

Clay erosion in safety assessment in Deep Geological Repositories (DGR)

Compacted bentonite will produce colloidal particles (Fissures; active fractures)

Evaluation of clay loss

impact in barrier integrity and long term performance Potential RN transport

Soil erosion:

Unconfined state

Favorable conditions for colloidal release (rainwater physical impact; stream flow)

So, what can we learn from soil erosion studies to be applied in the SFA for DGR?

Summary

Soil aggregates stability: analogies to clay buffer erosion and colloid release control?

Physical-chemical and structural properties of different clay minerals: Clay systems erodibility

Factors influencing aggregate stability in soil clay systems: free oxides and organic matter

Ideas

1. Soil aggregates stability: analogies to clay buffer erosion and colloid release control?

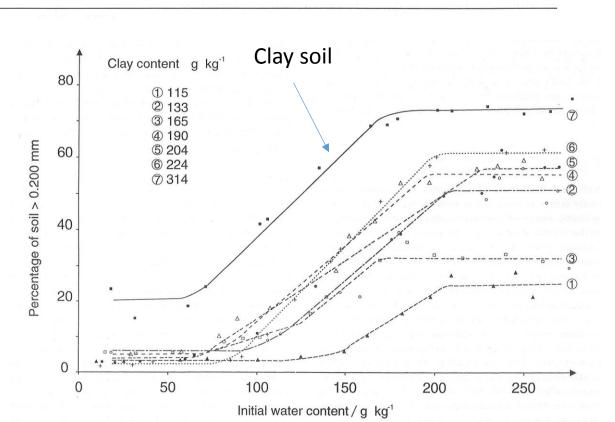
Type of treatment	Form of sample	Expression of the result	Authors		
	3–5 mm <2 mm	MWD* %>200 иm	Yoder (1936) Hénin et al. (195	137)1	
Wet sieving	whol MWD: 1-2 2-3.4 1-2	weight diameter	& I ser (7861)	Macroaggregates (> 250μm)	Oades (1984
Raindrops or rainfall	Sum of each si	mass fraction re eve after sieving e of the adjace	ng x mean	Microaggregates (20-250 μm)	
Ultrasonic dispersion		ted range between using the a set of miles-aggregate pore volume		Primary Particles (< 20µm))
Immersion Dry sieving	3–5 mm <4 mm	qualitative MWD	Emerson (1967) Kemper & Chepil (1965)		

Le Bissonais (1996)

Aggregate stability and assessment of soil crustability: I. Theory and methodology EJSS,47,425-437

Aggregate Breakdown Mechanisms

Mechanism	Slaking	Breakdown by differential swelling	Breakdown by raindrop impact	Physico-chemical dispersion
Type of forces involved	Internal pressure by air entrapment during wetting	Internal pressure by clay differential swelling	External pressure by raindrop impact	Internal attractive forces between colloidal particles
Soil properties controlling the mechanism	Porosity, wettability, internal cohesion	Swelling potential, wetting conditions, cohesion	Wet cohesion (clay, organic matter, oxides)	Ionic status, clay mineralogy
Resulting fragments	Microaggregates	Macro and and microaggregates	Elementary particles	Elementary particles
Intensity of the disaggregation	Large	Limited	Cumulative	Total


Slaking: rapid wetting

Differential swelling

Raindrop impact

Physico-chemical dispersion

Le Bissonais (1996)

Analogies to clay buffer erosion and colloid release control?

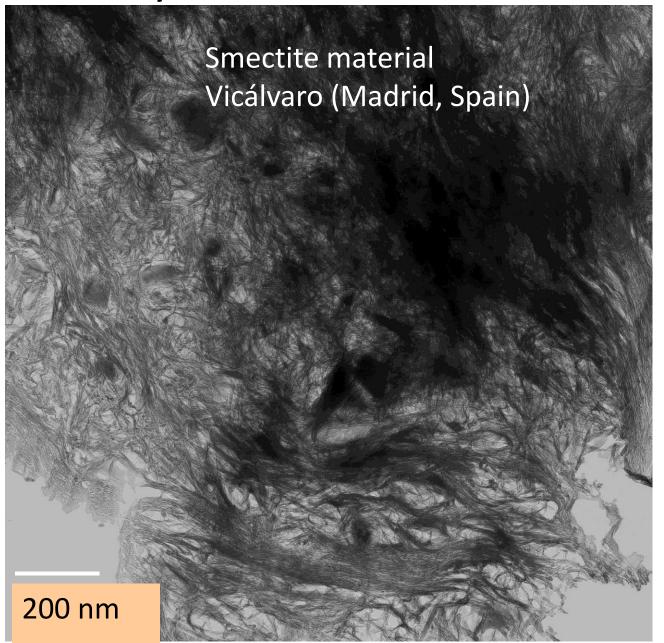
Colloid formation

In static systems: slaking?

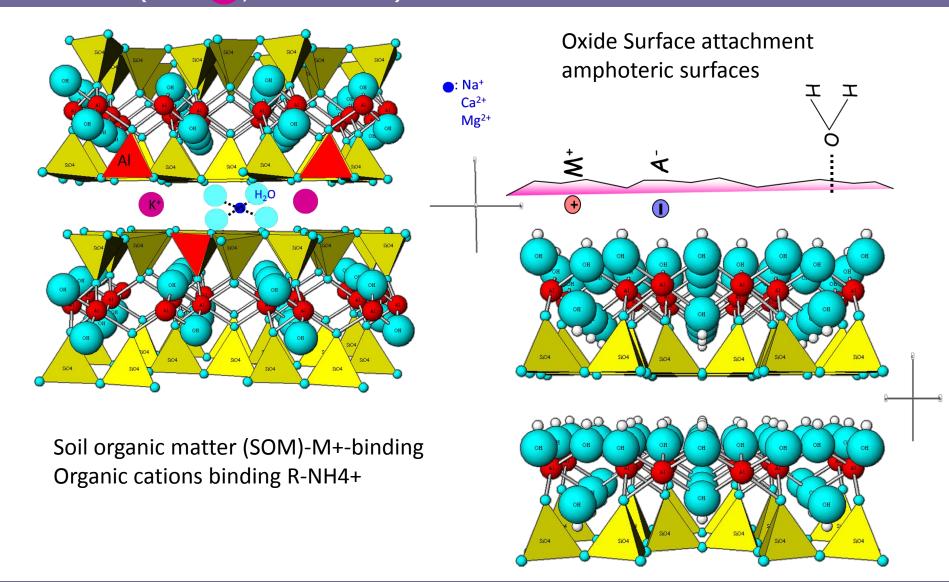
Rapid wetting of dry compacted bentonite: aggregates fragmented and dispersed by means of tensions generated by trapped air.

...the increase of clay particles in solution is initially rapid...

Differential swelling (micro-aggregates breakdown)


The bentonite loss in a static system is not to be continuous (crusting?: fissures clogging: self-healing)

The dynamic system: flow perturbations; physicochemical dispersion Role of water chemistry; exchange complex, mixed materials (free oxides, organic components)

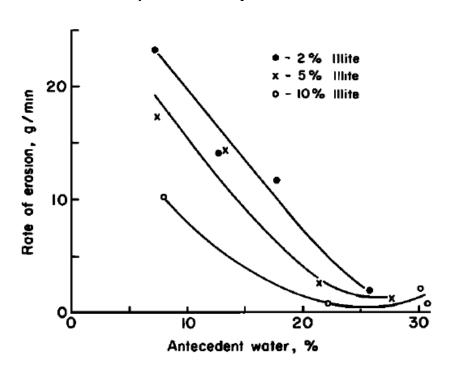

Aggregate stability:

porous filters < 1µm pore size do not allow the observation of particles release, Indicators for micro (nano)-aggregate integrity measurements could be developed

2. Physical-chemical and structural properties of different clay minerals: Clay systems erodibility

CLAY MINERALS sheet 2:1 (illite Kt, smectite)

CLAY MINERALS sheet 1:1 (kaolinite/oxides)


CLAY SYSTEM: ALSO A MATTER OF SIZE/SHAPE INTERACTION BETWEEN CLAY PARTICLES

ya'ar (MONTMORILLON Mean weigh	NITIC,63% CLAY) It diameter and tota		y aggregate values for	of clay tacto various studied
	Wakindiki and Ben-			various staatea
Soil		Mean weight diameter		Total soil loss (kg m ⁻²)
Location	Mineralogy SLAKING	In fast- wetting test (mm)	In runoff (mm) UN	AL FORMATION DER RAIN FLOW
Tunyai	Kaolinitic	2.80a ^a	0.12a	0.33a
Neve Ya'ar	Montmorillonitic	0.25b	0.03b	1.24b
NT 4	Montmorillonitic	0.31b	0.20c	1.14b
■ Netanya	NT 1 11 '11' /	0.84c	0.18c	0.75c
Netanya Molo	Non-phyllosilicate			
NT 4				

M. Lado, M. Ben-Hur / Applied Clay Science 24 (2004) 209-224

CLAY SYSTEM: ERODIBILITY/(no oxide/SOM interaction) STABILITY OF COHESIVE MATERIALS AGAINST EROSIVE FORCE OF FLOWING WATER

Stability increased for 2:1 clay soil mixtures and for oriented kaolinite (1:1) matrix: function of clay content, **previous water content**. **ERODIBILITY INCREASED WITH TEMPERATURE**

E.H. GRISSINGER (1966)
Resistance Of Selected Clay Systems to
Erosion by Water
Water Resource Research, 2, 131-138

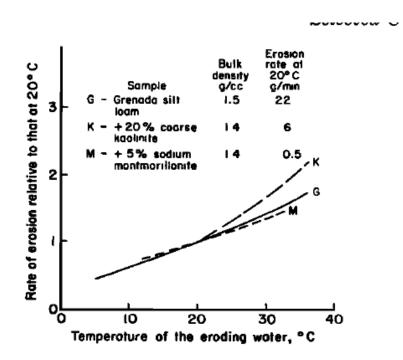


Fig. 1. Influence of temperature on erodibility of Grenada silt loam with admixtures, compacted and tested at 10% water.

But: Erodibility (Interrill flow) is high for smectitic soils and low for kaolinitic-oxidic soils (Reichert et al., 2007)

3. Factors influencing aggregate stability in clay systems: free oxides and organic matter (SOM).

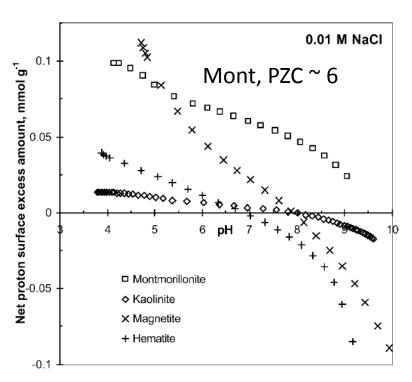
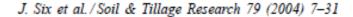


Fig. 1. pH-dependence of net proton surface excess amount determined by acid-base titration for clay minerals and metal oxides at 0.01 M ionic strength.

Proton Surface Excess acid- base tritration PZC

Tombácz et al., 2004, Organic Geochemistry, 35, 257-267

Small amounts of Al or Fe oxides improve flocculation of clay systems: more effective for 1:1 systems at near the PZC of the oxides (7.2-8 Fe; 9.5 for Al).


(Goldberg and Glaubig, 1987; CCM, 35, 20-227)

In soils of mixed mineralogy (illite, smectite, kaolinite), the removal of amorphous and crystalline oxides increases the clay dispersivity.

But

The removal of SOM decreased clay dispersivity. Macro-aggregates are destroyed, SOM favors particle repulsion

Goldberg et al., 1990; Soil Science, 3, 588-593.

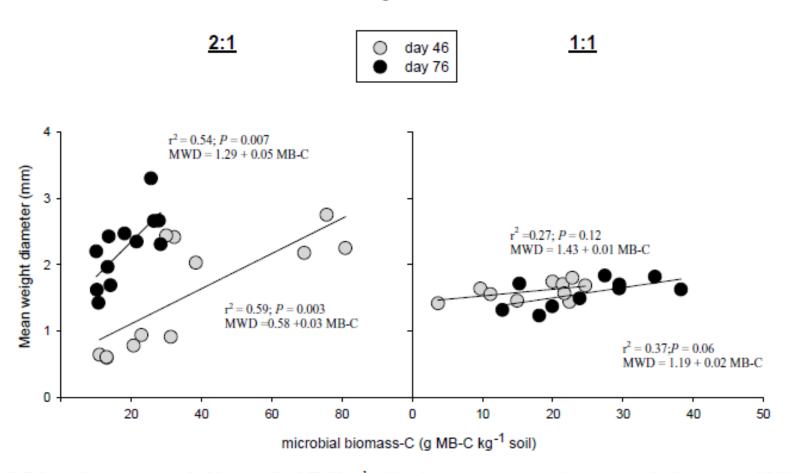
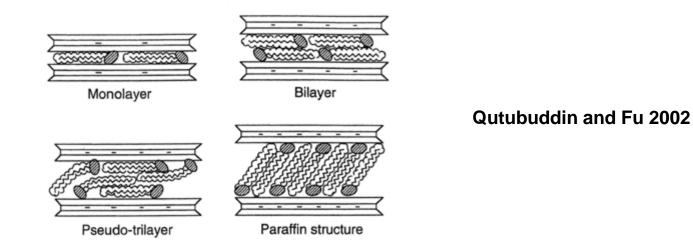


Fig. 7. Relationship between microbial biomass C (gMB-Ckg⁻¹ soil) and aggregation (expressed in mean weight diameter) in a Mollisol dominated by 2:1 minerals and an Oxisol dominated by 1:1 minerals and oxides. Data adopted from Denef and Six (2003).

Illite, smectite selectively support/adsorb biopolymers related to microorganism activities

19


Ideas

Materials design: Erodibility control.

i.e.: **Iron oxides could control the PZC and favor aggregate stability at erosive interfaces**. Could be useful to apply oxide (i.e., magnetite or other iron oxide nanoparticles to control erosion at the interfaces?

Erosion measurements in field experiments: aggregate/particle detachment tracers: organo-nano clays

i.e. Mentler et al., (2009). Organophylic clays as a tracer to determine erosion processes. Geophysical Research Abstractys, 11.: (detectable in 0.3 μ g/L)

Methylene blue (MB) -montmorillonite particles could be used also as tracers for erosion: at low concentration forms stable aggregates

Thank you for your attention

Particle mediated transport linked to field erosion:

Cs at Fykushima

Antibiotics/pharma compounds

Potential applications of nanosized organoclay synthesis products

A choice for field or larger scale colloid transport evaluation?