Theoretical Studies with Density Functional Theory (DFT) on Ca/ Na Montmorillonite: Structure, Forces and Swelling Properties

Guomin Yang
Longcheng Liu
Ivars Neretnieks
Luis Moreno
2014. 06.18
Outline

• Research Background
• Methods
• Results
• Conclusions and applications
Research Background

- Swedish KBS-3 disposal concept

Fig 1. Swedish KBS-3 repository design
Research Background

• Structure of Ca/Na-bentonite

Figure 2. Structure of bentonite buffer
Research Background

Fig 3. Schematic picture of a stack of montmorillonite lamella
Research Background

• Swelling ability of bentonite\textit{(smectites)}

\textbf{Fig 4.} Free swelling tests with pure montmorillonites. \textit{Birgersson et al. 2009}
Research Background

Fig 5. Height of test samples versus time measured for free swelling in deionised water. Birgersson et al. 2009
Methods

Theories

➢ Most popular methods:

• Hypernetted Chain Approximation (HNC)
• Modified Gouy-Chapman Theory (MGC)
• Density Functional Theory (DFT)
Methods

- HNC---Integral Equation Method
- MGC---Poisson-Boltzmann Theory (PB)
- PB and DFT

Fig 6. (a) PB picture. (b) DFT picture
\[i(r) = b \exp\{ z_i e(r) \} \]

Ornestion-Zernick (O.Z.) equation

\[h(r_{1,2}) = c(r_{1,2}) + h(r_{2,3})c(r_{1,3}) dr_3 \]

Total Direct Indirect

1-2: direct effect
3-2: indirect effect
Methods

• Restricted Primitive Model (RPM)

Fig 7. Schematic picture of two charged walls immersed in a bulk solution
Fig 8. Schematic picture of two clay platelets system being in equilibrium with pure water
Fig 9. Monte Carlo method for calculating pi (π)
Results: Structures

Density distributions for Monovalent Counterions

Fig 10. Density profiles $n(z)$ in mol dm$^{-3}$ for a system with two planar, charged walls in equilibrium with pure water and with only monovalent counterions between surfaces. The surface charge density is 0.267 C m$^{-2}$, ion size $d=4.25\,\text{Å}$, surface separations $h=3, 5, 10$ Å.
Results: Forces

Net osmotic pressure for monovalent counterions

\[P = \frac{RT}{z} \]

\[z = h + d \]

Surface charge: \[0.267 \text{C/m}^2 \]

Ion diameter: \[d = 4.25 \text{Å} \]

HNC: Hypernetted Chain Approximation

WCA: Weighted Correlation Approximation

Fig 11. As Fig 10. Double layer net osmotic pressure.
Results: Forces

Fig 12. but for the system with only divalent counterions, the surface charge density is varied from 0.13 to 0.05 C m\(^{-2}\), \(d=4.0\text{Å}\)
Results: Forces

Fig 12. As Fig 11. but the fraction of surface charge neutralized by monovalent counterions is indicated in figure. The surface charge density is 0.11 C/m^2.
fraction of sodium ≈ 30%

Fig 13. Relative number of layers per particle as a function of surface coverage when the Ca\(^{2+}\) ions exchanged by Li\(^+\), Na\(^+\), K\(^+\), Cs\(^+\) and Mg\(^{2+}\) ions (Schramm and Kwak, 1982a).

From (Jasmund and Lagaly, 1993)
Conclusions and applications

• Simulations agree quite well with the MC data
Acknowledgements

Longcheng Liu
KTH

Ivars Neretnieks
KTH

Luis Moreno
KTH

The research leading to these results has received funding from the European Atomic Energy Community‘s Seventh Framework Programme (FP7/2007-2011) under Grant Agreement no295487, the BELBaR project.
Contact information

Guomin Yang

guomin@kth.se

Teknikringer 42

10044 Stockholm