CARBOFLOW

Discovering the missing link between groundwater flow and carbon transport in a thawing permafrost environment

Jelte de Bruin

Supervision: Victor Bense Martine van der Ploeg

> Netherlands Organisation for Scientific Research

Aim

Increase understanding of the physical processes required to model the release of carbon into deep groundwater from thawing permafrost, to improve model forecasts.

Transport of OC in groundwater: $\nabla \cdot \left[\mathbf{D}\nabla C_{OC}\right] - \frac{\vec{q}}{\theta_w} \nabla C_{OC} = \frac{\partial C_{OC}}{\partial t} + R_{OC}$ Heat flow: $\nabla \cdot \left[\kappa_a \nabla T\right] - \Gamma_f \vec{q} \cdot \nabla T = \Gamma_a \frac{\partial T}{\partial t} + L \frac{\partial \theta_w}{\partial t}$

UNIVERSITY & RESEARCH

Water and heat-transfer functions with added solute transport parameter

Previous

Moving the Field into the Lab: Simulation of Water and Heat Transport in Subarctic Peat

Ranjeet M. Nagare,^{1*} Robert A. Schincariol,¹ William L. Quinton² and Masaki Hayashi³

Reproducing Field-Scale Active Layer Thaw in the Laboratory

Aaron A. Mohammed,* Robert A. Schincariol, Ranjeet M. Nagare, and William L. Quinton

Freezing experiments on unsaturated sand, loam and silt loam

Kunio WATANABE,¹ Tetsuya KITO,¹ Tomomi WAKE,¹ Masaru SAKAI²

3

Objective How large is the contribution of different soil physical parameters to the release of carbon from thawing permafrost soils?

Controlled soil column experiments

- Climate chamber with regulated air temperature
- Increased complexity of soil content, varying grain size (distribution) and carbon content (SOC)
- No flow situation vs. constant head gradient imposed during thaw
- Temperature, soil moisture, preferential flows, DOC content

Objective Implement carbon transport by groundwater into permafrost hydrological modelling routines using laboratory experiment results

- Implement carbon transport into permafrost hydrological modelling routines using gathered parameter values
 - FlexPDE finite element software, or other INTERFROST code
 - Simultaneous heat and water transport, development of solute transport representation (e.g., C)

Example steady state model of the temperature development through a insulated soil column.

Initial results

WAGENINGEN

INIVERSITY & RESEARCH

Thanks for listening

