MARFA version 3.2.2 user’s manual: migration analysis of radionuclides in the far field

Scott Painter, James Mancillas
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute

December 2009
MARFA version 3.2.2 user’s manual: migration analysis of radionuclides in the far field

Scott Painter, James Mancillas
Center for Nuclear Waste Regulatory Analyses
Southwest Research Institute

December 2009

This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions.

A pdf version of this document can be downloaded from www.skb.se.
Update notice

The original report, dated December 2009, was found to contain factual errors which have been corrected in this updated version. The corrected factual errors are presented below.

Updated 2013-04

<table>
<thead>
<tr>
<th>Location</th>
<th>Original text</th>
<th>Corrected text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 21, Section 5.2, line 3</td>
<td>...Δ = 2 mm.</td>
<td>...Δ = 4.75 mm.</td>
</tr>
<tr>
<td>Page 23, Section 5.4, line 3</td>
<td>The sorption properties are unchanged in this test. Other parameters are identical to Test 1.</td>
<td>The sorption properties do not change in time in this test. Other parameters are identical to Test 1, except for the value of the matrix retardation factor for species A which is 500.</td>
</tr>
<tr>
<td>Page 25, Section 5.6, line 2</td>
<td>...otherwise, the test is identical to Test 4.</td>
<td>...the matrix retardation factors are 200 for both species A and B, the dispersivity is 1 m, and the decay constants are 10^{-3} yr$^{-1}$ and 10^{-4} yr$^{-1}$ for species A and B, respectively. Finally, the pathway is discretized into 10 segments in Test 6. Other parameters are the same as Test 1.</td>
</tr>
<tr>
<td>Page 25, Section 5.7, line 1</td>
<td>Test 7 is identical to Test 5 except...</td>
<td>Test 7 is identical to Test 4 except...</td>
</tr>
</tbody>
</table>
Contents

1 Introduction 7

2 Geosphere transport analysis workflow with MARFA 9

3 MARFA algorithms 11
3.1 Particle tracking algorithm for a single species and single segment 11
3.2 Pathways with multiple segments 13
3.3 Multiple pathways 13
3.4 Decay chains 14
3.5 Pathways with time-dependent velocity or retention parameters 15
3.6 Downscaling algorithm 16
3.7 Reconstruction of the breakthrough curves 17

4 Installing and running MARFA 19

5 Verification tests 21
5.1 Unlimited diffusion 21
5.2 Limited diffusion 21
5.3 Multiple pathways 22
5.4 Low flow period with unlimited diffusion 23
5.5 Low flow period with limited diffusion 24
5.6 High flow period with unlimited diffusion 25
5.7 Changes in flow and sorption properties 25

6 Example simulations 27

7 Summary 29

8 References 31

Appendix A MARFA input 33
Appendix B MARFA output 43
Appendix C Fully transient simulations using version 3.3 45
Acknowledgements

The Migration Analysis of Radionuclides in the Far Field (MARFA) computer code was developed by the Center for Nuclear Waste Regulatory Analyses (CNWRA®) for the Swedish Nuclear Fuel and Waste Management Company and Posiva Oy under Contract Number SWRI–2044832. Source code modules from the computer codes Time Domain Random Walk (TDRW) Versions 1 and 2 were reused in MARFA. TDRW was developed by CNWRA for the Southwest Research Institute® (SwRI®) Advisory Committee for Research. The TDRW source code is copyrighted by SwRI.

The authors are grateful to Hakan Basagaoglu, Wesley Patrick and Gordon Wittmeyer for their constructive reviews of this document. The authors also thank Jacqueline Simpson for her efforts in formatting this document.

Quality assurance program

MARFA was developed under the CNWRA software quality assurance procedures described in CNWRA Technical Operating Procedure (TOP)–018.

This document describes input for MARFA Version 3.2.2. Validation tests and example simulations reported in this document used MARFA Version 3.2. Results of validation and acceptance tests for Version 3.2.2 are not materially different from those of Version 3.2 and are not shown here. MARFA Version 3.2.2 tests are documented in SwRI Scientific Notebook 795E Vol. 6.
1 Introduction

The computer code Migration Analysis of Radionuclides in the Far Field (MARFA) uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. Transport in sparsely fractured rock is of interest because this medium may serve as a barrier to migration of radionuclides to the accessible environment. The physical processes represented in MARFA include advection, longitudinal dispersion, Fickian diffusion into an infinite or finite rock matrix, equilibrium sorption, decay, and in-growth. Multiple non-branching decay chains of arbitrary length are supported.

This document describes the technical basis and input requirements for MARFA Version 3.2.2. MARFA Version 3.2 included new capabilities to accommodate transient flow velocities and sorption parameters, which are assumed to be piecewise constant in time. Version 3.2.1 was a minor change from Version 3.2 to allow a more convenient input format for sorption information. New capabilities in Version 3.2.2 include an option to specify a non-zero start time for the simulation, an optional input parameter that decreases the amount of retention within a single fracture because of flow channeling, and an alternative method for sampling the radionuclide source.

MARFA uses the particle on random streamline segment algorithm /Painter et al. 2006/, a Monte Carlo algorithm combining time-domain random walk methods /Painter et al. 2008/ with pathway stochastic simulation /Painter and Cvetkovic 2005/. The algorithm uses non-interacting particles to represent packets of radionuclide mass. These particles are moved through the system according to rules that mimic the underlying physical transport and retention processes. The set of times required for particles to pass through the geological barrier are then used to reconstruct discharge rates (mass or activity basis). Because the algorithm uses non-interacting particles, the transport and retention processes are limited to those that depend linearly on radionuclide concentration. Nonlinear processes such as solubility-limited transport or aqueous speciation are not represented.

The MARFA code is specifically designed to work with output from discrete fracture network (DFN), continuous porous medium (CPM), or nested DFN/CPM flow models. Transport is assumed to occur along a set of trajectories or pathways that originate at radionuclide source locations. Trajectories are intended to represent the movement of hypothetical, advectively transported groundwater tracers and are typically calculated by pathline tracing in a DFN or DFN/CPM flow code. MARFA supports an arbitrary number of trajectories and source locations.

MARFA has capabilities to stochastically simulate relevant transport properties along the pathways. This mode of operation is useful when the pathways have been determined from an upscaled CPM flow calculation. Upscaled CPM flow models are generally regarded as adequate for representing regional-scale groundwater flow. Transport under field conditions is, however, much more sensitive than flow to local variations in velocity, and it is not clear that global transport can be adequately represented with an upscaled CPM representation of the velocity fields. The pathway stochastic simulation option helps to recover, in a statistical sense, the subgrid velocity variations that are lost in an upscaled CPM flow representation. Thus, the pathway simulation option represents an example of statistical downscaling. The stochastic pathway simulation (downscaling) is based on the algorithm described by /Painter and Cvetkovic 2005/. The downscaling algorithm is itself a type of random walk that incorporates persistence to account for sequential correlation in properties along the pathway.

The Monte Carlo algorithm in MARFA produces output in the form of particle arrival times at pathway end points. Cumulative mass discharge (cumulative breakthrough) at a given time can be readily constructed from the arrival times by simply identifying the amount of mass arriving before the specified time. This procedure is equivalent to estimating cumulative probability distributions from a set of random samples. Estimating the mass discharge rate (instantaneous breakthrough) is analogous to the more difficult task of estimating probability density from a set of random samples. MARFA uses a two-step post-processing procedure to reconstruct the instantaneous breakthrough curves. The algorithm used in the post processor is an adaptive kernel estimation method with kernel width calculated from an initial or “pilot” estimate obtained from a nearest neighbor method. This adaptive two-step method was chosen because of its capability to provide stable and smooth density estimations for a wide variety of data distributions, while maintaining sensitivity to local details. The algorithm is described in detail by /Silverman 1986/.
2 Geosphere transport analysis workflow with MARFA

The MARFA software is intended to be used in combination with the CONNECTFLOW /Hartley and Holton 2003/ software or similar DFN simulator as part of an integrated workflow. An example workflow for geosphere transport analysis using CONNECTFLOW and MARFA is represented graphically in Figure 2-1. This workflow is similar to those used previously /Hartley et al. 2004/, except that the MARFA software is used in combination with CONNECTFLOW discrete-fracture network (DFN) particle tracking simulations to recover the effects of subgrid scale velocity variations. Although subgrid-scale velocity variations can be important in determining global transport characteristics of a geosphere barrier, they are lost in the CONNECTFLOW continuous porous medium (CPM) representation of the regional scale groundwater system.

In the workflow shown in Figure 2-1, two types of trajectory data are passed from CONNECTFLOW to MARFA: regional-scale trajectory data from the nested DFN/CPM model, and generic subgrid trajectories. Both types of trajectory data are generated by advection-only particle tracking. Data

Figure 2-1. Geosphere transport analysis workflow based on MARFA and CONNECTFLOW. This workflow presumes steady-state groundwater velocities, which allows a one-way flow of information from CONNECTFLOW to MARFA.

1 Each trajectory from the CONNECTFLOW nested CPM/DFN flow model may pass through a DFN region and a CPM region. Along the CPM part of the trajectory, MARFA operates in a stochastic mode that combines the trajectory information with subgrid trajectories to recover, in a statistical sense, the effects of subgrid variability. The subgrid trajectories are not used in the DFN region. For that part of the trajectory, MARFA operates in a deterministic pathway mode.
are required for each segment of each trajectory. Here “segment” refers to that part of a trajectory that passes through a single fracture in the DFN regions. In the CPM region, the granularity of the trajectory is somewhat arbitrary as long as the segments are small enough to resolve the trajectory.

The trajectories from the regional-scale nested DFN/CPM model connect a set of source locations to a monitoring boundary, as in the previous transport workflow /Hartley et al. 2004/. A typical modeling case may include trajectories that pass through explicit DFN representations of hydraulic rock domains; repository tunnels and near-surface soils represented as CPM regions; deformation zones represented as deterministic features; and hydraulic rock domains represented as CPMs or Equivalent CPMs (ECPMs). In the DFN regions, repository tunnels, and near-surface soils, the trajectory/pathway would be considered deterministic with properties specified by CONNECTFLOW. When a hydraulic rock domain is represented as an ECPM, MARFA is also capable of running in an optional stochastic mode, wherein trajectory properties are generated stochastically. The stochastic mode was explicitly designed to help capture transport effects of subgrid velocity variability that would have otherwise been lost when hydraulic rock domains are treated as ECPM.

To run MARFA, one or more hydrogeological zones (rock types) must also be defined. A rock type has an associated radionuclide retention model, a set of retention parameters, and a flag indicating whether it is to be treated deterministically or stochastically. Flow-related fracture properties are implicit in the trajectory calculation and are not part of the rock type input. For a typical application, a rock type would be defined for an explicit DFN region, the repository tunnels, each of the hydrogeological units represented as an ECPM, each near-surface soil layer, and the large-scale deterministic features.

The two downscaling (streamline extrapolation) algorithms described by /Painter et al. 2006/ are used in the MARFA software to stochastically simulate subgrid-scale velocity variations when a stochastic rock type is specified. These two algorithms require a set of subgrid trajectories from CONNECTFLOW DFN simulations. These subgrid trajectories are generated by advection-only particle tracking on relatively small DFN simulations. The procedure is somewhat analogous to the numerical upscaling procedure used to establish permeability tensors for ECPM models /Hartley et al. 2004/ in that information is extracted from small-scale DFN simulations and used later to improve the representation of transport processes in a continuum model. The spatial scale required for the DFN simulations used to produce the subgrid trajectories is highly dependent on the properties of the DFN model. Selection of the spatial scale must balance several considerations. Ideally, the spatial scale would be similar in magnitude to the largest stochastically simulated fracture, much smaller than the modeled region, and the same as the CONNECTFLOW ECPM cell size. Ultimately, sensitivity studies should be used to select the required scale of the DFN simulations used to construct the subgrid trajectories.

If a single isotropic DFN model is representative of the entire ECPM model region, then a single set of subgrid trajectories is sufficient for MARFA. The single set might be composed of a small number (≈ 10) of DFN realizations and a large number (a few thousand) trajectories.

For anisotropic networks, the trajectory statistical properties will, in general, depend on the direction of the macroscopic gradient relative to the DFN principal direction. The strategy for handling this situation is to consider a small number of directions for the macroscopic gradient and produce a set of subgrid trajectories for each. That is, for anisotropic networks, several sets of subgrid trajectories are required, one for each direction.

Similarly, if different DFN models apply in different hydrostratigraphic units, then the DFN simulations must be repeated for each DFN model. The total number of required subgrid trajectory sets is equal to the number of directions times the number of stochastic rock types.
3 MARFA algorithms

MARFA uses a time-domain particle tracking algorithm to simulate transport along a set of 1-D pathways. These calculations produce a set of arrival times at each pathway terminus. A post-processing step based on an adaptive kernel method is then used to reconstruct mass breakthrough curves from the arrival times. Details of the particle-tracking algorithms are given by /Painter et al. 2006, 2008/. A summary is provided here. The algorithm is first presented for a single species and a single pathway segment that is characterized by steady groundwater velocity and retention properties. Generalizations to multiple segments, multiple trajectories, multiple species linked through a decay chain, and transient pathway properties are then discussed. Finally, the algorithm for reconstruction the breakthrough curve is summarized.

3.1 Particle tracking algorithm for a single species and single segment

We are interested in mass discharge at a pathway (section) or segment outlet versus time. The mass discharge rate [mols/T] can be written as

\[r_{\text{out}}(t) = \int_0^t f_{\text{tran}}(t - t') r_{\text{in}}(t') dt \]

where \(r_{\text{in}} \) is the rate at which mass is introduced into the pathway [mols/T]. The input rate can also be written as \(r_{\text{in}}(t) = S_0 f_{\text{in}}(t) \) where \(S_0 \) is the total source strength and \(f_{\text{in}}(t) \) is the input rate normalized as a probability density. The kernel in the convolution, \(f_{\text{tran}} \), is the transit or residence time distribution for packets of mass in the pathway. The kernel may also be interpreted as the discharge rate due to a Dirac-\(\delta \) input.

A well-known result from chromatography /Villermaux 1987/ is to compute \(f_{\text{tran}} \) as

\[f_{\text{tran}}(t_{\text{tran}}) = \int_0^{t_{\text{tran}}} f_{\text{ret}}(t_{\text{tran}} - \tau) f_\tau(\tau) d\tau \]

where \(t_{\text{tran}} - \tau = t_{\text{ret}} \geq 0 \) is the retention time, which has probability density \(f_{\text{ret}} \). In chromatography, this expression is usually written in the Laplace domain. Note also that in Eq 3-2 the upper limit of integration extends to infinity instead of \(t_{\text{tran}} \) because we include a Heaviside function centered at zero in our definition of the retention time distribution. The basic assumption in Eq 3-2 is that the tracer concentration is relatively low (dilute systems) such that retention (mass transfer) processes are linear (in a generalized sense). In Eq 3-2, \(\tau \) is the water residence time, and \(f_\tau \) is the water residence time density. The effect of longitudinal dispersion is accounted for by an appropriate choice of \(f_\tau \). An explicit form for \(f_\tau(\tau) \) is given by /Painter 2008/.

Equation (2) neglects variability in retention. It has been shown previously /Dagan and Cvetkovic 1996, Cvetkovic et al. 1998, 1999, Cvetkovic and Haggerty 2002/ that diffusive transfer between mobile and immobile states, and hence retention, depends on velocity. Thus, in heterogeneous media, retention is generally variable, similar to \(\tau \), even when the chemical retention parameters are spatially constant. For a broad class of retention models, retention variability can be parameterized by a single velocity-dependent (random) parameter denoted \(\beta \), and a set of uniform physicochemical retention parameters (factorized case, in Cvetkovic and Haggerty, 2002). Thus, two velocity-dependent parameters characterize the transport: the nonretarded (water) residence time \(\tau \) and the transport resistance parameter \(\beta \). The transport resistance parameter \(\beta \) depends on the choice of retention model. For the case of matrix diffusion, \(\beta \) is the quantity \(1/(b \nu) \) integrated along the pathway segment, where \(b \) is fracture half-aperture and \(\nu \) is fluid velocity. Regardless of the retention model, \(\tau \) and \(\beta \) are highly correlated through a shared dependence on the velocity field. In fact, if variability in mobile porosity (or fracture aperture) is neglected, \(\beta \approx \tau \).

1 The transport resistance parameter denoted \(\beta \) here is commonly denoted \(F \) within other SKB documents.
We generalize Eq 3-2 to properly account for the coupling between retention and longitudinal dispersion by including longitudinal dispersion for both \(\tau \) and \(\beta \):

\[
f_{\text{ran}}(t_{\text{ran}}) = \int_{0}^{\infty} \int_{0}^{\infty} f_{\tau, \beta}(t_{\text{ran}} - \tau | \beta) f_{\beta | \tau}(\beta | \tau) f_{\tau}(\tau) d\tau d\beta
\]

where \(f_{\tau, \beta}(\tau, \beta) = f_{\beta | \tau}(\beta | \tau) f_{\tau}(\tau) \). In other words, \(\tau \) and \(\beta \) become random variables with an appropriately specified joint density \(f_{\tau, \beta}(\tau, \beta) \). This distribution depends on \(\bar{\tau} \) and \(\bar{\beta} \), which are values for \(\tau \) and \(\beta \) in the absence of longitudinal dispersion and regarded as properties of the pathway section (segment), but this dependence is not specifically included in the notation. Spatial variability within each segment is neglected in MARFA, thus implying \(\bar{\tau} = \beta \) and

\[
f_{\beta | \tau}(\beta | \tau) = \delta \left(\beta - \bar{\beta} / \bar{\tau} \right)
\]

where \(\delta \) is the Dirac-\(\delta \) function.

The mass discharge rate or breakthrough can now be written as

\[
r_{\text{out}}(t) = S_{0} \int_{0}^{\infty} \int_{0}^{\tau_{w}} f_{\tau, \beta}(t - \tau_{w} - \tau | \bar{\tau} \bar{\beta} / \tau) f_{\tau}(\tau) f_{\tau}(t_{\text{ran}}) d\tau dt_{\text{ran}}
\]

and the cumulative tracer breakthrough curve as

\[
R_{\text{out}}(t) = S_{0} \int_{0}^{\infty} H(t - \tau_{w}) \int_{0}^{\tau_{w}} \int_{0}^{\tau_{w} - \tau_{w} - \tau} f_{\tau, \beta}(t - \tau_{w} - \tau | \bar{\tau} \bar{\beta} / \tau) f_{\tau}(\tau) f_{\tau}(t_{\text{ran}}) d\tau dt_{\text{ran}} dt_{w}
\]

where \(H(\cdot) \) is the Heaviside function. Recall that our definition of retention time includes a Heaviside function at \(t_{\text{ret}} = 0 \), which is why the upper limits of integration are infinity in Eqs 3-5 and 3-6. A Monte Carlo estimate of Eq 3-6 is

\[
\hat{R}_{\text{out}}(t) = \frac{S_{0}}{N_{\text{part}}} \sum_{\tau} H(t - \tau_{w})
\]

Here \(\tau_{w} \) is one of \(N_{\text{part}} \) samples from the arrival time distribution, which has density

\[
f_{\tau_{w}}(\tau_{w}) = \int_{0}^{\tau_{w}} f_{\tau, \beta}(\tau_{w} - \tau_{w} - \tau | \bar{\tau} \bar{\beta} / \tau) f_{\tau}(\tau) f_{\tau}(t_{\text{ran}}) d\tau dt_{\text{ran}}
\]

The time-domain particle tracking algorithm used in MARFA is formally equivalent to a Monte Carlo sampling of Eq 3-6. In the following, \(\bar{\tau} \) and \(\bar{\beta} \) are known – these are properties of the segment. The algorithm for the cumulative discharge curve is now assembled as follows:

1. Sample a random start time \(t_{s} \) from the normalized source \(f_{0}(t_{s}) \).
2. Sample a \(\tau \) value based on longitudinal dispersion. The appropriate distribution has density
 \[
 f_{\tau}(\tau) = \left[\frac{\eta}{4\pi} \right]^{3/2} \exp \left(-\frac{\eta (1 - \tau')^{2}}{4} \right) \text{ where } \tau' = \frac{\tau}{\bar{\tau}} , \eta = \frac{\ell}{\alpha} , \ell \text{ is the length of the segment, and } \alpha \text{ is the dispersivity. An algorithm for sampling this is described in the appendix of /Painter et al. 2008/}.
 \]
3. Calculate a \(\beta \) value from \(\bar{\beta} = \tau \bar{\beta} / \bar{\tau} \). Note that this step properly accounts for the interaction between retention and longitudinal dispersion.
4. Sample a retention time \(t_{\text{ret}} \) from \(f_{\tau, \beta}(t_{\text{ran}} | \bar{\tau} \bar{\beta} / \tau) \). Retention time distributions for important retention models are compiled in /Painter et al. 2008/. For computational efficiency, the sample scheme in MARFA uses quantiles that are precomputed from the cumulative distributions in Table 1 of /Painter et al. 2008/.

\[\text{It is important to note that the diffusion coefficient } D \text{ used by /Painter et al. 2008/ is the pore diffusion coefficient and is related to the effective diffusion coefficient } D_{\text{eff}} \text{ by } D = D_{\text{eff}} / \theta \text{ where } \theta \text{ is matrix porosity.}\]
To sample from the retention time distribution, a random number uniformly distributed between 0 and 1 is selected and the corresponding quantile is then interpolated from that lookup table.

5 Calculate the particle arrival time as $t_{ar} = t_0 + \tau + t_{ret}$. This value represents one sample from the arrival time distribution.

6 For a given time t, if $t_{ar} < t$ the particle contributes an amount S_0/N_{part} to the cumulative mass discharge.

7 Repeat from Step 1 a total of N_{part} times.

In practice, the arrival time and associated mass for each particle may be recorded and used in a postprocessing step to construct an approximation to $R_{out}(t)$ and $r_{out}(t)$. Reconstruction of $R_{out}(t)$ is simply a matter of summing the mass that arrives before a given time, as in step 6 and Eq 3-8. Reconstruction of $r_{out}(t)$ is analogous to reconstructing the probability density from a set of samples and is more difficult than the reconstruction of the $R_{out}(t)$. A kernel method for reconstruction of $r_{out}(t)$ is discussed in Appendix B.

3.2 Pathways with multiple segments

The algorithm described in Section 3.1 readily generalizes to a pathway with multiple segments. Because the discharge from one segment is the input to the following segment in a 1-D pathway, the algorithm may simply be applied recursively to model transport on a pathway composed of multiple segments. When a particle exits a segment, it is restarted in the subsequent segment without resetting the particle clock. Therefore the arrival time at the pathway terminus includes the contribution from each segment on the pathway.

3.3 Multiple pathways

MARFA supports an arbitrary number of sources. A source may be regarded as a single waste canister or as a group of canisters with identical release histories. Each source may be connected to the monitoring boundary by one or multiple pathways. In the case that multiple pathways originate from a single source, the pathways are presumed to be equally probable. Pathways are not necessarily independent because pathways originating from a single waste canister location may pass through many of the same fractures.

To accommodate multiple pathways, MARFA randomly picks a source-nuclide combination and a pathway each time a particle is released. The probability of sampling a given source-nuclide combination is proportional to the associated cumulative source strength in moles. Once the source is selected, MARFA selects randomly from the pathways associated with that location and uses that pathway until the particle reaches the pathway terminus. The sampling approach may be altered by specifying a relative importance parameter for each nuclide. Higher values for the importance factor cause a radionuclide to be sampled more frequently; a corresponding reduction in statistical weight is then used to avoid biasing the breakthrough estimates. The importance parameter may be used, for example, to limit the number of particles assigned to radionuclides with high source rates but low dose conversion factors.

MARFA provides two options for determining the time at which a particle is released once a source-nuclide combination has been selected. The default method is to give each particle of a given source-nuclide combination equal statistical weight and make the rate of releasing particles proportional to the source strength history (mol/yr). An alternative to the equal-weight method is available starting in Version 3.2.2. In this method, particle release times are sampled uniformly in time. Each particle is then given a statistical weight proportional to the source strength at the sampled time of release. Both methods produce unbiased statistical estimates of the breakthrough curves. The uniform-weight method provides more efficient (in the sense of requiring fewer particles to achieve the same level of uncertainty) estimates of cumulative breakthrough. The uniform-in-time method produces more efficient estimates of the leading edge of a breakthrough curve when the source history has a large dynamic range. All results shown in this document use the default method.
The MARFA approach of associating a particle randomly with one of the pathways is appropriate because of the Monte Carlo nature of the algorithm. When the quantity of interest is breakthrough for an ensemble of pathways, MARFA’s Monte Carlo approach has large computational advantages compared with a deterministic method. The advantage arises because it is not necessary to accurately resolve the breakthrough for each pathway in order to have an accurate representation of the ensemble breakthrough.

3.4 Decay chains

The complicating factor in transport analysis of radionuclide chains is that sorption and other physico-chemical retention parameters are, in general, different for different members of the chain, which causes the retention-time distributions to be different. Initial tests of the time-domain algorithms revealed that significant biases may be introduced if decay and in-growth are not handled carefully. For example, the simplest algorithm, ignoring the transformation event until the particle completes the segment, may overestimate or underestimate the breakthrough depending on the retardation factor of the offspring species relative to the parent species. For the matrix diffusion model or other retention models with a long tail in the retention time distribution, this bias may be significant.

MARFA uses the extension to the time-domain particle tracking algorithm described in /Painter 2008/.

In this algorithm, decay and the resulting transformation to the next species in the decay chain are simulated as random events that transform the particle’s entire mass to the offspring species; the particle’s mass does not change until/unless the decay event occurs. If a decay event occurs in a segment, the total residence time in the segment is calculated as a combination of sampled residence times for the parent and offspring species.

To be more specific, suppose that a particle enters a segment as species A. Species A decays to species B according to the first-order decay law with a given decay constant. A decay time t_d is first sampled for species A. Two residence times denoted t_A and t_B for species A and B, respectively, are then sampled. (The residence time is the sum of the groundwater travel time and the retention time.) If t_d is less than the decay time, the particle survives the segment as species A, the particle’s clock is advanced by t_A, and the algorithm proceeds to the next segment.

If t_d is greater than the decay time, the particle decays in the segment, and the clock is advanced by

$$t_A + \left(1 - \frac{t_d}{t_A}\right)t_B$$

The first term in this expression represents the time in the segment spent as species A, and the second term represents the time spent as species B.

An important detail to note is that the sampled full-segment residence times t_A and t_B must be perfectly correlated for the algorithm to work properly. Algorithmically, perfect correlation is enforced by using the same random number when generating a sample of t_d and t_B. It is easy to show that perfect correlation is required for the special case when A and B have identical sorption properties. Numerical experiments confirm this requirement in general; sampling the residence times for the parent and offspring species independently results in censoring of the residence-time distribution for any retention model with strong kinetic controls, thereby shifting the breakthrough curves to earlier times. The physical reason for this censoring is that a new sampling implies starting the offspring nuclide in the mobile fluid, whereas the parent nuclide is much more likely to be in the immobilized state (i.e. somewhere in the matrix) when the decay event occurs.

For clarity, the algorithm just described is for a two member chain. The algorithm can be applied recursively, thus allowing decay chains of arbitrary length and multiple decay events in a single segment.
3.5 Pathways with time-dependent velocity or retention parameters

Given the long time frames considered in assessments of potential high-level nuclear waste repositories in Sweden and Finland, significant changes in groundwater velocity are expected under changing future climate states. Future flow conditions are typically represented in performance assessment studies as piecewise steady; the same approach is taken in MARFA. That is, a sequence of steady flow fields is used with abrupt changes from one steady flow field to the next at specified times. A similar strategy is used to represent changing sorption properties. This capability was new to MARFA Version 3.2.

Glaciation modeling cases are specific examples of transient flow fields that need be accommodated in performance assessment studies. In current conceptualizations /Jaquet and Siegel 2006/, the repository experiences a brief high-flow “flushing” period as the edge of the advancing ice sheet passes over the repository. A similar flushing period occurs during retreat of the ice sheet. In between the two flushing periods, alternative modeling cases of potential interest include a return to the preglacial flow or greatly reduced flow relative to non-glacial conditions because of reduced groundwater recharge. In both modeling cases, salinity is expected to be decreased and redox conditions changed from reducing to oxidizing during the glacial period, with potentially large reduction in distribution coefficients for some radionuclides /Crawford et al. 2006/. Glaciation modeling cases are demanding numerically because of the potentially large changes in flow velocity and the potential for very low velocities during the nonflushing glacial period.

MARFA uses special handling of the residence time if the particle experiences a flow change while in transit. Specifically, upon reaching the time of a stepwise change in flow velocity, a depth z in the matrix is sampled. This value represents the depth in the matrix at the time of the flow change. The probability distribution for this depth depends on the current time (relative to the time at which the particle enters the matrix) and the matrix diffusion parameters. Given a sample z value, the time required to diffuse back to the fracture can then be calculated and sampled. Once the particle returns to the fracture, the existing residence time distribution using the new flow velocity may be sampled to account for the time required to finish the segment.

The distribution for the return time depends on whether the unlimited or limited diffusion model is used as the retention model.

Probability density for depth in the matrix

The probability density for the random distance z in the matrix at time t (relative to the start of the segment) is needed. Using the equivalence between probability density and concentration, the required density function can be calculated by considering advective flow in the fracture with diffusion in the adjacent matrix. The appropriate initial condition for the problem is a Dirac-δ function located at the fracture inlet (equivalent to pulse input at $t = 0$). The concentration in the matrix for this modeling case is given by /Sudicky and Frind 1984/.

A simpler approximation is to ignore advection and use a pure-diffusion model to calculate the probability density for location in the matrix. The appropriate initial condition is a Dirac-δ located at $z = 0$. For the case of unlimited diffusion, the result is given by /Carslaw and Jaeger 1959/ as

$$f(z)= \frac{G}{2\sqrt{\pi t}} \exp \left[-\frac{(Gz)^2}{4t} \right]$$

where t [T] is time, z [L] is distance perpendicular to the fracture, and $G = \sqrt{R/D_{\text{eff}}}$ [T$^{1/2}$/L], R [-] is retardation factor in the matrix, and D_{eff} [L2/T] is matrix effective diffusion coefficient. Equation 9 has been compared with the more rigorous expression of /Sudicky and Frind 1984/, and in all cases the agreement is very close. The simpler expression of Eq 3-9 is used in MARFA.

In the limited diffusion model, diffusion is into a limited zone of width Δ in the matrix.
To calculate the penetration depth, consider slab geometry with no-flow boundary at both sides
\((z = \Delta, \text{and } z = 0)\). The initial concentration is a Dirac-\(\delta\) located at \(z = 0\). /Carslaw and Jaeger 1959/ provide results for this configuration, which upon inserting the \(\delta\)-function initial condition simplifies to

\[
 f(z) = \frac{1}{\Delta} \left\{ 1 + 2 \sum_{n=1}^{\infty} \exp\left[-n^2 \pi^2 T \right] \cos(n \pi \zeta) \right\}
\]

where \(\zeta \equiv z/\Delta\) and \(T = \frac{t}{t_0} \left[\right]\) is a dimensionless time with \(t_0 = \frac{R \Delta^2}{D_{\text{eff}}} [T]\). Note that the characteristic time \(t_0\) is directly related to the two MARFA input parameters \(\kappa = \sqrt{\Theta D_{\text{eff}} R}\) and \(\eta = \frac{\Delta}{D_{\text{eff}}}\) as \(t_0 = (\kappa \eta)^2\).

Probability density for time of return

Given a sample \(z^*\) from the distribution defined by Eqs. (9) or (10), the time required to diffuse back to the fracture is now required. The distribution of return times may be calculated from diffusion in a semi-infinite domain with zero concentration boundary at \(z = 0\) (representing the fracture); the appropriate initial condition is a Dirac-\(\delta\) function located at \(z^*\), the particle’s location at the time of the flow change. The concentration is given by /Carslaw and Jaeger 1959/.

\[
 C(z,t) = \frac{G}{2 \sqrt{\pi t}} \left\{ \exp\left[-(z - z^*)^2 G^2 / 4 t \right] - \exp\left[-(z + z^*)^2 G^2 / 4 t \right] \right\}
\]

Here \(t\) is defined relative to the time at which the flow change occurs.

The mass flux into the fracture is given by \(-\frac{D_{\text{eff}}}{R} \frac{\partial C}{\partial z}_{z=0}\). Performing this calculation and interpreting the mass flux as the density for a conditional arrival time distribution gives.

\[
 f(t | z^*) = \frac{G z^*}{2 \sqrt{\pi t^3}} \exp\left(- (G z^*)^2 / 4 t \right)
\]

The corresponding expression for the limited diffusion case is

\[
 f(t | z^*) = \frac{\pi}{t_0} \sum_{n=0}^{\infty} (2n + 1)(-1)^n \exp\left[-(2n + 1)^2 \pi^2 T / 4 \right] \cos\left(\frac{(2n + 1) \pi (1 - \zeta^*)}{2} \right)
\]

where \(\zeta^* \equiv z^*/\Delta\).

3.6 Downscaling algorithm

As discussed in Section 2, MARFA is designed to accept pathway trajectories from the CONNECTFLOW /Hartley and Holton 2003/ flow modeling software. Permeability fields for CONNECTFLOW simulations may be DFN representations, CPM equivalents upscaled from DFN models, or nested models combining DFN and CPM representations. With upscaled CPM representations, subgrid velocity fluctuations have been averaged away in the homogenization process. Averaging is considered appropriate for regional scale flow modeling, but is questionable for transport calculations that may be sensitive to local (subgrid) velocity variability.

MARFA has an option to use a unique downscaling algorithm to restore the lost transport effects of subgrid velocity variability. Details were presented by /Painter and Cvetkovic 2005/; where the method was presented as streamline extrapolation and described as transport “upscaling”. In MARFA, the same algorithm is used to simulate lost subgrid velocity variability in an upscaled CPM flow model; in that sense, it is more appropriately described as transport “downscaling”.
The downscaling algorithm uses a set of pure-advection trajectories extracted from CONNECTFLOW DFN flow simulations that are approximately the size of the grid cells in the CPM flow model. Those trajectories are referred to as “subgrid trajectories.” If the optional downscaling mode is used, the first step in a MARFA simulation is to decompose the subgrid trajectories into segments, where a segment is defined as the part of a trajectory that passes through a single fracture. Each segment has associated with it values for τ, β, and length. When MARFA is using pathway trajectories calculated from a CPM flow model and downscaling is activated, the segment pool is sampled randomly to provide the subgrid velocity variability. Specifically, each time a particle is advanced along the CPM trajectory, a segment with its associated properties is first drawn from the segment pool. The τ and β values for that segment are then scaled according to the local value of the hydraulic gradient, as described below, and the particle is moved on that segment using the algorithms described in Sections 3.1, 3.4 and 3.5.

The τ and β values sampled from the segment pool are modified before they are used. This modification is done because the hydraulic gradient that is imposed on the DFN when generating the subgrid trajectories is, in general, not the same as the local hydraulic gradient calculated by the regional flow model applicable at the given point on the pathway. MARFA requires that a local hydraulic gradient as calculated from the CPM flow model be specified at each point along the CPM trajectory. Similarly, the hydraulic gradient used in generating each subgrid trajectory set must also be specified. The sampled τ and β values are scaled by the ratio of the two gradients before the particle is advanced.

An additional complication arises when the underlying DFN is anisotropic. In that situation, the segment statistics depend on the direction of the applied hydraulic gradient. To use the downscaling algorithm with anisotropic DFNs, the user must provide multiple sets of subgrid trajectories, with each set corresponding to a different direction for the applied gradient. Each time the segment sampling is performed, MARFA first determines which of the applied gradients is most closely aligned with the local direction of the CPM pathway trajectory and then uses that subgrid trajectory set.

3.7 Reconstruction of the breakthrough curves

The Monte Carlo algorithms produce output in the form of particle arrival times at pathway end points. Cumulative mass discharge (cumulative breakthrough) at a given time can be readily constructed from the arrival times by simply identifying the amount of mass arriving before the specified time. This procedure is equivalent to estimating cumulative probability distributions from a set of random samples. Estimating the mass discharge rate (instantaneous breakthrough) is more difficult. Fortunately, the task of reconstructing breakthrough curves from the particle arrival times is analogous to reconstructing a probability density from a set of sampled values, a classical problem in statistics with a large literature /e.g. Silverman 1986/.

An adaptive kernel method that adjusts the degree of smoothing to the local data density is used in MARFA. The adaptive kernel methods are well-known algorithms that have been investigated in detail /Silverman 1986/. In these algorithms, a nearest neighbor method is first used to estimate an initial or “pilot” estimate. The pilot estimate is then used to calculate a variable kernel width for use in a kernel estimation method. The adaptive two-step method is appealing because of its capability to provide stable and smooth density estimations for a wide variety of data distributions, while maintaining sensitivity to local details. MARFA uses a lognormal kernel. This kernel has the advantage of always producing zero breakthrough estimates for non-positive times.

The pilot estimate for the breakthrough curve is obtained at a specified time t from a generalized nearest neighbor estimator of order k:

$$f_{\mu}(t) = \frac{1}{W} \sum_{r=1}^{W} w_{r} K(t, t_{r}, d_{h})$$

3 In its simplest form, the sampling algorithm is purely random. More generally, the algorithm incorporates sequential correlation (persistence) in the sequence. Thus, if a high-velocity segment is sampled, it is more likely a high-velocity segment will be sampled the following step, consistent with analyses of DFN data /Painter and Cvetkovic 2005/. Details of the sampling algorithm can be found in /Painter and Cvetkovic 2005/.
where t_1, t_2, \cdots, t_n are the arrival times, W_1, W_2, \cdots, W_n are the statistical weights (masses) for the individual packets, $W = \sum_{i=1}^{n} w_i$, d_k is the distance from t to the k-th nearest arrival time, $K(t, t_i, d_k)$ is the kernel (lognormal density function with geometric mean t and log-standard deviation d_k). MARFA uses $k = \min(25, n)$; results are not sensitive to this value.

Once the pilot estimate is known, the estimate for the breakthrough curve is obtained as

$$\hat{f}_w(t) = \sum_{i=1}^{n} w_i K(t, t_i, h \omega_i) \quad 3-15$$

where $\omega_i = \left[f'_w(t_i) / \gamma \right]^{1/2}$, γ is the geometric mean of the $f'_w(t)$, and h is the global bandwidth. The product $h \omega_i$ is a local bandwidth that adapts the kernel width according to the local data density. For nearly normal data, a good estimate for the optimal bandwidth is given by /Silverman 1986/ as

$$h_{opt} = 0.9 A n^{-\nu} \quad 3-16$$

where h_{opt} is the optimal bandwidth, A is the smaller of the standard deviation and $(Q_{75} - Q_{25})/1.34$, Q_p is the p-th percentile, n is number of data points, and ν is a bandwidth sensitivity parameter. The value $\nu = 0.2$ is optimum for smoothly varying breakthrough curves /Silverman 1986/ and is recommended for modeling cases that have steady-state flow; numerical experiments suggest that slightly larger values (for example, 0.3–0.5) are better for modeling cases involving abrupt flow changes. The bandwidth parameter was hardwired to the value 0.2 in MARFA Version 3.1, but is an input parameter in MARFA Version 3.2.
4 Installing and running MARFA

MARFA is written in Fortran 95. A Fortran compiler that supports the allocatable component extension /ISO/IEC 1998/ is required to compile the source code. MARFA is otherwise platform independent. A generic makefile is included with MARFA. This makefile will work unmodified with the Solaris operating system. To compile on another system, edit the makefile and replace the Fortran 95 compile/link commands with the one appropriate for the local system. Compiler flags should also be replaced with appropriate values.

MARFA reads six files that contain data required for efficient sampling of retention time distributions. These are included in the directory named data. The required data files must be placed in the same directory, which can be placed in any accessible location on the local file system. The local file system path to the directory is part of the required input (See Appendix A).

A complete set of input for one example simulation is included with the MARFA installation package. This example is useful as an installation test and is described in Section 6.

MARFA Version 3.1 does not have a graphical interface. It is executed from the command line. All input comes from a series of ASCII files, as described in Appendix A. Warning, error and other diagnostic messages are written to the screen and may be redirected to a file, if desired. Three output files are created in the run directory. One file contains particle arrival times and the other two contain reconstructed breakthrough curves on a mass or activity basis. Details of the output are described in Appendix B.

The default operation of MARFA (i.e. without a command line argument) results in the complete execution of the MARFA code, including particle transport calculations and breakthrough curve calculations. MARFA can also skip the particle transport calculation and reconstruct breakthrough curves from existing particle arrival times stored in the file results.dat. This option is activated using the command line argument ppo (post-processor only) by typing “marfa ppo”.

5 Verification tests

Seven verification tests were developed for the MARFA software. These tests are software verification tests designed to verify that the software solves the underlying mathematical equations representing radionuclide transport. Model support or validation—the process of accumulating evidence to support the validity of the underlying mathematical representation of transport—is beyond the scope of this document.

5.1 Unlimited diffusion

Test 1 used a pathway with a single segment of length $l = 100$ m, the unlimited matrix diffusion model, and a two-member decay chain $A \rightarrow B$. The governing equations for this system are

\[
\frac{\partial C_i}{\partial t} + \nu \frac{\partial C_i}{\partial x} - \alpha_i \frac{\partial^2 C_i}{\partial x^2} = \frac{D_{\text{eff}}}{b(x)} \frac{\partial M_i}{\partial z} \bigg|_{z=0} - \lambda_i C_i + \lambda_{i+1} C_{i+1}
\]

\[
R_i \frac{\partial M_i}{\partial t} = \frac{D_{\text{eff}}}{\theta} \frac{\partial^2 M_i}{\partial z^2} - \lambda_i R_i M_i + \lambda_{i+1} R_{i+1} M_{i+1}
\]

for $i = 1, 2$ and with boundary/initial conditions $C_i(t, x) = M_i(t, x, 0), M_i(t, x, \infty) = 0, C_1(t, 0) = f(t), C_2(t, 0) = 0$, and $C_i(0, x) = 0$.

Here $C_i(t, x)$ is the concentration in the mobile pathway (fracture) for the i-th member of the chain, $M_i(t, x, z)$ is the concentration in the matrix, R_i is the matrix retardation factor, x is distance in the direction of the pathway, z is distance orthogonal to the pathway, and $C_0 \equiv 0$. The system was solved by discretizing the z-direction using block-centered finite differences with 18 grid blocks. That procedure eliminated the z-dependence and resulted in a total of 38 coupled two-dimensional (x, t) equations, which were solved using the method of lines.

Mass breakthrough curves for the matrix-diffusion verification test are shown in Figure 5-1. The species-independent parameters are $\nu = 1$ m/yr, $\alpha = 0.5$ m, $b = 0.1$ mm, $\theta = 0.01$ and $D_{\text{eff}} = 10^{-8}$ m2/yr. The matrix retardation factors are 1,000 and 100 for species A and B, respectively. Other parameters are as in Test 1.

Results of Test 2 are shown in Figure 5-2. The MARFA results agree very well with the target benchmark solution over the entire range.

5.2 Limited diffusion

Test 2 differs from Test 1 in two respects. First, particles are only allowed to diffuse into a 2 mm region matrix adjacent to the fracture. Thus, the boundary condition $M_i(t, x, \infty) = 0$ from Test 1 is replaced with $\frac{\partial M_i(t, x, z)}{\partial z} \bigg|_{z=\Delta} = 0$, where $\Delta = 4.75$ mm. Second, the matrix retardation factors are 200 and 500 for species A and B, respectively. Other parameters are as in Test 1.

Results of Test 2 are shown in Figure 5-2. The MARFA results agree very well with the benchmark solution over the entire range.
Figure 5-1. Results of Verification Test 1. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.

Figure 5-2. Results of Verification Test 2. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.

Test 2a is a slight variant of Test 2. In Test 2a, the 100 m transport path is sub-divided into 10 segments of length 10 m each. Results of Test 2a (not shown) are identical to those of Test 2, thus confirming that a segmented pathway is correctly handled in MARFA.

5.3 Multiple pathways

Test 3 is designed to test the capability to simulate multiple sources and multiple pathways. The test has two pathways originating from two sources. Pathway one is identical to the pathway in Test 1, while pathway 2 is identical to that of Test 2. The same amount of mass is released from the two sources.

The instantaneous breakthrough curves for Test 3 are shown in Figure 5-3. The MARFA results agree very well with the benchmark solution over the entire range.
5.4 Low flow period with unlimited diffusion

Test 4 is designed to test the new capabilities to model changing flow velocities. The flow velocity in this test is initially 1 m/yr. At $t = 2,000$ yrs, the flow is changed to 0.01 m/yr, representing a glacial nonflushing period. At $t = 7,000$ yrs, the flow returns to 1 m/yr. The sorption properties do not change in time in this test. Other parameters are identical to Test 1, except for the value of the matrix retardation factor for species A which is 500. Results of this test are shown in Figure 5-4. The MARFA results agree with the benchmark solution over the entire range, except for statistical fluctuations at very low breakthrough values.

Figure 5-3. Results of Verification Test 3. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.

Figure 5-4. Results of Verification Test 4. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.
5.5 Low flow period with limited diffusion

Test 5 uses the same piecewise constant-in-time velocity as Test 4 but with the limited diffusion model. Other parameters are identical to Test 2. As in Test 2, two variants are considered: one with a single segment representing the pathway, and one with the pathway composed of 10 segments. Results for the single pathway and multiple pathway variants are shown in Figures 5-5a and 5-5b, respectively. The MARFA mass discharge results are slightly larger than the benchmark solution immediately following the second flow change in the single pathway variant. This deviation is caused by the particles that encounter both a flow change and a decay event when in the segment, a situation that is handled approximately in MARFA. When the pathway is discretized into multiple segments, a particle is less likely to experience both events in the same segment and the MARFA results closely approximate the benchmark solution over the entire range.

Figure 5-5. Results of Verification Test 5 using a single- (top) or multiple-segment pathway. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.
5.6 High flow period with unlimited diffusion

In Test 6 the velocity increases by a factor of 10 in the period 2,000 to 7,000 years, consistent with a glacial flushing period; the matrix retardation factors are 200 for both species A and B, the dispersivity is 1 m, and the decay constants are 10^{-3} yr$^{-1}$ and 10^{-4} yr$^{-1}$ for species A and B, respectively. Finally, the pathway is discretized into 10 segments in Test 6. Other parameters are the same as Test 1. Results are shown in Figure 5-6. For these conditions, the MARFA results are slightly lower than the benchmark results for species B just after the end of the glacial flushing period. This period of deviation is brief. Moreover, the discharge during the flushing period, which is the risk significant quantity, is well approximated.

5.7 Changes in flow and sorption properties

Test 7 is identical to Test 4 except that in Test 7 the matrix retardation factors are reduced by a factor of 10 during the glacial nonflushing period. Results are shown in Figure 5-7.

Figure 5-6. Results of Verification Test 6. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.

Figure 5-7. Results of Verification Test 7. Solid curves are benchmark solution for the mass discharge. Individual data points are mass discharge from MARFA. The blue lines and points are for species A. Black represents species B.
6 Example simulations

MARFA Version 3.2.2 includes complete input for an example simulation that is designed to activate the entire range of capabilities. This example uses 120 pathway trajectories from a nested DFN/CPM simulation provided by Serco Assurance /Joyce 2006/. The trajectories are shown in Figure 6-1. Note some of the trajectories originate outside the DFN region that surrounds the hypothetical repository. These isolated trajectories are the result of an error in specifying the trajectory starting locations within the CONNECTFLOW simulation /Joyce 2006/. In the example, the VALID TRAJECTORIES option (see Appendix A) is used to force MARFA to skip these spurious trajectories. There are 91 valid trajectories. The valid trajectories are replotted in Figure 6-2.

The simulation includes 13 rock types. One of these, representing the explicit DFN region, is deterministic. The other rock types are stochastic. Subgrid trajectories are included with the input set. Limited diffusion is used as the retention model in all rock types.

The example has a glacial period from 10,000 to 11,200 years. The first and last 100 years of the glacial period are high-flow flushing periods wherein the flow velocity increases by a factor of 50 relative to the base flow. In the intervening 1,000 yr period (glacial nonflushing period), the flow is reduced to 10% of the original value.

The decay chain for this example is $^{241}\text{Am} \rightarrow ^{237}\text{Np} \rightarrow ^{233}\text{U} \rightarrow ^{229}\text{Th}$. Radionuclides are introduced as ^{241}Am in a short pulse at $t = 0$. The total mass released is 1 mol.

Input files for the example are included with the MARFA code in the directory AcceptanceTests/Test1. This example may serve as an installation test.

A variant of this example is also provided. Acceptance Test 1a is identical to Test 1 except that the flow field is steady (i.e. no glaciation modeling case). Breakthrough of ^{237}Np as calculated by MARFA for these two modeling cases is compared in Figure 6-3. Spikes corresponding to the flushing periods at 10,000 and 11,100 years are apparent in the breakthrough for the glaciation modeling case, but the total mass released in these spikes is relatively small compared to the main breakthrough around 10⁶ years.

Figure 6-1. CONNECTFLOW trajectories forming the pathways for the MARFA example simulation. Trajectories are color coded by cumulative groundwater travel time. This graphic was provided by Serco Assurance /Joyce 2006/.
Figure 6-2. Valid pathways used in the example simulation color coded by cumulative radionuclide discharge as calculated by MARFA. Warmer colors denote higher discharge. A small number of pathways are responsible for the majority of the flux in this example.

Figure 6-3. Radionuclide discharge for 237Np for example simulations with and without flow field changes due to glacier passage.
7 Summary

This document describes input requirements for MARFA Version 3.2.2, which simulates transport of radionuclides along pathways originating from multiple source locations. Velocities and sorption properties of the pathways are piecewise constant in time. There are no restrictions on the number of radionuclides, the length or number of the decay chains, the number of trajectories, or the number of flow changes. Branching chains are not supported. Full heterogeneity in the flow-related properties of the pathway is supported. In addition, an optional stochastic downscaling mode is available. The downscaling algorithm is designed to recover the neglected effects of subgrid scale velocity fluctuations when the pathway flow properties have been determined from an upscaled flow model. Heterogeneity in the chemical retention properties is addressed by rock type. That is, the user must define a set of rock types with constant retention properties in each. There is no limit on the number of rock types. The equilibrium sorption, limited diffusion, and unlimited diffusion models are supported.

The primary limitation of MARFA Version 3.2.2 is that it cannot accommodate trajectories that change in time. That is, the velocity may change in magnitude, but not in direction. Approaches for fully transient flow fields have been successfully tested and will be incorporated in Version 3.3.
8 References

Appendix A

MARFA input

The units for all pathway and radionuclide property input parameters are various combinations of meters and years. The radionuclide source rate should be specified in mol/yr or Bq/yr.

Conventions used in this Appendix are as follows. Input parameter names are shown in bold font. File names are shown in italics. The courier font is used when specifying input file formats. A line consisting of a single colon in the input block means that lines are skipped. An ellipsis (…) indicates that the item is to be repeated. Any text following an exclamation point in an input block is to be regarded as a comment or explanation.

Four input files are required for all MARFA runs. Users must specify radionuclide decay chains in the nuclides.dat file, the set of rock types in the rocktypes.dat file, radionuclide sources in sources.dat, and the pathway properties in trajectories.dat. These four files must exist and must reside in the run directory.

If the downscaling algorithm is to be used (i.e. at least one rock type is specified as stochastic), then a set of subgrid trajectories must also be provided. In contrast to the other input files, the subgrid trajectories data need not reside in the run directory. The location (path) of the subgrid trajectories directory is specified in the rocktypes.dat file.

In addition to the user-supplied input, MARFA also requires access to a set of files that contain data for lookup tables used in sampling the retention times. The required data files are included as part of MARFA Version 3.2. The location (path) of the required data files on the local file system must be specified in the trajectories.dat file.

Any input file may start with an optional header section. The header section contains an arbitrary number of header lines. A header line is identified by an exclamation point “!” as the first non-black character. Comment lines are not permitted after the input starts. Partial lines of comment may follow the required data fields on a line, however. The following subsections give the required data format after the header section.

A1 Specifying the decay chains

The format for the nuclides.dat file is

\[
\text{nelem} \\
\text{elem_name} \text{!one line for each element (nelem times)} \\
: \\
\text{nnuc} \\
\text{nuc_name lambda associated_elem nextnuc imprtnce} \text{!line repeated nnuc times}
\]

Here \text{nelem} is the number of elements in the decay chain, and \text{elem_name} is the name of the element. The list of element names is used only to associate each nuclide with the appropriate element. Retention properties are entered for each element, as described in the input for the rocktypes.dat file.

The input \text{nnuc} is the number of nuclides to be included in the transport calculation. Each nuclide is assumed to have, at most, one daughter nuclide (branching in a decay chain is not supported). The inputs \text{nuc_name} and \text{lambda} are the nuclide name and decay constant [T^{-1}] for the nuclide, and \text{associated_elem} is the name of the associated element. The next nuclide in the decay chain is specified by the \text{nextnuc} parameter. The value NULL for a \text{nextnuc} parameter indicates that the nuclide is at the end of the chain. Each specified \text{associated_elem} must be in the list of element names, and each \text{nextnuc} must be in the list of nuclide names.

The input \text{imprtnce} is a user-specified relative importance factor that may be used to force some nuclides to be sampled more frequently at the source. This option is useful, for example, for obtaining higher accuracy for risk significant nuclides. The probability of selecting a given nuclide is proportional to the total source strength for that particle multiplied by its \text{imprtnce} value.
MARFA assigns each particle of a given nuclide type a statistical weight inversely proportional to the nuclide’s imprtnce value, thus ensuring that the resulting estimate is unbiased. As with any importance-weighted Monte Carlo sampling scheme, an informed choice for the importance value may decrease the variance in the result, but a poor choice will increase the variance.

Note the nuclide list may include multiple chains and nuclides that do not belong to any chain. The user simply needs to specify the decay product for each radionuclide. Converging chains are supported, but branching decay chains are not.

An example nuclides.dat file is shown in Figure A-1. This example has 7 radionuclides and two chains: 241Pu \rightarrow 241Am \rightarrow 237Np \rightarrow 233U and 246Cm \rightarrow 238U. The radionuclide 99Tc is not modeled as part of a chain.

A2 Specifying the radionuclide source

The radionuclide source is specified in the source.dat file. The source is to be specified as a source rate in mol/yr or Bq/yr. The format is

```
npart
units  ! mol/yr or Bq/yr
samplemethod  ! keyword controlling source sampling
nsources  ! number of sources
sourceID  ! beginning of source block
traj1 traj2  ! Range of trajectories associated with source
ndpts
time RN1 RN2 RN3 ...  ! one for each nuclide
:  ! repeat above line for a total of ndpts lines
:  ! repeat above source block for a total of nsources blocks
```

The parameter npart is the total number of particles to be used. The units parameter is used to specify the source units. The options are “mol/yr” or “Bq/yr”. The optional keyword samplemethod controls the sampling of the source. The default method is to sample the source history with uniform statistical weights for each particle of a given radionuclide. If the samplemethod keyword is present and specified as “UNIFORM IN TIME”, sampling of the source will be uniform in time with appropriate statistical weighting applied to each particle, as described in Section 3.3 of this document. The parameter nsources is the number of source locations (e.g. failed canisters). For each source the sourceID is a 10-character identifier for that source. The parameters traj1 and traj2 identify the upper and lower indices in the trajectory list for those trajectories that will be associated with each source. The number of time points in a source history is ndpts. For each value of time, nnuc values of the source release rate are read, where nnuc is the number of nuclides (see Section A.1).

6	Pu	4.8e-2	Pu	Am241	1.0
7	Am	1.6e-3	Am	Np237	1.0
	Np	3.2e-7	Np	U233	1.0
	U	4.37e-6	U	NULL	1.0
	Cm	1.46e-4	Cm	U238	1.0
	U238	1.55e-10	U	NULL	1.0
	Tc99	3.25e-6	Tc	NULL	1.0

Figure A-1. Example nuclides.dat file.
An example *source.dat* file is shown in Figure A-2. This example has two source locations and a dirac-δ function input, which is approximated as a square pulse of duration 0.1 years. The source strength is 0.001 mol/yr for the first radionuclide and 0.005 mol/yr for the second nuclide in the two-member chain, where the net cumulative source strength is computed using a linear interpolation of the defined mass release rates.

A3 Defining rock types

The *rocktypes.dat* file specifies the retention model and retention properties for each rock type. In addition, the file specifies stochastic or deterministic mode for each. The format is

numtypes	number of rock types defined
datadir	path to data directory for subgrid trajectory files
typeID	length 5 character string identifier for the rock type
ret_model	retention parameters for element 1
ret_parameters	repeat block for each flow period
alpha stochasticflag numdir numvc	repeat block for a total of numtypes

Here **numtypes** is the number of rock types modeled. The **datadir** parameter provides the file system path to the subgrid trajectories data files for stochastic rock types. The **datadir** parameter is read but not used if all rock types are deterministic. The input parameter **typeID** is a 5-character string identifying the rock type. The input block headed by a **typeID** is repeated for a total of **numtype**. If retention parameters are modeled as constant in the entire domain, then only one rock type needs to be defined.

The retention model is specified by the **ret_model** parameter. Allowed values are MD (unlimited matrix diffusion), LD (limited matrix diffusion), and ES (equilibrium sorption). The next **nelem** lines contain the retention parameter values at the start of the simulation. Retention parameters are read in the same order as the element list in *nuclides.dat*, with one set of retention parameters for an element on each line. The input read from these lines depend on which retention model is specified. If ES is specified, then the dimensionless retardation factor R is read for each element. Here $R = 1 + \frac{\rho_b K_d}{\theta}$, where ρ_b, K_d, and θ are bulk density [M/L³], equilibrium distribution coefficient [L³/M] and porosity [-] for the porous medium, respectively. If MD is specified, then κ is read for each element, where $\kappa = \sqrt{\theta_m D_{eff} R_m}$ [L T⁻¹/₂], θ_m is the matrix porosity [-], and D_{eff} is the matrix effective diffusion coeff.

```plaintext
100000   ! Number of particles
mol/yr   ! Units
2        ! Two source locations
Can1     ! Canister 1
  1 20   ! Canister 1 is associated with trajectories 1 through 20
  2      ! Two times are used to specify source
  0.0 0.001 0.005  ! Source strength for RN1 and RN2 at 0 years
  0.1 0.001 0.005  ! Cumulative source for RN1 and RN2 at 0.1 years
Can2     ! Canister 2
  21-40  ! Canister 2 is associated with trajectories 21-40
  2      ! Number of times used to specify source
  0.0 0.001 0.005  ! Source strength for RN1 and RN2 at 0 years
  0.1 0.001 0.005  ! Cumulative source for RN1 and RN2 at
```

Figure A-2. Example source.dat file.
icient \([L^2/T]\), and \(R_m\) is the matrix retardation factor \([-\,].\) If LD is specified, then the three parameters \(\kappa, \eta\) and \(k_a\) are read from each line. Here \(\eta = \frac{\Delta}{D_{ef}} [T/L]\) and \(\Delta [L]\) is the size of the matrix region accessible by diffusion, and \(k_a [1/L]\) is a sorption coefficient for equilibrium sorption on fracture surfaces.

MARFA Version 3.2 allows velocity and rock properties to be piecewise constant in time. If this option is invoked (see Section A.4), then retention properties must be entered for each flow period. The retention parameters should be entered for each flow period, one flow period per line. The number entered must be consistent with the trajectories.dat file.

The parameter \(\alpha\) is longitudinal dispersivity \([L]\). If \(\alpha\) is entered as “0,” the longitudinal dispersion calculation is skipped. Note that the longitudinal dispersion calculation may increase the run time significantly.

The single-character input field stochasticflag indicates whether the rock type is stochastic or deterministic. Allowed values are S for stochastic or D for deterministic. For deterministic rock types, no other information is read. For stochastic rock types, the numdir and numv parameters are read from the same line. The numdir parameter specifies the number of directions for the subgrid trajectories (see Section 2). A separate data file with subgrid trajectories is required for each of the numdir directions, as explained in Section A.5. The numv parameter is a numerical parameter used in the stochastic downscaling algorithms. Details of the numv parameter are provided by Painter and Cvetkovic 2005/.

Example rocktypes.dat files are shown in Figures A-3 and A-4. Three rock types are defined in this example: TUN1, DFN1, and CPM1. The TUN1 rock type uses the equilibrium sorption model, has a dispersivity of 2 m, and is deterministic. A rock type defined this way might represent, for example, a backfilled repository tunnel. The DFN1 rock type is deterministic and uses the limited diffusion model (e.g. an explicitly represented fracture network). The CPM1 rock type also uses the limited diffusion retention model, but is stochastic (e.g. a continuous porous medium region). The downscaling algorithm is used for this rock type. The subgrid trajectories for the downscaling algorithm is read from the directory /home/spainter/MARFA31/SubgridTrajectories/CPM1/. One set of subgrid trajectories will be used (numdir = 1), which presumes an isotropic network. A total of eight velocity groups (numvc = 8) is used in the downscaling algorithm.

3 ! Number of rock types	3 ! Number of rock types		
/home/spainter/MARFA31/SubgridTrajectories/	/home/spainter/MARFA31/SubgridTrajectories/		
TUN1 ! Rock type name	TUN1 ! Rock type name		
ES ! Retention model (ES/LD/MD)	ES ! Retention model (ES/LD/MD)		
500 ! retention parameters for element 1	500 ! retention parameters for element 1		
100 ! retention parameters for element 2	100 ! retention parameters for element 2		
200	200		200
2. D ! Dispersivity, stoch/det flag (S/D)	2. D ! Dispersivity, stoch/det flag (S/D)		
DFN1 ! Rock type name	DFN1 ! Rock type name		
LD ! Dispersion, stoch/det flag (S/D)	LD ! Dispersion, stoch/det flag (S/D)		
0.006 ! Dispersion, stoch/det flag (S/D)	0.006 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.008 ! Dispersion, stoch/det flag (S/D)	0.008 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.004 ! Dispersion, stoch/det flag (S/D)	0.004 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.003 ! Dispersion, stoch/det flag (S/D)	0.003 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0. D	0. D		0. D
CPM1 ! Rock type name	CPM1 ! Rock type name		
LD ! Dispersion, stoch/det flag (S/D)	LD ! Dispersion, stoch/det flag (S/D)		
0.006 ! Dispersion, stoch/det flag (S/D)	0.006 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.008 ! Dispersion, stoch/det flag (S/D)	0.008 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.004 ! Dispersion, stoch/det flag (S/D)	0.004 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0.003 ! Dispersion, stoch/det flag (S/D)	0.003 ! Dispersion, stoch/det flag (S/D)		
2.0e5 ! Dispersion, stoch/det flag (S/D)	2.0e5 ! Dispersion, stoch/det flag (S/D)		
0. S 1 8	0. S 1 8		

Figure A-3. Example rocktypes.dat file with one flow period and 4 elements.
A4 The trajectories.dat file

Trajectories, as calculated from CONNECTFLOW nested DFN/CPM regional scale models, are read from a file named trajectories.dat. Two possible formats of this file are available. With the first format, the trajectory data are fully contained within the trajectories.dat file. With the second format, the trajectories.dat file contains the location of a CONNECTFLOW data file containing the trajectory information.

Format 1 is described as follows.

```
retdatadir
ntraj
TrajID xloc yloc zloc
xe ye ze typeID tau beta cpmgradh
: ! repeat above line for each segment
END ! end of trajectory delimiter
```

The retdatadir parameter provides the file system path to the generic lookup-table data required for sampling the retention time distributions. The parameter ntraj is the number of trajectories; TrajID is a 10-character label identifying the trajectory; and xloc, yloc, and zloc are the x-, y-, and z-positions for the trajectory head. The TrajID is employed by MARFA to identify specific

Figure A-4. Example rocktypes.dat file with two flow periods (one flow change) and 4 elements.
trajectories, such that each TrajID needs to be unique. Sources are associated to trajectories by
their sequential order, matched to the trajectory range defined in source.dat. The data read for each
segment include the location of the end of the segment (xe,ye,ze) and a 5-character identifier for the
rock type (typeID). The advective travel time (tau) and the F-quotient (beta) are also read. If the
rock type is a stochastic one, then tau and beta represent CPM (upscaled) values; otherwise, they
are DFN values for the segment. If the particular rock type is a stochastic one, then the magnitude
of the hydraulic gradient (cpmgradh) at that location is also read. If the particular rock type is a
deterministic one, then cpmgradh is not used. The hydraulic gradient is used to adjust (scale) the
stochastically generated segment properties to the local macroscopic conditions. The scaling is
necessary because the subgrid trajectories will, in general, be generated using an imposed hydraulic
gradient different from the macroscopic gradient resulting from the CPM flow simulation.

Format 2 is described as follows.

```plaintext
retdatadir
filename           ! filename of data file containing trajectory data
                   ! first character of filename needs to be nonnumeric
```

The retdatadir parameter provides the file system path to the generic lookup-table data required
for sampling the retention time distributions. The parameter filename is the name of the data file
that contains the trajectory data. The required format of the file named in trajectories.dat is the
CONNECTFLOW modified verbose format for pathline calculations. That format allows for a single
comment line. The format following the comment line is described as follows.

```plaintext
ntraj REAL TIMESTEP
PART TRAJ_NUM REALISATION_NO START TIME flag
xloc yloc zloc xN xN xN uX uY uZ TOT_TIME TOT_LENGTH TRAJ_BETA
STEPS num_seg
CUM_TIME xe ye ze HYD_AP TRANS_AP tau beta cpmgradh typeID
   : !repeat until the end of the trajectory is reached
   : !repeat until all of the trajectories have been entered
```

Several of the parameters in the input file are not employed by MARFA, but have been retained
for consistency between MARFA and CONNECTFLOW. These unused data fields are labeled in
uppercase lettering in the previous description; the unused data fields are expected as placeholders.
The parameter ntraj is the number of trajectories. The parameter flag indicates whether the trajec-
tory reaches a transport boundary; num_seg is the number of segments on the trajectory; and xloc,
yloc, and zloc are the x-, y-, and z-positions for the trajectory head. The data read for each segment
include the location of the end of the segment (xe,ye,ze); a five-character identifier for the rock type
(typeID); the advective travel time (tau); the magnitude of the hydraulic gradient (cpmgradh), and
the F-quotient (beta).

Three optional sections exist for the file trajectories.dat, independent of the format: “FLOW
CHANGES”, “VALID TRAJECTORIES” and “CHANNELING FACTOR”. These three sections
are key-phrase driven and may come in any order and are not required to be present. The optional
keywords and associated input format are as follows.

```plaintext
CHANNELING FACTOR chanfac
FLOW CHANGES nchanges
   time_of_change vscale
      : !above block repeated for each flow change to be analyzed
VALID TRAJECTORIES
Trj_num terminal_segment
      : !above block repeated for each trajectory to be analyzed
END
```

The optional key phrase “CHANNELING FACTOR” allows the user to specify a global factor chanfac
that multiplies the segment beta values read from a PTV file (Format 2). This keyword has no effect in
Format 1. The channeling factor also has no effect for rock types that are defined as having stochastic
pathway variability (see Section A.3).
The key phrase “FLOW CHANGES” initiates an optional section that allows the user to specify velocity changes. The parameter \textit{nchanges} is user defined, establishing the number of flow changes to be evaluated. The parameter \textit{time_of_change} sets the time of a flow change (defining end of a flow period). The parameter \textit{vscale} established the velocity change during the flow period. If the optional section “FLOW CHANGES” is not present or if \textit{nchanges} is equal to zero, no flow changes are evaluated. Note under all conditions the number of retention parameter sets defined for each hydrofacies in \textit{rocktypes.dat} must match the number of flow periods (\textit{nchanges} + 1).

The key phrase “VALID TRAJECTORIES” initiates a section that allows the user to specify a subset of trajectories for particle transport analysis. The parameter \textit{trj_num} identifies the index in the trajectory list of the trajectory to be evaluated. The parameter \textit{terminal_segment} allows the setting of the monitoring location for each selected trajectory to a user-defined trajectory segment number. If the trajectory has fewer segments than the user-specified \textit{terminal_segment} or if the user enters 0, the final segment of the trajectory will be used as the monitoring location. If the optional section “VALID TRAJECTORIES” is not present, all trajectories are evaluated, and the final segment of each trajectory is used as the monitoring location.

A word of caution regarding the specification of the terminal segment: if the trajectory input contains a segment with zero value for \(\tau \), the internal indexing of segments in MARFA will be different from the input. If MARFA encounters a zero-\(\tau \) segment, then that segment is ignored, and indexing for subsequent segments in the trajectory is adjusted.

An example \textit{trajectories.dat} file is shown in Figure A-5. This example uses Format 1 and has one trajectory with eight segments. The trajectory starts at the location (0,0,-6) and terminates at (11,0,250) after passing through the three rock types defined in Figure A-5. Note that the trajectory begins in an explicit DFN region, enters a repository tunnel, and then returns to an explicit DFN region before entering a CPM region. In the section FLOW CHANGES, one flow change has been specified, which occurs at 10,000 yrs with a relative change in velocity of 1.5. In the section VALID TRAJECTORIES, trajectory one has been included for analysis with breakthrough monitoring at segment seven.

An example \textit{trajectories.dat} file for format 2 is shown in Figure A-6. The file containing the trajectory data is \textit{nro.ptrv}. In the section “FLOW CHANGES”, no flow changes have been defined. In the section “VALID TRAJECTORIES”, three trajectories will be used in the particle transport calculations. Trajectories 1, 15, and 31 terminate at segments 100, 150, and 120, respectively.

\textbf{A5 The subgrid trajectories}

For each stochastic rock type, the user must supply sets of subgrid trajectories, one set for each direction. As discussed in Section 2, the subgrid trajectories are used to recover the effects of subgrid scale variations in velocity, which were lost in the CPM representation of flow. Specifically, the subgrid trajectories provide the raw data for the /Painter and Cvetkovic 2005/ upscaling/downscaling algorithm. The full path name for the directory containing the subgrid trajectories is read from the \textit{rocktypes.dat} file. Contained in that directory are several subdirectories, one for each stochastic rock type. Each subdirectory must be named as the corresponding rock type identifier (\textit{typeID}). Each subdirectory must contain several files, one for each direction in the direction set. The file name for \(i \)-th direction must be formed by appending _\textit{i} to the \textit{typeID}. Thus, the subgrid trajectory file for direction 2 of a rock type named CPM4 must be named CPM4_2.

The format for each subgrid trajectory file is

\begin{verbatim}
!header information
:
gradh dip strike vcpm ! imposed gradient and upscaled transport velocity
nsgt ! number of subgrid trajectories in this set
tau beta length ! segment data
 ! repeat above line for each segment
END ! end-of-trajectory flag
: ! above block repeated for each trajectory
\end{verbatim}
Here dip and strike are the dip and strike angles (in degrees) characterizing the direction of the imposed hydraulic gradient used in constructing the given set of trajectories; \(\text{gradh} \) is the magnitude of the imposed gradient. The magnitude of the upscaled transport velocity is denoted \(v_{cpm} \). The parameter \(nsgt \) is the number of trajectories in the set. For each segment the parameters \(\tau \), \(\beta \), and length are read. These represent the advective travel time, F-quotient, and length for each segment, respectively. The END keyword denotes the end of a trajectory.

MARFA pre-processes the subgrid trajectory information to a form convenient for use by the downscaling algorithm. Because the pre-processing step may take several minutes for large sets of subgrid trajectories, MARFA saves the results of the pre-processing in intermediate files. Previously processed subgrid data may then be used in subsequent runs without re-running the preprocessor.

The existence of pre-processor output in the subgrid trajectory directories controls whether the pre-processor runs. If the subgrid trajectories directory contains pre-processed data files and information extracted from the headers of these files is consistent with certain input from the rocktypes.dat file, then the pre-processor is skipped. Otherwise, it is called by MARFA to process the raw subgrid trajectories.

The naming convention for the processed subgrid data is identical to that of the subgrid trajectories, but without the rock type name. For example, the file \(_1 \) in the CPM1 directory is the processed subgrid data for direction 1 of rock type CPM1. The file \(CPM1_1 \) in the same directory would contain the raw subgrid trajectories.
A6 Postprocessor control

The postprocessor calculates breakthrough curves based on the particle arrival times.

The user may specify which trajectories are to be included in the breakthrough curve calculation. In addition, the times at which breakthrough values are needed may also be specified. The postprocessor options are read from the postprocessor.dat file. If the file postprocessor.dat is not present, the postprocessor will include all trajectories and calculate discharge at 200 times, spread uniformly between the maximum and minimum arrival times for each nuclide. In this mode of operation, postprocessor operation is fully automated and requires no user input.

The user may opt to include all trajectories or restrict the breakthrough curve to a subset of the trajectories. If a subset is required, the user must specify which trajectories are of interest by defining one or more batches of trajectories, where a batch is defined by a continuous range of indices in the trajectory list. A batch is specified by entering the lower and upper indices (inclusive) in the trajectory list.

Three options are provided for determining discharge (breakthrough) calculation times. The times may be determined automatically based on a uniform or logarithmic spacing, or specified manually.

The format for the postprocessor.dat file is as follows.

```
gamma t0  ! sensitivity parameter and time of first release
trajset  ! Enter A for all or P for a subset
nbatches ! number of batches if Partial list selected
i1 i2   ! upper and lower indices defining a subset
:       ! repeat for total of nbatches

disttype ! distribution type uniform, logarithmic, manual (U/L/M)
nbktimes ! number of times at which breakthrough values are needed
time1   ! if manual is selected first time
:       ! repeat for a total of nbktimes
```

Gamma is a sensitivity parameter used by the postprocessor when reconstructing the instantaneous breakthrough curves. The default value for gamma is 0.2, which under most conditions results in an accurate and robust breakthrough curve. Under conditions that may result in prompt or rapid changes in breakthrough, however, larger values of gamma (e.g. 0.3 or 0.4) more accurately track the rapid transitions. Increasing the sensitivity will result in more statistical noise throughout the entire breakthrough curve.

The optional parameter t0 is the first time at which releases into the far field are possible. This parameter allows the user to redefine the time “origin” and enforce a zero-release condition at that time. In a pinhole release case, for example, t0 would be set to the time that the hole appears.

The trajset parameter indicates whether the breakthrough will be based on all trajectories or a subset. Allowed values are A for all trajectories or P for a partial reconstruction based on a subset of the trajectories. If a partial reconstruction is specified, nbatches is the number of batches; i1 and i2 are the lower and upper indices for the batch.

The disttype parameter controls the times at which breakthrough curves are calculated. Allowed values are U for uniformly spaced between minimum and maximum arrival time, L for logarithmically spaced, and M for manually specified. The parameter nbktimes is the number of times at which discharge is required. If times are manually specified, a list of length of nbktimes must be given, one per line.
Appendix B

MARFA output

MARFA does not have a graphical user interface. Error and warning messages are written to the screen. MARFA also reports progress in initializing the calculation. Once the main Monte Carlo calculation starts, no output is provided until after all particles are processed.

Raw results in the form of particle arrival times are written to the file `results.dat` in the run directory. If the file does not exist, it will be created. If it does exist, it will be overwritten. The `results.dat` file starts with several lines of header information. Following the header, the output format is

```
nuc  ! number of nuclides
nuc_name lambda  ! nuclide name, decay constant
:  ! repeat a total of nnuc times
atime inuc mass sourceID trajID  ! data for each particle
:  ! repeat for each particle arriving
```

Here `nnuc` is the number of nuclides modeled; `nuc_name` and `lambda` are the name and decay constant for each nuclide. One line of data is written for each particle that makes it to a trajectory terminus; `atime` is the arrival time and `mass` is the mass in moles of the particle. The integer `inuc` is an index into the nuclide list, and thus specifies the state of the particle upon arrival. The character string `sourceID` uniquely identifies the source location for the particle from the lists in Sections 5.2 and 5.4 and the `trajID` uniquely identifies the trajectory for the particle.

A post-processor calculates instantaneous and cumulative breakthrough curves from the arrival times. The file `Breakthrough_Mo.rlt` contains instantaneous mass discharge in units of mol/yr and cumulative mass discharge in units of mol. The file contains a global header section followed by several results sections, one for each nuclide type. The format following the global header section is

```
!ID = 1 Name = nname1 Number of particles = nscore1
!Time  Cumulative Breakthrough Instantaneous Breakthrough
!   (Moles)     (Moles/year)
!
time1   cbrkval1   ibrkval1
:  ! repeat above line for each estimation time
:  ! repeat above block for each nuclide modeled
```

Where `nname1` is the name of nuclide 1, and `nscore1` is the number of particle “scoring” (arriving at a pathway endpoint) as nuclide 1. The cumulative and instantaneous breakthrough curves are printed following that four line header, with `cbrkval` and `ibrkval` representing cumulative and instantaneous breakthrough at a given time (`time`).

The file `Breakthrough_Bq.rlt` is identical to `Breakthrough_Mo.rlt` except that results are in units of Bequerel.
Appendix C

Fully transient simulations using version 3.3

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>46</td>
</tr>
<tr>
<td>Quality assurance program</td>
<td>46</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>2 MARFA</td>
<td>49</td>
</tr>
<tr>
<td>2.1 Node routing</td>
<td>49</td>
</tr>
<tr>
<td>2.2 Stuck particles</td>
<td>49</td>
</tr>
<tr>
<td>2.3 Stranded particles</td>
<td>50</td>
</tr>
<tr>
<td>2.4 Node renumbering</td>
<td>50</td>
</tr>
<tr>
<td>3 MARFA 3.3 input</td>
<td>51</td>
</tr>
<tr>
<td>3.1 The flowdata.dat file</td>
<td>51</td>
</tr>
<tr>
<td>3.2 The node network data files</td>
<td>52</td>
</tr>
<tr>
<td>3.3 The node remapping files</td>
<td>52</td>
</tr>
<tr>
<td>3.4 The source.dat file</td>
<td>52</td>
</tr>
<tr>
<td>4 Verification tests</td>
<td>55</td>
</tr>
<tr>
<td>4.1 Tests of the retention model</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Flow change test</td>
<td>56</td>
</tr>
<tr>
<td>4.3 Multiple sources and multiple pathways test</td>
<td>56</td>
</tr>
<tr>
<td>5 Effect of flow direction changes on transport: Forsmardk 100-m block</td>
<td>59</td>
</tr>
<tr>
<td>6 Summary</td>
<td>62</td>
</tr>
<tr>
<td>7 References</td>
<td>62</td>
</tr>
</tbody>
</table>
Acknowledgements

The Migration Analysis of Radionuclides in the Far Field (MARFA) computer code was developed by the Center for Nuclear Waste Regulatory Analyses (CNWRA®) for the Swedish Nuclear Fuel and Waste Management Company and Posiva Oy under Contract Number SWRI–2044832. Source code modules from the computer codes Time Domain Random Walk (TDRW) Versions 1 and 2 were reused in MARFA. CNWRA developed TDRW for the Southwest Research Institute® (SwRI®) Advisory Committee for Research. The TDRW source code is copyrighted by SwRI. The authors are grateful to Andrew Frampton for providing CONNECTFLOW output for the Forsmark 100-m block. The authors also thank Lynn Tipton, Lauren Mulverhill, and Gordon Wittmeyer for their constructive reviews of this document and Jacqueline Simpson for her efforts in formatting this document.

Quality assurance program

MARFA was developed under the CNWRA software quality assurance procedures described in CNWRA Technical Operating Procedure (TOP)–018.
1 Introduction

The computer code MARFA uses a particle-based Monte Carlo method to simulate the transport of radionuclides in a sparsely fractured geological medium. MARFA was specifically designed to integrate with the safety assessment workflow used by the Swedish Nuclear Fuel and Waste Management Company (SKB) and Posiva Oy. Version 3.2.2 and earlier versions accept pathline trajectories from the CONNECTFLOW /Hartley and Holton 2003, Hartley et al. 2004/ code. The pathline trajectories represent transport pathways. MARFA then solves radionuclide transport along the pathways using a time-domain particle method. With this method, particles are advanced along a pathway using deterministic spatial displacements and random transit times for each step. Testing and experience with the code demonstrate that the code is computationally efficient and extremely robust. Limited and unlimited matrix diffusion, equilibrium sorption, longitudinal dispersion, decay, and in-growth are represented. MARFA supports full spatial variability for all pathway properties, decay chains of any length, and full temporal variability in radionuclide source strength. The code reports radionuclide breakthrough at the pathway endpoints.

MARFA 3.2.2 and prior versions use fixed transport pathways. That is, the groundwater speed and retention properties along each pathway may change in time, but the pathway trajectories are fixed. The transport pathways for input to MARFA 3.2.2 come from CONNECTFLOW verbose pathline (PTV) files, which are generated within CONNECTFLOW using conventional streamline tracing for continuum porous medium (CPM) regions and node network routing for the discrete fracture network (DFN) regions /Hartley and Holton 2003/. Given the long time frames considered in assessments of potential high-level nuclear waste repositories in Sweden and Finland, significant changes in groundwater flow direction are expected due to glacial rebound and changing climate states in the future. For example, land rise due to glacial rebound and the passage of future glaciers may generate significant changes in groundwater discharge locations. Such scenarios cannot be fully evaluated with fixed pathways.

This report describes a variant of MARFA, denoted Version 3.3, which allows the transport effects of changing flow directions to be represented. The main difference between Version 3.3 and previous versions is that Version 3.3 abandons the use of fixed pathways and performs node routing within MARFA. With this modification to the MARFA algorithms, the CONNECTFLOW pathway PTV file is no longer needed; instead, the CONNECTFLOW node-routing (PTH) file is required. Version 3.3 is intended to be an alternative to Version 3.2.2, not a replacement. That is, both versions are actively maintained and in use.

Because MARFA 3.2.2 and MARFA 3.3 share many features, this report is written to be used in conjunction with the MARFA 3.2.2 Users Manual. This report focuses on the unique aspects of MARFA 3.3. The theoretical basis for the particle transport algorithms, input formats for radionuclide and source selection, and breakthrough curve reconstruction are not addressed here.
2 MARFA

2.1 Node routing

MARFA 3.3 does not use fixed transport pathways. Instead, particles are routed dynamically through a node network derived from a CONNECTFLOW or other flow field. The node network is specified by a CONNECTFLOW PTH file. The PTH file provides for each CONNECTFLOW transport node a list of downstream neighbors, probability of traveling to each neighbor, and properties of each downstream link. This information is provided in packed arrays in the CONNECTFLOW PTH file. MARFA 3.3 uses a Fortran 90/95-derived data type called node to store the same information. Thus, the multiple packed arrays of the CONNECTFLOW PTH format need to be converted to a single array of type node for use in MARFA 3.3. Each element in the array contains the information for one node, which is sufficient to route to the next node. The advantage of the derived data type is that it leads to a very compact implementation of the node-routing algorithm. A utility routine that reads PTH files and creates the MARFA node data input file has been developed and is controlled with MARFA 3.3.

The logic for the particle routing follows.

1. Select an initial node. This is done by uniformly sampling from a predefined list of nodes associated with radionuclide sources. From the selected node, a particle is launched.

2. Select a downstream node. A downstream node is selected based on the probability of traveling to the downstream neighbors for the current node.

3. Evaluate the transport time. The advection and retention times for transitioning to the downstream node are calculated as in previous versions.

4. Advance the particle to the next node, and advance the clock based on the sampled transit time.

Steps 2–4 are repeated until the particle passes a flow boundary, reaches the end of the decay chain, or becomes stuck or stranded (defined later in this document). Particle decay and ingrowth are handled as in previous versions.

This approach easily accommodates a change in flow direction because a check can be made at Step 2 to determine which flow field (i.e., which node network) is active at the time. If a change in flow direction is encountered while a particle is in transit between two nodes, the particle is advanced to the downstream node before any changes in direction or retention properties are applied. This introduces an approximation into the transport calculation. However, with sufficient spatial resolution, the impact should be small.

Three additional issues arise in the use of node routing: stuck particles, stranded particles, and node renumbering.

2.2 Stuck particles

Stuck particles are particles that become trapped in a series of nodes that form a loop. Loops can be closed, meaning once a particle enters the loop, the particle becomes permanently trapped in the loop with probability one. Loops can also be open; once a particle enters an open loop, the particle has some non-zero probability of exiting the loop. Loops occur because of inaccuracy in the finite-element solution to the flow field.

MARFA 3.3 identifies a stuck particle by recording the number of visits a particle makes to each node. When the number of visits exceeds a user-defined threshold, a particle is declared stuck and terminated. The stuck particles are recorded in the particle breakthrough file results.dat, but they are identified as stuck and are filtered out by default by the breakthrough reconstruction algorithm. The number of visits allowed is a user-defined parameter.
MARFA 3.3 reports statistics on the number of particles experiencing loops and the number of particles terminated due to excessive looping. These results are written to a file named loop_diagnosis.rlt and are intended to help identify unreliable results caused by an inaccurate flow field as input.

2.3 Stranded particles
In addition to particles becoming stuck, particles can become stranded. Stranded particles can arise during the evaluation of transport with flow changes. If a particle resides on a node prior to a flow change and if this node has no downstream neighbors defined after the flow change, the particle has become stranded. This occurs when differing regions of the fracture network are nearly stagnant under differing flow directions. Similar to stuck particles, stranded particles are terminated and are recorded in the particle breakthrough file results.dat. These particles are identified as stranded and are automatically filtered out by the breakthrough reconstruction algorithm.

2.4 Node renumbering
MARFA 3.3 requires a node data file for each flow period. Because of a potential to have nodes numbered differently among node data sets, a translation table is provided for each flow change to ensure that nodes are properly mapped between consecutive data sets. Node renumbering is not expected to be an issue for repository safety assessment calculations, but may be for some studies using generic geometries.
3 MARFA 3.3 input

MARFA 3.3 requires several input data files. Files that define the radionuclide decay chains, the rock retention properties, and the postprocessor control are nuclides.dat, rocktypes.dat, and postprocessor.dat, respectively. These files are the same as the corresponding files for MARFA 3.2.2. The source dat file contains radionuclide source histories and is only slightly different from the corresponding Version 3.2.2 input. In addition to those files, MARFA 3.3 requires files that describe the node networks, the time of flow changes, and the number of visits a particle can make to a node before it is terminated. A translation table for each flow change is required if nodes are numbered differently in the two time periods. If nodes are numbered the same in every flow period, the node translation tables may be omitted.

3.1 The flowdata.dat file

Information about the flow periods is contained in the flowdata.dat file. This file is required and must have the name flowdata.dat. The format of the flowdata.dat is

```
directory
VISITS ALLOWED maxvisits
FLOW CHANGES nfc
Time ! one time needed for each flow change
NODE DATA FILES
nodedatafile ! one file needed for each flow period
TRANSLATION DATA FILES
translationtablefile ! one table needed for each flow change
```

The character string `directory` is the path to the directory containing the lookup tables, as in Version 3.2.2. This character string is required and must be on the first line. The remainder of the `flowdata.dat` file is key-phrase driven. The valid key phrases are “VISITS ALLOWED,” “FLOW CHANGES,” “NODE DATA FILES,” “TRANSLATION DATA FILES,” and “CHANNELING FACTOR.” The key phrases may come in any order after the first line. Each key phrase is followed immediately by corresponding input.

The integer `maxvisits` following the optional key phrase “VISITS ALLOWED” is the number of times a particle may visit a node. If a particle visits a node more than `maxvisits` times, the particle is terminated as described in Section 2.2. If the “VISITS ALLOWED” key phrase is not present in the file, `maxvisits` defaults to 1.

The integer `nfc` following “FLOW CHANGES” is the number of times the flow field changes during the simulation. After this keyword is read, `nfc` values of the `time` field are then read, one per line. Each value of the `time` field is the time in years of a flow change. If “FLOW CHANGES” is not present, `nfc` defaults to 0 and no `time` fields are required.

The character fields denoted `nodedatafile` are read immediately after the required key phrase “NODE DATA FILES” and specify the locations of the node network data files in the MARFA 3.3 format (see Section 3.2). A total of `nfc+1` files are required, one per each flow period.

The `translationtablefile` character string specifies the location in the local file system of the data file that maps corresponding nodes between different `nodedatafiles`. If the “TRANSLATION DATA FILES” keyword is provided, a translation table is required for each flow change. If the “TRANSLATION DATA FILES” key phrase is not present, the identity mapping is used for each flow change.

The optional key phrase “CHANNELING FACTOR” allows the user to specify a global factor `chanfac` that multiplies the segment beta values in the `nodedatafiles`.
3.2 The node network data files

Information about the groundwater velocity field in each flow period is provided to MARFA 3.3 in the form of a directed graph, which provides node-to-node connectivity. The format of a node network data file is

\[
\begin{align*}
\text{num_nodes} \\
\text{node_num xloc yloc zloc} & \quad \text{! beginning of individual node data} \\
\text{num_neigh} \\
\text{neigh}_i & \quad \text{! repeated a total of num_nodes times} \\
\text{prob}_i & \quad \text{! repeated a total of num_nodes times} \\
\text{tau}_i & \quad \text{! repeated a total of num_nodes times} \\
\text{length}_i & \quad \text{! repeated a total of num_nodes times} \\
\text{beta}_i & \quad \text{! repeated a total of num_nodes times} \\
\text{rocktypeID}_i & \quad \text{! repeated a total of num_nodes times} \\
\end{align*}
\]

The field `num_nodes` is the total number of nodes contained in the data file. The integer field `node_num` and the real fields `x`, `y`, `z` are the node number and its spatial coordinates, respectively. The integer `num_neigh` is the number of nodes immediately downstream of the current node. The node numbers for downstream nodes are given in the `neigh` fields. A total of `num_nodes` must be given, all on one line. The `prob` fields are the probabilities of advancing to each downstream node. The probabilities are input as a cumulative probability for neighbors 1 through `num_nodes`. The pathway to each downstream node is defined by a transport time, length, retention parameter, and rock type, which are `tau`, `length`, `beta`, and `rocktypeID`, respectively. The definitions of these parameters are the same as in Version 3.2.2.

A helper application named extractnodedata is included with MARFA 3.3. The extractnodedata application prompts for a NAPSAC extended ASCII format (NEF) file describing the fracture system and a CONNECTFLOW binary pathline library (PTH) file. The application writes a file named nodedata.dat in the correct format for MARFA 3.3.

3.3 The node remapping files

Because of the possibility of different node numberings among multiple data sets, MARFA 3.3 uses a translation table to map nodes between data sets. This table provides a simple node-to-node mapping between node network data sets before and after a flow change.

The file format is

\[
\begin{align*}
\text{Node}_a \quad \text{Node}_b \\
\text{Node}_a \quad \text{Node}_b \\
\vdots \\
\text{: ! repeat a total of num_nodes times}
\end{align*}
\]

`Node_a` and `Node_b` are node numbers, with `Node_a` the node number in the earlier flow epoch and `Node_b` the node number of the later flow epoch to which `Node_a` will be mapped. If a node does not have a corresponding node in the later flow epoch, the node is mapped to a fictitious zeroth node (i.e. `Node_b = 0`).

3.4 The source.dat file

The radionuclide source is specified in the source.dat file. The source is to be specified as a source rate in mol/yr or Bq/yr. The format is nearly identical to Version 3.2.2.

\[
\begin{align*}
\text{npart} \\
\text{units} & \quad \text{! mol/yr or Bq/yr} \\
\text{samplemethod} & \quad \text{! keyword controlling source sampling}
\end{align*}
\]
nsources ! number of sources
sourceID ! beginning of source block
nnodes ! number of nodes associated with this source
nodenum ! node number for node associated with source
: ! repeat for a total of nnodes lines
ndpts
time RN1 RN2 RN3 ... ! one for each nuclide
: : ! repeat above line for a total of ndpts lines
: : ! repeat above source block for a total of nsources blocks

The parameter npart is the total number of particles to be used. The units parameter is used to specify the source units. The options are “mol/yr” or “Bq/yr.” The optional keyword samplemethod controls the sampling of the source. The default method is to sample the source history with uniform statistical weights for each particle of a given radionuclide. If the optional samplemethod keyword is present and specified as “UNIFORM IN TIME,” sampling of the source will be uniform in time with appropriate statistical weighting applied to each particle, as described in Section 3.3 of this document. The parameter nsources is the number of source locations (e.g., failed canisters). For each source, the sourceID is a 10-character identifier for that source. The parameter nnodes is the number of nodes associated with the specified source. The node numbers nodenum associated with the source are then read, one per line. The number of time points in a source history is ndpts. For each value of time, nnuc values of the source release rate are read, where nnuc is the number of nuclides.
4 Verification tests

Three verification tests were developed for the MARFA software. These tests are software verification tests designed to verify that the software solves the underlying mathematical equations representing radionuclide transport. Model support or validation—the process of accumulating evidence to support the validity of the underlying mathematical representation of transport—is beyond the scope of this document.

In all three tests, MARFA 3.3 was compared with the previously verified MARFA 3.2.2. These tests address (i) the retention models supported by MARFA 3.3 (unlimited diffusion, limited matrix diffusion, equilibrium sorption), (ii) the ability to evaluate changes in flow velocities, and (iii) the capability to evaluate multiple source terms and multiple pathways.

4.1 Tests of the retention model

The first set of tests used a two-member decay chain (A→B) along a one-dimensional pathway. The pathway was initially free of radionuclide mass; one mole of species A was instantaneously injected into the upstream end of the pathway to start the simulation. The transport pathway consisted of a 100-m pathway divided into 1-m segments. Node data files for MARFA 3.3 beta were constructed to represent the one-dimensional deterministic pathway.

Mass breakthrough curves for the matrix diffusion model are shown in Figure 1. For this analysis, the advective travel time is 100 years and the global transport resistance parameter for the pathway is 10^6 yr/m. The retention parameter κ was set to 0.003162 m/yr$^{-1/2}$ and 0.0001 m/yr$^{-1/2}$, respectively, for radionuclides A and B. The longitudinal dispersion length is 0.5 m. The half-life of both radionuclides A and B is 10,000 years. This result shows good agreement between MARFA 3.3 and MARFA 3.2.2.

Similar to the result shown for the matrix diffusion model, the results of the equilibrium sorption model and the limited matrix diffusion model tests show good agreement between MARFA 3.3 and MARFA 3.2.2 (results not shown). The results of these tests (Test1a, Test1b, Test1c) confirm that the matrix diffusion, limited matrix diffusion, and equilibrium sorption retention models are correctly implemented in MARFA 3.3.

![Figure 1](image.png)

Figure 1. Result of the Matrix Diffusion Retention Test, Test1a. The solid lines show the results of MARFA 3.2.2 (validated), and the dashed lines show the results of MARFA 3.3. The red lines are for radionuclide A, and the blue lines are for radionuclide B.
4.2 Flow change test

This test was designed to assess the capability of MARFA 3.3 to model changing flow velocities. The flow velocity in this test is initially 1 m/yr. At 10,000 years, the flow velocity changes to 2 m/yr. The sorption properties are unchanged at the time of the velocity change. The source, the pathway, and the retention parameters are identical to those in Test1a (unlimited matrix diffusion test).

The results of this test are shown in Figure 2. These results show good agreement between MARFA 3.3 and MARFA 3.2.2.

4.3 Multiple sources and multiple pathways test

This test was designed to test the capability of MARFA 3.3 to properly evaluate multiple sources and multiple pathways. The test evaluates a release from two separate sources, with releases starting at differing times and onto different pathways. The first source and pathway are identical to the source and pathway described in Test1a. The second source releases a 1-mol pulse release of radionuclide B at 10,000 years onto a second pathway that has a transport length of 50 m and a transport resistance parameter of 5×10^5 yr/m. The radionuclide-specific retention model and parameters are the same as those for Test1a.

The results of this test are shown in Figure 3. These results show good agreement between MARFA 3.3 and MARFA 3.2.2.

![Figure 2. Result of the Flow Change Test. The solid lines show the results of MARFA 3.2.2 (validated), and the dashed lines show the results of MARFA 3.3. The red lines are for radionuclide A, and the blue lines are for radionuclide B. The time of the flow change is at 10,000 years.](image-url)
Figure 3. Result of the Multiple Source, Multiple Pathway Test. The solid lines show the results of MARFA 3.2.2 (validated), and the dashed lines show the results of MARFA 3.3. The red lines are for radionuclide A, and the blue lines are for radionuclide B. The statistical noise in the early breakthrough of radionuclide B is typical of Monte Carlo analyses. The noise is amplified in this plot because the breakthrough reconstruction algorithm assigned a small bandwidth to resolve the peak at 104 years, thereby increasing the sensitivity to statistical noise in the remaining part of the curve.
5 Effect of flow direction changes on transport: Forsmardk 100-m block

One realization of the Forsmark fracture system was used to evaluate potential effects of flow direction changes on transport and to test MARFA 3.3 in a realistic configuration. A 100 m × 100 m × 100 m block was used (Figures 4 and 5). Node-routing data (PTH files) for two flow configurations were used, corresponding to flow in the x and y directions. The radionuclides Cs-135, I-129, and Ni-59 and the unlimited matrix diffusion model were used. These three nuclides span the relevant ranges of decay constants and retardation parameters $\kappa = \sqrt{\theta_m R_m D_{eff}}$, where D_{eff} [m2/yr] is the matrix effective diffusion coefficient, R_m [-] is the matrix retardation factor, and θ_m [-] is matrix porosity (Table 1). The source strength for each radionuclide is 1 mol/yr starting at 1,000 years decreasing promptly to 0 mol/yr after 1,010 years. Thus, a total of 10 moles of each radionuclide is released into the nodes that reside on the surface of the release face.

The applied head gradient was initially in the x direction; particles were released on the upstream face. The magnitude of the applied head gradient was 0.0001 m/m. The applied gradient direction was changed to the y direction at 109 years.

Table 1. Radionuclides and Corresponding κ Parameters and Half-Lives in the Forsmark 100-m Block Simulations.

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>κ [m yr$^{-1/2}$]</th>
<th>Half-Life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-135</td>
<td>7.10×10^{-3}</td>
<td>2.3×10^6</td>
</tr>
<tr>
<td>I-129</td>
<td>2.10×10^{-5}</td>
<td>1.57×10^7</td>
</tr>
<tr>
<td>Ni-59</td>
<td>3.48×10^{-3}</td>
<td>7.6×10^4</td>
</tr>
</tbody>
</table>

Figure 4. Fracture Network for the Forsmark 100-m Block Simulation.
Figure 6 shows the mass discharged from the block when particles were released on the entire upstream face. These figure show that iodine responds to direction changes with prompt decreases in discharge rates, while the cesium and nickel respond with prompt increases in discharge rates. This behavior is attributed to the differing mass distributions within the discrete fracture network. For the mobile iodine, the majority of the mass has already discharged before the flow changes occur; the remaining plume is skewed toward the downstream face. After the flow direction change, the average distance to the new discharge face promptly increases, causing a prompt decrease in the discharge rate. For the relatively immobile cesium and nickel, the opposite occurs. Specifically, some fraction of the plume is located near the edge of the domain at the time of the flow change and thus has only a short distance to travel to the new downstream face after the flow change. This effect causes the abrupt increase in discharge for cesium and nickel.

For this simulation, 5 million particles were launched. Approximately 2.8 million particles reached a discharge boundary. The maximum number of visits to any given node was set to 3. Of the 5 million particles, approximately 4% were terminated due to excessive visits to a node (nonphysical looping caused by inaccuracy in the input flow field). Of the surviving particles, approximately 40% passed through at least one nonphysical loop. However, the total amount of time spent in loops was relatively small (approximately 0.1%) compared with the total residence time in the network. That the total amount of time spent in loops and the total number of particles experiencing excessive loops are small is an indication that artifacts introduced by loops in the flow field are not significant.
Figure 6. Result of the Forsmark 100-m Block Simulation. The red, blue, and green lines represent Cs-135, I-129, and Ni-59 discharge summed over all boundaries. The radionuclide source begins releasing at 1,000 years, with a flow direction change (x direction to the y direction) at 10,000 years.
6 Summary

This document describes input requirements for MARFA Version 3.3, which simulates transport of radionuclides on node networks derived from groundwater velocity fields. The velocity field underlying the node network and the sorption parameters are modeled as piecewise constant in time. There are no restrictions on the number of radionuclides, the length or number of the decay chains, the number of nodes, or the number of flow changes. Branching chains are not supported. Heterogeneity in the chemical retention properties is addressed by rock type. That is, the user must define a set of rock types with constant retention properties in each. There is no limit on the number of rock types. The equilibrium sorption, limited diffusion, and unlimited diffusion models are supported.

MARFA Version 3.3 is intended to be used for modeling cases where the direction of groundwater velocity is transient. These fully transient situations cannot be modeled with earlier versions of MARFA, which presume fixed transport pathways.

7 References
