

Prague, October 30-31, 2014

PROGRESS UPDATE OF CIEMAT'S RESULTS

Tiziana Missana, Úrsula Alonso, Miguel García-Gutiérrez, Trinidad López

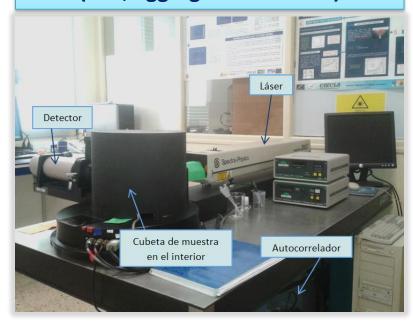
(CIEMAT)

Laboratory tests:

- Stability of NANOCOR (to be used for the benchmark erosion test);
- New generation tests (started): NANOCOR, Saponite and mixed clays;

In-situ erosion study at GTS (last sampling October 2014). Summary.

Colloid Stability



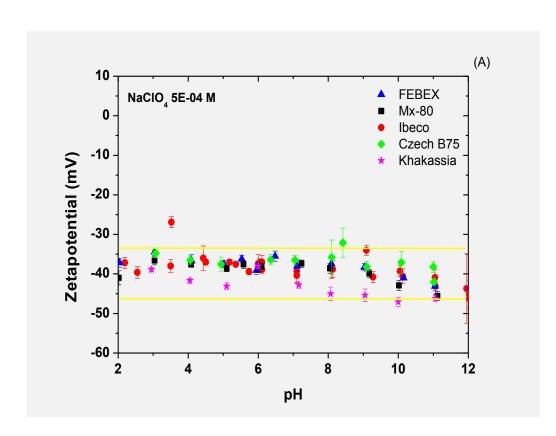
Zetapotential measurements (surface potential)

PCS measurements (size, aggregation kinetics)

$$U_E = \frac{2 \varepsilon \zeta f(\kappa r)}{3\eta}$$

pH and I

$$D = \frac{kT}{6n\pi \eta R_H}$$



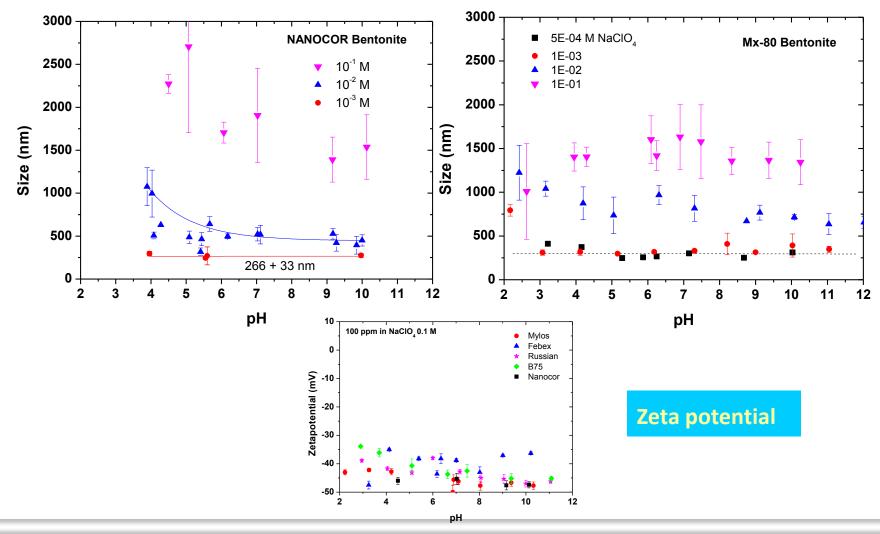
Data Comparison

Zetapotential similar in all the cases, even at different ionic strengths. Not particular relevant for the understanding of clay systems stability/erosion.

Coagulation behaviour: size unvaried up to $I=1\cdot10^{-3}$ M with slight increase for pH< 4 (edge-face interactions).

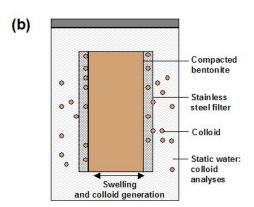
Aggregation observed at 0.01 M in NaClO₄, accentuated at acid pH. At I=0.1 M, colloids are completely

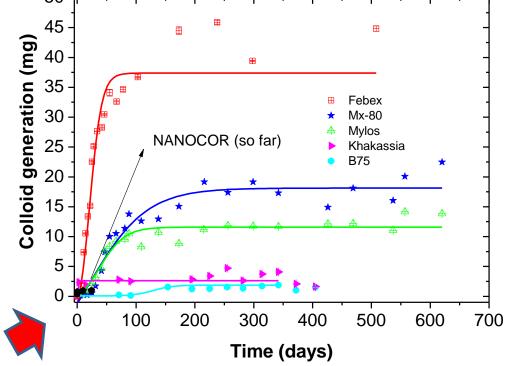
destabilized (size outside the colloidal range).



BELBaR

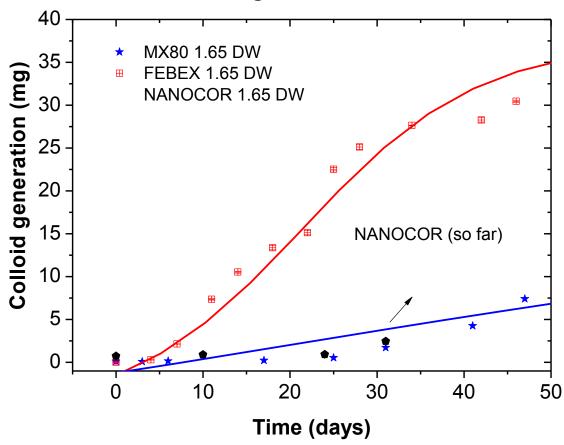
NANOCOR Stability


Erosion tests: static cnd.


Colloidal masses eroded as a function of time from the five studied bentonite compacted at 1.65 g/cm³ in DW

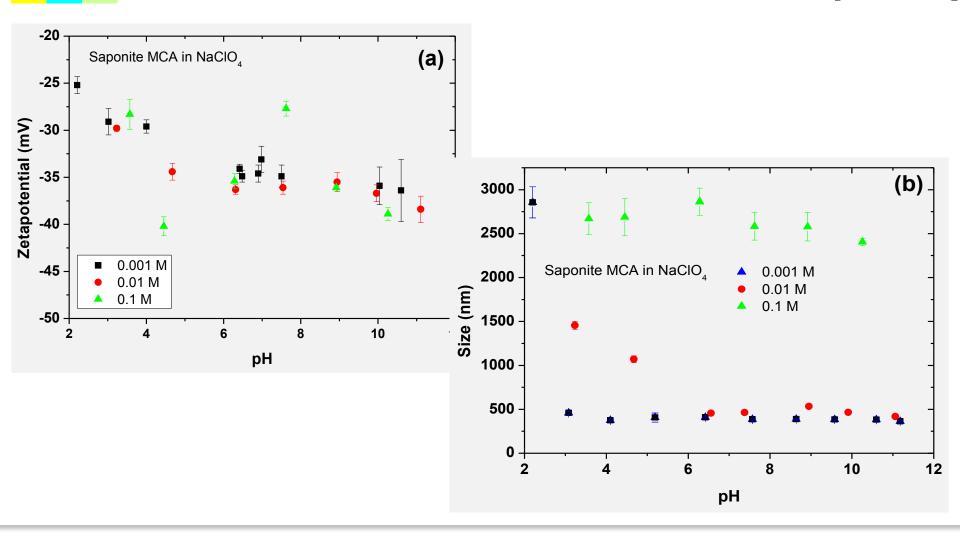
4 g clay, 200 mL **Compacted & Confined** $S = 3.5 \text{ cm}^2$

Generation - 1.65 g/cm³ in Deionised Water 50

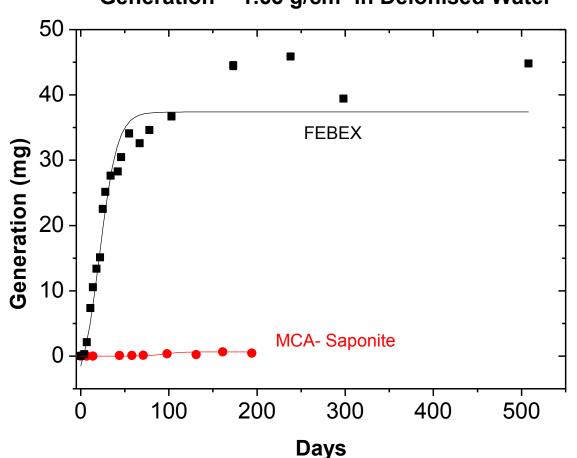

Erosion tests: static cnd.

NANOCOR 1.65 g/cm³ in DW

Generation - 1.65 g/cm³ in Deionised Water



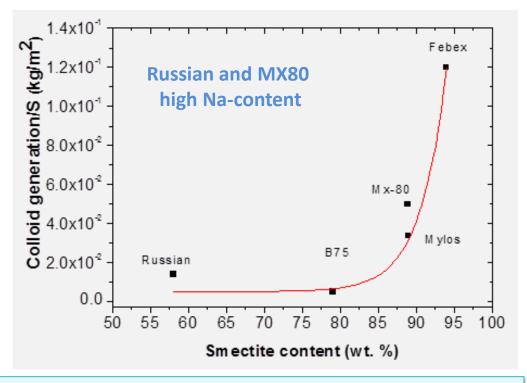
Saponite



Erosion tests: static cnd.

Saponite -MCA

Generation of colloids: very small.



Erosion tests: static cnd.

Bentonite	Colloid/S (Kg/m²)	Mean size (nm)
FEBEX	(1.2 ± 0.5)·10 ⁻¹	338 ± 24
Mx-80	(5 ± 0.5)·10 ⁻²	291 ± 31
Mylos	(3.4 ± 0.5)·10 ⁻²	367 ± 46
Russian Khakassia	(1.1 ± 0.5)·10 ⁻²	400 ± 150
Czech B75	(5.3 ± 0.5)·10 ⁻³	296 ± 75

Colloid generation seems to be mostly related to the smectite content (higher in the FEBEX case), rather than to the exchangeable Na (higher in Mx-80 or Khakassia).

NEW TESTS WITH ILLITE+MONTMRILLONITE & KAOLINITE + MONTMORILLONITE in diff %

Ongoing lab activities

- □ Complete characterization of all analyzed clays Clay structural properties in relation to erosion behavior.
- □ Static experiments with FEBEX bentonite mixed with known proportions of other clays in DW Verification of colloid erosion relation to smectite content.
- □ Continue "long-term" erosion experiments under flow conditions
- ☐ Benchmark test (NANOCOR 1.4 g/cm³)
- □ Analysis of CIEMAT erosion results form different experimental configurations, including FEBEX experiment GTS in-situ results.

Bentonite Erosion Processes: the *in –situ* study

Aims

In-situ analyses of the bentonite colloid generation <u>under realistic conditions</u>.

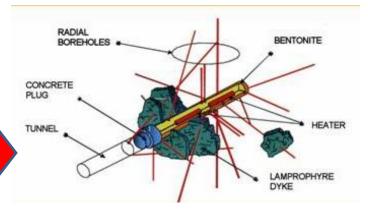
Data from FEBEX tunnel in the Grimsel Test Site, where a real scale experiment simulating a deep geological repository in granite installed 18 years ago.

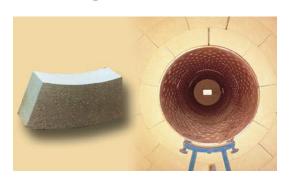
The study started in 2006 in EC-FUNMIG.

- Processes understanding.
- Comparison with laboratory data.
- Evaluation of colloid formation in a very favourable case.

Field work

Water sampling from different boreholes in the FEBEX tunnel for colloid analyses




Real-scale experiment at GTS simulating a repository in granite to study thermo-hydromechanical/geochemical (THM/THG) behaviour of the bentonite barrier.

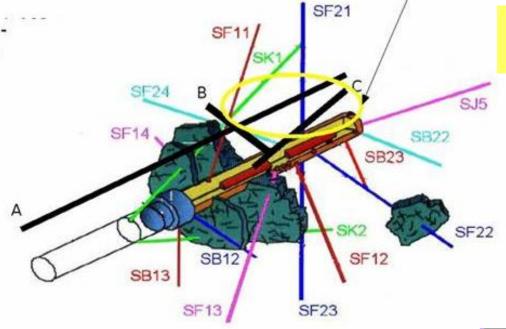
2 Heaters + (Natural) Hidration + Tracers.

EC-Project: Full-Scale High-Level Waste Engineered Barrier System Experiment.

1996-1997: mounting and swithing on.

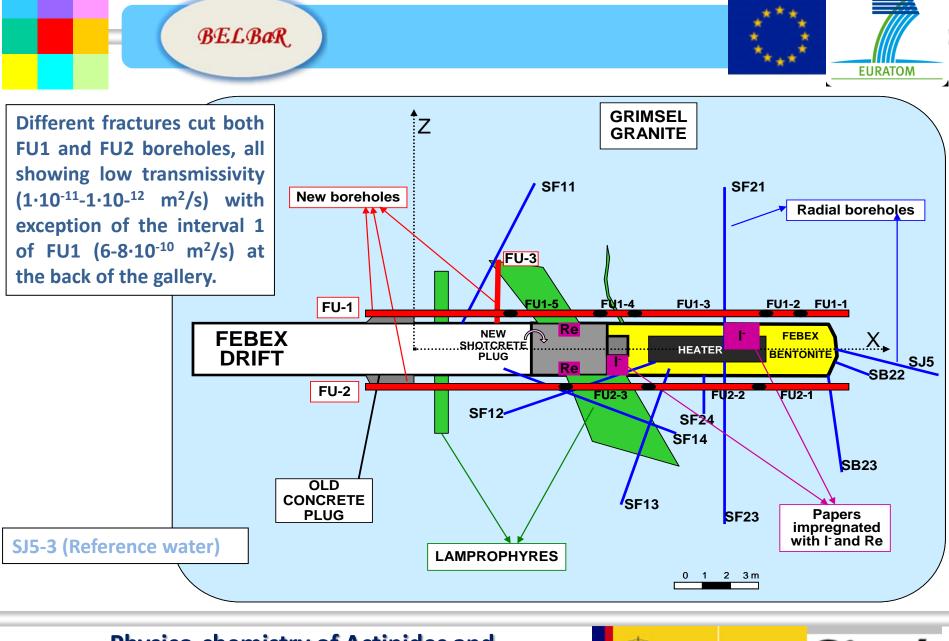
2014: 2nd heater and bentonite still emplaced (18 years). Experiment still running. Next year dismantling will start.

Bentonite Erosion Processes: the *in –situ* study


- This experiment was an unique opportunity to study colloid erosion under "realistic" conditions. Bentonite was emplaced there in 1996 (18 years now);
- Study on "colloid generation" started in the frame of EC-FUNMIG 2004-2008; Continued by CIEMAT.
- Focusing on the analyses on the effects of the bentonite on GW chemistry; Migration "natural" tracers from bentonite (Na, Ca, Cl) and artificial tracers (Re, I) placed during FEBEX at the bentonite surface.

Chemistry: 19 radial boreholes (41 packed off sections) excavated during the FEBEX experiment installation and 2 new "FUNMIG" boreholes, near to the bentonite, especially to the scope.

Existing "radial" boreholes (reference)


FU-1: 30 cm from bentonite

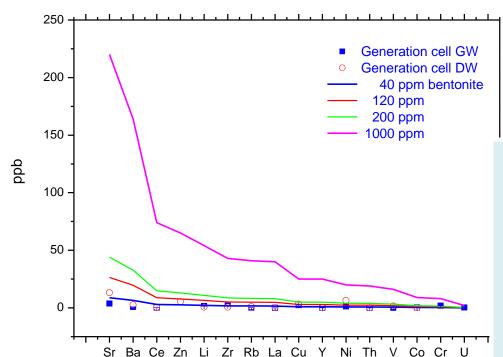
FU-2: 60 cm from the bentonite

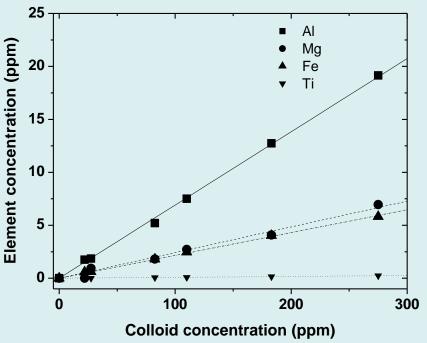
Analysis

SAMPLING

Comparison with laboratory "erosion" studies

- 1. PCS: Photon Light Scattering Spectrometry. Determination of concentration (C/C0) and size, without filtering and filtered by 0.45 um.
- 2. <u>SEM/EDAX.</u> Morphology and solid composition.
- 3. <u>FESEM.</u> Morphology
- 4. Trace analysis (+ Fe, Mn and Al) in filtered (ultracentrifuged) and not filtered samples.

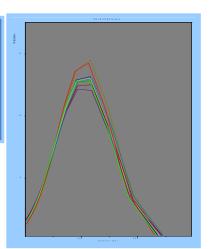

 Solid composition.
- 5. Other "problems": artefacts.



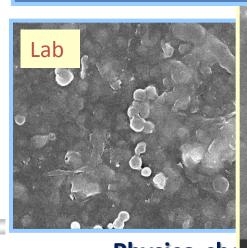
Theorethical curves: elements in bentonite

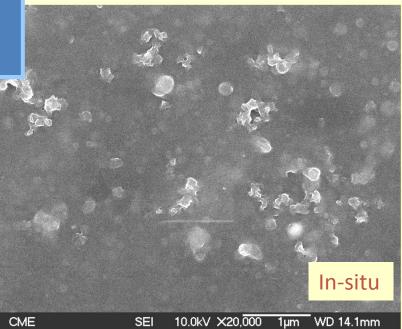
Estimation of BC concentration

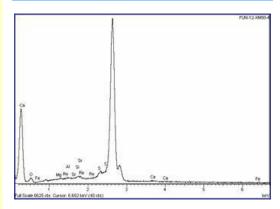
- ❖ 4 samplings were carried out between 2006 & 2007.
- **❖** Colloid samples were always analysed by PCS to determine the concentration (C/C₀), before and after filtering.
- ❖ Several samples, above all in the new drilled boreholes, showed surprisingly high colloid concentration (by PCS) even after filtering.
- ❖ In some interval of FU1 (above all FUN1-2) clay colloids were identified (concentration estimation <100 ppb) but...</p>
- ❖ Lot of possible interferences <u>biasing the identification of</u> "bentonite colloids" were also identified.
- Analysis of these artefacts analysis was absolutely necessary: big particles from drilling, iron oxides from taps, heavy metals and organics (drilling fluids?)



Size before filtering: 210 nm after filtering: 110 nm


Very good polydispersivity




Comparison: lab and in-

- EQuin

SEM/EDAX: Ca, Mg, Al, Si, Sr, S

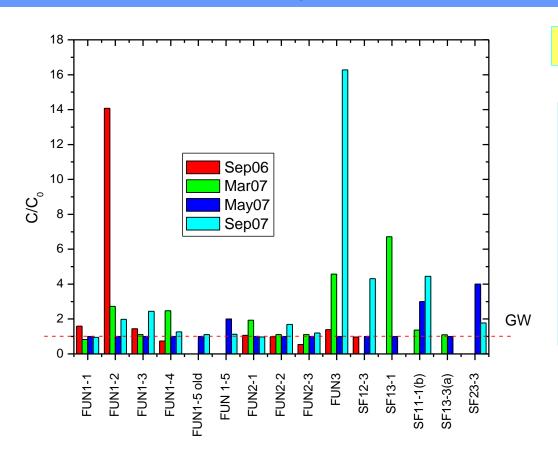
Physico-che CME

GOBIERNO DE ESPANA

PCS

- Most of "as-received" samples showed non negligible quantity of particles. Poly not good.
- ❖ After filtering, most colloids were in the range 100-300 nm.
- ❖ Populations with better polydispersivities (0.3-0.4) showed a size of 100 nm approximately.
- ❖ Different "types" can be identified, as usual considering concentration before and after filtering, size and poly.

SAMPLE	Size	Poli	Size fil	Poli fil
FUN1-1	647.1±45.5	1	204.6±22.8	0.85
FUN1-2	452.7±44.7	1	86.4±3.9	0.33
FUN1-3	256±16.7	0.59	137.0±9.6	0.4
FUN1-4	649±33.7	1	184±68	0.65
FUN1-5 (june)	579.6±49.7	1	208.5±45.7	0.85
FUN1-5	494.8±38.1	1	177.8±89.8	0.73
FUN2-1	FUN2-1 382.7±25.4		135.8±45.6	0.6
FUN2-2	FUN2-2 350.4±16.1		162.4±26.5	0.52
FUN2-3	JN2-3 >1000		300	1
FUN3	155.6±1.4	0.2	131.1±29.5	0.3
SK2-1	ND	ND	ND	ND
SF11-1	243.9±34.1	0.85	99.9±1	0.36
SF11-2	405.5±61.1	0.89	161.7±41.0	0.83
SF11-3	253.3±67	0.93	107.8±7.5	0.5
SF12-3	SF12-3 227.3±30.4		102.0±2	0.44
SF22-1	F22-1 187.8±32		135.7±23	0.53
SF22-2	135.7±23.8	0.53	****	1
SF23-3	692.9±112	1	233.2±97.6	0.8
SB22-1	281.8±73	0.85	129.7±23	0.42



PCS

Results: PCS. Comparison of all the samplings.

TREND NOT ALWAYS CLEAR

- Colloids in FUN 1 (1-2) decreased.
- FUN 2: values always similar to GW
- **❖ FUN 3: Big increase.**
- * Radials?

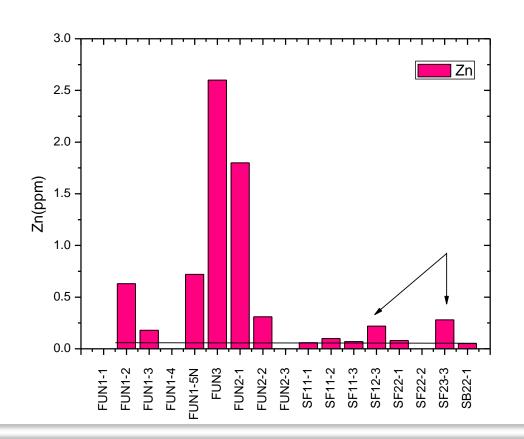
C/C₀ ratio after filtering

Chemistry

In in-situ samples, Al data, did not always correspond to PCS colloid concentration!
Other colloids sources must exist!!

Sample	C/Co	Al (ppm)	Coll conc. (ppm)
FUN3	16.28	0.04	0.58
SF11-1(b)	4.45	← 0.07	1.01
SF12-3 ●	4.31	<	<
SF11-3	2.75	<	<
FUN1-3	2.44	0.09	1.30
SF22-1	2.43	0.11	1.59
SB22-1	2.07	0.1	1.45
FUN1-2	1.98	0.07	1.01
SF23-3	1.77	<	<
FUN2-2	1.69	0.07	1.01
FUN1-4	1.26	0.07	1.01
FUN2-3	1.2	0.04	0.58
FUN 1-5	1.13	0.03	0.43
SF22-2	0.99	<	<
FUN2-1	0.97	0.03	0.43
FUN1-1	0.95	0.05	0.72
SF11-2	0.79	<	<

- High concentration of Zn, Ni, Fe
- Other anomalous metal concentration (particulate)



❖ Other colloids sources must exist !! Analysis of elements with higher concentration : Ni and Zn.

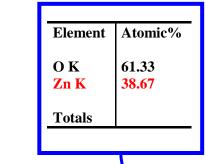
Interferences SF23-3:

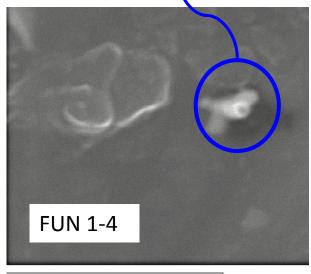
- -Drilling FU1 (15 m) FU1-1
- -Drilling FU2 (11 m) FU2-2
- -Drilling FU3 (lamprophyre)

Intereferences SF12-3:

- -Drilling FU2 (10.5 m), FU2-2
- -Drilling FU3 (lamprophyre).

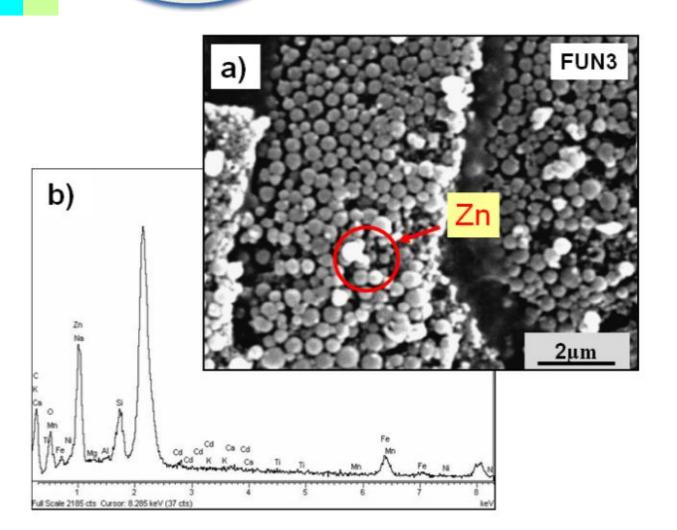
Artifacts



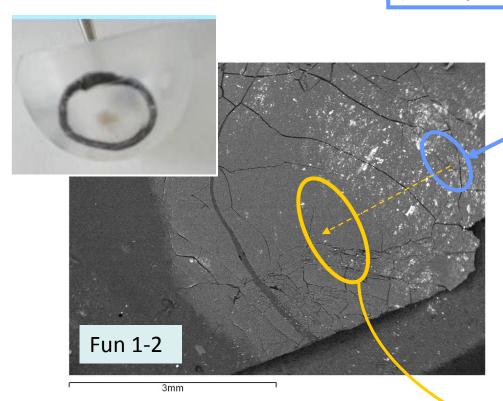


(Zn ?)

	T
Element	Atomic%
C K	0.00
ОК	42.41
Na K	13.11
Mg K	0.00
Al K	0.00
Si K	15.42
KK	0.00
Ca K	0.67
Ti K	0.00
Mn K	0.00
Fe K	7.95
Ni K	0.00
Zn K	20.17
$\mathbf{Cd}\ \mathbf{L}$	0.27
Total	100


2µm

Artifacts


(Sampling: 2009)

Artifacts

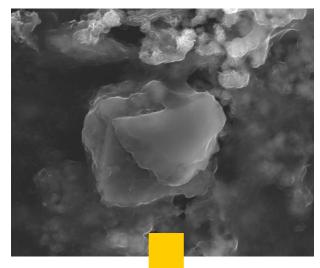
(other problems.....?)

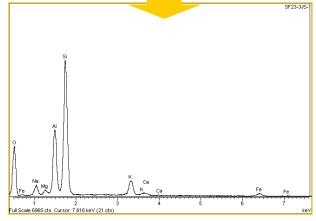
Element Atomic% O K 58.62 Mg K 0.78 Al K 3.04 Si K 11.67 P K 1.71 S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81 Sr L 1.27		
O K Mg K 0.78 Al K 3.04 Si K 11.67 P K 1.71 S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.78	Element	Atomic%
Mg K 3.04 Si K 11.67 P K 1.71 S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Diement	7 ROTHE 70
Al K Si K 11.67 P K 1.71 S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	ОК	58.62
Si K 11.67 P K 1.71 S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Mg K	0.78
P K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Al K	3.04
S K 3.62 Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Si K	11.67
Cl K 0.57 K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	PΚ	1.71
K K 0.75 Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	S K	3.62
Ca K 0.86 Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Cl K	0.57
Ti K 0.01 Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	KK	0.75
Mn K 0.01 Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	0411	
Fe K 15.38 Ni K 0.00 Cu K 0.90 Zn K 0.81	Ti K	0.01
Ni K Cu K Zn K 0.00 0.90 0.81	1.111 11	
Cu K 0.90 Zn K 0.81	Fe K	
Zn K 0.81	- 1	
7.7		
Sr L 1.27		
	Sr L	1.27
		100
Totals 100	Totals	100

High TOC values

Sample holder, C, to identify heavy metals.

Decrease Al, Si, Fe Increase O, P, S

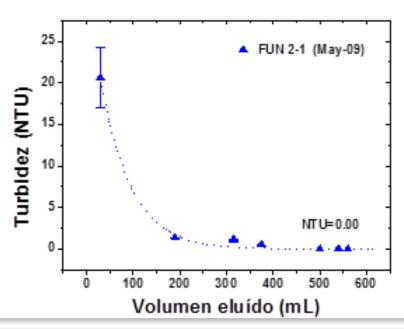




(natural colloids?)

	Element	Atomic%	Element	Atomic%	*
A CONTRACTOR	O K Al K Si K P K S K Ca K Fe K Zn K	55.36 0.49 2.60 0.84 1.73 0.56 35.46 2.97	O K Na K Al K Si K Ca K Fe K Zn K Mo L	61.26 0.00 1.72 5.64 0.86 29.11 0.93 0.49	
	Totals	6µm	Totals		

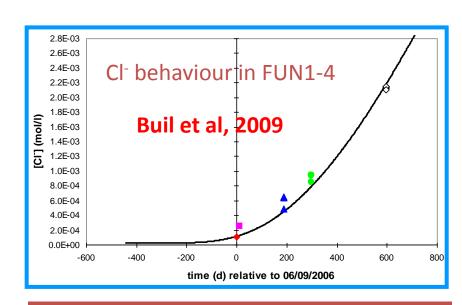
SF23-3


2009-2014

"New methodology" needed to clarify what happens and to quantify the actual contribution of BC. Last sampling Oct.2014.

- Chemical affects of bentonite on GW.
- Sample selection, to minimise existence of artefacts as e.g. iron oxides. Successive sampling with the same methodology (2009-2014).
- **❖** When the sample is taken is very important for results comparison.
- "Contamination" usually decreases as the volume eluted increases. Not important for other elements. Very important for BC analyses
- BC have to be studied at the "steady state"

Chemical effects?

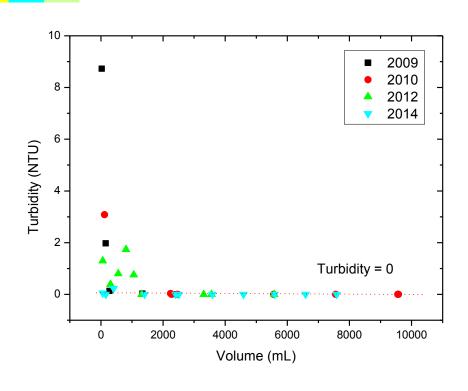


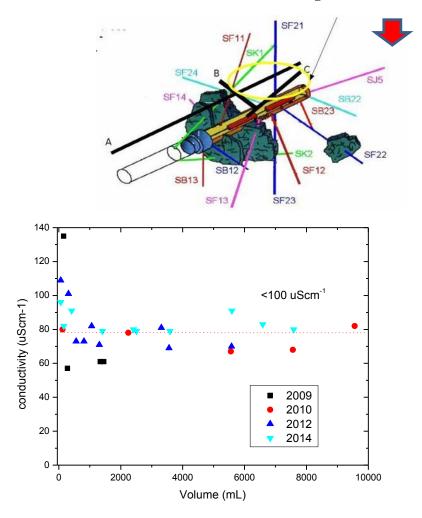
Bentonite in contact with GW:

- Dissolution of main soluble salts (in FEBEX: halite and gypsum)
 Cl, Na, Ca, SO₄²⁻ (variation), conductivity
- Cl is conservative
- Na and Ca: ionic exchange
- SO₄²⁻: other "problems"

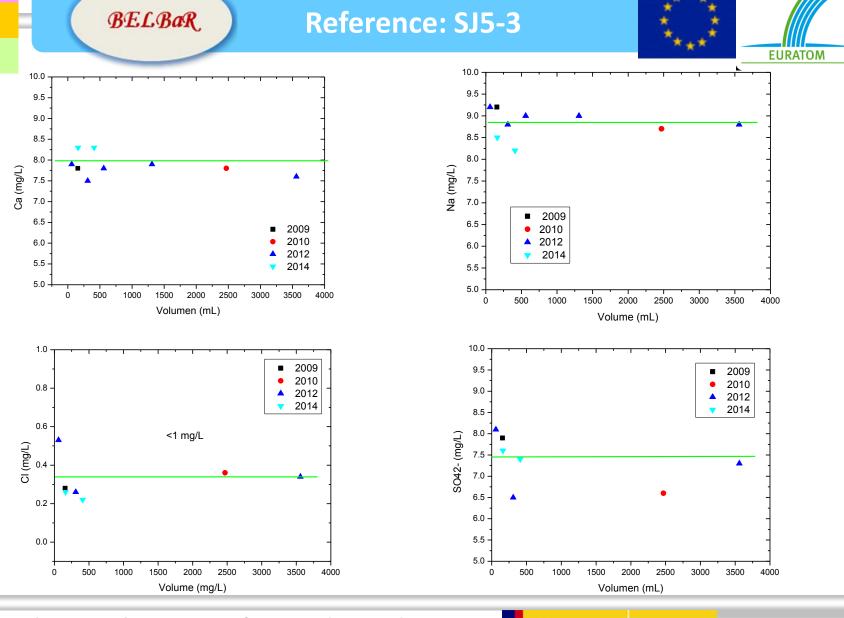
If we do not observe these effects, we do not expect the presence of bentonite colloids

Simple 1D diffusion model: De $(Cl^{-}) = 5,0E-11 \text{ m}^{2}/\text{s}$.



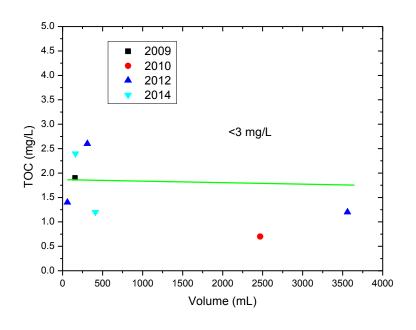


Reference: SJ5-3

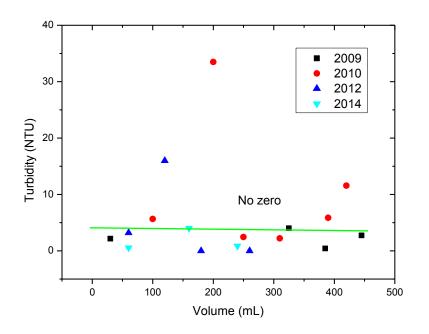


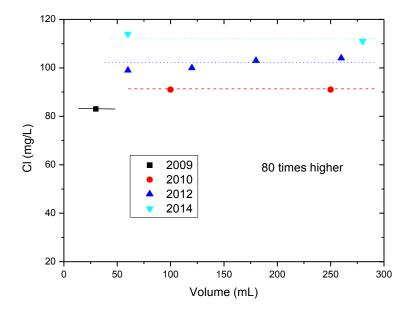
Stable

Physico-chemistry of Actinides and Fission Products Unit

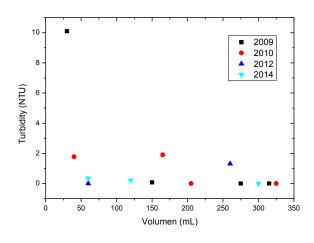


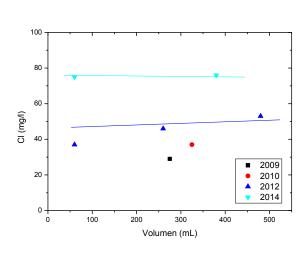
Reference: SJ5-3

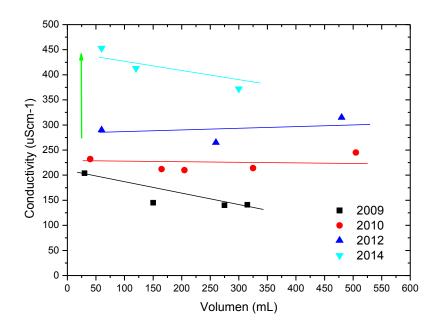


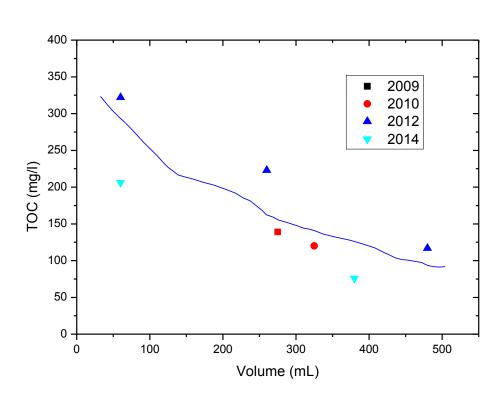

FUN1 and FUN2

FUN 1-4 (30 cm)

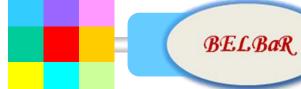



FUN1 and **FUN2**





FUN1 and FUN2

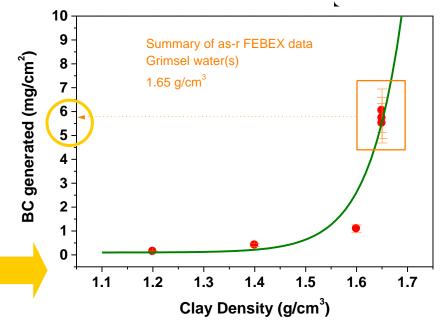

FUN 2-2 (30 cm)

Not related to the bentonite

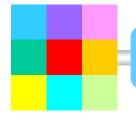
FUN 1 and FUN 2

Colloidal material still coming from the excavation disturbance still exist: it decrease very slowly with time.

The highest AI concentration (main BC indicator) found in the "bentonite disturbed" water.


Still very low (max around 0.5-0.8 ppm, equivalent BC)

Evaluation



- ☐ FEBEX tunnel area: "quasidiffusive regime" low transmissivity regions: (data from static experiments).
- Total surface: 124,57 m²; max at equilibrium: 6850 g. Size paths and "mobilisation by diffusion".

For 100-300 nm colloids, D, is $4.9 \cdot 10^{-12} / 1.6 \cdot 10^{-12}$ m²/s, thus the relation $C(t)/C_0$, at 20 cm from the bentonite (mínimum to FUN 1) after 13 years (Missana *et al.*, 2011): $1.6 \cdot 10^{-3} / 3.4 \cdot 10^{-8}$, significantly lower than than 100 ppb estimation. Deposition due to chemistry of roughness effects not included. FEBEX tunnel, Ca in fillings materials.

NEXT BELBAR ANNUAL MEETING: IN MADRID

26-27 February or 05-06 March

Doodle (?)

- Full first day with evening poster presentation + half a day;
- Submission of extended abstract for presentation/posters: a CIEMAT report can be published;
- People of BELBAR (other institutions to be invited?);
- Topical meeting (on clay properties?).