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Executive summary

In modelling groundwater flow in fractured rocks in Sweden, it has been found that in 
calibrating models against experiments over short time periods, the porosity that gives the 
best match to the observations tends to be very small, whereas in order to match the natural 
undisturbed flows, which are associated with much longer time scales, the porosity accessed 
needs to be much larger. A possible explanation for this is that in the experiments on short 
times, the porosity accessed is only the porosity associated with channels carrying the bulk 
of the flow within the fractures, whereas on longer time scales, the salinity has time to 
diffuse into less mobile water within the rock matrix, or within the fractures. That is, the 
salinity is effectively undergoing “rock-matrix diffusion”. It is important that this process is 
represented in order to model accurately transient groundwater flow and transport.

One of the programs used for modelling groundwater flow in Swedish rocks for SKB is 
CONNECTFLOW, which combines the facilities of the programs NAMMU for modelling 
continuum porous-medium models and NAPSAC for modelling discrete fracture-networks. 
Continuum porous-medium models can also be used to represent groundwater flow on 
a sufficiently large scale in fractured rocks, using suitable effective hydrogeological 
properties that represent the behaviour of the underlying fracture network.

The version of CONNECTFLOW current at the start of the work described here (Release 
2.0) did not have a capability to model rock-matrix diffusion for saline flows in continuum 
porous-medium models of fractured rocks. Therefore, possible approaches for implement-
ing such an option were evaluated and then the approach that was considered to be the most 
suitable was implemented and tested and then used in calculations for a realistic example.

Three main approaches for representing diffusion in the rock matrix were considered: 
the use of a numerical finite-difference scheme, an approach based on the use of Laplace 
transforms, and a so-called “hybrid” approach (based on an approach developed by Carrera 
et al. 1 which combines a series solution that gives a good representation at long times with 
an inverse square-root form that gives a good representation at small times. The details of 
these approaches are described. The ease of implementation, computational cost, I/O and 
storage requirements, flexibility and accuracy of the methods were compared.

Ease of implementation

All three approaches lead to similar changes to the discretised form of the equation for the 
transport of salinity. This is modified to include two additional terms: one proportional 
to the salinity at the end of the time step, and one that is a linear combination of certain 
intermediate quantities that depend on the salinities at previous time steps. Such a 
modification can be very readily implemented in CONNECTFLOW, and so there are no 
significant differences in the ease of implementation of the methods.

1 J Carrera, X Sanchez-Vila, I Benet, A Medina, G Galarza and J Guimera. On Matrix Diffusion: 
Formulations, Solution Methods and Quantitative Effects, Hydrogeology Journal, 6, 1, p 178–190, 
1998. 



Computational cost

The corrections to the equation for the transport of salinity are effectively determined by 
carrying out 1D diffusion calculations using suitable techniques. For each time step, the 
1D diffusion calculations are carried out for each element (or node) in the finite-element 
model, prior to carrying out the calculation of the transport of salinity for the 3D porous 
medium model of the fracture flow system. In general, the cost of all the 1D diffusion 
calculations is much less than the cost of solving the numerical system for the 3D model. 
Thus computational cost does not distinguish between the different approaches.

It should also be noted that, were it possible to use the same time steps as in a model with-
out rock-matrix diffusion and with the porosity taken to be all the accessible porosity, then 
the overall computational cost of a simulation with rock-matrix diffusion would be only 
slightly more than the computational cost of a simulation without rock-matrix diffusion. In 
order that the time step sizes would not be unnecessarily restricted, modified versions of the 
Laplace transform and hybrid approaches were developed that would allow large time steps 
to be taken, and would not unnecessarily constrain the time step size by the need to model 
parts of the system where the response time is rapid, even though these parts are effectively 
in equilibrium. Nevertheless, it is likely that the time step sizes will have to be smaller if 
rock-matrix diffusion is modelled, increasing the overall computational time. The time-step 
sizes may have to be smaller in order to handle the faster flow in the fracture system, and 
may also have to be smaller for convergence of the method used to solve the numerical 
system for the flow and salinity at each time step.

Storage and I/O

As noted, the calculations for each time step involve a number of intermediate quantities 
for each element (or node). For the finite-difference approach and the hybrid approach, 
the numbers of intermediate quantities (for each time step and element) depend on the 
rock-matrix diffusion parameters, and are similar for both methods and might typically be 
of order fifty. For the Laplace transform approach, the intermediate quantities required are 
the values of the salinity in the fractures at all previous time steps. On average, therefore, 
the number of intermediate quantities (for each time step and element) is about half the 
total number of time steps, and would therefore be about 250 in a typical run with about 
500 time steps. It would either be necessary to store the intermediate quantities in main 
memory or in disk files, if there is insufficient memory. This could distinguish between the 
different methods. The Laplace transform approach would require the use of files, rather 
than memory, for models with fewer elements, and the I/O cost of transferring information 
between files and memory would be higher. However, it should be noted that, even for the 
Laplace transform method, the I/O time would be a small fraction of the computational time 
for models with many elements.

Flexibility

The finite-difference approach is the most flexible of the approaches considered. In 
particular, it is the only approach that can deal with the case in which, at each location in  
the continuum representing the fractures, the groundwater density varies within the rock 
matrix. This is because diffusion within the rock matrix is non-linear in this case. The 
Laplace transform approach and the hybrid approach can only handle linear problems.



Accuracy

The Laplace transform approach and the hybrid approach treat the diffusion in the rock 
matrix exactly, whereas the finite-difference approach involves discretisation errors. In 
particular, the unit response function (the response to a step change in the concentration 
in the fractures) is significantly in error for the first few time steps. The overall effects of 
the errors could be reduced by reducing the time step size and the size of the grid blocks, 
but this could significantly increase the computational cost. It might be thought possible to 
attempt to choose an optimum time step for which the spatial and temporal discretisation 
errors effectively cancel. However, this is not a practicable approach, because the time step 
is generally determined by considerations relating to modelling the flow in the fractures.

Evaluation

In summary, there is little to choose between the methods in terms of ease of 
implementation or computational cost; the Laplace transform requires more storage or I/O 
time (although the I/O time is likely to be a small fraction of the overall computational 
time); the finite-difference method is less accurate than the Laplace transform or hybrid 
methods, which accurately represent diffusion into the rock matrix; and the finite-difference 
method is the most flexible approach and the only one that can handle the case in which, at 
each location in the continuum representing the fractures, the groundwater density varies 
within the rock matrix. In view of this, the method that was considered to be the most 
appropriate to implement initially in CONNECTFLOW for SKB was the hybrid method 
(modified as indicated to allow large time steps to be taken). This was mainly on the basis 
that the method provides a highly accurate representation of diffusion in the rock matrix. 
The method was preferred to the Laplace transform method because the latter method 
involves more intermediate quantities and greater I/O time. It is noted that, in order to use 
the method, it is necessary to make the approximation that, at each location within the 
continuum representing the fractures, the groundwater density is independent of position 
within the rock matrix. However, it is considered likely that this will be an acceptable 
approximation for many of the calculations that might be carried out for SKB.

The finite-difference approach is the only one that is sufficiently flexible to handle the 
non-linear case in which variations in groundwater density within the rock matrix at each 
location within the continuum representing the fractures are taken into account. For this 
reason, the method was initially preferred. However, the hybrid approach was ultimately 
chosen to be implemented because the finite-difference approach gives a less accurate 
representation of the diffusion in the rock matrix. However, there are many common 
features in the implementation of the various methods, and it would not require much work 
to implement the finite-difference approach in the future if this was considered desirable in 
order to model cases with large variations in salinity and hence groundwater density within 
the rock matrix at each location.

Implementation

The implementation of the hybrid algorithm is outlined and the required input data are 
described. The verification of the algorithm using a simple test case for which a semi-
analytical solution is available is described.



Example

The algorithm was used to carry out calculations for a large site-scale model, based on 
the version 1.1 model of the Forsmark site in Sweden. Calculations of the evolution of the 
groundwater flow system from conditions 10,000 years ago to the present were carried out. 
The calculations took into account the changing elevation of the land surface relative to sea 
level resulting from post-glacial rebound and the changing salinity in the Baltic sea. The 
calculations were carried out for a Base Case without rock-matrix diffusion, but with the 
porosity taken to be all of the accessible porosity in the rock matrix, and for nine variants 
with different values of the rock-matrix diffusion parameters.

It was initially found that the calculations with rock-matrix diffusion required smaller time 
steps than the Base Case calculation in order to avoid instabilities in the solution of the 
numerical equation for the transport of salinity. This is a consequence of the porewater 
velocity being greater because the porosity has been reduced from that of the matrix to that 
of the fractures. The smaller time steps would have led to prohibitively long computational 
times. In order to deal with this, the algorithm for solving the numerical equations for 
the transport of salinity was enhanced to use mixed interpolation, nodal quadrature and a 
sequential-iteration time-stepping scheme. Mixed interpolation helps to avoid element-
scale ripples in the vertical groundwater velocity in regions where the velocity is small. In 
the calculations, piecewise linear interpolation was used for the residual pressure and the 
salinity, and piecewise constant interpolation was used for the groundwater density. Nodal 
quadrature helps to avoid so-called “mass-matrix” ripples in the salinity resulting from the 
finite-element discretisation of the time derivative terms in the flow and transport equations. 
These changes make the numerical equations less non-linear and therefore easier to solve.

In the sequential iteration scheme, at each time step:
(i)	 the average density in each element is calculated from a suitable equation;
(ii)	 the residual pressure at the end of the time step is calculated (using the calculated 

average density) from a discretised version of the steady-state flow equations;
(iii)	 the salinity at the end of the time step is calculated from a discretised version of the 

salinity transport equation using the calculated average density and calculated flow.

There are different variants of this scheme, in which a single cycle of the above calculations 
is carried out for each time step, or a fixed number of cycles is carried out, or the cycles 
are repeated until convergence is obtained for the non-linear equations at each time step. 
It was found that, for the realistic example, repeating the cycles until convergence was 
obtained required a small time step, leading to prohibitively long calculations. However, if 
the time-stepping scheme that involved only a single cycle for each time step was used, it 
was found to be possible to use much larger time steps, similar to those used in calculations 
for the model without rock-matrix diffusion. This scheme was therefore adopted for the 
calculations.

With these changes, it proved to be possible to carry out calculations for the variants with 
rock matrix diffusion. The results are compared with those for the Base Case (without rock 
matrix diffusion).



Comments

This has demonstrated that the algorithm for rock-matrix-diffusion in transport of salinity 
can be used in some models of the sort that are likely to be used in practical modelling. 
The algorithm allows models to be set up in which the effective porosity for the continuum 
representing a network of fractures is taken to be a realistic porosity corresponding to 
the fractures. At the same time, the models can represent the possibility that there is a 
significantly greater porosity available within the rock matrix which may be accessed by 
diffusion on sufficiently long time scales. The fracture porosity could be obtained from 
short-term measurements or derived from fracture-network modelling (using either detailed 
numerical models or simple approximations).

The algorithm appears to be reasonably robust and allow calculations for a range of 
parameters. However, it should be noted that in general, smaller time steps will be required 
to model transport with rock-matrix diffusion than would be necessary for a model without 
rock matrix diffusion and with the porosity taken to be equal to the accessible porosity in 
the rock matrix (because the groundwater velocity will be faster and modelling the details 
of the diffusion into the rock matrix will be of interest).

The rock-matrix diffusion algorithm has currently been implemented in CONNECTFLOW 
only for the transport of salinity. However, it would be possible to use the current 
implementation to model migration of other solutes, which might be sorbing. It would  
also be possible to use the implementation to model the migration of a radionuclide, 
although it would be necessary for the user to post-process the calculated concentrations  
to take into account the effects of radioactive decay.
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1	 Introduction

The standard mathematical model for modelling saline groundwater flows in a porous 
medium is a single-porosity model that couples groundwater flow and transport of salinity. 
A variant of this model is implemented in the finite-element groundwater flow and transport 
program CONNECTFLOW, which combines the facilities of the programs NAMMU /1, 
2, 3/ for modelling continuum porous-medium models and NAPSAC /4/ for modelling 
discrete fracture-networks. As well as representing saline flows in porous rocks, continuum 
porous-medium models can also be used to represent flows (on suitably large scales) in 
fractured rocks.

However, in modelling groundwater flow in fractured rocks in Sweden, it has been found 
/5/ that in calibrating models against experiments over short time periods, the porosity 
that gives the best match to the observations (i.e. the porosity apparently accessed by the 
salinity) tends to be very small (perhaps of order 10–4), whereas in order to match the natural 
undisturbed flows, which are associated with much longer time scales, the porosity accessed 
needs to be much larger (perhaps of order 10–2). A possible explanation for this is that in 
the experiments on short times, the porosity accessed is only the porosity associated with 
channels carrying the bulk of the flow within the fractures, whereas on longer time scales, 
the salinity has time to diffuse into less mobile water within the fractures or within the rock 
matrix. That is, the salinity is effectively undergoing “rock-matrix diffusion”. Indeed, this 
would be expected in a fractured rock. It should be stressed that the large porosity accessed 
at long times is not necessarily distributed throughout the rock matrix, but may correspond 
to less mobile water within the fractures themselves or may be associated with zones 
immediately adjacent to the fractures.

Similarly, in the Finnish radioactive waste disposal programme, it has been found that the 
observed high salinities at the Olkiluoto site cannot readily be reproduced in an equivalent 
continuum model without rock matrix diffusion, whereas inclusion of rock–matrix diffusion 
in the model leads to salinities similar to those observed /6/.

The version of CONNECTFLOW current at the start of the work described here (Release 
2.0) did not have a capability to model rock-matrix diffusion for saline flows in continuum 
porous-medium models of fractured rocks. Therefore, possible approaches for implementing 
such an option were evaluated and then the approach that was considered to be the most 
suitable was implemented. This work is described in this report.

In Section 2, a simple mathematical model for rock-matrix diffusion, which formed 
the basis of the work, is discussed. In particular, analytical solutions to the equation for 
diffusion into the rock matrix are presented. In Section 3, possible approaches for solving 
the rock-matrix diffusion equation in CONNECTFLOW are described. Most of these 
methods exploit the analytic solutions discussed in Section 2. The relative advantages 
and disadvantages of the various methods are compared in Section 4. The implementation 
in CONNECTFLOW of the method that was considered the most suitable is outlined in 
Section 5. In Section 6, the testing of the new option using a simple test case is described. In 
Section 7, the application of the option in a large site-scale model, based on the version 1.1 
model of the Forsmark site in Sweden is presented. Finally, in Section 8 some concluding 
remarks are made.
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2	 Mathematical model

As noted in the Introduction, groundwater flow though a fractured rock on a large scale 
can be represented using a porous medium model. A basic model that represents flow of 
groundwater of variable salinity and also allows for rock-matrix diffusion can be expressed 
using the following equations:
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where
q	 is the specific discharge (or Darcy velocity) [LT–1];
k	 is the effective permeability tensor due to the fractures carrying the flow [L2];
µ	 is the groundwater viscosity (which depends on the salinity) [ML–1T–1];
P	 is the (total) pressure in the groundwater [ML–1T–2];
ρ	 is the groundwater density (which depends on the salinity) [ML–3];
g	 is the gravitational acceleration [LT–2];
t	 is the time [T];
ff	 is the effective porosity due to the fractures carrying the flow (which is sometimes 

referred to as the kinematic porosity) [–];
c	 is the salinity in the groundwater flowing through the fractures (expressed as a mass 

fraction) [–];

D	 is the (effective) dispersion tensor [L2T–1];
Di	 is the intrinsic diffusion coefficient for diffusion into the rock matrix, which is referred 

to as the effective diffusion coefficient in the Swedish radioactive waste disposal 
programme [L2T–1];

σ	 is the specific fracture surface area, that is the average surface area of the matrix per 
unit volume [L–1], which is called the specific flow-wetted surface area in the Swedish 
radioactive waste disposal programme. It is based on the volume of rock. (For smooth 
planar fractures, σ is given by 2P32, where P32 is the fracture area per unit volume, 
which is a measure of fracture intensity);

w	 is a coordinate in the rock matrix [L–1];
c´	 is the salinity of the groundwater in the rock matrix (expressed as a mass fraction) [–];
α	 is the capacity factor of the rock matrix [–].

It should be noted that, for clarity, the dependences of the salinities c and c´ on position 
within the continuum representing the fractures are left implicit throughout this report.
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In the above, Equation (1) is equivalent to Darcy’s law, Equation (2) corresponds 
to conservation of groundwater mass, Equation (3) corresponds to conservation of 
groundwater salinity in the fractures (allowing for diffusion into the rock matrix) and 
Equation (4) is the basic equation for diffusion into the rock matrix.

In modelling the migration of salinity, the capacity factor in Equation (4) would normally 
be taken to be equal to the accessible porosity in the rock matrix, fm. However, it is 
envisaged that the development of CONNECTFLOW that is described here might also be 
used to model migration of other solutes, which might be sorbing. In order to allow for this, 
Equation (4) was written in the more general form using the capacity factor rather than the 
rock-matrix porosity. For a sorbing solute, the capacity factor would be given by

mRφα =  										          (5)

where R is the retardation due to sorption of the solute to the rock matrix [–]. The 
description in terms of the capacity factor also facilitates modelling possible cases in  
which salinity is excluded from part of the matrix porosity because of ionic effects. 

The model above corresponds to a simple model of rock-matrix diffusion in terms of 1D 
diffusion into blocks of rock between parallel, equally spaced, planar fractures of constant 
equal aperture. Equation (4) can be modified in various ways. For example, variants of 
Equation (4) can be used to represent diffusion into blocks of rock between a network of 
intersecting fractures, or diffusion away from cylindrical flow channels. Equation (4) can 
also be modified to deal with diffusion into a layered medium with different properties for 
the different layers or to deal with diffusion in parallel into several different media. Either 
of these models could be used to represent the case in which there is a combination of 
diffusion from the water in the channels carrying flow into immobile water in the fractures 
together with diffusion into immobile water in the rock matrix between the fractures.

It should be stressed that the description of the model above should not be taken too 
literally. Although the model is described in terms of diffusion into the “rock matrix” this 
could represent, for example porous regions immediately adjacent to the fractures, rather 
than the full rock matrix.

The equations given above have to be supplemented by appropriate boundary and initial 
conditions. Suitable boundary conditions for the groundwater flow equations (Equations (1) 
and (2)) are prescriptions of either the groundwater pressure or the groundwater flux around 
the boundary of the domain modelled. Suitable boundary conditions for the equation for 
the transport of salinity (Equation (3)) are prescriptions of the salinity in the fractures at the 
domain boundary or the flux of salinity into the groundwater in the fractures. The boundary 
conditions for Equation (4) are that the salinity in the groundwater in the matrix at the 
fracture surface is equal to the salinity in the groundwater in the fractures locally:

cwc ==′ )0(  ;										         (6)

and that the flux of salinity in the matrix is zero at the maximum penetration depth d into 
the matrix:
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∂
′∂

− dw
w
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For example, if the model is used to represent diffusion into all of the rock matrix between 
the fractures,d would be taken to be equal to half the fracture spacing (because salinity 
could diffuse into the block from the fractures on either side of the block). The model could 
also be used to represent cases in which the distance that salinity can diffuse into the rock 
matrix is more limited.
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As indicated, the density and the viscosity of the groundwater depend on the salinity, and 
Equations (1) to (4) have been written in a form that is valid when such dependences are 
taken into account. The forms of the dependences are generally given by empirical fits to 
data. For example, Herbert et al. /7/ suggested that the inverse of the density should be 
taken to be linearly dependent on salinity, and the viscosity could be taken to be exponen-
tial. If the salinity variations are small, such empirical fits may be approximated by linear 
relationships, and linear relationships are often used in modelling saline groundwater flows.

If the variation of the groundwater density in the rock matrix is taken into account, Equation 
(4) is non-linear, and can only be solved numerically (see subsection 3.1). However, if at 
a location in the continuum representing the fractures, the density in the rock matrix is 
independent of position within the rock matrix, Equation (4) for that location is then linear 
and can be solved analytically using Laplace transforms (see subsection 2.1) or by a series 
solution (see subsection 2.2). In many cases, it may be a reasonable approximation to 
take the groundwater density in the rock matrix at each location to be independent of the 
position within the rock matrix. This will be the case if the salinity is small everywhere, for 
example, which may be appropriate for at least some sites in Sweden. Even if the overall 
range of salinity is large at a site, the variations in salinity at each location may be small. 
For example, the salinity may generally increase with depth, with the variation in salinity 
for a particular elevation being relatively small. In such cases, it may be reasonable to make 
the approximation that the salinity in the rock matrix at a particular location is independent 
of position within the rock matrix. However, if the range of salinity at a site is large, the 
variations in salinity at a location may be large, because of the salinity migrating in the flow 
field. For example, there may be up-coning of salinity to an underground facility. Large 
variations in salinity at a location will probably lead to large variations in the salinity within 
the rock matrix.

It should be noted that neglecting the variation in the groundwater density within the rock 
matrix corresponds to approximating the diffusion process within the rock matrix. In fact, 
it corresponds to neglect of terms proportional to the temporal and spatial gradients of the 
density. However, the diffusion process is probably still represented in a plausible manner. 
Further, the effects of the density variations are probably smaller than the effects of the 
variation in the intrinsic diffusion coefficient that occur physically.

2.1	 Laplace transform solution
If the groundwater density (at a particular location in the continuum representing the 
fractures) is independent of position within the rock matrix, Equation (4) with the boundary 
conditions (6) and (7) and initial condition

0 ) 0 ( c t c ′ = = ′  , 										         (8)

(where 0c′ is a constant) can be readily solved in terms of Laplace transforms. Taking the 
Laplace transform of Equation (4) yields
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where ^ denotes the Laplace transform and p is the Laplace transform variable.

The general solution to Equation (9) can be expressed as
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The solution that satisfies the boundary conditions is
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It is convenient to introduce the response f (w,t) to a unit step change in the concentration 
in the groundwater in the fractures. That is, f (w,t) is the solution to the problem in which c´ 
and c are initially zero, and then c = 1 for t > 0. In this case, the Laplace transform of c is

p

1
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and so from Equation (12)

]cosh[
)](cosh[1ˆ

md

wdm

p
f

−
=  .								        (14)

Then, Equation (12) can be expressed as
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Therefore, the Laplace transforms in Equation (15) can be inverted to give
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using the result that the inverse of a product of Laplace transforms is a convolution (as in 
the last term on the right-hand side of Equation (17)).

The second and third terms on the right-hand side of Equation (17) can be derived directly 
using Duhamel’s principle.

Further, from the above, the flux of salinity into the rock matrix is given by
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which has Laplace transform
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The analysis above provides an explicit representation of the flux into the rock matrix 
(which is required in Equation (3)) in terms of a function g with a known Laplace transform. 
In general, this Laplace transform cannot be inverted in terms of a simple combination of 
elementary functions. However, in the case in which d tends to infinity, that is the times 
considered are so small that only a limited part of the accessible matrix is accessed,
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and this can be readily inverted to give 
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The analysis above can be readily extended to deal with a different geometry, such as a 
cylindrical or spherical geometry, representing diffusion into blocks of rock between a 
network of intersecting fractures, or diffusion away from cylindrical flow channels. It can 
also be extended to deal with a layered medium.

2.2	 Series solution
In the analysis in the previous subsection, which used a Laplace transform approach, an 
expression for g was developed that is particularly useful for small values of time. Using a 
series approach, it is possible to develop an alternative expression for g that is particularly 
useful at long times.

The series solution is developed using the method of separation of variables. It can readily 
be shown that a function of the form W(w) T(t) is a solution of Equation (4) (with constant 
groundwater density) provided that
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For non-zero kn, the general solution to Equation (23) is 

xkBxkAW nnnnn cossin +=  ,								       (25)

where An and Bn are constants. The solution that satisfies the homogeneous boundary 
condition

0)0( ==wW  ,									         (26)

at w = 0 is 
xkAW nnn sin=  .									         (27)

In order to satisfy the homogeneous boundary condition

0=
∂
∂

−
w

W
Di 										          (28)

at w = d it is necessary for kn to be of the form

d

n
kn

π)( 2
1−

= 										          (29)

where n is an integer greater than or equal to 1.



18

The corresponding function T has the form
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say.

For kn = 0, the general solution to Equation (23) is 

BwAW +=0  ,										         (31)

where A and B are constants. The solution that satisfies the (homogeneous) boundary 
condition at w = d is

AW =0  .										          (32)

The corresponding function T has the form
10 =T  .											          (33)

Therefore, the function c´= l satisfies the boundary conditions and the governing equation. 
However, it does not satisfy the initial condition. It is therefore appropriate to seek the 
solution in the form
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From the above, such a function satisfies the governing equation, and the boundary 
conditions, and can satisfy the initial condition (f = 0 for w > 0) for appropriate choice of the 
coefficients An. This requires
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Equation (34) therefore gives the desired solution.

Then,
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The analysis above can be readily extended to the case of a different geometry, such as a 
spherical or cylindrical geometry, or to the case of a layered medium. The end result is that f 
is given by an expansion similar to Equation (34), but involving eigenfunctions appropriate 
to the problem being solved rather than sines. Then g is given by an expression similar 
to Equation (37). It should be noted, however, that the appropriate eigenvalue equation is 
generally much more complicated than Equation (29).
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3	 Possible approaches

In this Section, various approaches are outlined that might be used in CONNECTFLOW 
/1/ to model flow of groundwater with variable salinity through fractured rock using 
a continuum representation and allowing for diffusion into the rock matrix. All of the 
approaches are based on the use of standard finite-element discretisations to represent 
the (residual) groundwater pressure and the salinity in the groundwater in the (continuum 
representation of the) fractures (see Reference /1/). Thus, for example, in three dimensions, 
the residual pressure and the salinity might be represented by tri-linear functions on eight-
node cuboid elements. The numerical representation of the continuum approximation for the 
flow in the fractures (Equations (1), (2) and (3) apart from its last term) is obtained as usual.

However, the various approaches represent rock-matrix diffusion in different ways. That is, 
effectively, they treat the last term in Equation (3) differently. It should be emphasised that 
all the approaches are based on Equation (4). It is worth noting that there are effectively 
two variants for each approach, in which the rock matrix is taken to be associated with 
respectively, the elements or the nodes of the flow model.

It is also worth noting, that although the various approaches are presented here in the 
context of finite-element models for the flow, similar approaches could be adopted in the 
context of finite-difference approaches for the flow.

3.1	 Finite-difference (or finite-element) approach
The approach that is perhaps conceptually the simplest for dealing with rock-matrix 
diffusion in the context of a numerical flow model is to use numerical discretisation to 
solve Equation (4) for diffusion into the rock matrix. A simple finite-difference version of 
the approach is illustrated here. It should be stressed that in CONNECTFLOW, the flow 
equations are still being solved using a finite-element approach.

For each element (or each node, see above), in the finite-element flow model, the associated 
rock matrix is discretised into a number of 1D grid blocks. In a simple finite-difference 
(strictly finite-volume) discretisation, a discretised value of the salinity is associated with 
each grid block and time step. Then a simple fully implicit discretisation of Equation (4) is
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where the subscript denotes the grid block and the superscript denotes the time level, and

∆tl	 is the size of the l-th time step;

∆wj	 is the size of the j-th grid block.

Modified versions of Equation (40) hold at the ends of the domain. For the last (N-th) grid 
block
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This modifies the general Equation (40) to take into account the absence of a flux beyond 
the grid block, that is the boundary condition of Equation (7). For the first grid block
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This modifies the general Equation (40) to take into account the boundary condition of 
Equation (6), that is, salinity diffuses into the matrix from the fracture, where the discretised 
salinity in (the continuum representation of) the fractures c´. (c´ would therefore have 
additional indices to identify the element in the flow model that it is associated with. 
However, for clarity, such indices have been dropped here.)

The flux of salinity from the fractures into the rock matrix, which determines the last term 
in Equation (3), is given by

j

ll

i w
ccD

∆
−′

−
2
1
1 )(

 .									         (43)

The discretisation presented above allows for the possibility that the sizes of the grid 
blocks may vary. For efficiency, it is likely to be necessary to exploit this, taking the grid 
blocks smaller near to the interface with the fractures. The discretisation also allows for 
the possibility that the time steps might vary, either in a manner specified by the user, or 
determined automatically by the program. This allows, in particular, the possibility that the 
time steps might be controlled by aspects of the flow in the fractures.

It might, at first sight, seem that in order to calculate the discretised groundwater pressure 
and salinity and the salinity in the rock matrix at the end of a time step, Equations (40), (41) 
and (42) have to be solved numerically together with the discretised versions of Equations 
(1), (2) and (3) to which they are coupled via Equation (43). It should be noted that several 
tens of discretised values may be necessary to represent the rock matrix for each element 
in the flow model (see below). Therefore, the numerical system for the model incorporat-
ing rock-matrix diffusion would be one to two orders of magnitude larger than the model 
for the flow system, and the computational cost of solving the numerical equations would 
apparently be several orders of magnitude larger than the computational cost of solving the 
equations without rock-matrix diffusion, even if it were possible to use the same time-step 
sizes. This would make the approach prohibitively expensive computationally for large 
models of the flow system.

However, it is not necessary to solve the discretised equations in this way, at least in the 
case in which, at each location in the continuum representing the fractures, the groundwater 
density is taken to be independent of position within the rock matrix. It is then possible to 
solve the equations as follows. The numerical equations for the rock-matrix associated with 
each element in the model of flow in the fractures can be solved in terms of the unknown 
salinity in the groundwater in the fractures at the end of the time step (see below for more 
detail). From this, the diffusive flux into the rock matrix can be expressed in terms of the 
unknown salinity in the fractures. This can then be included in the discretised version of 
Equation (3). This can be solved for the salinity in the fractures. Then, once the salinity in 
the fractures has been determined, the salinity in the rock matrix can be calculated. The 
numerical system for the salinity in the fractures has the same size as the numerical system 
for the model without rock-matrix diffusion. Therefore, provided that it is possible to use 
the same time-step sizes for the model with rock-matrix diffusion, the computational cost 
of solving the model with rock-matrix diffusion will be similar to that of solving the model 
without rock-matrix diffusion. It should be noted that (see below) the computational cost 
of dealing with the salinity in the rock matrix is much less than the computational cost of 
solving the discretised equations for flow in the fractures.
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In detail, the approach is as follows. If the density is assumed to be constant, then the 
solution to Equations (40), (41) and (42) can be expressed as

l
j

l
j

l
j BcAc +=′  ,									         (44)

where Aj is the solution in the case in which 1′ −ljc  = 0 and l
jB  is the solution in the case in 

which cl is zero. l
jB  depends on 1′ −ljc , but not on cl. Aj does not depend on 1′ −ljc , but is actually 

independent of l (as indicated by the absence of the superscript l).

Then the flux into the rock matrix is given by
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In the l-th time step, the term in Equation (45) in lB1 involves quantities that are known. 
It is only the terms in cl that are not known. Therefore, as indicated above, if the flux into 
the rock matrix is represented as in Equation (45), its inclusion in the discretised version 
of Equation (3) does not increase the size of the numerical system, but simply modifies 
the coefficient of cl in this system, and adds in a contribution to the right-hand side of the 
system. The modified system can then be solved for cl. Then the salinity in the rock matrix 
at the end of the time step can be obtained simply by substituting the calculated value 
of cl into Equation (44). The process can then be repeated for subsequent time steps. As 
indicated, this is a very efficient way to implement the algorithm.

3.2	 Laplace transform approach
The approach outlined in the previous subsection uses a numerical approach to solve 
the equation for diffusion into the rock matrix (in conjunction with a standard numerical 
method for solving the equations for flow in the fractures). Another possible approach 
exploits the analytic solution for diffusion into the rock matrix in terms of Laplace 
transforms given in subsection 2.1, for the case in which, at each location in the continuum 
representing the fractures, the groundwater density is taken to be independent of position 
within the rock matrix and independent of time. The basic approach is described in 
subsection 3.2.1, and a refinement of the approach is described in subsection 3.2.2.

3.2.1	 Basic approach

As shown in Equation (17), the flux of salinity into the rock matrix can be expressed in 
terms of a convolution of the time derivative of the salinity in the fractures and the function 
g (and in addition there are terms arising from the initial conditions in the matrix and the 
fractures). In most transient calculations with CONNECTFLOW, a fully implicit (Backward 
Euler) time-integration scheme is used. For this time-integration schemes (as for the fully 
explicit (Forward Euler) and Crank-Nicholson time integration schemes), the salinity in the 
fractures is effectively taken to vary in a piecewise linear manner with time. The flux into 
the rock matrix at time tl is therefore given by
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This is applied for each element (or each node). However, as in subsection 3.1, the indices 
specifying the element (or node) have been dropped in Equation (47) for clarity.

The flux obtained from Equation (47) can be substituted into the discretised version of 
Equation (3) to give a fully implicit approach for the flux into the rock matrix. In the 
calculation for the l-th time step (from tl–1 to tl), only cl in Equation (47) is unknown. All 
of the other quantities are known. Therefore, as in the finite-difference approach discussed 
in subsection 3.1, incorporating the flux into the rock matrix into the discretised equations 
does not increase the size of the system, but simply modifies the coefficient of cl in this 
system, and adds in a contribution to the right-hand side of the system. The modified system 
can then be solved for cl. The process can then be repeated for subsequent time steps. Again 
this is a very efficient way to implement rock matrix diffusion.

In order to implement the algorithm outlined above, values of g and certain definite 
integrals of this are needed. As discussed in subsection 2.1, in the general case, g cannot 
be expressed in terms of a simple combination of elementary functions. However, a simple 
expression for the Laplace transform of g has been developed and the required values 
of g and its integrals can be calculated by numerical inversion. Various techniques such 
as Talbot’s algorithm /8/ can be used for this. If this has to be done for each element the 
computational effort involved might be significant, although for large problems, it would be 
much less than the effort in solving the numerical flow system. However, in many cases, the 
physical system of interest is represented in terms of a relatively small number of rock types 
with different properties. Then it is only necessary to carry out the calculations for these 
rock types and the computational effort involved is insignificant compared to the rest of the 
calculation.

Various aspects of the above algorithm should be noted. First, the distribution of salinity 
within the matrix is not actually calculated, in contrast to the finite-difference approach 
discussed in subsection 3.1. However, it would be possible to reconstruct the distribution of 
salinity at a specified time using the equivalent of Equation (17).

Second, the expression for the flux into the rock matrix gives the flux in terms of the salin-
ity in the fractures at all previous time levels. It does not involve any additional quantities. 
Therefore, provided that the salinities in the fractures at all previous time levels have been 
kept in computer memory, the approach does not require any additional computer storage. 
In contrast to this, the finite-difference approach (see subsection 3.1) explicitly involves the 
salinities in the rock matrix, and additional storage has to be allocated for these. However, 
for a large problem, it might not be possible to keep the salinities in the fractures at all 
previous time levels in memory, and it would then be necessary to save these on backing 
files and read them in for each time step when needed.

3.2.2	 Refined approach

The basic idea of the Laplace Transform approach has been outlined in the previous 
subsection. The basic method can be refined by using the average flux into the rock matrix 
over a time step rather than the flux at the end of the time step. The potential benefit of this 
approach is that it may allow much larger time steps to be taken. In particular, it may allow 
a time step to be taken that is so large that, within the time step, the salinity diffuses into all 
of the accessible porosity within the rock matrix. Over such a time step, the distribution of 
salinity within the rock matrix associated with a particular element would tend to a constant 
value, equal to the value in the fractures (which may vary over the time step). The flux into 
the rock matrix would therefore tend to zero over the time step. If the value of the flux at the 
end of the time step were used in the numerical version of Equation (3), then this would not 
take account of all of the salinity that had diffused into the rock matrix over the time step. 
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Using the average flux over the time step ensures that all of the salinity that has diffused 
into the rock matrix during the time step is taken into account properly. In fact, it ensures 
that for large time steps, the model behaves as if the effective porosity is given by the total 
accessible porosity (in the rock matrix and the fractures). A particular benefit of the refined 
approach is that it means that in a model with many different rock types and widely varying 
time scales, the time step is not unnecessarily constrained by the need to model diffusion 
into the rock matrix in part of the model that has a rapid response time, but where the 
system has in fact reached an effective equilibrium.

In the refined approach, the flux into the matrix in the discretised version of Equation (3) is 
modelled by
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where Jl (tl) is given by Equation (47). Therefore
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Noting that g(t) = 0 if t < 0, the order of the integrations in Equation (49) can be 
interchanged, leading to 
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where
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The Laplace transform of ∫ ′′=
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(see Equation (20)). Thus the values of h(t) and its integrals that are required by the refined 
approach can be readily calculated by numerical inversion of Laplace transforms as for the 
basic Laplace transform approach (see subsection 3.2.1).
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3.3	 Hybrid approach
For the case in which at each location in the continuum representing the fractures the 
groundwater density is taken to be independent of position within the rock matrix, Carrera 
et al. /9/ have developed an approach that they call the hybrid approach. The basic idea of 
this approach is to use a combination of the analytic solutions for diffusion into the rock 
matrix discussed in subsections 2.1 and 2.2. The inverse square-root form of Equation (22) 
is used for small values of time and the series solution of Equation (37) is used for large 
values of time. It should be noted that the inverse square-root expression breaks down for 
large values of time, and the series solution requires many terms to give accurate results 
for small values of the time. Using the two solutions in combination offers the possibility 
of an accurate representation of diffusion into the rock matrix in terms of a relatively small 
number of quantities. The basic approach of Carrera et al. is outlined in subsection 3.3.1 to 
introduce the key ideas. In the original paper of Carrera et al., the approach is only pre-
sented for a constant step. The approach is generalised here to deal with a varying time step. 
Also certain aspects of the algorithm are clarified. Then, in subsection 3.3.2, a refinement 
of the basic hybrid algorithm along similar lines to the refinement of the basic Laplace 
transform approach discussed in subsection 3.2.2 is presented.

3.3.1	 Basic hybrid approach

As indicated above, the basic idea of the hybrid algorithm is that g is approximated by
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Key points that are not well explained in the original paper by Carrera et al. are that the 
matching time t* has to be less than the time step size (the smallest time step size if the time 
steps are varying), and that N is determined by the requirement that the two expressions 
for g agree to within a certain specified accuracy at t*. (In fact, Carrera et al. imply that t* is 
determined by the requirement that the two expressions for g are equal at t*, but this cannot 
be achieved.)

Substituting Equation (53) into Equation (47), the flux into the rock matrix is given by
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The integrals that appear in Equation (54) can be readily calculated, in terms of exponentials 
and powers. At first sight, it might appear that this is all that has been achieved by the use 
of the approximation of Equation (53), because Equation (54), like Equation (47) involves 
the salinities in the fractures at all previous time levels. However, Equation (54) has a very 
important property. If the quantities
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are introduced, then Equation (52) can be written as
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so that the flux can be expressed in terms of 1−l
nI  and 
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Further, it can readily be seen that
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Thus it is only necessary to use the latest values of the intermediate quantities 1−l
nI  and
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cc  using Equation (57). Thus, rather than using

the values of the salinities at all previous time levels, the algorithm only uses the latest 
values of the N intermediate quantities 1−l

nI . As indicated, this property, which is a 
consequence of the eigenfunctions in the expansion of Equation (34) having an exponential 
time dependence, is very important. If the number of time steps is large, the property 
could give a very substantial reduction in the amount of computer memory or I/O required 
compared to the requirements for the Laplace transform algorithm.
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It should be noted that the intermediate quantities introduced above are not quite the same 
as those introduced by Carrera et al. /9/, although they are closely related.

It is possible to generalise the algorithm so that the matching time t* can be chosen greater 
than the time step size. However, this may require the values of more quantities to be stored 
than is the case for the variant of the algorithm described above. The number N of

intermediate quantities 1−l
nI  that have to be kept is proportional to *

1
t

, which decreases

as t* increases. However, if t* is greater than the time step size, all past salinities within an 
interval t* of the current time have also to be kept. Often the latter more than compensates 
for the saving due to the reduction in N. Since the additional complexity associated with 
being able to choose t* independent of the time step size does not bring substantial savings 
in the amount of computer memory or I/O required, this generalisation of the algorithm is 
not considered further.

3.3.2	 Refined hybrid approach

As for the Laplace Transform approach, and for the same reasons (see subsection 3.2.2), the 
basic method outlined in the previous subsection can be refined by using the average flux 
into the rock matrix over a time step rather than the flux at the end of the time step. This 
leads to the following expression for the flux into the rock matrix
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For the first time step, the last three terms in Equation (58) are not present, and the first two 
terms are modified so that
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Again it is possible to organise the calculations for a time step so that it is only necessary to 
keep the latest values of the intermediate quantities l

nI  (in memory or on backing files).

3.4	 Possible approximate Laplace transform approaches
The Laplace transform approach for treating diffusion into the rock matrix that is outlined in 
subsection 3.2 is accurate, easy to implement, and efficient. The only potential problem with 
the approach is that the calculation of the flux into the rock matrix involves the salinities in 
the fractures at all previous time levels. It is therefore necessary to store these values either 
in memory or on backing files. The latter is likely to be necessary for large models. In this 
case, the I/O time required to read the salinities into memory for each time step may be 
significant. It would not be expected that the time required for the steps in the calculation 
dealing with rock-matrix diffusion would be significant compared to the time required to 
solve the numerical system for the flow.

In order to reduce the potential memory or I/O requirement, consideration might therefore 
be given to the possibility of developing an approximation to the Laplace transform 
approach that involves fewer quantities. The basic idea would be to attempt to exploit the 
fact that the effect of the salinities in the fractures at a given time on the salinity in the 
rock matrix falls off over time. Various approaches might be used. One approach would 
be to combine the early time steps into groups and replace the detailed time variation 
of the salinity in the fractures for a group with a suitable average value. The detailed 
representation of the variation over time steps would only be used for the most recent time 
steps. Another possible approach might be to approximate the early time variation as an 
expansion in terms of a small number of suitable functions, such as polynomials.

However, all of the possible approaches are to some extent ad hoc. They probably would 
require significant work to determine suitable values for the parameters of the approaches, 
such as the size of the groups for the first suggested approach, or the functions and their 
number for the second suggested approach. None of the approaches would seem to offer 
any significant benefits compared to the hybrid approach developed by Carrera et al. /9/. 
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This approach is also an approximation, but the approximation is likely to be very accurate. 
Therefore, such approaches were not considered further.

3.5	 Galerkin approach
Another approach that might be used to model the diffusion into the rock matrix is a 
Galerkin approach for solving the diffusion equation for each time step. In such an 
approach, the distribution of salinity in the rock matrix would be represented in terms of 
an expansion in terms of a number of suitable basis functions, which would generally be 
smooth. The coefficients in the expansion would be determined by requiring the expansion 
to satisfy, in some approximate sense, the equation representing rock-matrix diffusion for 
each time step.

Such an approach is closely related to a finite-element approach to solving the equation 
for diffusion into the rock matrix. In fact, a standard finite-element approach is basically 
a Galerkin approach that uses piecewise-smooth basis functions. The potential benefit of 
using a Galerkin approach with smooth basis functions is that, for a problem that is in a 
sense smooth, such a method would generally be expected to converge much more rapidly 
with increasing numbers of basis functions than a finite-element approach. Thus it might 
be possible to represent the diffusion into the rock matrix in terms of fewer quantities 
(the coefficients in the expansion) than would be required for a finite-element (or finite-
difference) approach. The price that would be paid for this is that the equations that would 
be solved for the coefficients in the expansion for each time step would generally not be as 
sparse as the equations for a finite-element method, and might even be full. The equations 
would therefore require significantly greater computational effort to solve, although the 
work involved would probably still be significantly less than the work involved in solving 
the numerical system for the flow.

Further, the potentially faster convergence of the Galerkin approach only applies to smooth 
problems. However, one case that is likely to be of particular interest is the response to a 
step change in the concentration in the fractures (see subsection 2.1). For such a case, a 
Galerkin method may not converge more rapidly than a standard finite-element method,  
and may not even converge as rapidly.

Overall, it was considered that a Galerkin approach would not offer any significant benefits 
compared to the hybrid approach of Carrera et al. The latter approach essentially adopts a 
representation of the distribution of salinity in the rock matrix in terms of a number of suit-
able basis functions (sines, or suitable eigenfunctions in more general cases) combined with 
an alternative representation (the inverse square-root) to give a more accurate representation 
at early times than can be achieved using a relatively small number of the basis functions. 
A Galerkin approach would still involve a time-discretisation error. For these reasons, 
Galerkin approaches were not considered further.

3.6	 The approach of Hopkirk and Gilby
Another approach for dealing with diffusion into the rock matrix has been proposed by 
Hopkirk and Gilby /10/. The approach was developed to deal with radionuclides, but 
could readily be modified to deal with salinity. The essence of their approach is as follows. 
The distribution of the concentration in the rock matrix associated with a grid block in a 
finite-difference discretisation of the flow system is represented as a finite sum of certain 
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functions (cosines and hyperbolic cosines). The way in which this would evolve over a time 
step can be calculated analytically (using an approach based on Laplace transforms, in fact) 
for a linear variation over time of the concentration in the fractures. Then the solution at the 
end of the time step is approximated in terms of the chosen functions again. This is done by 
finding the best fit of a linear combination of these functions to the solution in the sense of 
minimising the square of the difference between the solution and the expansion. The fit is 
constrained in order to ensure conservation of mass.

Overall, it was considered that this approach would not offer any significant benefits 
compared to the hybrid approach of Carrera et al. Although the analytic calculation of the 
solution over a time step is exact, the process of approximating the solution in terms of the 
chosen functions at each time step introduces an error, analogous to the discretisation error 
in a finite-element, finite-difference or Galerkin approach. The hybrid approach is likely 
to be more accurate. It is also considered to be somewhat simpler to implement. For these 
reasons, the approach of Hopkirk and Gilbey was not considered further.
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4	 Comparison of approaches

In the previous Section, various methods that might be used for modelling diffusion into 
the rock matrix are outlined. There are many similarities between the different methods. All 
of the methods exploit the fact that the equation for diffusion into the rock matrix can to a 
large extent be solved separately from the equations for the flow through the fractures. The 
equation for diffusion into the rock matrix associated with an element in the finite-element 
model for flow in the fractures only involves the salinity of that element. In the case in 
which the groundwater density at each location is taken to be independent of position 
within the rock matrix, the solution to the rock-matrix diffusion equation for a time step 
can therefore be expressed as a linear combination of the salinity in the fractures at the end 
of the time step and other known quantities. The flux into the rock matrix can therefore 
be expressed in a similar manner. Such a term can be readily included in the equation for 
transport of salinity. This does not increase the size of the numerical system for the flow 
compared to that for flow without rock-matrix diffusion. It simply modifies the coefficient 
of the salinity in the numerical system and adds a contribution to the right-hand side of the 
system. In many cases, these changes do not significantly increase the computational effort 
required to solve the numerical system for the flow.

The differences between the approaches are therefore associated with the different ways 
in which the distribution of salinity in the rock matrix is represented and diffusion into the 
rock matrix is handled, and the implications of these. The potential key issues are the ease 
of implementation, computational cost, storage, flexibility and accuracy of the methods. A 
detailed comparison of these issues for the three main methods discussed in Section 3 (the 
finite-difference approach, the refined Laplace transform approach and the refined hybrid 
approach) is given below.

4.1	 Ease of implementation
All of the main approaches discussed in Section 3 can be readily implemented in the finite–
element groundwater flow and transport program CONNECTFLOW (or other groundwater 
flow and transport programs). The code in CONNECTFLOW needs to be modified in two 
places (see also Section 5). The subroutines that describe the flow equations that are being 
modelled need to be modified to include the extra term representing the flux into the rock 
matrix. As indicated above, and as discussed in Section 3, for each time step this term has 
the form

ll BAc +  .										          (60)

where cl is the salinity at the end of the time step and A and Bl do not depend on cl. (In 
practice (see Section 5), it may be convenient to implement this as a term of the form
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where B´l like Bl does not depend on cl.) Such a term can be very easily implemented, 
particularly in CONNECTFLOW, which was originally designed to allow the equations 
that are being modelled to be specified or changed through FORTRAN subroutines that are 
closely related to the mathematical equations.
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The second place where CONNECTFLOW needs to be changed is in the subroutine that 
loops over the time steps. This needs to be modified to calculate the quantities A and Bl 
(or A and B´l) for each element and arrange for these to be passed to the subroutines that 
specify the flow equations. This change can be implemented in a very modular way via 
a call to a suitable subroutine. Given the current version of CONNECTFLOW (which is 
written in FORTRAN 77), it is easiest to use backing files to pass the quantities A and 
Bl (or A and B´l) to the subroutines that specify the equations. (However, were a version 
of CONNECTFLOW to be implemented using a later version of FORTRAN, such as 
FORTRAN 90, it would be possible to use an alternative approach such as a suitable 
MODULE.) Again this is easy to implement.

The only differences between the various approaches therefore lie in the implementation of 
the calculation of A and Bl (or A and B´l) for each element and each time step. The nature 
of these calculations is different for the different approaches. For the finite-difference 
approach, it is necessary to solve a number of matrix equations (see subsection 3.1). 
The matrix in question corresponds to the 1D discretisation of the diffusion into the rock 
matrix and is tri-diagonal. It is easy to implement ab initio an algorithm for the solution 
of such systems using, for example, the Thomas algorithm (which is a variant of Gaussian 
elimination). Indeed this was done in the testing of the accuracy of the various algorithms 
(see subsection 4.4). Versions of suitable algorithms can also be readily found in many 
subroutine libraries.

For the Laplace transform approach, it is necessary to invert numerically a number of 
Laplace transforms in order to calculate  and Bl (or A and B´l) for each element and each 
time step (see subsection 3.2). Versions of suitable subroutines for numerical inversion of 
Laplace transforms can be found in many subroutine libraries. At Serco Assurance, a variant 
of Talbot’s algorithm /8/ has previously been used for numerical inversion of Laplace 
transforms in, for example, the MASCOT PSA program. If the Laplace transform approach 
were to be adopted for modelling rock-matrix diffusion in transport of salinity, then the 
subroutines used could be readily adapted.

For the hybrid approach, in order to calculate A and Bl (or A and B´l) for each element and 
each time step, it is only necessary to carry out calculations involving exponentials and 
powers (see subsection 3.2). This is straightforward to implement.

Therefore, all the main approaches considered could be readily implemented.

It is perhaps worth adding a note here about the implementation of the program MATDIF 
/11/, based on NAMMU, which was previously developed to model rock matrix diffusion 
of radionuclides. MATDIF used a finite-element approach to model diffusion into the 
rock matrix. Such an approach is very similar to the finite-difference approach outlined in 
subsection 3.1. However, in MATDIF, the approach was implemented in a very different 
and more complicated way than that proposed above for the finite-difference approach. The 
basic idea was that NAMMU was used to solve the equations for diffusion into the rock 
matrix as well as the transport equations. However, the way in which this was implemented 
meant that NAMMU had to be modified to deal with many more variables than the standard 
version of NAMMU allowed at the time MATDIF was implemented and NAMMU also had 
to be modified to deal with many different models. The first of these required many changes 
to the code.

For the implementation proposed above for the finite-difference approach outlined in sub-
section 3.1, the variables associated with the distribution of salinity (concentration) in the 
rock matrix are separate from the variables characterising the flow and transport and are not 
handled by CONNECTFLOW. The implementation would therefore require few changes to 
CONNECTFLOW and would be much more modular than the implementation of MATDIF.
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4.2	 Computational cost
The overall computational cost of the various approaches depends on the number of time 
steps and on the cost of the calculations for each time step. The latter has two components: 
the cost of the calculation of the groundwater flow and transport in the fractures and the cost 
of the calculation for diffusion into the rock matrix.

First, it should be noted that all of the approaches outlined in Section 3 lead to a similar 
numerical system for flow and transport in the fracture provided that the time-step size is 
the same. The computational cost of solving this system is likely to be essentially the same 
for all of the approaches.

Further, it should be noted that the numerical system for flow and transport in the fractures 
is the same size as the numerical system in the case without rock matrix diffusion. For 
some techniques that might be used for solving the numerical system for flow and transport 
in the fractures, the cost of the calculation of groundwater flow and transport in the 
fractures with rock-matrix diffusion might be the same as the cost of the calculation in the 
case without rock-matrix diffusion. This might be the case if the direct frontal solver in 
CONNECTFLOW were to be used to solve the equations for example.

However, if the preconditioned conjugate gradient solver were to be used, then the cost of 
the calculations in the case with rock-matrix diffusion might be different from the cost of 
the calculations in the case without rock-matrix diffusion. It might be argued that the cost 
of the calculations would lie between the costs of two different calculations without rock 
matrix diffusion. In one of these the effective porosity would be taken to be the fracture 
porosity and in the other the effective porosity would be taken to be the total porosity of  
the matrix and the fractures. However, it is considered that this would not be a reliable guide 
to the cost. This is because of the way in which the pre-conditioned conjugate gradient 
solver converges.

It should also be noted that taking diffusion into the rock matrix into account will effec-
tively change the non-linearity of the system. If the non-linearity is handled by iterations 
at each time step, then the number of iterations could be different in the cases in which 
rock-matrix diffusion is modelled and in which it is not. This would affect the cost of the 
calculations. Again, it is difficult to predict the likely effect of taking rock matrix diffusion 
into account in a particular case.

For each time step, all of the approaches for dealing with diffusion into the rock matrix 
outlined in Section 3 involve the calculation of the quantities A and Bl (or A and B´l) for 
each element from a number of intermediate quantities. The overall number of floating 
point operations involved will be equal to the number of elements times a number that 
might be of the order of several hundred. For large models, this computational cost will 
be a small fraction of the computational cost of solving the numerical system for flow and 
transport in the fractures. Thus this contribution to the overall computational cost is not 
likely to differentiate between the various approaches. The worst case would be that of the 
Laplace transform approach for a heterogeneous model in which each element has different 
rock matrix diffusion properties. For each time step, it would then be necessary to carry 
out a large number of numerical Laplace transform inversions: one for each element and 
each previous time step. On average, the number of inversions required for each time step 
would be about half the total number of time steps times the number of elements. The cost 
of this many inversions might be significant for a simple implementation of the inversion 
algorithm. However, this case is unlikely to arise in practice because the variation of the 
rock-matrix diffusion properties is likely to be specified in terms of a number of rock types. 
Further, it would be possible to attempt to develop a variant of the inversion algorithm 
tailored to the approach, with much reduced computational cost, although this would 
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increase the difficulty of implementing the rock-matrix diffusion algorithm.

The key issue in comparing the overall computational costs of each approach is then the 
extent to which each approach may constrain the allowable time steps. This leads to a 
potentially important distinction between the various methods. In the case of the basic 
Laplace transform approach and the basic hybrid approach, in a model with many different 
rock types and widely varying time scales, the time step may be constrained by the need 
to model rock-matrix diffusion in part of the model that has a rapid response time, even 
though this part of the model is effectively in equilibrium. The refined variants of the basic 
approaches were specifically designed to ensure that the model for rock-matrix diffusion 
would be reasonable for a very large time step. This would also be the case for the finite-
difference approach, provided that a fully implicit time-integration method is used for this. 
Therefore, the refined variants of the basic approach and the fully implicit finite-difference 
approach might allow much larger time steps for some models. This would lead to a much 
lower overall computational cost. Therefore, these methods are preferred.

4.3	 I/O and storage
All the approaches considered utilise certain intermediate quantities for each element in the 
calculation of the quantities A and Bl (or A and B´l) for each element and each time step. In 
the case of the finite-difference approach, the intermediate quantities are the salinities of 
the grid blocks in the finite-difference representation of the rock matrix associated with the 
element. In the case of the Laplace transform approach, the intermediate quantities are the 
salinity in the fractures for the element for all previous time steps. In the case of the hybrid 
approach, the intermediate quantities are the quantities l

nI  defined in Equation (54).

For each approach, the intermediate quantities have either to be stored in memory or on 
backing file during the computation. For a small model, it will be possible to keep all of 
the intermediate quantities in memory, but for a large model it will be necessary to use a 
backing file. The I/O time to transfer the information into memory for each time step could 
then be significant.

The I/O time is effectively proportional to the number of intermediate quantities. Therefore, 
the number of intermediate quantities required for each element was estimated for each 
approach. In the case of the finite-difference approach, a preliminary estimate of the number 
of intermediate quantities for each element was obtained on the basis that the grid blocks 
in the finite-difference model should be small enough to be capable of giving a reasonably 
accurate representation of the flux into the rock matrix during a time step. For a uniform 
grid, this requires the size of the grid blocks to be similar to the distance salinity would 
diffuse into the matrix in a time step:
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where td is the time to diffuse fully across the rock matrix.

Using the above analysis for realistic parameters, it is estimated that several tens of 
intermediate quantities would be required for each element in a typical case. This analysis 
is a very simple order-of-magnitude estimate and the actual number of grid blocks required 
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to give acceptable accuracy might be somewhat larger (see also subsection 4.4). It is also 
possible that somewhat fewer grid blocks might be necessary if a variable grid spacing is 
used, with the smallest spacing adjacent to the fractures. (For comparison, in calculations 
with MATDIF, it was found that for each finite element in the representation of the 
fractures, between about twenty and fifty elements with refinement close to the fractures, 
were necessary to give a sufficiently accurate representation of the rock matrix /12/.) It 
should be noted that, for a simple implementation of the approach with the same value of 
N used throughout, in a model with widely varying properties, the value of N might be 
determined by part of the model.

For the Laplace transform approach, the number of intermediate quantities for each 
element is equal to the number of previous time steps. On average, therefore, the number of 
intermediate quantities for each element is half the total number of time steps. In a typical 
case, this could be several hundred.

The number of intermediate quantities required for the hybrid approach was also estimated. 
As discussed in subsection 3.3, the matching time t* has to be smaller than the time step size 
and then N is determined by the requirement that the series in Equation (50) gives a good 
match to the inverse square-root at t*. Interestingly, this leads to the requirement that N is 
of the same order as the value given by Equation (63). Again, it should be noted that, for 
a simple implementation of the approach with the same value of N used throughout, in a 
model with widely varying properties, the value of N might be determined by part of  
the model.

Overall therefore, the finite-difference approach and the hybrid approach might require 
fewer intermediate quantities than the Laplace transform approach. The I/O time required 
to read the intermediate quantities into memory for each time step would therefore probably 
be less for the finite-difference approach and the hybrid approach than for the Laplace 
transform approach.

It is of interest to estimate the I/O times that might be involved. For example, in the 
version 1.1 of the Forsmark model that has recently been developed for SKB there are 
approximately 400,000 nodes. For a typical run with about 500 time steps, for each time 
step, it would on average be necessary to read about 100 Mwords (800 Mb) into memory 
for the Laplace transform method, if the intermediate quantities are kept on backing file. 
For the computer currently in use at Harwell, the maximum speed for reading from disk is 
about 100 Mb per sec. The time to read the intermediate quantities would therefore be about 
10 sec for each time step and the total time for reading the intermediate quantities during 
the run would be about 1hr.

For comparison, the overall time required on the Harwell computer for one time step using 
the preconditioned conjugate gradient solver is about 175 secs (3 mins) and the overall run 
time is about 24 hours. The time for each step is divided as follows:
(i)	 about 25 secs to assemble the equations for each variable (pressure and concentration);
(ii)	 about 25 secs to calculate the preconditioner for each variable (pressure and 

concentration);
(iii)	 about 75 secs to solve the equations.

Overall, therefore, the I/O time for the Laplace transform approach would be a small but 
significant fraction of the total run time. The I/O times for the finite-difference approach 
and the hybrid approach are likely to be significantly less than the I/O time for the Laplace 
transform approach.
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4.4	 Accuracy
The accuracy of the various approaches is potentially a key factor that might distinguish 
between them. The Laplace transform approach essentially treats the diffusion into the 
rock matrix exactly. For suitable choice of the parameters (t* and N) the hybrid approach 
will give an extremely accurate representation of diffusion into the rock matrix. Careful 
consideration was therefore given to the accuracy of the finite-difference method. This 
had been considered to some extent in estimating the number of grid blocks required, 
which had been done on the basis that the grid blocks should be sufficiently small as to 
be capable of giving an accurate representation of the flux into the rock matrix during a 
time step. However, the analysis was crude. A more detailed study of the accuracy of the 
method was therefore undertaken. A simple implementation of the 1D finite-difference 
method as a FORTAN program was made and tested. Then the accuracy of the method was 
examined in the case in which the salinity in the rock matrix is initially zero and the salinity 
in the fractures is immediately changed to a value of 1. (This is the case used to derive the 
response function g of subsection 2.1.)

The accuracy of the flux into the rock matrix at the end of the first time step was considered 
for a wide range of possible grid-block sizes. It was found that, for small grid block sizes, 
the flux at the end of the first time step was too large by a factor of about 1.77, even though 
the finite-difference grid blocks were small enough to represent the correct value of the flux. 
Conversely, for large grid-block sizes the flux at the end of the first time step is too small.

These results are not surprising. The finite-difference approach includes spatial and 
temporal discretisation errors. In the case in which the grid blocks are very small, so that the 
spatial discretisation error is negligible the temporal discretisation error is still present, and 
in the case in which the grid blocks are large, the spatial discretisation error will dominate.

The results were checked by solving analytically the numerical equations for the finite-
difference approach. It was found that, for small grid-block sizes, the flux at the end of the 
first time step should be overestimated by a factor of π  =1.7725, and that, for large grid-
block sizes, the flux at the end of the first time step should be underestimated by a factor of

2
4

x

tDi

∆
∆

α
π

 ,										          (64)

exactly in accord with the observations. It was also possible to estimate a value of the grid 
block size, or equivalently the number of grid blocks, that would give an accurate result for 
the flux at the end of the first time step. The optimum value of the number of grid blocks 
was found to be

tD
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(Effectively the spatial and temporal discretisation errors cancel for this choice of 
parameters.)

(A similar result was obtained using a finite-element approach to determine the flux into the 
rock matrix, although the optimum value of the number of grid blocks was slightly different 
in this case.)

These results have important implications for the method. If the rock-matrix diffusion 
model were to be solved independently of the equations for flow in the fractures and with 
separate time steps, then it would be possible to choose the time-step and grid-block sizes 
for the rock-matrix diffusion model sufficiently small to achieve any specified accuracy, 
although this could mean that the computational cost for the rock-matrix diffusion model 
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would be significant. This would also be significantly more complicated to implement than 
the approach that is proposed for the initial development of an option in CONNECTFLOW 
to model rock-matrix diffusion during transport of salinity. In the proposed approach, the 
same time step would be used for modelling diffusion into the rock matrix and flow in the 
fractures.

It might at first be envisaged that it would be possible to choose the grid-block size (or 
equivalently the number of grid blocks) to ensure that the number of grid blocks is close to 
optimum. However, it is expected that it will be necessary to vary the time step throughout 
the run, so that it would not be possible for the grid-block size to be optimum throughout 
the run. Also, the number of grid blocks could be different for different elements, which 
would complicate the implementation slightly.

It might also be hoped that the error in the flux into the matrix would fall off rapidly with 
time, or that the accumulated error would become small over time. However, this is not the 
case as shown by Figures 4-1 and 4-2. In Figure 4-1, the variation of the flux into the rock 
matrix over time is shown for a case in which the grid block size is small. As can be seen 
there is always a significant error in the flux, although this error does decrease over time. In 
Figure 4-2, the integrated flux (i.e. the total salinity that has diffused into the rock matrix) is 
shown. Again there is always a significant error, although this decreases over time.

Figure 4-1.  Comparison of the flux into the rock matrix calculated using a simple finite-difference 
approach with that calculated analytically. 
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In conclusion, it would appear that in a simple implementation of the finite-difference 
approach that uses the same time step as the discretisation of the equations for flow in the 
fractures, the finite-difference approach is likely to have a significant error in the flux into 
the matrix. It is possible that the effect of this error might be small compared to the effect of 
the discretisation errors associated with the representation of flow in the fractures. However, 
recognising that the extent to which salinity diffuses into the rock matrix effectively 
determines the speed at which salinity moves through the fractures, it was considered that 
the errors in the finite-difference approach might have a significant effect on the flow in the 
fractures.

4.5	 Flexibility
The key point here is that most of the methods outlined in Section 3 can only deal with 
the case in which the groundwater density in the rock matrix is taken to be constant. Only 
the finite-difference method (and possibly the Galerkin method) can deal with the case in 
which the groundwater density in the rock matrix is variable. This case is non-linear. All 
the other methods can only handle linear problems. Therefore, in order to use the methods 
it is necessary to make the approximation that the groundwater density in the rock matrix 
is constant. However, for many of the models that are likely to be used for SKB, this 
approximation is likely to be reasonable, because the salinities involved range from that of 
fresh water to that of seawater, which at present has a density about 2.5% greater than that 
of fresh water (and also see Section 2).

The three main approaches considered could be extended to deal with radioactive decay 
or with diffusion into a layered rock matrix. However, this would be complicated for the 
hybrid approach outlined in subsection 3.3. The eigenfunctions that would appear in the 

Figure 4-2.  Comparison of the integrated flux into the rock matrix calculated using a simple 
finite-difference approach with that calculated analytically. 
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expansion similar to that of Equation (34) would be much more complicated than the simple 
sine functions of Equation (34), and the eigenvalues would in general be determined by 
complicated transcendental equations.

4.6	 Evaluation
On the basis of the comparison above, it was considered that the best approach to 
implement initially in CONNECTFLOW for SKB would be the refined version of the 
hybrid approach (see subsection 3.3.2). This decision was made mainly on the basis that 
the method would provide a highly accurate representation of diffusion into the rock 
matrix. The method is also likely to involve the least number of intermediate quantities and 
hence the least I/O time for large models (see subsection 4.3). The method was preferred 
to the Laplace transform approach, which is also accurate, because the latter may have a 
significantly larger I/O time.

The hybrid method is also easy to implement. The use of the refined version rather than the 
basic version originally developed by Carrera et al. /9/ should give the greatest likelihood 
that the time-step sizes are not unduly constrained (see subsection 3.3.2) in cases in which 
the model involves wide ranges of properties and hence time scales. It is recognised that the 
hybrid method is not as flexible as the finite-difference approach, and in particular cannot 
deal with the (non-linear) case in which the variation of the groundwater density in the rock 
matrix with salinity is taken into account.

The finite-difference approach is the only method that is sufficiently flexible to handle the 
non-linear case in which the variation of the groundwater density in the rock matrix with 
salinity is taken into account. For this reason, the method was initially preferred. However, 
in view of the limits on the accuracy of the approach discussed in subsection 4.5, the hybrid 
approach was ultimately preferred, noting that the variations in groundwater density that are 
likely to be modelled for SKB are small.

It was also noted that there are many common features in the implementation of the various 
methods. Therefore, once the hybrid approach has been implemented, if it were desired to 
implement the finite-difference approach at some time in the future, this would not involve 
a lot of work.
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5	 Implementation in CONNECTFLOW

In the previous Sections, various alternative approaches for modelling rock-matrix diffusion 
in CONNECTFLOW for transport of salinity were discussed. It was recommended that the 
best approach to implement initially would be the refined version of the hybrid approach 
(see subsection 3.3.2). In this Section, details of the implementation of this algorithm are 
given.

The algorithm can be summarised as follows:
(i)	 The equation for the transport of salinity is modified to include a term for the flux into 

the matrix (see Equation (3))
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(ii)	 The last term in Equation (66) can be written as (see Equation (59))
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(iii)	 For time steps after the first, the coefficients A and B´l are determined from 
Equation (58). (For the first time step, similar expressions can be derived from 
Equation (59).) The recursion relation (see Equation (57))
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	 can be used to simplify Equation (58) giving:
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from which A and B´l can be derived.
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(iv)	 Hence, for time steps after the first, A is given by:
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	 and B´l is given by:
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The following aspects of the current implementation should be noted. First, in dealing with 
the salinity in the rock matrix, the groundwater density at all points in the rock matrix is 
taken to have the value of the reference groundwater density in CONNECTFLOW. This 
involves a greater approximation than is strictly necessary. As discussed in Section 2, 
for example, it is really only necessary to make the approximation that the groundwater 
density in the rock matrix at a particular location in the continuum representing to the 
fractures is independent of position within the rock matrix. The groundwater density could 
vary with position in the continuum. However, in order to implement this more general 
approximation, it would be necessary to store the groundwater density at all locations in 
the continuum. In order to keep storage requirements as low as possible, the more general 
approximation was not implemented.

Second, for the current implementation, it is only possible to specify that the initial salinity 
in the rock matrix varies with position in the continuum representing the fractures. The 
initial salinity at a location within the continuum representing the fractures is taken to be 
independent of position within the rock matrix.

The algorithm requires modifications to three distinct parts of CONNECTFLOW:
(i)	 The subroutines that handle input of the properties of the rock types in a model have to 

be extended to deal with the properties required to model rock-matrix diffusion;
(ii)	 The driver subroutine for the transient (“Crank Nicholson”) calculation has to be 

modified:
•	 To calculate the quantities A and B´l for the extra term representing the flux into the 

rock matrix, which is added into the flow equations (see Equation (67));
•	 To evaluate and keep a record of the various quantities (mainly the N intermediate 

quantities 1−l
nI ) used to calculate the flux into the rock matrix (see Equation (68));
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(iii)	 The subroutines that describe the flow equations have to be modified to include the 
extra term representing the flux into the rock matrix.

These modifications are described in the following subsections. During the testing of 
the algorithm, it was also found to be necessary to make some changes to the solver (see 
subsection 7.3.3).

5.1	 Data input
Under the subcommand >> PHYSICAL PROPERTIES, the table ROCK TYPE 
PROPERTIES has been modified to include new columns:

MATRIX GEOMETRY for each rock this keyword can take the values 
of either 0, for no rock matrix diffusion,

or 1, for rock matrix diffusion in a “slab”-like 
geometry. Other geometries could be added in 
the future.

CAPACITY FACTOR this keyword specifies the capacity factor for 
each rock (α in Equation (4)).

MATRIX POROSITY this keyword specifies the porosity of the rock 
matrix (ff) for each rock. For salinity, this is 
generally the same as the capacity factor. (It 
is not necessary to specify both the matrix 
porosity and the capacity factor.)

INTRINSIC DIFFUSION COEFFICIENT this keyword specifies the intrinsic diffusion 
coefficient for diffusion into the rock matrix for 
each rock (Di in Equations (3) and (4)).

EFFECTIVE DIFFUSION COEFFICIENT this keyword is an alias for the keyword 
INTRINSIC DIFFUSION COEFFICIENT. It 
specifies the intrinsic diffusion coefficient for 
diffusion into the rock matrix for each rock  
(Di in Equations (3) and (4)).

FRACTURE SURFACE AREA PER UNIT VOLUME this keyword specifies the (average) fracture 
surface area per unit volume for each rock  
(σ in Equation (3)).

DIFFUSION LENGTH this keyword specifies the accessible distance 
into the rock matrix, that is the distance into the 
matrix at which the flux of salinity in the matrix 
is zero (d in Equation (7)). It should be set to 
half the fracture spacing if it is considered that 
all of the rock matrix between the fractures is 
potentially accessible, and to the maximum 
possible penetration depth, if it is considered 
that there is a limit to the possible penetration 
depth.

These keywords allow a user to define all the required rock properties.

The only other changes to the input language are under the subcommand  
>> SALT TRANSPORT. The following keywords have been added:

INCLUDE MATRIX DIFFUSION this keyword indicates that the modelled 
equations for groundwater flow and transport 
of salinity equation should account for diffusion 
into the rock matrix.
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SAVE RMD HISTORY ON UNIT integer this keyword specifies the FORTRAN stream on 
which the N intermediate quantities 1−l

nI  should 
be saved.

SAVE RMD A AND B ON UNIT integer this keyword specifies the FORTRAN stream on 
which the quantities A and B´l should be stored 
for use in the calculation of the discretised flow 
equations.

ACCURACY PARAMETER FOR MATRIX DIFFUSION this keyword specifies the acceptable error 
between non-dimensional forms of the analytical 
solution for the flux of salinity into the matrix, the 
short-time solution (Equation (22)) and the long-
time solution (Equation (36)). It determines both 
t* and the number, N, of intermediate quantities 

1−l
nI  that need to be saved (Equation (53)). The 

value should be small. A value of 10–4 or smaller 
is recommended.

5.2	 Driver routine
The driver subroutine for the transient (“Crank Nicholson”) calculation was modified as 
follows.

If the keyword INCLUDE MATRIX DIFFUSION is set, then:
(i)	 Before the first time step, a subroutine RMDINI is called. This subroutine determines 

the value of t* and the maximum number of intermediate quantities 1−l
nI  to be kept. The 

result is used to allocate workspace for storage of the intermediate quantities 1−l
nI , as 

well as the quantities bn, ωn, and 0
0 cc −′ .

(ii)	 For all time steps, the subroutine RMDAB is called. The primary role of this 
subroutine is to calculate the quantities A (Equation (70)) and B´l (Equation (71)),  
and write them out to a file so that they can be accessed by the subroutines that 
describe the flow equations.  
For the first time step, this subroutine also calculates the quantity , saving it for later 
use. The initial salinity in the rock matrix is specified via a variable “CMAT” 2.

(iii)	 For all time steps, the subroutine RMDMOD is called. The purpose of this subroutine 
is to update the intermediate quantities 1−l

nI  (Equation (68)), and also to calculate the 
last two terms in B´l (Equation (71)), which are independent of the current time step 
size, so that the quantities are available in RMDAB.

(iv)	 After the first time step, the subroutine RMDHD is called. This subroutine writes to  
the history file those quantities that are independent of the time step (e.g. t*, bn, ωn,  
and 0

0 cc −′ ).
(a)	 For those time steps that the user has requested that the calculated global freedoms 

be saved (using the usual keywords under the subcommand CRANK NICHOLSON), 
the subroutine RMDSAV is called. This subroutine writes to the history file those 
quantities that depend on the time step (e.g. 1−l

nI ).
(b)	 If the user requests a “restart”, the subroutine RMDSAV reads back the history file for 

the specified time step and sets up the rock-matrix diffusion algorithm appropriately.

2 This is how the initial salinity is specified in the latest version of the rock-matrix diffusion 
algorithm (in Release 8.0). In the prototype version, which was used for the study reported here, the 
initial salinity in the rock matrix was specified using a function FUNCTION CM0 (CF0, X, MSD, 
ILYR) where the function arguments are the initial concentration in the fractures, position, number 
of dimensions, and rock type. This allowed the user to specify the initial salinity as a function of 
position (in the continuum, but not within the rock matrix) by supplying a suitable version of this 
function. 
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5.3	 Equation for the transport of salinity
The subroutines that describe the flow equations were modified to include the extra term for 
the flux into the matrix. In particular:
(i)	 Subroutine FR3ST, which describes the steady-state part of the equations for transport 

of salinity, was modified to include B´l. (It should be noted that it was not necessary to 
modify the subroutine JR3ST that calculates the contribution to the Jacobian from the 
terms defined in subroutine FR3ST.)

(ii)	 Subroutine FTR3ST, which describes the transient part of the equations for transport of 
salinity, was modified to include A. Subroutine JTR3ST, which calculates the Jacobian 
of the terms defined in subroutine FTR3ST, was modified to include the (trivial) 
derivative of the extra term in FTR3ST.

It should be noted that only the PRES CONC FORMULATION for coupled groundwater 
flow and transport of salinity in 3D was modified. (The rock-matrix diffusion option is, 
therefore, currently, only available for 3D calculations using this formulation.)
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6	 Test case

The implementation of the algorithm for rock matrix diffusion was verified using a simple 
test case for which a semi-analytical solution is available.

6.1	 Definition of the test case
The test case considers transport of salinity in a horizontal column 104 m long. The column 
is divided into 100 cubic finite elements, each with sides of length 102 m. The physical 
properties are as follows:
(i)	 the permeability of the column is 10–11 m2;
(ii)	 the effective fracture (or kinematic) porosity of the column is 10–2;
(iii)	 freshwater and saline water are taken to have the same density: 998.3 kg m–3;
(iv)	 the viscosity of the groundwater is 10–3 Pa s;
(v)	 the salt diffusion coefficient is 10–9 m2s–1;
(vi)	 the tortuosity of the rock is 100;
(vii)	 the longitudinal dispersion length is 102 m;
(viii)	 the transverse dispersion length is 101 m;
(ix)	 the acceleration due to gravity is 9.81 ms–2.

The rock matrix diffusion properties are as follows:
(i)	 the capacity factor or accessible matrix porosity α is 3 10–1;
(ii)	 the intrinsic diffusion coefficient Di is 5 10–11 m2s–1;
(iii)	 the fracture surface area per unit volume σ is 2 m–1;
(iv)	 the diffusion length is given by half the spacing between the fractures, that is 

σ

φ f−1
.

The initial condition is that the salinity is zero in the fractures and in the rock matrix.

The boundary conditions are that at one end of the column, the hydrostatic head is 50 m and 
the mass fraction of dissolved salinity is 1. At the other end of the column, the hydrostatic 
head is 0 m and a zero-dispersive-flux boundary condition is specified for the salinity.

6.2	 Semi-analytical solution for the test case

The equations for the transport of salinity (Equations (1)–(4)) for the test case can be solved 
by the method of Laplace transforms (see also subsection 2.1).

The Laplace transform of Equation (3) for the case of constant fracture porosity and 
constant density in one dimension is
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where
v	 is the porewater velocity, which is given by 

fφ
q

v = , and is a constant for this test case;
Dm	 is the diffusion coefficient of salinity;
τ	 is the tortuosity;
aL	 is the longitudinal dispersion coefficient of salinity.

From the analysis in subsection 2.1, in the case when the salinity in the rock matrix is 
initially zero
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Substituting this result into Equation (72) gives
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The solution to this equation is of the form

( ) ( )xCxCc −−++ += ββ expexpˆ  .							       (75)

where β+, β– are the roots of 
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Hence
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C± are determined from the boundary conditions as follows. At the inlet boundary, the mass 
fraction of salinity in the fractures is 1 so
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,0ˆ  ;								        (78)

At the outlet boundary, there is a zero-dispersive-flux boundary condition for the salinity in 
the fractures so
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∂
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ββββ expexp0,
ˆ 					    (79)

Equations (78) and (79) can be solved to determine C±. The results can then be substituted 
into Equation (75). The end result is an expression for the Laplace transform of the salinity 
in the fractures. This expression can be inverted numerically using, for example, Talbot’s 
algorithm /8/ to determine c(x,t).
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6.3	 Comparison of CONNECTFLOW results and the semi-
analytical solution

The results of calculations of coupled groundwater flow and transport of salinity with 
rock-matrix diffusion carried out using CONNECTFLOW were compared with the salinity 
determined as in subsection 6.2. These were in very good agreement. For example, in 
Figure 6-1 a comparison of the evolution of the salinity at the mid-point of the column is 
shown, and in Figure 6-2, comparisons of the salinities along the column at various times 
are shown.

As commented, the results obtained using CONNECTFLOW are in very good agreement 
with the results obtained from the semi-analytical solution. This builds confidence that the 
rock-matrix diffusion algorithm has been coded correctly.

Figure 6-1.  Comparison of the evolution of salinity (in the fractures) at the mid-point of the 
column calculated using a semi-analytical method and using CONNECTFLOW. 
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Figure 6-2.  Comparison at various times of the profiles of the salinity (in the fractures) along the 
column calculated using a semi-analytical method and using CONNECTFLOW. 
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7	 A realistic example

7.1	 Introduction
Once the implementation in CONNECTFLOW of the algorithm for rock-matrix diffusion 
in transport of salinity had been verified (see Section 6), it was applied to a large site-scale 
model to examine the use of the approach for the sort of models that might be developed in 
practical modelling. The model was based on a model that was developed as part of the site 
descriptive modelling for Forsmark version 1.1 /12/.

The topography and the extent of the region modelled are shown in Figure 7-1.

Figure 7-1.  Topography and elevation of the bottom of the sea, also showing the lateral boundary 
of the model (assumed to coincide with water divides). 
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Figure 7-2.  The positions of the fracture zones (reproduced from /14/). 

 

The model comprises 5 layers (L1, L2, L3, L4 and L5, from the top of the model down-
wards). Layer L1 is 3 m thick and layer L2 is 10 m thick (so the base of L2 is 13 m below 
the land surface in the model). The base of layer L3 is 400 m below current sea level, the 
base of layer L4 is 2,100 m below current sea level and the base of layer L5 is 2,300 m 
below current sea level.

The model includes various fracture zones. The positions of the fracture zones are shown  
in Figure 7-2.
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Initial simulations were based on the data set for Case 8 of /12/. However, this Case is 
harder to solve than the other Cases. This is mainly because the Case has a smaller porosity 
(10–3 instead of 5 10–3). Hence the groundwater velocities are larger, by a factor of 5. 
Therefore, assuming that advection is the dominant flow process, it would be necessary for 
this case to use time steps that are five times smaller than the time steps for the other Cases 
in order for the changes in salinity in a time step to have similar magnitude to the changes in 
the other Cases. This is because the changes are proportional to the velocity. The calculation 
would therefore take about five times longer. If it was attempted to use time steps for this 
Case similar to the time steps for the other Cases, the changes in salinity at each time step 
would be larger, and the non-linearities would be greater, making the non-linear equations 
harder to solve.

Therefore, the final simulations presented below were based on the data set for Case 5 of 
/12/. A Base Case without rock-matrix diffusion corresponding to Case 5 and nine variants 
with rock-matrix diffusion were considered. The hydrogeological properties of the layers 
in Case 5 are summarised in Table 7-1. These properties are based on Version 1.1 of the 
hydrogeological site description of Forsmark. The distribution of the permeability in the 
model is illustrated by Figures 7-3 and 7-4, which show the permeability on two vertical 
slices through borehole KFM02A (see Figure 7-5).

Table 7-1.  Hydrogeological properties.

Layer Permeability 
[m2]

Porosity 
[–]

Specific 
storage 
coefficient 
[m–1]

Longitudinal 
dispersion 
length 
[m]

Transverse 
dispersion 
length 
[m]

kxx kyy kzz

L1 1.53 10–12 5 10–2 0 40 5

L2 2.039 10–14 2.039 10–14 2.039 10–13 5 10–3 0 40 5

L3 Log normal with median 2.237 10–16  
and variance of the logarithm 0.45311)

5 10–3 0 40 5

L4 Log normal with median 1 10–18 and 
variance of the logarithm 1

5 10–3 0 40 5

L5 1 10–18 5 10–3 0 40 5

FZs HCD12) Rock3) 0 40 5
1 A minimum permeability of 10–19 m2 was specified in order to minimise the contrasts in the stochastic 
permeability field.
2 The properties are as defined in the Forsmark version 1.1 xml files HCD1.xml.
3 The porosity of the fracture zone is not used; instead the porosity of the background rock is used, as in the 
original modelling of Holmen et al. /13/.

Using the model, calculations of the evolution of the groundwater flow system from 
conditions 10,000 years ago to the present were carried out. During this period, the 
elevation of the land surface relative to sea level gradually rises because of glacial rebound 
from conditions when the land was covered by an ice-sheet. The salinity of the Baltic sea 
also varies. The variation of the shoreline elevation and the sea water salinity are shown in 
Figures 7-6 and 7-7. These variations lead to changes in the groundwater salinity and the 
groundwater flow in the region modelled.
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Figure 7-6.  Historic displacement of the shore at Forsmark. 

Figure 7-5.  Location of boreholes. The blue line denotes the regional investigation area, the black 
line denotes the boundary of the model and the red line denotes the inner investigation area. 
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The initial salinity distribution (corresponding to a time 10,000 years ago) was taken to 
be that the groundwater is fresh down to a depth of –500 m; the salinity increases linearly 
from 0% to 10% between –500 m and –2,100 m; and the salinity is 10% below –2,100 m. 
The initial groundwater pressure in the model was taken to be the hydrostatic pressure 
corresponding to the initial salinity distribution.

The sides of the model are located at the assumed positions of regional water divides, and 
so there is no flow of groundwater through the sides. There is also assumed to be no flux 
of salinity through the sides. The bottom of the model is a no flow boundary and is taken 
to have constant salinity. On the top of the model, the boundary condition is effectively 
that the hydrostatic head is specified as a function of the surface elevation. The boundary 
condition for the salinity on the top surface is that the salinity is specified at locations where 
the direction of groundwater flow is into the model and that, at locations where the flow 
direction is out of the model, there is an outflow, or zero-dispersive flux, condition (which 
effectively means that the flux of salinity out of the model is given by the product of the 
calculated groundwater flux and the calculated salinity).

7.2	 Rock-matrix diffusion properties
Layers L1 and L2 are taken to be porous media, without rock-matrix diffusion. Rock matrix 
diffusion is assumed to occur only in layers L3, L4 and L5, which are taken to represent 
fractured rocks. For these layers:
(i)	 the capacity factor α is taken to be the matrix porosity used in the original calculation 

(Case 5 of /13/), that is 5 10–3;

Figure 7-7.  Evolution of salinity in the southern Baltic Sea. 
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(ii)	 the intrinsic diffusion coefficient Di is based on the reasonable value for a non-sorbing 
tracer at the Aberg site in the SR 97 assessment /15/, that is 8.24 10–14 m2s–1;

(iii)	 the diffusion length is given by half the spacing between the fractures, that is 
σ

φ f−1
,,

	 which effectively assumes that all of the rock matrix is accessible by diffusion.

Values of two further parameters for each layer are required: the effective fracture (or 
kinematic) porosity, φf, due to the fractures carrying the flow and the fracture surface area 
per unit volume, σ. These parameters depend on properties of the networks of fractures 
in the layers. If explicit models for these networks were available, then φf and σ could be 
calculated from the fracture-network models. However, Case 5 was not based directly 
on a fracture-network model, but rather the effective permeability and porosity of the 
various layers were directly specified. Therefore, φf and σ cannot be calculated directly. 
Nevertheless, it is desirable that the values of φf and σ should be consistent with a fracture 
network which is consistent with the assumed permeability. This can be achieved as 
follows. In many cases, the effective permeability, k, and fracture porosity for a network 
can be related (to a good approximation) to the (geometric) mean fracture aperture and the 
fracture spacing b by the following expressions

b

a
k

12

3

= 											          (80)

b

a
CFf =φ  ,										          (81)

where CF is a so-called roughness factor, which here has been assumed to have a value 4.74.

Then, given a value of k and an assumed value of  φf, the mean fracture aperture and the 
fracture spacing can be obtained from

f
F
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φ
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=  ,										         (82)

f
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a
Cb

φ
=  .										          (83)

To be realistic, b should have a value between about 1 m and 100 m, which constrains the 
allowed values of φf. σ can be obtained from b using

b
2

=σ  .										          (84)

Thus it is possible to derive values for φf and σ that are consistent with a fracture network 
which is consistent with the assumed permeability. Three possible sets of values were 
determined in this way. Nine variant cases were defined using these sets and three possible 
values for the intrinsic diffusion coefficient: the value discussed above, and larger values, 
which should allow the matrix to be accessed more rapidly. The parameters for the variants 
are listed in Table 7-2.

Table 7-2.  Rock matrix diffusion parameters used in the CONNECTFLOW simulations  
of the Forsmark site.

Variant Rock φf 
[–]

α 
[–]

Di 
[m2s–1]

σ 
[m–1]

Characteristic 
diffusion time 
[y]

11 L3 10–4.5 5 10–3 8.24 10–14 6.64 10–1 1.09 103

L4 / L5 10–5.5 5 10–3 8.24 10–14 3.14 10–1 4.87 103
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Variant Rock φf 
[–]

α 
[–]

Di 
[m2s–1]

σ 
[m–1]

Characteristic 
diffusion time 
[y]

12 L3 10–4.0 5 10–3 8.24 10–14 3.74 100 3.44 101

L4 / L5 10–5.5 5 10–3 8.24 10–14 3.14 10–1 4.87 103

13 L3 10–4.0 5 10–3 8.24 10–14 3.74 100 3.44 101

L4 / L5 10–5.0 5 10–3 8.24 10–14 1.77 100 1.54 102

21 L3 10–4.5 5 10–3 8.24 10–13 6.64 10–1 1.09 102

L4 / L5 10–5.5 5 10–3 8.24 10–13 3.14 10–1 4.87 102

22 L3 10–4.0 5 10–3 8.24 10–13 3.74 100 3.44 100

L4 / L5 10–5.5 5 10–3 8.24 10–13 3.14 10–1 4.87 102

23 L3 10–4.0 5 10–3 8.24 10–13 3.74 100 3.44 100

L4 / L5 10–5.0 5 10–3 8.24 10–13 1.77 100 1.54 101

31 L3 10–4.5 5 10–3 8.24 10–12 6.64 10–1 1.09 101

L4 / L5 10–5.5 5 10–3 8.24 10–12 3.14 10–1 4.87 101

32 L3 10–4.0 5 10–3 8.24 10–12 3.74 100 3.44 10–1

L4 / L5 10–5.5 5 10–3 8.24 10–12 3.14 10–1 4.87 101

33 L3 10–4.0 5 10–3 8.24 10–12 3.74 100 3.44 10–1

L4 / L5 10–5.0 5 10–3 8.24 10–12 1.77 100 1.54 100

In Table 7-2, the characteristic diffusion time for each layer is also listed. The characteristic 
diffusion time is an estimate of the time for salinity to diffuse into the rock matrix:
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It is clear from Table 7-2 that for the calculations considered, which consider a total time of 
10,000 years, the salinity will be able to access most of the matrix.

In view of the remarks above about the difficulties for Case 8, which are due to the low 
porosity for the Case, it is perhaps worth noting that, although the fracture (or kinematic) 
porosities for the variants above are lower than the porosity for Case 8, the porosity 
effectively accessed by the salinity will be larger than the fracture porosity, because of 
rock-matrix diffusion.

7.3	 Numerical issues
The rock-matrix diffusion algorithm was found to perform as expected, adding little to the 
computational cost of the calculation for a single time step (see subsection 4.2). However, 
it was found initially, that to avoid instability in the solution of the numerical equations 
for the transport of salinity, smaller time steps were required (see subsection 4.2). This is a 
consequence of reducing the porosity in the model from that of the rock matrix to that due 
to the fractures carrying the flow, which increases the porewater velocity. The smaller time 
steps would have led to overall computational times that were excessive. In order to deal 
with this, some enhancements were made to the algorithm for solving the equations for the 
transport of salinity. These enhancements addressed three topics:
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(i)	 mixed interpolation;
(ii)	 nodal quadrature;
(iii)	 a sequential-iteration time-stepping algorithm.

These enhancements are discussed below.

7.3.1	 Mixed interpolation

In regions where the flow is small, Darcy’s Law (Equation (1)) is a balance between the 
vertical component of the pressure gradient and the gravitational term (proportional to the 
density), both of which may be much larger than the flow. In a finite-element discretisation, 
if the same order of interpolation is used for the pressure and the density, then it is not 
possible to achieve a pointwise balance between the vertical component of the pressure 
gradient and the gravitational term. This is because the two terms behave differently, the 
gravitational term being given by a higher-order piecewise-polynomial than the pressure 
gradient. An average balance integrated over an element is achieved. However, there are 
large ripples on the scale of the elements in the velocity obtained from the discretised 
version of Equation (1) (see, for example, /7/). Various techniques have been proposed to 
deal with this issue, such as the use of a so-called “consistent velocity” approximation, or 
the use of an interpolation for the salinity that has lower-order than the interpolation used 
for the pressure (see /7/). In the calculations reported below, a variant of the latter approach 
was used in which a lower-order interpolation was used directly for the density (rather than 
the salinity). In fact, constant interpolation on each element was used for the density, and 
tri-linear interpolations were used for the pressure and salinity.

7.3.2	 Nodal quadrature

The standard Galerkin finite-element method generally gives excellent results provided the 
problem is well behaved and the grid is fine enough to resolve the features present in the 
solution. However, in transient calculations, near rapid changes in the solution, numerical 
solutions often exhibit spatial oscillations on the scale of the elements. One cause of 
such ripples is the finite-element discretisation of the time-derivative terms in the flow 
equations. This leads to so-called “mass-matrix ripples”. In many cases, these ripples are 
not significant, and indeed some authors have argued that they are associated with higher 
accuracy in the results. However, the ripples are, in some sense, unphysical, and in non-
linear calculations may lead to problems. For example, the ripples may lead to negative 
salinities, or to salinities greater than the maximum entering the domain. Such salinities 
will affect the density, and hence the flow. In particular they may make the numerical 
calculations much more non-linear, increasing the difficulty of solving the numerical 
system.

The mass-matrix ripples can be (largely) avoided by the use of the technique known as 
mass-lumping. This can be implemented in various ways. The simplest is to use nodal 
quadrature, in which the sample points in the numerical integration scheme used to carry 
out the integrals over an element required in the finite-element method are taken at the 
nodes of the element. This leads to a scheme in which the numerically calculated salinities 
are generally physical (greater than zero and less than the maximum entering the domain). 
This is likely to lead to a more robust algorithm.

However, it should be noted that other aspects of the discretisation, such as the treatment  
of the advective term, can also lead to ripples near rapid changes in the solution.
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7.3.3	 Sequential-iteration algorithm

A sequential-iteration technique was used in the integration of the numerical equations  
over time. At each time step:
(i)	 the average density in each element is calculated from a suitable equation;
(ii)	 the residual pressure at the end of the time step is calculated (using the calculated 

average density) from a discretised version of the steady-state flow equations 
(Equations (1) and (2));

(iii)	 the salinity at the end of the time step is calculated from a discretised version of 
the salinity transport equation (Equation (3)) including the rock-matrix diffusion 
contributions. In this calculation, the previously calculated average density and 
calculated flow are used.

There are different variants of this scheme, in which a single cycle of the above calculations 
is carried out for each time step, or a fixed number of cycles is carried out, or the cycles are 
repeated until convergence is obtained for the non-linear equations at each time step. The 
last algorithm was implemented and verified using a variant of the Henry test case /16/. It 
was found that, for the realistic example, with this algorithm, it was necessary for the time 
step to be about a third of a year. With such a time step size, the calculations would have 
taken prohibitively long. Therefore, the time-stepping scheme in which only a single cycle 
of calculations is carried out for each time step was adopted for the calculations because 
it was found possible to use much larger time steps, similar to those used in previous 
calculations for the model without rock-matrix diffusion /13/.

This time-stepping algorithm might also be useful in future calculations without rock–
matrix diffusion because it might allow larger time steps to be taken than would be possible 
with the algorithm implemented prior to the work described in this report.

7.4	 Results
As discussed, the evolution of the system from conditions 10,000 years ago to the present 
day was calculated. The calculated present-day salinities are illustrated by Figures 8-1 
and 8-2. These Figures show the salinities for the Base Case model (without rock-matrix 
diffusion), corresponding to Case 5 of Holmén et al. /12/, on two vertical slices through 
borehole KFM02A (the same slices as in Figures 7-3 and 7-4). In these plots, a non-linear 
colour scale for the salinity is used. The scale covers a range of salinity from 0% to 10% by 
weight. Note that the intervals of salinity are:
•	 Below 0.005%. 0.005% corresponds to drinking water standards (i.e. Cl content less  

than 30 milligram/litre).
•	 Between 0.005% and 0.05%. 0.05% corresponds to the taste limit (i.e. Cl content less 

than 300 milligram/litre).
•	 Between 0.05% and 0.6%. 0.6% corresponds to the salinity of the present Baltic Sea.
•	 Between 0.6% and 1.2%. 1.2% corresponds to the maximum salinity of the Litorina Sea.
•	 Between 1.2% and 2%.
•	 Between 2% and 3%.
•	 Between 3% and 4%.
•	 Between 4% and 6%.
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•	 Between 6% and 8%.
•	 Between 8% and 10%. 10% corresponds to the maximum salinity of the model  

(i.e. the salinity along the base of the model).

As can be seen, the stratified distribution of salinity at depths below about 500 m has not 
changed greatly during the period of the calculation. The main changes are that, in some 
locations, plumes of saline water have flowed up from the saline region at depth into the 
region above 500 m depth that was taken to be fresh at the start of the calculation, and in 
other locations, plumes of saline water have flowed down into the fresh region from the 
seabed. The plumes generally appear to be associated with the conductive features.

The results are also illustrated in Figures 8-3 to 8-5, which show vertical profiles of the 
calculated salinity for boreholes KFM01A, KFM02A and KFM03A. (The positions of  
these boreholes are tabulated in Table 7-3 and shown in Figure 7-5.)

Table 7-3.  Data on the boreholes.

Borehole X Y Z Bearing Inclination Length

KFM01A 1 631 397 6 699 530 3 318 –85 1,001

KFM02A 1 633 183 6 698 713 7 276 –85 1,002

KFM03A 1 634 631 6 697 852 8 272 –86 1,001

Overall, the results for the Base Case model are similar to those presented for Case 5 by 
Holmén et al. This is not surprising because the model is the same. Some differences are 
to be expected because the numerical algorithm used differs from that used by Holmén et 
al. In particular, there are indications that the undershoots (negative salinities) are smaller 
in the results presented here for the Base Case model than in the results presented by 
Holmén et al. This would be consistent with the use of nodal quadrature for the calculations 
presented here, which removes one source of ripples, namely the mass-matrix ripples.

However, there are still some undershoots in the calculated solution. This will be due to 
some aspect of the numerical discretisation. It could be the result of using too large a time 
step, for example. It might also be the result of only carrying out a single cycle of the 
sequential-iteration time-stepping scheme, rather than iterating to convergence, for example. 
This could have the following effect. In the first iteration for a time step, the salinity might 
move in a certain flow field, but the effect of taking into account the fact that the salinity 
has moved might be to change the flow field. For example, it might lead to a reduced flow, 
and were this taken into account the salinity might not move as far, or it might lead to an 
increased flow, which might move the salinity further.

Figures 8-3 to 8-5 also show the calculated salinities in the continuum representing the 
fractures for the variant calculations with rock-matrix diffusion. The results appear to 
behave as expected. For Variant-33, the characteristic diffusion times are the shortest and 
much shorter than the total period simulated (see Table 7-1). Therefore, salinity will have 
had time to access most of the accessible rock matrix and so the results for this case should 
be similar to those for the Base Case. In contrast, the characteristic diffusion times for 
Variant-11 are much longer and comparable to the total period simulated. Therefore, salinity 
would not have had time to access all of the accessible rock matrix for this variant. Hence, 
the results for this variant would be expected to differ somewhat from the results for the 
Base Case. As can be seen, expectation is borne out by the results.



63

8	 Comments

The results presented above demonstrate that the algorithm for rock-matrix-diffusion in 
transport of salinity can be used in some models of the sort that are likely to be used in 
practical modelling. The algorithm allows models to be set up in which the effective poros-
ity for the continuum representing a network of fractures is taken to be a realistic porosity 
corresponding to the fractures. At the same time, the models can represent the possibility 
that there is a significantly greater porosity available within the rock matrix which may 
be accessed by diffusion on sufficiently long time scales. The fracture porosity could be 
obtained from short-term measurements or derived from fracture-network modelling (using 
either detailed numerical models or simple approximations).

The algorithm appears to be reasonably robust and allow calculations for a range of 
parameters. However, it should be noted that in general, smaller time steps will be required 
to model transport with rock-matrix diffusion than would be necessary for a model without 
rock matrix diffusion and with the porosity taken to be equal to the accessible porosity in 
the rock matrix (because the groundwater velocity will be faster and modelling the details 
of the diffusion into the rock matrix will be of interest).

The rock-matrix diffusion algorithm has currently been implemented in CONNECTFLOW 
only for the transport of salinity. However, it would be possible to use the currently 
implemented algorithm to model migration of other solutes, which might be sorbing. It 
would also be possible to use the algorithm to model the migration of a radionuclide, 
although it would be necessary for the user to post-process the calculated concentrations  
to take into account the effects of radioactive decay.
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