P-07-99

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX13A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs Golder Associates GmbH

September 2007

Svensk Kärnbränslehantering AB

Swedish Nuclear Fuel and Waste Management Co Box 5864

SE-102 40 Stockholm Sweden Tel 08-459 84 00

+46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19

Oskarshamn site investigation

Hydraulic injection tests in borehole KLX13A

Subarea Laxemar

Cristian Enachescu, Stephan Rohs Golder Associates GmbH

September 2007

Keywords: Site/project, Hydrogeology, Hydraulic tests, Injection test, Hydraulic parameters, Transmissivity, Constant head.

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client.

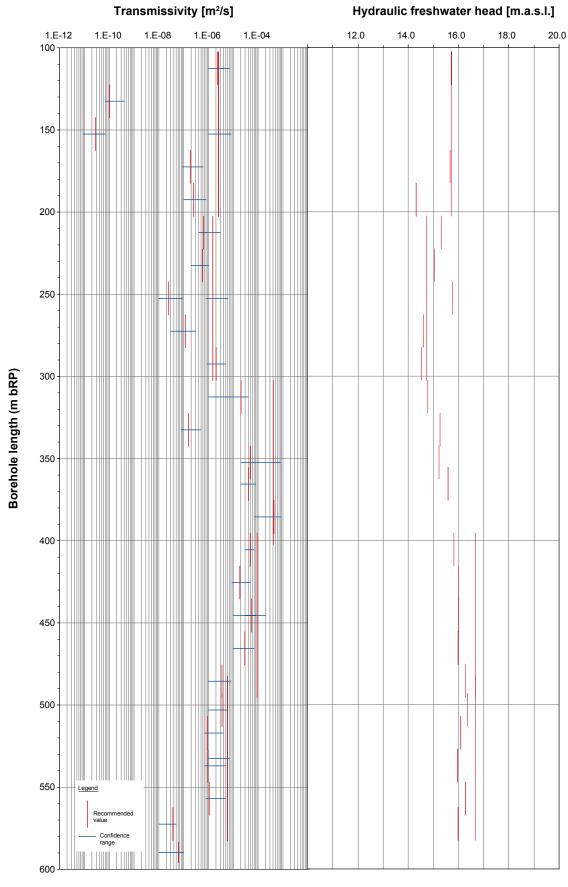
Data in SKB's database can be changed for different reasons. Minor changes in SKB's database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se.

A pdf version of this document can be downloaded from www.skb.se.

Abstract

Hydraulic injection tests have been performed in Borehole KLX13A at the Laxemar area, Oskarshamn. The tests are part of the general program for site investigations and specifically for the Laxemar subarea. The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. Data is subsequently delivered for the site descriptive model.

This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX13A performed between 12th and 23rd of February 2007.


The objective of the hydrotests was to describe the rock around the borehole with respect of hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K) at different measurement scales of 100 m and 20 m sections. Transient evaluation during flow and recovery period provided additional information such as flow regimes, hydraulic boundaries and crossover flows. Constant pressure injection tests were conducted between 102.50–582.50 m below ToC. The results of the test interpretation are presented as transmissivity, hydraulic conductivity and hydraulic freshwater head.

Sammanfattning

Injektionstester har utförts i borrhål KLX13A i delområde Laxemar, Oskarshamn. Testerna är en del av SKB:s platsundersökningar. Hydraultestprogrammet där injektionstesterna ingår har som mål att karakterisera berget med avseende på dess hydrauliska egenskaper av sprickzoner och mellanliggande bergmassa. Data från testerna används vid den platsbeskrivande modelleringen av området.

Denna rapport redovisar resultaten och utvärderingar av primärdata de hydrauliska injektionstesterna i borrhål KLX13A. Testerna utfördes mellan den 12 till den 23 Februari 2007.

Syftet med hydraultesterna var framförallt att beskriva bergets hydrauliska egenskaper runt borrhålet med avseende på hydrauliska parametrar, i huvudsak transmissvitet (T) och hydraulisk konduktivitet (K) vid olika mätskalor av 100 m och 20 m sektioner. Transient utvärdering under injektions- och återhämntningsfasen gav ytterligare information avseende flödesgeometri, hydrauliska gränser och sprickläckage. Injektionstester utfördes mellan 102,50–582,50 m borrhålslängd. Resultaten av testutvärderingen presenteras som transmissivitet, hydraulisk konduktivitet och grundvattennivå uttryckt i ekvivalent sötvattenpelare (fresh-water head).

Borehole KLX13 A – Summary of results.

Innehåll

1	Introd	uction	9
2 2.1 2.2	Boreho Injection	on tests	11 11 13
2.3		of equipment	14
3.1 3.2 3.3	Sensor	ption of equipment	15 15 19 20
4	Execu	tion	21
4.1	Prepar	ations	21
4.2		correction	21
4.3	Execut	tion of field work	21
		Test principle	21
		Test procedure	22
4.4		andling/post processing	23
4.5	-	ses and interpretations	24
	4.5.1	Analysis software	24
	4.5.2	J	24
		Analysis methodology	24
		Correlation between storativity and skin factor Determination of the ri-index and calculation of the radius	26
	4.3.3	of influence (ri)	26
	156	Steady state analysis	27
		Flow models used for analysis	27
	4.5.8		21
	1.0.0	freshwater head	28
	4.5.9	Derivation of the recommended transmissivity and the	
		confidence range	28
4.6	Nonco	nformities	29
5	Result		31
5.1		single-hole injection tests	31
J.1	5.1.1	Section 102.50–205.50 m, test no. 1, injection	31
	5.1.2	Section 202.50–302.50 m, test no. 1, injection	32
	5.1.3	Section 302.50–402.50 m, test no. 1, injection	32
	5.1.4	Section 395.50–495.50 m, test no. 1, injection	33
	5.1.5	Section 482.50–582.50 m, test no. 1, injection	34
5.2	20 m s	ingle-hole injection tests	35
	5.2.1	Section 102.50–122.50 m, test no. 1, injection	35
	5.2.2	Section 122.50–142.50 m, test no. 1, injection	35
	5.2.3	Section 142.50–162.50 m, test no. 1, injection	36
	5.2.4	Section 162.50–182.50 m, test no. 1, injection	37
	5.2.5	Section 182.50–202.50 m, test no. 1, injection	37
	5.2.6	Section 202.50–222.50 m, test no. 1, injection	38
	5.2.7	Section 222.50–242.50 m, test no. 1, injection	39
	5.2.8	Section 242.50–262.50 m, test no. 1, injection	39
	5.2.9	Section 262.50–282.50 m, test no. 1, injection	40
		Section 282.50–302.50 m, test no. 1, injection	41
	5.2.11	Section 302.50–322.50 m, test no. 1, injection	41

	5.2.12	Section 322.50–342.50 m, test no. 1, injection	42
	5.2.13	Section 342.50–362.50 m, test no. 1, injection	43
	5.2.14	Section 355.50–375.50 m, test no. 1, injection	43
	5.2.15	Section 375.50–395.50 m, test no. 1, injection	44
	5.2.16	Section 395.50–415.50 m, test no. 1, injection	45
	5.2.17	Section 415.50–435.50 m, test no. 1, injection	45
		Section 435.50–455.50 m, test no. 1, injection	46
		Section 455.50–475.50 m, test no. 1, injection	47
		Section 475.50–495.50 m, test no. 1, injection	47
		Section 493.00–513.00 m, test no. 1, injection	48
		Section 507.00–527.00 m, test no. 1, injection	49
		Section 527.00–547.00 m, test no. 1, injection	49
		Section 547.00–567.00 m, test no. 1, injection	50
		Section 562.50–582.50 m, test no. 1, injection	51
	5.2.26	Section 583.50–595.85 m (bottom zone), test no. 1	51
6	Summ	ary of results	53
6.1	Genera	l test data and results	54
6.2	Correla	ation analysis	62
	6.2.1	Comparison of steady state and transient analysis results	62
	6.2.2	Comparison between the matched and theoretical wellbore	
		storage coefficient	63
7	Conclu	isions	65
7.1	Transm	nissivity	65
7.2	Equiva	lent freshwater head	65
7.3	Flow re	egimes encountered	65
8	Refere	nces	67
Appe	endices a	attached on CD	
Appe	endix 1	File Description Table	
Appe	endix 2	Test Analyses Diagrams	
Appe	endix 3	Test Summary Sheets	
Appe	endix 4	Nomenclature	
Appe	endix 5	SICADA Data Tables	

1 Introduction

A general program for site investigations presenting survey methods has been prepared /SKB 2001/, as well as a site-specific program for the investigations in the Simpevarp area /SKB 2006/. The hydraulic injection tests form part of the site characterization program under item 1.1.5.8 in the work breakdown structure of the execution programme, /SKB 2002/.

Measurements were carried out according in borehole KLX13A between 12th and 23rd of February 2007 following the methodology described in SKB MD 323.001 and in the Activity Plan AP PS 400-07-006 (SKB controlling documents). Data and results were delivered to the SKB site characterization database SICADA and are traceable by the Activity Plan number.

The hydraulic testing programme has the aim to characterise the rock with respect to its hydraulic properties of the fractured zones and rock mass between them. This report describes the results and primary data evaluation of the hydraulic injection tests in borehole KLX13A. The commission was conducted by Golder Associates AB and Golder Associates GmbH.

Borehole KLX13A is situated in the Laxemar area approximately 3 km northwest of the nuclear power plant of Simpevarp, Figure 1-1. The borehole was drilled from March 2006 to August 2006 at 595.85 m length with an inner diameter between 341 mm and 160 mm to a depth of 99.9 m and further on of 76 mm to the bottom of the borehole. The inclination of the borehole is –82.25°. The upper 11.75 m is cased with large diameter telescopic casing ranging from diameter (outer diameter) 208–323 mm. A cone casing is placed from 96.11 m to 101.21 m ranging from diameter (outer diameter) 100–104 mm.

The work was carried out in accordance with Activity Plan AP PS 400-07-006. In Table 1-1 controlling documents for performing this activity are listed. Activity plan and Method Descriptions are SKB's internal controlling documents. Measurements were conducted utilising SKB's custom made testing equipment PSS2.

Table 1-1. Controlling documents for the performance of the activity.

Number AP PS 400-07-006	Version 1.0
Number	Version
SKB MD 320.004e	1.0
SKB MD 323.001e	1.0
SKB MD 600.004	1.0
SKB MD 620.010	1.0
SKB SDPO-003	1.0
SKB SDP-301	1.0
SKB SDP-508	1.0
	AP PS 400-07-006 Number SKB MD 320.004e SKB MD 323.001e SKB MD 600.004 SKB MD 620.010 SKB SDPO-003 SKB SDP-301

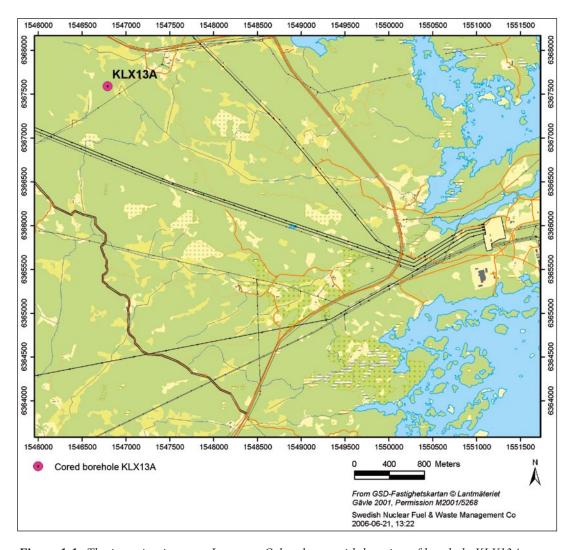


Figure 1-1. The investigation area Laxemar, Oskarshamn with location of borehole KLX13A.

2 Objective and scope

The objective of the hydrotests in borehole KLX13A is to describe the rock around the borehole with respect to hydraulic parameters, mainly transmissivity (T) and hydraulic conductivity (K). This is done at different measurement scales of 100 m and 20 m sections. Among these parameters transient evaluation during the flow and recovery period provides additional information such as flow regimes, hydraulic boundaries and cross-over flows.

The scope of work consisted of preparation of the PSS2 tool which included cleaning of the down-hole tools, calibration and functional checks, injection tests of 100 m and 20 m test sections, analyses and reporting.

Preparation for testing was done according to the Quality plan. This step mainly consists of functions checks of the equipment to be used, the PSS2 tool. Calibration checks and function checks were documented in the daily log and/or relevant documents.

The following hydraulic injection tests were performed between 12th and 23rd February 2007.

Furthermore, the response in the bottom zone during the last 20 m test (562.50–582.50) was analysed.

2.1 Borehole

The borehole is telescope drilled with specifications on its construction according to Table 2-2. The reference point of the borehole is the centre of top of casing (ToC), given as elevation in the table below. The Swedish National coordinate system (RT90) is used in the x-y direction and RHB70 in the z-direction. Northing and Easting refer to the top of the boreholes at the ground surface. The borehole diameter in Table 2-2 refers to the final diameter of the drill bit after drilling to full depth.

Table 2-1. Performed injection tests at borehole KLX13A.

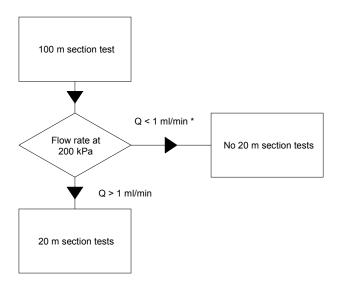
No. of injection tests*	Interval	Positions	Time/test	Total test time
5	100 m	102.50–582.50 m	125 min	10.4 hrs
25	20 m	102.50–582.50 m	90 min Total:	37.5 hrs 47.9 hrs

^{*} excluding repeated tests

Table 2-2. Information about KLX13A (from SICADA 2007-01-17).

Title	Value				
Comment:	No comment	exists			
Borehole length (m):	595.85				
Reference level:	TOC				
Drilling Period (s):	From date	To date	Secup (m)	Seclow (m)	Drilling type
	2006-03-23	2006-06-30	0.15	99.86	Percussion drilling
	2006-05-19	2006-08-16	99.86	595.85	Core drilling
Starting point coordinate:	Length (m)	Northing (m)	Easting (m)	Elevation (m.a.s.l.)	Coord system
(centerpoint of TOC)	0.00	6,367,547.14	1,546,787.36	24.15	RT90-RHB70
	3.00	6,367,546.89	1,546,787.08	21.18	RT90-RHB70
Angles:	Length (m)	Bearing	Inclination (- = down)		
	0.00	224.48	-82.25	RT90-RHB70	
Borehole diameter:	Secup (m)	Seclow (m)	Hole diam (m)		
	0.15	6.15	0.341		
	6.15	11.75	0.252		
	11.75	99.76	0.197		
	99.76	99.86	0.160		
	99.86	101.21	0.086		
	101.21	595.85	0.076		
Core diameter:	Secup (m)	Seclow (m)	Core diam (m)		
	99.86	100.36	0.072		
	100.36	595.85	0.050		
Casing diameter:	Secup (m)	Seclow (m)	Case in (m)	Case out (m)	
	0.00	11.75	0.200	0.208	
	0.15	6.15	0.301	0.323	
Cone dimensions:	Secup (m)	Seclow (m)	Cone in (m)	Cone out (m)	
	96.11	101.21	0.100	0.104	
Grove milling:	Length (m)	Trace detectable			
	110.000	YES			
	150.000	YES			
	200.000	YES			
	250.000	YES			
	300.000	YES			
	350.000	YES			
	400.000	YES			
	450.000	YES			
	500.000	YES			
	550.000	YES			
	581.000	YES			

2.2 Injection tests


Injection tests were conducted according to the Activity Plan AP PS 400-07-006 and the Method Description for hydraulic injection tests, SKB MD 323.001 (SKB internal documents). Tests were done in 100 m and 20 m test sections between 102.50–582.50 m below ToC (see Table 2-3). The initial criteria for performing injection tests in 20 m sections was a measurable flow of Q > 0.001 L/min in the previous measured 100 m covering the smaller test sections (see Figure 2-1). The measurements were performed with SKB's custom made equipment for hydraulic testing called PSS2.

No other additional measurements except the actual hydraulic tests and related measurements of packer position and water level in annulus of borehole KLX13A were conducted.

Table 2-3. Tests performed.

Bh ID	Test section (m bToC)	Test type ¹	Test no	Test start date, time	Test stop date, time
KLX13A	102.50-202.50	3	1	2007-02-15 09:48	2007-02-15 14:06
KLX13A	202.50-302.50	3	1	2007-02-15 15:34	2007-02-15 17:30
KLX13A	302.50-402.50	3	2	2007-02-16 07:58	2007-02-16 10:27
KLX13A	395.50-495.50	3	3	2007-02-16 11:52	2007-02-16 13:43
KLX13A	482.50-582.50	3	1	2007-02-16 15:44	2007-02-16 17:35
KLX13A	102.50-122.50	3	1	2007-02-17 18:25	2007-02-17 20:28
KLX13A	122.50-142.50	3	2	2007-02-18 08:25	2007-02-18 10:31
KLX13A	142.50-162.50	4B	1	2007-02-18 11:07	2007-02-18 12:53
KLX13A	162.50-182.50	3	2	2007-02-18 13:24	2007-02-18 14:46
KLX13A	182.50-202.50	3	1	2007-02-18 16:10	2007-02-18 17:42
KLX13A	202.50-222.50	3	2	2007-02-18 18:12	2007-02-18 19:32
KLX13A	222.50-242.50	3	1	2007-02-19 09:02	2007-02-19 10:27
KLX13A	242.50-262.50	3	2	2007-02-19 11:04	2007-02-19 12:53
KLX13A	262.50-282.50	3	1	2007-02-19 14:13	2007-02-19 15:40
KLX13A	282.50-302.50	3	1	2007-02-19 16:17	2007-02-19 17:40
KLX13A	302.50-322.50	3	1	2007-02-19 18:12	2007-02-19 19:37
KLX13A	322.50-342.50	3	1	2007-02-20 08:18	2007-02-20 09:42
KLX13A	342.50-362.50	3	1	2007-02-20 10:20	2007-02-20 11:43
KLX13A	355.50-375.50	3	1	2007-02-20 12:56	2007-02-20 14:18
KLX13A	375.50-395.50	3	1	2007-02-20 15:00	2007-02-20 16:26
KLX13A	395.50-415.50	3	1	2007-02-20 17:07	2007-02-20 18:30
KLX13A	415.50-435.50	3	1	2007-02-21 08:38	2007-02-21 10:02
KLX13A	435.50-455.50	3	1	2007-02-21 10:41	2007-02-21 12:03
KLX13A	455.50-475.50	3	1	2007-02-21 13:02	2007-02-21 14:30
KLX13A	475.50-495.50	3	1	2007-02-21 15:28	2007-02-21 16:54
KLX13A	493.00-513.00	3	1	2007-02-21 17:33	2007-02-21 18:58
KLX13A	507.00-527.00	3	1	2007-02-22 08:14	2007-02-22 09:36
KLX13A	527.00-547.00	3	1	2007-02-22 10:14	2007-02-22 11:38
KLX13A	547.00-567.00	3	1	2007-02-22 13:02	2007-02-22 14:22
KLX13A	562.50-582.50	3	1	2007-02-22 15:00	2007-02-22 17:15
KLX13A	583.50-595.85	2	1	2007-02-22 15:00	2007-02-22 17:15

^{1) 2:} Interference test; 3: Injection test; 4B Pulse injection test

^{*} eventually tests performed after specific discussion with SKB

Figure 2-1. Flow chart for test sections.

2.3 Control of equipment

Control of equipment was mainly performed according to the Quality plan. The basis for equipment handling is described in the "Mätssystembeskrivning" SKB MD 345.101-123 which is composed of two parts 1) management description, 2) drawings and technical documents of the modified PSS2 tool.

Function checks were performed before and during the tests. Among these pressure sensors were checked at ground level and while running in the hole calculated to the static head. Temperature was checked at ground level and while running in. Leakage checks at joints in the pipe string were done at least every 100 m of running in.

Any malfunction was recorded, and measures were taken accordingly for proper operation. Approval was made according to SKB site manager, or Quality plan and the "Mätssystembeskrivning".

3 Equipment

3.1 Description of equipment

The equipment called PSS2 (Pipe String System 2) is a highly integrated tool for testing boreholes at great depth (see conceptual drawing in the next Figure). The system is built inside a container suitable for testing at any weather. Briefly, the components consists of a hydraulic rig, down-hole equipment including packers, pressure gauges, shut-in tool and level indicator, racks for pump, gauge carriers, breakpins, etc shelfs and drawers for tools and spare parts.

There are three spools for a multi-signal cable, a test valve hose and a packer inflation hose. There is a water tank for injection purposes, pressure vessels for injection of packers, to open test valve and for low flow injection. The PSS2 has been upgraded with a computerized flow regulation system. The office part of the container consists of a computer, regulation valves for the nitrogen system, a 24 V back-up system in case of power shut-offs and a flow regulation board.

PSS2 is documented in photographs 1–6.

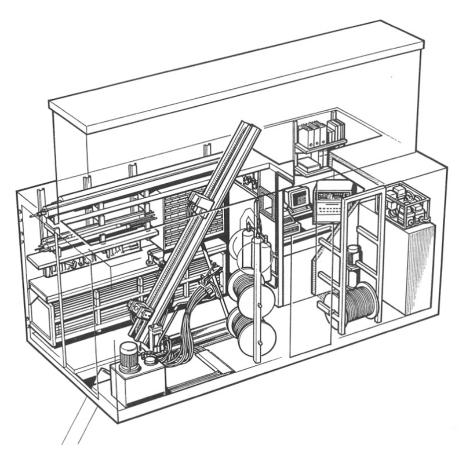



Figure 3-1. A view of the layout and equipment of PSS2.

Photo 1. Hydraulic rig.

Photo 3. Computer room, displays and gas regulators.

Photo 5. Positioner, bottom end of down-in-hole string

Photo 2. Rack for pump, down-hole equipment, workbench and drawers for tools.

Photo 4. Pressure vessels for test valve, packers and injection.

Photo 6. Packer and gauge carrier.

The down-hole equipment consists from bottom to top of the following equipment:

- Level indicator SS 630 mm pipe with OD 73 mm with 3 plastic wheels connected to a Hallswitch.
- Gauge carrier SS 1.5 m carrying bottom section pressure transducer and connections from positioner.
- Lower packer SS and PUR 1.5 m with OD 72 mm, stiff ends, tightening length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Gauge carrier with breakpin SS 1.75 m carrying test section pressure transducer, temperature sensor and connections for sensors below. Breakpin with maximum load of 47.3 (± 1.0) kN. The gauge carrier is covered by split pipes and connected to a stone catcher on the top.
- Pop joint SS 1.0 or 0.5 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Pipe string SS 3.0 m with OD 33 mm and ID 21 mm, double O-ring fittings, trapezoid thread, friction loss of 3kPa/m at 50 L/min.
- Contact carrier SS 1.0 m carrying connections for sensors below.
- Upper packer SS and PUR 1.5 m with OD 72 mm, fixed ends, seal length 1.0 m, maximum pressure 6.5 MPa, working pressure 1.6 MPa.
- Breakpin SS 250 mm with OD 33.7 mm. Maximum load of 47.3 (\pm 1.0) kN.
- Gauge carrier SS 1.5 m carrying top section pressure transducer, connections from sensors below. Flow pipe is double bent at both ends to give room for sensor equipment. The pipe gauge carrier is covered by split pipes.
- Shut-in tool (test valve) SS 1.0 m with a OD of 48 mm, Teflon coated valve piston, friction loss of 11 kPa at 10 L/min (260 kPa–50L/min). Working pressure 2.8–4.0 MPa. Breakpipe with maximum load of 47.3 (± 1.0) kN. The shut-in tool is covered by split pipes and connected to a stone catcher on the top.

The tool scheme is presented in Figure 3-2.

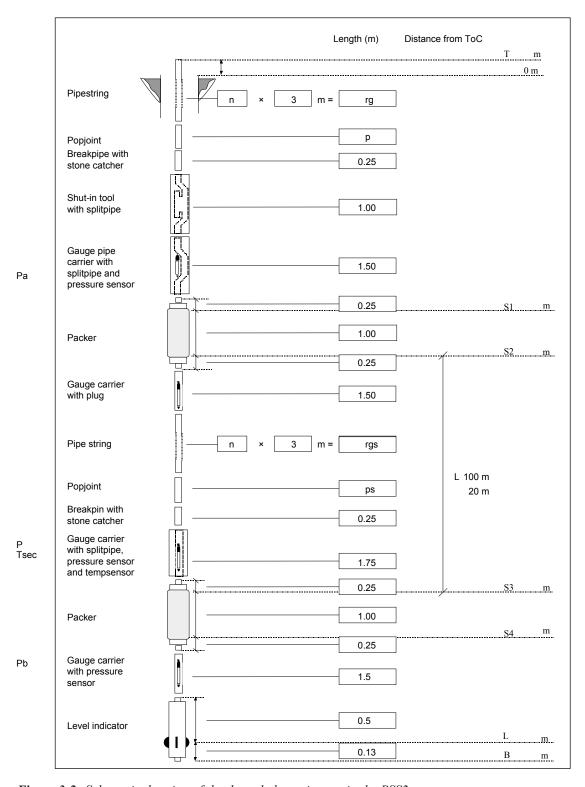
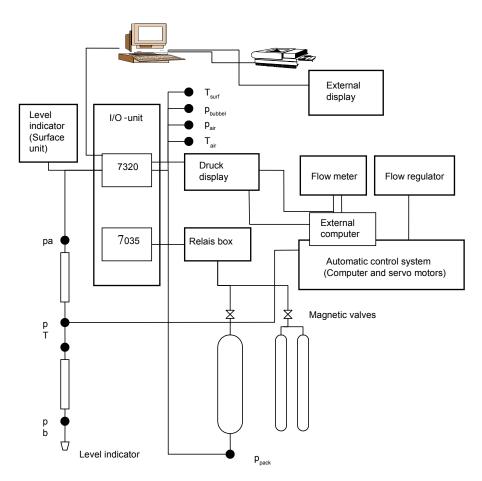


Figure 3-2. Schematic drawing of the down-hole equipment in the PSS2 system.

3.2 Sensors

Table 3-1. Technical specifications of sensors.

Keyword	Sensor	Name	Value/range	Unit	Comments
P _{sec,a,b}	Pressure	Druck PTX 162-1464abs	9–30	VDC	
			4-20 0-13.5 ± 0.1	mA MPa % of FS	
$T_{\text{sec,surf,air}}$	Temperature	BGI	18–24	VDC	
			4–20	mA	
			0–32	°C	
			± 0.1	°C	
Q_{big}	Flow	Micro motion	0–100	kg/min	Massflow
		Elite sensor	± 0.1	%	
Q_{small}	Flow	Micro motion	0-1.8	kg/min	Massflow
		Elite sensor	± 0.1	%	
p _{air}	Pressure	Druck PTX 630	9–30	VDC mA KPa % of FS	
			4–20		
			0–120		
			± 0.1		
p _{pack}	Pressure	Druck PTX 630	9–30	VDC	
			4–20	mA MPa	
			0–4	% of FS	
			± 0.1		
p _{in,out}	Pressure	Druck PTX 1400	9–28	VDC	
			4–20	mA MPa % of FS	
			0-2.5		
			± 0.15	/0 UI F3	
L	Level Indi- cator				Length correction


Table 3-2. Sensor positions and wellbore storage (WBS) controlling factors.

Borehole information				rs	Equipment affecting WBS coefficient		
ID	Test section (m)	Volume in test section (m³)	Type	Position (m fr ToC)	Position	Function	Outer diameter (mm)
KLX13A	p 201.60	Test section	Signal cable	9.1			
			p T	201.60 201.35		Pump string	33
			p _b	203.20		Packer line	6
			L	205.75			
KLX13A	102.50–122.50	0.091	p_{a}	• •	Signal cable	9.1	
			p T	121.60 121.35		Pump string	33
			p _b L	123.20 125.75		Packer line	6

3.3 Data acquisition system

The data acquisition system in the PSS2 container contains a stationary PC with the software Orchestrator, pump- and injection test parameters such as pressure, temperature and flow are monitored and sensor data collected. A second laptop PC is connected to the stationary PC through a network containing evaluation software, Flowdim. While testing, data from previously tested section is converted with IPPlot and entered in Flowdim for evaluation.

The data acquisition system starts and stops the test automatically or can be disengaged for manual operation of magnetic and regulation valves within the injection/pumping system. The flow regulation board is used for differential pressure and valve settings prior testing and for monitoring valves during actual test. An outline of the data acquisition system is outlined in Figure 3-3.

Figure 3-3. Schematic drawing of the data acquisition system and the flow regulation control system in *PSS2*.

4 Execution

4.1 Preparations

Following preparation work and functional checks were conducted prior to starting test activities:

- Place pallets and container, lifting rig up, installing fence on top of container, lifting tent on container.
- Clean and disinfect of Multikabel and hoses for packer and test valve. Clean the tubings with hot steam.
- Filling injection tank with water (water provided by SKB).
- Filling buffer tank with water and tracer it with Uranin; take water sample.
- · Filling vessels.
- Filling the hoses for test valve and packer.
- Entering calibration constants to system and regulation unit.
- Synchronize clocks on all computers.
- Function check of shut-in tool both ends, overpressure by 900 kPa for 5 min (OK).
- Check pressure gauges against atmospheric pressure and than on test depth against column of water.
- Translate all protocols into English (where necessary).
- Filling packers with water and de-air.
- Measure and assemble test tool.

4.2 Length correction

By running in with the test tool, a level indicator is incorporated at the bottom of the tool. The level indicator is able to record groves milled into the borehole wall. The depths of these groves are given by SKB in the Activity Plan (see Table 2-2) and the measured depth is counter checked against the number/length of the tubes build in. The achieved correction value, based on linear interpolation between the reference marks, is used to adjust the location of the packers for the test sections to avoid wrong placements and minimize elongation effects of the test string.

4.3 Execution of field work

4.3.1 Test principle

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a shut-in pressure recovery (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

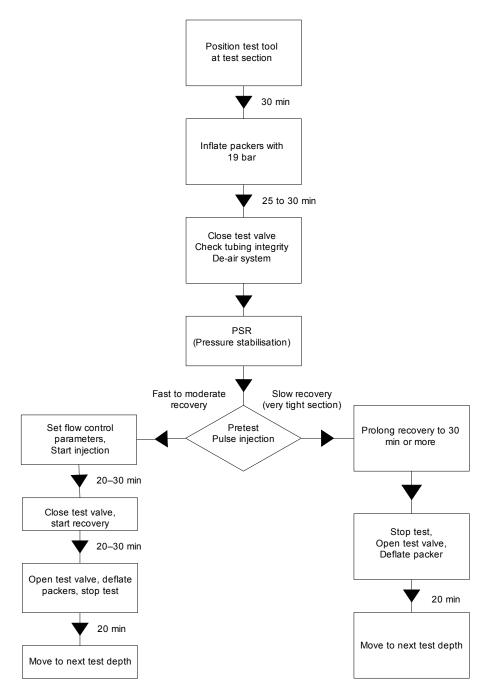


Figure 4-1. Flow chart for test performance.

4.3.2 Test procedure

A typical test cycle includes the following phases: 1) Transfer of down-hole equipment to the next section. 2) Packer inflation. 3) Pressure stabilisation. 4) Preliminary Pulse injection. 5) Constant head injection. 6) Pressure recovery. 7) Packer deflation.

The preliminary pulse injection (Step 4) derives the first estimations of the formation transmissivity. It is conducted by applying a pressure difference of approx. 200 kPa to the static formation pressure. If the pulse recovery indicates a very low transmissivity (flow probably below 1 mL/min) the pulse recovery is prolonged and no constant head injection test is performed. The decision to continue the pulse or to conduct an injection tests is based on the pressure response of the pulse recovery. A pressure recovery less than 50% during the first ten minutes of the pulse indicates a low transmissivity. In such a case no injection test will be conducted.

The pressure static recovery (PSR) after packer inflation and before the pulse gives a direct measure of the magnitude of the packer compliance. A steep PSR indicates extremely low test section transmissivity. In such a case the packer compliance would influence the subsequent pulse test too much and introduce very large uncertainties. Therefore tests with this behaviour would be stopped after PSR phase.

If the preliminary pulse injection test indicates a formation transmissivity with a flow above 1 mL/min a constant head injection test (Step 5 and 6) is carried out. It is applied with a constant injection pressure of approx. 200 kPa (20 m water column) above the static formation pressure in the test section. Before start of the injection tests, approximately stable pressure conditions prevailed in the test section. After the injection period, the pressure recovery in the section is measured. In cases, where small flow rates were expected, the automatic regulation unit was switched off and the test was performed manually (determined by the preliminary pulse injection). In those cases, the constant difference pressure was usually unequal to 200 kPa.

In cases when the derived transmissivity of a test section influences the subsequent test program the constant head injection was conducted even if the preliminary pulse indicates a very tight section (e.g. flow below 1 mL/min). The injection phase is then performed to verify the results of the pulse and a flow below 1 mL/min.

The duration for each phase is presented in Table 4-1.

4.4 Data handling/post processing

The data handling followed several stages. The data acquisition software (Orchestrator) produced an ASCII raw data file (*.ht2) which contains the data in voltage and milliampere format plus calibration coefficients. The *.ht2 files were processed to *.dat files using the SKB program called IPPlot. These files contain the time, pressure, flow rate and temperature data. The *.dat files were synthesised in Excel to a *.xls file for plotting purposes. Finally, the test data to be delivered to SKB were exported from Excel in *.csv format. These files were also used for the subsequent analysis (field and final) of the injection phase (CHi). The synthesised data of the recovery phase (CHir) was used for the field analysis and to receive preliminary results for concistency reviews.

Table 4-1. Durations for packer inflation, pressure stabilisation, injection and recovery phase and packer deflation.

Step	Phase	Time
1	Position test tool to new test section (correct position using the borehole markers)	Approx. 30 min.
2	Inflate packers with appr. 1,900 kPa	25 min.
3	Close test valve	10 min.
	Check tubing integrity with appr. 800 kPa	5 min.
	De-air system	2 min.
4	Pretest, pulse injection (duration depends on the formation transmissivity)	
5*	Set automatic flow control parameters or setting for manual test	5 min.
	Start injection	20 to 45 min.
6*	Close test valve, start recovery	20 min. or more
	Open test valve	10 min.
7	Deflate packers	25 min.
	Move to next test depth	

^{*} Step 5 and 6 conducted if the preliminary pulse indicates a formation transmissivity with a sufficient flow

4.5 Analyses and interpretations

4.5.1 Analysis software

The tests were analysed using a type curve matching method. The analysis was performed using Golder's test analysis program FlowDim. FlowDim is an interactive analysis environment allowing the user to interpret constant pressure, constant rate and slug/pulse tests in source as well as observation boreholes. The program allows the calculation of type-curves for homogeneous, dual porosity and composite flow models in variable flow geometries from linear to spherical.

4.5.2 Analysis approach

Constant pressure tests are analysed using a rate inverse approach. The method initially known as the /Jacob and Lohman 1952/ method was further improved for the use of type curve derivatives and for different flow models.

Constant pressure recovery tests are analysed using the method described by /Gringarten 1986, Bourdet et al. 1989/ by using type curve derivatives calculated for different flow models.

Pulse tests are analysed by using the pressure deconvolution method described by /Peres et al. 1989/ with improvements introduced by /Chakabarty and Enachescu 1997/.

The response in the bottom zone during the injection in test section 562.50–582.50 m was analysed using cylindrical source type curves calculated for different flow models as identified from the log-log derivative of the pressure response. This type curves are based on /Theis 1935/.

4.5.3 Analysis methodology

Each of the relevant test phases is subsequently analyzed using the following steps:

• Injection Tests

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. A non-linear regression algorithm is used to provide optimized model parameters in the latter stages.
- Non-linear regression in semi-log coordinates (superposition HORNER plot; /Horner 1951/. In this stage of the analysis, the static formation pressure is selected for regression.

The test analysis methodology is best explained in /Horne 1990/.

• Pre-test for the Injection Tests

The test cycle always starts with a pulse injection phase with the aim of deriving a first estimation of the formation transmissivity. In cases when the pulse recovery is slow (indicating low transmissivity) the pulse phase is extended and analysed as the main phase of the test.

The transmissivity derived from a pulse test is strongly influenced by the wellbore storage coefficient used as an input in the analysis. The wellbore storage coefficient is calculated as C = dV/dP where dV is the volume difference injected during the brief flow period of the pulse and dP is the initial pressure difference of the pulse. dV is directly measured either by using the flowmeter readings or water level measurements in the injection vessel.

It should be noted though that there is large uncertainty connected with the determination of the wellbore storage coefficient (probably one order of magnitude), which will implicitly translate into uncertainty in the derived transmissivity. Figure 4-2 below show an example of a typical pressure versus time evolution for such a tight section.

Flow model identification and type curve analysis in the deconvolution Peres Plot /Peres et al. 1989, Chakrabarty and Enachescu 1997/. A non-linear regression algorithm is used to provide optimized model parameters in the later stages. An example of type curves is presented in Figure 4-3.

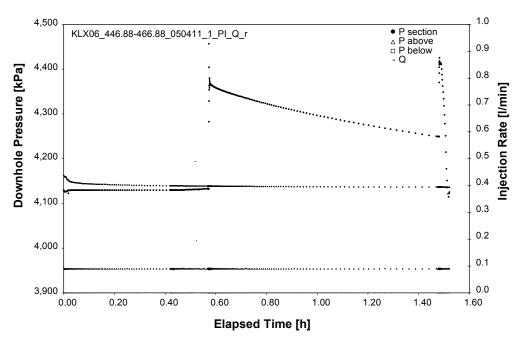


Figure 4-2. Typical pressure versus time plot of a Pulse injection test.

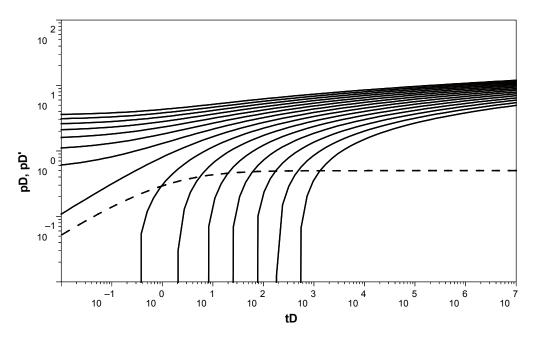


Figure 4-3. Deconvolution type curve set for pulse test analysis.

• Response Analysis

The test phases are subsequently analyzed using the following steps:

- Identification of the flow model by evaluation of the derivative on the log-log diagnostic plot. Initial estimates of the model parameters are obtained by conventional straight-line analysis.
- Superposition type curve matching in log-log coordinates. The type curves are based on /Theis 1935/ calculated for a cylindrical source (i.e. finite wellbore radius).

The distance used for the analysis is the shortest way between the source and the observation hole and no pathway tortuosity was considered. This assumption influences the storativity derived from the transient analysis.

4.5.4 Correlation between storativity and skin factor

For the analysis of the conducted hydraulic tests below 100 m depth a storativity of $1 \cdot 10^{-6}$ is assumed (SKB MD 320.004e). Based on this assumption the skin will be calculated. In the following the correlation between storativity and skin for the relevant test phases will be explained in greater detail.

• Injection phase (CHi) / Pulse tests (Pi)

Due to the fact that the early time data of the CHi and Pi phases, respectively, is not available or too noisy (attributed to the automatic regulation system) the storativity and the skin factor become correlated. Consequently they cannot be solved independently any more. In this case as a result of the analysis one determines the correlation group $e^{2\xi}/S$. This means that in such cases the skin factor can only be calculated when assuming the storativity as known.

Recovery phase (CHir)

The wellbore storage coefficient (C) is determined by matching the early time data with the corresponding type curve. The derived C-value is introduced in the equation of the type curve parameter:

$$(C_D e^{2\xi})_M = \frac{C \rho g}{2\pi r_w^2 S} e^{2\xi}$$

The equation above has two unknowns, the storativity (S) and the skin factor (ξ) which expresses the fact that for the case of constant rate and pressure recovery tests the storativity and the skin factor are 100% correlated. Therefore, the equation can only be either solved for skin by assuming that the storativity is known or solved for storativity by assuming the skin as known.

4.5.5 Determination of the ri-index and calculation of the radius of influence (ri)

The analysis provides also the radius of influence and the ri-index, which describes the late time behaviour of the derivative.

RI-Index

The determination of the ri-Index is based on the shape of the derivative plotted in log-log coordinates and describes the behaviour of the derivative after the time t_2 , representing the end of the near wellbore response. The ri-index also describes the flow regime at the end of the test. Following ri-indices can be assigned:

- ri-index = 0: The middle and late time derivative shows a horizontal stabilization. This pressure response indicates that the size of the hydraulic feature is greater than the radius of influence. The calculated radius of influence is based on the entire test time t_P.
- ri-index = 1: The derivative shows an upward trend at late times, indicating a decrease of transmissivity or a barrier boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t₂.
- ri-index = -1: The derivative shows a downward trend at late times, indicating an increase of transmissivity or a constant head boundary at some distance from the borehole. The size of the hydraulic feature near the borehole is estimated as the radius of influence based on t₂.

Figure 4-4 presents the relationship between the shape of derivative and the ri-index.

If no radial flow stabilization can be observed the ri-index is based on the flow regime at the end of the test: i.e. ri-index = 1 for tests with a derivative showing an upward trend at the end and a ri-index = -1 for tests with a derivative showing a downward trend. In such cases the calculated radius of influence is based on the entire test time t_p .

The assignment of the ri-index is based on /Rhen 2005/.

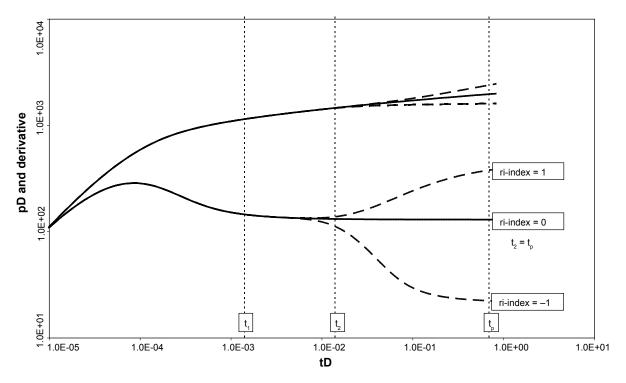


Figure 4-4. Schematic plot of the assignments for the ri-indices.

Calculation of the radius of influence

The radius of influence (ri) is calculated as follows:

$$ri = 1.89 \times \sqrt{\frac{T_T}{S_T} \times t_2} \quad [m]$$

 T_T recommended inner zone transmissivity [m²/s].

t₂ time when hydraulic formation properties changes (see previous chapter) [s].

S_T for the calculation of the ri the storage coefficient (S) is estimated from the transmissivity /Rhen et al. 2006/:

$$S_T = 0.0007 \times T_T^{0.5} [-]$$

4.5.6 Steady state analysis

In addition to the type curve analysis, an interpretation based on the assumption of stationary conditions was performed as described by /Moye 1967/.

4.5.7 Flow models used for analysis

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was

commented for each of the tests. At tests where a flow regime could not clearly identified from the test data, we assume in general a radial flow regime as the most simple flow model available. The value of p* was then calculated according to this assumption.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the derivative was extrapolated using the most conservative assumption, which is that the derivative would stabilise short time after test end. In such cases the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.5.8 Calculation of the static formation pressure and equivalent freshwater head

The static formation pressure (p*) measured at transducer depth, was derived from the pressure recovery (CHir) following the constant pressure injection phase by using:

- (1) straight line extrapolation in cases infinite acting radial flow (IARF) occurred.
- (2) type curve extrapolation in cases infinite acting radial flow (IARF) is unclear or was not reached.

The equivalent freshwater head (expressed in meters above sea level) was calculated from the extrapolated static formation pressure (p*), corrected for athmospheric pressure measured by the surface gauge and corrected for the vertical depth considering the inclination of the drill hole, by assuming a water density of 1,000 kg/m³ (freshwater). The equivalent freshwater head is the static water level an individual test interval would show if isolated and connected to the surface by tubing full of freshwater. Figure 4-4 shows the methodology schematically.

The freshwater head in meters above sea level is calculated as following:

$$head = \frac{(p * - p_{atm})}{\rho \times g}$$

which is the p* value expressed in a water column of freshwater.

With consideration of the elevation of the reference point (RP) and the gauge depth (Gd), the freshwater head h_{iwf} is:

$$h_{iwf} = RP_{elev} - Gd + \frac{(p^* - p_{atm})}{\rho \times g}$$

4.5.9 Derivation of the recommended transmissivity and the confidence range

In most of the cases more than one analysis was conducted on a specific test. Typically both test phases were analysed (CHi and CHir) and in some cases the CHi or the CHir phase was analysed using two different flow models. The parameter sets (i.e. transmissivities) derived from the individual analyses of a specific test usually differ. In the case when the differences are small (which is typically the case) the recommended transmissivity value is chosen from the test phase that shows the best data and derivative quality.

In cases when the difference in results of the individual analyses was large (more than half order of magnitude) the test phases were compared and the phase showing the best derivative quality was selected.

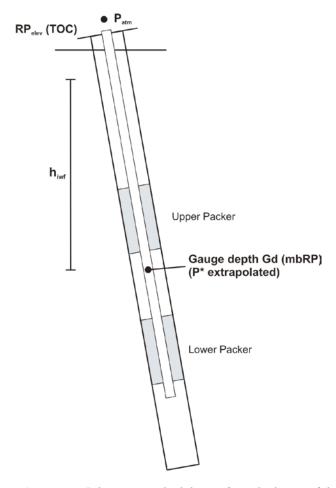


Figure 4-5. Schematic methodologies for calculation of the freshwater head.

The confidence range of the transmissivity was derived using expert judgement. Factors considered were the range of transmissivities derived from the individual analyses of the test as well as additional sources of uncertainty such as noise in the flow rate measurement, numeric effects in the calculation of the derivative or possible errors in the measurement of the wellbore storage coefficient. No statistical calculations were performed to derive the confidence range of transmissivity.

In cases when changing transmissivity with distance from the borehole (composite model) was diagnosted, the transmissivity of the zone, which was showing the better derivative quality, was recommended.

In cases when the infinite acting radial flow (IARF) phase was not supported by the data the additional uncertainty was accounted for in the estimation of the transmissivity confidence ranges.

4.6 Nonconformities

No nonconformities occurred during the performance of the hydraulics tests in KLX13A.

5 Results

In the following, results of all tests are presented and analysed. Chapters 5.1 and 5.2 present the 100 m and 20 m tests, respectively. The results are given as general comments to test performance, the identified flow regimes and calculated parameters and finally the parameters which are considered as most representative are chosen and justification is given. All results are also summarised in Table 6-1 and 6-2 of the Summary chapter. In addition, the results are presented in appendices 3 and 5.

The results are stored in the primary data base (SICADA). The SICADA data base contains data that will be used for further interpretation (modelling). The data are traceable in SICADA by the Activity plan number (AP PS 400-07-006; SKB controlling document).

5.1 100 m single-hole injection tests

In the following, the 100 m section tests conducted in borehole KLX13A are presented and analysed.

5.1.1 Section 102.50-205.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection between the test interval and adjacent sections was observed. The injection rate decreased from 6.5 L/min at start of the CHi phase to 3.9 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). The CHi data are noisy during the entire phase. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase is noisy, but it shows a flat derivative at middle and late times. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle times with a downward slope at late times. This is indicative for the transition to a zone of higher transmissivity at some distance to the borehole. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-1.

Selected representative parameters

The recommended transmissivity of $2.6\cdot10^{-6}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality and a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0\cdot10^{-6}$ m²/s to $8.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1.978.7 kPa.

The analyses of the CHi and CHir phases show some inconsistency. As the CHi phase was analysed using a homogeneous model, a two shell composite model was chosen for the CHir phase. Probably this is related to the poor data quality of the CHi phase. No further analysis is recommended.

5.1.2 Section 202.50-302.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 3.5 L/min at start of the CHi phase to 2.2 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi phase shows a flat derivative at middle to late times indicating radial flow. A infinite acting homogeneous flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal part at middle times followed by an upward trend and a horizontal stabilisation at late times afterwards. A two shell composite model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-2.

Selected representative parameters

The recommended transmissivity of $1.5 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the clearest horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-7}$ m²/s to $6.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,941.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.1.3 Section 302.50-402.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. Due to the very high transmissivity of the formation no pressure response was observed during the pulse injection. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted.

The CHi phase was conducted using a pressure difference of 11 kPa. The bottom zone increased by approx. 5 kPa, indicating a connection to the test interval. The injection rate decreased from 44 L/min at start of the CHi phase to 15 L/min at the end, indicating a relatively high interval transmissivity. Because of the high flow and the increasing pressure in the regulation system the recorded flow rate is not suitable for analysis at early and middle times. Therefore only the

late time data of the CHi phase was analysed. Due to the small pressure difference during the perturbation phase the CHir phase was not analysed. Because of the mentioned problems the result of the analysis should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase was matched using a two shell composite radial flow model with decreasing transmissivity at some distance from the borehole. The analysis is presented in Appendix 2-3.

Selected representative parameters

The recommended transmissivity of $4.1\cdot10^{-4}$ m²/s was derived from the analysis of the CHi phase (inner zone). The confidence range for the interval transmissivity is estimated to be $7.0\cdot10^{-5}$ m²/s to $8.0\cdot10^{-4}$ m²/s (this range encompasses the outer zone transmissivity). The flow dimension during the test is assumed to be 2. The static pressure could not be analysed based on solely the CHi phase.

No further analysis is recommended.

5.1.4 Section 395.50–495.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 42 kPa. The pressure in the section below increased by 10 kPa during injection and decreased by 6 kPa during recovery. The pressure in the section above increased by 3 kPa during injection and decreased by 1 kPa during recovery. The injection rate decreased from 29.2 L/min at start of the CHi phase to 24.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The regulation unit did not work very well during the first part of the CHi phase. However, the late time data of the CHi phase and the CHir phase are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times, indicating radial flow. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $9.2 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative stabilisation. Due to the hydraulic connection to the bottom zone, the derived transmissivity should be regarded to be at the upper limit of the confidence range. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ m²/s to $2.0 \cdot 10^{-4}$ m²/s. The flow dimension displayed during the test is 2 (radial flow).

The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,837.2 kPa.

The analyses of the CHi and CHir phases show some inconsistency due to the fast recovery. No further analysis is recommended.

5.1.5 Section 482.50–582.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The pressure in the section below increased by 92 kPa during injection and decreased by 86 kPa during recovery. No hydraulic connection was observed between the section above and the test section. The injection rate decreased from 14.2 L/min at start of the CHi phase to 6.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle times, indicating radial flow. At late times the derivative shows an upward trend which is characteristic for a change in flow dimension or in transmissivity. A radial two shell composite flow model was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-4.

Selected representative parameters

The recommended transmissivity of $5.7 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows a good derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ m²/s to $7.0 \cdot 10^{-6}$ m²/s due to the hydraulic connection. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,684.4 kPa.

The analyses of the CHi and CHir phases show some inconsistency regarding the derived transmissivities. This can be attributed to the hydraulic communication to the bottom zone. The impact of this communication is related to the pressure difference between the zones. No further analysis is recommended.

5.2 20 m single-hole injection tests

In the following, the 20 m section tests conducted in borehole KLX13A are presented and analysed.

5.2.1 Section 102.50–122.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 198 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 5.4 L/min at start of the CHi phase to 3.4 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). The regulation unit could not keep the pressure very stable. The flow rate and the pressure data were quite noisy during the CHi phase. However, both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi phase shows a noisy but flat derivative at early times followed by an upward trend at middle times and further with a horizontal stabilisation at late times. A two shell composite flow model was chosen for analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilisation at middle times followed by an upward trend at late times indicating a two shell composite model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-6.

Selected representative parameters

The recommended transmissivity of $2.3 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best horizontal stabilisation of the derivative and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ m²/s to $7.0 \cdot 10^{-6}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,198.9 kPa.

The analyses of the CHi and CHir phases show a good consistency. No further analysis is recommended.

5.2.2 Section 122.50–142.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

Prior the pulse test the pressure in the test section rose by 11 kPa within 14 min. The CHi phase was conducted using a pressure difference of 196 kPa. Due to the expected small injection rate, the CHi phase was conducted without the automatic regulation, directly from the injection vessel with N_2 backpressure. The injection rate decreased from 6.8 mL/min at start of the CHi

phase to 1.0 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The CHi data are quite noisy due to the low transmissivity and the low flow rate. Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative with an upwards trend and a horizontal stabilisation at late times, indicating the transition from wellbore storage and skin dominated flow to formation flow. The derivative of the CHir phase looks similar with an upward trend and the transition to formation flow. Both phases were analysed using an infinite acting radial flow model. The analysis is presented in Appendix 2-7.

Selected representative parameters

The recommended transmissivity of $1.0 \cdot 10^{-10}$ m²/s was derived from the analysis of the CHir phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-11}$ m²/s to $4.0 \cdot 10^{-10}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow). Due to the low transmissivity no fresh water head was calculated

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.3 Section 142.50–162.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The very slow recovery of the pulse test indicated a very low formation transmissivity. Based on this result no constant pressure injection test was performed. Instead, the recovery of the pulse injection test was prolonged and analysed.

Prior the pulse injection the pressure in the test section rose by 19 kPa within 17 min. During the brief injection phase of the pulse injection a total volume of about 5.6 mL was injected (derived from the flow meter readings). This injected volume produced a pressure increase of 236 kPa. Using a dV/dP approach, the wellbore storage coefficient relevant for the subsequent pressure recovery can be calculated to 2.4·10⁻¹¹ m³/Pa. It should be noted though that there is uncertainty connected with the determination of the wellbore storage coefficient, which will implicitly translate into uncertainty in the derived transmissivity.

Flow regime and calculated parameters

For the interpretation a flow dimension of 2 (radial flow) was assumed. In case of the present test the deconvolved PI pressure derivative shows an upward trend with a horizontal stabilisation at late times. The PI phase was analysed using a homogenous model with radial flow, wellbore storage and skin. The analysis is presented in Appendix 2-8.

Selected representative parameters

The recommended transmissivity of $2.9\cdot10^{-11}$ m²/s was derived from the analysis of the Pi phase. The confidence range for the interval transmissivity is estimated to be $9.0\cdot10^{-12}$ to $7.0\cdot10^{-11}$ m²/s. The analysis was conducted using a flow dimension of 2. The static pressure could not be extrapolated due to the very low transmissivity.

No further analysis is recommended.

5.2.4 Section 162.50–182.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection between the test interval and adjacent sections was observed during the CHi and CHir phases. The injection rate decreased from 0.38 L/min at start of the CHi phase to 0.13 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). At the start of the CHi phase, the automatic flow regulation needed some time to stabilise the injection pressure, leading to a poor data quality at the early time data. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward slope at middle times followed by a horizontal stabilisation at late times. This is indicative for a transition to a zone of higher transmissivity at some distance to the borehole. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-9.

Selected representative parameters

The recommended transmissivity of $1.9 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows the clearest horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-8}$ m²/s to $6.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1,782.2 kPa.

The analyses of the CHi and CHir phases show some minor inconsistency. No further analysis is recommended.

5.2.5 Section 182.50-202.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The first CHi phase was stopped due to the long time the regulation unit needed to adjust the pressure difference. The second CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection between the test interval and adjacent sections was observed during the CHi and CHir phases. The injection rate decreased from 0.47 L/min at start of the CHi phase to 0.31 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). At the start of the CHi phase, the automatic flow regulation needed some time to stabilise the injection pressure, leading to a poor data quality at the early time data. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at middle and late times. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat derivative at middle times, followed by a downward slope at late times. This behaviour is characteristic for a transition to a zone of higher transmissivity. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-10.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-7}$ m²/s to $8.0 \cdot 10^{-7}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 1.965.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.6 Section 202.50-222.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 215 kPa. No hydraulic connection to the test section was observed. The injection rate decreased from 0.87 mL/min at start of the CHi phase to 0.48 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a horizontal stabilisation at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a downward slope with a horizontal stabilization at late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-11.

Selected representative parameters

The recommended transmissivity of $6.4\cdot10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $4.0\cdot10^{-7}$ m²/s to $3.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,166.3 kPa.

The analyses of the CHi and CHir phases show inconsistencies. Due to the fast recovery the transmissivity of the CHi phase is preferred. No further analysis is recommended.

5.2.7 Section 222.50-242.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 1.86 L/min at start of the CHi phase to 0.96 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi phase shows a flat derivative at early times followed by an upward trend at middle times and further with a horizontal stabilisation at late times. A two shell composite flow model was chosen for analysis of the CHi phase. The derivative of the CHir phase shows after an early flat part an upward trend at middle times followed by a horizontal stabilisation at late times afterwards indicating a decrease in transmissivity at some distance from the borehole. A two shell composite model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-12.

Selected representative parameters

The recommended transmissivity of $5.7 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase (outer zone), which shows the best horizontal stabilisation of the derivative and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-7}$ m²/s to $1.0 \cdot 10^{-6}$ m²/s. The analysis displayed during the test a flow dimension of 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,360.1 kPa.

The analyses of the CHi and CHir phases show a good consistency. No further analysis is recommended.

5.2.8 Section 242.50–262.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a low formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 196 kPa. No hydraulic connection to the test section was observed. The regulation unit needed some time to reach stable conditions though the data quality is poor for early and middle time data. The injection rate decreased from 47.1 mL/min at start of the CHi phase to 22.4 mL/min at the end, indicating a low interval transmissivity (consistent with the pulse recovery). The late time data of the CHi phase and the entire CHir phase show no problems and are adequate for the quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase tends to show a horizontal stabilization at late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-13.

Selected representative parameters

The recommended transmissivity of $2.5 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-8}$ m²/s to $9.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,563.2 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies, mainly caused by the noisy data of the CHi phase and the non-radial flow of the CHir phase. No further analysis is recommended.

5.2.9 Section 262.50-282.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 212 kPa. No hydraulic connection between the test interval and adjacent sections was observed during the CHi and CHir phases. The injection rate decreased from 99.8 mL/min at start of the CHi phase to 81.7 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). At the start of the CHi phase, the automatic flow regulation needed some time to stabilise the injection pressure, leading to a poor data quality at the early and middle time data. However, the late time data of the CHi phase and the entire CHir phase show no problems and are adequate for the quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative at late times. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a flat part at middle times followed by a downward trend. The analysis indicated a change in transmissivity or flow dimension at some distance to the borehole. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-14.

Selected representative parameters

The recommended transmissivity of $1.2 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase, which is very noisy but shows a horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0 \cdot 10^{-8}$ m²/s to $3.0 \cdot 10^{-7}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,743.6 kPa.

The analyses of the CHi and CHir phases show minor inconsistencies regarding the flow models. This can be addressed to the poor data quality of the CHi data. No further analysis is recommended.

5.2.10 Section 282.50-302.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the test section was observed. The injection rate decreased from 1.7 L/min at start of the CHi phase to 1.1 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal part at late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-15.

Selected representative parameters

The recommended transmissivity of $2.0 \cdot 10^{-6}$ m²/s was derived from the analysis of the CHir phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-7}$ m²/s to $5.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 2,939.1 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.11 Section 302.50-322.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the very fast recovery of the pulse test indicated a moderate to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The automatic regulation system worked well. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 7.8 L/min at start of the CHi phase to 4.7 L/min at the end, indicating a moderate to high interval transmissivity (consistent with the pulse recovery). The CHi phase is adequate for qualitative analysis. The CHir phase shows very fast recovery, but is still adequate for quantitative analysis, too.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative with an upward trend followed by a horizontal stabilisation at late times, indicating a decrease of transmissivity at some distance to the borehole. The early time data are not representative for the formation. A two shell composite flow model was used for the analysis of the CHi phase. The CHir phase shows a flat derivative at middle and late times. The CHir phase was analysed using a homogeneous radial flow model with wellbore storage and skin. The analysis is presented in Appendix 2-16.

Selected representative parameters

The recommended transmissivity of $2.1 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the better derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-6}$ m²/s to $4.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2. The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,137.7 kPa.

The analyses of the CHi and CHir phases show inconsistencies due to the fast recovery. No further analysis is recommended.

5.2.12 Section 322.50-342.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted manually using a pressure difference of 200 kPa. No hydraulic connection to the adjacent zones was observed. The injection rate decreased from 130.5 mL/min at start of the CHi phase to 96.8 mL/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi phase shows a noisy but flat derivative at early times followed by an upward trend at middle times and further with a horizontal stabilisation at late times. A two shell composite flow model was chosen for analysis of the CHi phase. The derivative of the CHir phase shows an upward trend at middle times followed by a horizontal stabilisation at late times, indicating an increase in transmissivity at some distance from the borehole. A two shell composite model with wellbore storage and skin was used for the analysis of the CHir phase. The analysis is presented in Appendix 2-17.

Selected representative parameters

The recommended transmissivity of $1.6 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows a horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $8.0 \cdot 10^{-8}$ m²/s to $5.0 \cdot 10^{-7}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3.334.2 kPa.

The analyses of the CHi and CHir phases show a good consistency. No further analysis is recommended.

5.2.13 Section 342.50-362.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. The section below showed a pressure increase by 5 kPa during injection and a pressure decrease by 3 kPa. No hydraulic connection to the section above was observed. The injection rate decreased from 24.2 L/min at start of the CHi phase to 15.1 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The regulation unit did not work well at the beginning of the CHi phase. During the second part of this phase, the system could hold constant pressure much better. The late time data of the CHi and CHir phase are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy derivative with a flat part at late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase is noisy and shows a horizontal stabilisation at late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-18.

Selected representative parameters

The recommended transmissivity of $4.8 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHir phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0 \cdot 10^{-5}$ m²/s to $7.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,529.9 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.14 Section 355.50-375.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 160 kPa. The section below showed a pressure increase by 6 kPa during injection and a pressure decrease by 3 kPa during recovery. No hydraulic connection to the section below was observed. The injection rate decreased from 21.4 L/min at start of the CHi phase to 16.8 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery. Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-19.

Selected representative parameters

The recommended transmissivity of $4.1\cdot10^{-5}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $2.0\cdot10^{-5}$ m²/s to $8.0\cdot10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 3,658.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.15 Section 375.50-395.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response and the recovery of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 8 kPa. The section below showed a hydraulic connection to the test section with a pressure increase of 7 kPa during injection and pressure decrease by 3 kPa during recovery. The section above showed no hydraulic connectivity. The injection rate decreased from 40.0 L/min at the start of the CHi phase to 14.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Because of the high flow and the increasing pressure in the regulation system the recorded flow rate is not suitable for analysis at early and middle pressure difference during the perturbation phase. The CHir phase was not analysed. Because of the mentioned problems the result of the analysis should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test, the CHi phase shows a noisy but flat derivative at early times followed by an upward trend at middle times and further with a horizontal stabilisation at late times. This indicates a decrease in transmissivity at some distance from the borehole. A two shell composite flow model with skin was chosen for analysis of the CHi phase. The analysis is presented in Appendix 2-20.

Selected representative parameters

The recommended transmissivity of $4.4 \cdot 10^{-4}$ m²/s was derived from the analysis of the CHi phase (inner zone), which shows the best horizontal stabilisation of the derivative and best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-5}$ m²/s to $8.0 \cdot 10^{-4}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow). The static pressure could not be analysed based on solely the CHi phase.

No further analysis is recommended.

5.2.16 Section 395.50-415.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 108 kPa. No hydraulic connection to the test section was observed. The injection rate decreased from 20.0 L/min at start of the CHi phase to 14.4 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a very fast recovery. However, both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. The shape of the derivative is quite sensitive to the smoothing factor. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-21.

Selected representative parameters

The recommended transmissivity of $4.8\cdot10^{-5}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative stabilisation. The confidence range for the interval transmissivity is estimated to be $3.0\cdot10^{-5}$ m²/s to $7.0\cdot10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,053.1 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended

5.2.17 Section 415.50-435.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. No hydraulic connection to the test section was observed. The injection rate decreased from 12.6 L/min at start of the CHi phase to 9.3 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a very fast recovery. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase.

The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-22.

Selected representative parameters

The recommended transmissivity of $1.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase due to the fast recovery during the CHir phase. The confidence range for the interval transmissivity is estimated to be $9.0 \cdot 10^{-6}$ m²/s to $5.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,246.6 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.18 Section 435.50-455.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 92 kPa. The section below showed a pressure increase during injection by 8 kPa and a pressure decrease during recovery by 5 kPa. The section above showed no hydraulic connection to the test section. The injection rate decreased from 21.1 L/min at start of the CHi phase to 14.6 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-23.

Selected representative parameters

The recommended transmissivity of $5.5\cdot10^{-5}$ m²/s was derived from the analysis of the CHi phase which is more reliable due to the fast recovery during the CHir phase. The confidence range for the interval transmissivity is estimated to be $3.0\cdot10^{-5}$ m²/s to $8.0\cdot10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,442.8 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.19 Section 455.50-475.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 120 kPa. The section below showed a pressure increase during injection by 4 kPa and a pressure decrease during recovery by 4 kPa. The section above showed no hydraulic connection to the test section. The injection rate decreased from 18.8 L/min at start of the CHi phase to 11.2 L/min at the end, indicating a high interval transmissivity (consistent with the pulse recovery). The CHir phase shows fast recovery, but is still amenable for the quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-24.

Selected representative parameters

The recommended transmissivity of $2.9 \cdot 10^{-5}$ m²/s was derived from the analysis of the CHi phase due to the fast recovery during the CHir phase. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-5}$ m²/s to $7.0 \cdot 10^{-5}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4,638.9 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended

5.2.20 Section 475.50-495.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 7.3 L/min at start of the CHi phase to 3.6 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a very fast recovery. The derived values of this analysis should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi

phase. An infinite acting radial flow model with wellbore storage and skin was used to analyse the CHir phase. Due to the fast recovery the determination of the flow model is very uncertain. The analysis is presented in Appendix 2-25.

Selected representative parameters

The recommended transmissivity of $3.5\cdot10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows a clear horizontal stabilisation and good data quality. The confidence range for the interval transmissivity is estimated to be $1.0\cdot10^{-6}$ m²/s to $8.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 4.833.3 kPa.

The analyses of the CHi and CHir phases show some inconsistency, mainly caused by the fast recovery of the CHir phase. No further analysis is recommended.

5.2.21 Section 493.00-513.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium to high formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 7.6 L/min at start of the CHi phase to 3.5 L/min at the end, indicating a medium to high interval transmissivity (consistent with the pulse recovery). The CHir phase shows a fast recovery and the analysis should be regarded as order of magnitude only.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times, although it is very sensitive to the smoothing factor of the analysis. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-26.

Selected representative parameters

The recommended transmissivity of $3.5\cdot10^{-6}$ m²/s was derived from the analysis of the CHi phase, which is of good quality and shows a clear horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $1.0\cdot10^{-6}$ m²/s to $6.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.005.4 kPa.

The analyses of the CHi and CHir phases show some inconsistencies, mainly caused by the fast recovery . No further analysis is recommended.

5.2.22 Section 507.00-527.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 198 kPa. The section below showed a pressure increase by 8 kPa during injection and a pressure decrease by 6 kPa. No hydraulic connection to the section above was observed. The injection rate decreased from 1.4 L/min at start of the CHi phase to 0.9 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a noisy but flat derivative indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-27.

Selected representative parameters

The recommended transmissivity of $9.1\cdot10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative quality. The confidence range for the interval transmissivity is estimated to be $7.0\cdot10^{-7}$ m²/s to $4.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,140.4 kPa.

The analyses of the CHi and CHir phases show some minor inconsistencies, mainly caused by the relatively fast recovery of the CHi phase and the data quality of both phases. No further analysis is recommended.

5.2.23 Section 527.00-547.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 199 kPa. The section below showed a pressure increase by 9 kPa during injection and a pressure decrease by 7 kPa. No hydraulic connection to the section above was observed. The injection rate decreased from 1.8 L/min at start of the CHi phase to 1.0 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a little noisy but flat derivative at middle and late times, indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase shows is a little noisy, either. However it shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-28.

Selected representative parameters

The recommended transmissivity of $9.5 \cdot 10^{-7}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative and horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $7.0 \cdot 10^{-7}$ m²/s to $5.0 \cdot 10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5.335.5 kPa.

The analyses of the CHi and CHir phases show sufficient consistency. No further analysis is recommended.

5.2.24 Section 547.00-567.00 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 197 kPa. No hydraulic connection to the adjacent sections was observed. The injection rate decreased from 1.58 L/min at start of the CHi phase to 0.98 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). Both phases show no problems and are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times indicating radial flow. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir phase is a little noisy and shows a horizontal stabilization at middle and late times. A homogeneous model with radial flow, wellbore storage and skin was chosen for the analysis. The analysis is presented in Appendix 2-29.

Selected representative parameters

The recommended transmissivity of $1.1\cdot10^{-6}$ m²/s was derived from the analysis of the CHi phase, which shows the better derivative quality and horizontal stabilisation. The confidence range for the interval transmissivity is estimated to be $8.0\cdot10^{-7}$ m²/s to $5.0\cdot10^{-6}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,530.2 kPa.

The analyses of the CHi and CHir phases show consistency. No further analysis is recommended.

5.2.25 Section 562.50-582.50 m, test no. 1, injection

Comments to test

The test design consisted of a preliminary pulse injection test conducted with the goal of deriving a first estimate of the formation transmissivity. The pressure response of the pulse test indicated a medium formation transmissivity. Based on this result a sequence consisting of a constant pressure injection phase (CHi) and a recovery phase (CHir) was conducted. Only the CHi and CHir phases were analysed quantitatively.

The CHi phase was conducted using a pressure difference of 200 kPa. The section below showed a hydraulic connection with a pressure increase/decrease of 16 kPa during the pulse injection. During the CHi phase the pressure below increased by 86 kPa. This response was analysed as well (see next chapter; Section 583.50–595.85). The section above showed no hydraulic connection. The injection rate decreased from 0.465 L/min at start of the CHi phase to 0.087 L/min at the end, indicating a medium interval transmissivity (consistent with the pulse recovery). At the start of the CHi phase, the automatic flow regulation needed some time to stabilise the injection pressure, leading to a poor data quality at the early and middle time data. However, both phases are adequate for quantitative analysis.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test the CHi phase shows a flat derivative at middle and late times. A homogeneous model with radial flow was chosen for the analysis of the CHi phase. The derivative of the CHir shows a horizontal part at middle times, followed by a downward slope and a beginning horizontal stabilisation at late times, indicating a change in transmissivity or in flow dimension. A two shell composite model with radial flow, wellbore storage and skin was chosen for the analysis of the CHir phase. The analysis is presented in Appendix 2-30.

Selected representative parameters

The recommended transmissivity of $3.7 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-8}$ m²/s to $5.0 \cdot 10^{-8}$ m²/s. The flow dimension displayed during the test is 2 (radial flow). The static pressure measured at transducer depth, was derived from the CHir phase using straight line extrapolation in the Horner plot to a value of 5,677.5 kPa.

The analyses of the CHi and CHir phases show good consistency. No further analysis is recommended.

5.2.26 Section 583.50-595.85 m (bottom zone), test no. 1

Comments to test

The injection test in Section 562.50–582.50 m showed a clear connection to the bottom zone (583.50–595.85 m). This response was used for an analysis to describe the hydraulic properties of the lowest part of the borehole. During the Chi phase in section 562.50–582.50 m the pressure increased by 86 kPa in the bottom section and a decrease during the CHir phase. The observed responses (CHi and CHir) are adequate for quantitative analysis. For the distance between both sections a distance of 5 m was assumed. This value corresponds with the distance between two fracture zones, which can be seen on the borehole pictures.

Flow regime and calculated parameters

The flow dimension is interpreted from the slope of the semi-log derivative plotted in log-log coordinates. In case of the present test both phases were analysed using a two shell composite flow model. The analysis is presented in Appendix 2-31.

Selected representative parameters

The recommended transmissivity of $6.4 \cdot 10^{-8}$ m²/s was derived from the analysis of the CHir phase (inner zone), which shows the best data and derivative quality. The confidence range for the interval transmissivity is estimated to be $1.0 \cdot 10^{-8}$ m²/s to $1.0 \cdot 10^{-7}$ m²/s. The analysis was conducted using a flow dimension of 2 (radial flow).

The analyses of both phases show a good consistency. No further analysis is recommended.

6 Summary of results

This chapter summarizes the basic test parameters and analysis results. In addition, the correlation between steady state and transient transmissivities as well as between the matched and the theoretical wellbore storage (WBS) coefficient are presented and discussed.

6.1 General test data and results

Table 6-1. General test data from hydraulic tests in KLX13A (for nomenclature see appendix 4 and below).

Borehole	Borehole	Date and Time	Date and Time	\mathbf{Q}_{p}	\mathbf{Q}_{m}	t _p	t _F	p ₀	p _i	p _p	p _F	te _w	Test phases measured,
sec up [m bToC]	sec low [m bToC]	for test start YYMMDD hh:mm	for test stop YYMMDD hh:mm	(m³/s)	(m³/s)	(s)	(s)	(kPa)	(kPa)	(kPa)	(kPa)	(°C)	Analysed test phases marked bold
102.50	202.50	070215 09:48	070215 14:06	6.50E-05	7.00E-05	1,800	1,800	1,971	1,978	2,176	1,981	9.1	CHi / CHir
202.50	302.50	070215 15:34	070215 17:30	3.67E-05	4.05E-05	1,800	1,800	2,946	2,947	3,147	2,954	10.5	CHi / CHir
302.50	402.50	070216 07:58	070216 10:27	2.63E-04	4.65E-04	1,800	1,800	3,922	3,923	3,934	3,927	12.4	CHi / CHir
395.50	495.50	070216 11:52	070216 13:43	4.05E-04	4.52E-04	1,800	1,800	4,834	4,834	4,875	4,838	14.4	CHi / CHir
482.50	582.50	070216 15:44	070216 17:35	1.05E-04	1.20E-04	1,800	1,800	5,687	5,686	5,884	5,687	15.8	CHi / CHir
102.50	122.50	070217 18:25	070217 20:28	5.67E-05	6.17E-05	1,200	3,600	1,194	1,197	1,396	1,201	7.9	CHi / CHir
122.50	142.50	070218 08:25	070218 10:31	1.67E-08	2.00E-08	600	2,400	1,387	1,401	1,627	1,435	8.3	CHi / CHir
142.50	162.50	070218 11:07	070218 12:53	#NV	#NV	10	3,600	1,581	1,599	1,833	1,674	8.5	Pi
162.50	182.50	070218 13:24	070218 14:46	2.18E-06	2.35E-06	1,200	1,200	1,776	1,782	1,981	1,783	8.8	CHi / CHir
182.50	202.50	070218 16:10	070218 17:42	5.18E-06	5.47E-06	1,200	1,200	1,971	1,973	2,172	1,971	9.0	CHi / CHir
202.50	222.50	070218 18:12	070218 19:32	8.00E-06	8.50E-06	1,200	1,200	2,166	2,168	2,382	2,168	9.3	CHi / CHir
222.50	242.50	070219 09:02	070219 10:27	1.72E-05	1.85E-05	1,200	1,200	2,362	2,367	2,567	2,377	9.6	CHi / CHir
242.50	262.50	070219 11:04	070219 12:53	3.67E-07	4.17E-07	1,200	2,400	2,556	2,565	2,764	2,565	10.0	CHi / CHir
262.50	282.50	070219 14:13	070219 15:40	1.37E-06	1.49E-06	1,200	1,200	2,751	2,751	2,963	2,752	10.3	CHi / CHir
282.50	302.50	070219 16:17	070219 17:40	1.80E-05	1.87E-05	1,200	1,200	2,949	2,943	3,143	2,943	10.6	CHi / CHir
302.50	322.50	070219 18:12	070219 19:37	8.00E-05	9.17E-05	1,200	1,200	3,141	3,138	3,336	3,138	10.9	CHi / CHir
322.50	342.50	070220 08:18	070220 09:42	1.60E-06	1.67E-06	1,200	1,200	3,338	3,336	3,534	3,335	11.1	CHi / CHir
342.50	362.50	070220 10:20	070220 11:43	2.52E-04	2.62E-04	1,200	1,200	3,531	3,529	3,647	3,531	11.0	CHi / CHir
355.50	375.50	070220 12:56	070220 14:18	2.79E-04	2.92E-04	1,200	1,200	3,658	3,657	3,817	3,659	11.2	CHi / CHir
375.50	395.50	070220 15:00	070220 16:26	2.37E-04	4.68E-04	1,200	1,200	3,854	3,853	3,861	3,857	12.3	CHi / CHir
395.50	415.50	070220 17:07	070220 18:30	2.41E-04	2.50E-04	1,200	1,200	4,052	4,052	4,160	4,053	13.0	CHi / CHir
415.50	435.50	070221 08:38	070221 10:02	1.55E-04	1.60E-04	1,200	1,200	4,247	4,246	4,442	4,247	13.5	CHi / CHir
435.50	455.50	070221 10:41	070221 12:03	2.43E-04	2.53E-04	1,200	1,200	4,443	4,444	4,534	4,444	13.8	CHi / CHir
455.50	475.50	070221 13:02	070221 14:30	1.87E-04	1.99E-04	1,200	1,200	4,639	4,638	4,758	4,639	14.1	CHi / CHir
475.50	495.50	070221 15:28	070221 16:54	6.07E-05	6.68E-05	1,200	1,200	4,834	4,833	5,031	4,833	14.4	CHi / CHir
493.00	513.00	070221 17:33	070221 18:58	5.92E-05	6.40E-05	1,200	1,200	5,005	5,005	5,203	5,005	14.7	CHi / CHir
507.00	527.00	070222 08:14	070222 09:36	1.48E-05	1.57E-05	1,200	1,200	5,142	5,140	5,339	5,141	14.9	CHi / CHir
527.00	547.00	070222 10:14	070222 11:38	1.67E-05	1.80E-05	1,200	1,200	5,338	5,336	5,536	5,339	15.2	CHi / CHir
547.00	567.00	070222 13:02	070222 14:22	1.63E-05	1.78E-05	1,200	1,200	5,533	5,532	5,731	5,533	15.5	CHi / CHir
562.50	582.50	070222 15:00	070222 17:15	1.45E-06	1.77E-06	1,200	3,600	5,686	5,685	5,883	5,691	15.8	CHi / CHir
583.50	595.85	070222 15:00	070222 17:15	1.45E-06	1.77E-06	1,200	3,600	5,711	5,712	5,798	5,717	#NV	Response Analysis

Nomenclature	
$\overline{Q_p}$	Flow in test section immediately before stop of flow [m³/s]
\mathbf{Q}_{m}	Arithmetical mean flow during perturbation phase [m³/s]
t_p	Duration of perturbation phase [s]
t_{f}	Duration of recovery phase [s]
p_0	Pressure in borehole before packer inflation [kPa]
p_{i}	Pressure in test section before start of flowing [kPa]
p_p	Pressure in test section before stop of flowing [kPa]
p_{F}	Pressure in test section at the end of the recovery [kPa]
Te _w	Temperature in test section
Test phases	CHi Constant Head injection phase
	CHir: Recovery phase following the constant head injection phase
	Pi: Pulse injection phase
#NV	not analysed/no values

Table 6-2. Results from analysis of hydraulic tests in KLX13A (for nomenclature see appendix 4 and below).

Interval position		Stationary flow		Transier	Transient analysis													
		parameter	S	Flow reg	jime	Formation	parameter	'S									Static co	nditions
up m btoc	low m btoc	Q/s m²/s	T _M m²/s	Perturb. Phase	Recovery Phase	T _{f1} m²/s	T _{f2} m²/s	T _{s1} m²/s	T _{s2} m²/s	T _T m²/s	T _{TMIN} m²/s	T _{TMAX} m²/s	C m³/Pa	ξ -	dt₁ min	dt ₂ min	p* kPa	h _{wif} m.a.s.l.
102.50	202.50	3.22E-06	4.19E-06	2	WBS22	4.5E-06	#NV	2.6E-06	8.2E-06	2.6E-06	1.0E-06	8.0E-06	1.1E-10	-2.4	0.07	0.98	1,978.7	15.71
202.50	302.50	1.80E-06	2.34E-06	22	WBS22	1.5E-06	#NV	3.7E-06	1.6E-06	1.5E-06	8.0E-07	6.0E-06	4.4E-10	-2.4	2.06	26.88	2,941.2	14.75
302.50	402.50	2.35E-04	3.06E-04	22	WBS22	4.1E-04	7.5E-05	#NV	#NV	4.1E-04	7.0E-05	8.0E-04	#NV	-0.7	#NV	#NV	#NV	#NV
395.50	495.50	9.69E-05	1.26E-04	2	WBS2	9.2E-05	#NV	2.8E-04	#NV	9.2E-05	1.0E-05	2.0E-04	2.0E-08	-3.9	5.61	25.90	4,837.2	16.67
482.50	582.50	5.20E-06	6.77E-06	2	WBS2	5.7E-06	2.9E-06	2.1E-05	#NV	5.7E-06	1.0E-06	7.0E-06	1.1E-09	0.4	0.28	3.06	5,684.4	16.68
102.50	122.50	2.79E-06	2.92E-06	22	WBS22	2.5E-06	4.7E-06	2.3E-06	5.7E-06	2.3E-06	1.0E-06	7.0E-06	2.3E-10	-2.2	0.22	1.84	1,198.9	15.73
122.50	142.50	7.23E-10	7.57E-10	2	WBS2	1.3E-10	#NV	1.0E-10	#NV	1.0E-10	7.0E-11	4.0E-10	3.3E-11	-1.2	#NV	#NV	1,362.2	#NV
142.50	162.50	#NV	#NV	#NV	2	#NV	#NV	2.9E-11	#NV	2.9E-11	9.0E-12	7.0E-11	2.4E-11	-0.3	#NV	#NV	#NV	#NV
162.50	182.50	1.08E-07	1.13E-07	2	WBS2	1.9E-07	#NV	1.1E-07	4.2E-07	1.9E-07	9.0E-08	6.0E-07	6.3E-11	4.2	1.52	16.68	1,782.2	15.67
182.50	202.50	2.56E-07	2.67E-07	2	WBS22	3.2E-07	#NV	2.5E-07	6.2E-07	2.5E-07	1.0E-07	8.0E-07	5.6E-11	0.3	0.31	1.23	1,965.1	14.32
202.50	222.50	3.67E-07	3.84E-07	2	WBS2	6.4E-07	#NV	2.4E-06	#NV	6.4E-07	4.0E-07	3.0E-06	6.7E-11	3.6	0.19	13.32	2,166.3	15.30
222.50	242.50	8.42E-07	8.81E-07	22	WBS22	1.2E-06	5.7E-07	2.3E-06	6.3E-07	5.7E-07	2.0E-07	1.0E-06	1.5E-10	0.2	4.82	18.25	2,360.1	15.05
242.50	262.50	1.81E-08	1.89E-08	2	WBS2	2.5E-08	#NV	8.7E-08	#NV	2.5E-08	1.0E-08	9.0E-08	1.0E-10	2.8	2.68	15.86	2,563.2	15.75
262.50	282.50	6.32E-08	6.62E-08	2	WBS22	1.2E-07	#NV	2.3E-08	7.5E-08	1.2E-07	3.0E-08	3.0E-07	2.4E-11	-2.2	2.70	17.74	2,743.6	14.61
282.50	302.50	8.83E-07	9.24E-07	2	WBS2	1.4E-06	#NV	2.0E-06	#NV	2.0E-06	9.0E-07	5.0E-06	2.0E-10	6.9	0.53	13.15	2,939.1	14.53
302.50	322.50	3.96E-06	4.15E-06	22	WBS2	6.8E-06	2.0E-06	2.1E-05	#NV	2.1E-05	1.0E-06	4.0E-05	2.1E-10	20.3	0.34	7.99	3,137.7	14.77
322.50	342.50	7.93E-08	8.29E-08	22	WBS22	1.6E-07	3.1E-07	5.9E-08	2.9E-07	1.6E-07	8.0E-08	5.0E-07	8.3E-11	6.7	1.30	16.65	3,334.2	15.27
342.50	362.50	2.09E-05	2.19E-05	2	WBS2	4.6E-05	#NV	4.8E-05	#NV	4.8E-05	2.0E-05	7.0E-05	5.1E-09	5.2	0.91	13.78	3,529.9	15.22
355.50	375.50	1.71E-05	1.79E-05	2	WBS2	4.1E-05	#NV	6.1E-05	#NV	4.1E-05	2.0E-05	8.0E-05	1.9E-09	6.0	0.38	19.17	3,658.5	15.58
375.50	395.50	2.91E-04	3.04E-04	22	#NV	4.4E-04	1.3E-04	#NV	#NV	4.4E-04	7.0E-05	8.0E-04	#NV	-2.8	#NV	#NV	#NV	#NV
395.50	415.50	2.18E-05	2.29E-05	2	WBS2	4.8E-05	#NV	5.6E-05	#NV	4.8E-05	3.0E-05	7.0E-05	1.6E-09	4.4	0.22	16.10	4,053.1	15.81
415.50	435.50	7.73E-06	8.09E-06	2	WBS2	1.9E-05	#NV	3.4E-05	#NV	1.9E-05	9.0E-06	5.0E-05	1.1E-09	6.0	0.78	13.44	4,246.6	16.00
435.50	455.50	2.65E-05	2.77E-05	2	WBS2	5.5E-05	#NV	5.9E-05	#NV	5.5E-05	3.0E-05	8.0E-05	3.3E-09	5.5	0.18	16.50	4,442.8	16.00
455.50	475.50	1.53E-05	1.60E-05	2	WBS2	2.9E-05	#NV	5.4E-05	#NV	2.9E-05	1.0E-05	7.0E-05	1.5E-09	2.9	0.91	12.31	4,638.9	15.99
475.50	495.50	3.01E-06	3.14E-06	2	WBS2	3.5E-06	#NV	1.4E-05	#NV	3.5E-06	1.0E-06	8.0E-06	3.5E-10	-0.8	0.61	18.65	4,833.3	16.27
493.00	513.00	2.93E-06	3.07E-06	2	WBS2	3.5E-06	#NV	1.4E-05	#NV	3.5E-06	1.0E-06	6.0E-06	1.7E-10	-0.4	8.50	26.27	5,005.4	16.37
507.00	527.00	7.31E-07	7.65E-07	2	WBS2	9.1E-07	#NV	3.5E-06	#NV	9.1E-07	7.0E-07	4.0E-06	2.9E-10	8.0	0.17	17.90	5,140.4	16.08
527.00	547.00	8.18E-07	8.55E-07	2	WBS2	9.5E-07	#NV	3.1E-06	#NV	9.5E-07	7.0E-07	5.0E-06	1.8E-10	0.0	0.20	18.25	5,335.5	15.96
547.00	567.00	8.05E-07	8.42E-07	2	WBS2	1.1E-06	#NV	4.1E-06	#NV	1.1E-06	8.0E-07	5.0E-06	7.1E-11	0.9	0.28	18.27	5,530.2	16.27
562.50	582.50	7.18E-08	7.52E-08	2	WBS2	3.7E-08	#NV	3.7E-08	7.3E-08	3.7E-08	1.0E-08	5.0E-08	8.5E-12	-2.9	2.44	18.35	5,677.5	15.98
583.50	595.85	#NV	#NV	22	22	4.0E-08	1.1E-07	6.4E-08	1.4E-07	6.4E-08	1.0E-08	1.0E-07	#NV	#NV	1.80	8.62	#NV	#NV

Nomencl	ature
Q/s	Specific capacity.
T_M	Transmissivity according to /Moye 1967/.
Flow regime	The flow regime description refers to the recommended model used in the transient analysis. WBS denotes wellbore storage and skin and is followed by a set of numbers describing the flow dimension used in the analysis (1 = linear flow, 2 = radial flow, 3 = spherical flow). If only one number is used (e.g. WBS2 or 2) a homogeneous flow model (1 composite zone) was used in the analysis, if two numbers are given (WBS22 or 22) a 2 zones composite model was used.
T_f	Transmissivity derived from the analysis of the perturbation phase (CHi). In case a homogeneous flow model was used only one T_f value is reported, in case a two zone composite flow model was used both T_{f1} (inner zone) and T_{f2} (outer zone) are given.
Ts	Transmissivity derived from the analysis of the recovery phase (CHir or Pi). In case a homogeneous flow model was used only one T_s value is reported, in case a two zone composite flow model was used both T_{s1} (inner zone) and T_{s2} (outer zone) are given.
T_T	Recommended transmissivity.
T_{TMIN}	Confidence range lower limit.
T_{TMAX}	Confidence range upper limit.
С	Wellbore storage coefficient.
ξ	Skin factor (calculated based on a Storativity of 1·10 ⁻⁶).
$dt_{\scriptscriptstyle 1}$	Estimated start time of evaluation.
$dt_2 \\$	Estimated stop time of evaluation.
p*	The parameter p* denoted the static formation pressure (measured at transducer depth) and was derived from the HORNER plot of the CHir phase using straight line or type-curve extrapolation.
h_{wif}	Fresh-water head (based on transducer depth and p*).
#NV	Not analysed/no values.

Table 6-3. Results from the ri-index calculation of hydraulic tests in KLX13A (see Chapter 4.5.5 for details and nomenclature)

Borehole secup	Borehole seclow	Recommended Transmissivity	ri-index	Time t ₂ for radius of influence calculation	Radius of Influence
[m b ToC]	[m b ToC]	Tt [m²/s]	[-]	[s]	ri [m]
102.50	202.50	2.56E-06	-1	59	21.91
202.50	302.50	1.50E-06	0	1,800	106.06
302.50	402.50	4.12E-04	1	#NV	#NV
395.50	495.50	9.16E-05	0	1,800	296.50
482.50	582.50	5.74E-06	1	184	47.38
102.50	122.50	2.33E-06	-1	110	29.32
122.50	142.50	1.03E-10	1	2,400	11.15
142.50	162.50	2.86E-11	0	3,600	9.91
162.50	182.50	1.87E-07	0	1,200	51.46
182.50	202.50	2.54E-07	-1	74	13.78
202.50	222.50	6.41E-07	0	1,200	70.02
222.50	242.50	5.69E-07	1	289	49.26
242.50	262.50	2.49E-08	0	1,200	31.09
262.50	282.50	1.16E-07	0	1,200	45.67
282.50	302.50	2.04E-06	0	1,200	93.52
302.50	322.50	2.05E-05	0	1,200	166.51
322.50	342.50	1.58E-07	1	999	45.02
342.50	362.50	4.83E-05	0	1,200	206.30
355.50	375.50	4.10E-05	0	1,200	198.02
375.50	395.50	4.38E-04	1	#NV	#NV
395.50	415.50	4.82E-05	0	1,200	206.19
415.50	435.50	1.85E-05	0	1,200	162.29
435.50	455.50	5.53E-05	0	1,200	213.40
455.50	475.50	2.90E-05	0	1,200	181.59
475.50	495.50	3.47E-06	0	1,200	106.80
493.00	513.00	3.53E-06	0	1,200	107.26
507.00	527.00	9.13E-07	0	1,200	76.49
527.00	547.00	9.46E-07	0	1,200	77.17
547.00	567.00	1.08E-06	0	1,200	79.77
562.50	582.50	3.67E-08	– 1	1,101	32.81

The Figures 6-1 to 6-3 present the transmissivity, conductivity and hydraulic freshwater head pofiles.

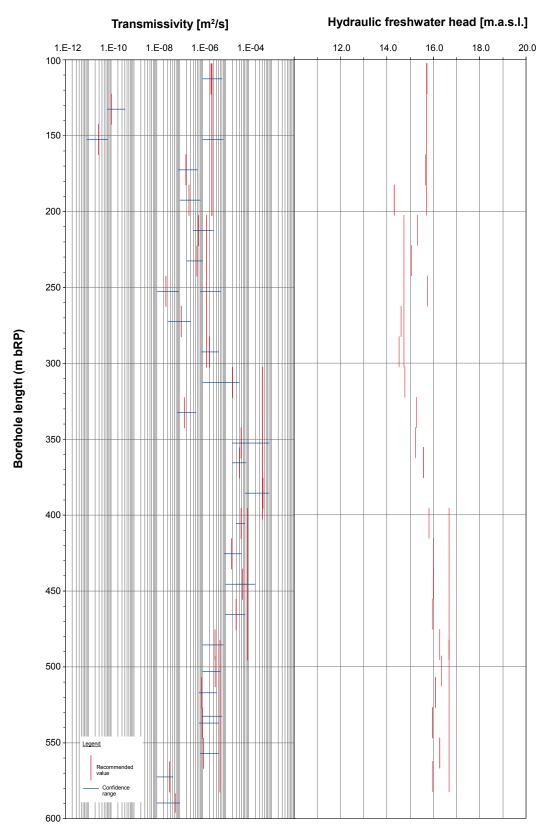


Figure 6-1. Results summary – profiles of transmissivity and equivalent freshwater head extrapolated.

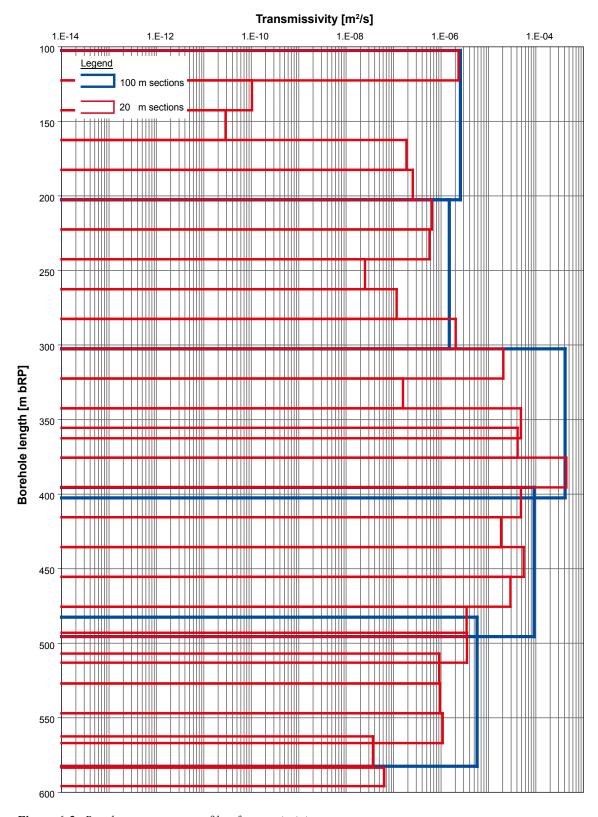


Figure 6-2. Results summary – profile of transmissivity.

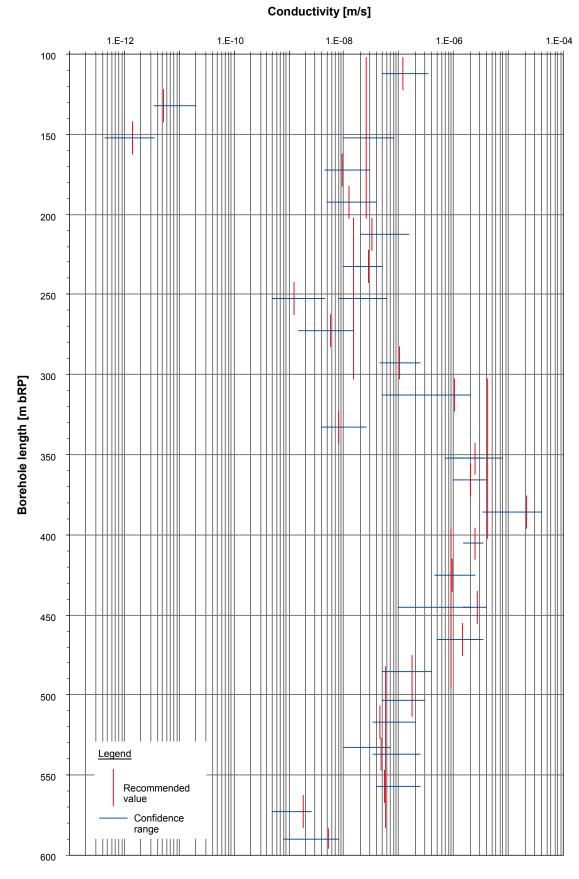


Figure 6-3. Results summary – profile of hydraulic conductivity.

6.2 Correlation analysis

A correlation analysis was used with the aim of examining the consistency of results and deriving general conclusion regarding the testing and analysis methods used.

6.2.1 Comparison of steady state and transient analysis results

The steady state derived transmissivities (T_M) and specific capacities (Q/s) were compared in a cross-plot with the recommended transmissivity values derived from the transient analysis (see following figure).

The correlation analysis shows that the transmissivities derived from the steady state analysis differ by less than one order of magnitude from the transmissivities derived from the transient analysis.

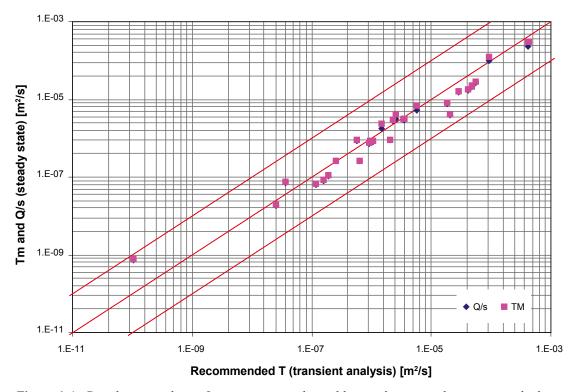


Figure 6-4. Correlation analysis of transmissivities derived by steady state and transient methods.

6.2.2 Comparison between the matched and theoretical wellbore storage coefficient

The wellbore storage coefficient describes the capacity of the test interval to store fluid as result to an unit pressure change in the interval. For a closed system (i.e. closed downhole valve) the theoretical value of the wellbore storage coefficient is given by the product between the interval volume and the test zone compressibility. The interval volume is calculated from the borehole radius and interval length. There are uncertainties concerning the interval volume calculation. Cavities or high transmissivity fractures intersecting the interval may enlarge the effective volume of the interval.

The test zone compressibility is given by the sum of compressibilities of the individual components present in the interval (water, packer elements, other test tool components, and the borehole wall). The water compressibility depends on the temperature and salinity. However, for temperature and salinity values as encountered at the Oskarshamn site the water compressibility varies only slightly between $4.5 \cdot 10^{-10}$ and $5.0 \cdot 10^{-10}$ 1/Pa.

A water compressibility of $5 \cdot 10^{-10}$ 1/Pa and a rock compressibility of $1 \cdot 10^{-10}$ 1/Pa was assumed for the analysis. In addition, the test zone compressibility is influenced by the test tool (packer compliance). The test tool compressibility was calculated as follow:

$$c = \frac{\Delta V}{\Delta p} \times \frac{1}{V} [1/Pa]$$

 ΔV Volume change of 2 Packers (The volume change was estimated at $7 \cdot 10^{-7}$ m³/100 kPa based on the results of laboratory tests conducted by GEOSIGMA) [m³].

 Δp Pressure change in test section (usually 2·10⁵ Pa) [Pa].

V Volume in test section [m^3].

The following table presents the calculated compressibilities for each relevant section length. The average value for the test tool compressibility based on different section length is $1 \cdot 10^{-10}$ 1/Pa.

Table 6-4. Test tool compressibility values based on packer displacement.

Length of test section [m]	Volume in test section [m³]	Compressibility [1/Pa]
20	0.091	8·10 ⁻¹¹
100	0.454	2·10 ⁻¹¹
Average compressibility:		5·10 ⁻¹¹

The sum of the compressibilities (water, rock, test tool) leads to a test zone compressibility with a value of $7 \cdot 10^{-10}$ 1/Pa. This value is used for the calculation of the theoretical wellbore storage coefficient.

The matched wellbore storage coefficient is derived from the transient type curve analysis by matching the unit slope early times derivative plotted in log-log coordinates.

The following figure presents a cross-plot of the matched and theoretical wellbore storage coefficients.

It can be seen that the matched wellbore storage coefficients differ up to three orders of magnitude from the theoretical. This phenomenon was already observed at the previous boreholes. A two or three orders of magnitude increase is difficult to explain by volume uncertainty. Even if large fractures are connected to the interval, a volume increase by two orders of magnitude does not seem probable. This discrepancy is not fully understood, but following hypotheses may be formulated:

- Increased compressibility of the packer system.
- As shown by previous work conducted at site, the phenomenon of increased wellbore storage coefficients can be explained by turbulent flow induced by the test in the vicinity of the borehole. Considering the fact that deviations concerning the wellbore storage rather occur in test sections with a higher transmissivity (which can lead to turbulent flow) seems to rest upon this hypothesis.

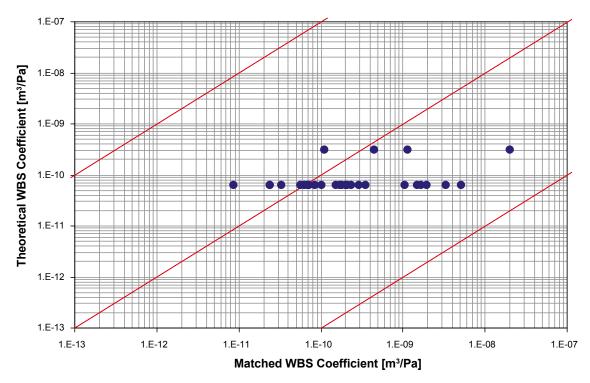


Figure 6-5. Correlation analysis of theoretical and matched wellbore storage coefficients.

7 Conclusions

7.1 Transmissivity

Figure 6-1 presents a profile of transmissivity, including the confidence ranges derived from the transient analysis. The method used for deriving the recommended transmissivity and its confidence range is described in Section 4.5.9.

Whenever possible, the transmissivities derived are representative for the "undisturbed formation" further away from the borehole. The borehole vicinity was typically described by using a skin effect.

If the conducted preliminary pulse injection (PI) showed a slow recovery the pulse test was prolonged and no further injection test was performed. The pulse test was used for a quantitative analysis. In one case the preliminary pulse was prolonged and the recommended transmissivity is $2.9 \cdot 10^{-11} \,\mathrm{m}^2/\mathrm{s}$ (Section 142.5–162.5 m).

The recommended transmissivities derived from the conducted injection tests (CHi and CHir) range from $1.5 \cdot 10^{-6}$ m²/s to $4.1 \cdot 10^{-4}$ m²/s for 100 m tests and $1.0 \cdot 10^{-10}$ m²/s to $4.4 \cdot 10^{-4}$ m²/s for the 20 m tests.

In two cases the 20 m sections show a higher transmissivity than the appropriate 100 m section. These differences are very small and are covered by the confidence range.

7.2 Equivalent freshwater head

Figure 6-1 presents a profile of the derived equivalent freshwater head expressed in meters above sea level. The method used for deriving the equivalent freshwater head is described in Section 4.5.8.

The head profile shows ta freshwater head that ranges from 14.3 m to 16.7 m and that is slightly increasing with depth. This increase can be explained with a higher salinity down in the borehole.

In general, the uncertainty related to the derived freshwater heads is dependent on the test section transmissivity. Due to the relatively short pressure recovery phase, the static pressure extrapolation becomes increasingly uncertain at lower transmissivities.

7.3 Flow regimes encountered

The flow models used in analysis were derived from the shape of the pressure derivative calculated with respect to log time and plotted in log-log coordinates.

In several cases the pressure derivative suggests a change of transmissivity with the distance from the borehole. In such cases a composite flow model was used in the analysis.

If there were different flow models matching the data in comparable quality, the simplest model was preferred.

In some cases very large skins has been observed. This is unusual and should be further examined. There are several possible explanations to this behaviour:

- If the behaviour is to be completely attributed to changes of transmissivity in the formation, this indicates the presence of larger transmissivity zones in the borehole vicinity, which could be caused by steep fractures that do not intersect the test interval, but are connected to the interval by lower transmissivity fractures. The fact that in many cases the test derivatives of adjacent test sections converge at late times seems to support this hypothesis.
- A further possibility is that the large skins are caused by turbulent flow taking place in the tool or in fractures connected to the test interval. This hypothesis is more difficult to examine. However, considering the fact that some high skins were observed in sections with transmissivities as low as $1 \cdot 10^{-8}$ m²/s (which imply low flow rates) seems to speak against this hypothesis.

The flow dimension displayed by the test can be diagnosed from the slope of the pressure derivative. A slope of 0.5 indicates linear flow, a slope of 0 (horizontal derivative) indicates radial flow and a slope of -0.5 indicates spherical flow. The flow dimension diagnosis was commented for each of the tests. In all of the cases it was possible to get a good match quality by using radial flow geometry. In no cases an alternative analysis with a flow dimension unequal to two was performed. The analyses are presented in Appendix 2.

8 References

Bourdet D, Ayoub J A, Pirard Y M, 1989. Use of pressure derivative in well-test interpretation. Coc. Of Petroleum Engineers, SPE Formation Evaluation. pp. 293–302.

Chakrabarty C, Enachescu C, 1997. Using the Devolution Approach for Slug Test Analysis: Theory and Application. Ground Water Sept.–Oct. 1997. pp. 797–806.

Gringarten A C, 1986. Computer-aided well-test analysis. SPE Paper 14099.

Horne R N, 1990. Modern well test analysis. Petroway, Inc., Palo Alto, Calif.

Horner D R, 1951. Pressure build-up in wells. Third World Pet. Congress, E.J. Brill, Leiden II, pp. 503–521.

Jacob C E, Lohman S W, 1952. Nonsteady flow to a well of constant drawdown in an extensive aguifer. Transactions, American Geophysical Union, Volume 33, No 4, pp. 559–569.

Moye D G, 1967. Diamond drilling for foundation exploration. Civil Eng. Trans., Inst. Eng. Australia, Apr. 1967, pp. 95–100.

Peres A M M, Onur M, Reynolds A C, 1989. A new analysis procedure for determining aquifer properties from slug test data. Water Resour. Res. v. 25, no. 7, pp. 1591–1602.

Rhen I, 2005. Reporting influence radius – proposal (2005-02-09).

Rhen I, Forsmark T, Forssman, I, Zetterlund M, 2006. Evaluation of hydrogeo-logical properties for Hydraulic Conductor Domains (HCD) and Hydraulic Rock Domains (HRD). SKB R-06-22, Svensk Kärnbränslehantering AB.

SKB 2001. Platsundersökningar. Undersökningsmetoder och generellt genomförandeprogram. SKB R-01-10, Svensk Kärnbränslehantering AB.

SKB 2002. Execution programme for the initial site investigations at Simpevarp. SKB P-02-06, Svensk Kärnbränslehantering AB.

SKB 2006. Programme for further investigations of bedrock, soil, water and environment in Laxemar subarea. SKB R-06-29, Svensk Kärnbränslehantering AB.

THEIS C V, 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans. Am. Geophys. Union 16:519–524.

Borehole: KLX13 A

APPENDIX 1

File Description Table

Borehole: KLX13 A

HYDROTESTING WITH PSS				PSS	DRILLHOLE IDENTIFICATION NO.: KLX13A							
TEST- AND FILEPROTOCOL					Testorder dated: 2007-02-14							
Teststart Interval boundaries		es	Na	ame of Datafiles	Testtype	Copied to	Plotted	Sign.				
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)				
2007-02-15	09:48	102.50	202.50	KLX13A_0102.50_200702150948.ht2	KLX13A_102.50-202.50_070215_1_CHir_Q_r.csv	Chir		2007-02-15				
2007-02-15	15:34	202.50	302.50	KLX13A_0202.50_200702151534.ht2	KLX13A_202.50-302.50_070215_1_CHir_Q_r.csv	Chir		2007-02-15				
2007-02-16	07:58	302.50	402.50	KLX13A_0302.50_200702160758.ht2	KLX13A_302.50-402.50_070216_1_CHir_Q_r.csv	Chir		2007-02-16				
2007-02-16	11:52	395.50	495.50	KLX13A_0395.50_200702161152.ht2	KLX13A_395.50-495.50_070216_1_CHir_Q_r.csv	Chir		2007-02-16				
2007-02-16	15:44	482.50	582.50	KLX13A_0482.50_200702161544.ht2	KLX13A_482.50-582.50_070216_1_CHir_Q_r.csv	Chir		2007-02-17				
2007-02-17	18:25	102.50	122.50	KLX13A_0102.50_200702171825.ht2	KLX13A_102.50-122.50_070217_1_CHir_Q_r.csv	Chir		2007-02-18				
2007-02-18	08:25	122.50	142.50	KLX13A_0122.50_200702180825.ht2	KLX13A_122.50-142.50_070218_1_CHir_Q_r.csv	Chir		2007-02-18				
2007-02-18	11:07	142.50	162.50	KLX13A_0142.50_200702181107.ht2	KLX13A_142.50-162.50_070218_1_Pi_Q_r.csv	Pi		2007-02-18				
2007-02-18	13:24	162.50	182.50	KLX13A_0162.50_200702181324.ht2	KLX13A_162.50-182.50_070218_1_CHir_Q_r.csv	Chir		2007-02-18				
2007-02-18	16:10	182.50	202.50	KLX13A_0182.50_200702181610.ht2	KLX13A_182.50-202.50_070218_1_CHir_Q_r.csv	Chir		2007-02-18				
2007-02-18	18:12	202.50	222.50	KLX13A_0202.50_200702181812.ht2	KLX13A_202.50-222.50_070218_1_CHir_Q_r.csv	Chir		2007-02-18				
2007-02-19	09:02	222.50	242.50	KLX13A_0222.50_200702190902.ht2	KLX13A_222.50-242.50_070219_1_CHir_Q_r.csv	Chir		2007-02-19				
2007-02-19	11:04	242.50	262.50	KLX13A_0242.50_200702191104.ht2	KLX13A_242.50-262.50_070219_1_CHir_Q_r.csv	Chir		2007-02-19				
2007-02-20	17:06	395.50	415.50	KLX13A_0395.50_200702201706.ht2	KLX13A_395.50-415.50_070220_1_CHir_Q_r.csv	Chir		2007-02-21				
2007-02-21	08:38	415.50	435.50	KLX13A_0415.50_200702210838.ht2	KLX13A_415.50-435.50_070221_1_CHir_Q_r.csv	Chir		2007-02-21				

Borehole: KLX13 A

					DRILLHOLE IDENTIFICATION NO.: KLX13A							
					Testorder dated: 2007-02-14							
		Interval boundaries		Name of Datafiles		Testtype	Copied to	Plotted	Sign.			
Date	Time	Upper	Lower	(*.HT2-file)	(*.CSV-file)		disk/CD	(date)				
2007-02-21	10:41	435.50	455.50	KLX13A_0435.50_200702211041.ht2	KLX13A_435.50-455.50_070221_1_CHir_Q_r.csv	Chir		2007-02-21				
2007-02-21	13:02	455.50	475.50	KLX13A_0455.50_200702211302.ht2	KLX13A_455.50-475.50_070221_1_CHir_Q_r.csv	Chir		2007-02-21				
2007-02-21	15:28	475.50	495.50	KLX13A_0475.50_200702211528.ht2	KLX13A_475.50-495.50_070221_1_CHir_Q_r.csv	Chir		2007-02-21				
2007-02-21	17:33	493.00	513.00	KLX13A_0493.00_200702211733.ht2	KLX13A_493.00-513.00_070221_1_CHir_Q_r.csv	Chir		2007-02-22				
2007-02-22	08:14	507.00	527.00	KLX13A_0507.00_200702220814.ht2	KLX13A_507.00-527.00_070222_1_CHir_Q_r.csv	Chir		2007-02-22				
2007-02-22	10:14	527.00	547.00	KLX13A_0527.00_200702221014.ht2	KLX13A_527.00-547.00_070222_1_CHir_Q_r.csv	Chir		2007-02-22				
2007-02-22	13:02	547.00	567.00	KLX13A_0547.00_200702221302.ht2	KLX13A_547.00-567.00_070222_1_CHir_Q_r.csv	Chir		2007-02-22				
2007-02-22	15:00	562.50	582.50	KLX13A_0562.50_200702221500.ht2	KLX13A_562.50-582.50_070222_1_CHir_Q_r.csv	Chir		2007-02-22				

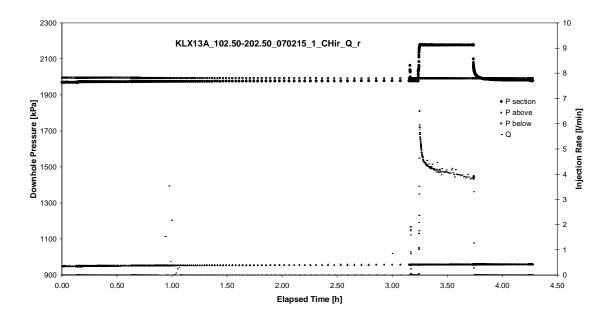
Borehole: KLX13A

APPENDIX 2

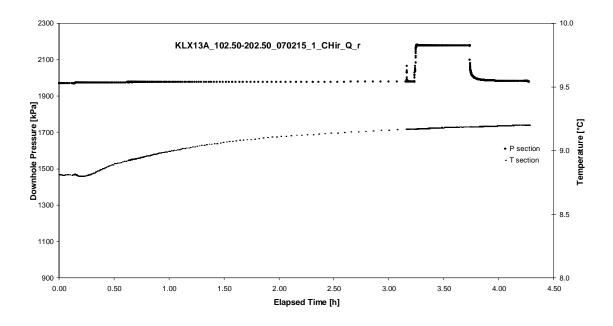
Analysis diagrams

Borehole: KLX13A Page 2-1/1

Fest: 102.50 - 202.50 m

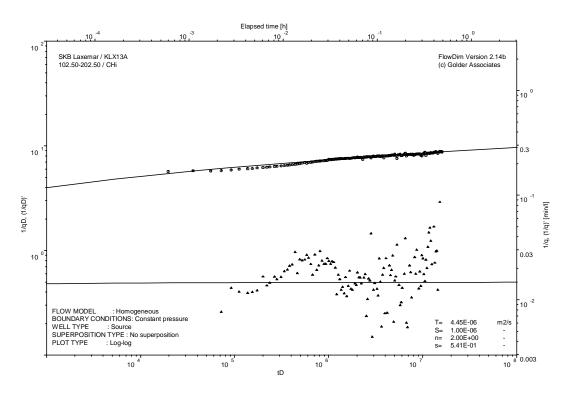

APPENDIX 2-1

Test 102.50 – 202.50 m

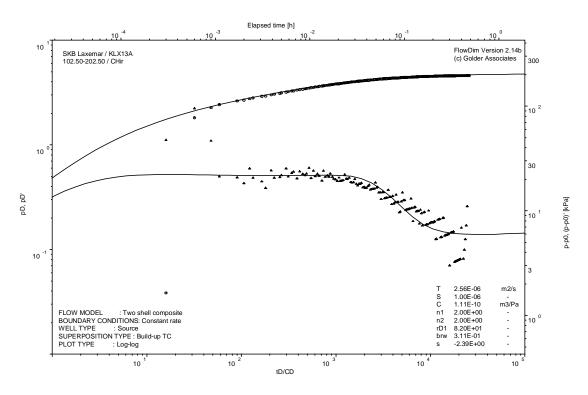

Analysis diagrams

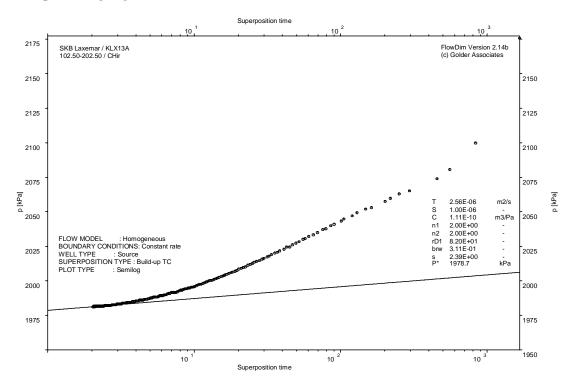
Page 2-1/2

Borehole: KLX13A Test: 102.50 – 202.50 m


Pressure and flow rate vs. time; cartesian plot

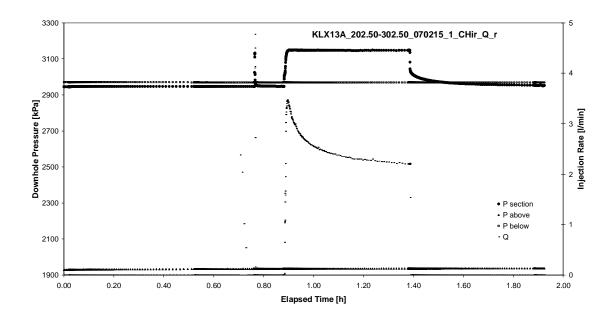
Interval pressure and temperature vs. time; cartesian plot


Borehole: KLX13A Page 2-1/3

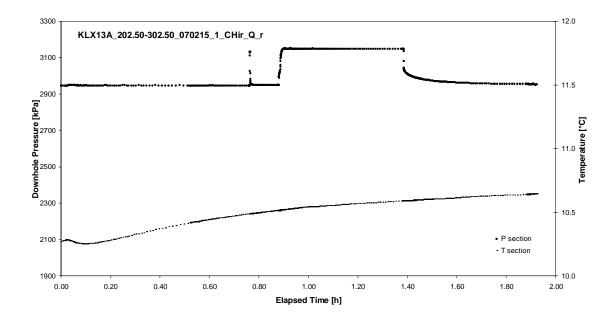

Test: 102.50 – 202.50 m

CHI phase; log-log match

Fest: 102.50 - 202.50 m

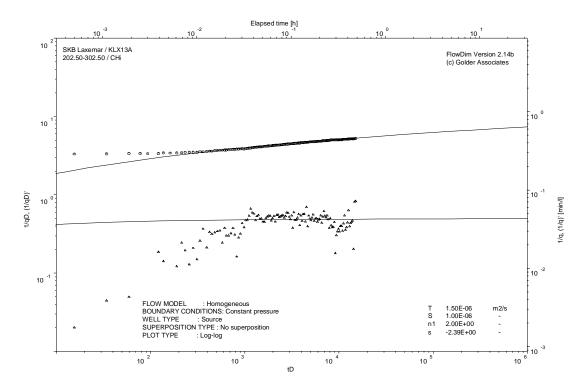

CHIR phase; HORNER match

Test: 202.50 - 302.50 m

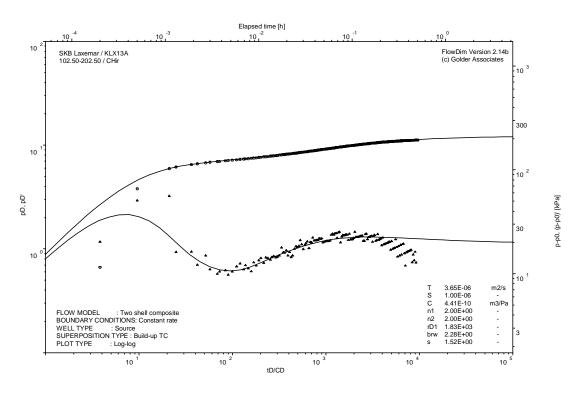

APPENDIX 2-2

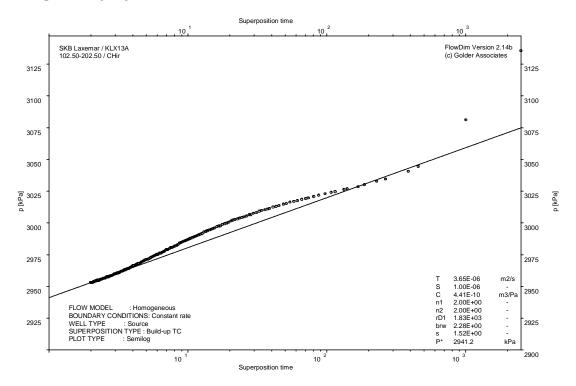
Test 202.50 – 302.50 m

Test: 202.50 – 302.50 m



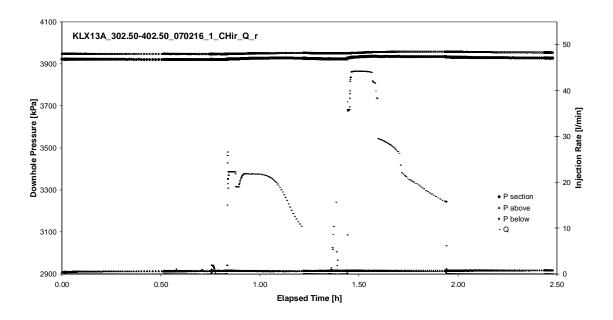
Pressure and flow rate vs. time; cartesian plot



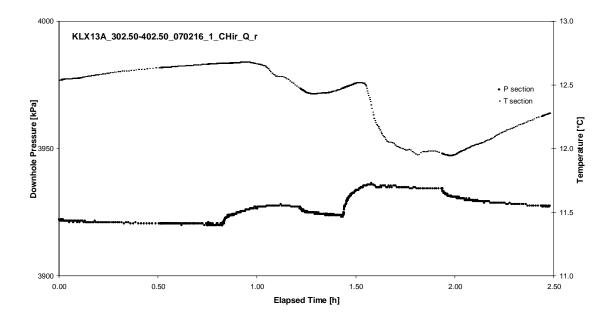

Interval pressure and temperature vs. time; cartesian plot

Test: 202.50 – 302.50 m

Test: 202.50 – 302.50 m

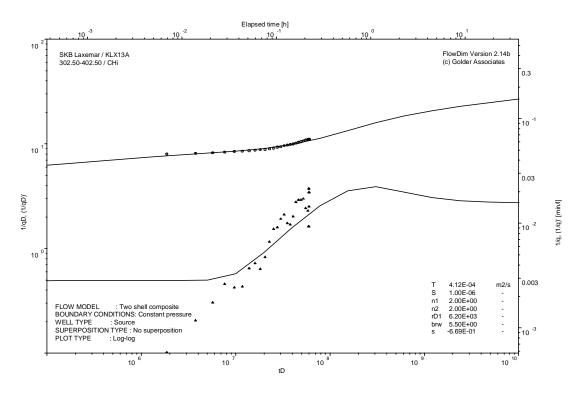

CHIR phase; HORNER match

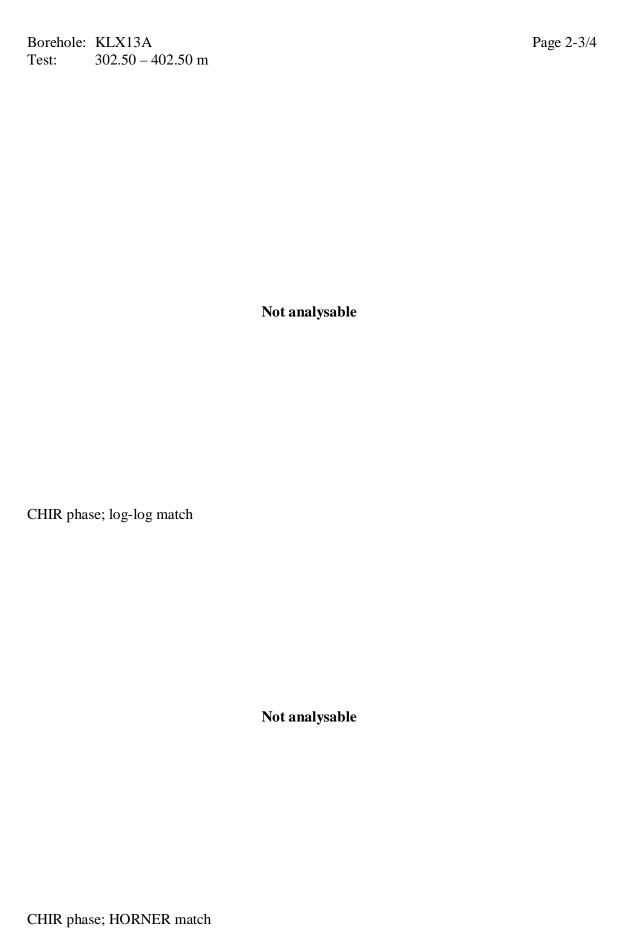
Test: 302.50 - 402.50 m


APPENDIX 2-3

Test 302.50 – 402.50 m

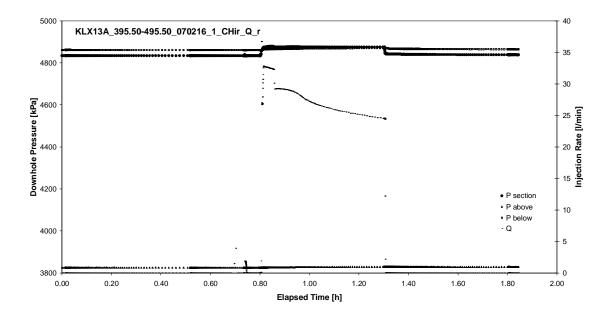
Test: 302.50 – 402.50 m




Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Test: 302.50 – 402.50 m

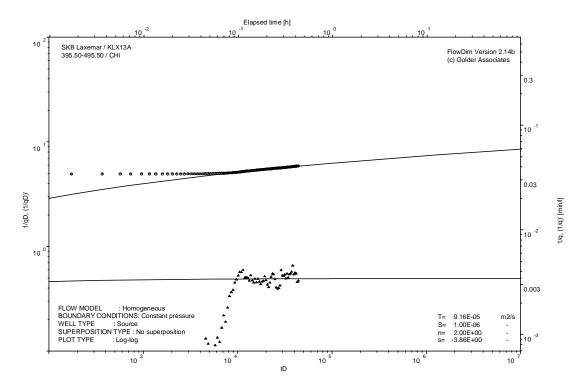


Test: 395.50 - 495.50 m

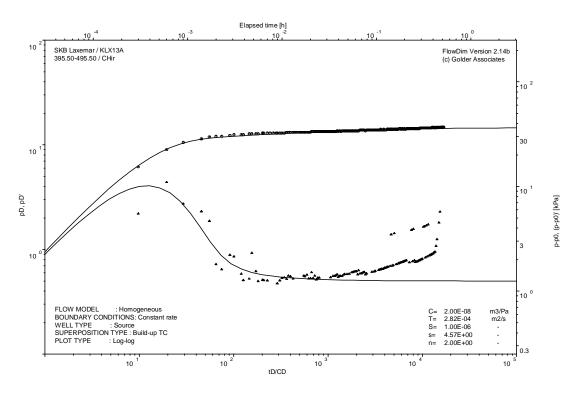
APPENDIX 2-4

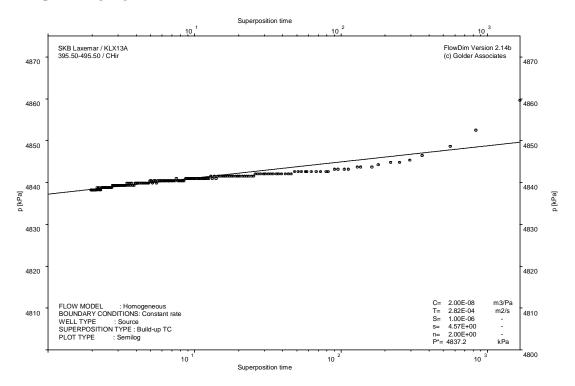
Test 395.50 – 495.50 m

Test: 395.50 – 495.50 m



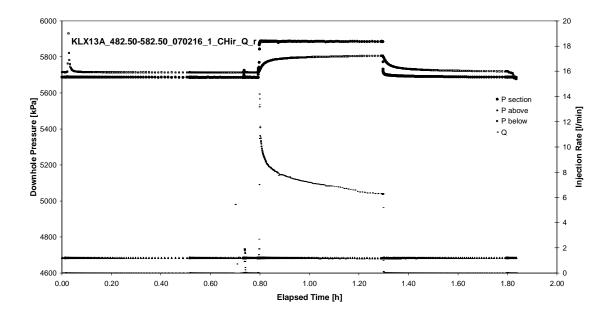
Pressure and flow rate vs. time; cartesian plot



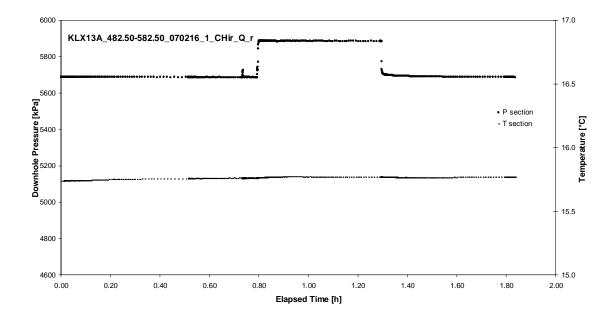

Interval pressure and temperature vs. time; cartesian plot

Test: 395.50 – 495.50 m

Test: 395.50 – 495.50 m

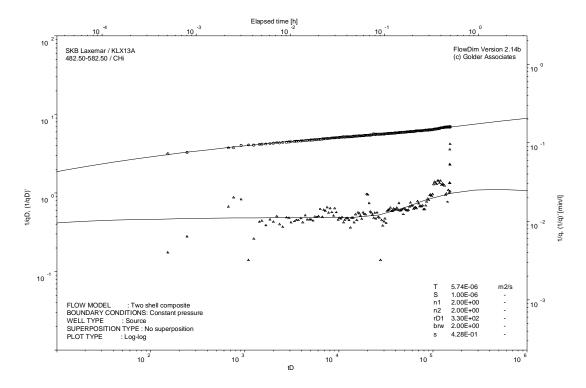

CHIR phase; HORNER match

Test: 482.50 – 582.50 m

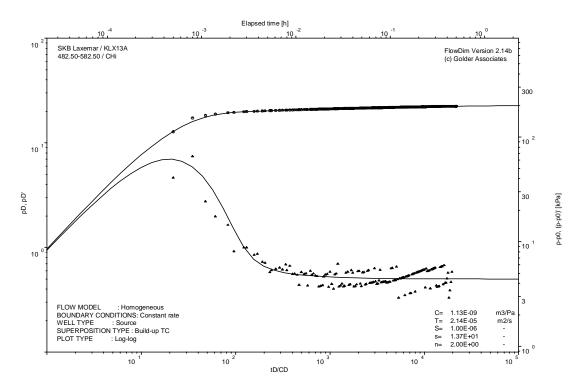

APPENDIX 2-5

Test 482.50 – 582.50 m

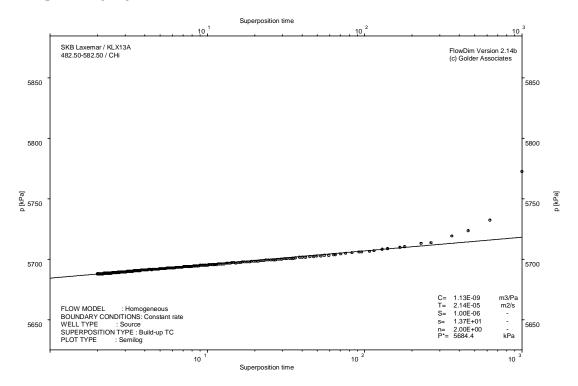
Test: 482.50 – 582.50 m



Pressure and flow rate vs. time; cartesian plot

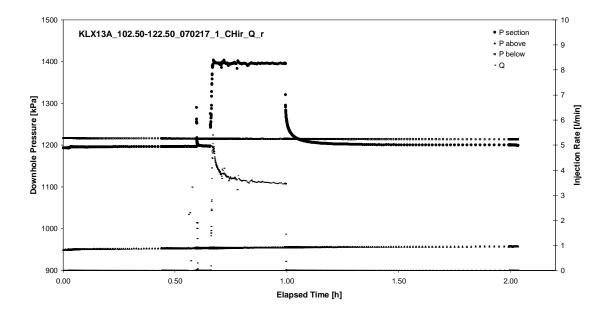


Interval pressure and temperature vs. time; cartesian plot

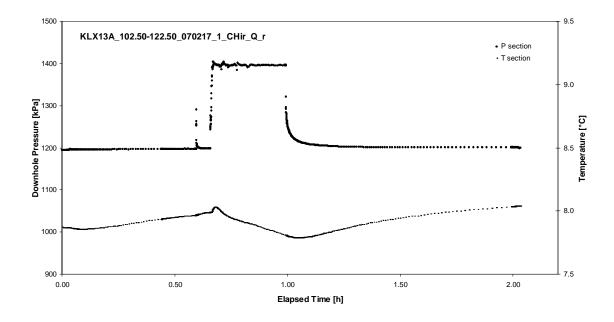

Test: 482.50 – 582.50 m

Test: 482.50 – 582.50 m

CHIR phase; log-log match

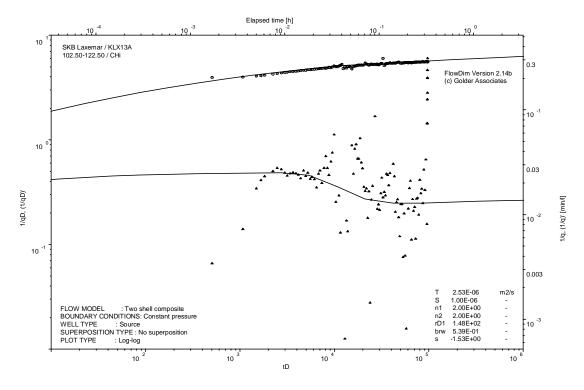

CHIR phase; HORNER match

Fest: 102.50 - 122.50 m

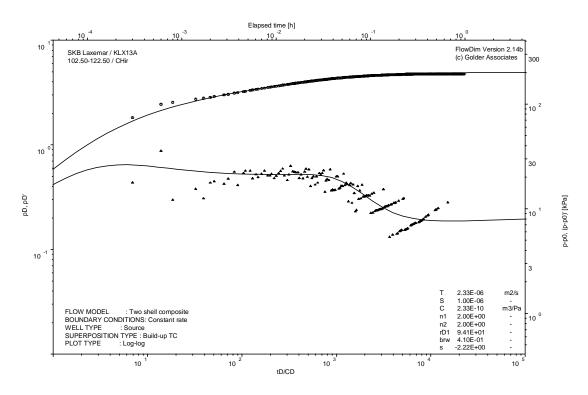

APPENDIX 2-6

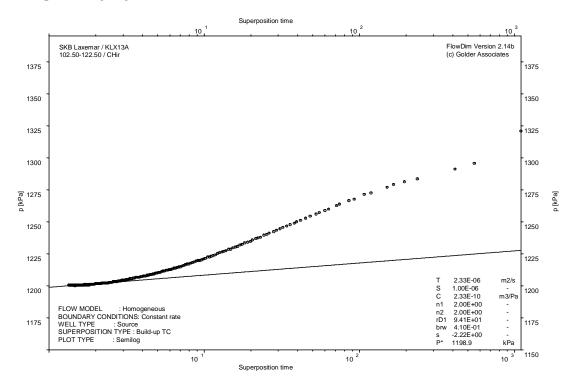
Test 102.50 – 122.50 m

Test: 102.50 – 122.50 m



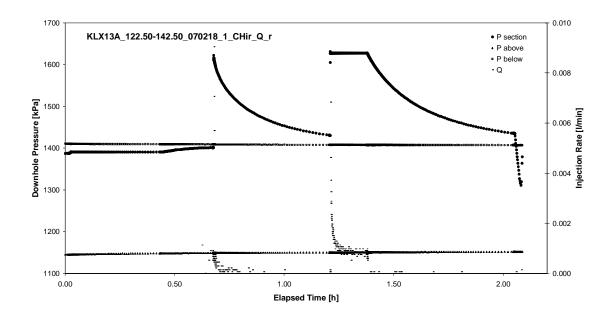
Pressure and flow rate vs. time; cartesian plot



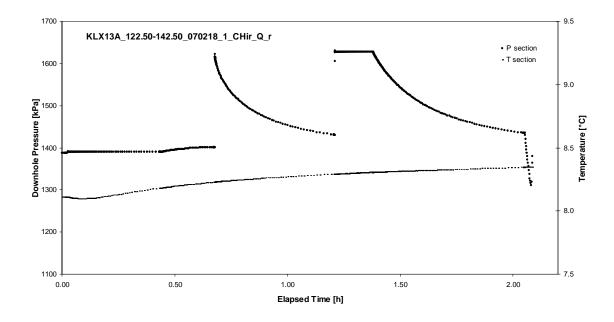

Interval pressure and temperature vs. time; cartesian plot

Test: 102.50 – 122.50 m

Test: 102.50 – 122.50 m

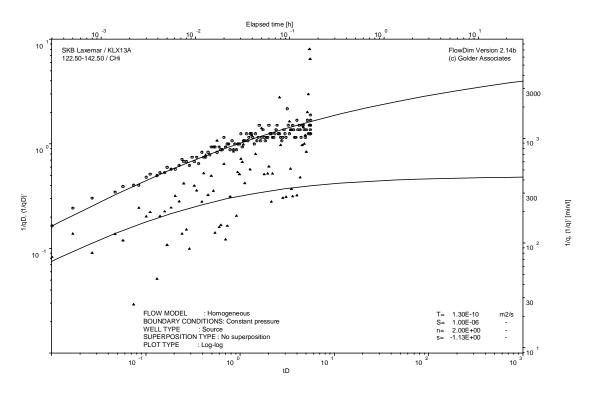

CHIR phase; HORNER match

Test: 122.50 – 142.50 m

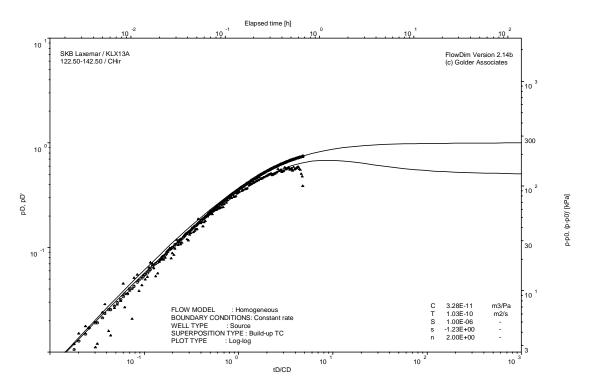

APPENDIX 2-7

Test 122.50 – 142.50 m

Test: 122.50 – 142.50 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

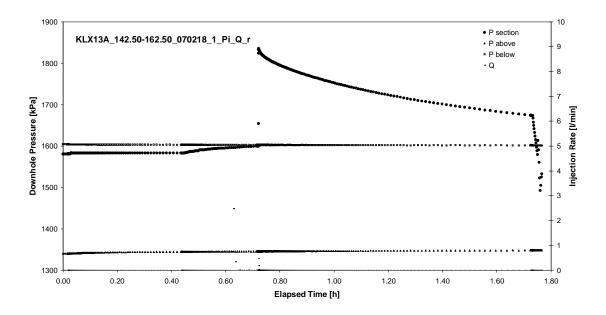
Test: 122.50 – 142.50 m

Test: 122.50 – 142.50 m

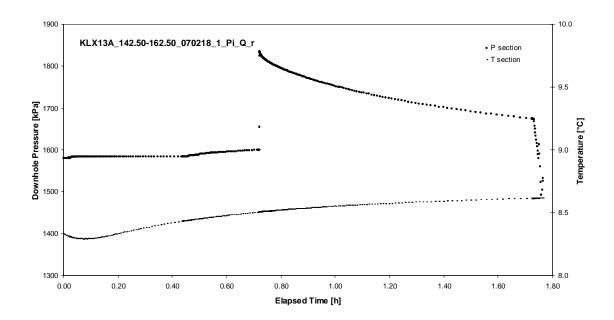
CHIR phase; log-log match

Not analysable

Test: 142.50 – 162.50 m

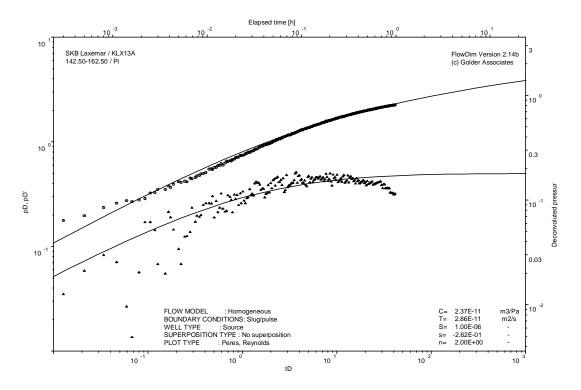

APPENDIX 2-8

Test 142.50 – 162.50 m


Page 2-8/2

Borehole: KLX13A

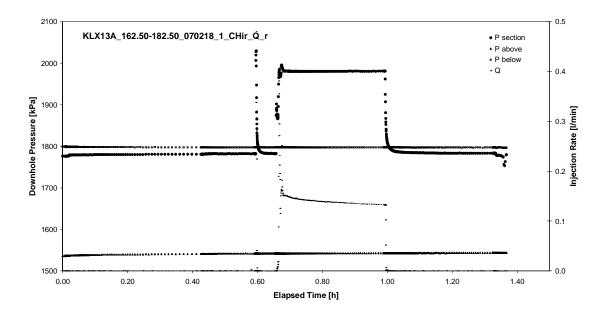
Test: 142.50 – 162.50 m



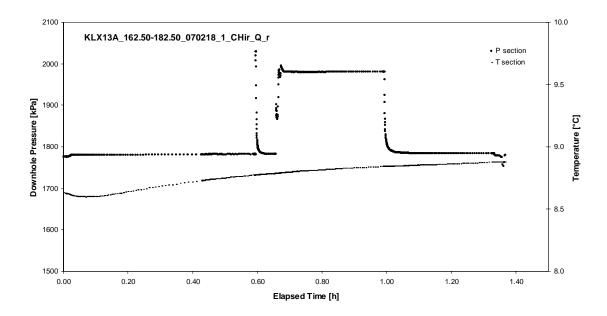
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

Test: 142.50 – 162.50 m

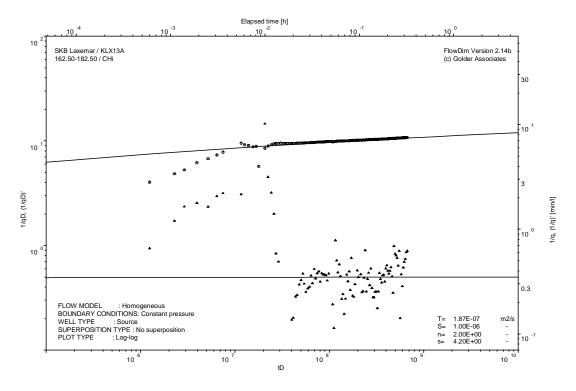

Pulse injection; deconvolution plot

Test: 162.50 – 182.50 m

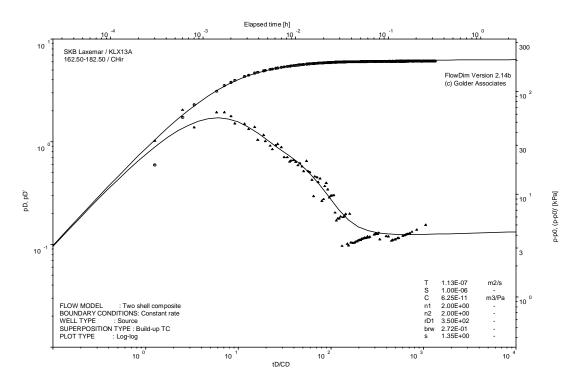

APPENDIX 2-9

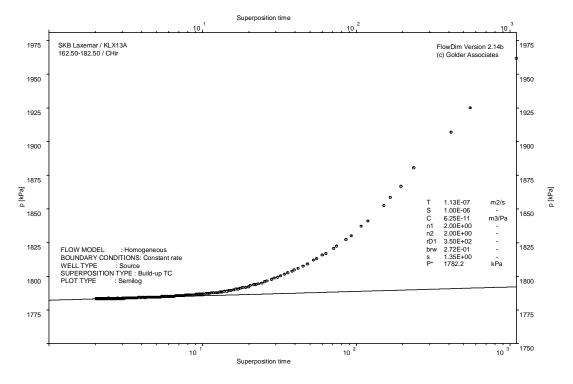
Test 162.50 – 182.50 m

Test: 162.50 – 182.50 m



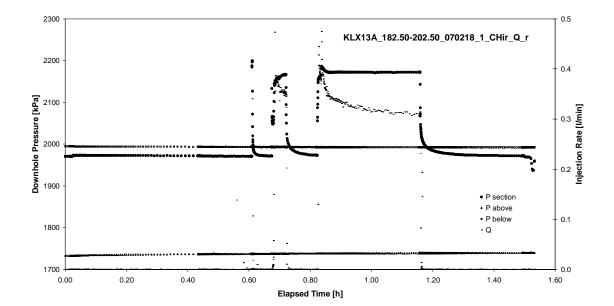
Pressure and flow rate vs. time; cartesian plot



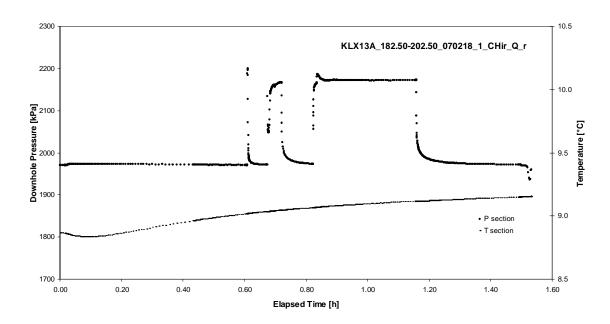

Interval pressure and temperature vs. time; cartesian plot

Test: 162.50 – 182.50 m

Test: 162.50 – 182.50 m

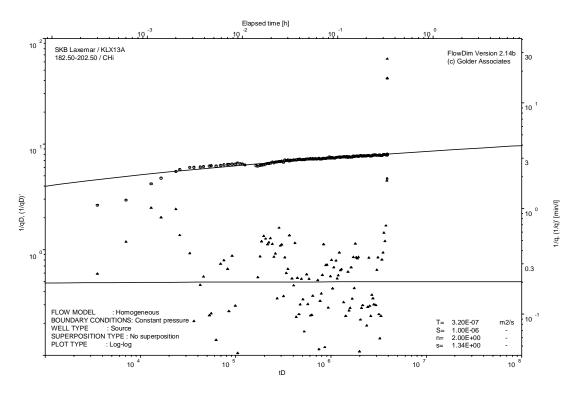

CHIR phase; HORNER match

Fest: 182.50 - 202.50 m

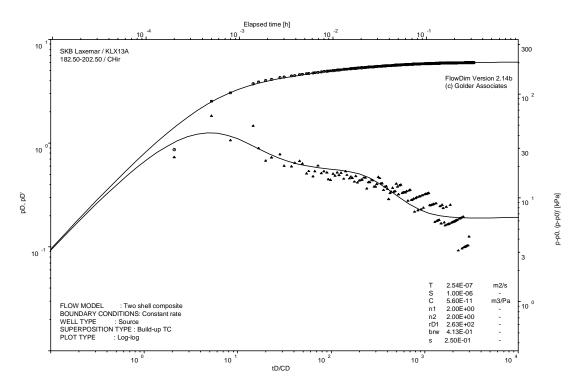

APPENDIX 2-10

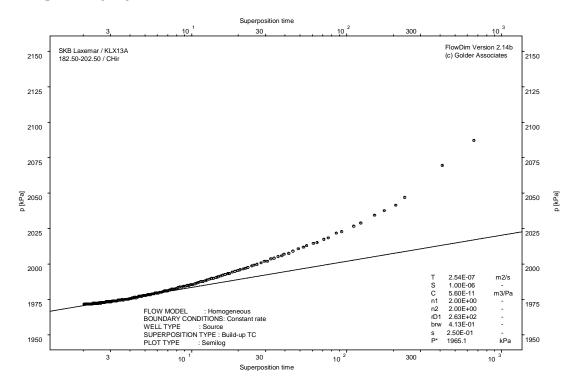
Test 182.50 – 202.50 m

Test: 182.50 – 202.50 m



Pressure and flow rate vs. time; cartesian plot



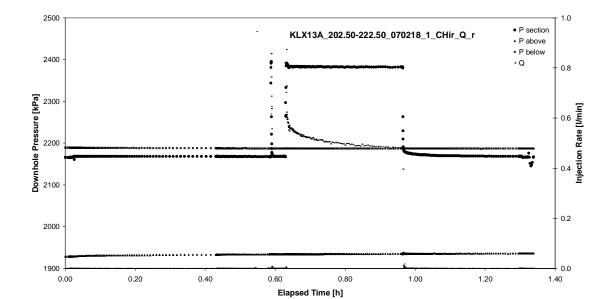

Interval pressure and temperature vs. time; cartesian plot

Test: 182.50 – 202.50 m

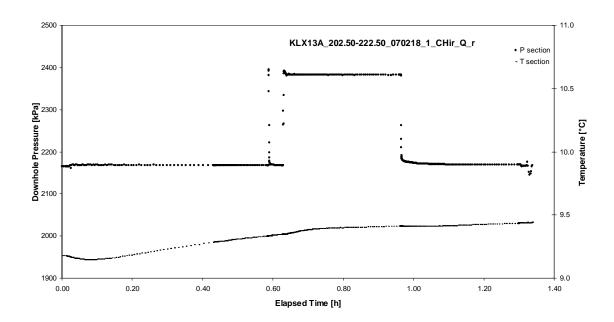
Test: 182.50 – 202.50 m

CHIR phase; HORNER match

Test: 202.50 - 222.50 m

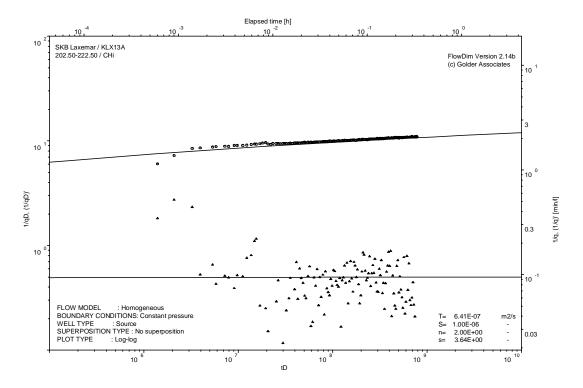

APPENDIX 2-11

Test 202.50 – 222.50 m


Page 2-11/2

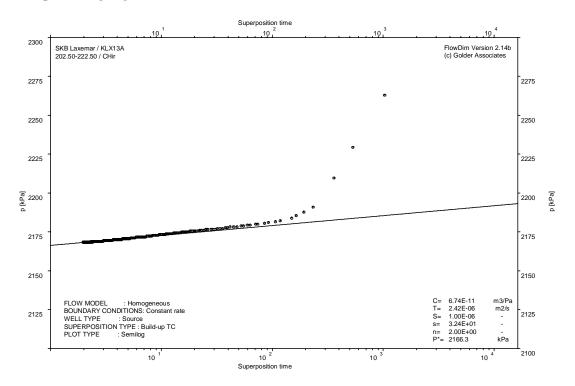
Test: 202.50 – 222.50 m

Borehole: KLX13A



Pressure and flow rate vs. time; cartesian plot

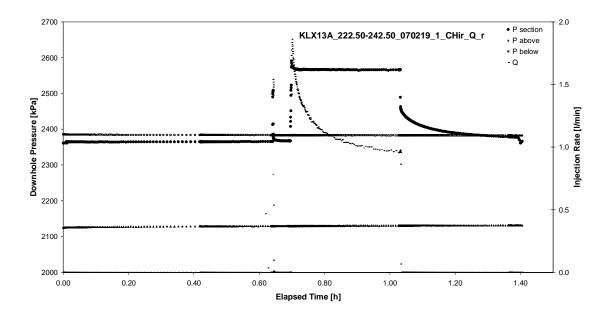



Interval pressure and temperature vs. time; cartesian plot

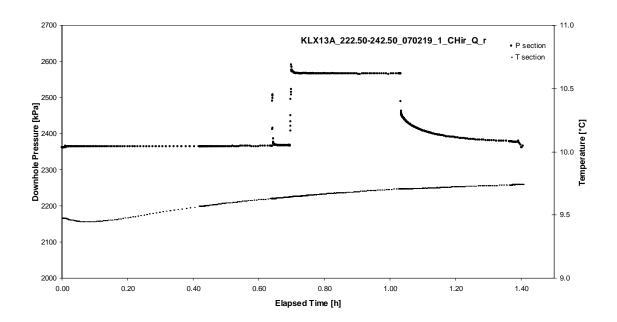
Test: 202.50 – 222.50 m

Test: 202.50 - 222.50 m

CHIR phase; HORNER match

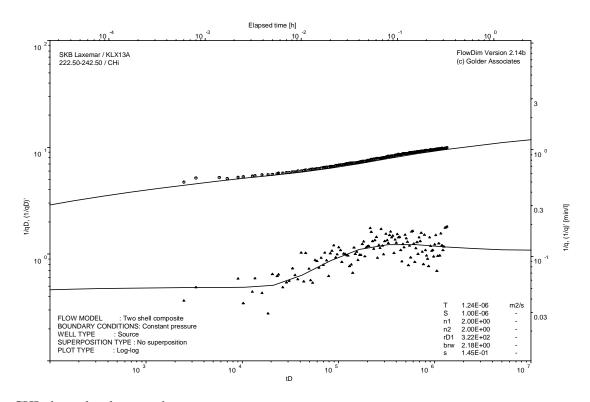

Test: 222.50 – 242.50 m

APPENDIX 2-12

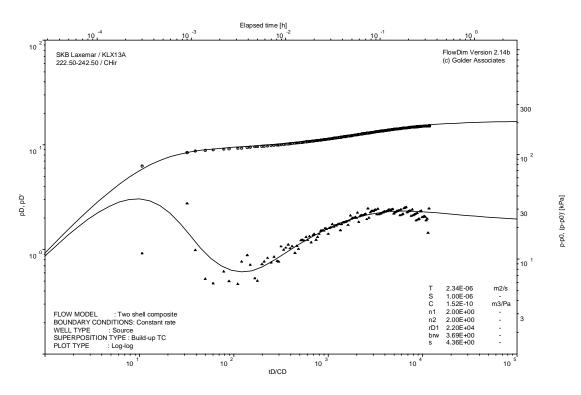

Test 222.50 – 242.50 m

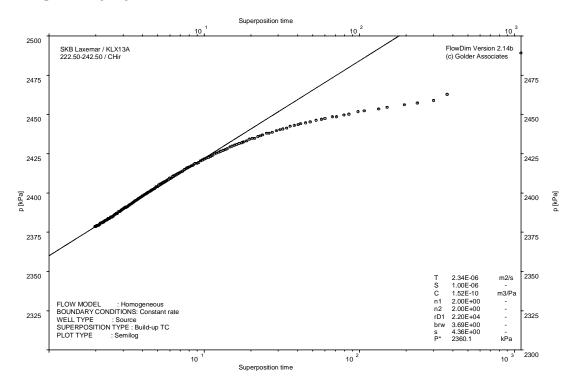
Borehole: KLX13A

Test: 222.50 – 242.50 m



Pressure and flow rate vs. time; cartesian plot



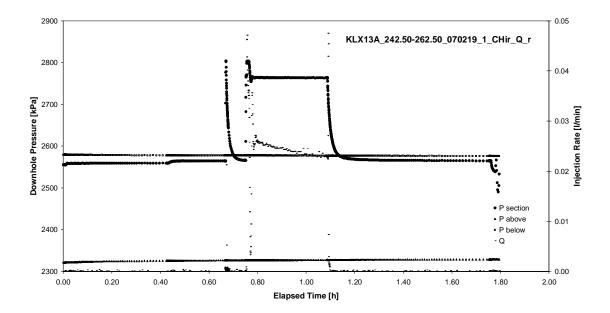

Interval pressure and temperature vs. time; cartesian plot

Test: 222.50 – 242.50 m

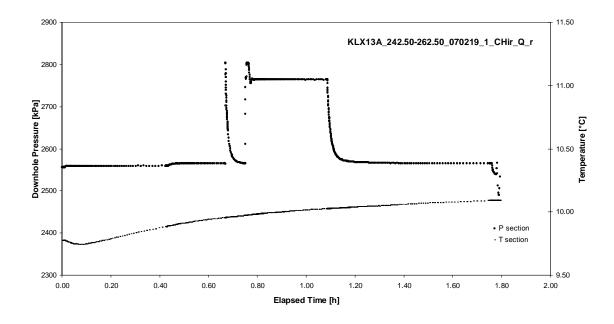
Test: 222.50 – 242.50 m

CHIR phase; HORNER match

Test: 242.50 – 262.50 m

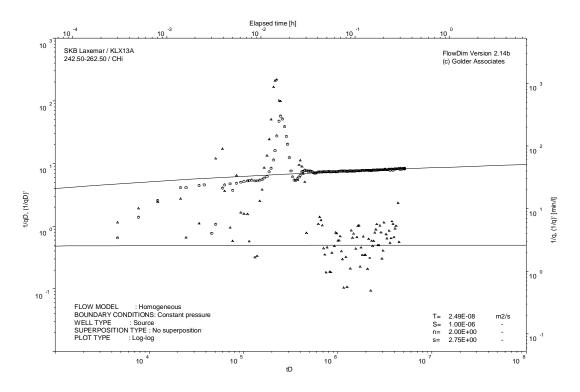

APPENDIX 2-13

Test 242.50 – 262.50 m


Page 2-13/2

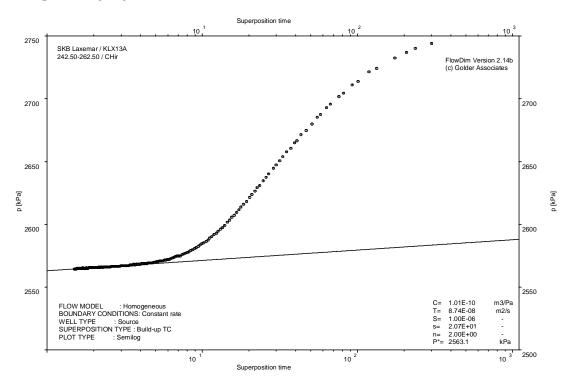
Test: 242.50 – 262.50 m

Borehole: KLX13A



Pressure and flow rate vs. time; cartesian plot

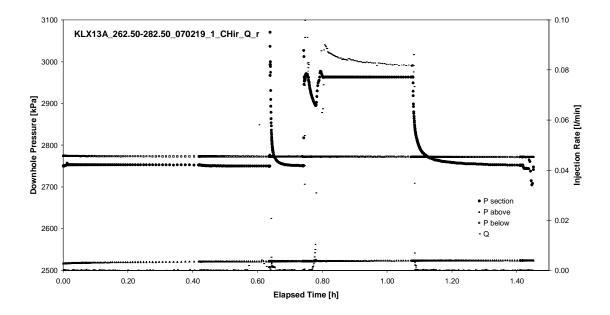



Interval pressure and temperature vs. time; cartesian plot

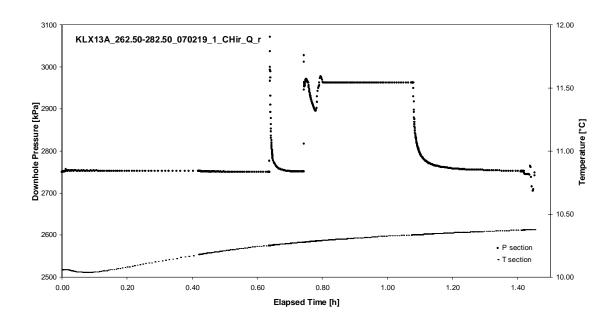
Test: 242.50 – 262.50 m

Test: 242.50 – 262.50 m

CHIR phase; HORNER match

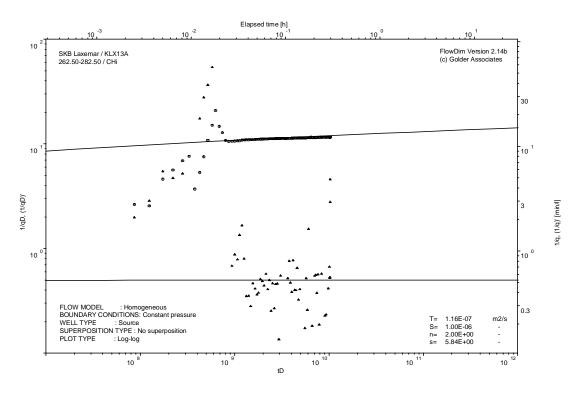

Test: 262.50 – 282.50 m

APPENDIX 2-14

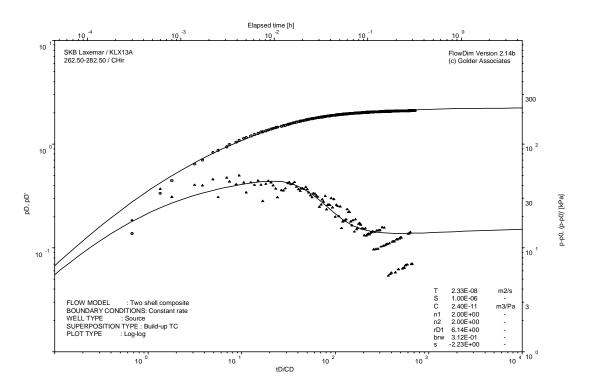

Test 262.50 – 282.50 m

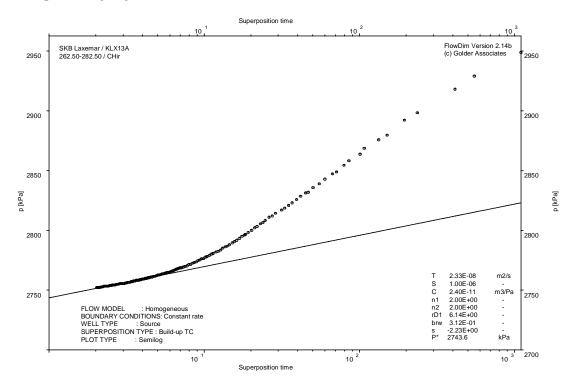
Borehole: KLX13A

Test: 262.50 – 282.50 m



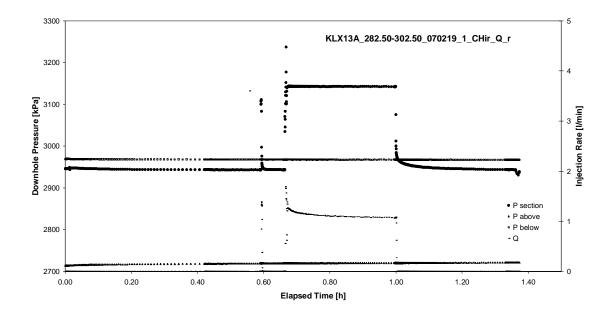
Pressure and flow rate vs. time; cartesian plot



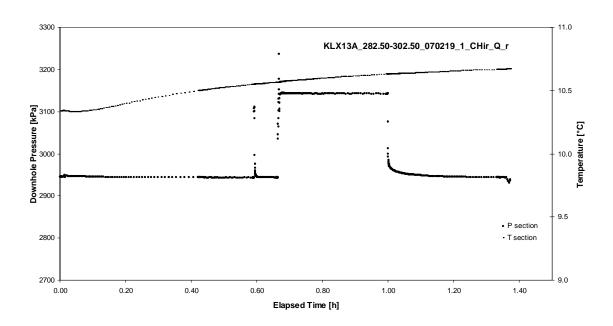

Interval pressure and temperature vs. time; cartesian plot

Test: 262.50 – 282.50 m

Test: 262.50 – 282.50 m

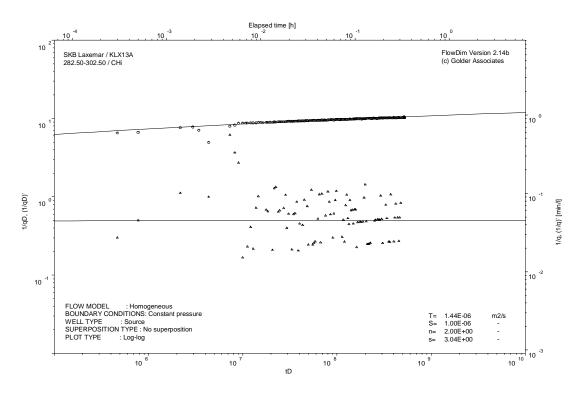

CHIR phase; HORNER match

Test: 282.50 – 302.50 m

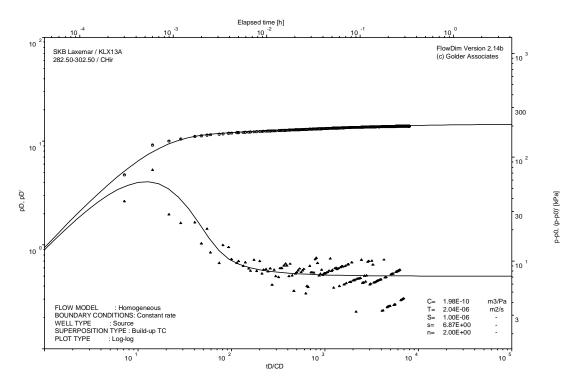

APPENDIX 2-15

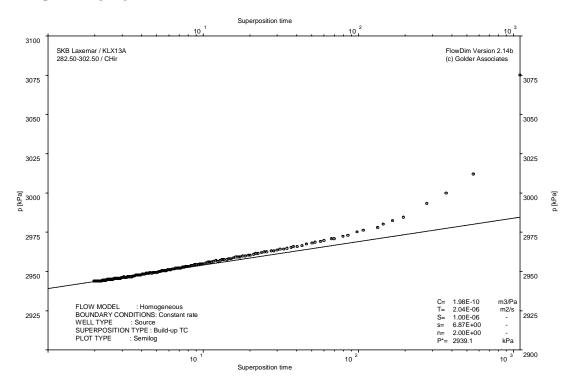
Test 282.50 – 302.50 m

Test: 282.50 – 302.50 m



Pressure and flow rate vs. time; cartesian plot

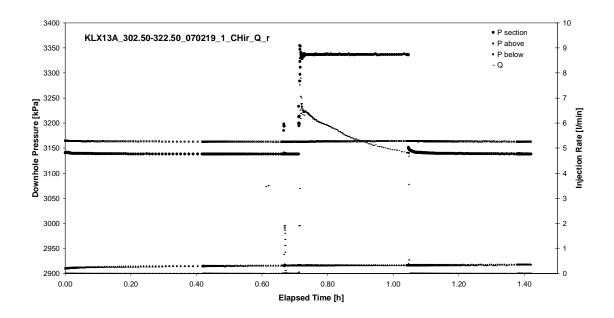



Interval pressure and temperature vs. time; cartesian plot

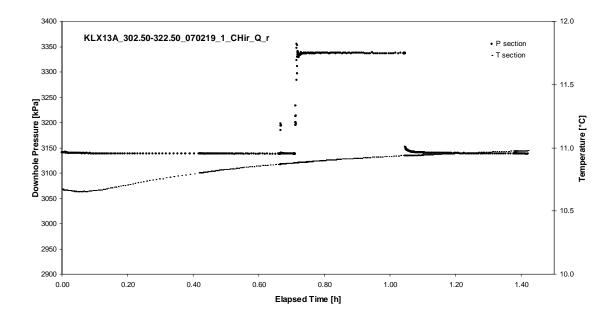
Test: 282.50 – 302.50 m

Test: 282.50 – 302.50 m

CHIR phase; HORNER match

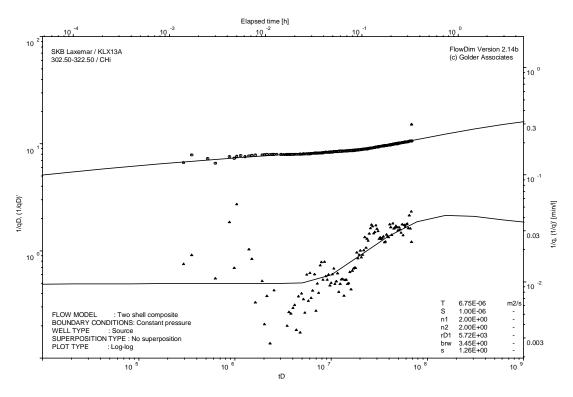

Test: 302.50 - 322.50 m

APPENDIX 2-16

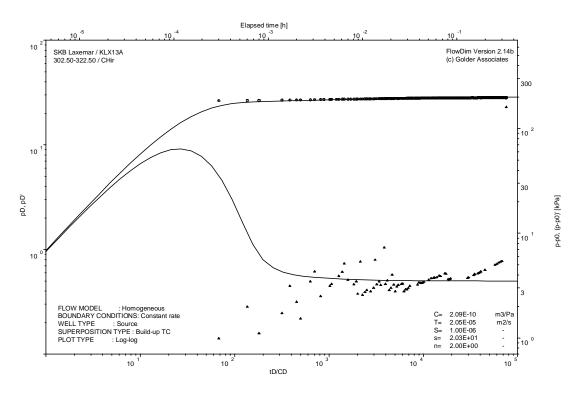

Test 302.50 – 322.50 m

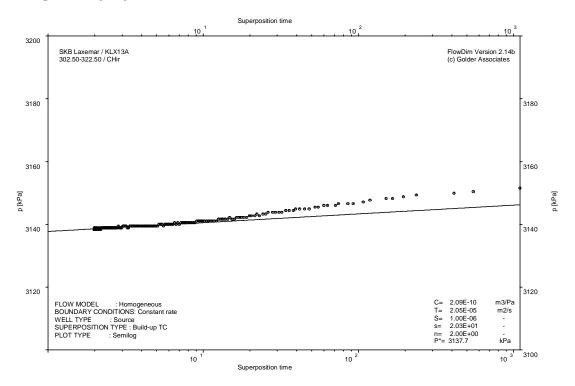
Borehole: KLX13A

Test: 302.50 – 322.50 m



Pressure and flow rate vs. time; cartesian plot

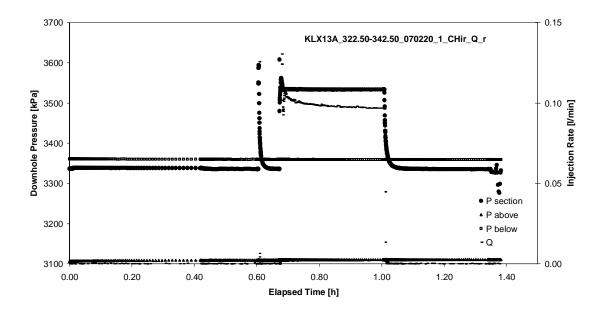



Interval pressure and temperature vs. time; cartesian plot

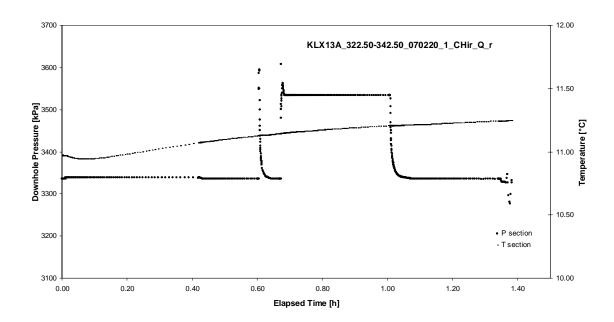
Test: 302.50 – 322.50 m

Test: 302.50 – 322.50 m

CHIR phase; HORNER match

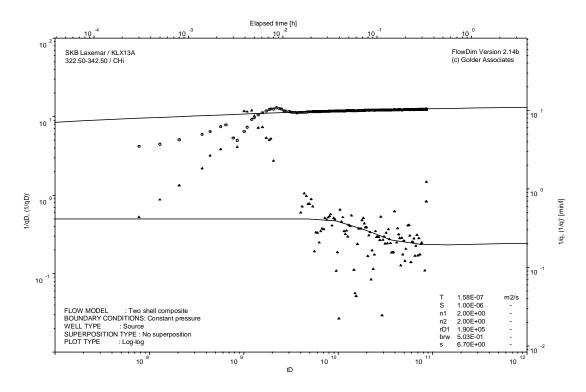

Test: 322.50 – 342.50 m

APPENDIX 2-17

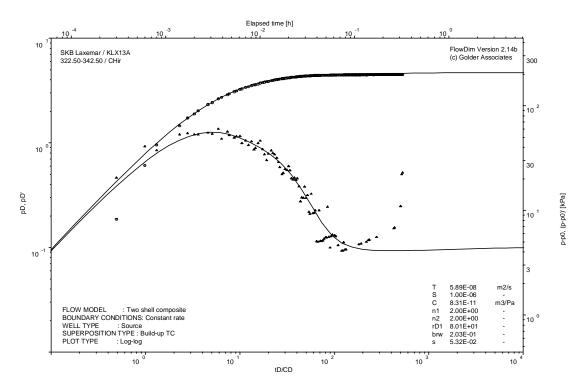

Test 322.50 – 342.50 m

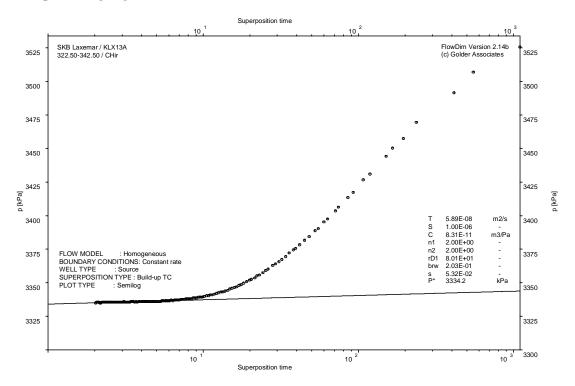
Borehole: KLX13A

Test: 322.50 – 342.50 m



Pressure and flow rate vs. time; cartesian plot

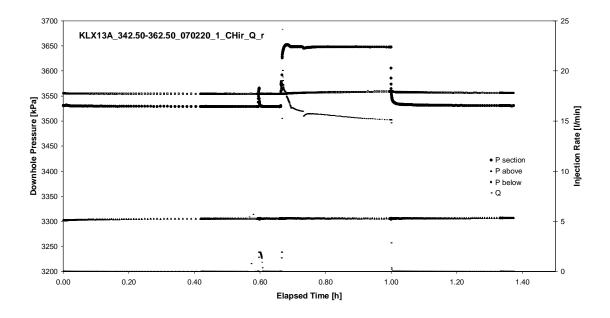



Interval pressure and temperature vs. time; cartesian plot

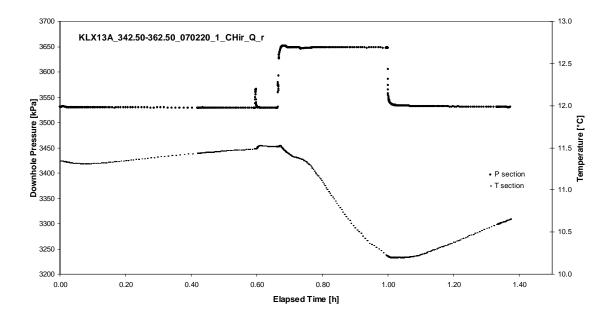
Test: 322.50 – 342.50 m

Test: 322.50 – 342.50 m

CHIR phase; HORNER match

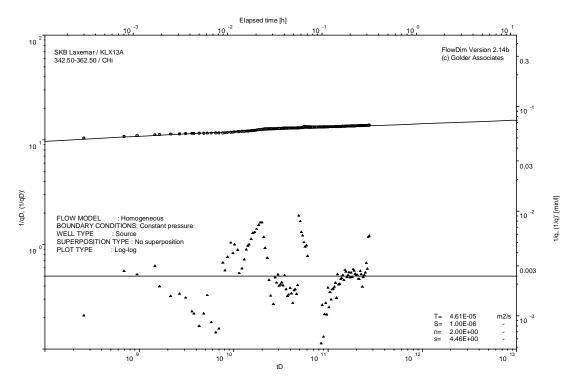

Test: 342.50 – 362.50 m

APPENDIX 2-18

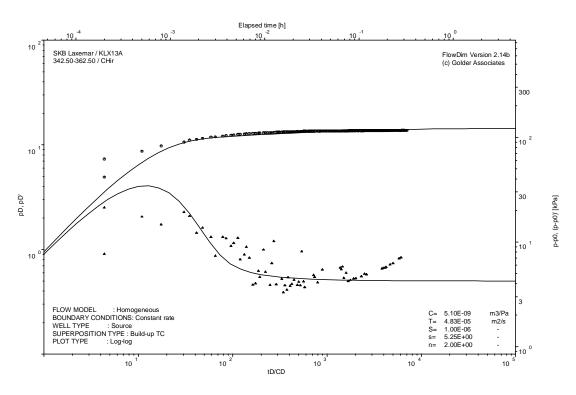

Test 342.50 – 362.50 m

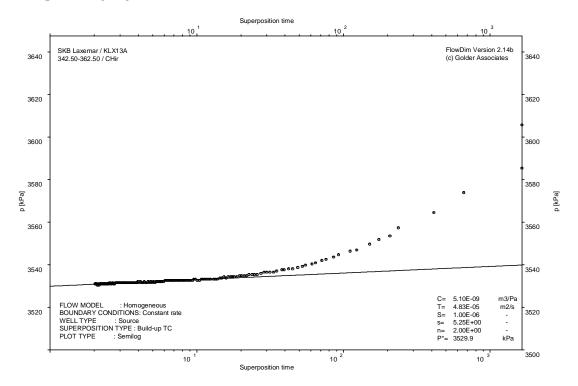
Borehole: KLX13A

Test: 342.50 – 362.50 m



Pressure and flow rate vs. time; cartesian plot

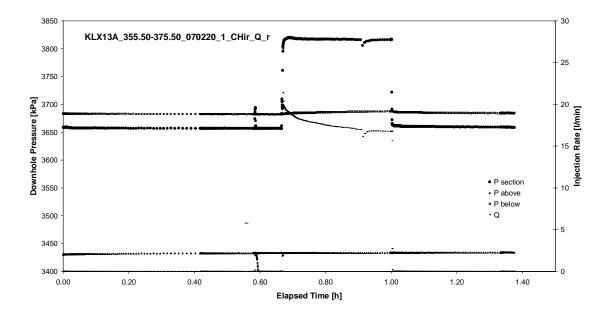



Interval pressure and temperature vs. time; cartesian plot

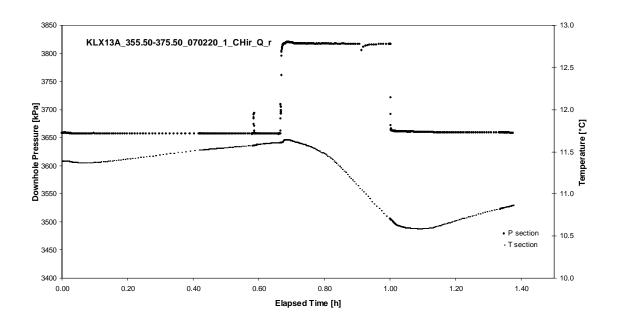
Test: 342.50 – 362.50 m

Test: 342.50 – 362.50 m

CHIR phase; HORNER match

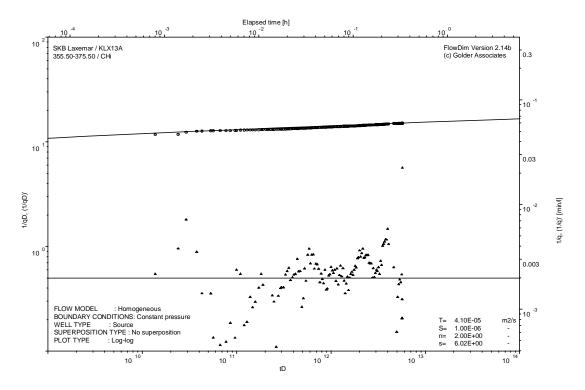

Test: 355.50 - 375.50 m

APPENDIX 2-19

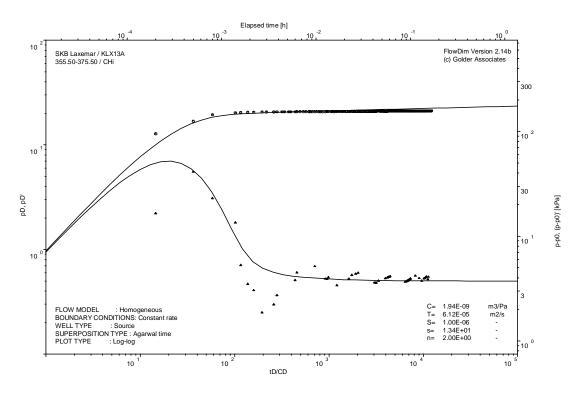

Test 355.50 – 375.50 m

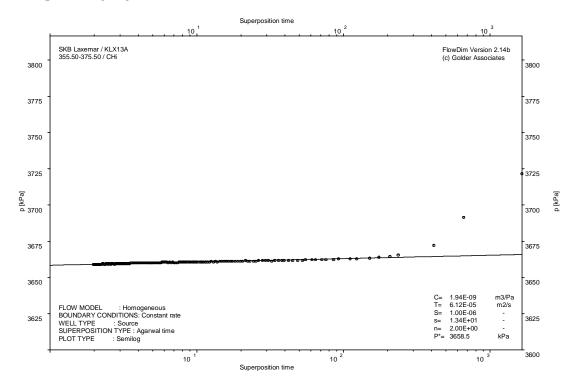
Page 2-19/2

Borehole: KLX13A Test: 355.50 – 375.50 m



Pressure and flow rate vs. time; cartesian plot

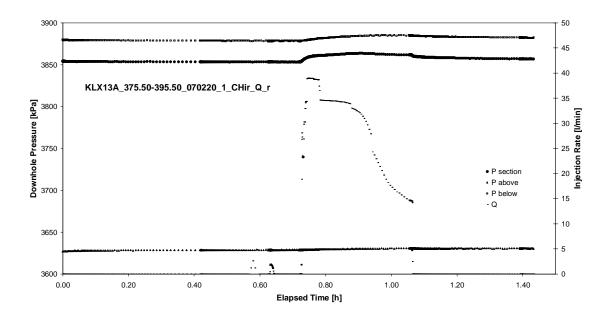



Interval pressure and temperature vs. time; cartesian plot

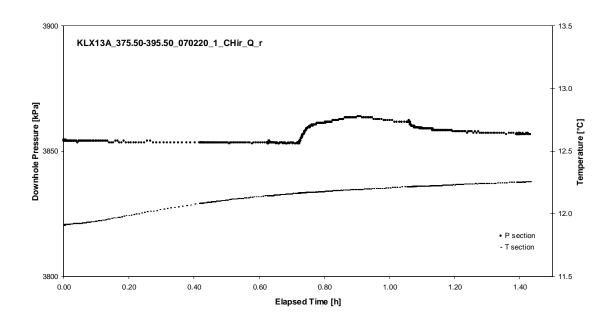
Test: 355.50 – 375.50 m

Test: 355.50 – 375.50 m

CHIR phase; HORNER match

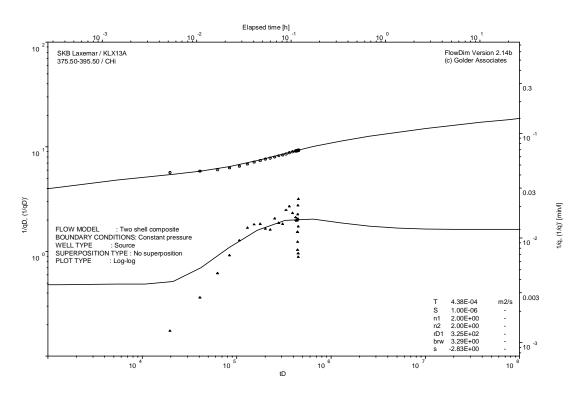

Test: 375.50 – 395.50 m

APPENDIX 2-20


Test 375.50 – 395.50 m

Borehole: KLX13A

Test: 375.50 – 395.50 m



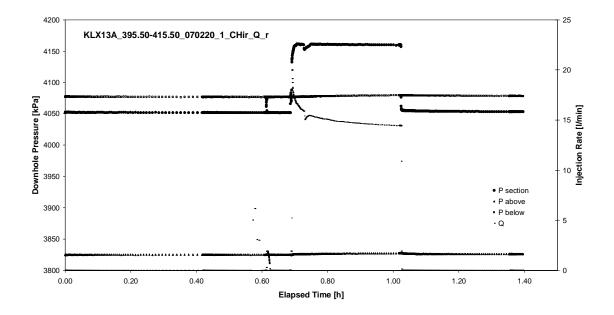
Pressure and flow rate vs. time; cartesian plot

Interval pressure and temperature vs. time; cartesian plot

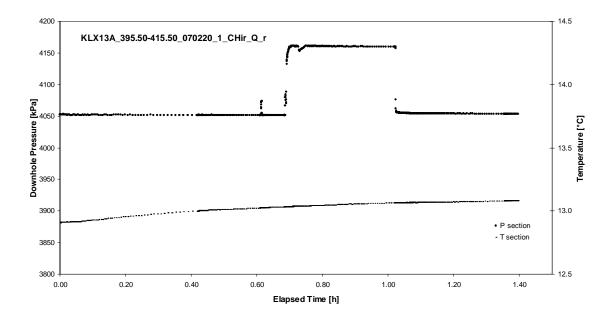
Test: 375.50 – 395.50 m

Borehole: KLX13A Page 2-20/4 375.50 – 395.50 m Test: Not analysable CHIR phase; log-log match Not analysable

CHIR phase; HORNER match

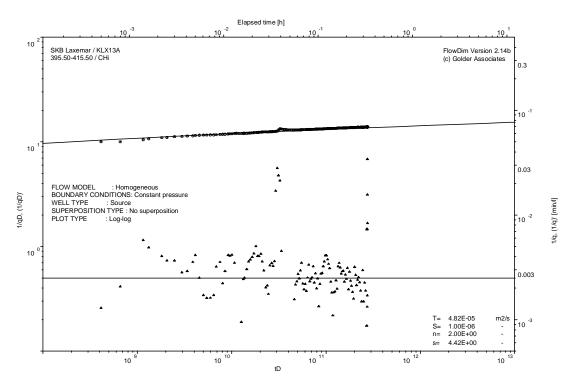

Test: 395.50 – 415.50 m

APPENDIX 2-21

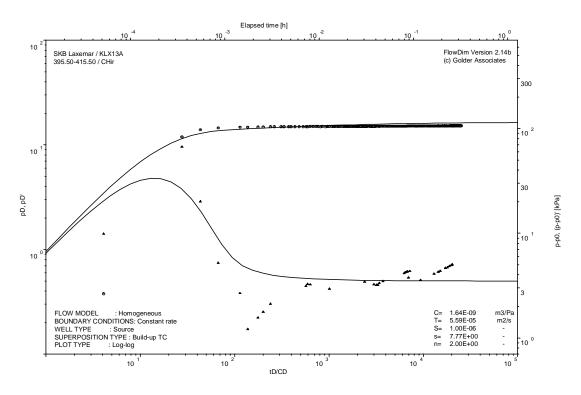

Test 395.50 – 415.50 m

Borehole: KLX13A

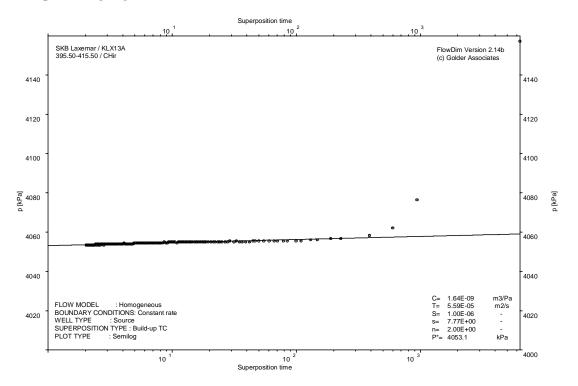
Test: 395.50 – 415.50 m



Pressure and flow rate vs. time; cartesian plot



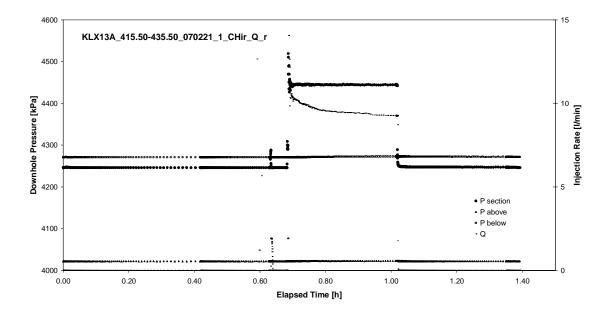
Interval pressure and temperature vs. time; cartesian plot


Test: 395.50 – 415.50 m

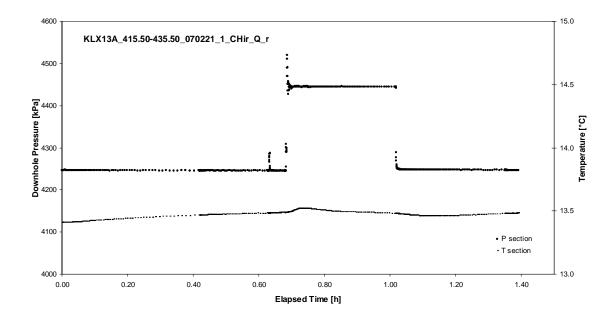
Test: 395.50 – 415.50 m

CHIR phase; log-log match

CHIR phase; HORNER match

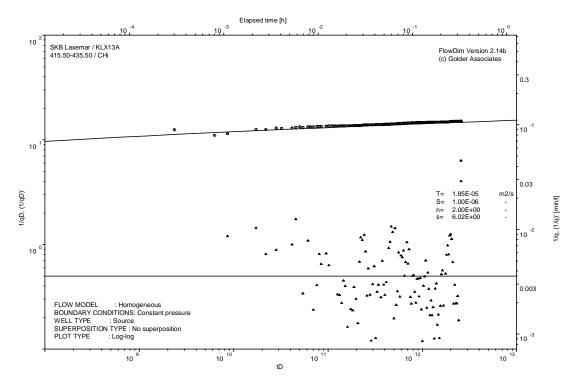

Test: 415.50 – 435.50 m

APPENDIX 2-22

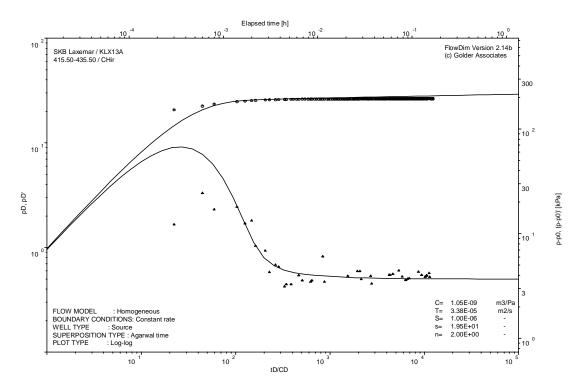

Test 415.50 – 435.50 m

Borehole: KLX13A

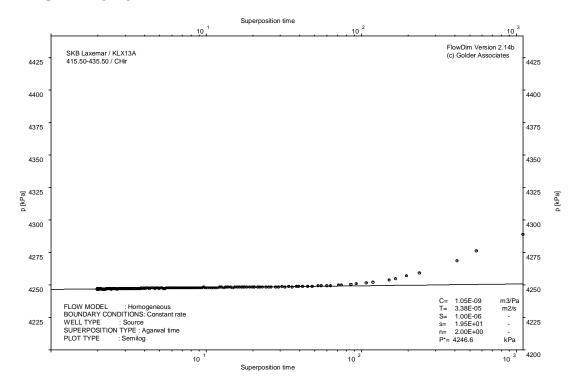
Test: 415.50 – 435.50 m



Pressure and flow rate vs. time; cartesian plot



Interval pressure and temperature vs. time; cartesian plot

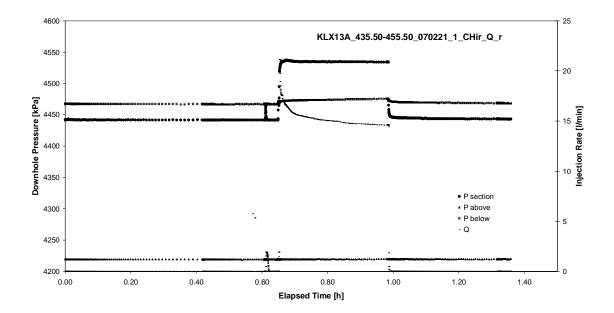

Test: 415.50 – 435.50 m

Test: 415.50 – 435.50 m

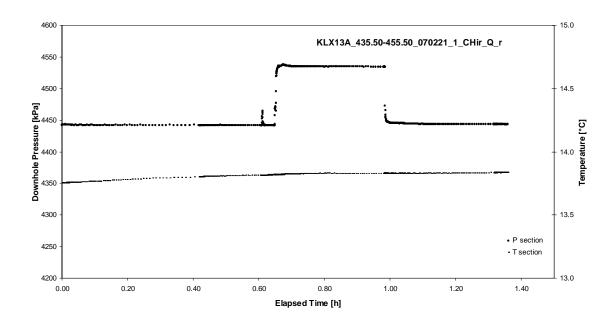
CHIR phase; log-log match

CHIR phase; HORNER match

Test: 435.50 – 455.50 m

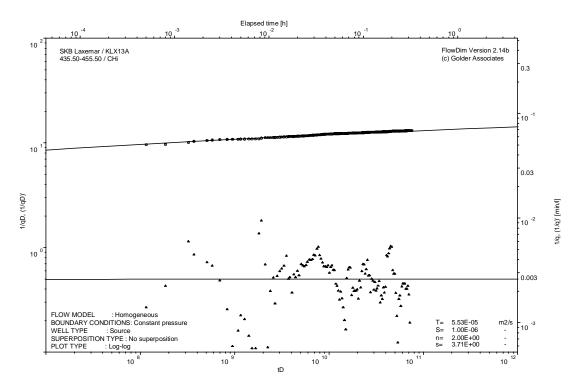

APPENDIX 2-23

Test 435.50 – 455.50 m

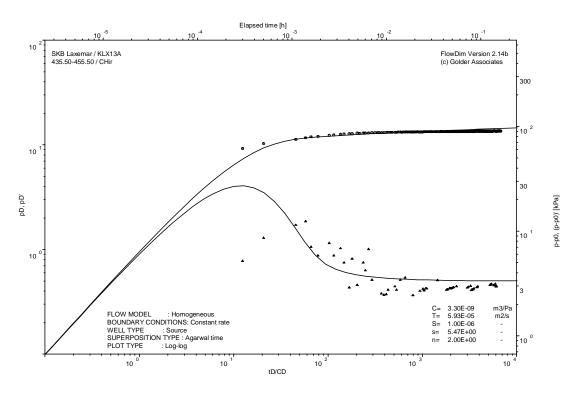

Page 2-23/2

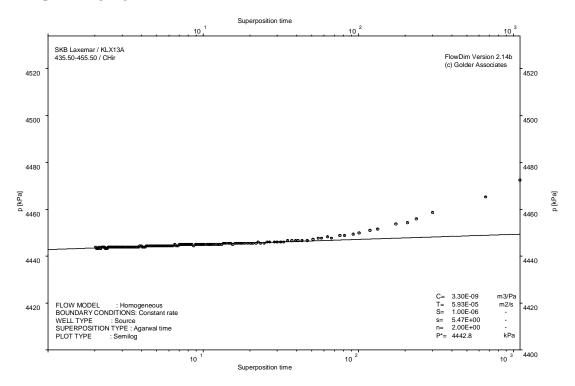
Test: 435.50 – 455.50 m

Borehole: KLX13A



Pressure and flow rate vs. time; cartesian plot

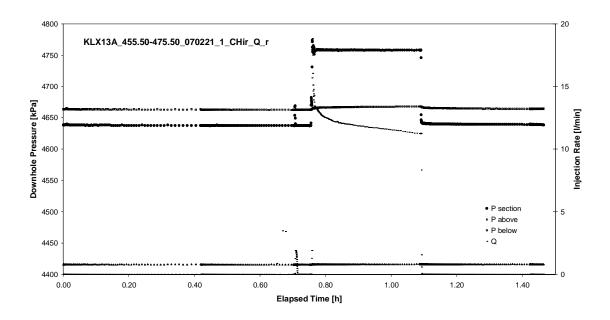



Interval pressure and temperature vs. time; cartesian plot

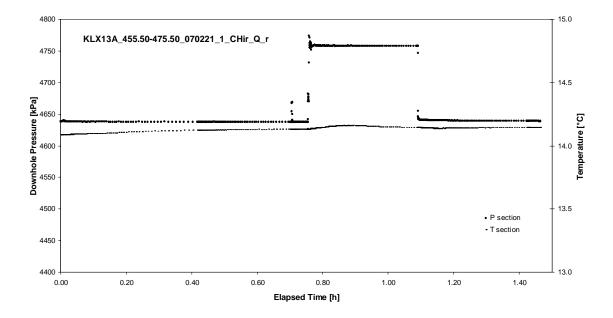
Test: 435.50 – 455.50 m

Test: 435.50 – 455.50 m

CHIR phase; HORNER match

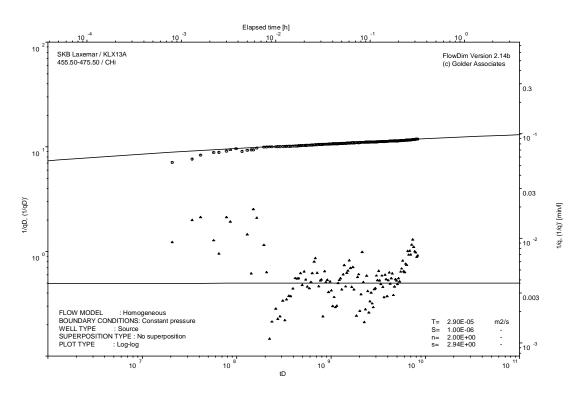

Test: 455.50 – 475.50 m

APPENDIX 2-24

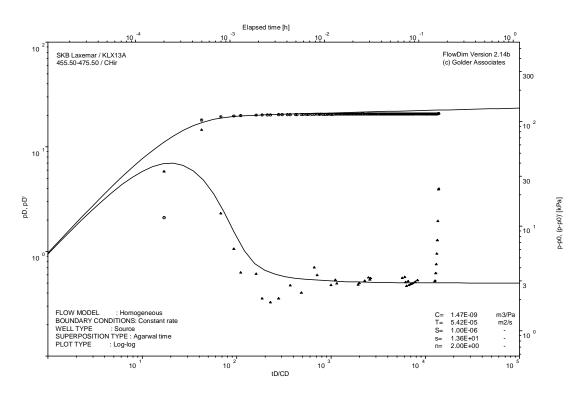

Test 455.50 – 475.50 m

Borehole: KLX13A

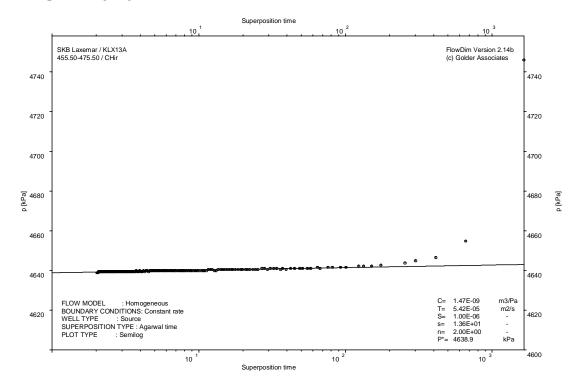
Test: 455.50 – 475.50 m



Pressure and flow rate vs. time; cartesian plot



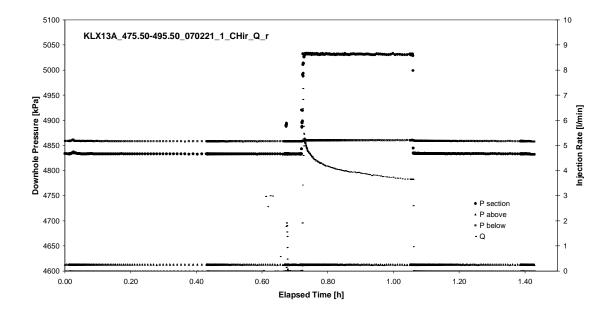
Interval pressure and temperature vs. time; cartesian plot


Test: 455.50 – 475.50 m

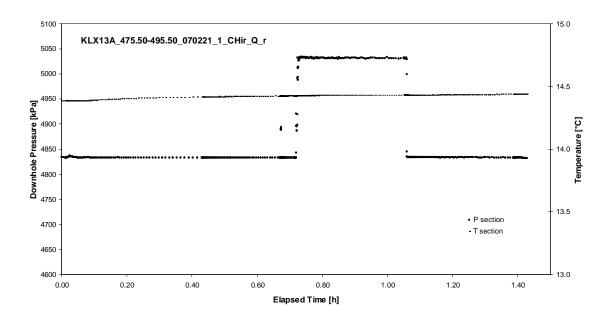
Test: 455.50 – 475.50 m

CHIR phase; log-log match

CHIR phase; HORNER match

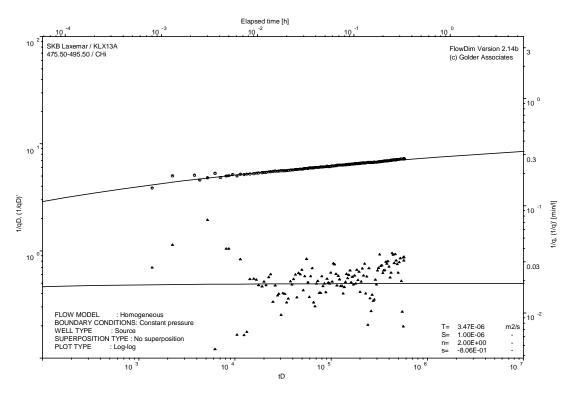

Test: 475.50 – 495.50 m

APPENDIX 2-25

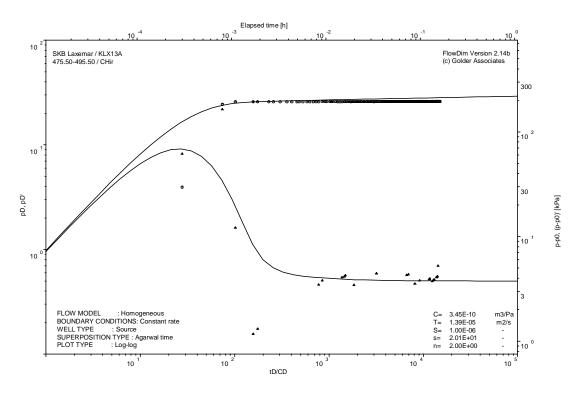

Test 475.50 – 495.50 m

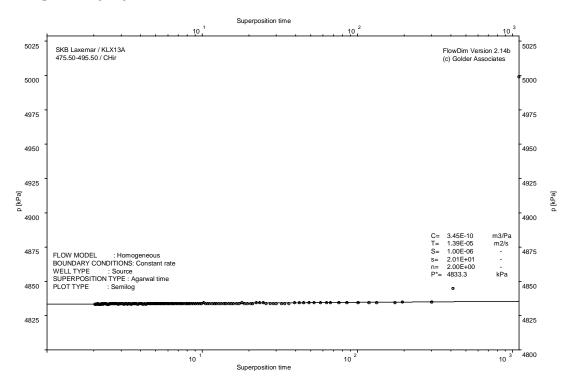
Borehole: KLX13A

Test: 475.50 – 495.50 m



Pressure and flow rate vs. time; cartesian plot

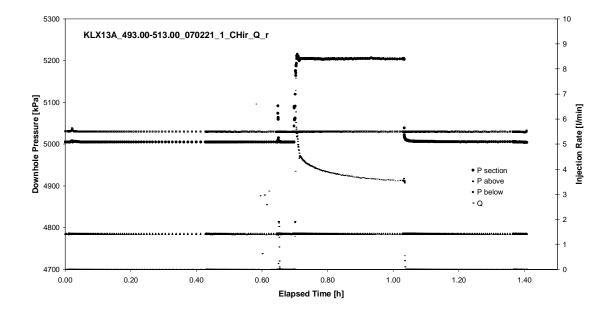



Interval pressure and temperature vs. time; cartesian plot

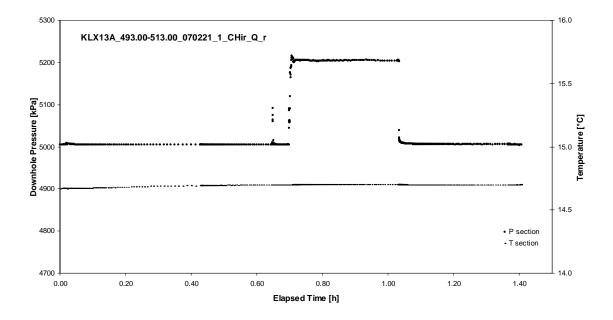
Test: 475.50 – 495.50 m

Test: 475.50 – 495.50 m

CHIR phase; HORNER match

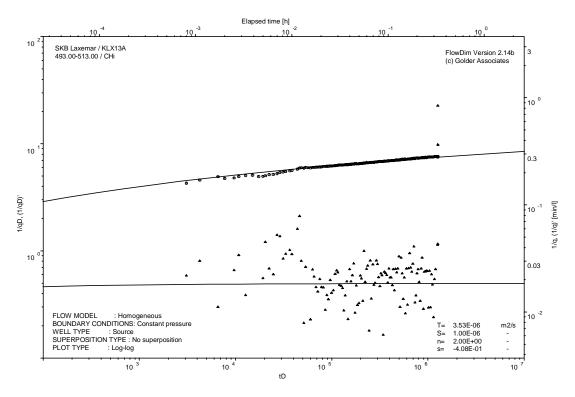

Test: 493.00 – 513.00 m

APPENDIX 2-26


Test 493.00 – 513.00 m

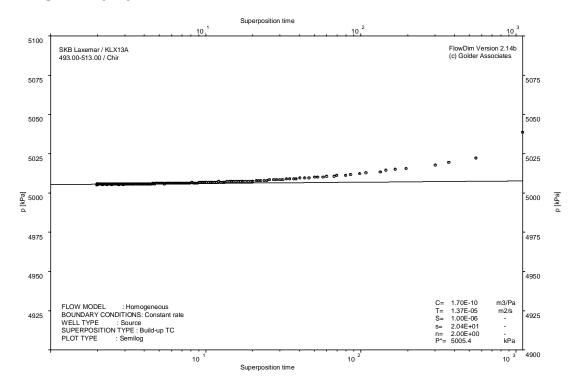
Borehole: KLX13A

Test: 493.00 – 513.00 m



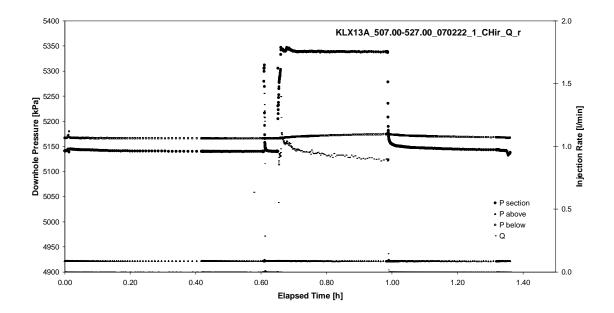
Pressure and flow rate vs. time; cartesian plot



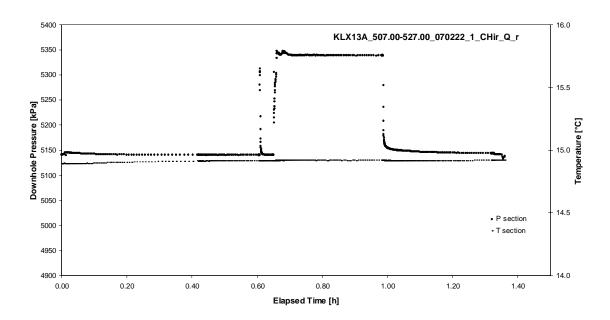

Interval pressure and temperature vs. time; cartesian plot

Test: 493.00 – 513.00 m

Test: 493.00 – 513.00 m

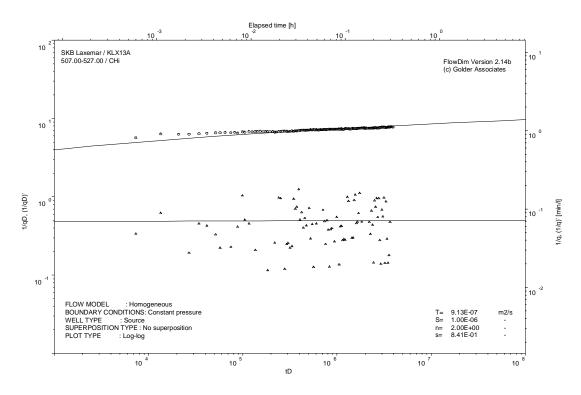

CHIR phase; HORNER match

Test: 507.00 - 527.00 m

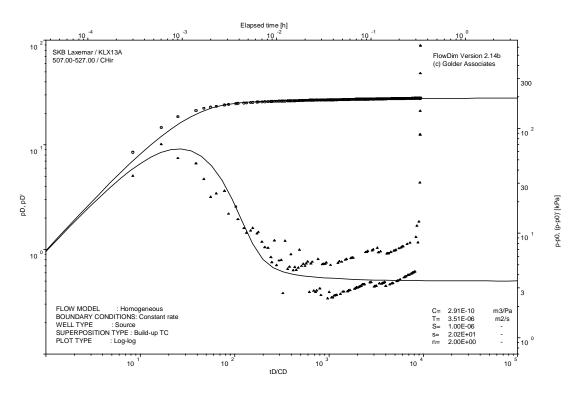

APPENDIX 2-27

Test 507.00 – 527.00 m

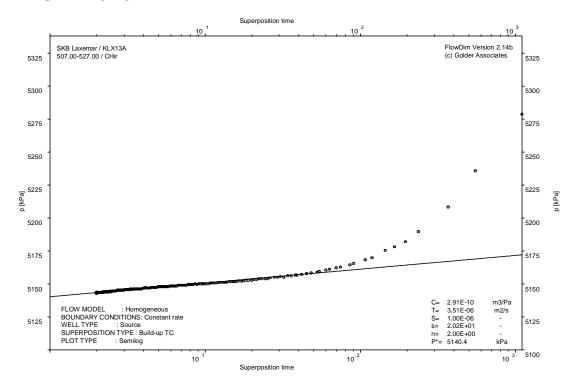
Test: 507.00 – 527.00 m



Pressure and flow rate vs. time; cartesian plot

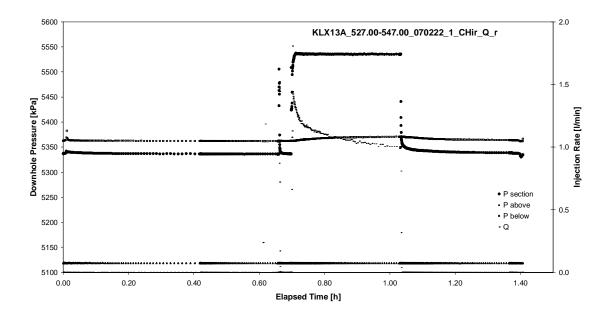


Interval pressure and temperature vs. time; cartesian plot

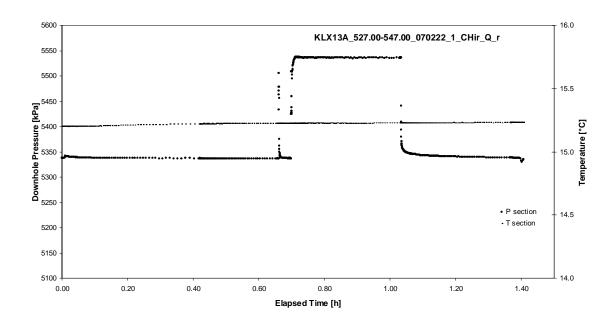

Test: 507.00 – 527.00 m

Test: 507.00 – 527.00 m

CHIR phase; log-log match

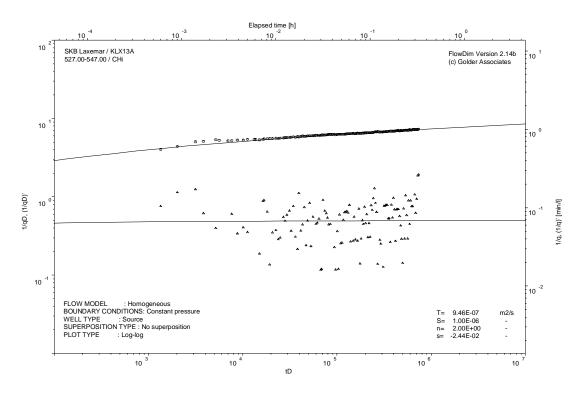

CHIR phase; HORNER match

Fest: 527.00 - 547.00 m

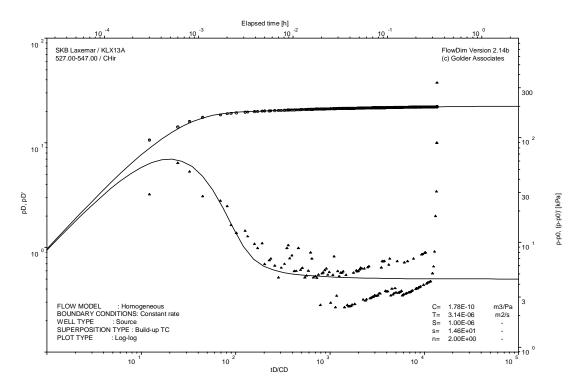

APPENDIX 2-28

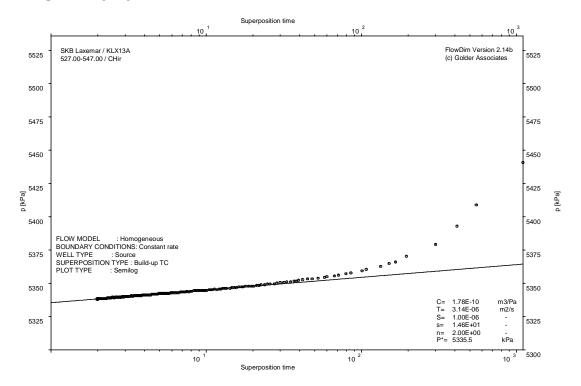
Test 527.00 – 547.00 m

Test: 527.00 – 547.00 m



Pressure and flow rate vs. time; cartesian plot

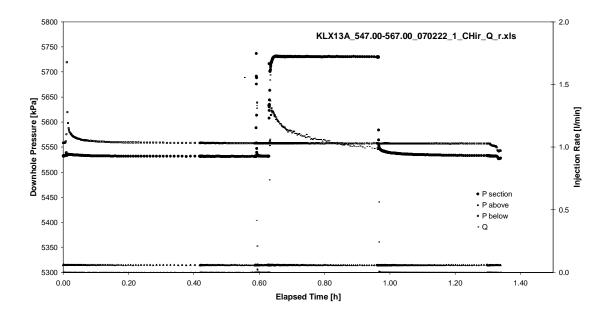



Interval pressure and temperature vs. time; cartesian plot

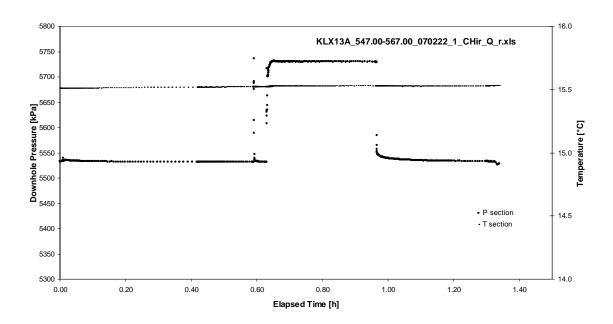
Test: 527.00 – 547.00 m

Test: 527.00 – 547.00 m

CHIR phase; HORNER match

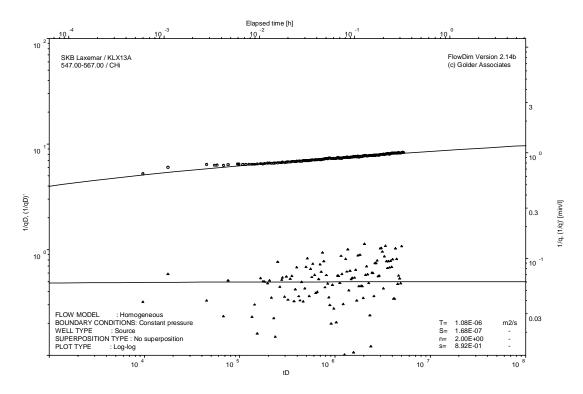

Test: 547.00 - 567.00 m

APPENDIX 2-29

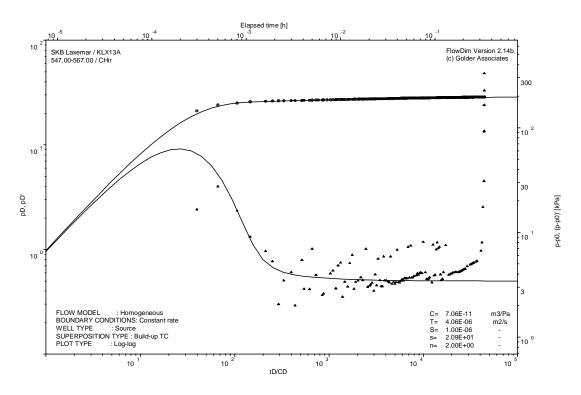

Test 547.00 – 567.00 m

Analysis diagrams

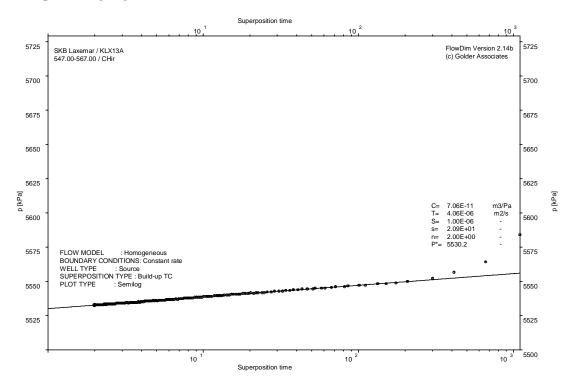
Test: 547.00 – 567.00 m



Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

Test: 547.00 – 567.00 m



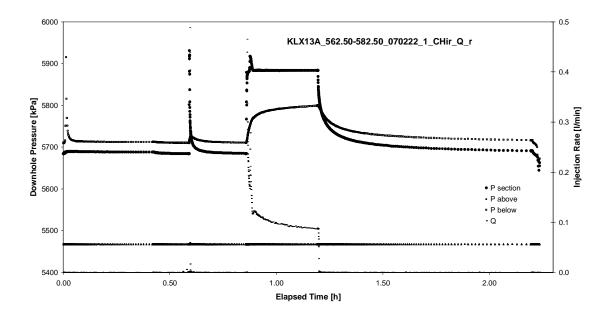
CHI phase; log-log match

Test: 547.00 – 567.00 m

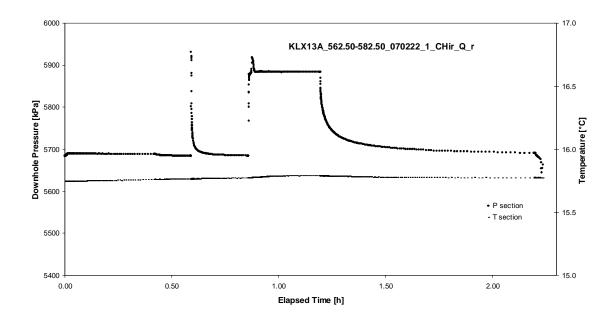
CHIR phase; log-log match

CHIR phase; HORNER match

Test: 562.50 – 582.50 m

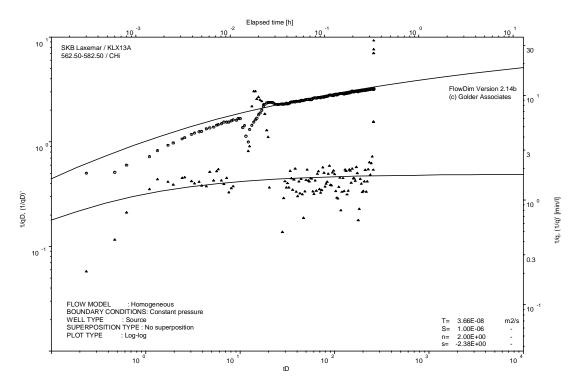

APPENDIX 2-30

Test 562.50 – 582.50 m

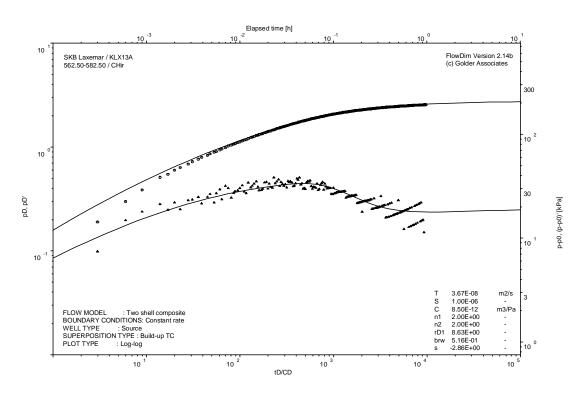

Analysis diagrams

Page 2-30/2

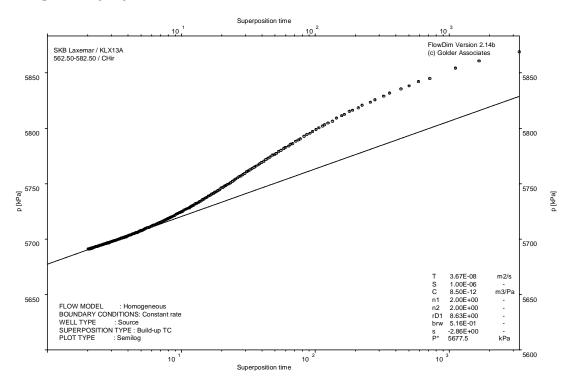
Borehole: KLX13A Test: 562.50 – 582.50 m



Pressure and flow rate vs. time; cartesian plot


Interval pressure and temperature vs. time; cartesian plot

Test: 562.50 – 582.50 m



CHI phase; log-log match

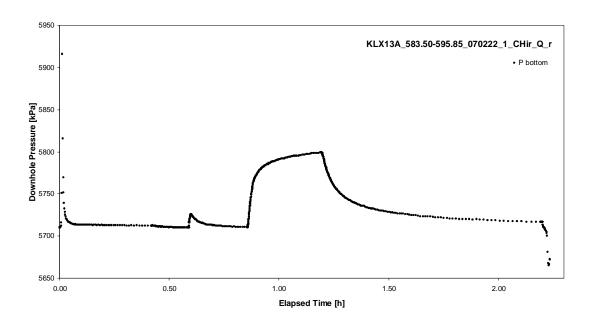
Test: 562.50 – 582.50 m

CHIR phase; log-log match

CHIR phase; HORNER match

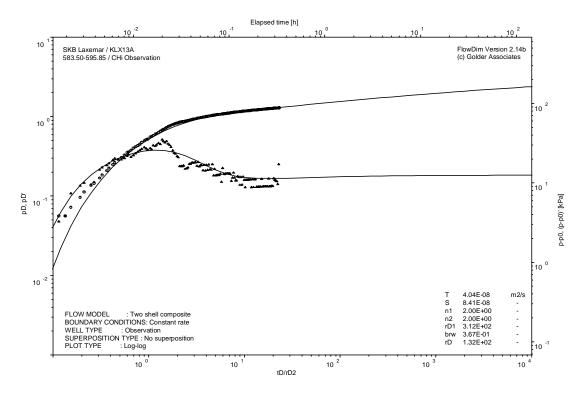
Test: 583.50 – 595.85 m

APPENDIX 2-31

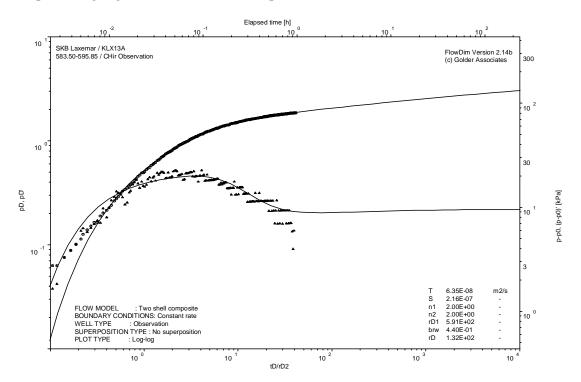

Observation section 583.50 – 595.85 m (Bottom Zone)

Analysis diagrams

Test: 583.50 – 595.85 m


See Appendix 2-30

Pressure and flow rate vs. time; cartesian plot



Bottom zone pressure; cartesian plot

Test: 583.50 – 595.85 m

CHI phase; log-log match; Bottom zone response

CHir phase; log-log match; Bottom zone response

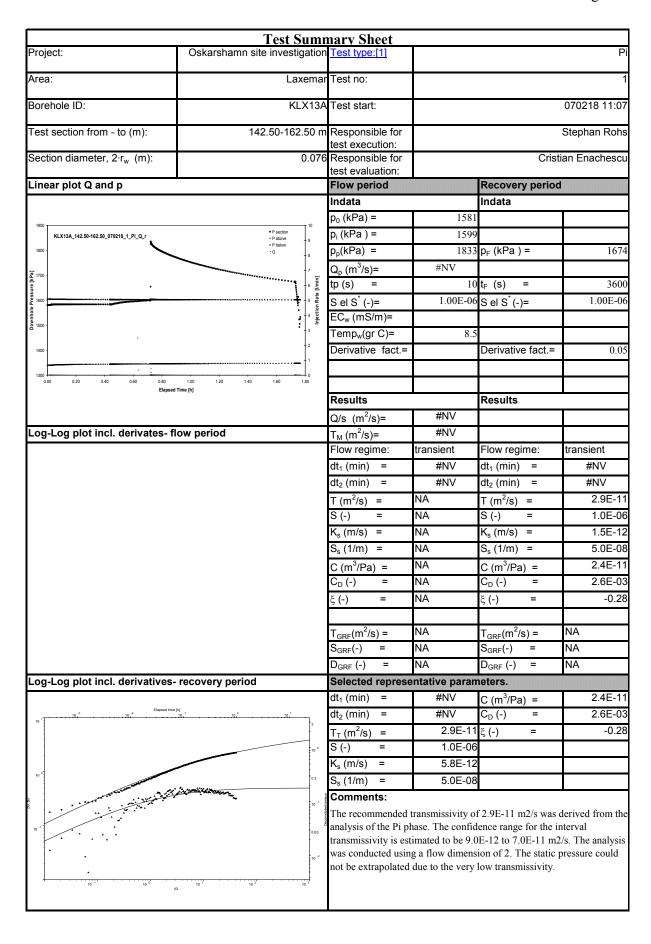
Borehole: KLX13A

APPENDIX 3

Test Summary Sheets

	Test Sur	mm	arv Sh	eet				
Project:	Oskarshamn site investigat	tion	Test type	[1]				CHi
Area:	l aver	mar T	Test no:					
Alca.	Laxer	illai	rest no.					'
Borehole ID:	KLX1	13A T	Test start	:				070215 09:48
Test section from - to (m):	102.50-202.50	0 m F	Responsi	ble for				Stephan Rohs
		t	est exec	ution:				
Section diameter, 2·r _w (m):	0.0		Responsi est evalu				Cristi	an Enachescu
Linear plot Q and p		_	Flow per			Recovery p	eriod	
•			ndata			Indata		
2300		10 P	o ₀ (kPa) =	•	1971			
KLX13A_102.50-202.50_070215_	1_CHir_Q_r	, p	o _i (kPa) :	•	1978			
2100 -			o _p (kPa) =		2176	p _F (kPa) =		1981
1900 -	• P section • P shows	7 _	Q _p (m³/s)	=	6.50E-05			
X] 2. 1700 -	• P below • 6	6 III	p (s) :	=		t_F (s) =		1800
Fag. 1, 1700 - 1			S el S* (-)		1.00E-06	S el S* (-)=		1.00E-06
Downham .	***************************************	4 Defu	EC _w (mS		0.1			
1300 -	;	_	Γemp _w (gι Derivative		9.1	Derivative fa	oct =	0.05
1100 -	::	1	Jenvanve	iact	0.06	Delivative is	ici.–	0.0.
900								
0.00 0.50 1.00 1.50 2.00 Elapsed	2.50 3.00 3.50 4.00 4.50 Time [h]		Results			Results		
			Q/s (m ² /s	s)=	3.2E-06			
Log-Log plot incl. derivates- fl	ow period	_	$\Gamma_{\rm M}~({\rm m}^2/{\rm s})$,	4.2E-06			
		F	low regi	me:	transient	Flow regime	: :	transient
Elapsed time [h	10,1	C	dt ₁ (min)	=		dt_1 (min) =	:	0.07
10 2	•		dt ₂ (min)	=		dt_2 (min) =	•	0.98
	-11		Γ (m ² /s)			$T (m^2/s) =$		2.6E-06
	į	<u> </u>	S (-)	=	1.0E-06			1.0E-06
10 1	0.		ζ _s (m/s)			$K_s (m/s) =$		2.6E-08
		10 -1	S _s (1/m) C (m³/Pa		NA	$S_s(1/m) =$		1.0E-08 1.1E-10
		€ =	C _D (-)) = =	NA	$C (m^3/Pa) = C_D (-) =$		1.1E-10
10 °		_	; (-)	=		ξ(-) =		-2.39
*****	1	10 2	5 ()			7()		
		ħ	$\Gamma_{\rm GRF}({ m m}^2/{ m s})$	s) =	NA	$T_{GRF}(m^2/s) =$	=	NA
10 ⁴ 10 ⁵	10 ⁶ 10 ⁷ 10 ⁸ 0.	0.003	S _{GRF} (-)	=	NA	$S_{GRF}(-) =$		NA
		Ī	O _{GRF} (-)	=	NA	D_{GRF} (-)		NA
Log-Log plot incl. derivatives-	recovery period	9	Selected	represe	ntative paran	neters.		
			dt ₁ (min)	=	0.07	O (III /I d)	=	1.1E-10
Elapsed time [h]	10, 2		dt ₂ (min)	=		OD ()		1.2E-02
_	300	_	$\Gamma_{\rm T}$ (m ² /s)	=	2.6E-06	ξ (-) =	:	-2.39
· · · · · · · · · · · · · · · · · · ·	10 2	_	S (-)	=	1.0E-06			
			K _s (m/s)	=	2.6E-08			
	30	_	S _s (1/m) Commen	te:	1.0E-08			
	10 1	, &			transmissivity o	f 2 6E-6 m2/s	was de	rived from the
10 -1					r phase (inner zo			
	3	d	derivative	quality a	nd a clear horizo	ontal stabilisat	ion. Tl	ne confidence
	10 °				al transmissivity			
10 1 10 2	10 2 10 4 10 5				ow dimension d essure measured			
10 10 tD/CD	- 10							the Horner plot
			o a value			· · · · · · · · · · · · · · · · · · ·		

Oskarshamn site investigation Laxema				CHir
Laxema	Test no:			
Laxemai				
	163(110.			!
KLX13A	Test start:			070215 15:34
202 E0 202 E0 m	Dognopoible for			Stanban Daha
202.50-302.50 m	test execution:			Stephan Rohs
0.076			Crist	ian Enachescı
			Deceyany paried	
	•			
		2946		1
LX13A_202.50-302.50_070215_1_CHir_Q_r	,			
				2954
		3.67E-05		
I'uim		1800	t _F (s) =	1800
Rate [1/	S el S* (-)=			1.00E-06
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EC _w (mS/m)=		, ,	
• P section	Temp _w (gr C)=	10.5		
Pabove Pelow	Derivative fact.=	0.02	Derivative fact.=	0.02
···				
0 1.20 1.40 1.60 1.80 2.00				
ime [h]		T		
	` '			
w period				
9 1			_	transient
	,		. ,	#NV #NV
	- 、		, ,	3.7E-06
10 °	` ,		, ,	1.0E-06
			, ,	3.7E-08
F10 -1				1.0E-08
		NA		4.4E-10
	$C_D(-) =$	NA	$C_D(-) =$	4.9E-02
	ξ (-) =	-2.39	ξ (-) =	1.52
10 4 10 5 10 6	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
	D_{GRF} (-) =		D_{GRF} (-) =	NA
recovery period				
				4.4E-10
				4.9E-02
10 3				-2.39
				
300				
10 2		1.0E-00	<u> </u>	<u> </u>
regulation		transmissivity of	f 1.5E-06 m2/s was a	derived from the
" In the state of				
a				
10 ³ 10 ⁴ 10 ⁵	1 ,	,	, .	
· · · · · · · · · · · · · · · · · · ·				
	I			
	LX13A_202.50-302.50_070215_1_CHir_Q_r	0.076 Responsible for test evaluation: Flow period Indata p_0 (kPa) = p_0	0.076 Responsible for test evaluation: Flow period Indata P_0 (kPa) = 2.946 P_0 (kPa) = 2.947 P_0 (kPa) = 3.147 P_0 (kPa) = 3.147 P_0 (kPa) = 3.147 P_0 (kPa) = 3.147 P_0 (kPa) = 3.167 P_0 (0.076 Responsible for test evaluation: Flow period Indata


	Test Su	mn	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
Area:	Laxe	mar	Test no:			1
Borehole ID:	KLX	13A	Test start:			070216 07:58
_ , , , , , , , , , , , , , , , , , , ,						<u> </u>
Test section from - to (m):	302.50-402.5	60 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.	.076	Responsible for		Cristi	an Enachescu
			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata	_	Indata	
4100		1	p ₀ (kPa) =	3922		
KLX13A_302.50-402.50_070216_1_CHir_Q_r		- 50	p _i (kPa) =	3923		
3900			$p_p(kPa) =$		p _F (kPa) =	3927
<u> </u>		40	$Q_p (m^3/s) =$	2.63E-04		
전 3700 - 보 1 5500 -	•	[l/min]	tp (s) =		t_F (s) =	1800
2 3500 -		05 05 njection Rate [I/min]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Bowahou 33000		10 octio	EC _w (mS/m)=			
23300	P section P above	-	Temp _w (gr C)=	12.4		
3100 -	• P below • Q	- 10	Derivative fact.=	0.02	Derivative fact.=	0.02
2900 1.00 0.50 1.00 Elapsed T	1.50 2.00 2.0	∔ 0 50				
Егарѕеа г	ime [n]		Results		Results	•
			Q/s $(m^2/s)=$	2.3E-04		
Log-Log plot incl. derivates- flo	ow period		$T_{\rm M} (m^2/s) =$	3.1E-04		
			Flow regime:	transient	Flow regime:	transient
Elapsed time (h)			dt ₁ (min) =	#NV	dt_1 (min) =	#NV
10 2			dt ₂ (min) =	#NV	dt_2 (min) =	#NV
	0.2	3	$T (m^2/s) =$	4.1E-04	$T (m^2/s) =$	NA
	110	o ⁻¹	S (-) =	1.0E-06	, ,	NA
10 1			$K_s (m/s) =$	4.1E-06	$K_s (m/s) =$	NA
	0.0	.03	S _s (1/m) =	1.0E-08	$S_s (1/m) =$	NA
	·	(min)	C (m ³ /Pa) =	NA	$C (m^3/Pa) =$	NA
	-	1/4.(1/	$C_D(-) =$	NA	$C_D(-) =$	NA
		.003	ξ (-) =	-0.67		NA
. •			3 ()		3 ()	
	10	0 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 ⁶ 10 ⁷ tD	10 8 10 9 10 10		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe			
<u> </u>	<u> </u>		dt ₁ (min) =	#NV	C (m ³ /Pa) =	NA
			$dt_2 (min) =$	#NV	$C_D(-) =$	NA
			$T_T (m^2/s) =$	4.1E-04		-0.67
			S (-) =	1.0E-06		
			K_s (m/s) =	4.1E-06		
			S _s (1/m) =	1.0E-08		
Not and	alvsed		Comments:		1	I
. Totalia	yocu		analysis of the CHi interval transmissiv (this range encomp	phase (inner zon rity is estimated asses the outer z ne test is assume	f 4.1E-04 m2/s was one). The confidence to be 7.0E-05 m2/s to one transmissivity). d to be 2. The static CHi phase.	range for the o 8.0E-04 m2/s The flow

	Test Si	ımı	nary Sheet				
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir	
Area:	Lav	omai	Test no:				
Alea.	Laxi	ciliai	rest no.				
Borehole ID:	KL>	K13A	Test start:			070216 11:52	
Test section from - to (m):	395 50-495	50 m	Responsible for			Stephan Rohs	
` ,	000.00 400.	00 111	test execution:			Otophan Rone	
Section diameter, 2·r _w (m):	C	0.076	Responsible for		Cristi	an Enachescu	
Linear plot Q and p			test evaluation: Flow period		Recovery period		
			Indata		Indata		
			p ₀ (kPa) =	4834			
KLX13A_395.50-495.50_070216_1_CHir_Q_r		40	p _i (kPa) =	4834			
4800 -		- 35	$p_p(kPa) =$	4875	p _F (kPa) =	4838	
_		30	$Q_p (m^3/s) =$	4.05E-04			
To 4600 -		25 =	tp (s) =	1800	t_F (s) =	1800	
8 4400 -		25 - 20 - 20 Il/win]	S el S* (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
wwhole		15 lu lectio	EC _w (mS/m)=				
ă **200 Î	P section P above	10	Temp _w (gr C)=	14.4			
4000 -	• P below - Q	5	Derivative fact.=	0.02	Derivative fact.=	0.08	
3800		,					
0.00 0.20 0.40 0.60 0.80 1.0 Elapsed		2.00	Descrite		Danulta		
			Results	9.7E-05	Results	1	
Log-Log plot incl. derivates- fl	ow pariod		Q/s $(m^2/s)=$	9.7E-03 1.3E-04			
Log-Log plot ilici. derivates- il	ow period		T _M (m ² /s)= Flow regime:	transient	Flow regime:	transient	
			dt ₁ (min) =		dt ₁ (min) =	0.67	
Elapsed time [h]	10, ⁰ 10, ¹		dt ₂ (min) =		dt_1 (min) =	23.99	
		0.3	$T (m^2/s) =$		$T (m^2/s) =$	2.8E-04	
			S (-) =	1.0E-06	, ,	1.0E-06	
10 15		10 -1	$K_s (m/s) =$		K_s (m/s) =	2.8E-06	
		0.03	$S_s(1/m) =$		$S_s(1/m) =$	1.0E-08	
			C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2.0E-08	
10 ° .		10 -2	C _D (-) =	NA	$C_D(-) =$	2.2E+00	
- Andrews in the second	•	0.003	ξ (-) =	-3.86	ξ(-) =	4.57	
<i>:</i>							
1.A.		10 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10 10 ° 1D	ıu 10 10´		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
			D_{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe				
Plan			dt ₁ (min) =	5.61	0 (III /I u)	2.0E-08	
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		}	dt ₂ (min) =		$C_D(-) =$	2.2E+00	
		10 ²	$T_T (m^2/s) =$	9.2E-05		-3.86	
			S (-) =	1.0E-06			
10 1		30	$K_s (m/s) = S_s (1/m) =$	9.2E-07 1.0E-08			
		10 1	Comments:	1.0⊑-08			
g · · · ·				transmissivity of	f 9.2E-5 m2/s was de	erived from the	
10 0	نسير	3			ows the better derivation		
	N. Silve Market Market St. Co.	10 °	stabilisation. Due to	the hydraulic c	onnection to the bot	tom zone, the	
					garded to be at the up ange for the interval		
10 10 2	10 2 10 4 10 5	0.3			ange for the interval 0E-4 m2/s. The flow		
10 10 EDICD	- 10		displayed during the	e test is 2 (radial	flow). The static pr	essure	
					derived from the CH		
			straight line extrapo	nation in the Ho	rner plot to a value	л 4,857.2 KPa.	

	Test S	ıımr	nary Sho	et			
Project:	Oskarshamn site investig						CHir
Area:	Lax	emar	Test no:				
Borehole ID:	KL	X13A	Test start:				070216 15:44
Test section from - to (m):	482.50-582	.50 m					Stephan Rohs
Section diameter, 2·r _w (m):		0 076	test execu Responsib			Cris	stian Enachescu
,		0.010	test evalua				
Linear plot Q and p			Flow peri-	od		Recovery perio	d
			Indata		5.007	Indata	1
6000		720	p ₀ (kPa) = p _i (kPa) =		5687		<u> </u>
KLX13A_482.50-582.50_070216_1_CHir_Q_r		18	$p_i(kPa) = p_p(kPa)$		5686 5884	p _F (kPa) =	5687
		16	$Q_p (m^3/s) =$		1.05E-04	p _F (Ki a) –	300
E 5600 - :	P section P above	- 14 - <u>=</u>	$Q_p (\Pi / s) =$			t _F (s) =	1800
d d 5000 -	• P below - Q	10 Pate [I/min]	S el S [*] (-)=			S el S [*] (-)=	1.00E-06
		mjection R	EC _w (mS/r			- 5. 5 ()	
5000	•	- 6 - 6	Temp _w (gr	C)=	15.8		
4800	·	4	Derivative	fact.=	0.06	Derivative fact.=	0.09
1 :		2					
4600		2.00					
сырьец	Time [n]		Results			Results	
			Q/s (m ² /s		5.2E-06		
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} ({\rm m}^2/{\rm s}) =$		6.8E-06		
Elapsed time (t	0		Flow regin		transient	Flow regime:	transient
10 2 10,4 10,3 10,2	, , , , , , , , , , , , , , , , , , , ,	7	dt ₁ (min)	=		$dt_1 (min) =$	0.62
		10 0	dt ₂ (min)	=		$dt_2 (min) =$	23.93
10 1		_	T (m ² /s)			$T (m^2/s) = S (-) =$	2.1E-05
	:	10 -1	S (-) : K _s (m/s) :		1.0E-06	$K_s (m/s) =$	1.0E-06 2.1E-07
			S _s (1/m)			$S_s (11/s) =$	1.0E-08
10 0	A CONTRACTOR OF THE PARTY OF TH	[mm],fb()	C (m ³ /Pa)		NA	$C_s(m^3/Pa) =$	1.1E-09
		ŧ	$C_D(-)$	-	NA	$C_D(-) =$	1.2E-01
10 -1			ξ (-)	=	0.43		13.70
		10				,	
10 ² 10 ³	10 4 10 5	<u>.</u> †	T _{GRF} (m ² /s)) =	NA	$T_{GRF}(m^2/s) =$	NA
			S _{GRF} (-)	=	NA	S _{GRF} (-) =	NA
			D _{GRF} (-)	=	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period				ntative paran		
			dt ₁ (min)	=	0.28	0 (III /I u)	1.1E-09
Elapsed time (h)	0,2	1	dt ₂ (min)	=		C _D (-) =	1.2E-01
			$T_T (m^2/s)$	=	5.7E-06		0.43
9,000		300	S (-)	<u> </u>	1.0E-06		
10 (10 2	K _s (m/s)	=	5.7E-08		
			S _s (1/m) Comment	=	1.0E-08		1
·.\		30 [KPa]			ranemiecivity of	f 5.7E-6 m2/s was	darived from the
10 0		10 1 0				ne), which shows a	
The state of the s	and the second s	-	stabilisation	n. The co	onfidence range	for the interval tra	nsmissivity is
		3				6-6 m2/s due to the	
<u> </u>		10 0				splayed during the at transducer dept	
10 ¹ 10 ²	10 3 10 4 10	-					
			from the Cl	dir phase	e using straight	line extrapolation i	n the Horner plot

	Test S	Sumr	nary Sheet			
Project:	Oskarshamn site invest	tigation	Test type:[1]			CHir
Area:	La	axemar	Test no:			1
7 00.1						
Borehole ID:	К	LX13A	Test start:			070217 18:25
Test section from - to (m):	102.50-12	2.50 m	Responsible for			Stephan Rohs
			test execution:			·
Section diameter, 2·r _w (m):		0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p			Flow period		Recovery period	l
			Indata		Indata	
			p ₀ (kPa) =	1194		
1500		10	p _i (kPa) =	1197		
KLX13A_102.50-122.50_070217_1_CHir_Q_r	P section P above P below	- 9	$p_p(kPa) =$	1396	p _F (kPa) =	1201
1400 -	-Q	- 8	$Q_{p} (m^{3}/s) =$	5.67E-05		
1300 -		-7 <u>=</u>	tp (s) =	1200	t _F (s) =	3600
9 100		ate [l/m	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
Fig. 1300		A G B	EC _w (mS/m)=	1	` '	1
1100 · · · · · · · · · · · · · · · · · ·		- 3 eju	Temp _w (gr C)=	9.1		1
1000		- 2	Derivative fact.=	0.08	Derivative fact.=	0.02
		1				
0.00 0.50 1.00	1.50 2.00	0				
Elapsed Ti	ime [h]		Results	4	Results	-
			Q/s $(m^2/s)=$	2.8E-06		
Log-Log plot incl. derivates- flo	ow period		$T_{\rm M} (m^2/s) =$	2.9E-06		
			Flow regime:	transient	Flow regime:	transient
10 ⁴ Elapsed time [h]	10, ⁻¹ 10, ⁰		dt_1 (min) =	0.37	dt_1 (min) =	0.22
10 1		0.3	dt_2 (min) =	1.05	dt_2 (min) =	1.84
			$T (m^2/s) =$	2.5E-06	$T (m^2/s) =$	2.3E-06
		10 -1	S (-) =	1.0E-06	S (-) =	1.0E-06
10 6		0.03	$K_s (m/s) =$	1.3E-07	K_s (m/s) =	1.2E-07
1903		F	$S_s (1/m) =$	5.0E-08	$S_s(1/m) =$	5.0E-08
1450 (1450)		10 ° EJ (P) () ° (N	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	2.3E-10
10 -1	•	0.003	C _D (-) =	NA	C _D (-) =	2.6E-02
		0.003	ξ (-) =	-1.53	ξ(-) =	-2.22
		10 -3				
10 ² 10 ³	10 4 10 5 10	-	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	•
_			dt ₁ (min) =	0.22	C (m ³ /Pa) =	2.3E-10
10 1 10 2 Elapsed time (h)	10," 10,0	200	dt_2 (min) =		$C_D(-) =$	2.6E-02
		200	$T_T (m^2/s) =$	2.3E-06	ξ (-) =	-2.22
· · · · · · · · · · · · · · · · · · ·		10 ²	S (-) =	1.0E-06		
10 6			K _s (m/s) =	1.2E-07		
		30	$S_s (1/m) =$	5.0E-08		
Or Co		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Comments:	-		-
10 1		p-bg @			f 2.3E-06 m2/s was	
		3	~		one), which shows th	
		10 °			ative and best data a ne interval transmiss	
2	40.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4				E-06 m2/s. The ana	
10 ' 10 ° ID/CD	· 10 10 "		conducted using a f	low dimension of	of 2 (radial flow). Th	ne static
			^		oth, was derived from	
			phase using straigh 1,198.9 kPa.	t iine extrapolati	on in the Horner plo	ot to a value of
			1,170.7 KI d.			

	Test Sum	mary Sheet			
Project:	Oskarshamn site investigation	n Test type:[1]			CHir
Area:	Laxem	ar Test no:			1
Borehole ID:	KLX13	A Test start:			070218 08:25
Test section from - to (m):	122.50-142.50	m Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.07	6 Responsible for		Crist	ian Enachescu
Linear plot Q and p		test evaluation: Flow period		Recovery period	1
Linear plot Q and p		Indata		Indata	l
		p ₀ (kPa) =	1387	IIIuata	T
KLX13A_122.50-142.50_070218_1_CHir_Q_r	• P section 0.010	$p_0(RPa) =$	1401		
1600 -	P above P below	$p_p(kPa) =$		p _F (kPa) =	1435
	0.008		1.67E-08		143.
로 1500 ·		$Q_p (m^3/s) =$	<u> </u>		240
8 1500 2 1400	0.006	tp (s) =		t _F (s) =	2400
P 400	0.006	S el S* (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
90 O O O O O O O O O O O O O O O O O O O	•				
	- 0.002	Temp _w (gr C)=	8.3		
1200 -		Derivative fact.=	0.07	Derivative fact.=	0.02
0.00 0.50 1.00	1.50 2.00				
Elapsed 1	ime [h]	Results		Results	
			7.2E-10		Ī
lan lan wlatiwal davisataa fi	a maniad	Q/s $(m^2/s)=$	7.2E-10 7.6E-10		
Log-Log plot incl. derivates- fl	ow period	$T_M (m^2/s) =$			t
		Flow regime:	transient	Flow regime:	transient
10 -3 10 -2 Elapsed time (h)	10,0	dt ₁ (min) =	#NV	dt ₁ (min) =	#NV
	:	dt ₂ (min) =	#NV	$dt_2 (min) =$	#NV
·.	3000	$T (m^2/s) =$		$T (m^2/s) =$	1.0E-10
	10 ²	S (-) =	1.0E-06		1.0E-06
10 °	•	K_s (m/s) =		$K_s (m/s) =$	5.0E-12
	300	$S_s(1/m) =$	<u> </u>	$S_s(1/m) =$	5.0E-08
		$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	3.3E-11
10 1	10 "	$^{\circ}$ C_{D} (-) =	NA	$C_D(-) =$	3.6E-03
	30	ξ (-) =	-1.13	ξ (-) =	-1.23
		2	214	2	114
10 ⁻¹ 10 ⁻⁰ tD	10 1 10 2 10 3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
Landard de la contraction de l		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	·		I 00E44
		dt ₁ (min) =	#NV	$C (m^3/Pa) =$	3.3E-11
Elapsed time (h)	10,0	$dt_2 (min) =$	#NV	$C_D(-) =$	3.6E-03
		$T_T (m^2/s) =$	1.0E-10		-1.23
	F10 ²	S (-) =	1.0E-06		
.00	300	$K_s (m/s) =$	5.0E-12		
		$S_s(1/m) =$	5.0E-08		
	10 2	Comments:			
				f 1.0E-10 m2/s was	
	30			hows the better deri- for the interval trans	
10-1	I		ominaciice range	ioi uic iiici vai tialli	
10° 1	10 5			E-10 m2/s. The ana	lysis was
The state of the s	10 1	estimated to be 7.01 conducted using a f	E-11 m2/s to 4.0 flow dimension of	E-10 m2/s. The ana of 2 (radial flow). De	
10 ° 1	10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·	estimated to be 7.01	E-11 m2/s to 4.0 flow dimension of	of 2 (radial flow). Do	

	Test S	ıımı	mary Sheet				
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir	
Area:	Lax	cemar	Test no:			1	
Borehole ID:	KI	Y13A	Test start:		070218 1		
Test section from - to (m):	162.50-182	.50 m	Responsible fo test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):		0.076	Responsible fo	or	Crist	ian Enachescu	
Linear plot Q and p			test evaluation Flow period	:	Recovery period	ı	
Linear plot Q and p			Indata		Indata		
			p ₀ (kPa) =	1776			
2100		T 0.5	p _i (kPa) =	1782			
KLX13A_162.50-182.50_070218_1_CHir_Q_r	P section P above P below		$p_p(kPa) =$	1981	p _F (kPa) =	1783	
	• - Q	0.4	$Q_p (m^3/s) =$	2.18E-06	5		
[ed 1900 -		, <u>E</u>	tp (s) =	1200	t _F (s) =	1200	
To 1900 -		njection Rate [l/min]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06	
a do		0.2 Lo	$EC_w (mS/m)=$				
No 1700	- The large of	=	Temp _w (gr C)=	8.8	3		
1600 -	·	0.1	Derivative fact	t.= 0.02	Derivative fact.=	0.03	
1500],,,					
0.00 0.20 0.40 0.60 Elapsed 1	0.80 1.00 1.20 1.40 Time [h]		Results		Results		
			Q/s $(m^2/s)=$	1.1E-07		1	
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	1.1E-07			
gg p	- п ролош		Flow regime:	transient	Flow regime:	transient	
Elapsed time (h)	4 0		$dt_1 (min) =$		2 dt ₁ (min) =	#NV	
10 2		7	$dt_2 \text{ (min)} =$		$3 dt_2 (min) =$	#NV	
		30	$T (m^2/s) =$		$T (m^2/s) =$	1.1E-07	
		1	S (-) =	1.0E-06	_ ` /	1.0E-06	
10 1		7"	$K_s (m/s) =$	9.5E-09	$K_s (m/s) =$	5.5E-09	
		3	$S_s (1/m) =$	5.0E-08	$S_{s}(1/m) =$	5.0E-08	
			C (m³/Pa) =	NA	$C (m^3/Pa) =$	6.3E-11	
10 0	· . · · · · · · · · · · · · · · · · · ·	10 3	$C_D(-) =$	NA	$C_D(-) =$	6.9E-03	
		0.3	ξ (-) =	4.20	ξ(-) =	1.35	
10 6 10 7	10 8 10 9 10	10	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
_			$S_{GRF}(-) =$	NA NA	S _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	rocovery period		D _{GRF} (-) =	esentative parar	D _{GRF} (-) =	NA	
Log-Log plot ilici. derivatives-	recovery period		dt ₁ (min) =	1.52		6.3E-11	
Elegened time to			$dt_1 (min) =$ $dt_2 (min) =$		$C_{D} (m^{3}/Pa) = 0$	6.9E-03	
10 10 10 10 10		300	$T_T (m^2/s) =$	1.9E-07		4.20	
		2	S (-) =	1.0E-06		1.2	
/		10	$K_s (m/s) =$	9.5E-09			
10 0	»»	30	S _s (1/m) =	5.0E-08	3		
	The same of the sa	- 1 T	Comments:				
	·	10 9			f 1.9E-7 m2/s was do		
10 -1	1 Samuel Samuel	3			nows the clearest hor		
		10 0	stabilisation. The	e confidence range 9.0E-8 m2/s to 6.01	for the interval trans E-7 m2/s. The flow d	imension	
		10 -			of flow). The static pr		
10 ° 10 ° 10 (CD)	10 ² 10 ³ 10	ļ			derived from the CH		
tuico			straight line extr	apolation in the Ho	orner plot to a value	oi 1,782.2 kPa.	
			I				

	Test Summ	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
		_			
Area:	Laxemar	l est no:			1
Borehole ID:	KLX13A	Test start:			070218 16:10
Tarakara Carakara (a. /a.)	400 50 000 50	Decree Wile for			Otroboo Bobo
Test section from - to (m):	182.50-202.50 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata	1071	Indata	1
2300	0.5	p ₀ (kPa) =	1971		
·	KLX13A_182.50-202.50_070218_1_CHir_Q_r	$p_i (kPa) =$ $p_o(kPa) =$	1973	p _F (kPa) =	1971
2200	- 0.4		5.18E-06	ρ _F (κΡα) =	19/1
₹ 2100		$Q_p (m^3/s) = tp (s) =$		t _F (s) =	1200
g 2100 · · · · · · · · · · · · · · · · · ·	0.3 =				1.00E-06
E 2000	CO C	S el S [*] (-)= EC _w (mS/m)=	1.00E-00	S el S* (-)=	1.00E-00
. 1900 -	• P section	Temp _w (gr C)=	0		
1800	P section P above P below O.1	Derivative fact.=	0.05	Derivative fact.=	0.05
1800	Q	Denvative lact.	0.03	Denvative lact.	0.02
1700 0.00 0.20 0.40 0.60 0.6	0.0 1.00 1.20 1.40 1.60				
Elapsed	Time [h]	Results	l	Results	<u> </u>
		Q/s $(m^2/s)=$	2.6E-07		
Log-Log plot incl. derivates- fl	ow period	$T_M (m^2/s) =$	2.7E-07		
		Flow regime:	transient	Flow regime:	transient
Elapsed time [h]	10. ⁻¹ 10. ⁰	dt ₁ (min) =	0.22	dt ₁ (min) =	0.31
10 2	30	dt_2 (min) =	15.47	dt_2 (min) =	1.23
	•	$T (m^2/s) =$	3.2E-07	$T (m^2/s) =$	2.5E-07
	10 '	S (-) =	1.0E-06	S (-) =	1.0E-06
10 1	3	$K_s (m/s) =$	1.6E-08	$K_s (m/s) =$	1.3E-08
	i .	$S_s (1/m) =$	5.0E-08	$S_s (1/m) =$	5.0E-08
	10° GE (50);	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	5.6E-11
10 °	, , , , , , , , , , , , , , , , , , ,	$C_D(-) =$	NA	$C_D(-) =$	6.2E-03
	A. A. A. A. A.	ξ (-) =	1.34	ξ (-) =	0.25
	10 -1				
10 4 10 5	10 ° 10 7 10 °	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
TU TU		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		D_{GRF} (-) =	NA	D_{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	_		1
		dt ₁ (min) =	0.31	0 (III /I u)	5.6E-11
Elapsed time (h)		dt ₂ (min) =		$C_D(-) =$	6.2E-03
سسععع		$T_{T} (m^2/s) = S(-) =$	2.5E-07		0.25
	10 2	$S(-) = K_s(m/s) =$	1.0E-06 1.3E-08		
10 0	an	$S_s (1/m) =$	5.0E-08		
	The state of the s	Comments:	5.0⊑-08		<u> </u>
	See locality		transmissivity of	f 2.5E-7 m2/s was do	erived from the
10-1	ia) qua			one), which shows th	
	3	derivative quality.	The confidence i	ange for the interva	l transmissivity
	10 °			0E-7 m2/s. The flow	
				flow). The static prederived from the CH	
10 ° 10 ¹ tD/CD	10 ² 10 ³ 10 ⁴			rner plot to a value	
		•			

	Test Su	ımn	nary Sheet					
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir		
-								
Area:	Laxe	emar	Test no:					
Borehole ID:	KLX	(13A	Test start:		070218 18:12			
Test section from - to (m):	202 50 222 5	0 m	Responsible for			Stanban Daha		
rest section from - to (m).	202.50-222.5	ווו טפ	test execution:			Stephan Rohs		
Section diameter, 2·r _w (m):	0	.076	Responsible for		Crist	ian Enachescu		
			test evaluation:					
Linear plot Q and p			Flow period		Recovery period			
			Indata	2155	Indata	_		
2500	1	- 1.0	p ₀ (kPa) =	2166				
KLX1	3A_202.50-222.50_070218_1_CHir_Q_r		p _i (kPa) =	2168				
2400	- Q	- 0.8	$p_p(kPa) =$		p _F (kPa) =	2168		
₹ 2300		-	$Q_p (m^3/s)=$	8.00E-06				
sarre [k	:	. 0.6 // e [l/min	tp (s) =	1200	t_F (s) =	1200		
E 2200 - 200	<u> </u>	njection Rate [l/min]	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06		
Q L M 2100 -		Injecti	EC _w (mS/m)=					
			Temp _w (gr C)=	9.3				
2000 -	†	- 0.2	Derivative fact.=	0.07	Derivative fact.=	0.04		
1900	, t ,	- 0.0						
0.00 0.20 0.40 0.60 Elapsed	0.80 1.00 1.20 1.4 Time [h]	10						
			Results		Results	Ţ		
			Q/s $(m^2/s)=$	3.7E-07				
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} ({\rm m}^2/{\rm s}) =$	3.8E-07				
			Flow regime:	transient	Flow regime:	transient		
Elapsed time (h	1		dt ₁ (min) =		dt ₁ (min) =	0.64		
		10 1	$dt_2 (min) =$		$dt_2 (min) =$	10.52		
			$T (m^2/s) =$		$T (m^2/s) =$	2.4E-06		
		3	S (-) =	1.0E-06		1.0E-06		
10 1			K_s (m/s) =		K_s (m/s) =	1.2E-07		
		10 "	$S_s (1/m) =$		$S_s (1/m) =$	5.0E-08		
4 TO 10 TO 1		0.3 (1/d/ fmin	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	6.7E-11		
10 0		1/4	$C_D(-) =$	NA	$C_D(-) =$	7.4E-03		
		10 -1	ξ (-) =	3.64	ξ (-) =	32.40		
]	***	0.03	_ , 2, ,	NA	_ , 2, ,	NIA		
10 6 10 7	10 ⁸ 10 ⁹ 10 ¹⁰		$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	NA		
TI TI			$S_{GRF}(-) =$	NA NA	S _{GRF} (-) =	NA		
lan lan matinal dadicati			D _{GRF} (-) = Selected represe		D _{GRF} (-) =	NA		
Log-Log plot incl. derivatives-	recovery period					#ND/		
_			$dt_1 (min) =$	0.19	O (III /I d)	#NV		
10 ⁻⁴ 10 ⁻³ Elapsed time (h)	10,2 10,1		$dt_2 (min) =$		$C_D(-) =$	#NV		
		900	$T_T (m^2/s) =$	6.4E-07		3.64		
.,		2	S (-) =	1.0E-06				
10.0		10 2	$K_s (m/s) =$	3.2E-08				
`\	3	90	S _s (1/m) =	5.0E-08				
		200	Comments:		C (4D 7 - 2)	. 10 .		
r + /	•	10, 000			f 6.4E-7 m2/s was do			
1		٥	analysis of the CHi					
10 0	مسرينسد		stabilisation. The co	onfidence range	for the interval trans			
	A Company of the Comp	3	stabilisation. The co- estimated to be 4.01		6-6 m2/s. The flow d			
	The state of the s	3 10 °	estimated to be 4.01 displayed during the	E-7 m2/s to 3.0E e test is 2 (radial	6-6 m2/s. The flow d flow). The static pr	imension ressure		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 10 10	3 10 °	estimated to be 4.01 displayed during the measured at transdu	E-7 m2/s to 3.0E e test is 2 (radial acer depth, was o	2-6 m2/s. The flow d	imension ressure ir phase using		

		nary Sheet				
Oskarshamn site investig	ation	Test type:[1]			CHir	
Lax	emar	Test no:				
KL:	X13A	Test start:		070219 09:02		
000 50 040	=0				01 1 5 1	
222.50-242.	.50 m				Stephan Rohs	
n diameter, 2·r _w (m): 0.07		Responsible for		Cristian Enachescu		
		Flow period		Recovery period		
		Indata		Indata		
	 20	p ₀ (kPa) =	2362			
- r above		p _i (kPa) =	2367			
• P below • Q		$p_p(kPa) =$	2567	p _F (kPa) =	2377	
•	1.5	$Q_{p} (m^{3}/s) =$	1.72E-05			
, (l/min]	tp (s) =	1200	t _F (s) =	1200	
The state of the s	R ate	S el S* (-)=	1.00E-06	S el S* (-)=	1.00E-06	
	jection	EC _w (mS/m)=				
		Temp _w (gr C)=	9.6			
	+ 0.5	Derivative fact.=	0.05	Derivative fact.=	0.04	
		Results		Results		
		Q/s $(m^2/s)=$	8.4E-07			
ow period		$T_{\rm M} (m^2/s) =$	8.8E-07			
		Flow regime:	transient	Flow regime:	transient	
· 40 · 1		dt_1 (min) =	4.82	dt_1 (min) =	7.17	
	1	dt_2 (min) =	18.25	dt_2 (min) =	16.30	
		$T (m^2/s) =$	5.7E-07	$T (m^2/s) =$	6.3E-07	
	3	S (-) =	1.0E-06	S (-) =	1.0E-06	
	10 °	$K_s (m/s) =$	2.9E-08	$K_s (m/s) =$	5.0E-08	
		$S_s (1/m) =$	5.0E-08	$S_s (1/m) =$	5.0E-08	
a an indian	0.3 [wild by	$C (m^3/Pa) =$	NA	C (m ³ /Pa) =	1.5E-10	
	10 1	$C_D(-) =$	NA	$C_D(-) =$	1.7E-02	
· · · · · · · · · · · · · · · · · · ·		ξ (-) =	0.15	ξ (-) =	4.36	
	0.03					
	ļ	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10 10 - 10 10 10 10 10 10 10 10 10 10 10 10 10		S _{GRF} (-) =	NA	S _{GRF} (-) =	NA	
		D_{GRF} (-) =	NA	D_{GRF} (-) =	NA	
recovery period		Selected represe	ntative paran	neters.		
		dt_1 (min) =		0 (III /I u)	1.5E-10	
		dt_2 (min) =			1.7E-02	
		$T_T (m^2/s) =$			0.15	
	300					
		K_s (m/s) =				
	10 2	- ()	5.0E-08			
i and and and a district of	k Pa					
SHANNING THE SHANN	90. (p-p0) [
	10 1			ne), which shows the est data and derivati		
į.				insmissivity is estim		
†		confidence range to				
	3	7 m2/s to 1.0E-06 m	n2/s. The analys	is displayed during		
10 10 10 10	3	7 m2/s to 1.0E-06 m dimension of 2 (rad	n2/s. The analys ial flow). The st	is displayed during tatic pressure measure	red at	
10 3 10 5	3	7 m2/s to 1.0E-06 n dimension of 2 (rad transducer depth, w	n2/s. The analys ial flow). The st as derived from	is displayed during	red at g straight line	
	X13A_222.50-242.50_070219_1_CHir_Q_r	X13A_222.50-242.50 m 0.076 X13A_222.50-242.50_070219_1_CHir_Q_r Pactor	Indata Po (kPa) = Po (kPa)	RESULTS Section Sect	Responsible for test execution:	

	Test S	limr	nary Sheet					
Project:	Oskarshamn site investi	gation	Test type:[1]			CHii		
Area:	La	xemar	Test no:					
Borehole ID:	KL	.X13A	Test start:			070219 11:04		
Test section from - to (m):	242.50-262	2.50 m	Responsible for			Stephan Rohs		
Section diameter, 2·r _w (m):		0 076	test execution: Responsible for		Crist	ian Enachescu		
		0.070	test evaluation:					
Linear plot Q and p			Flow period		Recovery period			
			Indata		Indata			
2002		0.05	p ₀ (kPa) =	2556				
2900	KLX13A_242.50-262.50_070219_1_CHir_Q_r	0.05	p _i (kPa) =	2565				
2800 -		- 0.04	$p_p(kPa) =$		p _F (kPa) =	256		
₹ 2700			$Q_p (m^3/s) =$	3.67E-07				
4 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- 0.03	tp (s) =		t _F (s) =	240		
2000		1000 0.00 0.00 0.00 0.00 0.00 0.00 0.00	S el S* (-)=	1.00E-06	S el S [*] (-)=	1.00E-0		
O 2500	· · · · · · · · · · · · · · · · · · ·	- 0.02 sp	EC _w (mS/m)=			ļ		
	P section P above	+ 0.01	Temp _w (gr C)=	10	Danis att 1 1	0.7		
2400	P below Q	+ 0.01	Derivative fact.=	0.02	Derivative fact.=	0.0		
2300 0.00 0.20 0.40 0.60 0.80 1.	00 1.20 1.40 1.60 1.80	0.00						
	.00 1.20 1.40 1.60 1.80 Time [h]	2.00	Results		Results			
			Q/s $(m^2/s)=$	1.8E-08				
Log-Log plot incl. derivates- fl	low period		$T_{\rm M} (m^2/s) =$	1.9E-08				
gg p.c			Flow regime:	transient	Flow regime:	transient		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	[h] 10, ⁻¹ 10, ⁰		dt ₁ (min) =		$dt_1 \text{ (min)} =$	7.97		
10 3			$dt_2 \text{ (min)} =$	15.86	$dt_2 \text{ (min)} =$	36.7		
		10 2	$T (m^2/s) =$		$T (m^2/s) =$	8.7E-08		
10 2			S (-) =	1.0E-06		1.0E-06		
10 1		10 2	$K_s (m/s) =$	1.3E-09	K_s (m/s) =	4.4E-09		
	· .	2	$S_{s}(1/m) =$	5.0E-08	$S_s (1/m) =$	5.0E-08		
10 °	. A	10 1 10,000	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.0E-10		
		Ţ	$C_D(-) =$	NA	$C_D(-) =$	1.1E-02		
10 -1		10	ξ (-) =	2.75	ξ (-) =	20.70		
		10 -1						
10 4 10 5	10 ⁶ 10 ⁷	10 "	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA		
			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA		
Lantan mintimal daminations			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA		
Log-Log plot incl. derivatives-	recovery period		Selected represe			1.0E-10		
Elapsed time (h			$dt_1 (min) =$ $dt_2 (min) =$		$C (m^3/Pa) = C_D (-) =$	1.1E-02		
10,4 10,3 10,2	10,-1	7	$T_T (m^2/s) =$	2.5E-08		2.75		
		300	S (-) =	1.0E-06		2.70		
		1	K_s (m/s) =	1.3E-09				
10 1	**	10 2	S _s (1/m) =	5.0E-08		 		
	N. K.	30 _	Comments:			I		
	<i>¥</i> : .	lood library		transmissivity of	f 2.5E-08 m2/s was	derived from the		
•//	10 °							
10 4	The same are	10 1 8	analysis of the CHi					
10 5	· I · · · · · · · · · · · · · · · · · ·	10 1 8	stabilisation. The co	onfidence range	for the interval trans	smissivity is		
		3	stabilisation. The constitution estimated to be 1.01	onfidence range E-08 m2/s to 9.0	for the interval trans E-08 m2/s. The flow	smissivity is v dimension		
10 10 10 100 100		3	stabilisation. The co- estimated to be 1.01 displayed during the measured at transdu	onfidence range E-08 m2/s to 9.0 e test is 2 (radial acer depth, was o	for the interval trans	smissivity is v dimension essure ir phase using		

	Test Si	umr	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Aron:	Lov	omor	Test no:			1
Area:	Lax	emai	rest no.			ı
Borehole ID:	KLX	X13A	Test start:			070219 14:13
Test section from - to (m):	262.50-282.	50 m	Responsible for			Stephan Rohs
			test execution:			
Section diameter, 2·r _w (m):	(0.076	Responsible for test evaluation:		Crist	ian Enachescu
Linear plot Q and p	<u> </u>		Flow period	L	Recovery period	1
			Indata		Indata	
			p ₀ (kPa) =	2751		
KLX13A_262.50-282.50_070219_1_CHir_Q_r •		0.10	p _i (kPa) =	2751		
3000			$p_p(kPa) =$	2963	p _F (kPa) =	2752
	<u> </u>	0.08	$Q_p (m^3/s) =$	1.37E-06	,	
© 2900 -	V		tp (s) =		t _F (s) =	1200
2800	· ·	Rate [I/	S el S [*] (-)=		S el S [*] (-)=	1.00E-06
8 2000 - 8 2		Injection Rate [I/min]	EC _w (mS/m)=	1.002 00	3 61 3 (-)-	1.002 0
Ž 2700 ·	• P section	Ē	Temp _w (gr C)=	10.3		
2600 -	P above P below	0.02	Derivative fact.=		Derivative fact.=	0.02
			20	0.02	20	0.02
0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40	0.00				
Elapsed 1	îme [h]		Results		Results	
			Q/s $(m^2/s)=$	6.3E-08		
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	6.6E-08		
Log-Log plot mei: derivates- m	- Period		Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =		dt ₁ (min) =	4.65
Elapsed time [h] 10 -2 10 -1 10 -1	10,0	Ė	$dt_1 (min) =$ $dt_2 (min) =$		$dt_1 (min) =$ $dt_2 (min) =$	17.08
·			- ` '		, ,	7.5E-08
· .		30	$T (m^2/s) = S (-) =$	1.0E-06	$T (m^2/s) = S (-) =$	1.0E-06
			```		$K_s (m/s) =$	
10 1		10 1	$K_s (m/s) = S_s (1/m) =$		$S_s(1/m) =$	3.8E-09 5.0E-08
• •	•	. jui		3.0E-06		2.4E-11
•	*	A. (14) p	$C (m^3/Pa) =$	NA NA	$C (m^3/Pa) =$	
10 0	·	10 °	C _D (-) =		C _D (-) =	2.6E-03
			ξ (-) =	-2.23	ξ(-) =	5.84
	<b>.</b>	0.3				
10 8 10 9	10 10 10 11 10 12		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
ii)			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe			0.45.4
			dt ₁ (min) =	2.70	C (m ³ /Pa) =	2.4E-11
10, ⁻⁴ 10, ⁻³ Elapsed time (h)	10, ⁻¹		dt ₂ (min) =		C _D (-) =	2.6E-03
			$T_T (m^2/s) =$	1.2E-07		-2.23
		300	S (-) =	1.0E-06		
		2	$K_s (m/s) =$	6.0E-09		
10		10	$S_s (1/m) =$	5.0E-08		
	and the state of t	30 💆	Comments:			
	N. Carrier Control	10.0010			1.2E-07 m2/s was	
10 -1	مميم	10 1	analysis of the CHi stabilisation. The co		very noisy but snow for the interval trans	
	-				E-07 m2/s. The ana	
			conducted using a f	low dimension of	of 2 (radial flow). The	ne static
10 ° 10 ¹ ID/CD	10 ² 10 ³ 10 ⁴	10 0			oth, was derived from	
шсь			phase using straight 2,743.6 kPa.	t tine extrapolati	on in the Horner plo	ot to a value of
			۵,/٦٥.U KI a.			

	Test Si	ımı	mary Sheet				
Project:	Oskarshamn site investig	atior	Test type:[1]			CHir	
Area:	Laxe	ema	r Test no:				
Borehole ID:	KL)	<13 <i>F</i>	Test start:		070219 16:1		
Toot postion from to (m):						Stanban Daha	
Test section from - to (m):	202.50-302.	5U II	Responsible for test execution:			Stephan Rohs	
Section diameter, 2·r _w (m):	C	0.076	Responsible for		Crist	ian Enachescu	
Linear plot Q and p			test evaluation: Flow period		Recovery period	<b>I</b>	
Linear plot & and p			Indata		Indata		
			p ₀ (kPa) =	2949	maata		
3300	KLX13A_282.50-302.50_070219_1_CHir_Q_r	5	p _i (kPa ) =	2943			
3200 -	NEXTON_20200 00200_010210_1_010102_1		$p_p(kPa) =$		p _F (kPa ) =	2943	
<u> </u>		14	$Q_p (m^3/s) =$	1.80E-05			
8 3100 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	3 <u>m</u>	tp (s) =	1200	t _F (s) =	1200	
8 9 3000 -	i	Rate [1	S el S* (-)=		S el S* (-)=	1.00E-06	
2900 -		5 S Il/min]	EC _w (mS/m)=		( )		
§ 2900 ·	• P section	=	Temp _w (gr C)=	10.6		1	
2800 - : :	P above P below	1	Derivative fact.=	0.02	Derivative fact.=	0.04	
2700	-						
0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40 1 Time [h]						
·	•		Results		Results		
			Q/s $(m^2/s)=$	8.8E-07			
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	9.2E-07			
Flansert time (I	ni		Flow regime:	transient	Flow regime:	transient	
10 2 10,4 10,2		1	$dt_1 (min) =$		$dt_1 (min) =$	0.53	
			$dt_2 (min) =$		$dt_2 (min) =$	13.15	
10 1		10 °	$T (m^2/s) =$		$T (m^2/s) =$	2.0E-06	
			S (-) =	1.0E-06		1.0E-06	
	***		$K_s (m/s) =$		$K_s (m/s) =$	1.0E-07	
10 0	ang manganan ngan <del>nganan salah man</del>	10 -1	S _s (1/m) =	5.0E-08 NA	$S_s(1/m) =$	5.0E-08 2.0E-10	
	La Laborato Cara de Ca		$C (m^3/Pa) = C_D (-) =$	NA NA	$C (m^3/Pa) = C_D (-) =$	2.0E-10 2.2E-02	
10 -1		10 -2	<b>о</b> р ( )		$\xi(-) =$	6.87	
			ξ (-) =	3.04	ς (-) –	0.07	
	40 ⁸ 40 ⁹	10 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
10			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran		<u> </u>	
			$dt_1$ (min) =	0.53	C (m ³ /Pa) =	2.0E-10	
Elapsed time (h) 10 -4 10 -2	10, ⁻¹ 10, ⁰		$dt_2$ (min) =	13.15	C _D (-) =	2.2E-02	
10 2	10	a a	$T_T (m^2/s) =$	2.0E-06	ξ(-) =	6.87	
1			S (-) =	1.0E-06			
		90	$K_s$ (m/s) =	4 OF 07			
-	34	~	K _s (111/5) -	1.0E-07			
10	36	~ ) ²	$S_s (11/s) =$	5.0E-08			
10	30 14	~ ) ²					
	N N	2	S _s (1/m) =  Comments:  The recommended	5.0E-08	f 2.0E-06 m2/s was o		
	No. of the state o	o 2	S _s (1/m) =  Comments:  The recommended analysis of the CHi	5.0E-08 transmissivity of r phase, which s	f 2.0E-06 m2/s was on the better derivative from	vative	
		o 2	S _s (1/m) =  Comments:  The recommended analysis of the CHi stabilisation. The comments	5.0E-08 transmissivity of r phase, which so onfidence range	f 2.0E-06 m2/s was o	vative smissivity is	
	No. of the state o	) 2	S _s (1/m) =  Comments:  The recommended analysis of the CHi stabilisation. The coestimated to be 9.01 displayed during th	5.0E-08 transmissivity of r phase, which si onfidence range E-07 m2/s to 5.0 e test is 2 (radia	f 2.0E-06 m2/s was shows the better derive for the interval transite-06 m2/s. The flow of the static present	vative smissivity is v dimension ressure	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	M M M M M M M M M M M M M M M M M M M	o 2	S _s (1/m) =  Comments:  The recommended analysis of the CHi stabilisation. The coestimated to be 9.01 displayed during the measured at transduring the stabilisation of the coestimated to be 9.01 displayed during the measured at transduring the stabilisation of the coestimated to be 9.01 displayed during the measured at transduring the coestimated to be 9.01 displayed during the coestimated to 9.01 displayed during	transmissivity or r phase, which si onfidence range E-07 m2/s to 5.0 e test is 2 (radial acer depth, was of	f 2.0E-06 m2/s was shows the better derive for the interval transeE-06 m2/s. The flow	vative smissivity is v dimension ressure fir phase using	

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHii
Area:	Laxemar	Test no:	<u> </u>		1
Borehole ID:	KLX13A	Test start:			070219 18:12
Test section from - to (m):	302.50-322.50 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for	†	Crist	ian Enachescu
, w ( )		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
		$p_0$ (kPa) =	3141		
KLX13A_302.50-322.50_070219_1_CHir_Q_r	• P section • P above	p _i (kPa ) =	3138		
3350	• P below • Q	$p_p(kPa) =$	3336	p _F (kPa ) =	313
3300	Ť*	$Q_p (m^3/s) =$	8.00E-05		
E 3200	T e ii	tp (s) =	1200	$t_F$ (s) =	1200
2 3250 2 3200 2 3150	Rate of Fig.	S el S [*] (-)=	1.00E-06	S el S* (-)=	1.00E-0
9 3100 ·		EC _w (mS/m)=	1	. ,	
Q 3050	·   Ē	Temp _w (gr C)=	10.9		
3000	2	Derivative fact.=	0.04	Derivative fact.=	0.0
2950					
2900 0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40		†		<del> </del>
Elapsed	Time [h]	Results		Results	1
		Q/s $(m^2/s)=$	4.0E-06		
Log-Log plot incl. derivates- flo	ow period	$T_{\rm M} (m^2/s) =$	4.1E-06		
gg p		Flow regime:	transient	Flow regime:	transient
Elapsed time [h]		dt ₁ (min) =		dt ₁ (min) =	0.34
10,4 10,3 10,2		$dt_1$ (min) =		$dt_1$ (min) =	7.99
	10 °	$T (m^2/s) =$		$T (m^2/s) =$	2.1E-05
		S (-) =	1.0E-06	` ,	1.0E-06
10 43	0.3	$K_s (m/s) =$		$K_s (m/s) =$	1.1E-06
	10 -1	$S_s(1/m) =$		$S_s(1/m) =$	5.0E-08
	lour.		0.0E-00		2.1E-10
	0.03	$C (m^3/Pa) = C_0 (-) =$	NA	$C (m^3/Pa) = C_D (-) =$	2.1E-10 2.3E-02
10 °	and the second second	90 ( )		<b>O</b> D ( )	
	10 2	ξ(-) =	1.20	ξ (-) =	20.30
	0.003	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 s 10 s	10 7 10 8 10 9	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe			L
gg p		$dt_1 \text{ (min)} =$	0.34		2.1E-10
106 Elapsed time [h]	10.2 10.4	dt ₂ (min) =		$C_D(-) =$	2.3E-02
10 2		$T_T (m^2/s) =$	2.1E-05		20.30
	300	S (-) =	1.0E-06		
	•	K _s (m/s) =	1.1E-06		
10 1	10 2	$S_s(1/m) =$	5.0E-08		<del>                                     </del>
	30	Comments:	5.5∟-00	<u> </u>	<u> </u>
	- (ef 8/1/04)		tranomicoivity o	f 2.1E-05 m2/s was o	derived from the
10 0	10 1 9			hows the better deriv	
	· · · · · · · · · · · · · · · · · · ·			al transmissivity is e	
	3	1.0E-06 m2/s to 4.0	E-05 m2/s. The	flow dimension disp	played during
	- F10 °			asured at transducer	
10 ¹ 10 ²	10 3 10 4 10 5			straight line extrapol	lation in the
i		Horner plot to a val	iuc 01 5,15 /./ Kl	a.	

	Test 9	Sumr	nary Sheet				
Project:	Oskarshamn site invest					CHir	
Area:	La	axemar	Test no:			1	
Borehole ID:	KLX13A		Test start:		070220 08:		
Test section from - to (m):	322.50-34	2.50 m	Responsible for			Stephan Rohs	
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Cristi	an Enachescu	
Linear plat O and p			test evaluation:		Deservented		
Linear plot Q and p			Flow period Indata		Recovery period Indata		
			p ₀ (kPa) =	3338	iiiuata		
3700		T 0.15	$p_0 (RFa) =$ $p_i (kPa) =$	3336			
3600	(LX13A_322.50-342.50_070220_1_CHir_Q_r		$p_p(kPa) =$		p _F (kPa ) =	3335	
_   · <u>-</u> _			$Q_{p} (m^{3}/s) =$	1.60E-06	p _F (m a )	3335	
G 5500 - 12 3400 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3300 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 3000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 4 5 000 - 10 5 000 - 10 5 000 - 10 5 000 - 10 5 000 - 10 5 000 - 10 5 000 - 10		10.00 10.00 10.00 Rate [I/min]	$\frac{Q_p (\Pi / S)}{tp (s)} =$		t _F (s) =	1200	
5 8 2 3400 -		Rate [I/			S el S [*] (-)=	1.00E-06	
90		ection	S el S* (-)= EC _w (mS/m)=	1.00E-00	S el S (-)=	1.00E-00	
8 3300 -	• P section	- 0.05 🖺	Temp _w (gr C)=	11.1			
3200 -	P above    P below				Derivetive feet -	0.00	
	• • Q		Derivative fact.=	0.03	Derivative fact.=	0.02	
3100 0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40	⊥ 0.00					
Elapsed T	ime [h]		D		D		
			Results	7.05.00	Results		
			Q/s $(m^2/s)=$	7.9E-08			
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} ({\rm m}^2/{\rm s}) =$	8.3E-08			
			Flow regime:	transient	Flow regime:	transient	
Elapsed time [h	]	<b>-</b>	$dt_1$ (min) =		$dt_1$ (min) =	#NV	
			$dt_2 (min) =$		$dt_2 (min) =$	#NV	
			$T (m^2/s) =$		$T (m^2/s) =$	5.9E-08	
10 1		10 1	S (-) =	1.0E-06		1.0E-06	
			$K_s (m/s) =$		$K_s (m/s) =$	3.0E-09	
- 10 °:	· ·	10 °	$S_s (1/m) =$		$S_s(1/m) =$	5.0E-08	
		(1/q) [min	C (m ³ /Pa) =	NA	$C (m^3/Pa) =$	8.3E-11	
1		= =	$C_D(-) =$	NA	$C_D(-) =$	9.2E-03	
10 -1	* * * *	10 -1	ξ (-) =	6.70	ξ (-) =	0.05	
1							
10.8 10.9	10 10 10 11	10 12	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA	
at at			$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA	
			$D_{GRF}$ (-) =	NA	$D_{GRF}$ (-) =	NA	
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	eters.		
			$dt_1$ (min) =		C (m ³ /Pa) =	8.3E-11	
Elapsed time (h)	10,-1		$dt_2$ (min) =		$C_D(-) =$	9.2E-03	
טו		300	$T_T (m^2/s) =$	1.6E-07	ξ (-) =	6.70	
			S (-) =	1.0E-06			
/ · · · · · · · · · · · · · · · · · · ·		10 2	$K_s$ (m/s) =	7.9E-09			
10 %		30	$S_s (1/m) =$	5.0E-08			
\	<u>`</u> .	ā	Comments:	_	•	-	
		10 1 9	The recommended	transmissivity of	1.6E-7 m2/s was de	erived from the	
10 -1		- 1	analysis of the CHi				
		3			for the interval trans		
		10 0	conducted using a f		-7 m2/s. The analys		
		10.4	_		oth, was derived from		
10 ⁰ 10 ¹ tD/CD	טר 10 ⁻	10	phase using straight		on in the Horner plo		
			3,334.2 kPa.				

	Test S	umr	nary Sheet			
Project:	Oskarshamn site investig	gation	Test type:[1]			CHir
Area:	Laxemar		Test no:			1
Borehole ID:	VI V12A		Test start:			070220 10:20
Test section from - to (m):	342.50-362.	.50 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	(	0.076	Responsible for		Crist	ian Enachescu
Linear plat O and p			test evaluation:		Danassania	
Linear plot Q and p			Flow period Indata		Recovery period	1
			p ₀ (kPa) =	3531	inuata	1
3700 KLX13A_342.50-362.50_070220_1_CHir_Q_r		25	$p_0(R(a) = p_i(kPa) =$	3529		
3650	<del></del>		$p_i(kPa) =$		p _F (kPa ) =	3531
3600		- 20			ρ _F (KFa ) =	333
g 3550		, E	$Q_p (m^3/s) =$	2.52E-04	t /=\ -	120
92 3500 1 198 92 3450 1	<del>"</del> ₹	Sate [I/n	tp (s) =		t _F (s) =	1200
2 5500 2 5000 2	P section     P above	or stee [l/min]	S el S* (-)=	1.00E-06	S el S* (-)=	1.00E-0
3350 -	• P below • Q	Inje	EC _w (mS/m)=			
3300		- 5	Temp _w (gr C)=	11		
3250			Derivative fact.=	0.04	Derivative fact.=	0.02
0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40 Time (h)	10				
·			Results		Results	ı
			Q/s $(m^2/s)=$	2.1E-05		
Log-Log plot incl. derivates- flo	ow period		$T_{\rm M} (m^2/s) =$	2.2E-05		
			Flow regime:	transient	Flow regime:	transient
Elapsed time [h]	10 ⁻¹ 10 ⁰ 10	,	$dt_1$ (min) =	0.37	$dt_1$ (min) =	0.91
10 -		0.3	$dt_2$ (min) =	14.95	$dt_2$ (min) =	13.78
			$T (m^2/s) =$	4.6E-05	$T (m^2/s) =$	4.8E-05
		10 -1	S (-) =	1.0E-06	S (-) =	1.0E-06
10 1			$K_s (m/s) =$	2.3E-06	$K_s (m/s) =$	9.6E-06
			S _s (1/m) =	5.0E-08	S _s (1/m) =	2.0E-07
,	•	10 -2 July	C (m ³ /Pa) =	NA	$C (m^3/Pa) =$	5.1E-09
10 °	*	. \$	$C_D(-) =$	NA	$C_D(-) =$	5.6E-0
***	· · · · · · · · · · · · · · · · · · ·	0.003	ξ(-) =	4.46		5.25
	* ***	10 -3				
10 9 10 10	10 ¹¹ 10 ¹² 10 ¹³	ļ	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
TU.			S _{GRF} (-) =	NA	$S_{GRF}(-)$ =	NA
			D _{GRF} (-) =	NA	$D_{GRF}$ (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran	neters.	
			$dt_1$ (min) =	0.91	$C (m^3/Pa) =$	5.1E-09
Elapsed time [h]	10,1	7	$dt_2$ (min) =		C _D (-) =	5.6E-0
		-	$T_T (m^2/s) =$	4.8E-05	ξ (-) =	5.25
		300	S (-) =	1.0E-06		
		10 2	K _s (m/s) =	9.6E-06		
10 1			S _s (1/m) =	2.0E-07		
		30 <u>a</u>	Comments:	-		*
		, to do't lik	The recommended			
10 0		10 1 8	analysis of the CHi	phase, which s	hows the better deri	vative
2.00	A A A A A A A A A A A A A A A A A A A		stabilisation. The co			
		3	estimated to be 2.01 displayed during the			
		10 0	measured at transdu	,	, .	
10 ¹ 10 ²	10 10°				rner plot to a value	
			straight inic extrapt	nation in the ric	mer process a variate	

CHii  070220 12:56  Stephan Rohs  Cristian Enachescu period
Stephan Rohs Cristian Enachescu
Stephan Rohs Cristian Enachescu
Stephan Rohs Cristian Enachescu
Cristian Enachescu
period
period
1
= 3659
= 1200
= 1.00E-06
e fact.= 0.02
ne: transient
= 0.36
= 9.19
= 6.1E-05
= 1.0E-06
= 3.1E-06
= 5.0E-08
= 1.9E-09
= 2.1E-01
= 13.40
) = NA
= NA
= NA
= 1.9E-09
= 1.9E-09 = 2.1E-01
= 6.02
3.02
<del></del>
<del>-  </del>
2/s was derived from the
ter derivative
rval transmissivity is The flow dimension
static pressure
n the CHir phase using a value of 3,658.5 kPa.

	Test Si	ıımı	nary Sheet			
Project:	Oskarshamn site investig	ation	Test type:[1]			CHir
Area:	Lax	emar	Test no:	,		
Borehole ID:	KLX	X13A	Test start:			070220 15:00
Test section from - to (m):	375.50-395.	50 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	(	0.076	Responsible for		Cristi	ian Enachescu
			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	
3900		T 50	p ₀ (kPa) =	3854		
		- 45	p _i (kPa ) =	3853		
3850		40	$p_p(kPa) =$	3861	p _F (kPa ) =	3857
KLX13A_375.50-395.50_070220_1_CHir_Q_r	:	- 35	$Q_p (m^3/s) =$	2.37E-04		
ki k		00 [I/min]	tp (s) =	1200	t _F (s) =	1200
3750	\	- 25 -	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
E 3300	P section     P above	10 ction	EC _w (mS/m)=			Ì
o	P below Q	- 15	Temp _w (gr C)=	12.3		
3650 -		10	Derivative fact.=	0.02	Derivative fact.=	
3600	·	5		<u> </u>		<u> </u>
0.00 0.20 0.40 0.60 Elapsed	0.80 1.00 1.20 1.40 Time [h]	→ 0				
			Results		Results	1
			Q/s $(m^2/s)=$	2.9E-04		
Log-Log plot incl. derivates- flo	ow period		$T_{\rm M} (m^2/s) =$	3.0E-04		1
<u> </u>	•		Flow regime:	transient	Flow regime:	transient
			dt ₁ (min) =	#NV	$dt_1 (min) =$	#NV
Elapsed time [h]			dt ₂ (min) =	#NV	$dt_2$ (min) =	#NV
			$T (m^2/s) =$		$T (m^2/s) =$	NA
1		0.3	S (-) =	1.0E-06		NA
		10 -1	K _s (m/s) =		$K_s (m/s) =$	NA
10 1			$S_s(1/m) =$		$S_s(1/m) =$	NA
	:	0.03		NA		NA
		5	$C (m^3/Pa) = C_D (-) =$	NA	$C (m^3/Pa) = C_D (-) =$	NA
10 0	1	10 ¥	-0()		<b>O</b> D ( )	
	-	0.003	ξ (-) =	-2.83	ξ(-) =	NA
		10 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 ⁴ 10 ⁵ 1D	10 0 10 7 10 0	10	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe			
-00 p			$dt_1 \text{ (min)} =$	#NV	C (m ³ /Pa) =	NA
			$dt_2 \text{ (min)} =$	#NV	$C_D(-) =$	NA
			$T_T (m^2/s) =$	4.4E-04		-2.83
			S (-) =	1.0E-06		2.00
			$K_s (m/s) =$	2.2E-05		
			$S_s(1/m) =$	5.0E-08		
_			Comments:	5.0⊑-08		
Not an	aiysed		The recommended analysis of the CHi stabilisation of the confidence range to 5 m2/s to 8.0E-4 m	phase (inner zon derivative and b or the interval tra 2/s. The analysis lial flow). The st	f 4.4E-4 m2/s was dene), which shows the est data and derivations sisting it is estimated as a conducted using attic pressure could in	e best horizontal ve quality. The ated to be 7.0E- ng a flow

	Test Su	ımı	nary Sheet			
Project:	Oskarshamn site investigation		Test type:[1]			CHir
Area:	Laxemar		Test no:			1
Borehole ID:	KLX13A		Test start:			070220 17:06
Test section from - to (m):	395.50-415.	50 m	Responsible for			Stephan Rohs
Section diameter, 2·r _w (m):	ſ	076	test execution: Responsible for		Crist	ian Enachescu
esocion diameter, 2 T _W (m).			test evaluation:			
Linear plot Q and p			Flow period		Recovery period	
			Indata		Indata	1
4200		25	p ₀ (kPa) =	4052		
KLX13A_395.50-415.50_070220_1_CHir_Q_r	<del></del>		p _i (kPa) =	4052	n (IsDa ) =	40.53
4100		- 20	$p_p(kPa) =$	2.41E-04	p _F (kPa ) =	4053
E 4050		Ē	$Q_{p} (m^{3}/s) =$ tp (s) =		t _F (s) =	1200
E 4000 -	-	ate [Vm	-p (-)		, ,	1.00E-06
Downhold 1990 .	•	ol 01 1) olection Rate [Vmin]	S el S* (-)= EC _w (mS/m)=	1.00E-00	S el S* (-)=	1.00E-00
	P section P above	Ē	Temp _w (gr C)=	13		
3900	• P below • Q	- 5	Derivative fact.=		Derivative fact.=	0.03
3850			Delivative lact	0.02	Derivative fact	0.03
3800 0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40	١,				
Elapsed	Time [h]		Results		Results	
			Q/s $(m^2/s)=$	2.2E-05		
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	2.3E-05		
99 p	<b> -</b>		Flow regime:	transient	Flow regime:	transient
Elapsed time (h)			dt ₁ (min) =		dt ₁ (min) =	0.36
10 2 10, 3 10, 2	10.1		dt ₂ (min) =		$dt_2 \text{ (min)} =$	9.19
		0.3	$T (m^2/s) =$		$T (m^2/s) =$	5.6E-05
		10 -1	S (-) =	1.0E-06		1.0E-06
10 1			$K_s (m/s) =$	2.4E-06	$K_s$ (m/s) =	2.8E-06
		0.03	$S_s (1/m) =$	5.0E-08	$S_s (1/m) =$	5.0E-08
		10 2 5	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	1.6E-09
10 °	•	100	C _D (-) =	NA	C _D (-) =	1.8E-01
77.7.4.7.4.	An A section of the Control of the C	0.003	ξ (-) =	4.42	ξ (-) =	7.77
		10 -3				
10 \$ 40.00	10 11 10 12 10 12		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
to	. 10		$S_{GRF}(-)$ =	NA	S _{GRF} (-) =	NA
			$D_{GRF}$ (-) =	NA	$D_{GRF}$ (-) =	NA
Log-Log plot incl. derivatives-	recovery period					
			$dt_1$ (min) =	0.22	$C (m^3/Pa) =$	#NV
Elapsed time (h)			dt ₂ (min) =		$C_D(-) =$	#NV
		300	$T_T (m^2/s) =$	4.8E-05		4.42
			S (-) =	1.0E-06		
10 1	-	10 2	$K_s (m/s) =$	2.4E-06		
			S _s (1/m) =	5.0E-08		<u> </u>
		30 2	Comments:			
	Ę	10 1 9			f 4.8E-05 m2/s was one ows the better derived	
10 0					for the interval trans	
		3	estimated to be 3.01	E-05 m2/s to 7.0	E-05 m2/s. The flow	v dimension
<b>1</b>		10 0			flow). The static pr	
10 ¹ 10 ²	10 3 10 4 10 5				derived from the CH rner plot to a value	
			запада ппе схиарс	III IIIC III	or plot to a value (	1,000.1 KI d.
			1			

	Test Su	mn	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
ŕ						
Area:	Laxe	mar	Test no:			1
Borehole ID:	KLX	13A	Test start:			070221 08:38
Test section from - to (m):	415 50 435 4	0 m	Responsible for			Stephan Rohs
rest section from - to (iii).	415.50-455.4	111	test execution:			Stephan Rons
Section diameter, 2·r _w (m):	0.	.076	Responsible for		Crist	ian Enachescu
Linear plat O and p			test evaluation:		Deserved	1
Linear plot Q and p			Flow period Indata		Recovery period Indata	
			p ₀ (kPa) =	4247	iliuata	
4600		- 15	$p_0 (RPa) =$	4247		
KLX13A_415.50-435.50_070221_1_CHir_Q_r			$p_{p}(kPa) =$		p _F (kPa ) =	4247
4500				1.55E-04	ρ _F (Ki a ) –	424
R 4400 -		· 10 =	$Q_p (m^3/s) =$		t (a) =	1200
] annss		te [l/mi	tp (s) =		$t_F(s) =$	1200
T 400		Injection Rate [I/min]	S el S* (-)=	1.00E-06	S el S* (-)=	1.00E-06
	-	1 Inject	EC _w (mS/m)=	12.5		<u> </u>
	P section P above		Temp _w (gr C)=	13.5	Desirative feet	0.00
4100	P below Q		Derivative fact.=	0.02	Derivative fact.=	0.02
4000		- 0				
0.00 0.20 0.40 0.60 <b>Elapsed</b>	0.80 1.00 1.20 1.40 Time [h]		Results		Results	
			Q/s $(m^2/s)=$	7.7E-06	Nesuits	1
Log-Log plot incl. derivates- fl	ow period		$T_{\rm M} (m^2/s) =$	8.1E-06		
Log-Log plot mei. denvates- n	ow period		Flow regime:	transient	Flow regime:	transient
Elapsed time (h)			$dt_1 \text{ (min)} =$		dt ₁ (min) =	0.41
10, 4 10, 3	10,12 10,1		$dt_1 (min) =$ $dt_2 (min) =$		$dt_1 (min) =$ $dt_2 (min) =$	9.19
		3	$T (m^2/s) =$		,	3.4E-05
			S (-) =	1.0E-06		1.0E-06
10 1	10	0 -1	$K_s (m/s) =$		$K_s (m/s) =$	1.7E-06
		.03	$S_s(1/m) =$		$S_s (1/m) =$	5.0E-08
	, u	(min/)	C (m ³ /Pa) =	NA		1.1E-09
		1/4.(1/4)	$C_D(-) =$	NA	$C (m^3/Pa) = C_D (-) =$	1.1E-03
10 0						19.50
		003	ξ (-) =	6.02	ζ (-) =	19.50
		0 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 ¹⁰ tD	10 11 10 12 10 13		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	ntative paran		
	· · · · · · · · · · · · · · · · · · ·		dt ₁ (min) =	0.78		#NV
Elapsed time (h)	102 101 10.0		$dt_2 \text{ (min)} =$		$C_D(-) =$	#NV
10 2			$T_T (m^2/s) =$	1.9E-05		6.02
	3	00	S (-) =	1.0E-06		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.2	$K_s$ (m/s) =	3.8E-06		
10 *		-	$S_s(1/m) =$	2.0E-07		
. \	3	0 76	Comments:			<u> </u>
\.	İ	000 KP		transmissivity of	£1.9E-05 m2/s was o	derived from the
10 0		o 1 9	analysis of the CHi	phase due to the	fast recovery durin	g the CHir
					interval transmissiv	
	ľ				. The flow dimension e static pressure me	
	,	o °			the CHir phase usin	
10 ¹ 10 ² tDICD	10 - 10 4 10 5				value of 4,246.6 kl	
			-	•	•	

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHii
Area:	Laxemar	Test no:			
Aica.	Laxemai	rest no.			'
Borehole ID:	KLX13A	Test start:			070221 10:41
Test section from - to (m):	435.50-455.50 m	Responsible for			Stephan Rohs
root occurring to (iii).		test execution:			Otophan Rone
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescu
Linear plot Q and p		test evaluation:		Recovery period	1
Emour plot & una p		Indata		Indata	
		p ₀ (kPa) =	4443		
4600	25 VI V42A 425 50 455 50 070224 4 CHIr O 7	p _i (kPa ) =	4444		
4550 -	KLX13A_435.50-455.50_070221_1_CHir_Q_r	$p_p(kPa) =$		p _F (kPa ) =	4444
4500	- 20	$Q_p (m^3/s) =$	2.43E-04		
¥ 4450	ē	tp (s) =		t _F (s) =	1200
20 4400 -	ate [in	S el S [*] (-)=		S el S [*] (-)=	1.00E-0
9	oetion Rate (Limin)	EC _w (mS/m)=	1.001-00	∪ <del>[</del>	1.001.50
4350 ·	• P section	Temp _w (gr C)=	13.8		
4300 -	P above P below O	Derivative fact.=	0.02	Derivative fact.=	0.0
4250 -		20	0.02	2011441101404	0.0.
4200 0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40				
Elapsed	Time [h]	Results		Results	
		Q/s $(m^2/s)=$	2.6E-05		1
Log-Log plot incl. derivates- fl	ow period	$T_M (m^2/s) =$	2.8E-05		
	•	Flow regime:	transient	Flow regime:	transient
Elapsed time (h)		$dt_1 \text{ (min)} =$	0.18	$dt_1 \text{ (min)} =$	0.26
10 2 10,3 10,2		$dt_2$ (min) =		$dt_2 \text{ (min)} =$	8.82
	0.3	$T (m^2/s) =$		$T (m^2/s) =$	5.9E-0
	10 -1	S (-) =	1.0E-06	, ,	1.0E-06
10 1		$K_s (m/s) =$		$K_s (m/s) =$	3.0E-06
	0.03	$S_s (1/m) =$		$S_s(1/m) =$	5.0E-08
	10 ° 2	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	3.3E-09
10 0 1	19 BJ)	$C_D(-) =$	NA	$C_D(-) =$	3.6E-0
	0.003	ξ(-) =	5.47	ξ(-) =	3.7
		3 ( )		3 ( )	
	10 -3	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 ° 10 ° 10	10 10 10 11 10 12	$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran		
	<u> </u>	dt ₁ (min) =	0.18	$C (m^3/Pa) =$	3.3E-09
Elapsed time (h)		dt ₂ (min) =		$C_D(-) =$	3.6E-0
	ļ	$T_T (m^2/s) =$	5.5E-05	ξ(-) =	5.47
	300	S (-) =	1.0E-06		1
]	10 2	K _s (m/s) =	2.8E-06		
10 1		S _s (1/m) =	5.0E-08		
	30 §	Comments:	•	_	
	10 1 8			f 5.5E-05 m2/s was	
				more reliable due to	
	3 And Annual State of the State	recovery during the			
		transmissivity is est flow dimension disp			
10 0 10 1	10 ° 10 °			oth, was derived from	
tD/CD		phase using straight			
		4,442.8 kPa.			

	Test Sun	mary Sheet			
Project:	Oskarshamn site investigation	on Test type:[1]			CHir
Area:	Layom	ar Test no:			1
Alca.	Laxeiii	air rest no.			'
Borehole ID:	KLX1	BA Test start:			070221 13:02
Test section from - to (m):	455 50-475 50	m Responsible for			Stephan Rohs
rest section from - to (iii).	433.30-473.30	test execution:			Stephan Rons
Section diameter, 2·r _w (m):	0.0	76 Responsible for		Crist	tian Enachescu
Linear plat O and p		test evaluation:		Danasanina	
Linear plot Q and p		Flow period Indata		Recovery period	1
		p ₀ (kPa) =	4639		1
4800	20	$p_i(kPa) =$	4638		
KLX13A_455.50-475.50_070221_1_CHir_Q_r 4750 •	<del></del>	$p_p(kPa) =$		p _F (kPa ) =	4639
4700 -	15		1.87E-04		4039
E 4.650	<u> </u>	$\frac{Q_p (m^3/s)=}{tp (s)} =$			1200
4650		th (2) -		$t_F(s) =$	1.00E-06
ਦੂ ਰਹਨ ,	- 10	S el S* (-)= EC _w (mS/m)=	1.00E-06	S el S* (-)=	1.00E-06
0 0 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 4550 - 10 45		Temp _w (gr C)=	14.1		
4500	P section     P above			Davidentina faat	0.00
4450	• P below • Q	Derivative fact.=	0.03	Derivative fact.=	0.03
4400	0.80 1.00 1.20 1.40				
	Time [h]	Deculte		Danulta	
		Results	4.55.05	Results	1
		Q/s (m ² /s)=	1.5E-05		
Log-Log plot incl. derivates- f	ow period	$T_M (m^2/s) =$	1.6E-05		
		Flow regime:	transient	Flow regime:	transient
Elapsed time (h) 10 10 10 10 10 10 10 10 10 10 10 10 10		$dt_1 (min) =$		dt ₁ (min) =	0.26
		$dt_2 (min) =$	1	$dt_2 (min) =$	8.96
	0.3	$T (m^2/s) =$		$T (m^2/s) =$	5.4E-05
	10 -1	S (-) =	1.0E-06		1.0E-06
10 1		$K_s (m/s) =$		$K_s (m/s) =$	2.7E-06
5	0.03	S _s (1/m) =		$S_s (1/m) =$	5.0E-08
	10-2	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	1.5E-09
10 °	The state of the s	$^{\sharp}$ C _D (-) =	NA	$C_D(-) =$	1.6E-01
	0.003	ξ (-) =	2.94	ξ (-) =	13.60
10,7 10,8	10 9 10 10 10 11	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
tD.		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		$D_{GRF}$ (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe			
		$dt_1 (min) =$	0.91	0 (III /I u)	1.5E-09
10 ⁻⁴ 10 ⁻³ Elapsed time (h)	10,2 10,1	$dt_2 (min) =$		$C_D(-) =$	1.6E-01
	300	$T_T (m^2/s) =$	2.9E-05		2.94
	•	S (-) =	1.0E-06		
	10 2	$K_s (m/s) =$	1.5E-06		
10 1		$S_s (1/m) =$	5.0E-08		
	•	Comments:			
	10 1			f 2.9E-05 m2/s was	
10 0				e fast recovery during interval transmission	
	3			The flow dimension	
	510°			e static pressure me	
10 1 10 2	10 3 10 4 10 5	transducer depth, w	vas derived from	the CHir phase usir	ng straight line
10/CD		extrapolation in the	Horner plot to	a value of 4,638.9 k	Pa.

	Test Sumr	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHi
Area:	Laxemar	Test no:			
Aica.	Laxemai	rest no.			
Borehole ID:	KLX13A	Test start:			070131 00:00
Test section from - to (m):	475.50-495.50 m	Responsible for			Stephan Rohs
rest section from to (iii).	47 0.00 400.00 III	test execution:			Otophan Rone
Section diameter, 2·r _w (m):	0.076	Responsible for		Crist	ian Enachescı
Linear plot Q and p		test evaluation:		Recovery period	1
Linear plot & and p		Indata		Indata	
		p ₀ (kPa) =	9999	maata	
5100	T ¹⁰	p _i (kPa ) =	9999		
KLX13A_475.50-495.50_070221_1_CHir_Q_r		$p_p(kPa) =$		p _F (kPa ) =	999
5000 -		$Q_p (m^3/s) =$	1.67E-04		777.
4950	17	tp (s) =		t _F (s) =	1200
¥ 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4500 - 9 4	R ate [Jm In]				1.00E-06
0	P 8 8 4	S el S [*] (-)= EC _w (mS/m)=	1.00E-00	S el S* (-)=	1.00E-0
Q 4750	un un injection	Temp _w (gr C)=	14.4		-
4750	P section			Derivetive feet -	0.0
4700	• P below • Q	Derivative fact.=	0.04	Derivative fact.=	0.0
4600					
0.00 0.20 0.40 0.60	0.80 1.00 1.20 1.40 I Time [h]	Daguita		Daguita	
		Results	2.05.06	Results	1
lan lan mlatimal davivatas fl	ann mariad	Q/s $(m^2/s)=$	3.0E-06		
Log-Log plot incl. derivates- fl	ow period	T _M (m ² /s)=	3.1E-06		t
		Flow regime:	transient	Flow regime:	transient
Elapsed time [ 10 ⁻⁴ 10 ⁻³ 10 ⁻²	h) 10, ⁻¹ 10, ⁰	dt ₁ (min) =		dt ₁ (min) =	0.50
	[3	dt ₂ (min) =		$dt_2 (min) =$	9.13
	10 °	$T (m^2/s) =$		$T (m^2/s) =$	1.4E-0
		S (-) =	1.0E-06	` '	1.0E-0
10 1	0.3	$K_s$ (m/s) =		$K_s (m/s) =$	7.0E-0
	-10 ·1 · [6	$S_s (1/m) =$		$S_s(1/m) =$	5.0E-08
•	Clark	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	3.5E-10
10 0	0.03	$C_D(-) =$	NA	$C_D(-) =$	3.8E-02
		ξ (-) =	-0.81	ξ (-) =	20.10
.,	10 -2				
10 3 10 4	10.5 10.6 10.7	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
tC		$S_{GRF}(-) =$	NA	$S_{GRF}(-) =$	NA
		D _{GRF} (-) =	NA	$D_{GRF}$ (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Selected represe		_	T
Elagsed time thi		dt ₁ (min) =	0.61	$C (m^3/Pa) =$	3.5E-10
10 2 10,4	10,-2	$dt_2 (min) =$		C _D (-) =	3.8E-0
	300	$T_T (m^2/s) =$	3.5E-06	- , ,	-0.8
· · · · · · · · · · · · · · · · · · ·	***************************************	S (-) =	1.0E-06		
10 1	10 ²	K _s (m/s) =	1.8E-07		
		$S_s (1/m) =$	5.0E-08		
	30 TO SECOND	Comments:			
./	10 1 00	The recommended			
10 10		analysis of the CHi and good data quali			
	3	transmissivity is est			
·		flow dimension disp			
10 ¹ 10 ²	10 3 10 4 10 5	pressure measured	at transducer de	oth, was derived from	m the CHir
D/CD		phase using straight	t line extrapolati	on in the Horner plo	ot to a value of
		4,833.3 kPa.			

Oskarshamn site investig	ation	Test type:[1]			CHi
					0111
Laxi	emar	Test no:			1
	oa.	. 66( 1.6.			
KL>	X13A	Test start:			070221 17:33
493.00-513.0	00 m	Responsible for			Stephan Rohs
		test execution:			-
C	0.076	•		Crist	ian Enachescu
				Recovery period	1
			5005		
	T 10		5005		
	9		5203	p _F (kPa ) =	500:
	Ĭ,			,	
	- 6 m			t _F (s) =	1200
	Rate [				1.00E-0
• P section	jection			3, 3 ( )	
P above P below Q	3		14.7		
	2	Derivative fact.=	0.02	Derivative fact.=	0.0
:	1				
0.80 1.00 1.20 1.40	10				
rime [n]		Results		Results	
		Q/s $(m^2/s)=$	2.9E-06		
ow period		` '	3.1E-06		
		Flow regime:	transient	Flow regime:	transient
] 0.2 10.1 10.0		dt ₁ (min) =	8.50	dt ₁ (min) =	10.02
	3	dt ₂ (min) =	26.27	dt ₂ (min) =	14.04
		$T (m^2/s) =$	3.5E-06	$T (m^2/s) =$	1.4E-0
•	10	S (-) =	1.0E-06	S (-) =	1.0E-06
·	0.3	$K_s (m/s) =$	1.8E-07	$K_s (m/s) =$	7.0E-07
		$S_s (1/m) =$	5.0E-08	$S_s (1/m) =$	5.0E-08
	10 · [[viii] ]/b/	$C (m^3/Pa) =$	NA	$C (m^3/Pa) =$	1.7E-10
3	, j	$C_D(-) =$	NA	$C_D(-) =$	1.9E-02
	-	ξ (-) =	-0.41	ξ (-) =	20.40
	10 -2				
	,	$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
.0 10 10	-	$S_{GRF}(-)$ =	NA	$S_{GRF}(-) =$	NA
		D _{GRF} (-) =	NA	$D_{GRF}$ (-) =	NA
recovery period			ntative paran	neters.	
			8.50	$C (m^3/Pa) =$	1.7E-10
		_ , ,			1.9E-0
	300	$T_T (m^2/s) =$		ξ (-) =	-0.4
2		S (-) =			
•	10 2				
			5.0E-08		
-	oy [APa]				
	10 1 0dd				
· · · · · · · · · · · · · · · · · · ·					
	3				
	10 0	flow dimension disp	played during th	e test is 2 (radial flo	w). The static
		Inteccure measured	at transducer der	oth, was derived from	m the CHir
10 3 10 4 10 5		phase using straight			
•	# P secton	493.00-513.00 m  0.076  Pecton Petrow Petrow  100 100 120 140  Time [n]  recovery period	0.076 Responsible for test evaluation:  Flow period  Indata $p_0$ (kPa) = $p_p$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	### A

	Test S	umn	nary Sheet			
Project:	Oskarshamn site investiç					CHii
Area:	Lax	kemar	Test no:			1
Borehole ID:	KLX13A T		Test start:			070222 08:14
Test section from - to (m):	507.00-527.00 m F					Stephan Rohs
Section diameter, 2·r _w (m):		0.076	test execution: Responsible for		Crist	ian Enachescu
Linear plat O and p			test evaluation:		D	•
Linear plot Q and p			Flow period		Recovery period	l
			Indata $p_0 (kPa) =$	5142	Indata	
5400		2.0	$p_0 (KPa) =$ $p_i (kPa) =$	5142		
5350 -	KLX13A_507.00-527.00_070222_1_CHir_Q_r		$p_{p}(kPa) =$		p _F (kPa ) =	514
5300			•	1.48E-05	p _F (Ki a ) –	314
5250	•	1.5	$Q_{p} (m^{3}/s) = $ $tp (s) =$		t _F (s) =	1200
5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 50		er Rate [l/min]			S el S* (-)=	1.00E-06
\$ 5150 -	the state of the s	ion Rat	S el S [*] (-)= EC _w (mS/m)=	1.00E-00	S el S (-)=	1.00E-00
Q 5050		Injection	Temp _w (gr C)=	14.9		
5000	P section     P above	- 0.5	Derivative fact.=		Derivative fact.=	0.04
4950	• P below • Q :		Denvative lact.	0.04	Derivative lact.	0.0
4900 0.00 0.20 0.40 0.60 Elapsec	0.80 1.00 1.20 1.40 d Time [h]	⊥₀.₀	D 16 .		D	
			Results	7.05.07	Results	1
Landar da Carlada Carta de	1 2 4		Q/s (m ² /s)=	7.3E-07		
Log-Log plot incl. derivates- f	low period		T _M (m ² /s)=	7.6E-07	<u> </u>	4
Elapsed time	[N]		Flow regime:	transient	Flow regime:	transient
10 2		10 1	at ()		dt ₁ (min) =	0.9
			dt ₂ (min) =		dt ₂ (min) =	15.20
10 15			$T (m^2/s) = S (-1) = -1$	1.0E-06	$T (m^2/s) =$	3.5E-06 1.0E-06
		10 °	$S(-) = K_s(m/s) =$		$K_s (m/s) =$	1.8E-07
	•		$S_s(11/s) =$		$S_s(11/s) = S_s(1/m) = S_s(1/m)$	5.0E-08
10 0	**************************************	10 ⁻¹ [NJJ.], fb/		0.0E-00		2.9E-10
	a la la la companya di salah d	1/4 (1	$C (m^3/Pa) = C_P (-) =$	NA	$C (m^3/Pa) = C_P (-) =$	3.2E-02
10 -1		10 -2	$C_{D}(-) = $ $\xi(-) =$	0.84	90()	20.20
			3()		5 ( )	
10 4 10 5	10 6 10 7 1		$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
,			S _{GRF} (-) =	NA	S _{GRF} (-) =	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period		Selected represe	entative paran	neters.	
			dt ₁ (min) =	0.17	C (m ³ /Pa) =	2.9E-10
Elapsed time In 10, 3 10, 3	10,-1	٦ .	$dt_2$ (min) =		C _D (-) =	3.2E-02
10			$T_T (m^2/s) =$	9.1E-07	ξ (-) =	0.84
		300	S (-) =	1.0E-06		
· · ·	•	10 ²	K _s (m/s) =	4.6E-08		
10 1			$S_s (1/m) =$	5.0E-08		
	•	.30 (Pa)	Comments:	-	-	_
100	Marie and a superior	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	The recommended analysis of the CHi The confidence ran 7.0E-07 m2/s to 4.0	phase, which sh ge for the interv	ows the better derival transmissivity is	rative quality.
10 ⁻⁷ 10 ⁻² socr	10 3 10 4 10	10 °	the test is 2 (radial depth, was derived	flow). The static from the CHir p	pressure measured	at transducer ine

	Test Sur	mma	ry Sheet			
Project:	Oskarshamn site investigat	tion <u>Te</u>	est type:[1]			CHir
Area:	Laxer	mar Te	est no:			1
Borehole ID:	KLX1	13A Te	est start:			070222 10:14
Test section from - to (m):	527.00-547.00	0 m R	esponsible for			Stephan Rohs
			st execution:			
Section diameter, 2·r _w (m):	0.0		esponsible for st evaluation:		Crist	ian Enachescu
Linear plot Q and p			low period		Recovery period	l
		In	data		Indata	
		$p_0$	) (kPa) =	5338		
	KLX13A_527.00-547.00_070222_1_CHir_Q_r		(kPa ) =	5336		
5550		$p_p$	(kPa) =	5536	p _F (kPa ) =	5339
	1.	.5 Q	_p (m ³ /s)=	1.67E-05		
(a) 2400 :		Ę tp	(s) =	1200	$t_F$ (s) =	1200
5 5450 B 5400 B 5500	-1.	S ate [	el S* (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
5300 S			C _w (mS/m)=			
No Q 5250	P section     P shows	Te	emp _w (gr C)=	15.2		
5200 -	P below Q		erivative fact.=	0.03	Derivative fact.=	0.04
5150						
5100	0.80 1.00 1.20 1.40	1.0				
Eldpsed I	ine (ii)	Re	esults		Results	
			$/s (m^2/s) =$	8.2E-07		
Log-Log plot incl. derivates- flo	ow period	$T_N$	$_{M}$ (m ² /s)=	8.6E-07		
		FI	ow regime:	transient	Flow regime:	transient
Elapsed time [N]	10,-1	dt	(min) =	0.20	$dt_1$ (min) =	0.87
	10	dt	₂ (min) =	18.25	$dt_2$ (min) =	18.02
		Т	$(m^2/s) =$	9.5E-07	$T (m^2/s) =$	3.1E-06
10 1	10	.∘ S	(-) =	1.0E-06	S (-) =	1.0E-06
		Ks	_s (m/s) =	4.8E-08	$K_s (m/s) =$	1.6E-07
10 0		S	_s (1/m) =	5.0E-08	$S_s (1/m) =$	5.0E-08
	10	C	$(m^3/Pa) =$	NA	C (m ³ /Pa) =	1.8E-10
• .		-	D (-) =	NA	C _D (-) =	2.0E-02
10 -1	10	δ ξ (	(-) =	-0.02	ξ(-) =	14.60
				1		
10 3 10 4	10 5 10 6 10 7	To	$_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
110			GRF(-) =	NA	S _{GRF} (-) =	NA
		_	GRF (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period	Se	elected represe	entative paran	neters.	
		2000000	: ₁ (min) =	0.20		1.8E-10
Elapsed time (h) 10 -4 10 -3 10	⁻² 10, ⁻¹ 10, ⁰		₂ (min) =	18.25	$C_D(-) =$	2.0E-02
10 2		T-	$\Gamma(m^2/s) =$	9.5E-07		-0.02
	300		(-) =	1.0E-06		
22.00			s (m/s) =	4.8E-08		
10 1	<b>▲</b> 10 ¹	2	s (1/m) =	5.0E-08		
	<u>.</u>		omments:	<u> </u>		
	4	2		transmissivity of	f 9.5E-07 m2/s was	derived from the
10 °	10	' [®] an	nalysis of the CHi	phase, which sh	ows the better deriv	ative and
	Andrew Control of the				ence range for the in	
	3				E-07 m2/s to 5.0E-0 e test is 2 (radial flo	
					oth, was derived from	
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵				on in the Horner plo	
		pn	iase using straigh	i iiiie extraporati	on in the Horner pic	n to a value of

	Test Si	ımn	nary Sheet			
Project:	Oskarshamn site investiga	ation	Test type:[1]			CHir
Aroa	Lov	mar	Toot no:			1
Area:	Laxe	emar	Test no:			ı
Borehole ID:	KL>	(13A	Test start:			070222 13:02
Toot cootion from to (m):	547.00.567.0	)() m	Responsible for			Stophon Dobo
Test section from - to (m):	547.00-567.0	JU 111	test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0	.076	Responsible for		Crist	ian Enachescı
	<u> </u>		test evaluation:		I	
Linear plot Q and p			Flow period		Recovery period	
			Indata	5522	Indata	1
5800	KLX13A_547.00-567.00_070222_1_CHir_Q_r.xls	2.0	p ₀ (kPa) =	5533		
5750 -	KLX13A_547.00-567.00_070222_1_CHIF_Q_F.XIS		$p_i (kPa) = p_p(kPa) =$	5532	n (kDa ) =	552
5700	,	- 1.5	•		p _F (kPa ) =	5533
<u>re</u> 5650 ·		Ē	$Q_p (m^3/s) =$	1.63E-05		120/
E 5550	·	ate [Vm	tp (s) =		t _F (s) =	1200
2 5550 2 5500			S el S* (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
5500 · · · · · · · · · · · · · · · · · ·	◆ P section	Injec	EC _w (mS/m)=			
5400 -	P above P below	- 0.5	Temp _w (gr C)=	15.5		
5350 -			Derivative fact.=	0.05	Derivative fact.=	0.03
5300	0.80 1.00 1.20 1.40	0.0				
	d Time [h]		Results		Descrite	
				8.1E-07	Results	
Log-Log plot incl. derivates- f	low pariod		Q/s $(m^2/s)=$	8.4E-07		
Log-Log plot filel. derivates- i	low period		T _M (m ² /s)= Flow regime:	transient	Flow regime:	transient
Elapsed time [	n .		dt ₁ (min) =		dt ₁ (min) =	0.33
10 2 10 3 10 3			$dt_1 (min) =$ $dt_2 (min) =$		$dt_1 (min) =$ $dt_2 (min) =$	13.15
			- ` '		$T (m^2/s) =$	4.1E-06
		3	$T (m^2/s) = S (-) =$	1.0E-06	` '	1.0E-06
10 1		10.0	$K_s (m/s) =$		$K_s (m/s) =$	2.1E-07
0 00 15 80000000000000000000000000000000			$S_s(1/m) =$		$S_s(1/m) =$	5.0E-08
con .		0.3 (July)	$C (m^3/Pa) =$	NA	C (m ³ /Pa) =	7.1E-1
10 0		1/4 (1/4	$C (m /Pa) = C_D (-) =$	NA	$C_{D}(-) =$	7.1E-1
	A CONTRACTOR OF THE PROPERTY O	10 -1		0.89	- , ,	20.90
		0.03	ξ (-) =	0.03	ζ(-) –	20.90
• •			$T_{GRF}(m^2/s) =$	NA	$T_{GRF}(m^2/s) =$	NA
10 ⁴ 10 ⁵ 10	10 ^d 10 ⁷ 10 ^d		$S_{GRF}(III/S) =$	NA	$S_{GRF}(III / S) =$	NA
			D _{GRF} (-) =	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives	- recovery period		Selected represe			1.7.
55 prot	receive, perior		$dt_1$ (min) =		C (m ³ /Pa) =	7.1E-1
Elapsed time (r	1) 10 -2 10 -1		$dt_2 \text{ (min)} =$		$C_D(-) =$	7.8E-03
10 2			$T_T (m^2/s) =$	1.1E-06		0.89
		300	S (-) =	1.0E-06		
		10.2	$K_s$ (m/s) =	5.5E-08		
10 1		10	$S_s (1/m) =$	5.0E-08		
		30	Comments:	3.32 30		<u> </u>
. \	•	p-d0f KPb		transmissivity of	f 1.1E-06 m2/s was	derived from the
\		10 1 8	analysis of the CHi			
10 0			and horizontal stabi	lisation. The co	nfidence range for the	ne interval
10 °	· · · · · · · · · · · · · · · · · · ·	2				V 2/ TI
10 %		3	transmissivity is est			
		3 10 ⁰	flow dimension disp	played during th	e test is 2 (radial flo	w). The static
10 10 10 BDCI	3 10 10 10 10	3 10 ⁰		olayed during that transducer dep	e test is 2 (radial flo oth, was derived from	w). The static n the CHir

	Test S	ıımr	nary Shee	et			
Project:	Oskarshamn site investig	ation	Test type:[1	1			CHir
Area:	Lax	emar	Test no:				1
Borehole ID:	KL	X13A	Test start:				070222 15:00
Test section from - to (m):	562.50-582.	50 m	Responsible test execution				Stephan Rohs
Section diameter, 2·r _w (m):	(	0.076	Responsible	e for		Crist	ian Enachescu
Linear plot Q and p			test evaluati			Recovery period	Ī
Linear plot & and p			Indata	<u> </u>		Indata	
			p ₀ (kPa) =		5686		
6000 KLX	13A_562.50-582.50_070222_1_CHir_Q_r	0.5	p _i (kPa ) =		5685		
5900		0.4	$p_{D}(kPa) =$		5883	p _F (kPa ) =	5691
		0.4	$Q_p (m^3/s) =$		1.45E-06		
4 S 5000	1	0.3 E	tp (s) =		1200	t _F (s) =	3600
5700		7.0 - njection Rate [l/min]	S el S [*] (-)=		1.00E-06	S el S [*] (-)=	1.00E-06
9 0 0 mm to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• P section	- 0.2 oi	EC _w (mS/m)	)=		, ,	
2 5000	P above     P below		Temp _w (gr C	:)=	15.8		
5500 -	· q	0.1	Derivative f	act.=	0.06	Derivative fact.=	0.02
5400	-	10.0					
0.00 0.50 1.00 Elapsed	1.50 2.00 I Time [h]		_				
			Results			Results	
			Q/s ( $m^2/s$ )=		7.2E-08		
Log-Log plot incl. derivates- f	low period		$T_M (m^2/s) =$		7.5E-08		
			Flow regime		transient	Flow regime:	transient
10 1 10 2 Elapsed time	[h] 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10 -1 10	7	dt ₁ (min) =			dt ₁ (min) =	19.84
	:	130	dt ₂ (min) =	-		dt ₂ (min) =	52.24
سيزر ا		10 1	$T (m^2/s) = S (-) =$			$T (m^2/s) = S (-) =$	3.7E-08
10 %	•		0 ( )		1.0E-06		1.0E-06 1.9E-09
*	and a state of the	3	$K_s (m/s) =$ $S_s (1/m) =$			$K_s (m/s) =$ $S_s (1/m) =$	5.0E-08
		10 ° [wig			5.0E-06		8.5E-12
	•	1/4 (1/9)	$C (m^3/Pa) = C_D (-)$	=	NA	$C (m^3/Pa) = C_D (-) =$	9.4E-04
10 1		0.3	$\xi(-) =$		-2.38		-2.86
		10 -1	S (-) -		-2.00	Ç(-) –	-2.00
			$T_{GRF}(m^2/s) =$	_	NA	$T_{GRF}(m^2/s) =$	NA
10 ° 10 ° t	10 ² 10 ³ 10	7	$S_{GRF}(-) =$		NA	$S_{GRF}(-) =$	NA
				_	NA	D _{GRF} (-) =	NA
Log-Log plot incl. derivatives-	recovery period			prese	ntative paran		
			dt ₁ (min) =			C (m ³ /Pa) =	8.5E-12
Elapsed time (	n) 10 -1 10 0 10	1	dt ₂ (min) =	=		$C_D(-) =$	9.4E-04
10 1			$T_T (m^2/s) =$	:	3.7E-08		-2.86
		300	S (-) =	:	1.0E-06		
		10 ²	$K_s$ (m/s) =		1.9E-09		
10 °			$S_s (1/m) =$		5.0E-08		
- interior contracts		30	Comments	:			
		10 ' 04				f 3.7E-8 m2/s was d	
10 -1		- ×				one), which shows the range for the interval	
		3				ange for the interva 0E-8 m2/s. The flow	
			displayed du	ring the	e test is 2 (radial	flow). The static pr	ressure
10 ¹ 10 ²	10 ³ 10 ⁴ 10 ⁵	10 "				derived from the CH	
			straight line 6	extrapo	nation in the Ho	rner plot to a value	oi 5,677.5 kPa.
poc			straight line e	extrapo	lation in the Ho	rner plot to a value	of 5,677.5 k

	Test Summ	nary Sheet			
Project:	Oskarshamn site investigation	Test type:[1]			CHir
		_			
Area:	Laxemar	Test no:			1
Borehole ID:	KLX13A	Test start:			070222 15:00
Test section from - to (m):	583.50-595.85 m	Responsible for test execution:			Stephan Rohs
Section diameter, 2·r _w (m):	0.076	Responsible for		Cristi	an Enachescu
		test evaluation:			
Linear plot Q and p		Flow period		Recovery period	
		Indata		Indata	
5950 <del>-</del>		p ₀ (kPa) =	5711		
3900	KLX13A_583.50-595.85_070222_1_CHir_Q_r	p _i (kPa ) =	5712		
5900	• P bottom	$p_p(kPa) =$	5798	p _F (kPa ) =	5717
z		$Q_p (m^3/s) =$	NA		
8 6550 -		tp (s) =	1200	$t_F$ (s) =	3600
F 2550 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2500 - 4 2	۱ -	S el S [*] (-)=	1.00E-06	S el S [*] (-)=	1.00E-06
· · ·		EC _w (mS/m)=			
S 5750		Temp _w (gr C)=	NA		
5700		Derivative fact.=	0.04	Derivative fact.=	0.04
	;				
5650 L	1.50 2.00				
Енфэец	Time [ii]	Results	-	Results	
		$Q/s (m^2/s) =$	NA		
Log-Log plot incl. derivates- fl	ow period	$T_{\rm M} (m^2/s) =$	NA		
		Flow regime:	transient	Flow regime:	transient
10 1 10 2 Elapsed time (n)	. 10,°	$dt_1$ (min) =	0.70	$dt_1$ (min) =	1.80
	İ	$dt_2$ (min) =	1.55	$dt_2$ (min) =	8.62
	10 2	$T (m^2/s) =$	4.0E-08	$T (m^2/s) =$	6.4E-08
10 °		S (-) =	8.4E-08	S (-) =	2.2E-07
A Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comm	İ	$K_s$ (m/s) =	3.3E-09	$K_s (m/s) =$	5.1E-09
P 10-1	10 ¹ [6	$S_{s}(1/m) =$	6.8E-09	$S_s (1/m) =$	1.7E-08
<b>*</b> */	(Pea) (poto) (pta)	C (m ³ /Pa) =	NA	C (m ³ /Pa) =	NA
<b> </b>	a too	C _D (-) =	NA	C _D (-) =	NA
10 2		ξ(-) =	NA	ξ(-) =	NA
	ļ				
	10 -1	$T_{GRF}(m^2/s) =$		$T_{GRF}(m^2/s) =$	
10 ° 10 1′ tDrD2	10 ² 10 ³ 10 ⁴	$S_{GRF}(-) =$	1	$S_{GRF}(-) =$	1
		D _{GRF} (-) =		D _{GRF} (-) =	
Log-Log plot incl. derivatives-	recovery period	Selected represe	ntative paran		
		dt ₁ (min) =		C (m ³ /Pa) =	NA
Elapsed time (h)	0 1 ^	$dt_2 \text{ (min)} =$		$C_D(-) =$	NA
10 10 10 10 10	0 10 ³ 10 ²	$T_T (m^2/s) =$	6.4E-08		NA
		S (-) =	2.2E-07		1
	10 2	$K_s (m/s) =$	5.1E-09		
10 °	30	$S_s (1/m) =$	1.7E-08		
A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA	_	Comments:	1		1
	10 ¹ 00 d o co co co co co co co co co co co co c		test is based on	the response of the	bottom zone
10-1	e d	from the previous to	est.	-	
<b>[ !</b> ./	3			f 6.4•10-8 m2/s was	
/	10 °			r zone), which show nce range for the inte	
10 0 10 1	10 2 10 3 10 4			•10-8 m2/s to 1.0•10	
D/rD2				v dimension of 2 (rac	
		Ī			

Borehole: KLX13 A

## **APPENDIX 4**

Nomenclature

Character	SICADA designation	Explanation	Dimension	Unit
Variables,	constants			_
$A_{w}$		Horizontal area of water surface in open borehole, not	[L ² ]	m ²
h		including area of signal cables, etc.	FL 3	
b B		Aquifer thickness (Thickness of 2D formation) Width of channel	[L]	m
I I		Corrected borehole length	[L] [L]	m
<u> </u>		Uncorrected borehole length		m
<u>L₀</u>		Point of application for a measuring section based on its	[L] [L]	m
L _p		centre point or centre of gravity for distribution of transmissivity in the measuring section.	[[-]	"
L _w		Test section length.	[L]	m
dĽ		Step length, Positive Flow Log - overlapping flow logging. (step length, PFL)	[L]	m
r		Radius	[L]	m
r _w		Borehole, well or soil pipe radius in test section.	[L]	m
r _{we}		Effective borehole, well or soil pipe radius in test section. (Consideration taken to skin factor)	[L]	m
r _s		Distance from test section to observation section, the shortest distance.	[L]	m
r _t		Distance from test section to observation section, the <b>interpreted</b> shortest distance via conductive structures.	[L]	m
$r_D$		Dimensionless radius, r _D =r/r _w	-	-
Z		Level above reference point	[L]	m
$z_r$		Level for reference point on borehole	[L]	m
$z_{wu}$		Level for test section (section that is being flowed), upper limitation	[L]	m
$Z_{WI}$		Level for test section (section that is being flowed), lower limitation	[L]	m
Z _{ws}		Level for sensor that measures response in test section (section that is flowed)	[L]	m
Z _{ou}		Level for observation section, upper limitation	[L]	m
Z _{ol}		Level for observation section, lower limitation	[L]	m
Z _{os}		Level for sensor that measures response in observation section	[L]	m
E		Evaporation:	[L ³ /(T L ² )]	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m ³ /s
ET		Evapotranspiration	[L³/(T L²)]	mm/y, mm/d,
		hydrological budget:	$\left[ L^{3}/T \right]$	m³/s
Р		Precipitation	[L ³ /T]	mm/y, mm/d,
		hydrological budget:	[L ³ /T] [L ³ /(T L ² )]	m³/s
R		Groundwater recharge		mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m ³ /s
D		Groundwater discharge	[L ³ /(T L ² )]	mm/y, mm/d,
		hydrological budget:	[L ³ /T]	m ³ /s
$Q_R$		Run-off rate	[L ³ /T]	m³/s
$Q_p$		Pumping rate	[L ³ /T]	m³/s
Q _I		Infiltration rate	[L ³ /T]	m ³ /s
			2.	9
Q		Volumetric flow. Corrected flow in flow logging $(Q_1 - Q_0)$ (Flow rate)	[L ³ /T]	m³/s
$Q_0$		Flow in test section during undisturbed conditions (flow logging).	[L ³ /T]	m ³ /s
$Q_p$		Flow in test section immediately before stop of flow. Stabilised pump flow in flow logging.	[L ³ /T]	m ³ /s

Character	SICADA designation	Explanation	Dimension	Unit
Q _m		Arithmetical mean flow during perturbation phase.	[L ³ /T]	m ³ /s
Q ₁		Flow in test section during pumping with pump flow $Q_{p1}$ , (flow logging).	[L ³ /T]	m ³ /s
Q ₂		Flow in test section during pumping with pump flow $\mathbf{Q}_{\mathrm{p1}}$ , (flow logging).	[L ³ /T]	m ³ /s
ΣQ	SumQ	Cumulative volumetric flow along borehole	[L ³ /T]	m ³ /s
$\Sigma Q_0$	SumQ0	Cumulative volumetric flow along borehole, undisturbed conditions (ie, not pumped)	[L ³ /T]	m ³ /s
$\Sigma Q_1$	SumQ1	Cumulative volumetric flow along borehole, with pump flow Q _{p1}	[L ³ /T]	m ³ /s
$\Sigma Q_2$	SumQ2	Cumulative volumetric flow along borehole, with pump flow Q ₀₂	[L ³ /T]	m ³ /s
$\Sigma Q_{C1}$	SumQC1	Corrected cumulative volumetric flow along borehole, $\Sigma Q_1$ - $\Sigma Q_0$	[L ³ /T]	m ³ /s
$\Sigma Q_{C2}$	SumQC2	Corrected cumulative volumetric flow along borehole, $\Sigma Q_2$ - $\Sigma Q_0$	[L ³ /T]	m ³ /s
q		Volumetric flow per flow passage area (Specific discharge (Darcy velocity, Darcy flux, Filtration velocity)).	([L ³ /T*L ² ]	m/s
V		Volume	[L ³ ]	m ³
$V_{w}$		Water volume in test section.	[L ³ ]	$m^3$
V _p		Total water volume injected/pumped during perturbation phase.	[L ³ ]	m ³
V		Velocity	$([L^3/T*L^2]$	m/s
Va		Mean transport velocity (Average linear velocity (Average linear groundwater velocity, Mean microscopic velocity));. $v_a=q/n_e$	([L ³ /T*L ² ]	m/s
t		Time	[T]	hour,mi n,s
$t_0$		Duration of rest phase before perturbation phase.	[T]	S
t _p		Duration of perturbation phase. (from flow start as far as $p_p$ ).	[T]	S
$t_{F}$		Duration of recovery phase (from pp to pF).	[T]	S
t ₁ , t ₂ etc		Times for various phases during a hydro test.	[T]	hour,mi n,s
dt		Running time from start of flow phase and recovery phase respectively.	[T]	S
dt _e		$dt_e = (dt \cdot tp) / (dt + tp)$ Agarwal equivalent time with dt as running time for recovery phase.	[T]	S
t _D		$t_D = T \cdot t / (S \cdot r_w^2)$ . Dimensionless time	-	-
р		Static pressure; including non-dynamic pressure which depends on water velocity. Dynamic pressure is normally ignored in estimating the potential in groundwater flow relations.	[M/(LT) ² ]	kPa
p _a		Atmospheric pressure	$[M/(LT)^2]$	kPa
p _t		Absolute pressure; p _t =p _a +p _g	$[M/(LT)^2]$	kPa
$p_g$		Gauge pressure; Difference between absolute pressure and atmospheric pressure.	[M/(LT) ² ]	kPa
$p_0$		Initial pressure before test begins, prior to packer expansion.	[M/(LT) ² ]	kPa
p _i		Pressure in measuring section before start of flow.	$[M/(LT)^2]$	kPa
p _f		Pressure during perturbation phase.	$[M/(LT)^2]$	kPa
ps		Pressure during recovery.	[M/(LT) ² ]	kPa
$p_p$		Pressure in measuring section before flow stop.	[M/(LT) ² ]	kPa
p _F		Pressure in measuring section at end of recovery.	[M/(LT) ² ]	kPa
p _D		$p_D=2\pi \cdot T \cdot p/(Q \cdot \rho_w g)$ , Dimensionless pressure	-	-
dp		Pressure difference, drawdown of pressure surface between two points of time.	[M/(LT) ² ]	kPa

Character	SICADA designation	Explanation	Dimension	Unit
dp _f		$dp_f = p_i - p_f$ or $= p_f - p_i$ , drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $dp_f$ usually expressed positive.	[M/(LT) ² ]	kPa
dp _s		$dp_s = p_s - p_p$ or $= p_p - p_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_s$ usually expressed positive.	[M/(LT) ² ]	kPa
dp _p		$dp_p = p_i - p_p$ or $= p_p - p_i$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dp_p$ expressed positive.	[M/(LT) ² ]	kPa
dp _F		$dp_F = p_p - p_F$ or $= p_F - p_p$ , <b>maximal</b> pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dp_F$ expressed positive.	[M/(LT) ² ]	kPa
Н		Total head; (potential relative a reference level) (indication of h for phase as for p). H=h _e +h _v +h _v	[L]	m
h		Groundwater pressure level (hydraulic head (piezometric head; possible to use for level observations in boreholes, static head)); (indication of h for phase as for p). h=h _e +h _p	[L]	m
h _e		Height of measuring point (Elevation head); Level above reference level for measuring point.	[L]	m
h _p		Pressure head; Level above reference level for height of measuring point of stationary column of water giving corresponding static pressure at measuring point	[L]	m
h _v		Velocity head; height corresponding to the lifting for which the kinetic energy is capable (usually neglected in hydrogeology)	[L]	m
S		Drawdown; Drawdown from undisturbed level (same as dh _p , positive)	[L]	m
Sp		Drawdown in measuring section before flow stop.	[L] [L]	m
h ₀		Initial above reference level before test begins, prior to packer expansion.	[L]	m
h _i		Level above reference level in measuring section before start of flow.	[L]	m
h _f		Level above reference level during perturbation phase.	[L]	m
h _s		Level above reference level during recovery phase.	[L]	m
h _p		Level above reference level in measuring section before flow stop.	[L]	m
h _F		Level above reference level in measuring section at end of recovery.	[L]	m
dh		Level difference, drawdown of water level between two points of time.	[L]	m
dh _f		$dh_f = h_i - h_f$ or $= h_f - h_i$ , drawdown/pressure increase of pressure surface between two points of time during perturbation phase. $dh_f$ usually expressed positive.	[L]	m
dh _s		$dh_s = h_s - h_p$ or $= h_p - h_s$ , pressure increase/drawdown of pressure surface between two points of time during recovery phase. $dh_s$ usually expressed positive.	[L]	m
dh _p		$dh_p = h_i - h_p$ or $= h_p - h_i$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_p$ expressed positive.	[L]	m
dh _F		$dh_F = h_p - h_F$ or $= h_F - h_p$ , maximal pressure increase/drawdown of pressure surface between two points of time during perturbation phase. $dh_F$ expressed positive.	[L]	m
Te _w		Temperature in the test section (taken from temperature logging). Temperature		°C
Te _{w0}		Temperature in the test section during undisturbed conditions (taken from temperature logging).		°C

Character	SICADA designation	Explanation	Dimension	Unit
Te _o		Temperature in the observation section (taken from temperature logging). Temperature		°C
FC		Electrical conductivity of water in test section.		mS/m
EC _w		Electrical conductivity of water in test section during		mS/m
LOwo		undisturbed conditions.		1110/111
ECo		Electrical conductivity of water in observation section		mS/m
TDS _w		Total salinity of water in the test section.	FN 4 /L ³ 1	
			[M/L ³ ]	mg/L
TDS _{w0}		Total salinity of water in the test section during undisturbed conditions.	[IVI/L]	mg/L
TDS _o		Total salinity of water in the observation section.	[M/L ³ ]	mg/L
		Constant of gravitation (9.81 m*s ⁻² ) (Acceleration due to	[L/T ² ]	m/s ²
g		gravity)	[[-/   ]	111/5
π	pi	Constant (approx 3.1416).	[-]	
π r	Pi		[-]	
ı		Residual. $r=p_c-p_m$ , $r=h_c-h_m$ , etc. Difference between measured data $(p_m, h_m, etc)$ and estimated data $(p_c, h_c, etc)$		
ME		,		
IVIL		Mean error in residuals. $ME = \frac{1}{n} \sum_{i=1}^{n} r_i$		
NME		Normalized ME. NME=ME/(x _{MAX} -x _{MIN} ), x: measured variable considered.		
MAE		Mean absolute error. $MAE = \frac{1}{n} \sum_{i=1}^{n}  r_i $		
NMAE		Normalized MAE. NMAE=MAE/(x _{MAX} -x _{MIN} ), x: measured variable considered.		
RMS		Root mean squared error. $RMS = \left(\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right)^{0.5}$		
NRMS		Normalized RMR. NRMR=RMR/(x _{MAX} -x _{MIN} ), x: measured variable considered.		
SDR		Standard deviation of residual.		
		$SDR = \left(\frac{1}{n-1}\sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
SEMR		Standard error of mean residual. $SEMR = \left(\frac{1}{n(n-1)} \sum_{i=1}^{n} (r_i - ME)^2\right)^{0.5}$		
Parameter:	S			
Q/s		Specific capacity $s=dp_p$ or $s=s_p=h_0-h_p$ (open borehole)	[L ² /T]	m²/s
D		Interpreted flow dimension according to Barker, 1988.	[-]	-
dt₁		Time of starting for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt ₂		End of time for semi-log or log-log evaluated characteristic counted from start of flow phase and recovery phase respectively.	[T]	S
dt _L		Response time to obtain 0.1 m (or 1 kPa) drawdown in observation section counted from start of recovery phase.	[T]	S
ТВ		Flow capacity in a one-dimensional structure of width B and transmissivity T. Transient evaluation of one-dimensional structure	[L ³ /T]	m³/s
Τ		Transmissivity	[L ² /T]	m²/s
T _M		Transmissivity according to Moye (1967)	[L ² /T]	m ² /s
T _Q		Evaluation based on Q/s and regression curve between Q/s and T, as example see Rhén et al (1997) p. 190.	[L ² /T]	m ² /s
Ts		Transmissivity evaluated from slug test	$[L^2/T]$	m ² /s

Character	SICADA designation	Explanation	Dimension	Unit
T _D		Transmissivity evaluated from PFL-Difference Flow Meter	[L ² /T]	m²/s
Tı		Transmissivity evaluated from Impeller flow log	[L ² /T]	m ² /s
T _{Sf} , T _{Lf}		Transient evaluation based on semi-log or log-log	[L ² /T]	m ² /s
31, FI		diagram for perturbation phase in injection or pumping.		
T _{Ss} , T _{Ls}		Transient evaluation based on semi-log or log-log	[L ² /T]	m²/s
. 35, . L5		diagram for recovery phase in injection or pumping.	[-,.]	111 70
T _T		Transient evaluation (log-log or lin-log). Judged best	[L ² /T]	m²/s
' '		evaluation of $T_{Sf}$ , $T_{Lf}$ , $T_{Ss}$ , $T_{Ls}$	[[-/']	111 /3
T _{NLR}		Evaluation based on non-linear regression.	[L ² /T]	m²/s
T _{Tot}		Judged most representative transmissivity for particular	[L ² /T]	m ² /s
Tot		test section and (in certain cases) evaluation time with	[[-/1]	111 /3
		respect to available data (made by SKB at a later stage).		
		respect to available data (made by SNB at a later stage).		
IZ.		I hydroulia a and uptivity	ri / <del>T</del> 1	/a
K		Hydraulic conductivity	[L/T]	m/s
Ks		Hydraulic conductivity based on spherical flow model	[L/T]	m/s
K _m		Hydraulic conductivity matrix, intact rock	[L/T]	m/s
k		Intrinsic permeability	[L ² ]	m ²
kb		Permeability-thickness product: kb=k·b	[L ³ ]	m ³
SB		Storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
SB*		Assumed storage capacity in a one-dimensional structure of width B and storage coefficient S. Transient evaluation of one-dimensional structure	[L]	m
S			r 1	-
<u>s</u> S*		Storage coefficient, (Storativity)	[-]	
		Assumed storage coefficient	[-]	-
S _y		Theoretical specific yield of water (Specific yield;	[-]	-
		unconfined storage. Defined as total porosity (n) minus		
_		retention capacity (S _r )		
$S_{ya}$		Specific yield of water (Apparent specific yield);	[-]	-
		unconfined storage, field measuring. Corresponds to		
		volume of water achieved on draining saturated soil or		
		rock in free draining of a volumetric unit. $S_{ya} = S_y$ (often		
		called S _y in literature)		
S _r		Specific retention capacity, (specific retention of water,	[-]	-
		field capacity) (Specific retention); unconfined storage.		
		Corresponds to water volume that the soil or rock has left		
		after free draining of saturated soil or rock.		
S _f		Fracture storage coefficient	[-]	-
$\frac{S_f}{S_m}$		Matrix storage coefficient	[-]	-
S _{NLR}		Storage coefficient, evaluation based on non-linear	[-]	-
· <del></del> -		regression		
S _{Tot}		Judged most representative storage coefficient for	[-]	-
- 101		particular test section and (in certain cases) evaluation	' '	
		time with respect to available data (made by SKB at a		
		later stage).		
		iator stagoj.		
S _s		Specific storage coefficient; confined storage.	[ 1/L]	1/m
S _s *				
J _S		Assumed specific storage coefficient; confined storage.	[ 1/L]	1/m
		Hadron Programmer To the Programmer Comment	[ TT]	-
Cf		Hydraulic resistance: The hydraulic resistance is an	[T]	S
		aquitard with a flow vertical to a two-dimensional		
		formation. The inverse of c is also called Leakage		
		coefficient. c _f =b'/K' where b' is thickness of the aquitard		
		and K' its hydraulic conductivity across the aquitard.		
$L_f$		Leakage factor: $L_f = (K \cdot b \cdot c_f)^{0.5}$ where K represents	[L]	m
	1	characteristics of the aquifer.	I	
		characteristics of the aquiler.		

Character	SICADA designation	Explanation	Dimension	Unit
ξ* C	Skin	Assumed skin factor	[-]	-
С		Wellbore storage coefficient	$[(LT^2)\cdot M^2]$	m³/Pa
$C_D$		$C_D = C \cdot \rho_w g / (2\pi \cdot S \cdot r_w^2)$ , Dimensionless wellbore storage coefficient	[-]	-
ω	Stor-ratio	$\omega = S_f / (S_f + S_m)$ , storage ratio (Storativity ratio); the ratio of storage coefficient between that of the fracture and total storage.	[-]	-
λ	Interflow-coeff	$\lambda = \alpha \cdot (K_m / K_f) \cdot r_w^2$ interporosity flow coefficient.	[-]	-
$T_GRF$		Transmissivity interpreted using the GRF method	[L ² /T]	m ² /s
S _{GRF}		Storage coefficient interpreted using the GRF method	[ 1/L]	1/m
D _{GRF}		Flow dimension interpreted using the GRF method	[-]	-
- GRF		The warmender interpreted dening the Orth Internet	1.1	
C _w		Water compressibility; corresponding to β in hydrogeological literature.	[(LT ² )/M]	1/Pa
C _r		Pore-volume compressibility, (rock compressibility); Corresponding to α/n in hydrogeological literature.	[(LT ² )/M]	1/Pa
Ct		$c_t = c_r + c_w$ , total compressibility; compressibility per volumetric unit of rock obtained through multiplying by the total porosity, n. (Presence of gas or other fluids can be included in $c_t$ if the degree of saturation (volume of respective fluid divided by n) of the pore system of respective fluid is also included)	[(LT ² )/M]	1/Pa
nc _t		Porosity-compressibility factor: nc _t = n·c _t	[(LT ² )/M]	1/Pa
nc _t b		Porosity-compressibility-thickness product: nc _t b= n·c _t .b	$[(L^2T^2)/M]$	m/Pa
n		Total porosity	-	-
n _e		Kinematic porosity, (Effective porosity)	-	-
е		Transport aperture. e = n _e ·b	[L]	m
_	Donoity	Donoity	[M/L ³ ]	ka/(m ³ )
ρ	Density Density-w	Density Fluid density in measurement section during	[M/L ³ ]	kg/(m ³ )
$\rho_{\text{w}}$	Delisity-w	pumping/injection	-	
$ ho_{ m o}$	Density-o	Fluid density in observation section	[M/L ³ ]	kg/(m ³ )
$ ho_{\sf sp}$	Density-sp	Fluid density in standpipes from measurement section	[M/L ³ ]	kg/(m³)
μ	my	Dynamic viscosity	[M/LT]	Pa s
$\mu_{w}$	my	Dynamic viscosity (Fluid density in measurement section during pumping/injection)	[M/LT]	Pa s
FC _T		Fluid coefficient for intrinsic permeability, transference of k to K; K=FC _T -k; FC _T = $\rho_w \cdot g / \mu_w$	[1/LT]	1/(ms)
FCs		Fluid coefficient for porosity-compressibility, transference of $c_t$ to $S_s$ ; $S_s = FC_S \cdot n \cdot c_t$ ; $FC_S = \rho_w \cdot g$	[ M/T ² L ² ]	Pa/m
Index on K	, T and S		•	
S		S: semi-log		
L		L: log-log		
f		Pump phase or injection phase, designation following S or L (withdrawal)		
s NLR		Recovery phase, designation following S or L (recovery)  NLR: Non-linear regression. Performed on the entire test		
		sequence, perturbation and recovery		
M		Moye		
GRF		Generalised Radial Flow according to Barker (1988)		
m		Matrix		
f		Fracture	1	
Т		Judged best evaluation based on transient evaluation.		

Character	SICADA designation	Explanation	Dimension	Unit
Tot		Judged most representative parameter for particular test section and (in certain cases) evaluation time with respect to available data (made by SKB at a later stage).		
b		Bloch property in a numerical groundwater flow model		
е		Effective property (constant) within a domain in a numerical groundwater flow model.		
Index on p	and Q			
0		Initial condition, undisturbed condition in open holes		
i		Natural, "undisturbed" condition of formation parameter		
f		Pump phase or injection phase (withdrawal, flowing phase)		
S		Recovery, shut-in phase		
р		Pressure or flow in measuring section at end of perturbation period		
F		Pressure in measuring section at end of recovery period.		
m		Arithmetical mean value		
С		Estimated value. The index is placed last if index for "where" and "what" are used. Simulated value		
m		Measured value. The index is placed last if index for "where" and "what" are used. Measured value		
Some misc	ellaneous inde	xes on p and h		
w		Test section (final difference pressure during flow phase in test section can be expressed dpwp; First index shows "where" and second index shows "what")		
0		Observation section (final difference pressure during flow phase in observation section can be expressed dp _{op} ; First index shows "where" and second index shows "what")		
f		Fresh-water head. Water is normally pumped up from section to measuring hoses where pressure and level are observed. Density of the water is therefore approximately the same as that of the measuring section. Measured groundwater level is therefore normally represented by what is defined as point-water head. If pressure at the measuring level is recalculated to a level for a column of water with density of fresh water above the measuring point it is referred to as fresh-water head and h is indicated last by an f. Observation section (final level during flow phase in observation section can be expressed hopf; the first index shows "where" and the second index shows "what" and the last one "recalculation")		

Borehole: KLX 13A

## **APPENDIX 5**

SICADA data tables

Borehole: KLX13 A

## **APPENDIX 5-1**

SICADA data tables (Injection tests)

SKB

**Activity Information** 

# **SICADA/Data Import Template**

(Simplified version v1.4)

SKB & Ergodata AB 2004

File Identity	
Created By	Stephan Rohs
Created	2007-05-18

Compiled By
Quality Check For Delivery
Delivery Approval

**Additional Activity Data** 

Activity Type

KLX13A

KLX 13A - Injection test

**Project** AP PS 400-07-006

					C10	P20	P200	P220	R25	
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	Company	Field crew manager	Field crew	evaluating data	Report
KLX20A	2007-02-15 09:48	2007-02-22 17:15	102.50	582.50		Golder Associates	Stephan Rohs	Stephan Rohs,	Cristian Enacescu, Philipp Wolf	Stephan Rohs

Rohs, Enacescu, Rohs
Mesgena Philipp Wolf,
Gebrezghi, Stephan
Tomas Rohs
Cronquist

Table	plu_s_hole_test_d
	PLU Injection and pumping, General information

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date & time of pumping/injection start (YYYY-MM-DD hh:mm:ss)
stop_flow_period	DATE	yyyymmdd	Date & time of pumping/injection stop (YYYY-MM-DD hh:mm:ss)
flow_rate_end_qp	FLOAT	m**3/s	Flow rate at the end of the flowing period
value_type_qp	CHAR		0:true value,-1 <lower meas.limit1:="">upper meas.limit</lower>
mean_flow_rate_qm	FLOAT	m**3/s	Arithmetic mean flow rate during flow period
q_measll	FLOAT	m**3/s	Estimated lower measurement limit of flow rate
q_measlu	FLOAT	m**3/s	Estimated upper measurement limit of flow rate
tot_volume_vp	FLOAT	m**3	Total volume of pumped or injected water
dur_flow_phase_tp	FLOAT	S	Duration of the flowing period of the test
dur_rec_phase_tf	FLOAT	S	Duration of the recovery period of the test
initial_head_hi	FLOAT	m	Hydraulic head in test section at start of the flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in test section at stop of the flow period.
final_head_hf	FLOAT	m	Hydraulic head in test section at stop of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in test section at start of flow period
press_at_flow_end_p	FLOAT	kPa	Groundwater pressure in test section at stop of flow period.
final_press_pf	FLOAT	kPa	Ground water pressure at the end of the recovery period.
fluid_temp_tew	FLOAT	оС	Measured section fluid temperature, see table description
fluid_elcond_ecw	FLOAT	mS/m	Measured section fluid el. conductivity,see table descr.
fluid_salinity_tdsw	FLOAT	mg/l	Total salinity of section fluid based on EC,see table descr.
fluid_salinity_tdswm	FLOAT	mg/l	Tot. section fluid salinity based on water sampling, see
reference	CHAR		SKB report No for reports describing data and evaluation
comments	VARCHAR		Short comment to data
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)
lp	FLOAT	m	Hydraulic point of application

					section		formation			flow rate end	value type q	mean flow	g measl		tot volume v
idcode	start_date	stop_date	secup	seclow	no _	test_type	type	start_flow_period	stop_flow_period	qp	p,	rate_qm	i —	q_measlu	p
KLX13A	2007-02-15 09:48:00	2007-02-15 14:06:00	102.50	202.50		3	1	2007-02-15 13:03:50	2007-02-15 13:34:00	6.50E-05	0	7.00E-05	1.67E-08	8.33E-04	1.26E-01
KLX13A	2007-02-15 15:34:00	2007-02-15 17:30:00	202.50	302.50		3	1	2007-02-15 16:28:11	2007-02-15 16:58:21	3.67E-05	0	4.05E-05	1.67E-08	8.33E-04	7.29E-02
KLX13A	2007-02-16 07:58:00	2007-02-16 10:27:00	302.50	402.50		3	1	2007-02-16 09:25:41	2007-02-16 09:55:51	2.63E-04	0	4.65E-04	1.67E-08	8.33E-04	8.37E-01
KLX13A	2007-02-16 11:52:00	2007-02-16 13:43:00	395.50	495.50		3	1	2007-02-16 12:41:02	2007-02-16 13:11:12	4.05E-04	0	4.52E-04	1.67E-08	8.33E-04	8.13E-01
KLX13A	2007-02-16 15:44:00	2007-02-16 17:35:00	482.50	582.50		3	1	2007-02-16 16:33:24	2007-02-16 17:03:34	1.05E-04	0	1.20E-04	1.67E-08	8.33E-04	2.16E-01
KLX13A	2007-02-17 18:25:00	2007-02-17 20:28:00	102.50	122.50		3	1	2007-02-17 19:06:03	2007-02-17 19:26:13	5.67E-05	0	6.17E-05	1.67E-08	8.33E-04	7.40E-02
KLX13A	2007-02-18 08:25:00	2007-02-18 10:31:00	122.50	142.50		3	1	2007-02-18 09:39:06	2007-02-18 09:49:16	1.67E-08	0	2.00E-08	1.67E-08	8.33E-04	1.20E-05
KLX13A	2007-02-18 13:24:00	2007-02-18 14:46:00	162.50	182.50		3	1	2007-02-18 14:04:13	2007-02-18 14:24:23	2.18E-06	0	2.35E-06	1.67E-08	8.33E-04	2.82E-03
KLX13A	2007-02-18 16:10:00	2007-02-18 17:42:00	182.50	202.50		3	1	2007-02-18 17:00:25	2007-02-18 17:20:35	5.18E-06	0	5.47E-06	1.67E-08	8.33E-04	6.56E-03
KLX13A	2007-02-18 18:12:00	2007-02-18 19:32:00	202.50	222.50		3	1	2007-02-18 18:50:25	2007-02-18 19:10:35	8.00E-06	0	8.50E-06	1.67E-08	8.33E-04	1.02E-02
KLX13A	2007-02-19 09:02:00	2007-02-19 10:27:00	222.50	242.50		3	1	2007-02-19 09:44:54	2007-02-19 10:05:04	1.72E-05	0	1.85E-05	1.67E-08	8.33E-04	2.22E-02
KLX13A	2007-02-19 11:04:00	2007-02-19 12:53:00	242.50	262.50		3	1	2007-02-19 11:50:34	2007-02-19 12:10:44	3.67E-07	-1	4.17E-07	1.67E-08	8.33E-04	5.00E-04
KLX13A	2007-02-19 14:13:00	2007-02-19 15:40:00	262.50	282.50		3	1	2007-02-19 14:58:31	2007-02-19 15:18:41	1.37E-06	0	1.49E-06	1.67E-08	8.33E-04	1.78E-03
KLX13A	2007-02-19 16:17:00	2007-02-19 17:40:00	282.50	302.50		3	1	2007-02-19 16:58:28	2007-02-19 17:18:38	1.80E-05	0	1.87E-05	1.67E-08	8.33E-04	2.24E-02
KLX13A	2007-02-19 18:12:00	2007-02-19 19:37:00	302.50	322.50		3	1	2007-02-19 18:55:41	2007-02-19 19:15:51	8.00E-05	0	9.17E-05	1.67E-08	8.33E-04	1.10E-01
KLX13A	2007-02-20 08:18:00	2007-02-20 09:42:00	322.50	342.50		3	1	2007-02-20 08:59:55	2007-02-20 09:20:05	1.60E-06	0	1.67E-06	1.67E-08	8.33E-04	2.00E-03
KLX13A	2007-02-20 10:20:00	2007-02-20 11:43:00	342.50	362.50		3	1	2007-02-20 11:01:32	2007-02-20 11:21:42	2.52E-04	0	2.62E-04	1.67E-08	8.33E-04	3.14E-01
KLX13A	2007-02-20 12:56:00	2007-02-20 14:18:00	355.50	375.50		3	1	2007-02-20 13:36:48	2007-02-20 13:56:58	2.79E-04	0	2.92E-04	1.67E-08	8.33E-04	3.51E-01
KLX13A	2007-02-20 15:00:00	2007-02-20 16:26:00	375.50	395.50		3	1	2007-02-20 15:44:09	2007-02-20 16:04:19	2.37E-04	0	4.68E-04	1.67E-08	8.33E-04	5.61E-01
KLX13A	2007-02-20 17:07:00	2007-02-20 18:30:00	395.50	415.50		3	1	2007-02-20 17:48:26	2007-02-20 18:08:36	2.41E-04	0	2.50E-04	1.67E-08	8.33E-04	3.00E-01
KLX13A	2007-02-21 08:38:00	2007-02-21 10:02:00	415.50	435.50		3	1	2007-02-21 09:20:29	2007-02-21 09:40:39	1.55E-04	0	1.60E-04	1.67E-08	8.33E-04	1.92E-01
KLX13A	2007-02-21 10:41:00	2007-02-21 12:03:00	435.50	455.50		3	1	2007-02-21 11:21:02	2007-02-21 11:41:12	2.43E-04	0	2.53E-04	1.67E-08	8.33E-04	3.04E-01
KLX13A	2007-02-21 13:02:00	2007-02-21 14:30:00	455.50	475.50		3	1	2007-02-21 13:48:14	2007-02-21 14:08:24	1.87E-04	0	1.99E-04	1.67E-08	8.33E-04	2.39E-01
KLX13A	2007-02-21 15:28:00	2007-02-21 16:54:00	475.50	495.50		3	1	2007-02-21 16:12:04	2007-02-21 16:32:14	6.07E-05	0	6.68E-05	1.67E-08	8.33E-04	8.02E-02
KLX13A	2007-02-21 17:33:00	2007-02-21 18:58:00	493.00	513.00		3	1	2007-02-21 18:16:28	2007-02-21 18:36:38	5.92E-05	0	6.40E-05	1.67E-08	8.33E-04	7.68E-02
KLX13A	2007-02-22 08:14:00	2007-02-22 09:36:00	507.00	527.00		3	1	2007-02-22 08:54:32	2007-02-22 09:14:42	1.48E-05	0	1.57E-05	1.67E-08	8.33E-04	1.88E-02
KLX13A	2007-02-22 10:14:00	2007-02-22 11:38:00	527.00	547.00		3	1	2007-02-22 10:56:22	2007-02-22 11:16:32	1.67E-05	0	1.80E-05	1.67E-08	8.33E-04	2.16E-02
KLX13A	2007-02-22 13:02:00	2007-02-22 14:22:00	547.00	567.00		3	1	2007-02-22 13:40:27	2007-02-22 14:00:37	1.63E-05	0	1.78E-05	1.67E-08	8.33E-04	2.14E-02
KLX13A	2007-02-22 15:00:00	2007-02-22 17:15:00	562.50	582.50		3	1	2007-02-22 15:53:03	2007-02-22 15:53:13	1.45E-06	0	1.77E-06	1.67E-08	8.33E-04	2.12E-03

			dur_flow_p	dur rec ph	initial head	ow end I	final_head	initial_press_	press at flow_	final press p	fluid_temp_t	luid elcond e	fluid salinity	fluid salinity			
idcode	secup				hi	p	hf		end_pp	f		ew	tdsw	dswm	reference	comments	lp
KLX13A	102.50	202.50	1800	1800			15.71	1978	2176	1981	9.1						152.50
KLX13A	202.50	302.50	1800	1800			14.75	2947	3147	2954	10.5						252.50
KLX13A	302.50	402.50	1800	1800			#NV	3923	3934	3927	12.4						352.50
KLX13A	395.50	495.50	1800	1800			16.67	4834	4875	4838	14.4						445.50
KLX13A	482.50	582.50	1800	1800			16.68	5686	5884	5687	15.8						532.50
KLX13A	102.50	122.50	1200	3600			15.73	1197	1396	1201	7.9						112.50
KLX13A	122.50	142.50	600	2400			#NV	1401	1627	1435	8.3						132.50
KLX13A	162.50	182.50	1200	1200			15.67	1782	1981	1783	8.8						172.50
KLX13A	182.50	202.50	1200	1200			14.32	1973	2172	1971	9.0						192.50
KLX13A	202.50	222.50	1200	1200			15.30	2168	2382	2168	9.3						212.50
KLX13A	222.50	242.50	1200	1200			15.05	2367	2567	2377	9.6						232.50
KLX13A	242.50	262.50					15.75		2764	2565							252.50
KLX13A	262.50	282.50	1200	1200			14.61		2963	2752	10.3						272.50
KLX13A	282.50	302.50	1200				14.53		3143	2943							292.50
KLX13A	302.50	322.50	1200	1200			14.77	3138	3336	3138	10.9						312.50
KLX13A	322.50	342.50					15.27		3534	3335							332.50
KLX13A	342.50	362.50					15.22		3647	3531	11.0						352.50
KLX13A	355.50	375.50					15.58		3817	3659							365.50
KLX13A	375.50	395.50					#NV		3861	3857	12.3						385.50
KLX13A	395.50	415.50					15.81		4160	4053							405.50
KLX13A	415.50	435.50					16.00		4442		13.5						425.50
KLX13A	435.50						16.00		4534	4444							445.50
KLX13A	455.50	475.50					15.99		4758	4639							465.50
KLX13A	475.50	495.50					16.27		5031	4833							485.50
KLX13A	493.00	513.00					16.37		5203	5005							503.00
KLX13A	507.00	527.00	1200				16.08		5339	5141	14.9						517.00
KLX13A	527.00	547.00					15.96		5536	5339							537.00
KLX13A	547.00	567.00					16.27		5731	5533							557.00
KLX13A	562.50	582.50	1200	3600			15.98	5685	5883	5691	15.8						572.50

Table plu_s_hole_test_ed1

PLU Single hole tests, pumping/injection. Basic evaluation

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
	DATE		Date (yymmdd hh:mm:ss)
start_date			
stop_date	DATE		Date (yymmdd hh:mm:ss)
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code (1-7), see table description!
formation_type	CHAR		Formation type code. 1: Rock, 2: Soil (superficial deposits)
lp	FLOAT	m	Hydraulic point of application for test section, see descr.
	FLOAT		Planned ordinary test interval during test campaign.
seclen_class		m m**2/s	, , ,
spec_capacity_q_s	FLOAT	III Z/S	Specific capacity (Q/s) of test section, see table descript.
value_type_q_s	CHAR		0:true value,-1:Q/s <lower meas.limit,1:q="" s="">upper meas.limit</lower>
transmissivity_tq	FLOAT	m**2/s	Tranmissivity based on Q/s, see table description
value_type_tq	CHAR		0:true value,-1:TQ <lower meas.limit,1:tq="">upper meas.limit.</lower>
bc_tq	CHAR		Best choice code. 1 means TQ is best choice of T, else 0
transmissivity_moye	FLOAT	m**2/s	Transmissivity,TM, based on Moye (1967)
bc_tm	CHAR		Best choice code. 1 means Tmoye is best choice of T, else 0
value_type_tm	CHAR		0:true value,-1:TM <lower meas.limit,1:tm="">upper meas.limit.</lower>
hydr_cond_moye	FLOAT	m/s	K M: Hydraulic conductivity based on Moye (1967)
formation_width_b	FLOAT	m	b:Aquifer thickness repr. for T(generally b=Lw) ,see descr.
width_of_channel_b	FLOAT	m	B:Inferred width of formation for evaluated TB
tb	FLOAT	m**3/s	TB:Flow capacity in 1D formation of T & width B, see descr.
I_measl_tb	FLOAT	m**3/s	Estimated lower meas. limit for evaluated TB,see description
u_measl_tb	FLOAT	m**3/s	Estimated upper meas. limit of evaluated TB,see description
sb	FLOAT	m	SB:S=storativity,B=width of formation,1D model,see descript.
assumed_sb	FLOAT	m	SB* : Assumed SB,S=storativity,B=width of formation,see
_ leakage_factor_lf	FLOAT	m	Lf:1D model for evaluation of Leakage factor
transmissivity_tt	FLOAT	m**2/s	TT:Transmissivity of formation, 2D radial flow model,see
i -		111 2/3	•
value_type_tt	CHAR		0:true value,-1:TT <lower meas.limit,1:tt="">upper meas.limit,</lower>
bc_tt	CHAR		Best choice code. 1 means TT is best choice of T, else 0
l_measl_q_s	FLOAT	m**2/s	Estimated lower meas. limit for evaluated TT,see table descr
u_measl_q_s	FLOAT	m**2/s	Estimated upper meas. limit for evaluated TT,see description
storativity_s	FLOAT		S:Storativity of formation based on 2D rad flow,see descr.
assumed_s	FLOAT		Assumed Storativity,2D model evaluation,see table descr.
bc_s	FLOAT		Best choice of S (Storativity) ,see descr.
ri	FLOAT	m	Radius of influence
ri_index	CHAR		ri index=index of radius of influence :-1,0 or 1, see descr.
		1/0	
leakage_coeff	FLOAT	1/s	K'/b':2D rad flow model evaluation of leakage coeff,see desc
hydr_cond_ksf	FLOAT	m/s	Ksf:3D model evaluation of hydraulic conductivity,see desc.
value_type_ksf	CHAR		0:true value,-1:Ksf <lower meas.limit,1:ksf="">upper meas.limit,</lower>
l_measl_ksf	FLOAT	m/s	Estimated lower meas.limit for evaluated Ksf,see table desc.
u_measl_ksf	FLOAT	m/s	Estimated upper meas.limit for evaluated Ksf,see table descr
spec_storage_ssf	FLOAT	1/m	Ssf:Specific storage,3D model evaluation,see table descr.
assumed_ssf	FLOAT	1/m	Ssf*:Assumed Spec.storage,3D model evaluation,see table des.
С	FLOAT	m**3/pa	C: Wellbore storage coefficient; flow or recovery period
cd	FLOAT	•	CD: Dimensionless wellbore storage coefficient
skin	FLOAT		Skin factor; best estimate of flow/recovery period, see descr.
dt1	FLOAT	\$	Estimated start time of evaluation, see table description
dt2	FLOAT	S	Estimated stop time of evaluation, see table description
t1	FLOAT	S	Start time for evaluated parameter from start flow period
t2	FLOAT	S	Stop time for evaluated parameter from start of flow period
dte1	FLOAT	S	Start time for evaluated parameter from start of recovery
dte2	FLOAT	S	Stop time for evaluated parameter from start of recovery
p_horner	FLOAT	kPa	p*:Horner extrapolated pressure, see table description
transmissivity_t_nlr	FLOAT	m**2/s	T NLR Transmissivity based on None Linear Regression
storativity_s_nlr	FLOAT		S_NLR=storativity based on None Linear Regression,see
value_type_t_nlr	CHAR		0:true value,-1:T NLR <lower meas.limit,1:="">upper meas.limit</lower>
			· -
bc_t_nlr	CHAR	*********	Best choice code. 1 means T_NLR is best choice of T, else 0
c_nlr	FLOAT	m**3/pa	Wellbore storage coefficient, based on NLR, see descr.
cd_nlr	FLOAT		Dimensionless wellbore storage constant, see table descrip.
skin_nlr	FLOAT		Skin factor based on Non Linear Regression,see desc.
transmissivity_t_grf	FLOAT	m**2/s	T_GRF:Transmissivity based on Genelized Radial Flow,see
value_type_t_grf	CHAR		0:true value,-1:T_GRF <lower meas.limit,1:="">upper meas.limit</lower>
bc_t_grf	CHAR		Best choice code. 1 means T_GRF is best choice of T, else 0
storativity_s_grf	FLOAT		S_GRF:Storativity based on Generalized Radial Flow, see des.
flow_dim_grf	FLOAT		Inferred flow dimesion based on Generalized Rad. Flow model
		no unit	
comment	VARCHAR	no_unit	Short comment to the evaluated parameters
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Signature for QA data accknowledge (QA - OK)

							formation_ty					value_type_q_			transmissivity moy
idcode	start_date	stop_date	secup	seclow	section_no	test_type	pe	lp	s	eclen_class	spec_capacity_q_s		transmissivity_tq	value_type_tq bc_tq	е
KLX13A	2007-02-15 09:48:00	2007-02-15 14:06:00	102.50	202.50			3 1	152	2.50	100	3.22E-06	0	)		4.19E-06
KLX13A	2007-02-15 15:34:00	2007-02-15 17:30:00	202.50	302.50			3 1	252	2.50	100	1.80E-06	0	)		2.34E-06
KLX13A	2007-02-16 07:58:00	2007-02-16 10:27:00	302.50	402.50			3 1	352	2.50	100	2.35E-04	0	)		3.06E-04
KLX13A	2007-02-16 11:52:00	2007-02-16 13:43:00	395.50	495.50			3 1	445	5.50	100	9.69E-05	0	)		1.26E-04
KLX13A	2007-02-16 15:44:00	2007-02-16 17:35:00	482.50	582.50			3 1	532	2.50	100	5.20E-06	0	)		6.77E-06
KLX13A	2007-02-17 18:25:00	2007-02-17 20:28:00	102.50	122.50			3 1	112	2.50	20	2.79E-06	0	)		2.92E-06
KLX13A	2007-02-18 08:25:00	2007-02-18 10:31:00	122.50	142.50			3 1	132	2.50	20	7.23E-10	0	)		7.57E-10
KLX13A	2007-02-18 13:24:00	2007-02-18 14:46:00	162.50	182.50			3 1	172	2.50	20	1.08E-07	0	)		1.13E-07
KLX13A	2007-02-18 16:10:00	2007-02-18 17:42:00	182.50	202.50			3 1	192	2.50	20	2.56E-07	0	)		2.67E-07
KLX13A	2007-02-18 18:12:00	2007-02-18 19:32:00	202.50	222.50			3 1	212	2.50	20	3.67E-07	0	)		3.84E-07
KLX13A	2007-02-19 09:02:00	2007-02-19 10:27:00	222.50	242.50			3 1	232	2.50	20	8.42E-07	0	)		8.81E-07
KLX13A	2007-02-19 11:04:00	2007-02-19 12:53:00	242.50	262.50			3 1	252	2.50	20	1.81E-08	0	)		1.89E-08
KLX13A	2007-02-19 14:13:00	2007-02-19 15:40:00	262.50	282.50			3 1	272	2.50	20	6.32E-08	0	)		6.62E-08
KLX13A	2007-02-19 16:17:00	2007-02-19 17:40:00	282.50	302.50			3 1	292	2.50	20	8.83E-07	0	)		9.24E-07
KLX13A	2007-02-19 18:12:00	2007-02-19 19:37:00	302.50	322.50			3 1	312	2.50	20	3.96E-06	0	)		4.15E-06
KLX13A	2007-02-20 08:18:00	2007-02-20 09:42:00	322.50				3 1	332	2.50	20	7.93E-08	0	)		8.29E-08
KLX13A	2007-02-20 10:20:00	2007-02-20 11:43:00	342.50				3 1	352		20	2.09E-05	0	)		2.19E-05
KLX13A	2007-02-20 12:56:00	2007-02-20 14:18:00	355.50	375.50			3 1		5.50	20	1.71E-05	0	)		1.79E-05
KLX13A	2007-02-20 15:00:00	2007-02-20 16:26:00	375.50	395.50			3 1	385	5.50	20	2.91E-04	0	)		3.04E-04
KLX13A	2007-02-20 17:07:00	2007-02-20 18:30:00	395.50	415.50			3 1	405	5.50	20	2.18E-05	0	)		2.29E-05
KLX13A	2007-02-21 08:38:00	2007-02-21 10:02:00	415.50	435.50			3 1	425	5.50	20	7.73E-06	0	)		8.09E-06
KLX13A	2007-02-21 10:41:00	2007-02-21 12:03:00	435.50				3 1	445	5.50	20	2.65E-05	0	)		2.77E-05
KLX13A	2007-02-21 13:02:00	2007-02-21 14:30:00	455.50	475.50			3 1	465	5.50	20	1.53E-05	0	)		1.60E-05
KLX13A	2007-02-21 15:28:00	2007-02-21 16:54:00	475.50	495.50			3 1	485	5.50	20	3.01E-06	0	)		3.14E-06
KLX13A	2007-02-21 17:33:00	2007-02-21 18:58:00	493.00	513.00			3 1	503	3.00	20	2.93E-06	0	)		3.07E-06
KLX13A	2007-02-22 08:14:00	2007-02-22 09:36:00	507.00	527.00			3 1	517	7.00	20	7.31E-07	0	)		7.65E-07
KLX13A	2007-02-22 10:14:00	2007-02-22 11:38:00	527.00	547.00			3 1	537	7.00	20	8.18E-07	0	)		8.55E-07
KLX13A	2007-02-22 13:02:00	2007-02-22 14:22:00	547.00	567.00			3 1	557	7.00	20	8.05E-07	0	)		8.42E-07
KLX13A	2007-02-22 15:00:00	2007-02-22 17:15:00	562.50	582.50		:	3 1	572	2.50	20	7.18E-08	0	)		7.52E-08

					hydr	cond m	formation wi	width of channel						leakage fact		value_type			
idcode	secup	seclow	bc_tm	value_type_tm			dth_b	b	tb	l_measl_tb	u_measl_tb	sb	assumed_sb		transmissivity_tt		bc_tt	I_measI_q_s	u_measl_q_s
KLX13A	102.50	202.50	0	(	)	4.19E-08									2.56E-06	6 0	1	1.00E-06	8.00E-06
KLX13A	202.50	302.50	0	(	)	2.34E-08									1.50E-06	6 0	1	8.00E-07	6.00E-06
KLX13A	302.50	402.50	0	(	)	3.06E-06									4.12E-04	. 0	1	7.00E-05	8.00E-04
KLX13A	395.50	495.50	0	(	)	1.26E-06									9.16E-05	5 0	1	1.00E-05	2.00E-04
KLX13A	482.50	582.50	0	(	)	6.77E-08									5.74E-06	0	1	1.00E-06	7.00E-06
KLX13A	102.50	122.50	0	(	)	1.46E-07									2.33E-06	0	1	1.00E-06	7.00E-06
KLX13A	122.50	142.50	0	(	)	3.79E-11									1.03E-10	0	1	7.00E-11	4.00E-10
KLX13A	162.50	182.50	0	(	)	5.65E-09									1.87E-07	0	1	9.00E-08	6.00E-07
KLX13A	182.50	202.50	0	(	)	1.34E-08									2.54E-07	0	1	1.00E-07	8.00E-07
KLX13A	202.50	222.50	0	(	)	1.92E-08									6.41E-07	0	1	4.00E-07	3.00E-06
KLX13A	222.50	242.50	0	(	)	4.41E-08									5.69E-07	0	1	2.00E-07	1.00E-06
KLX13A	242.50	262.50	0	(	)	9.45E-10									2.49E-08	3 0	1	1.00E-08	9.00E-08
KLX13A	262.50	282.50	0	(	)	3.31E-09									1.16E-07	0	1	3.00E-08	3.00E-07
KLX13A	282.50	302.50	0	(	)	4.62E-08									2.04E-06	0	1	9.00E-07	5.00E-06
KLX13A	302.50	322.50	0	(	)	2.08E-07									2.05E-05	5 0	1	1.00E-06	4.00E-05
KLX13A	322.50	342.50	0	(	)	4.15E-09									1.58E-07	0	1	8.00E-08	5.00E-07
KLX13A	342.50	362.50	0	(	)	1.10E-06									4.83E-05	5 0	1	2.00E-05	7.00E-05
KLX13A	355.50	375.50	0	(	)	8.95E-07									4.10E-05	5 0	1	2.00E-05	8.00E-05
KLX13A	375.50	395.50	0	(	)	1.52E-05									4.38E-04	0	1	7.00E-05	8.00E-04
KLX13A	395.50	415.50	0	(	)	1.15E-06									4.82E-05	5 0	1	3.00E-05	7.00E-05
KLX13A	415.50	435.50	0	(	)	4.05E-07									1.85E-05	5 0	1	9.00E-06	5.00E-05
KLX13A	435.50	455.50	0	(	)	1.39E-06									5.53E-05	5 0	1	3.00E-05	8.00E-05
KLX13A	455.50	475.50	0	(	)	8.00E-07									2.90E-05	5 0	1	1.00E-05	7.00E-05
KLX13A	475.50	495.50	0	(	)	1.57E-07									3.47E-06	0	1	1.00E-06	8.00E-06
KLX13A	493.00	513.00	0	(	)	1.54E-07									3.53E-06	6 0	1	1.00E-06	6.00E-06
KLX13A	507.00	527.00	0	(	)	3.83E-08									9.13E-07	0	1	7.00E-07	4.00E-06
KLX13A	527.00	547.00	0	(	)	4.28E-08									9.46E-07	7 0	1	7.00E-07	5.00E-06
KLX13A	547.00	567.00	0	(	)	4.21E-08									1.08E-06	6 0	1	8.00E-07	5.00E-06
KLX13A	562.50	582.50	0	(	)	3.76E-09									3.67E-08	3 0	1	1.00E-08	5.00E-08

								leakage_c				l_measl_k	u measl k	s		assumed_ss					
idcode	secup	seclow	storativity_s	assumed_s	bc_s ri	ļ	ri_index	oeff	hydr_cond_ks	sf value	_type_ksf		f	spec_sto	rage_ssf	_	С	cd	skin	dt1	dt2
KLX13A	102.50	202.50	1.00E-06	1.00E-06		21.91	-1										1.11E-10	1.22E-02	-2.39	4.2	58.8
KLX13A	202.50	302.50	1.00E-06	1.00E-06		106.06	C	)									4.41E-10	4.86E-02	-2.39	123.6	1612.8
KLX13A	302.50	402.50	1.00E-06	1.00E-06		#NV	1										#NV	#NV	-0.67	′ #N\	" #NV
KLX13A	395.50	495.50	1.00E-06	1.00E-06		296.50	C	)									2.00E-08	2.20E+00	-3.86	336.6	1554.0
KLX13A	482.50	582.50	1.00E-06	1.00E-06		47.38	1										1.13E-09	1.25E-01	0.43	16.8	183.6
KLX13A	102.50	122.50	1.00E-06	1.00E-06		29.32	-1										2.33E-10	2.57E-02	-2.22	13.2	110.4
KLX13A	122.50	142.50	1.00E-06	1.00E-06		11.15	1										3.28E-11	3.62E-03	-1.23	8 #N\	" #NV
KLX13A	162.50	182.50	1.00E-06	1.00E-06		51.46	C	)									6.25E-11	6.89E-03	4.20	91.2	1000.8
KLX13A	182.50	202.50	1.00E-06	1.00E-06		13.78	-1										5.60E-11	6.17E-03	0.25	18.6	73.8
KLX13A	202.50	222.50	1.00E-06	1.00E-06		70.02	C	)									6.74E-11	7.43E-03	3.64	11.4	799.2
KLX13A	222.50	242.50	1.00E-06	1.00E-06		49.26	1										1.52E-10	1.68E-02	0.15	289.2	1095.0
KLX13A	242.50	262.50	1.00E-06	1.00E-06		31.09	C	)									1.01E-10	1.11E-02	2.75	160.8	951.6
KLX13A	262.50	282.50	1.00E-06	1.00E-06		45.67	C	)									2.40E-11	2.65E-03	-2.23	162.0	
KLX13A	282.50	302.50	1.00E-06	1.00E-06		93.52	C	)									1.98E-10		6.87	' 31.8	789.0
KLX13A	302.50	322.50	1.00E-06	1.00E-06		166.51	C	)									2.09E-10	2.30E-02	20.30	20.4	479.4
KLX13A	322.50	342.50	1.00E-06	1.00E-06		45.02	1										8.31E-11	9.16E-03	6.70	78.0	999.0
KLX13A	342.50	362.50	1.00E-06	1.00E-06		206.30	C	)									5.10E-09	5.62E-01	5.25	54.6	826.8
KLX13A	355.50	375.50	1.00E-06	1.00E-06		198.02	C	)									1.94E-09	2.14E-01	6.02	22.8	1150.2
KLX13A	375.50	395.50	1.00E-06	1.00E-06		#NV	1										#NV	#NV	-2.83	8 #N\	′ #NV
KLX13A	395.50	415.50	1.00E-06	1.00E-06		206.19	C	)									1.64E-09	1.81E-01	4.42	13.2	966.0
KLX13A	415.50	435.50	1.00E-06	1.00E-06		162.29	C	)									1.05E-09	1.16E-01	6.02	46.8	806.4
KLX13A	435.50	455.50	1.00E-06	1.00E-06		213.40	C	)									3.30E-09	3.64E-01	5.47	10.8	
KLX13A	455.50	475.50	1.00E-06	1.00E-06		181.59	C	)									1.47E-09	1.62E-01	2.94	54.6	738.6
KLX13A	475.50	495.50	1.00E-06	1.00E-06		106.80	C	)									3.45E-10	3.80E-02	-0.8	36.6	1119.0
KLX13A	493.00	513.00	1.00E-06	1.00E-06		107.26	C	)									1.70E-10	1.87E-02	-0.41	510.0	1576.2
KLX13A	507.00	527.00	1.00E-06	1.00E-06		76.49	C	)									2.91E-10	3.21E-02	0.84	10.2	1074.0
KLX13A	527.00	547.00	1.00E-06	1.00E-06		77.17	C	)									1.78E-10	1.96E-02	-0.02	12.0	1095.0
KLX13A	547.00	567.00	1.00E-06	1.00E-06		79.77	C	)									7.06E-11	7.78E-03	0.89	16.8	1096.2
KLX13A	562.50	582.50	1.00E-06	1.00E-06		32.81	-1										8.50E-12	9.37E-04	-2.86	146.4	1101.0

						storativity_s_	value_type_t_n						value_type_t_	_g	storativity_s_	g flow_dim_g	
idcode	secup s	eclow t1	t2 dte1 dte	2 p_horner	transmissivity_t_nlr	nlr	r	bc_t_nlr	c_nlr	cd_nlr	skin_nlr	transmissivity_t_grf	rf	bc_t_grf	rf	rf	comment
KLX13A	102.50	202.50		1978.	7												
KLX13A	202.50	302.50		2941.													
KLX13A	302.50	402.50		#N\													
KLX13A	395.50	495.50		4837.													
KLX13A	482.50	582.50		5684.													
KLX13A	102.50	122.50		1198.													
KLX13A	122.50	142.50		1362.													
KLX13A	162.50	182.50		1782.:													
KLX13A	182.50	202.50		1965.													
KLX13A	202.50	222.50		2166.													
KLX13A	222.50	242.50		2360.													
KLX13A	242.50	262.50		2563.													
KLX13A	262.50	282.50		2743.													
KLX13A	282.50	302.50		2939.													
KLX13A	302.50	322.50		3137.													
KLX13A	322.50	342.50		3334.													
KLX13A	342.50	362.50		3529.													
KLX13A	355.50	375.50		3658.													
KLX13A	375.50	395.50		#N\													
KLX13A	395.50	415.50		4053.													
KLX13A	415.50	435.50		4246.													
KLX13A	435.50	455.50		4442.													
KLX13A	455.50	475.50		4638.													
KLX13A	475.50	495.50		4833.													
KLX13A	493.00	513.00		5005.													
KLX13A	507.00	527.00		5140.													
KLX13A	527.00	547.00		5335.													
KLX13A	547.00	567.00		5530.:													
KLX13A	562.50	582.50		5677.	5												

Tal	ble		ple_test_obs sections of single hole test
Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
dcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section,at stop flow period
of_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
op_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
of_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX13A	2007-02-15 09:48:00	2007-02-15 14:06:00	102.50	202.50		203.50	595.85	958	960	930	1992	1992	1992	
KLX13A	2007-02-15 15:34:00	2007-02-15 17:30:00	202.50	302.50		303.50	595.85	1935	1936	1937	2969	2969	2968	
KLX13A	2007-02-16 07:58:00	2007-02-16 10:27:00	302.50	402.50		403.50	595.85	2916	2916	2918	3950	3958	3953	
KLX13A	2007-02-16 11:52:00	2007-02-16 13:43:00	395.50	495.50		496.50	595.85	3827	3830	3829	4861	4868	4864	
KLX13A	2007-02-16 15:44:00	2007-02-16 17:35:00	482.50	582.50		583.50	595.85	4684	4683	4684	5714	5800	5716	
KLX13A	2007-02-17 18:25:00	2007-02-17 20:28:00	102.50	122.50		123.50	595.85	954	955	958	1215	1215	1214	
KLX13A	2007-02-18 08:25:00	2007-02-18 10:31:00	122.50	142.50		143.50	595.85	1150	1151	1151	1408	1407	1407	
KLX13A	2007-02-18 13:24:00	2007-02-18 14:46:00	162.50	182.50		183.50	595.85	1542	1543	1544	1798	1797	1797	
KLX13A	2007-02-18 16:10:00	2007-02-18 17:42:00	182.50	202.50		203.50	595.85	1738	1739	1740	1992	1992	1992	
KLX13A	2007-02-18 18:12:00	2007-02-18 19:32:00	202.50	222.50		223.50	595.85	1934	1935	1936	2187	2187	2187	
KLX13A	2007-02-19 09:02:00	2007-02-19 10:27:00	222.50	242.50		243.50	595.85	2129	2130	2131	2283	2283	2282	
KLX13A	2007-02-19 11:04:00	2007-02-19 12:53:00	242.50	262.50		263.50	595.85	2326	2327	2329	2578	2577	2576	
KLX13A	2007-02-19 14:13:00	2007-02-19 15:40:00	262.50	282.50		283.50	595.85	2522	2523	2524	2772	2772	2772	
KLX13A	2007-02-19 16:17:00	2007-02-19 17:40:00	282.50	302.50		303.50	595.85	2719	2720	2721	2968	2968	2967	
KLX13A	2007-02-19 18:12:00	2007-02-19 19:37:00	302.50	322.50		323.50	595.85	2916	2917	2917	3163	3164	3163	
KLX13A	2007-02-20 08:18:00	2007-02-20 09:42:00	322.50	342.50		343.50	595.85	3110	3110	3111	3360	3359	3359	
KLX13A	2007-02-20 10:20:00	2007-02-20 11:43:00	342.50	362.50		363.50	595.85	3305	3305	3307	3554	3359	3359	
KLX13A	2007-02-20 12:56:00	2007-02-20 14:18:00	355.50	375.50		376.50	595.85	3433	3434	3434	3682	3687	3684	
KLX13A	2007-02-20 15:00:00	2007-02-20 16:26:00	375.50	395.50		396.50	595.85	3629	3630	3631	3853	3861	3857	
KLX13A	2007-02-20 17:07:00	2007-02-20 18:30:00	395.50	415.50		416.50	595.85	3826	3827	3826	4077	4080	4078	
KLX13A	2007-02-21 08:38:00	2007-02-21 10:02:00	415.50	435.50		436.50	595.85	4022	4022	4022	4271	4273	4272	
KLX13A	2007-02-21 10:41:00	2007-02-21 12:03:00	435.50	455.50		456.50	595.85	4219	4220	4219	4467	4471	4468	
KLX13A	2007-02-21 13:02:00	2007-02-21 14:30:00	455.50	475.50		476.50	595.85	4416	4416	4416	4663	4667	4664	
KLX13A	2007-02-21 15:28:00	2007-02-21 16:54:00	475.50	495.50		496.50	595.85	4613	4613	4613	4858	4859	4858	
KLX13A	2007-02-21 17:33:00	2007-02-21 18:58:00	493.00	513.00		514.00	595.85	4785	4785	4785	5030	5030	5029	
KLX13A	2007-02-22 08:14:00	2007-02-22 09:36:00	507.00	527.00		528.00	595.85	4922	4922	4922	5166	5174	5167	
KLX13A	2007-02-22 10:14:00	2007-02-22 11:38:00	527.00	547.00		548.00	595.85	5119	5119	5119	5362	5371	5363	
KLX13A	2007-02-22 13:02:00	2007-02-22 14:22:00	547.00	567.00		568.00	595.85	5315	5315	5315	5558	5557	5556	
KLX13A	2007-02-22 15:00:00	2007-02-22 17:15:00	562.50	582.50		583.50	595.85	5467	5467	5467	5710	5798	5717	,

Borehole: KLX13 A

## **APPENDIX 5-2**

SICADA data tables (Pulse injection tests)

SKR		<b>S</b> ]	ICAD.	A/Dat	a Imp	ort Temp	olate			(Simplified version v1.8)
									8	SKB & Ergodata AB 2006
			<b>=</b>		=1					
File Identity			_	File Time			Compiled By			
Created By	1		4	Zone	4	Quality	Check For Delivery			
Created					<u>]</u>		Delivery Approva	1		
					<b>-</b>	I				
Activity Type		KLX13A				Project		AP PS 4	400-07-006	
		KLX 13A - Pulse test								1
					린		I			
Activity Informa	ition					Additional Activity D	ata			
						C30	C40	I160	P20	P200
							Company		= 1.1	
ldcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Saction No.	Company evaluating data	performing field work	Instrument	Field crew manager	Field crew
KLX13A	2007-02-18 11:07:00					Golder Associates	Golder Associates	PSS 2	Stephan Rohs	Stephan Rohs,
										Mesgena Gebrezghi, Tomas Cronquist

Table plu_slug_test_ed
Slug- & pulse test, calculated and evaluated results

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	
seclow	FLOAT	m	Lower section limit (m)
start_date	DATE		Date (yymmdd hh:mm:ss)
stop_date	DATE		Date (yymmdd hh:mm:ss)
activity_type	CHAR		Activity type code
sign	CHAR		Activity QA signature
error_flag	CHAR		*: Data for the activity is erroneous and should not be used
test_type	CHAR		Type of test, one of 7, see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE		Date and time of flow phase start (YYYYMMDD hhmmss)
dur_flow_phase_tp	FLOAT	s	Time for the flowing phase of the test (tp)
dur_rec_phase_tf	FLOAT	s	Time for the recovery phase of the test (tF)
initial_head_h0	FLOAT	m	Initial formation hydraulic head, see table description
initial_displacem_d	FLOAT	m	Initial displacement of hydraulic head, see table description
displacem_dh0_p	FLOAT	m	Initial displacement of slugtest, see table description
displacem_dh0_f	FLOAT	m	Initial displacement of bailtest, see table description
head_at_flow_end	FLOAT	m	Hydraulic head at end of flow phase, see table description
final_head_hf	FLOAT	m	Hydraulic head at the end of the recovery, see table descr.
initial_press_pi	FLOAT	kPa	Initial formation pressure
initial press diff d	FLOAT	kPa	Initial pressure change from pi at time dt=0,pulse test
press change dp0	FLOAT	kPa	Initial pressure change;pulse test-measured
press_at_flow_end	FLOAT	kPa	Final pressure at the end of the flowing period
final_press_pf	FLOAT	kPa	Final pressure at the end of the recovery period
formation_width_b	FLOAT	m	b:Interpreted formation thickness repr. for evaluated T,see
	FLOAT	m**2/s	Ts: Transmissivity based on slugtest, see table description
value_type_ts	CHAR		0:true value,-1:Ts <lower meas.limit,1:ts="">upper meas.limit</lower>
bc_ts	CHAR		Best choice code.1 means Ts is best choice of transm.,else 0
transmissivity_tp	FLOAT	m**2/s	TP: Transmissivity based on pulse test, see table descript.
value_type_tp	CHAR		0:true value,-1:Tp <lower meas.limit,1:tp="">upper meas.limit</lower>
bc_tp	CHAR		Best choice code.1 means Tp is best choice of transm.,else 0
I_meas_limit_t	FLOAT	m**2	Estimated lower measurement limit for Ts orTp,see descript.
u_meas_limit_t	FLOAT	m**2	Estimated upper measurement limit for Ts & Tp, see descript.
storativity_s	FLOAT		S= Storativity, see table description
assumed_s	FLOAT		S*=assumed storativity, see table description
skin –	FLOAT		Skin factor
assumed_skin	FLOAT		Asumed skin factor
_ c	FLOAT	m**3/pa	Well bore storage coefficient
fluid_temp_tew	FLOAT	оС	Fluid temperature in the test section, see table description
fluid_elcond_ecw		mS/m	Fluid electric conductivity in test section, see table descri
fluid_salinity_tdsw		mg/l	Total salinity of the test section fluid (EC), see descr.
fluid_salinity_tdswr		mg/l	Total salinity of the test section fluid (samples),see descr
dt1	FLOAT	s	Estimated start time of evaluation, see table description
dt2	FLOAT	s	Estimated stop time of evaluation, see table description
reference	CHAR		SKB report No for reports describing data and evaluation
comments	CHAR		Short comment to evaluated parameters
			·

			(m)	(m)	)				(s)	(s)	(m)	(m)	(m)	(m)	(m)	(m)
							formation_t		dur_flow_	dur_rec_	initial_hea	initial_displ	displace	displace	head_at_fl	final_hea
idcode	start_date	stop_date	secup	seclow	section_no	test_type	уре	start_flow_period	phase_tp	phase_tf	d_h0	acem_dh0	m_dh0_p	m_dh0_f	ow_end_hp	d_hf
KLX13A	2007-02-18 11:07:00	2007-02-18 12:53:00	142.50	162.50		4B	1	2007-02-18 11:51:33	10	3600						

		(m)	(m)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(m)	(m**2/s)			(m**2/s)			(m**2)	(m**2)
				:4:-1				<b></b>		4			<b></b>			!!	
			ın			press_cnange	press_at_flow_e			transmissi	value_typ		transmissiv	value_typ		l_meas_lim	u_meas_i
idcode	secup	seclow	_r	oi	_diff_dp0	_dp0_p	nd_pp	_pf	formation_width_b	vity_ts	e_ts	bc_ts	ity_tp	e_tp	bc_tp	it_t	imit_t
KLX13A		142.50	162.50	1599	234		1833	1674					2.86E-11	0	1	9.00E-12	7.00E-11

	(m)	(m)					(m**3/pa)	(oC	(mS/m)	(mg/l)	(mg/l)	(s)	(s)		
									fluid_elco	fluid_sali	fluid_salin			referenc	
idcode	secup	seclow	storativity_s	assumed_s	skin	assumed_skin	С	fluid_temp_tew	nd_ecw	nity_tdsw	ity_tdswm d	lt1 d	t2 (	е	comments
KLX13A	142.50	162.50	1.00E-06	1.00E-06	-0.3		2.37E-11	8.8	5			#NV	#NV		

Table	plu_s_hole_test_obs
	Data of observation sections of single hole test

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		Activity type code
idcode	CHAR		Object or borehole identification code
start_date	DATE		Date (yymmdd hh:mm:ss)
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
sign	CHAR		Activity QA signature
error_flag	CHAR		*: Data for the activity is erroneous and should not be used
obs_secup	FLOAT	m	Upper limit of observation section
obs_seclow	FLOAT	m	Lower limit of observation section
pi_above	FLOAT	kPa	Groundwater pressure above test section, start of flow period
pp_above	FLOAT	kPa	Groundwater pressure above test section, at stop flow period
pf_above	FLOAT	kPa	Groundwater pressure above test section at stop recovery per
pi_below	FLOAT	kPa	Groundwater pressure below test section at start flow period
pp_below	FLOAT	kPa	Groundwater pressure below test section at stop flow period
pf_below	FLOAT	kPa	Groundwater pressure below test section at stop recovery per
comments	VARCHAR		Comment text row (unformatted text)

			(m)	(m)		(m)	(m)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	
l														
idcode	start_date	stop_date	secup	seclow	section_no	obs_secup	obs_seclow	pi_above	pp_above	pf_above	pi_below	pp_below	pf_below	comments
KLX13A	2007-02-18 11:07:0	0 2007-02-18 12:53:00	142.50	162.50		163.50	595.85	1.35E+03	1.35E+03	1.35E+03	1603	1602	1602	

Borehole: KLX 13 A

## **APPENDIX 5-3**

SICADA data tables (Interference tests)

S	K	R
	Ш	ш

## **SICADA/Data Import Template**

(Simplified version v1.7)

SKB & Ergodata AB 2005

File Identity	
Created By	
Created	

File Time
Zone

Compile	d By
Quality Check For Deli	very
Delivery Appr	oval

Activity Type	KLX13A	
	KLX13A Interference test bottom zone	

Project	AP PS 400-07-006

Activity Inform	nation				Additional Activity Data										
								I160	P20	P200	P220	R240	R25	R85	
						Company	performing		Field crew		evaluatin	calibratio		Pumped/inject	
Idcode	Start Date	Stop Date	Secup (m)	Seclow (m)	Section No	evaluating data	field work	Instrument	manager	Field crew	g data	n type	Report	ed borehole	
KLX13A	2007.02.22 15:00	2007.02.22 17:15	583.50	595.85 Pb		Golder	Golder	Golder PSS2 Steph		3	Stephan R	Rohs	-	KLX13A	

Table plu_inf_test_obs_d
PLU interference test, Observation section data

Column	Datatype	Unit	Column Description
site	CHAR		Investigation site name
activity_type	CHAR		
start_date	DATE		
stop_date	DATE		
project	CHAR		project code
idcode	CHAR		Object or borehole identification code
secup	FLOAT	m	Upper section limit (m)
seclow	FLOAT	m	Lower section limit (m)
section_no	INTEGER	number	Section number
test_type	CHAR		Test type code, one of 7, see table description
formation_type	CHAR		1: Rock, 2: Soil (superficial deposits)
start_flow_period	DATE	yyyymmdd	Date and time start of pumping/injection(YYMMDDhhmmss)
stop_flow_period	DATE	yyyymmdd	Date and time stop of pumping/injection(YYMMDDhhmmss)
test_borehole	CHAR		Idcode of pumped/injected borehole
test_secup	FLOAT	m	Upper limit of pumped/injected section
test_seclow	FLOAT	m	Lower limit of pumped/injected section
lp	FLOAT	m	Hydraulic point of application, see table description
radial_distance_rs	FLOAT	m	Radial distance:test secobs.sec., see table description
shortest_distance_rt	FLOAT	m	Shortest distance: test secobs.sec., see table description
time_lag_press_dtl	FLOAT	S	Time lag, pressure response obs. hole. See table description
initial_head_hi	FLOAT	m	Hydraulic head in observationsection, at start of flow period
head_at_flow_end_h	FLOAT	m	Hydraulic head in observation section at stop of flow period
final_head_hf	FLOAT	m	Hydraulic head in obs. section at end of recovery period.
initial_press_pi	FLOAT	kPa	Groundwater pressure in obs.section at start of flow period
press_at_flow_end_	FLOAT	kPa	Groundwater pressure in obs. section at stop of flow period
final_press_pf	FLOAT	kPa	Groundwater pressure in obs.section at stop of the recovery
fluid_temp_teo	FLOAT	оС	Measured fluid temperature in obs.section,see descr.
fluid_elcond_eco	FLOAT	mS/m	Measured fluid el. conductivity in obs.section,see descr.
fluid_salinity_tdso	FLOAT	mg/l	Total dissolved solids of section fluid, based on EC see desc
fluid_salinity_tdsom	FLOAT	mg/l	Tot disolved solids of section fluid based on analysis, see
reference	CHAR		SKB report No for reports describing data and evaluation
comment	CHAR		Short comment to evaluated data.
error_flag	CHAR		If error_flag = "*" then an error occured and an error
in_use	CHAR		If in_use = "*" then the activity has been selected as
sign	CHAR		Activity QA signature

			(m)	(m)				(yyyymmdd)	(yyyymmdd)		(m)	(m)	(m)	) (m)
							formation_t			test_bor	test_sec	test_secl		radial_dis
idcode	start_date	stop_date	secup	seclow	section_no	test_type	ype	start_flow_period	stop_flow_period	ehole	up	ow	lp	tance_rs
KLX13A	2007-02-22 15:00:00	2007-02-22 17:15:00	583.50	595.85	Pb	2	1	2007-02-22 15:53:03	2007-02-22 16:13:13	KLX13A	562.50	582.50		5.00

		(m)	(m)	(m)	(s)	(m)	(m	(m)	(kPa)	(kPa)	(kPa)	(oC)	(mS/m)	(mg/l)	(mg/l)		
							head_at_	F						fluid_sa	fluid_sali		
			s	hortest_dis	time_lag_pre	initial_head_	low_end_	final_head_		press_at_flow_end_	final_pre	fluid_te	fluid_elc	linity_td	nity_tdso		
idcode	secup	seclow			ss_dtl	hi	hp		initial_press_pi	рр	ss_pf	mp_teo	ond_eco	so	m	reference	comment
KLX13A		583.50	595.85						5712.00	5798.00	5717.00	#NV					

			(m)	(m)			(m)	(m)	(m)	(m)	(m)	(m**3/s)	(m**3/s)	(m**3/s)	(m)	(m)	(m**2/s)		(m**2/s)	(m**2/s)	
						test_borehol		test_secl	formation		width_of_c		I_measl_t	u_measl		leakage_f	transmis	value_ty	l_measl_t	u_measl	storativit
idcode	start_date	stop_date	secup	seclow	section_no	е	test_secup	ow	_width_b	lp	hannel_b	tbo	bo	_tbo	sbo	actor_lof	sivity_to	pe_to	0	_to	y_so
KLX13A	2007.02.22 15:00	2007.02.22 17:15	5 583.50	595.85	Pb	KLX13A	562.50	582.50									6.35E-08	0	1.00E-08	1.00E-07	2.16E-07

		(m)	(m)	(1/s)	(m/s)	(m/s)	(m/s)	(1/m)	(s)	(s)	(s)	(s)	(s)	(s)	(m**2/s)			(m**2/s)				
			l l	eakage_coe	hydr_cond_	l_measl_kos	u_measl_ko	spec_stora							sivity_to	e_t	storativity	sivity_to	pe_to_gr	storativit	flow_dim	comment
idcode	secup	seclow	f	ff_o	kosf	f	sf	ge_sosf	dt1	dt2	t1	t2	dte1	dte2	_nlr	уре	_so_nlr	_grf	f	y_so_grf	_grf_o	s
KLX13A		583.50	595.85						108	517												