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ABSTRACT 

We have carried out a comparative study of sorption and desorption of 

strontium in groundwater on separated magnetic and size fractions of fissure 

filling material taken from natural fissures in granitic rock. 

Complete reversibility of the sorption process was demonstrated by identical 

Freundlich isotherms, isotopic exchangeability and pH dependence of the 

distribution coefficients Rd. 

The sorption was found to be strongly pH dependent in the range 3-11. The pH 

effect can be accommodated in the sorption model by considering the surface 

areas and surface charges of the minerals in the fissure filling material. 
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ABSTRACT (Swedish) 

Sorption av Sr2+ pa granitiskt sprickfyllnadsmaterial har studerats i 

laboratorieforsok. 

ldentiska Freundlich isotermer och kvantitativt isotoputbyte mellan fast fas och 

losning visar att sorptionsprocessen ar reversibel. 

Sorptionens pH-beroende i omradet 3 - 11 kan forklaras med en 

sorptionsmodell som innefattar sprickfyllnadsmineralens ytor och laddning. 
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1. INTRODUCTION 

Granitic rock has been chosen by several countries [1] as a major candidate for 

deep geological disposal of high level radioactive wastes. The design of a 

repository is based on several engineering barriers, such as metallic containers 

and backfill material, intended to inhibit and retard the release and transport of 

radionuclides into the biosphere. The most probable pathway of radionuclide 

transport in the bedrock surrounding a repository is the water carrying fracture 

systems in the surrounding rock. This transport is retarded by solubility 

constraints and by sorption of radionuclides on the fissure filling material in 

water carrying fractures. 

Models, used to describe the radionuclide transport, normally incorporate 

advection, dispersion, decay and reaction processes. In most cases it is 

assumed that sorption is reversible and that the rate of sorption processes are 

high compared to the rate of water transport i.e local equilibria are assumed to 

prevail along the flow path. 

Models for characterizing the equilibrium distribution of radionuclides between 

phases and interfaces in geologic systems typically relate q r the amount of 

radionuclide sorbed per unit mass of the sorbing phase to the radionuclide 

concentration in the aqueous phase C r(aq). 

Geologic material inherently exhibit heterogeneity with respect to surface 

properties and the empirical Freundlich isotherm is widely used to quantify the 

sorption on solids with heterogeneous surface properties [2-8). This model has 

the general form qr = K C r( aq) N , where the parameter K relates to the sorption 

capacity and N to the sorption intensity and heterogeneity of the sorbent. The 

reversibility of the sorption process is of fundamental importance for the 

understanding of the fate of the radionuclides in geologic systems. If reversible, 

the same isotherm should be valid for sorption and desorption under the same 

experimental conditions. Hence, the N dlNs and Kd/Ks ratios [5,6), where the 

subscripts d and s denote desorption and sorption respectively, as well as 

isotopic exchangeability [7,8) have been used to assess the reversibility of 

solute sorption on mineral surfaces. 

Sorption of Sr2+ on granite and other rocks has been studied rather intensively 

[9-13) and the sorption isotherm has generally been observed to be linear or 

near linear. Reversibility has often been invoked in spite of the fact that the 

1 



desorption process has been given relatively little attention. Moreover, the 

sorption/desorption has more seldom been studied under identical experimental 

conditions. In the present work we have studied the sorption and desorption of 

Sr2+ on magnetic and size separated fractions of fissure filling material from 

natural fissures in granitic rock and demonstrated complete reversibily of the 

sorption process. 

2. EXPERIMENTAL 

2.1 Materials 

The experiments were carried out at ambient temperature (22 ±2°C) in a 

conditioned laboratory. All chemicals were of analytical grade and used as 

received. B5sr was purchased from Amersham as strontium chloride in 

aqueous solution. Synthetic groundwater with the composition given in Table I 

was prepared from Millipore deionized, triple distilled water. 

Table I. 

Species 

Concentration 

mg-dm-3 123 

Composition of Synthetic Groundwater 

Ca2+ Mg2+ K+ Na+ 

9.6 70 12 18 4.3 3.9 65 

The pH measurements were made with a Metrohm 632 pH meter and a GK 

2331 combined glass/reference electrode. The electrode was calibrated using 

standard buffer solutions. Solution samples were analyzed for 85Sr in a 2" -2" 

well type Nal detector connected to a 256 channel analyzer. The amount of 

solid, aqueous solution and samples of the aqueous phase was measured 

gravimetrically using an electric balance with 1 0 -4g accuracy. The sorbent used 

in the experiments was fissure filling material taken from natural fissures in the 

granite 360m below ground level in the Stripa mine. The fissure filling material 

was crushed, using a Agat mortar and pestle, and sieved to 60-90, 90-125, 125-

250 and 250-500 µm size fractions and washed with acetone in an ultrasonic 

bath. The 125-250 µm fraction was separated with respect to iron content using 

a Frantz Model L-1 isodynamic separator. The mineral composition was 

determined by semiquantitative X-ray diffraction, the BET surface area was 

measured using a Micromeritics Flow Sorb II 2300 apparatus with N 2 as sorbing 

gas and the cationic exchange capacity (CEC) was measured by isotope 

dilution [13] using a 0.5 mol ·dm·3 NaCl solution with 22Na as tracer. The 

sorbent properties are given in Table II. The muscovite and chlorite used in the 
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surface experiments were supplied by the Department of Mineralogy, Swedish 

Museum of Natural History. 

Table II. Sorbent Analysis 

Fraction No. original fraction A fraction B fraction C fraction D fraction E 

Weight% 100 31.18 18.45 7.92 18.9 6.68 

BET surface m2/g 0.83 0.3 0.46 0.97 2.44 4.29 

CEC mquiv .lg 22.7 3.6 9.1 21.4 30 53.2 

Fe% 1.256 0.136 0.383 1.143 1.938 3.622 

Quartz% 22 26 22 19 18 19 

Microcline% 23 23 25 21 21 22 

Albite% 37 35 38 41 38 31 

Intermediate 
plagioclase% 15 16 13 16 17 18 

Fe-chlorite% 0.8 0.5 0.7 2 

Muscovite mica% 1.7 0.1 2 4 7 

2.2 Sorption 

Sorption on different fractions of fissure filling material, separated with respect 

to magnetic properties and particle size, was studied in batch experiments. 

2.2 g of each fraction was equilibrated with 6. 7 cm 3 groundwater in 20 cm 3 

bottles. Aliquots (0.37 cm3) of 85Sr spiked Sr2+ groundwater solution was 

thereafter added to each bottle giving an initial Sr 2+ concentration of 9 -10-7 

mol-dm-3. The bottles were placed on a 40 rpm time controlled rotator. The 

rotator was run continuously for the first three hours of the experiment thereafter 

1 minute every half hour for the the first day and 1 minute every 2 hours for the 

remaining experimental time. Samples, 0.05-0.1 cm 3, of the aqueous phase 

were taken at intervals and analyzed for 85Sr. The bottles were, except for the 

first samples, centifugated for 15 minutes at 2000 rpm before drawing the 

samples. 

2.3 Desorption 

At the end of the sorption experiment, the aqueous phase was removed and the 

solid phase washed thoroughly to remove free Sr 2+ in solution. Desorption from 

the solid phase was thereafter carried out in batch experiments using the same 

solid to solution ratio and sampling routine as in the sorption experiments. 
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2.4 Sorption-Desorption Isotherms 

Sorption experiments were carried out using the 90-125 µm size fraction of the 

natural fissure filling material as sorbent. The experiments were carried out for 

35 days in 6 cm 3 propylene bottles containing 250 mg solid and 2 cm 3 85 Sr 

spiked 10-8-10-3 mol·dm-3 groundwater solutions of Sr2+_ At the end of the 

sorption experiment the aqueous phase was removed and the solid thoroughly 

washed. Desorption experiments were thereafter carried out using the same 

solid to groundwater ratio as in the sorption experiments. 

2.5 pH dependence 

Sorption experiments at different pH were carried out in 6 cm 3 bottles with 0.5 g 

of the 90-125 µm size fraction of natural fissure filling material and 4cm 3 85sr 

spiked 2.7-10-6 mol·dm-3 groundwater solution of Sr2+. The initial pH was 

adjusted by titration with HCI and CO2-free NaOH. After 47 days of sorption the 

pH was measured and 0.1 cm 3 samples of the aqueous phase, drawn after 

centrifugation, counted for B5sr. 

In a second series of experiments, using the same solid to solution ratio and 

1 o-6 mol·dm-3 Sr2+ solution, pH of the aqueous phase was changed after 35 

and 68 days sorption respectively. The pH was measured and samples of the 

aqueous phase drawn for B5sr analysis immediately before changing the pH 

and at the end of the experiment (101 days). 

2.6 Isotopic exchangeability 

The experiment was carried out using 250 mg of the 90-125 µm fraction of 

natural fissure filling material and 2 cm 3 85sr spiked 1 o-3 mol·dm-3 

groundwater solution of Sr2+_ The system was equilibrated for 40 days whereby 

the initial Sr2+ concentration in the aqueous phase decreased to 7 .3 · 1 o-4 

mol·dm-3. The concentration of the tracer BSsr was changed without 

significantly changing the overall sr2+ concentration. Aqueous samples were 

drawn at intervals for 85sr analysis. 

A second parallel! sorption experiment with the same initial Sr 2+ concentration 

and solid to solution ratio was carried out to compare the kinetics. 
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2.7 Surface titrations 

Alkalimetric and acidimetric titrations of suspensions of crushed fissure filling 

material, chlorite and muscovite in 0.2 M NaCIO 4 solution were carried out with 

CO2 free NaOH and HCIO 4 solutions respectively. 

3. EXPERIMENT AL RESULTS 

All experimental data have been corrected for 85Sr decay and volumes of 

samples and washing solution. 

3. 1 Sorption- Desorption 

The experimental sorption and desorption data for electromagnetic and size 

separated fractions of fissure filling material are depicted in distribution 

coefficient (Rd) versus time plots in Figure 1. The distribution coefficients were 

calculated using equation 3.1. 

Co = initial sr2+ concentration in aqueous phase 

Ct = Sr2+ concentration in aqueous phase at time t 

m = weight of solid phase (g) 

V = volume of aqueous phase (cm 3) 

(3.1) 

The BET surface area is used, for convenience only, as a third parameter in the 

3D plot. 

The kinetics of equilibrium attainment to the sorption process is given by the 

equation: 

(3.2) 

where 

qt,qe = amount of Sr2+ sorbed per unit mass of sorbent at time t and at 

equilibrium respectively 

Co = initial Sr2+ concentration in aqueous phase 

Ct,Ce = Sr2+ concentration in aqueous phase at time t and at 

equilibrium respectively 
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The corresponding equation for the desorption process is given by equation 3.3. 

(3.3) 

Assuming equilibrium to prevail at the end of the sorption and desorption 

experiments, the experimental data are depicted in U s(t), Ud(t) versus time plots 

in Figures 2(a-d). 
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Figure 3. Sorption and desorption isotherms, 
90 - 125 µm natural fracture fillings. 

3.2 Sorption-Desorption Isotherms 

The data from the isotherm experiments are shown as log q versus log C plots 

in Figure 3. 

The Freundlich~isotherms obtained by fitting the sorption and desorption data 

separately are given in equations 3.4 and 3.5 respectively, where the errors are 

given as 1 d. 

q(s) = Ks. cNs with Ks = 6.58±0.02 and Ns = 0.940±0.01 o (3.4) 

q(d) = Kd-cNd with Kd = 6.45±0.03 and Ns = 0.914±0.006 (3.5) 

3.3 Isotopic Exchangeability 

The isotopic exchangeability of the total amount of adsorbed Sr 2+ (E) can, 

according to the principle of itotope dilution, be calculated from the mass 

8 



balance and the fraction of added radiotracer ( 85sr) remaining in solution after 

equilibration 

(3.6) 

where a0,ae = initial and equilibrium activity of added 85sr in the aqueous 

phase. 

The sorption and isotope exchange data are shown in C tlCo and atlao versus 

time plots in Figure 4. 
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Figure 4. Comparison of reaction kinetics between 
isotopic exchange and sorption 

Rearranging equation 3.6 we obtain 

(3.7) 

From the plots in Figure 4 the isotopic exchangeability E calculated to be 

1.04±0.1. 
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3.4 pH dependence 

The pH dependence of Sr2+ sorption on the 90-125 µm fraction of natural 

fissure filling material is shown in a Rd versus pH plot in Figure 5. 
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Figure 5. Rd plotted vs pH of aqueous phase. 

3.5 Surface Charge 

The surface charge, due to protonation or deprotonation of functional groups, on 

a solid suspended in an inert electrolyte can be calculated from the 

experimental aJ_kalimetric and acidimetric titration data [14]. 

For any point on the titration curve the mass balance is given by the equations 

(3.8) 

(3.9) 

Ca, Cb = concentration added to the suspension of acid and base respectively 

and [ ] denotes the concentration of solutes and surface species per unit 

volume of solution. 
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The surface charge per unit area Q(mol ·m-2) is thus given by equation 3.1 O 

(3.10) 

mN = solid to solution ratio 

S = specific surface area (m 2.g-1) 

The surface charge, calculated from the titration curve for the natural fissure 

filling material, is plotted versus pH in Figure 6. The pH at zero point of charge 

(pH2pc) obtained from this plot is approximately 9.2. 

For a pure mineral the uptake and release of protons can be descibed by the 

surface acidity constants 

(3. 11) 

(3.12) 

where { } denotes the surface concentration (mol ·m-2) 

Combining equations 3.8-3.11 we obtain 

(3.13) 

(3.14) 

The titration, surface charge and surface acidity plots for the clay minerals 

muscovite and chlorite are shown in Figures 7 and 8 respectively. 
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4. DISCUSSION 

The sorption/desorption processes display the following pronounced kinetic 

effects: 

(1) A fast initial sorption step is followed by a slow sorption process (see Figure 

2). 

(2) The time required to reach equilibrium is shorter for smaller than for larger 

particles (see Figure 2c). 

Observations (1) and (2) are in agreement with earlier reported observations [9, 

10and13]. 

(3) Comparing different magnetic fractions of the fissure fillings, the equilibrium 

attainment for the clay richer fractions (with relatively higher iron content and 

higher magnetic response) is faster for both sorption and desorption processes, 

as shown in Figure 2a and 2b. 

(4) The equilibrium attainment for the sorption process is seemingly faster than 

for the desorption process for all fractions of fissure filling material, as shown in 

Figure 2. It should, however, be pointed out that the part of sorbed Sr 2+ that 

can be quickly desorbed had been washed away, and only the slow step was 

followed in the desorption experiments. 

(5) The isotopic exchange between sorbed Sr2+ and Sr2+ in solution shows a 

similar equilibration pattern as an initially started sorption process, (see Figure 

4). 

Observations (4) and (5) correspond to those reported by Comans (1987) [8] for 

Cd2+ sorption on illite. 

As shown in Figure 1, Rd values in the sorption processes and that in the 

desorption processes are approaching each other, indicating the reversibility of 

strontium-sorption processes. As seen, there is a small difference between the 

final Rd values observed in the sorption and in desorption processes. This 

difference is clearly correlated to the difference in final aqueous concentrations. 

It can be explained by the slight unlinearity of the sorption/desorption isotherms 

of each sorbent fraction. In the present work, the sorption/desorption isotherms 

for the 90-125 µm size fraction of fissure filling material were found to be slightly 

unlinear, as shown in Equations (3.4) and (3.5), respectively. 
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According to Van Genuchten and Barney [5, 6], if the sorption is completely 

reversible, Nd= Ns and Kd = Ks, otherwise, NJNs<1 and Ks = Ks>1. In the 

present study, it was observed that for trace level ( 1 O -8 - 1 o-4 M) Sr2+ 

sorption/desorption on fissure filling material in groundwater, N JNs = 0.97±0.02 

Kd/Ks =0.980±0.02. This demonstrate that the sorption process is completely 

reversible. 

Isotopic exchangeability E, was found to be complete (1.04 ±0.1 ), which means 

that all sorbed Sr2+ is in a dynamic equilibrium with Sr 2+ in groundwater; in 

other words, their reversibilily is at hand. 

The reversibility was also proved by the dependence of R d on the pH of 

aqueous phase, as shown in Figure 5. In the second series of experiments, 

equilibrated Rd values can be increased or decreased by adding NaOH or HCI 

according the Rd·PH relationship that was established during the first 47 days' 

experiment. This provides useful information for judging sorption mechanisms. It 

is indicated that the reversible cation (proton/Sr 2+) exchange is the dominant 

sorption mechanism. This conclusion is also supported by the following two 

evidences: 

(a) The major part of Sr2+ sorption is caused by the fast sorption mechanism 

(see Figure 2). 

(b) For magnetic fractions of fissure filling, their Rd values in final stage of 

sorption or desorption processes are positively related to their CEC values (see 

Figure 1 and Table II). 

Diffusion into the sorbent [15], surface precipitation [16] and dissolution (17] 

reactions have been offered as explanations for slow sorption/desorption 

kinetics. In this study we have no evidence for the latter processes. The 

dependence of equilibration time on particle size and mineral composition 

favours diffusion into the sorbent as the most plausible cause for the slow 

kinetics. 

The sorption process display strong pH dependence and a closer look at the Rd 

versus pH plot in Figure 5 reveals three regions with marked pH influence. In 

the pH range 3-7 Rd increases by one order of magnitude although the sorption 

is rather low. In the pH range 7-11 the Rd increases by nearly two orders of 

magnitude. At pH>11.5 the Rd decreases with increasing pH. 
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The aqueous strontium speciation is, in the pH range studied, given by the 

hydrolysis equilibrium 

sr2++ oH- = sroH+ 

log K = 0.86 

(4.1) 

The fissure filling material consists of several minerals with different pH 

dependent surface properties. Based on the surface titration curve and the BET

surface for the natural fissure filling material we have calculated the surface 

charge per unit area (Fig 6b). It should be pointed out that this gives no detailed 

information about the surface charge on the different minerals, but merely 

characterizes the surface charge as a gross property for the total sample. The 

pHzpc was found to be approximately 9.2. 

The pHzpc for the mass dominating minerals are in the range 2-2.3 (Table Ill) 

whereas we found pHzpc to be 8-8.5 for chlorite and muscovite. 

Table Ill 

Surface properties of some minerals 

Mineral 

SiO2 

Albite 

Micro line 

pHzpc 

2.0 

2.0 

pKa1s 

2.5 -2 

2.0 

2.0 

2.4 

PKa2s Ref 

14 

6.9 18 

7 19 

14 

20 

20 

A plausible explanation for the pH dependence of the sorption process is 

sorption on increasingly negatively charged surfaces of the mass dominating 

minerals in the pH range 3-7 followed by increasing sorption on the negatively 

charged surfaces of the clay minerals muscovite and chlorite in the pH range 8-

11. The decrease in sorption at pH> 11.5 is most probably due to hydrolysis of 

sr2+. 

Based on these simple assumptions the effective Rd values is given by the 

equation. 
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where Rd( 1 ), Ka2s( 1) and Rd(2), Ka2s(2) denote the distribution coefficients for 

the negatively charged surfaces and the second protonation constants for the 

major and clay minerals respectively. 

The sorption data are plotted in a C sorbe&Co versus pH plot in Figure 9. The 

full line, fitted to the experimental data, was obtained using Rd(1)=4(cm 3.g-1), 

pKa2s(1)=5.3 and Rd(2)=140{cm3·g· 1) pKa2s(2) = 10.2 in excellent agreement 

with the surface charge data obtained in the titration experiments. 

5. CONCLUSIONS 

(1) Reversible cation exchange is a dominant Sr 2+ sorption mechanism. 

(2) Complete of attainment equilibrium requires at least 1 month. Shorter 

equilibratiom time was required for separated sorbent fractions with smaller 

particle size or higher clay content. 

(3) The sorption is strongly pH dependent and the presence of clay minerals i.e. 

chlorate, muscovite, even in low concentrations, will dominate the sorption 

process for pH>8. 
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Figure 9. 

Sr2+ sorption in fissure fillings plotted in the form C sorbed / C0 in solution vs pH. 

Full line is calculated using surface titration data from the different minerals 
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