

Bentonite swelling and erosion. The 2-stage model. Numerical and simplified modelling

Presentation at BELBaR meeting in Meiringen, June 17/18, 2014 Ivars Neretnieks, Luis Moreno, Longcheng Liu

Chemical Engineering and Technology KTH

Overview of talk

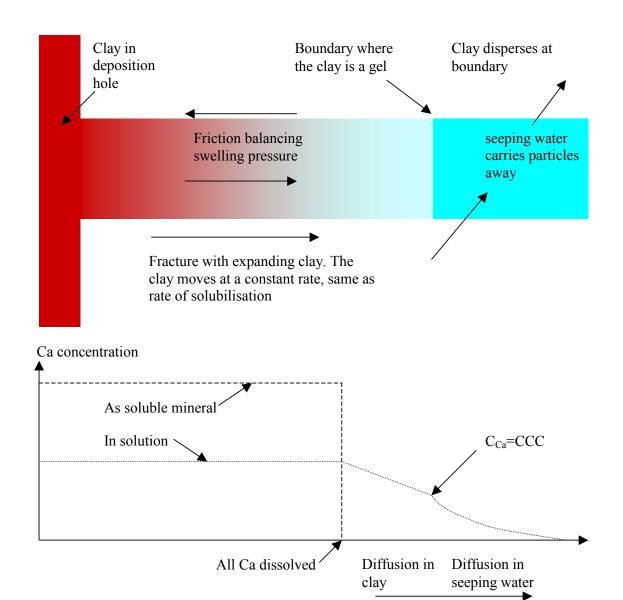
Background

Concept of two-stage model

Gel/sol viscosity and Bingham properties Gel/sol diffusivity

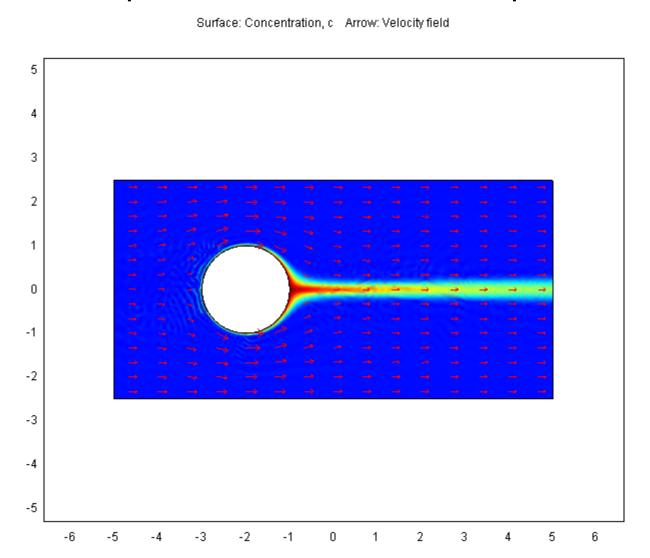
Maths of 2-stage model

Numerical solution


Simplified model

Sample calculations and impact on PA

Background


- Previous modeling is based on FEM techniques
- Much to low resolution in the rim zone where the "dramatic" changes occur
- Need to develop new model to resolve rim zone

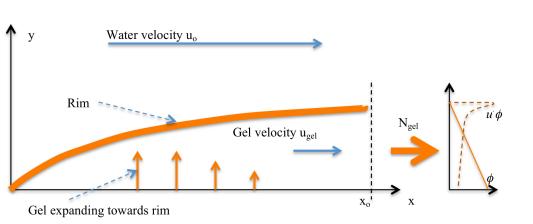
Transport processes at gel/GW interface

Diffusion to passing GW Solve the coupled flow and diffusion equations

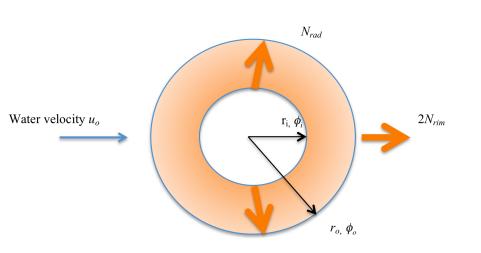
Min: -0.473

Max: 3.00

2.5

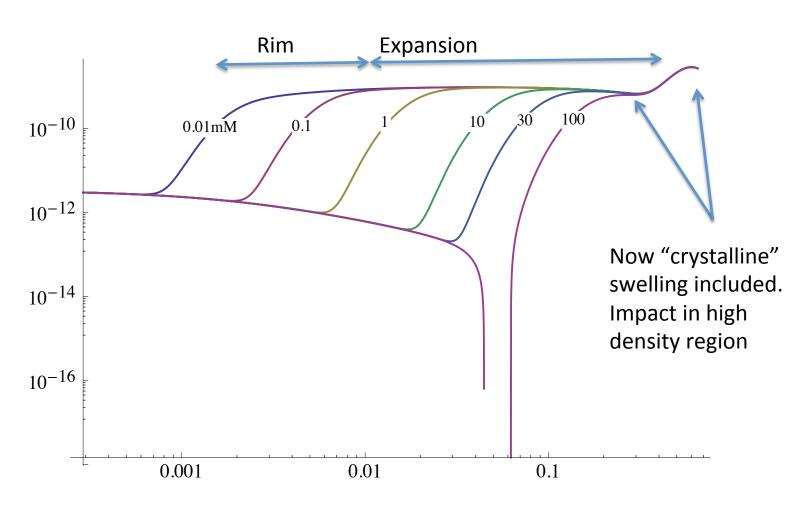

<mark>-</mark>1.5

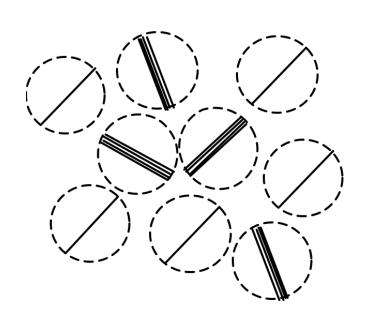
0.5


Two-region model

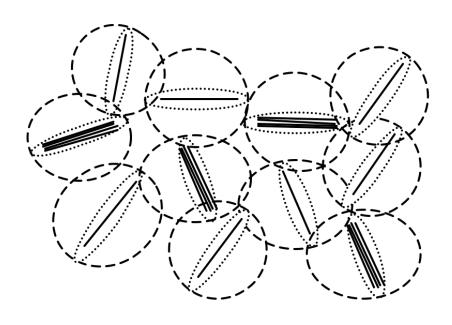
- Inner region 1 metre to more than 100 ds of metres
 - Smectite with volume fraction > ϕ crit= 0.004-0.02 (10-50 g/l) does not flow. It can, however, expand by a diffusion-like process
- Sudden jump at ϕ *crit* from no flow to flow
- For PA scales outer, Rim-region- very thin, <
 1% of radius of distance to rim
 - At volume fraction $< \phi crit$ it flows with increasing velocity as the viscosity drops

Model expansion and rim separatelythen combine models


$$N_{rim} \propto f(\phi_i) \delta_{frac} \sqrt{2\pi r_0}$$


Loss from deposition hole is mass that goes into fracture N_{loss}

Once steady state is reached expansion ceases and $N_{loss} = N_{rim}$


Diffusion function of gel/sol

Co-volume concept

Thin diffuse double layer, co-volumes do not overlap

Large diffuse double layer, co-volumes overlap

Figure 5.1 Illustration of co-volume with and without impact of diffuse layer for a given ϕ . The extent of the diffuse layer is shown as dotted oval in the right figure.

Model of gel/sol viscosity

$$\frac{\eta}{\eta_w} = 1 + 1.022\varphi_{cov}^{\kappa} + 1.358(\varphi_{cov}^{\kappa})^3$$

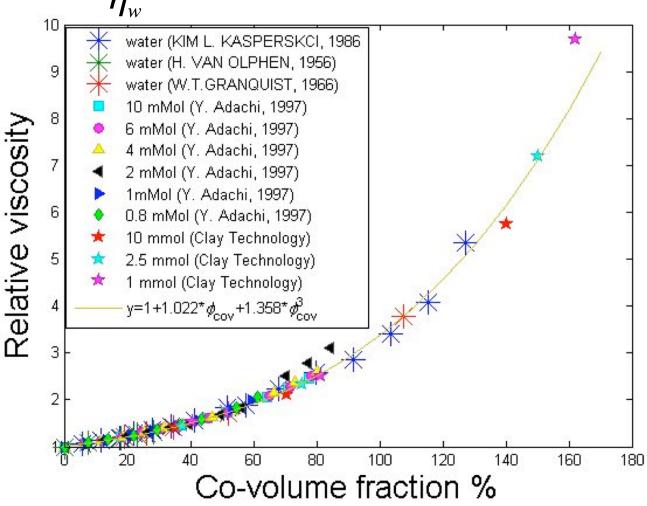


Figure 5.5 Relative viscosity as a function of co-volume fraction from different

Basic equations for rim loss

$$D_{rel}(\phi) \frac{\partial^2 \phi}{\partial y^2} + \frac{dD_{rel}(\phi)}{d\phi} \left(\frac{\partial \phi}{\partial y}\right)^2 = \frac{u_o}{D_o \eta_r(\phi)} \frac{\partial \phi}{\partial x}$$

PDE

$$z = \frac{y}{2\sqrt{D_o x/u_o}}$$

$$\eta_r(\phi)D_r(\phi)\frac{d^2\phi}{dz^2} + \eta_r(\phi)\frac{dD_r(\phi)}{d\phi}(\frac{d\phi}{dz})^2 = -2z\frac{d\phi}{dz}$$
 ODE to be solved w arbitrary accuracy

$$N_{rim} = \delta_{frac} \int_{0}^{\infty} u(y)\phi(y)dy = \delta_{frac} u_{o} \int_{0}^{\infty} \frac{\phi(y)}{\eta_{rel}(\phi(y))} dy$$

$$N_{rim} = N_{rim}^{DL} \delta_{fr} 2 \sqrt{D_o x u_o}$$

Only depends on ion conc. surface charge density and particle size

Example: c=0.1 mM

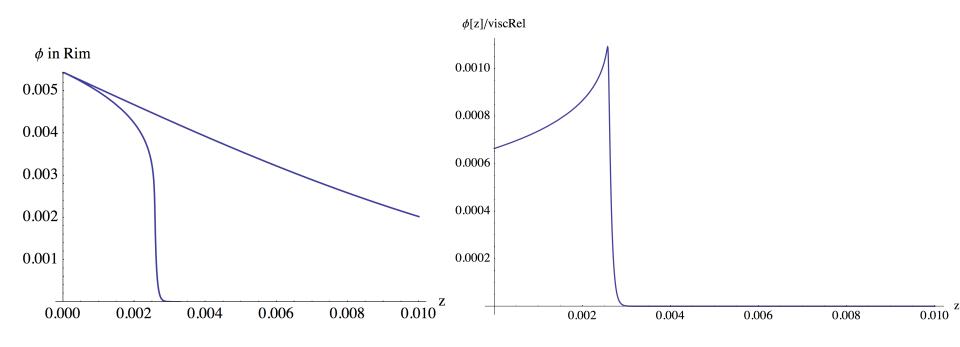


Figure 7.6. Relative measure of the flux ϕu in the rim zone, $u=10^{-5}$ m/s and c=0.1 mM. Left figure is for $\phi_{Cov}=1.6$.

Figure 7.5 concentration profile in the rim zone, $\phi_{Cov} = 1.6$, $u=10^{-5}$ m/s and c=0.1 mM monovalent ions. Right hand curve is for constant D and viscosity.

$$z = \frac{y}{2\sqrt{D_o x/u_o}}$$

Instationary phase of gel expansion in region r_i to r_R

$$\frac{\partial \phi}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(Dr \frac{\partial \phi}{\partial r} \right) - \frac{dr_R}{dt} \frac{\phi}{r_R - r_i} \left(1 + \frac{r - r_i}{r} \right)$$

$$\frac{dr_R}{dt} = \frac{N_{in} - 2N_{rim}(r_R)}{\varrho_s \delta_{fr} \pi 2\phi_{mean}} \frac{dr_R}{dt} - \frac{d\phi_{mean}}{dt} \frac{(r_R^2 - r_i^2)}{r_R 2\phi_{mean}}$$

$$N_{rim} = N_{rim}^{DL} \delta_{fr} 2 \sqrt{D_o x u_o}$$

Combine rim with expansion of gel

- Let the gel expand and account all the time for the loss at the rim
- Numerical solution of the PDE in region ri rR(t). rR(t) constantly expands
- Loss at rim as BC
- N_{rim} solved with arbitrarily high resolution

Two solution techniques for expanding grid

- Numeric solution of the PDE in expanding grid w. modified Crank-Nicolson technique.
 Sometimes numerical difficulties
- Analytical solution based on PSS assumption useful when D fairly constant except at rim.
 Analytical- very simple expressions
- Surprisingly small differences

Example

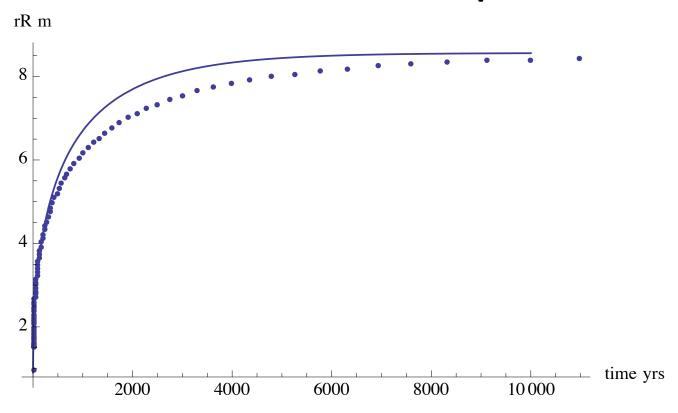


Figure xx. Expansion of the rim for c=0.1 mM and $u_o=10^{-5}$ m/s, $\phi_i=0.5$, $=0.32\times10^{-9}$ m²/s $d_p=200$ nm. Dots are numeric solution and line is the PSS solution.

0.1 mm aperture, 10⁻⁵ m/s (315 m/yr)

c mM	r_R at SS	N _{ss} g/year	Mass in
	m		fracture kg
			at SS
0.1	14.4	4.7	10.8
1	32.1	3.1	47.0
10	29.1	3.0	63.9

For lower flowrates rR at SS increases enormously, as does tome to approach SS. Loss is dominated by intrusion into fracture, not by erosion at Rim

Impact on PA

- Smectite loss from deposition hole at lower flowrates dominated by intrusion far into fracture
- Only extremely high flowrates may cause loss by erosion to be considered
- Smectite will invade even the finest fractures and generate a strong diffusion barrier to decrease solute transport to and from the canister

Processes not modeled

- Loss by gravity pulling off aggregates
 - Observed by Schatz and Neretnieks
- Fate of detritus material
 - The fine sand may clog the variable aperture fractures
 - Hinder further expansion of smectite into fracture

What next

- Prepare report on the model development
- Use the model(s) to analyze available experiments
- Ponder the gravity effects

Thank you for your attention