         6085         6085         6085         6163         6163         6164           KLX 15A         2007-04-26 15:35:00         2007-04-26 16:24:00         815.00         820.00         821.00         1000.43         6085         6085         6085         6163         6163         6164           KLX 15A         2007-04-26 17:00:00         2007-04-26 18:41:00         845.00         846.00         1000.43         6304         6304         6305         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6382         6383         6453         6453         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 12:24:00         2007-04-26 13:13:00         805.00         810.00         811.00         1000.43         6047         6047         6126         6126         6127           KLX 15A         2007-04-26 13:40:00         2007-04-26 15:11:00         810.00         815.00         816.00         1000.43         6085         6085         6085         6163         6163         6164           KLX 15A         2007-04-26 15:35:00         2007-04-26 16:24:00         815.00         820.00         821.00         1000.43         6304         6304         6305         6382         6203         6202           KLX 15A         2007-04-26 17:00:00         2007-04-26 18:41:00         840.00         845.00         846.00         1000.43         6304         6304         6305         6382         6382         6382           KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6304         6304         6305         6382         6382         6382           KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6341         6339         6340         6418         6418         6418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 13:40:00         2007-04-26 15:11:00         810.00         815.00         816.00         1000.43         6085         6085         6085         6163         6163         6164           KLX 15A         2007-04-26 15:35:00         2007-04-26 16:24:00         815.00         820.00         821.00         1000.43         6122         6122         6123         6203         6203         6202           KLX 15A         2007-04-26 17:00:00         2007-04-26 18:41:00         840.00         845.00         846.00         1000.43         6304         6304         6305         6382         6382         6382           KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6341         6339         6340         6418         6418         6418           KLX 15A         2007-04-26 21:12:00         2007-04-26 22:01:00         850.00         855.00         856.00         1000.43         6376         6376         6375         6453         6453         6452           KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 15:35:00         2007-04-26 16:24:00         815.00         820.00         821.00         1000.43         6122         6122         6123         6203         6203         6202           KLX 15A         2007-04-26 17:00:00         2007-04-26 18:41:00         840.00         845.00         846.00         1000.43         6304         6304         6305         6382         6382         6382           KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6341         6339         6340         6418         6418         6418           KLX 15A         2007-04-26 21:12:00         2007-04-26 22:01:00         850.00         855.00         856.00         1000.43         6376         6376         6375         6453         6452           KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489           KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         860.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525           KLX 15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 17:00:00         2007-04-26 18:41:00         840.00         845.00         846.00         100.43         6304         6304         6305         6382         6382         6382           KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6341         6339         6340         6418         6418           KLX 15A         2007-04-26 21:12:00         2007-04-26 22:01:00         850.00         855.00         856.00         1000.43         6376         6376         6375         6453         6452           KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489           KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         865.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525         6525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                     |           |        |         |            |           |            |          |          |          |          |          |          | -        |
| KLX 15A         2007-04-26 19:05:00         2007-04-26 20:28:00         845.00         850.00         851.00         1000.43         6341         6339         6340         6418         6418         6418           KLX 15A         2007-04-26 21:12:00         2007-04-26 22:01:00         850.00         855.00         856.00         1000.43         6376         6376         6375         6453         6452           KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489           KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         860.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525         6525           KLX 15A         2007-04-27 01:20:00         2007-04-27 03:30:00         865.00         870.00         871.00         1000.43         6483         6483         6483         6559         6559         6559           KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593         6593 <t< td=""><td></td><td></td><td></td><td></td><td>0-0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                     |           |        | 0-0.00  |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-26 21:12:00         2007-04-26 22:01:00         850.00         855.00         856.00         1000.43         6376         6376         6375         6453         6452           KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489           KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         860.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525         6525           KLX 15A         2007-04-27 01:20:00         2007-04-27 03:30:00         865.00         870.00         871.00         1000.43         6483         6483         6483         6559         6559         6559           KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593         6593           KLX 15A         2007-04-27 07:43:00         2007-04-27 08:23:00         875.00         880.00         881.00         1000.43         6554         6554         6555         6631         6631         6631 <td></td> <td>-</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                     |           |        |         |            |           |            |          |          |          |          |          |          | -        |
| KLX 15A         2007-04-26 22:24:00         2007-04-26 23:47:00         855.00         860.00         861.00         1000.43         6412         6412         6411         6489         6489           KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         860.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525         6525           KLX 15A         2007-04-27 01:20:00         2007-04-27 03:30:00         865.00         870.00         871.00         1000.43         6483         6483         6483         6559         6559         6559           KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593         6593           KLX 15A         2007-04-27 07:43:00         2007-04-27 08:23:00         875.00         880.00         881.00         1000.43         6554         6554         6555         6631         6631         6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-27 00:09:00         2007-04-27 01:16:00         860.00         865.00         866.00         1000.43         6448         6448         6447         6525         6525           KLX 15A         2007-04-27 01:20:00         2007-04-27 03:30:00         865.00         870.00         871.00         1000.43         6483         6483         6483         6559         6559           KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593           KLX 15A         2007-04-27 07:43:00         2007-04-27 08:23:00         875.00         880.00         881.00         1000.43         6554         6554         6555         6631         6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-27 01:20:00         2007-04-27 03:30:00         865.00         870.00         871.00         1000.43         6483         6483         6483         6559         6559         6559           KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593           KLX 15A         2007-04-27 07:43:00         2007-04-27 08:23:00         875.00         880.00         881.00         1000.43         6554         6554         6555         6631         6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A         2007-04-27 06:28:00         2007-04-27 07:17:00         870.00         875.00         876.00         1000.43         6517         6517         6517         6593         6593           KLX 15A         2007-04-27 07:43:00         2007-04-27 08:23:00         875.00         880.00         881.00         1000.43         6554         6554         6555         6631         6631         6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
| KLX 15A 2007-04-27 07:43:00 2007-04-27 08:23:00 875.00 880.00 881.00 1000.43 6554 6555 6631 6631 6631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                     |           |        |         |            |           |            |          |          |          |          |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                     |           |        |         |            |           | 1000.43    |          |          | 6555     |          |          |          |          |
| INTA 13A   ZUU7-U4-Z0 10.30.0U  ZUU7-U4-Z0 13:32:0U  970.0U  10U0.43    10U1.43  10U0.43  7238  7239  7239  #NV   #NV   #NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KLX 15A | 2007-04-28 10:58:00 |           | 970.00 | 1000.43 |            | 1001.43   | 1000.43    |          | 7239     | 7239     | #NV      | #NV      | #NV      |          |

Borehole: KLX15A

### **APPENDIX 5-2**

SICADA data tables (Pulse injection tests)

| SKB                   |                  | SI               | CAD       | A/Dat             | a Imp        | ort Temp              | olate                    |          | ,             | Simplified version v1.8) |                 |                    |
|-----------------------|------------------|------------------|-----------|-------------------|--------------|-----------------------|--------------------------|----------|---------------|--------------------------|-----------------|--------------------|
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          | <u>4</u>        |                    |
| File Identity         |                  |                  | ī         |                   | <b>a</b>     |                       | Compiled By              |          |               |                          | 1               |                    |
| File Identity         |                  |                  |           | File Time<br>Zone |              | Quality               | Check For Delivery       | 1        |               |                          | -               |                    |
| Created By<br>Created |                  |                  |           | Zone              | -            | Quality               | Delivery Approva         |          |               |                          | -               |                    |
| Createu               |                  |                  | <u>]]</u> |                   | <u>1</u> 1   |                       | Delivery Approva         | <u> </u> |               |                          | <u>]</u> ]      |                    |
|                       |                  |                  |           |                   | <del>.</del> |                       |                          |          |               |                          | <b>a</b>        |                    |
| Activity Type         |                  | HY665            |           |                   |              | Project               |                          | PLU k    | KLX 15A       |                          |                 |                    |
|                       |                  | PLU Pulse Test   |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   | 1            |                       |                          |          |               |                          | <u>]</u>        |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
| Activity Informa      | ation            |                  |           |                   |              | Additional Activity [ | Data                     |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              | C30                   |                          | I160     | P20           | P200                     |                 | R240               |
|                       |                  |                  |           |                   |              | Company               | Company performing field |          | Field crew    |                          |                 | Length calibration |
| ldcode                | Start Date       | Stop Date        | Secup (m) | Seclow (m)        | Section No   | evaluating data       |                          |          | manager       | Field crew               | evaluating data |                    |
| KLX 15A               | 2007-04-16 08:19 | •                |           |                   | 1            | Golder Associates     |                          |          | Stephan Rohs, | Linda Höckert,           | Reinder van der | 196-               |
| REX TOX               | 2007 04 10 00.10 | 2007 04 20 21:00 | 020.00    | 700.00            |              | Coldel 7 losociates   | Coldel 710000lates       | 1 00 2   |               | Eric Lövgren,            | Wall,           |                    |
|                       |                  |                  |           |                   |              |                       |                          |          | Wall, Philipp | Sascha Lenné,            | Philipp Wolf,   |                    |
|                       |                  |                  |           |                   |              |                       |                          |          | Wolf          | Thomas                   | Stephan Rohs    |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               | Cronquist                |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   | <del> </del> |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |
|                       |                  |                  |           |                   |              |                       |                          |          |               |                          |                 |                    |

| Table | plu_slug_test_ed                                     |
|-------|------------------------------------------------------|
|       | Slug- & pulse test, calculated and evaluated results |

| Column                 | Datatype | Unit    | Column Description                                                    |
|------------------------|----------|---------|-----------------------------------------------------------------------|
| site                   | CHAR     |         | Investigation site name                                               |
| idcode                 | CHAR     |         | Object or borehole identification code                                |
| secup                  | FLOAT    | m       |                                                                       |
| seclow                 | FLOAT    | m       | Lower section limit (m)                                               |
| start_date             | DATE     |         | Date (yymmdd hh:mm:ss)                                                |
| stop_date              | DATE     |         | Date (yymmdd hh:mm:ss)                                                |
| activity_type          | CHAR     |         | Activity type code                                                    |
| sign                   | CHAR     |         | Activity QA signature                                                 |
| error_flag             | CHAR     |         | *: Data for the activity is erroneous and should not be used          |
| test_type              | CHAR     |         | Type of test, one of 7, see table description                         |
| formation_type         | CHAR     |         | 1: Rock, 2: Soil (superficial deposits)                               |
| start_flow_period      | DATE     |         | Date and time of flow phase start (YYYYMMDD hhmmss)                   |
| dur flow phase tp      | FLOAT    | s       | Time for the flowing phase of the test (tp)                           |
| dur rec phase tf       | FLOAT    | s       | Time for the recovery phase of the test (tF)                          |
| initial head h0        | FLOAT    | m       | Initial formation hydraulic head, see table description               |
| initial displacem dh0  | FLOAT    | m       | Initial displacement of hydraulic head, see table description         |
| displacem dh0 p        | FLOAT    | m       | Initial displacement of slugtest, see table description               |
| displacem dh0 f        | FLOAT    | m       | Initial displacement of bailtest, see table description               |
| head at flow end hp    | FLOAT    | m       | Hydraulic head at end of flow phase, see table description            |
| final head hf          | FLOAT    | m       | Hydraulic head at the end of the recovery, see table descr.           |
| initial press pi       | FLOAT    | kPa     | Initial formation pressure                                            |
| initial press diff dp0 | FLOAT    | kPa     | Initial pressure change from pi at time dt=0,pulse test               |
| press change dp0 p     | FLOAT    | kPa     | Initial pressure change;pulse test-measured                           |
| press_at_flow_end_pp   | FLOAT    | kPa     | Final pressure at the end of the flowing period                       |
| final press pf         | FLOAT    | kPa     | Final pressure at the end of the recovery period                      |
| formation_width_b      | FLOAT    | m       | b:Interpreted formation thickness repr. for evaluated T,see           |
| transmissivity ts      | FLOAT    | m**2/s  | Ts: Transmissivity based on slugtest, see table description           |
| value_type_ts          | CHAR     |         | 0:true value,-1:Ts <lower meas.limit,1:ts="">upper meas.limit</lower> |
| bc_ts                  | CHAR     |         | Best choice code.1 means Ts is best choice of transm.,else 0          |
| transmissivity_tp      | FLOAT    | m**2/s  | TP: Transmissivity based on pulse test, see table descript.           |
| value_type_tp          | CHAR     |         | 0:true value,-1:Tp <lower meas.limit,1:tp="">upper meas.limit</lower> |
| bc_tp                  | CHAR     |         | Best choice code.1 means Tp is best choice of transm.,else 0          |
| I_meas_limit_t         | FLOAT    | m**2    | Estimated lower measurement limit for Ts orTp,see descript.           |
| u meas limit t         | FLOAT    | m**2    | Estimated upper measurement limit for Ts & Tp, see descript.          |
| storativity s          | FLOAT    |         | S= Storativity, see table description                                 |
| assumed s              | FLOAT    |         | S*=assumed storativity, see table description                         |
| skin                   | FLOAT    |         | Skin factor                                                           |
| assumed_skin           | FLOAT    |         | Asumed skin factor                                                    |
| c                      | FLOAT    | m**3/pa | Well bore storage coefficient                                         |
| fluid_temp_tew         | FLOAT    | оС      | Fluid temperature in the test section, see table description          |
| fluid_elcond_ecw       | FLOAT    | mS/m    | Fluid electric conductivity in test section, see table descri         |
| fluid_salinity_tdsw    | FLOAT    | mg/l    | Total salinity of the test section fluid (EC), see descr.             |
| fluid_salinity_tdswm   | FLOAT    | mg/l    | Total salinity of the test section fluid (samples),see descr          |
| dt1                    | FLOAT    | s       | Estimated start time of evaluation, see table description             |
| dt2                    | FLOAT    | S       | Estimated stop time of evaluation, see table description              |
| reference              | CHAR     |         | SKB report No for reports describing data and evaluation              |
| comments               | CHAR     |         | Short comment to evaluated parameters                                 |
|                        |          |         | ·                                                                     |

|         |                     |                     | (m)    | (m)    |            |           |             |                     | (s)               |       | (s)     | (m)        | (m)           | (m)      | (m)      | (m)      | (m)       | (kPa)      | (kPa)          |
|---------|---------------------|---------------------|--------|--------|------------|-----------|-------------|---------------------|-------------------|-------|---------|------------|---------------|----------|----------|----------|-----------|------------|----------------|
|         |                     |                     |        |        |            |           | formation_t |                     |                   | dur_r | rec_ ir | nitial_hea | initial_displ | displace | displace | ow_end_h | final_hea | initial_pr | initial_press_ |
| idcode  | start_date          | stop_date           | secup  | seclow | section_no | test_type | ype         | start_flow_period   | dur_flow_phase_tp | phase | e_tf d  | l_h0       | acem_dh0      | m_dh0_p  | m_dh0_f  | р        | d_hf      | ess_pi     | diff_dp0       |
| KLX 15A | 2007-04-16 08:19:00 | 2007-04-16 10:26:00 | 320.00 | 340.00 |            | 4B        | 1           | 2007-04-16 09:03:43 | 10                | 18    | 8000    |            |               |          |          |          |           | 2620       | 211            |
| KLX 15A | 2007-04-17 22:57:00 | 2007-04-17 23:59:00 | 640.00 | 660.00 |            | 4B        | 1           | 2007-04-17 23:36:57 | 10                |       | #NV     |            |               |          |          |          |           | #NV        | #NV            |
| KLX 15A | 2007-04-18 00:38:00 | 2007-04-18 05:25:00 | 660.00 | 680.00 |            | 4B        | 1           | 2007-04-17 01:23:46 | 10                | 4     | 4560    |            |               |          |          |          |           | 5146       | 227            |
| KLX 15A | 2007-04-21 18:45:00 | 2007-04-21 20:28:00 | 395.00 | 400.00 |            | 4B        | 1           | 2007-04-21 19:26:26 | 10                |       | 1680    |            |               |          |          |          |           | 3091       | 196            |
| KLX 15A | 2007-04-24 21:17:00 | 2007-04-24 23:09:00 | 740.00 | 745.00 |            | 4B        | 1           | 2007-04-24 22:05:42 | 10                |       | 3600    |            |               |          |          |          |           | 5618       | 209            |
| KLX 15A | 2007-04-25 09:00:00 | 2007-04-25 10:53:00 | 765.00 | 770.00 |            | 4B        | 1           | 2007-04-25 09:49:03 | 10                |       | 1620    |            |               |          |          |          |           | 5825       | 202            |
| KLX 15A | 2007-04-25 19:31:00 | 2007-04-25 21:08:00 | 780.00 | 785.00 |            | 4B        | 1           | 2007-04-25 20:06:01 | 10                |       | #NV     |            |               |          |          |          |           | #NV        | #NV            |

|         | (m)    | (m     | ) (kPa  | (kPa)       | (kPa)     | (m)       | (m**2/s)            |       | (m**2/s)    |         |       | (m**2)       | (m**2      | 2)           |          |            | (m**3  | pa) (oC  | (mS/m  | ) (mg/   | 1) (mg/l | ) (s)  | (s)     |           |          |
|---------|--------|--------|---------|-------------|-----------|-----------|---------------------|-------|-------------|---------|-------|--------------|------------|--------------|----------|------------|--------|----------|--------|----------|----------|--------|---------|-----------|----------|
|         |        |        | hange_c | press_at_fl | final_pre | formation | transmissi value_ty | р     | transmis v  | alue_ty |       | l_meas_limit | u_meas_lim | i storativit | assumed  | assu       | med    | fluid_te | ond_ec | inity_td | nity_tds |        |         |           |          |
| idcode  | secup  | seclow | р0_р    | ow_end_pp   | ss_pf     | _width_b  | vity_ts e_ts        | bc_ts | sivity_tp p | e_tp    | bc_tp | _t           | t_t        | y_s          | _s       | skin _skir | С      | mp_tew   | w      | sw       | wm       | dt1    | dt2     | reference | comments |
| KLX 15A | 320.00 | 340.00 |         | 2831        | 2631      |           |                     |       | 4.35E-10    | 0       | 1     | 1.00E-10     | 8.00E-1    | 0 1.00E-06   | 1.00E-06 | -0.6       | 4.50E- | 11 10.   | 7      |          |          | 88.80  | 517.80  |           |          |
| KLX 15A | 640.00 | 660.00 | )       | #NV         | #NV       |           |                     |       | 1.00E-11    | -1      | 1     | 1.00E-11     | 1.00E-1    | 3 1.00E-06   | 1.00E-06 | #NV        | #1     | NV 14.   | 4      |          |          | #NV    | #NV     |           |          |
| KLX 15A | 660.00 | 680.00 | )       | 5373        | 5342      |           |                     |       | 3.89E-10    | 0       | 1     | 1.00E-12     | 8.00E-1    | 0 1.00E-06   | 1.00E-06 | -1.8       | 5.07E- | 11 14.   | 3      |          |          | #NV    | #NV     |           |          |
| KLX 15A | 395.00 | 400.00 | )       | 3287        | 3106      |           |                     |       | 3.48E-11    | 0       | 1     | 1.00E-11     | 8.00E-1    | 1 1.00E-06   | 1.00E-06 | -0.5       | 1.65E- | 11 11.   | 3      |          |          | 545.40 | 3323.40 |           |          |
| KLX 15A | 740.00 | 745.00 | )       | 5827        | 5633      |           |                     |       | 1.76E-10    | 0       | 1     | 6.00E-11     | 3.00E-1    | 0 1.00E-06   | 1.00E-06 | -0.9       | 1.27E- | 11 #N\   | /      |          |          | #NV    | #NV     |           |          |
| KLX 15A | 765.00 | 770.00 | )       | 6027        | 5831      |           |                     |       | 2.47E-10    | 0       | 1     | 8.00E-11     | 5.00E-1    | 0 1.00E-06   | 1.00E-06 | -1.0       | 2.05E- | 11 #N\   | /      |          |          | #NV    | #NV     |           |          |
| KLX 15A | 780.00 | 785.00 | )       | #NV         | #NV       |           |                     |       | 1.00E-11    | -1      | 1     | 1.00E-11     | 1.00E-1    | 3 1.00E-06   | 1.00E-06 | #NV        | #1     | NV #N۱   | /      |          |          | #NV    | #NV     |           |          |

| Table | plu_s_hole_test_obs                              |
|-------|--------------------------------------------------|
|       | Data of observation sections of single hole test |
|       |                                                  |

| Column        | Datatype | Unit | Column Description                                            |
|---------------|----------|------|---------------------------------------------------------------|
| site          | CHAR     |      | Investigation site name                                       |
| activity_type | CHAR     |      | Activity type code                                            |
| idcode        | CHAR     |      | Object or borehole identification code                        |
| start_date    | DATE     |      | Date (yymmdd hh:mm:ss)                                        |
| secup         | FLOAT    | m    | Upper section limit (m)                                       |
| seclow        | FLOAT    | m    | Lower section limit (m)                                       |
| sign          | CHAR     |      | Activity QA signature                                         |
| error_flag    | CHAR     |      | *: Data for the activity is erroneous and should not be used  |
| obs_secup     | FLOAT    | m    | Upper limit of observation section                            |
| obs_seclow    | FLOAT    | m    | Lower limit of observation section                            |
| pi_above      | FLOAT    | kPa  | Groundwater pressure above test section, start of flow period |
| pp_above      | FLOAT    | kPa  | Groundwater pressure above test section, at stop flow period  |
| pf_above      | FLOAT    | kPa  | Groundwater pressure above test section at stop recovery per  |
| pi_below      | FLOAT    | kPa  | Groundwater pressure below test section at start flow period  |
| pp_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop flow period   |
| pf_below      | FLOAT    | kPa  | Groundwater pressure below test section at stop recovery per  |
| comments      | VARCHAR  |      | Comment text row (unformatted text)                           |

|         |                     |                     | (m)    | (m)    |            | (m)       | (m)        | (kPa)    | (kPa)    | (kPa)    | (kPa)    | (kPa)    | (kPa)    |          |
|---------|---------------------|---------------------|--------|--------|------------|-----------|------------|----------|----------|----------|----------|----------|----------|----------|
| idcode  | start_date          | stop_date           | secup  | seclow | section_no | obs_secup | obs_seclow | pi_above | pp_above | pf_above | pi_below | pp_below | pf_below | comments |
| KLX 15A | 2007-04-16 08:19:00 | 2007-04-16 10:26:00 | 320.00 | 340.00 |            | 341.00    | 1000.43    | 2448     | 2449     | 2449     | 2654     | 2654     | 2654     |          |
| KLX 15A | 2007-04-17 22:57:00 | 2007-04-17 23:59:00 | 640.00 | 660.00 |            | 661.00    | 1000.43    | 4835     | 4835     | 4835     | 5034     | 5033     | 5033     |          |
| KLX 15A | 2007-04-18 00:38:00 | 2007-04-18 05:25:00 | 660.00 | 680.00 |            | 681.00    | 1000.43    | 4983     | 4983     | 4983     | 5180     | 5180     | 5182     |          |
| KLX 15A | 2007-04-21 18:45:00 | 2007-04-21 20:28:00 | 395.00 | 400.00 |            | 401.00    | 1000.43    | 3013     | 3013     | 3013     | 3105     | 3105     | 3105     |          |
| KLX 15A | 2007-04-24 21:17:00 | 2007-04-24 23:09:00 | 740.00 | 745.00 |            | 746.00    | 1000.43    | 5571     | 5571     | 5571     | 5656     | 5656     | 5656     |          |
| KLX 15A | 2007-04-25 09:00:00 | 2007-04-25 10:53:00 | 765.00 | 770.00 |            | 771.00    | 1000.43    | 5756     | 5756     | 5756     | 5838     | 5838     | 5838     |          |
| KLX 15A | 2007-04-25 19:31:00 | 2007-04-25 21:08:00 | 780.00 | 785.00 |            | 786.00    | 1000.43    | 5868     | 5868     | 5866     | 5948     | 5948     | 5948     |          |